
MODULARITY FOR ONTOLOGIES:
THEORY AND PRACTICE

Yevgeny Kazakov
(based on joint works with Bernardo Cuenca Grau,

Ian Horrocks and Ulrike Sattler)

The University of Oxford

November 20, 2007

Background

OUTLINE

1 BACKGROUND

2 SAFETY AND MODULES
Motivation
Formalization

3 ALGORITHMS

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 2/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

Ontologies are vocabularies of terms for specific subjects
chemical elements
genes
human anatomy
clinical procedures

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

Two types of axoioms

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

Two types of axoioms
Terminalogical axiom [Schema]

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

Two types of axoioms
Terminalogical axiom [Schema]
Assertions [Data]

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages
Atomic concepts [Classes]

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages
Atomic concepts [Classes]
Roles [Properties]

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages
Atomic concepts [Classes]
Roles [Properties]
Individuals

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages
Atomic concepts [Classes]
Roles [Properties]
Individuals
Constructors

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages
Atomic concepts [Classes]
Roles [Properties]
Individuals
Constructors

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

OWL syntax:
(XML+RDF)

<owl : Class r d f : ID =" Heart ">
<owl : equ iva lentClass >

<owl : Class >
<owl : i n t e r s e c t i o n O f r d f : parseType =" C o l l e c t i o n ">

<owl : Class r d f : ID =" MuscularOrgan">
<owl : R e s t r i c t i o n >

<owl : onProperty >
<owl : Objec tProper ty r d f : ID =" i sPar tO f ">

</ owl : onProperty >
<owl : someValuesFrom>

<owl : Class r d f : ID =" Ci rcu la torySystem "/ >
</ owl : someValuesFrom>

</ owl : R e s t r i c t i o n >
</ owl : Class >

</ owl : i n t e r se c t i on O f >
</ owl : Class >

</ owl : equ iva lentClass >
</ owl : Class >Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

∆I is an interpretation domain (non-empty set)

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

∆I is an interpretation domain (non-empty set)
·I is an interpretation function

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

∆I is an interpretation domain (non-empty set)
·I is an interpretation function

Atomic concepts⇒ sets

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

∆I is an interpretation domain (non-empty set)
·I is an interpretation function

Atomic concepts⇒ sets
Roles⇒ binary relations

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

∆I is an interpretation domain (non-empty set)
·I is an interpretation function

Atomic concepts⇒ sets
Roles⇒ binary relations
Individuals⇒ elements

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

∆I is an interpretation domain (non-empty set)
·I is an interpretation function
Constructors⇒ set operators

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

∆I is an interpretation domain (non-empty set)
·I is an interpretation function
Constructors⇒ set operators

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages
Interpretation I = (∆I , ·I)

∆I is an interpretation domain (non-empty set)
·I is an interpretation function
Constructors⇒ set operators
I is a model iff all axioms hold

Heart ≡ MuscularOrgan u ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart

∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 3/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart ≡ MuscularOrgan u
u ∃isPartOf.CirculatorySystem

]

O_Id7894 : Heart

Translation to the first-order logic:

Concept names Heart, CirculatorySystem

 unary atoms: Heart(x), CirculatorySystem(x)

Role names isPartOf

 binary atoms: isPartOf(x, y)

Individuals O_Id7894

 constants: O_Id7894

Operators C1 u C2, ∃r.C

 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart ≡ MuscularOrgan u
u ∃isPartOf.CirculatorySystem

]

O_Id7894 : Heart

Translation to the first-order logic:

Concept names Heart, CirculatorySystem

 unary atoms: Heart(x), CirculatorySystem(x)

Role names isPartOf

 binary atoms: isPartOf(x, y)

Individuals O_Id7894

 constants: O_Id7894

Operators C1 u C2, ∃r.C

 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) ≡ MuscularOrgan(x) u
u ∃isPartOf.CirculatorySystem(x)

]

O_Id7894 : Heart(x)

Translation to the first-order logic:

Concept names Heart, CirculatorySystem
 unary atoms: Heart(x), CirculatorySystem(x)
Role names isPartOf

 binary atoms: isPartOf(x, y)

Individuals O_Id7894

 constants: O_Id7894

Operators C1 u C2, ∃r.C

 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) ≡ MuscularOrgan(x) u
u ∃isPartOf.CirculatorySystem(x)

]

O_Id7894 : Heart(x)

Translation to the first-order logic:

Concept names Heart, CirculatorySystem
 unary atoms: Heart(x), CirculatorySystem(x)
Role names isPartOf

 binary atoms: isPartOf(x, y)

