A Resolution Decision Procedure for the Guarded Fragment With Transitive Guards

Yevgeny Kazakov (joint work with Hans de Nivelle)

04 July - 08 July, 2004

Second International Joint Conference on Automated Reasoning

Objectives

How to find a decision procedure for a non-trivial fragment of first-order logic?

How to specify a decision procedure and proof its correctness?

Properties of Guarded Formulas

GF is related to many modal-like logics:

$$\begin{array}{c} \mathcal{ALC} ::= A \\ C_1 \square C_2 \\ C_1 \sqcup C_2 \\ \neg C \\ \forall R.C \\ \exists R.C. \end{array}$$

04 July - 08 July, 2004

Properties of Guarded Formulas

GF is related to many modal-like logics:

$$\begin{array}{c|c} \mathcal{ALC} ::= A & | & |A(x) =:: \mathcal{FO}[\mathcal{ALC}] \\ C_1 \square C_2 & | & | & | & | & | \\ C_1 \square C_2 & | & | & | & | & | \\ \neg C & | & | & | & | & | & | \\ \neg C & | & | & | & | & | & | \\ \forall R.C & | & | & \forall y.(R(x,y) \rightarrow C(y)) \\ \exists R.C. & | & \exists y.(R(x,y) \land C(y)). \end{array}$$

04 July - 08 July, 2004

Properties of Guarded Formulas

GF is related to many modal-like logics:

GF has nice computational properties:

- > A tree-model property,
- > A small model property,
- > Decidability

The Guarded Fragment and Transitivity

Transitivity $\equiv \forall xyz.[T(x,y) \land T(y,z) \rightarrow T(x,z)]$

Second International Joint Conference on Automated Reasoning

Decision Procedures for FO-fragments

Two approaches

Second International Joint Conference on Automated Reasoning

Decision Procedures for FO-fragments

Resolution Decides GF

[de Nivelle, 1998] Resolution decides GF without equality. HOW to formalize?

Why Resolution Terminates for **GF**?

04 July - 08 July, 2004

Second International Joint Conference on Automated Reasoning

Why Resolution Terminates for GF?

2.1.1
$$\neg !\hat{g}[!\overline{x}] \lor \hat{\beta}[f(\overline{x}), \overline{x}] \lor b[!f(\overline{x}), \overline{x}]^*: OR$$

2.2 $\neg \underline{g}[!\overline{x}] \# \lor \neg \hat{g}[!\overline{x}] \lor \hat{\beta}[\overline{x}]$:OR
OR[2.1.1;2.2]: $\neg !\hat{g}[!\overline{x}] \lor \hat{\beta}[f(\overline{x}), \overline{x}] \lor \hat{\beta}[f(\overline{x}), \overline{x}]: 2$

- 1. Unified expressions contain all variables;
 - Number of variables does not grow.
- 2. Every variable occurs in a deepest position
 - Clause depth does not grow.

04 July - 08 July, 2004

Resolution with transitivity axioms may produce larger clauses:

1.
$$\neg (xTy) \lor \neg (yTz) \lor \underline{xTz}^*;$$

2. $\neg (xTz)^* \lor \neg (zTu) \lor xTu;$

04 July - 08 July, 2004

Resolution with transitivity axioms may produce larger clauses:

1.
$$\neg (xTy) \lor \neg (yTz) \lor xTz^*;$$

2. $\neg (xTz)^* \lor \neg (zTu) \lor xTu;$
 $\bigcirc \mathbb{R}[1;2]: 3. \neg (xTy) \lor \neg (yTz) \lor \neg (zTu) \lor xTu;$

Resolution with transitivity axioms may produce larger clauses:

1.
$$\neg (xTy) \lor \neg (yTz) \lor xTz^*;$$

2. $\neg (xTz)^* \lor \neg (zTu) \lor xTu;$
 $\bigcirc \mathbb{R}[1;2]: 3. \neg (xTy) \lor \neg (yTz) \lor \neg (zTu) \lor xTu;$

Solution: use a selection function:

04 July - 08 July, 2004

Selection does not help avoiding increase of variables in clauses:

1.
$$\neg (xTy)^{\#} \lor \neg (yTz) \lor xTz;$$

2. $\alpha(x) \lor \underline{f(x)Tx}^{*};$
OR[2;1]: 3. $\alpha(x) \lor \neg (xTz) \lor \underline{f(x)Tz}^{*};$
OR[3;1]: 4. $\alpha(x) \lor \neg (xTz) \lor \neg (zTz_{1}) \lor \underline{f(x)Tz_{1}}^{*};$

