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TREE (UNRELATED?) QUESTIONS

1 How to use automated theorem provers for obtaining
decision procedures?

2 Why some fragments of first-order logics are decidable and
others are not?

3 How to design practical and complexity-optimal procedures
for reasoning in description logics?
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Description Logics

WHAT ARE DESCRIPTION LOGICS?

“. . . [formalisms] for providing high level description of the
world that can be effectively used to build intelegent
applications.” (Nardi & Brachman, 2003).

A family of languages for knowledge representation which:
Provide a logic-based descriptions of concepts by means
of their mutual relationships
Distinguished by a formal semantics which gives
unambiguous reading for these descriptions
Have effective procedures to identify logical consequences
of descriptions and answer queries
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Description Logics

CLASSICAL APPROACH

DATA (COLLECTION OF FACTS):

PhDStudent Supervisor
. . . . . .
Yevgeny Kazakov Hans de Nivelle
Yevgeny Kazakov Gert Smolka
Ruzica Piskac Hans de Nivelle

D2Member Email
. . .
Hans de Nivelle . . .
Yevgeny Kazakov . . .
Ruzica Piskac . . .

QUERIES:

?-PhDStudent(X ) ∧ D2Member(X ).

X = Yevgeny Kazakov
X = Ruzica Piskac

X = Hans de Nivelle, Y = Ruzica Piskac
X = Gert Smolka, Y = Yevgeny Kazakov
X = Hans de Nivelle, Y = Yevgeny Kazakov
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Description Logics

DL-BASED APPROACH

DATA ABox (COLLECTION OF FACTS):

PhDStudent Supervisor
. . . . . .

D2Member Email
. . .

METADATA TBox (PROPERTIES OF CLASSES AND RELATIONS):

Supervisor ·
= ∃hasStudent.PhDStudent

PhDStudent u Supervisor v ⊥
PhDStudent u D2Member v ∃hasSupervisor.D2Member

hasStudent ·
= (hasSupervisor)−

Gives a more expressive query language:
?-∃hasStudent.∀hasSupervisor.D2Member(X ).

Enables query optimisations:
?-Supervisor(X ) u D2Member(X ).
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THE LANGUAGE OF DLS

PRIMITIVE CONCEPTS (unary relations): PhDStudent
Supervisor
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PRIMITIVE ROLES (binary relations): hasStudent
hasSupervisor

INDIVIDUALS (elements): “Gert Smolka”
“Hans de Nivelle”
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Description Logics

THE LANGUAGE OF DLS

PRIMITIVE CONCEPTS (unary relations): PhDStudent
Supervisor
D2Member

PRIMITIVE ROLES (binary relations): hasStudent
hasSupervisor

INDIVIDUALS (elements): “Gert Smolka”
“Hans de Nivelle”

OPERATORS to form new concepts from existing ones:

(C1 u C2) Conjunction: PhDStudent u D2Member
(C1 t C2) Disjunction: PhDStudent t Supervisor
(∃R .C1) Existential Restriction: ∃hasStudent.D2Member
(∀R.C1) Value Restriction: ∀hasSupervisor.D2Member
(> n R) At least restriction: > 2 hasStudent
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Description Logics

REASONING PROBLEMS OF DLS

TBox (TERMINOLOGY)

Supervisor ·
= ∃hasStudent.PhDStudent

PhDStudent u Supervisor v ⊥
PhDStudent u D2Member v ∃hasSupervisor.D2Member

ABox (ASSERTIONS)

D2Member(Hans de Nivelle)
PhDStudent(Ruzica Piskas)
hasStudent(Hans de Nivelle, Ruzica Piakas)
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Description Logics

REASONING PROBLEMS OF DLS

TBox (TERMINOLOGY)

Supervisor ·
= ∃hasStudent.PhDStudent

PhDStudent u Supervisor v ⊥
PhDStudent u D2Member v ∃hasSupervisor.D2Member

ABox (ASSERTIONS)

D2Member(Hans de Nivelle)
PhDStudent(Ruzica Piskas)
hasStudent(Hans de Nivelle, Ruzica Piakas)

QUERIES (REASONING PROBLEMS)