Individuals O_Id7894

 constants: O_Id7894

Operators C1 u C2, ∃r.C

 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) ≡ MuscularOrgan(x) u
u ∃isPartOf(x, y).CirculatorySystem(x)

]

O_Id7894 : Heart(x)

Translation to the first-order logic:

Concept names Heart, CirculatorySystem
 unary atoms: Heart(x), CirculatorySystem(x)
Role names isPartOf
 binary atoms: isPartOf(x, y)
Individuals O_Id7894

 constants: O_Id7894

Operators C1 u C2, ∃r.C

 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) ≡ MuscularOrgan(x) u
u ∃isPartOf(x, y).CirculatorySystem(x)

]

O_Id7894 : Heart(x)

Translation to the first-order logic:

Concept names Heart, CirculatorySystem
 unary atoms: Heart(x), CirculatorySystem(x)
Role names isPartOf
 binary atoms: isPartOf(x, y)
Individuals O_Id7894

 constants: O_Id7894

Operators C1 u C2, ∃r.C

 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) ≡ MuscularOrgan(x) u
u ∃isPartOf(x, y).CirculatorySystem(x)

]

O_Id7894 :

Heart(O_Id7894)

Translation to the first-order logic:

Concept names Heart, CirculatorySystem
 unary atoms: Heart(x), CirculatorySystem(x)
Role names isPartOf
 binary atoms: isPartOf(x, y)
Individuals O_Id7894
 constants: O_Id7894
Operators C1 u C2, ∃r.C

 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) ≡ MuscularOrgan(x) u
u ∃isPartOf(x, y).CirculatorySystem(x)

]

O_Id7894 :

Heart(O_Id7894)

Translation to the first-order logic:

Concept names Heart, CirculatorySystem
 unary atoms: Heart(x), CirculatorySystem(x)
Role names isPartOf
 binary atoms: isPartOf(x, y)
Individuals O_Id7894
 constants: O_Id7894
Operators C1 u C2, ∃r.C

 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) ≡ MuscularOrgan(x) ∧
∧ ∃y.[isPartOf(x, y) ∧ CirculatorySystem(x)]

O_Id7894 :

Heart(O_Id7894)

Translation to the first-order logic:

Concept names Heart, CirculatorySystem
 unary atoms: Heart(x), CirculatorySystem(x)
Role names isPartOf
 binary atoms: isPartOf(x, y)
Individuals O_Id7894
 constants: O_Id7894
Operators C1 u C2, ∃r.C
 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) ≡ MuscularOrgan(x) ∧
∧ ∃y.[isPartOf(x, y) ∧ CirculatorySystem(x)]

O_Id7894 :

Heart(O_Id7894)

Translation to the first-order logic:

Concept names Heart, CirculatorySystem
 unary atoms: Heart(x), CirculatorySystem(x)
Role names isPartOf
 binary atoms: isPartOf(x, y)
Individuals O_Id7894
 constants: O_Id7894
Operators C1 u C2, ∃r.C
 constructors: C1(x) ∧ C2(x), ∃y.[r(x, y) ∧ C(y)]

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 4/26

Background

A HIERARCHY OF ONTOLOGY LANGUAGES

Name DL syntax First-Order syntax

intersection C1 u C2 C1(x) ∧ C2(x)
union C1 t C2 C1(x) ∨ C2(x) = A
complement ¬C ¬C(x) L
value restriction ∀r.C ∀y.[r(x, y)→ C(y)] C
exist restriction ∃r.C ∃y.[r(x, y) ∧ C(y)]
concept assertion i : C C(i)
role assertion (i1, i2) : r r(i1, i2)

transitivity Trans(r) ∀xyz.[r(x, y) ∧ r(y, z)→ r(x, z)] = S
functionality Funct(r) ∀xyz.[r(x, y) ∧ r(x, z)→ y ' z] +F
role inclusion r1 v r2 ∀xy.[r1(x, y)→ r2(x, y)] +H
inverse roles [. . .]r−[. . .] [. . .]r(y, x)[. . .] +I
number restriction 6 n r ∃≤ny.r(x, y) +N

qualified nr. restr. 6 n r.C ∃≤ny.[r(x, y) ∧ C(y)] +Q
nominals {i} x ' i +O

e.g. OWL DL SHOIN

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 5/26

Background

A HIERARCHY OF ONTOLOGY LANGUAGES

Name DL syntax First-Order syntax

intersection C1 u C2 C1(x) ∧ C2(x)
union C1 t C2 C1(x) ∨ C2(x) = A
complement ¬C ¬C(x) L
value restriction ∀r.C ∀y.[r(x, y)→ C(y)] C
exist restriction ∃r.C ∃y.[r(x, y) ∧ C(y)]
concept assertion i : C C(i)
role assertion (i1, i2) : r r(i1, i2)
transitivity Trans(r) ∀xyz.[r(x, y) ∧ r(y, z)→ r(x, z)] = S