04 July - 08 July, 2004

Selection does not help avoiding increase of variables in clauses:

1.
$$\neg (xTy)^{\#} \lor \neg (yTz) \lor xTz;$$

2. $\alpha(x) \lor \underline{f(x)Tx}^{*};$
OR[2;1]: 3. $\alpha(x) \lor \neg (xTz) \lor \underline{f(x)Tz}^{*};$
OR[3;1]: 4. $\alpha(x) \lor \neg (xTz) \lor \neg (zTz_{1}) \lor \underline{f(x)Tz_{1}}^{*};$

Or increase of functional depth:

1.
$$\neg (xTy)^{\#} \lor \neg (yTz)^{\#} \lor xTz;$$

2. $\alpha(x) \lor f(x)Tx^{*};$
HR[2,2;1]: 3. $\alpha(x) \lor ff(x)Tx^{*};$
HR[3,2;1]: 4. $\alpha(x) \lor ff(x)Tx^{*};$

04 July - 08 July, 2004

04 July - 08 July, 2004

Second International Joint Conference on Automated Reasoning

Constraint Clauses

"Smart" selection strategies can be realized through constraint clauses (~ Chaining calculus):

$$T.1 \quad \neg (xTy) \# \lor \neg (yTz) \lor xTz \quad | x \succ max(y,z) \\ T.2 \quad \neg (xTy) \lor \neg (yTz) \# \lor xTz \quad | z \succ max(y,x) \\ T.3 \quad \neg (xTy) \# \lor \neg (yTz) \# \lor xTz | otherwise$$

Constraint Clauses

"Smart" selection strategies can be realized through constraint clauses (~ Chaining calculus):

$$T.1 \quad \neg (xTy) \# \lor \neg (yTz) \lor xTz \quad | x \succ max(y,z)$$

$$T.2 \quad \neg (xTy) \lor \neg (yTz) \# \lor xTz \quad | z \succ max(y,x)$$

$$T.3 \quad \neg (xTy) \# \lor \neg (yTz) \# \lor xTz | \text{ otherwise}$$

Saturation with constraint clauses:

1.
$$\neg (xTy)^* \lor \neg (yTz) \lor xTz; \mid x \succ max(y,z)$$

2. $\alpha(x) \lor \underline{f(x)Tx}^*;$
 $OR[2; 1]: 3. \alpha(x) \lor \neg (xTz) \lor \underline{f(x)Tz}^*; \mid \underline{f(x)} \succ \underline{z}$
 $OR[3; 1]: 4. \alpha(x) \lor \neg (xTz) \lor \neg (zTz_1) \lor \underline{f(x)Tz_1}^*;$
 $\mid \underline{f(x)} \succ max(z,z_1) \mid$

Constraint Clauses

"Smart" selection strategies can be realized through constraint clauses (~ Chaining calculus):

$$T.1 \quad \neg (xTy) \# \lor \neg (yTz) \lor xTz \quad | x \succ max(y,z)$$

$$T.2 \quad \neg (xTy) \lor \neg (yTz) \# \lor xTz \quad | z \succ max(y,x)$$

$$T.3 \quad \neg (xTy) \# \lor \neg (yTz) \# \lor xTz | \text{ otherwise}$$

Saturation with constraint clauses:

$$\begin{bmatrix} 1. & \neg(xTy)^* \lor \neg(yTz) \lor xTz; & x \succ max(y,z) \\ 2. & \alpha(x) \lor f(x)Tx^*; \\ \bigcirc \mathsf{R}[2;1]: 3. & \alpha(x) \lor \neg(xTz) \lor f(x)Tz^*; & f(x) \succ z \\ \bigcirc \mathsf{R}[3,1]: 4. & \alpha(x) \lor \neg(xTz) \lor \neg(zTz_1) \lor f(x)Tz_1^*; \\ \vdots & f(x) \succ max(z,z_1) \end{bmatrix}$$

Redundancy of Inferences

Abstract notion of redundancy [Bachmair,Ganzinger,1990]:

04 July - 08 July, 2004

Second International Joint Conference on Automated Reasoning

Redundancy of Inferences

Abstract notion of redundancy [Bachmair,Ganzinger,1990]:

• An inference $C_1, C_2 \vdash C$ is redundant in N if $N_{\prec max(C_1, C_2)} \vdash C$

04 July - 08 July, 2004

Second International Joint Conference on Automated Reasoning

Second International Joint Conference on Automated Reasoning

Redundancy in practice

The clause 4 can be obtained differently by resolving on smaller literals:

04 July - 08 July, 2004

Redundancy in practice

The clause 4 can be obtained differently by resolving on smaller literals:

Redundancy in practice• The clause 4 can be obtained differently by
resolving on smaller literals:1.
$$\neg(xTy)^* \lor \neg(yTz) \lor xTz; \mid x \succ max(y, z)$$
2. $\alpha(c) \lor f(c)Tc^*;$ $\bigcirc R[2; 1]: 3. \alpha(c) \lor \neg(cTz) \lor f(c)Tz^*; \mid f(a) \succ z$ $\bigcirc R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1^*;$ $f(c)Tz \succ cTz_1 \mid f(c) \succ max(z, z_1)$ T. $\neg(xTz) \lor \neg(zTz_1) \lor xTz_1;$ $\bigcirc R[2; 1]: 3. \alpha(c) \lor \neg(cTz_1) \lor f(c)Tz; \mid f(c) \succ z_1$ $\bigcirc R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\bigcirc R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\bigcirc R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\land R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\land R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\land R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\land R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\land R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\land R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$ $\land R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$

Redundancy in practice• The clause 4 can be obtained differently by
resolving on smaller literals:1.
$$\neg(xTy)^* \lor \neg(yTz) \lor xTz; \mid x \succ max(y, z)$$

2. $\alpha(c) \lor f(c)Tc^*;$
 $\bigcirc R[2; 1]: 3. $\alpha(c) \lor \neg(cTz) \lor f(c)Tz^*; \mid f(a) \succ z$
 $\bigcirc R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1^*;$
 $f(c)Tz \succ cTz_1$ T. $\neg(xTz) \lor \neg(zTz_1) \lor xTz_1;$
 $\bigcirc R[2; 1]: 3. \alpha(c) \lor \neg(cTz_1) \lor f(c)Tz; \mid f(c) \succ z_1$
 $\bigcirc R[3; 1]: 4. \alpha(c) \lor \neg(cTz) \lor \neg(zTz_1) \lor f(c)Tz_1;$
 $\vdash f(c) \succ z_1$$

More Troublesome Inferences

Resolving negative occurrences of transitive predicates may yield problems:

1.
$$\alpha(x) \lor f(x)Tx^*;$$

2. $\neg (xTy)^* \lor a(x) \lor \beta(y);$
OR[1;T.1]: 3. $\alpha(x) \lor \neg (xTz) \lor f(x)Tz^*;$
OR[2;3] : 4. $\alpha(x) \lor \neg (xTz) \lor a(f(x))^* \lor \beta(z);$

- The variable *z* does not occur in a deepest position.
- How to make the inference or[5;2] redundant?

04 July - 08 July, 2004

Extended Guarded Clauses

Extended guarded clauses for the GF[TG]:

04 July - 08 July, 2004

Second International Joint Conference on Automated Reasoning

18

Extended Guarded Clauses

- Extended guarded clauses for the **GF[TG]**:
- $\neg !\widehat{g}[!\overline{x}] \lor \widehat{\beta}[\overline{x}] \lor \gamma [!\overline{x}] \lor \\ \lor \neg \widehat{T}[!f(\overline{x}), \overline{x}] \lor \gamma [!f(\overline{x}), \overline{x}]$
 - The fragment is closed under inference rules of ordered resolution:
 - using constraints and redundancy elimination;
 - all cases can be schematically described;

Extended Guarded Clauses

- Extended guarded clauses for the **GF[TG]**:
- $\neg ! \widehat{g}[!\overline{x}] \lor \widehat{\beta}[\overline{x}] \lor \gamma [!\overline{x}] \lor \\ \lor \neg \widehat{T}[!f(\overline{x}), \overline{x}] \lor \gamma [!f(\overline{x}), \overline{x}]$
- The fragment is closed under inference rules of ordered resolution:
 - using constraints and redundancy elimination;
 - all cases can be schematically described;
- procedure has an optimal complexity and captures the complexities of simpler sub-fragments (**S,SHI,SHIb**).

Conclusions

- A decision procedure for *GF[TG]* is given which make use of advanced refinements of the resolution calculus;
- The procedure has an optimal complexity and scalable to sub-fragments;
- Surprisingly: the clause class captures even a larger fragment than *GF[TG]* : it allows the conjunction of transitive relations as guards.
 - <u>Current work</u>: extend to the case with equality (integrating the chaining calculus), compositional binary relations, theories of linear and branching orderings.

04 July - 08 July, 2004

Thank You!

INFORMATIK

Second International Joint Conference on Automated Reasoning