?-∃hasStudent.D2Member v Supervisor (subsumption)
?-Supervisor(Hans de Nivelle) (instance)
?- (PhDStudent u D2Member)(X ) (retrieval)



Motivation The Approach Summary of the Results Back to Implementation Conclusions References

Description Logics

SOME APPLICATIONS OF DLS

Databases: integration of conceptual schemata (∼ TBox),
query subsumption, configuration,. . .
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query subsumption, configuration,. . .
Semantic Web:

“the idea of having data on the web defined and linked
in a way that it can be used by machines not just
for display purposes, but for automation,
integration and reuse of data across various
applications.” [W3C Semantic Web vision]
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The present Web is syntactic (HTML), is designed to be
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The new Web must be readable by programs (a search
engine should “understand” the web content)
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W3C as an ontology language for the Semantic Web
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in a way that it can be used by machines not just
for display purposes, but for automation,
integration and reuse of data across various
applications.” [W3C Semantic Web vision]

The present Web is syntactic (HTML), is designed to be
readable by humans
The new Web must be readable by programs (a search
engine should “understand” the web content)
A DL-based language OWL has been recommended by
W3C as an ontology language for the Semantic Web

HOMEPAGE OF YEVGENY KAZAKOV

<a sref=http:/ontology.net/academic/· · ·
· · · /PhDStudent>Yevgeny Kazakov</a>

OWL-ONLOLOGY

PhDStudent ·
= · · ·
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Limitations of Tableau-Base Procedures for DLs

REASONING PROCEDURES FOR DLS

C1
·
= ∀R.(A u B)v

C2
·
= ∀R.A u ∀R.B

1985–1990 Incomplete reasoning procedures based on
structural subsumption algorithms (KL-ONE

(Brachman & Schmolze, 1985), systems:
BLACK, CLASSIC, LOOM . . . )
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Limitations of Tableau-Base Procedures for DLs

REASONING PROCEDURES FOR DLS

C1
·
= ∀R.(A u B)v

C2
·
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R
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1985–1990 Incomplete reasoning procedures based on
structural subsumption algorithms (KL-ONE
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BLACK, CLASSIC, LOOM . . . )
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KRIS (Baader & Hollunder, 1991)), CRACK)

1997-PRESENT Highly optimized implementations for very
expressive DLs (FACT (Horrocks, 1998),
RACER (Haarslev & Möller, 2001))

???? What is next?
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Limitations of Tableau-Base Procedures for DLs

TABLEAU-BASED PROCEDURES AND COMPLEXITY

ALC=(u,t,¬,∃.,∀.) - concept subsumtpion. Tableau
procedure runs in PSPACE (optimal).
ALC with general TBox-es requires cycle detection.
Theoretical complexity: EXPTIME,
Tableau worst case: EXPSPACE.
Adding number restrictions (> n .R), and (6 n .R)
makes the worst case 2EXPSPACE.
Tree-model property of DLs is the reason behind
their decidability, however:

Transitive roles T ◦ T v T destroy the tree model
property. Instead, tableau proceadures search for a
tree-representation of a model.
Nominals O ·

= {c} can break even this underlying
tree-structure. Dealing with nominals is tricky.
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Saturation-Based Decision Procedures

AN ALTERNATIVE APPROACH

Use a general-purpose automated first-order theorem
prover (e.g. SPASS or VAMPIRE) to solve reasoning
problems in DLs:

Translate TBox + ABox + Query to clauses according to
the semantics of DL.
Run a theorem prover on the resulted set of clauses.
Tweak the parameters of a prover to ensure termination.

We demonstrate this approach on a simple description
logic EL.



Motivation The Approach Summary of the Results Back to Implementation Conclusions References

Saturation-Based Decision Procedures

AN ALTERNATIVE APPROACH

Use a general-purpose automated first-order theorem
prover (e.g. SPASS or VAMPIRE) to solve reasoning
problems in DLs:

Translate TBox + ABox + Query to clauses according to
the semantics of DL.
Run a theorem prover on the resulted set of clauses.
Tweak the parameters of a prover to ensure termination.

We demonstrate this approach on a simple description
logic EL.