functionality Funct(r) ∀xyz.[r(x, y) ∧ r(x, z)→ y ' z] +F
role inclusion r1 v r2 ∀xy.[r1(x, y)→ r2(x, y)] +H

inverse roles [. . .]r−[. . .] [. . .]r(y, x)[. . .] +I
number restriction 6 n r ∃≤ny.r(x, y) +N

qualified nr. restr. 6 n r.C ∃≤ny.[r(x, y) ∧ C(y)] +Q
nominals {i} x ' i +O

e.g. OWL DL SHOIN

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 5/26

Background

A HIERARCHY OF ONTOLOGY LANGUAGES

Name DL syntax First-Order syntax

intersection C1 u C2 C1(x) ∧ C2(x)
union C1 t C2 C1(x) ∨ C2(x) = A
complement ¬C ¬C(x) L
value restriction ∀r.C ∀y.[r(x, y)→ C(y)] C
exist restriction ∃r.C ∃y.[r(x, y) ∧ C(y)]
concept assertion i : C C(i)
role assertion (i1, i2) : r r(i1, i2)
transitivity Trans(r) ∀xyz.[r(x, y) ∧ r(y, z)→ r(x, z)] = S

functionality Funct(r) ∀xyz.[r(x, y) ∧ r(x, z)→ y ' z] +F
role inclusion r1 v r2 ∀xy.[r1(x, y)→ r2(x, y)] +H
inverse roles [. . .]r−[. . .] [. . .]r(y, x)[. . .] +I

number restriction 6 n r ∃≤ny.r(x, y) +N
qualified nr. restr. 6 n r.C ∃≤ny.[r(x, y) ∧ C(y)] +Q
nominals {i} x ' i +O

e.g. OWL DL SHOIN

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 5/26

Background

A HIERARCHY OF ONTOLOGY LANGUAGES

Name DL syntax First-Order syntax

intersection C1 u C2 C1(x) ∧ C2(x)
union C1 t C2 C1(x) ∨ C2(x) = A
complement ¬C ¬C(x) L
value restriction ∀r.C ∀y.[r(x, y)→ C(y)] C
exist restriction ∃r.C ∃y.[r(x, y) ∧ C(y)]
concept assertion i : C C(i)
role assertion (i1, i2) : r r(i1, i2)
transitivity Trans(r) ∀xyz.[r(x, y) ∧ r(y, z)→ r(x, z)] = S

functionality Funct(r) ∀xyz.[r(x, y) ∧ r(x, z)→ y ' z] +F
role inclusion r1 v r2 ∀xy.[r1(x, y)→ r2(x, y)] +H
inverse roles [. . .]r−[. . .] [. . .]r(y, x)[. . .] +I
number restriction 6 n r ∃≤ny.r(x, y) +N

qualified nr. restr. 6 n r.C ∃≤ny.[r(x, y) ∧ C(y)] +Q

nominals {i} x ' i +O
e.g. OWL DL SHOIN

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 5/26

Background

A HIERARCHY OF ONTOLOGY LANGUAGES

Name DL syntax First-Order syntax

intersection C1 u C2 C1(x) ∧ C2(x)
union C1 t C2 C1(x) ∨ C2(x) = A
complement ¬C ¬C(x) L
value restriction ∀r.C ∀y.[r(x, y)→ C(y)] C
exist restriction ∃r.C ∃y.[r(x, y) ∧ C(y)]
concept assertion i : C C(i)
role assertion (i1, i2) : r r(i1, i2)
transitivity Trans(r) ∀xyz.[r(x, y) ∧ r(y, z)→ r(x, z)] = S

functionality Funct(r) ∀xyz.[r(x, y) ∧ r(x, z)→ y ' z] +F
role inclusion r1 v r2 ∀xy.[r1(x, y)→ r2(x, y)] +H
inverse roles [. . .]r−[. . .] [. . .]r(y, x)[. . .] +I
number restriction 6 n r ∃≤ny.r(x, y) +N

qualified nr. restr. 6 n r.C ∃≤ny.[r(x, y) ∧ C(y)] +Q
nominals {i} x ' i +O

e.g. OWL DL SHOIN
Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 5/26

Background

REASONING IN ONTOLOGIES

Heart ≡ MuscularOrgan u ∃isPartOf.CirculatorySystem
MuscularOrgan ≡ Organ u ∃isPartOf.MuscularSystem
CardiovascularOrgan ≡ Organ u ∃isPartOf.CirculatorySystem
O_Id7894 : Heart

Ontology reasoning:
– extracting implicit information from the explicit information
in ontologies

Heart v CardiovascularOrgan
O_Id7894 : ∃isPartOf.(MuscularSystem t CirculatorySystem)

Standard reasoning tasks:

Classification:
– compute all subsumptions A v B between named classes
Instance retrieval:
– compute all implicit instances i of a class C.