Motivation The Approach Summary of the Results Back to Implementation Conclusions References

Saturation-Based Decision Procedures

AN ALTERNATIVE APPROACH

Use a general-purpose automated first-order theorem
prover (e.g. SPASS or VAMPIRE) to solve reasoning
problems in DLs:

Translate TBox + ABox + Query to clauses according to
the semantics of DL.
Run a theorem prover on the resulted set of clauses.
Tweak the parameters of a prover to ensure termination.

We demonstrate this approach on a simple description
logic EL.



Motivation The Approach Summary of the Results Back to Implementation Conclusions References

Saturation-Based Decision Procedures

AN ALTERNATIVE APPROACH

Use a general-purpose automated first-order theorem
prover (e.g. SPASS or VAMPIRE) to solve reasoning
problems in DLs:

Translate TBox + ABox + Query to clauses according to
the semantics of DL.
Run a theorem prover on the resulted set of clauses.
Tweak the parameters of a prover to ensure termination.

We demonstrate this approach on a simple description
logic EL.



Motivation The Approach Summary of the Results Back to Implementation Conclusions References

Saturation-Based Decision Procedures

AN ALTERNATIVE APPROACH

Use a general-purpose automated first-order theorem
prover (e.g. SPASS or VAMPIRE) to solve reasoning
problems in DLs:

Translate TBox + ABox + Query to clauses according to
the semantics of DL.
Run a theorem prover on the resulted set of clauses.
Tweak the parameters of a prover to ensure termination.

We demonstrate this approach on a simple description
logic EL.
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Saturation-Based Decision Procedures

SUBBOOLEAN DLS

ALC ::= A | C1 u C2 | C1 t C2 | ¬C1 | ∃R.C1 | ∀R.C1 .

FL0 ::= A | C1 u C2 | C1 t C2 | ¬C1 | ∃R.C1 | ∀R.C1 .

EL ::= A | C1 u C2 | C1 t C2 | ¬C1 | ∃R.C1 | ∀R.C1 .

Subsumption w.r.t. ALC TBox-es is EXPTIME-complete
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THEOREM (BAADER (1996), KAZAKOV & DE NIVELLE (2003))
Subsumption w.r.t. FL0 TBox-es is PSPACE-complete

THEOREM (BAADER (2002))
Subsumption w.r.t. EL TBox-es is polynomially solvable
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Saturation-Based Decision Procedures

A RESOLUTION DECISION PROCEDURE FOR EL
TBox

A ·
= C

Man ·
= Human u Male

Parent ·
= Human u ∃has-child.Human

Father ·
= Man u ∃has-child.Human

Grandfather ·
= Man u ∃has-child.Parent

Subsumption Query

?-C1 v C2

?-Father v Parent
?-Grandfather v Father
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A RESOLUTION DECISION PROCEDURE FOR EL

1 TBox-SIMPLIFICATION

2 FO-TRANSLATION

3 CLAUSIFICATION

4 SATURATION IN ATP

Take a compound
concept
Replace by a new
concept name
After simplifications
all definitions have
the form:

TBox

A ·
= C

Man ·
= Human u Male

Parent ·
= Human u N1

Father ·
= Man u N1

Grandfather ·
= Man u N2
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A ·
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Translate simplified
definitions according
to the semantics of
DL:

TBox

A ·
= C

Man ·
= Human u Male

Parent ·
= Human u N1

Father ·
= Man u N1

Grandfather ·
= Man u N2
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= ∃has-child.Human
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FIRST-ORDER TRANSLATION

A ·
= B u C

A ·
= ∃R.B
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Apply standard
Skolemization and
clause normal form
transformations

CLAUSE TYPES

T1. ¬A(x) ∨ B(x)
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A RESOLUTION DECISION PROCEDURE FOR EL

1 TBox-SIMPLIFICATION

2 FO-TRANSLATION

3 CLAUSIFICATION

4 SATURATION IN ATP

Consider all possible
inferences between
clauses

CLAUSE TYPES

T1. ¬A(x) ∨ B(x)

T2. ¬B(x) ∨ ¬C(x) ∨ A(x)
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T4. ¬A(x) ∨ B(fA(x))

T5. ¬R(x , y) ∨ ¬B(y) ∨ A(x)
RESOLUTION

C ∨ A D ∨ ¬B
(C ∨ D)σ

where (i) σ = mgu(A, B),
and (ii) A, B are eligible
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Since there are at
most finitely many
clauses of types T1 –
T7, the saturation
procedure is
guaranteed to
terminate

CLAUSE TYPES

T1. ¬A(x) ∨ B(x)

T2. ¬B(x) ∨ ¬C(x) ∨ A(x)

T3. ¬A(x) ∨ R(x , fA(x))

T4. ¬A(x) ∨ B(fA(x))

T5. ¬R(x , y) ∨ ¬B(y) ∨ A(x)
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A RESOLUTION DECISION PROCEDURE FOR EL

1 TBox-SIMPLIFICATION

2 FO-TRANSLATION

3 CLAUSIFICATION

4 SATURATION IN ATP

Subsumption quieries
are handled in a
similar way together
with TBox

Subsumption Query

?-C1 v C2

?-Father v Parent
?-Grandfather v Father
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Saturation-Based Decision Procedures

THE GENERAL RECIPE

Saturation-Based decision procedures have been invented
by Joyner Jr. (1976)
The general strategy can be described as follows:

1 Define an appropriate clause class for the target fragment
2 Insure that this class is closed under inferences
3 Demonstrate that the class is finite for a fixed signature

Many decision procedures based on this principle have
been found later on.

(clause classes (E, S+ E+,. . . ) (Fermüller, Leitsch,
Tammet & Zamov, 1993), modal logics (Schmidt, 1997;
Hustadt, 1999; Hustadt, de Nivelle & Schmidt, 2000),
fragments of first-order logic (Bachmair, Ganzinger &
Waldmann, 1993; Ganzinger & de Nivelle, 1999; de Nivelle
& Pratt-Hartmann, 2001)
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Saturation-Based Decision Procedures

NOVEL TECHNIQUES

We extend the approach of Joyner Jr. (1976) using several
techniques and refinements known in automated theorem
proving, namely:

1 The general notion of redundancy introduced by Bachmair
& Ganzinger (1990, 1994)

2 Structure-preserving transformations
3 Dynamic renaming based on semantical properties

This allows one to design custom simplification rules to
improve termination behaviour, which results in that:

more expressive fragments can be handled
in a modular way
the procedures are of optimal complexity
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Combination of Decidable Fragments

THE GUARDED FRAGMENT

Was introduced by Andréka, van Benthem & Németi (1996,
1998) to transfer good computational properties of modal
logics to first-order level

THE BASIC DESCRIPTION LOGIC AND ITS FIRST-ORDER VARIANT

ALC ::= A | C1 u C2 | ¬C1 | ∃R.C1 .
F(ALC) ::= A(x) | C1(x) ∧ C2(x) |¬C1(x) |∃y .[R(x , y) ∧ C1(y)] .

The range of quantified variables is bounded by
atoms-guards

THE GUARDED FRAGMENT

GF ::= A(~x) | F1 ∧ F2 | ¬F1 | ∃~y .[G(~x , ~y) ∧ F1(~x , ~y)] .

GF was shown to be decidable by resolution in de Nivelle
(1998); de Nivelle & de Rijke (2003)
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Combination of Decidable Fragments

TWO-VARIABLE AND MONADIC FRAGMENTS

Other useful fragments studied before include:

THE TWO-VARIABLE FRAGMENT

FO2 ::= A[x , y ] | T1 ∧ T2 | ¬T1 | ∃y .T1[x , y ] .

THE (FULL) MONADIC FRAGMENT

MF ::= A[x ] | M1[x ] · {x/f (x)} | M1 ∧ M2 | ¬M1 | ∃y .M1 .

Decidability of the two-variable and monadic fragments by
resolution was known before
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Combination of Decidable Fragments

COMBINATIONS OF DECIDABLE FRAGMENTS

We studied combinations of fragments GF , FO2 and
MF in which their constructors are joint:

EXAMPLE

∀xy .[Nat(x) ∧ Nat(y) → ∃z .(Sum(x , y , z) ∧ Nat(z))︸ ︷︷ ︸
Summable(x ,y)∈GF

]∈GF |FO2

Results:

1 Every combination of these fragments is decidable by
resolution

2 Retains the complexity of its components (i.e. the
procedures are optimal)

3 Decidability results, however, do not hold with equality
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Paramodulation-Based Decision Procedures

EXTENSIONS OF THE GUARDED FRAGMENT

GF captures only relatively simple description logics
ALCIH
Functionality, Transitivity and Nominals are not expressible
in GF .
We extend the paramodulation-based decision procedure
for GF' (Ganzinger & de Nivelle, 1999) to capture those
constructors.
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Paramodulation-Based Decision Procedures

THE GUARDED FRAGMENT WITH CONSTANTS

Nominals can be expressed using a guarded formula with
constant: O v {c} ⇒ ∀x .[O(x) → x ' c]

We found two paramodulation-based procedures for GF'
with constants:

1 Using elimination of constants proposed by Grädel (1999)
combined with elimination of equational guards, and

2 A procedure that handles constants directly

Both procedures have theoretically optimal complexity both
with bounded and unbounded number of variable names
(EXPTIME and 2EXPTIME respectively).
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Paramodulation-Based Decision Procedures

THE GUARDED FRAGMENT WITH FUNCTIONALITY

Functionality of binary relations is not expressible in GF':
∀xyz .[F(x , y) ∧ F(x , z) → y ' z]

Moreover, the guarded fragment with functionality is
undecidable (Grädel, 1999)
We consider a syntactical restriction GF'[FG] of GF',
when functional relations may appear in guards only.
Results:

GF'[FG] is decidable by paramodulation with a custom
simplification rule: LITERAL PROJECTION

[C ∨ f (x) ' g(x)]

C ∨ A(x)
¬A(x) ∨ f (x) ' g(x)

complexity of the procedure is optimal
(EXPTIME/2EXPTIME)
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Paramodulation-Based Decision Procedures

FROM FUNCTIONALITY TO COUNTING

Our procedure for GF'[FG] can be extended for counting
restrictions: ∀x .∃y≤n.R(x , y) and ∀x .∃y≥n.R(x , y)

Gives the same complexity as for GF'[FG] assuming
unary coding of numbers
An alternative procedure which is optimal for binary coding
of numbers has been described in Kazakov (2004):
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POLYNOMIAL TRANSLATION FROM GF2
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Guarded Fragment over Compositional Theories

SIMPLE COMPOSITIONAL AXIOMS

Many useful properties are expressible using:

SIMPLE COMPOSITIONAL AXIOMS

S ◦ T v H1 t · · · t Hn

TEMPORAL PROPERTIES

If (x before y ) and (y before z) then (x before z)

ORDERINGS

If (x<y) and (y<z) then (x<z)

TOPOLOGICAL AND DISTANCE RELATIONS

(x is a part of y ) ◦ (y is located in z) → (x is located in z)
(x distance ≥ 5 y) ◦ (y distance < 2 z) → (x distance ≥ 3 z)
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Guarded Fragment over Compositional Theories

COMPLEX COMPOSITIONAL AXIOMS

COMPLEX COMPOSITIONAL AXIOMS

S ◦ T v H1 t · · · t Hn

REGION CONNECTION CALCULI RCC5, RCC8

TPPI ◦ NTPP v PO t TPP t NTPP

ALLEN’S (1983) INTERVAL ALGEBRA
x y

x before y
x meets y

x overlaps y
x starts y
x during y

x finishes y
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Guarded Fragment over Compositional Theories

THEORIES OVER COMPOSITIONAL AXIOMS

Applications:

1 (Interval) temporal reasoning
2 Medical informatics, in particular, anatomical ontologies
3 Qualitative and quantitative spatial reasoning (GIS)
4 . . .

Integration into DLs is highly demanded
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Guarded Fragment over Compositional Theories

THE GUARDED FRAGMENT WITH TRANSITIVE GUARDS

Transitivity T ◦ T v T is the simplest compositional axiom
The guarded fragment with transitivity is undecidable
(Grädel, 1999; Ganzinger, Meyer & Veanes, 1999)

We have sharpened these results and demonstrated that
already two transitive relations makes GF2 undecidable.

Szwast & Tendera (2001) and later Kieronski (2003)
demonstrated that a restriction GF [TG] is decidable.
In (Kazakov & de Nivelle, 2004) we obtained the first
practical resolution-based decision procedure for GF [TG].
Our procedure employs a custom simplification rule:

TRANSITIVE CLOSURE

¬(xTy) ∨ ¬α(x) ∨ β(y)

¬(xTy) ∨ ¬α(x) ∨ uT
α (y)

¬(xTy) ∨ ¬uT
α (x) ∨ uT

α (y)
¬uT

α (y) ∨ β(y)
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Guarded Fragment over Compositional Theories

CLASSIFICATION FOR GF OVER COMPOSITIONAL

THEORIES

GF [TG]

GF'[TG]

GF [CG]GF [∧TG]

GF'[CG]
GF [RAG]

GF [∧CG]

GF [T ]

GF'[∧TG]

DecidableDecidable

Undecidable
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HOW TO IMPLEMENT SATURATION-BASED

PROCEDURES?

Adopt a theorem prover to your strategy
Difficult for complicated strategies (which employ
non-standard orderings and custom simplification rules)
Even if implemented, the it is mostly overkill because:

the clauses to deal with are usually shallow
indexing in theorem provers is not optimized for such
clauses
most inferences are trivial and can be precomputed
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indexing in theorem provers is not optimized for such
clauses
most inferences are trivial and can be precomputed
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Implementing the Procedure for DL EL

BACK TO DL EL

The types of inferences we had for DL EL can be written
as follows:

CLASSIFICATION OF EL-TBox-ES

T4(A, B, fA), T1(B, C) ` T4(A, C, fA)
T4(A, B, fA), T2(B, C, D) ` T6(A, C, fA, D)
T3(A, R, fA), T5(R, B, A) ` T7(A, B, fA, C)
T4(A, B, fA), T6(A, B, fA, C) ` T4(A, C, fA)
T4(A, B, fA), T7(A, B, fA, C) ` T1(A, C)

Conclusions:
1 The procedure for EL can be implemented in datalog
2 Runs in polynomial time

CLAUSE TYPES

T1. ¬A(x) ∨ B(x)
T2. ¬B(x) ∨ ¬C(x) ∨ A(x)
T3. ¬A(x) ∨ R(x, fA(x))
T4. ¬A(x) ∨ B(fA(x))
T5. ¬R(x, y) ∨ ¬B(y) ∨ A(x)
T6. ¬A(x) ∨ ¬B(fA(x)) ∨ C(fA(x))
T7. ¬A(x) ∨ ¬B(fA(x)) ∨ C(x)
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T4. ¬A(x) ∨ B(fA(x))
T5. ¬R(x, y) ∨ ¬B(y) ∨ A(x)
T6. ¬A(x) ∨ ¬B(fA(x)) ∨ C(fA(x))
T7. ¬A(x) ∨ ¬B(fA(x)) ∨ C(x)
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Implementing the Procedure for DL EL

EMPIRICAL EVALUATION

We have performed a series of tests on randomly
generated EL-TBox-es (up to 10.000 concepts) using our
procedure in XSB-system vs RACER system:
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CONTRIBUTIONS

We obtained many (un)decidability, complexity results and
decision procedures for first-order fragments relevant to
knowledge representation languages. Most important:

1 Polynomial saturation-based decision procedures for EL
and its extensions (most studied in (Baader, Brandt & Lutz,
2005) and new). Empirical evaluation demonstrates that
our approach is promising.

2 Combination of the guarded, two-variable and monadic
fragments. Optimal complexity results.

3 Paramodulation-based decision procedures for extensions
of the guarded fragment with constants, functionality and
number restrictions. Optimal complexity results.

4 Full classification of (un)decidability results for the guarded
fragment over compositional theories. Saturation-based
decision procedures. Optimal complexities.
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IN MEMORIAM HARALD GANZINGER (1950-2004)

Most of our the results are based on a
theory of saturation-based theorem proving
developed by Prof. Harald Ganzinger and
would not have been possible without his
scientific achievements.
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