Ontology reasoners: FaCT++, KAON2, Pellet, Racer, CEL,

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 6/26

Background

REASONING IN ONTOLOGIES

Heart ≡ MuscularOrgan u ∃isPartOf.CirculatorySystem
MuscularOrgan ≡ Organ u ∃isPartOf.MuscularSystem
CardiovascularOrgan ≡ Organ u ∃isPartOf.CirculatorySystem
O_Id7894 : Heart

Ontology reasoning:
– extracting implicit information from the explicit information
in ontologies

Heart v CardiovascularOrgan

O_Id7894 : ∃isPartOf.(MuscularSystem t CirculatorySystem)
Standard reasoning tasks:

Classification:
– compute all subsumptions A v B between named classes
Instance retrieval:
– compute all implicit instances i of a class C.

Ontology reasoners: FaCT++, KAON2, Pellet, Racer, CEL,

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 6/26

Background

REASONING IN ONTOLOGIES

Heart ≡ MuscularOrgan u ∃isPartOf.CirculatorySystem
MuscularOrgan ≡ Organ u ∃isPartOf.MuscularSystem
CardiovascularOrgan ≡ Organ u ∃isPartOf.CirculatorySystem
O_Id7894 : Heart

Ontology reasoning:
– extracting implicit information from the explicit information
in ontologies

Heart v CardiovascularOrgan
O_Id7894 : ∃isPartOf.(MuscularSystem t CirculatorySystem)

Standard reasoning tasks:

Classification:
– compute all subsumptions A v B between named classes
Instance retrieval:
– compute all implicit instances i of a class C.

Ontology reasoners: FaCT++, KAON2, Pellet, Racer, CEL,

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 6/26

Background

REASONING IN ONTOLOGIES

Heart ≡ MuscularOrgan u ∃isPartOf.CirculatorySystem
MuscularOrgan ≡ Organ u ∃isPartOf.MuscularSystem
CardiovascularOrgan ≡ Organ u ∃isPartOf.CirculatorySystem
O_Id7894 : Heart

Ontology reasoning:
– extracting implicit information from the explicit information
in ontologies

Heart v CardiovascularOrgan
O_Id7894 : ∃isPartOf.(MuscularSystem t CirculatorySystem)

Standard reasoning tasks:

Classification:
– compute all subsumptions A v B between named classes
Instance retrieval:
– compute all implicit instances i of a class C.

Ontology reasoners: FaCT++, KAON2, Pellet, Racer, CEL,

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 6/26

Background

REASONING IN ONTOLOGIES

Heart ≡ MuscularOrgan u ∃isPartOf.CirculatorySystem
MuscularOrgan ≡ Organ u ∃isPartOf.MuscularSystem
CardiovascularOrgan ≡ Organ u ∃isPartOf.CirculatorySystem
O_Id7894 : Heart

Ontology reasoning:
– extracting implicit information from the explicit information
in ontologies

Heart v CardiovascularOrgan
O_Id7894 : ∃isPartOf.(MuscularSystem t CirculatorySystem)

Standard reasoning tasks:
Classification:
– compute all subsumptions A v B between named classes

Instance retrieval:
– compute all implicit instances i of a class C.

Ontology reasoners: FaCT++, KAON2, Pellet, Racer, CEL,

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 6/26

Background

REASONING IN ONTOLOGIES

Heart ≡ MuscularOrgan u ∃isPartOf.CirculatorySystem
MuscularOrgan ≡ Organ u ∃isPartOf.MuscularSystem
CardiovascularOrgan ≡ Organ u ∃isPartOf.CirculatorySystem
O_Id7894 : Heart

Ontology reasoning:
– extracting implicit information from the explicit information
in ontologies

Heart v CardiovascularOrgan
O_Id7894 : ∃isPartOf.(MuscularSystem t CirculatorySystem)

Standard reasoning tasks:
Classification:
– compute all subsumptions A v B between named classes
Instance retrieval:
– compute all implicit instances i of a class C.

Ontology reasoners: FaCT++, KAON2, Pellet, Racer, CEL,

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 6/26

Background

REASONING IN ONTOLOGIES

Heart ≡ MuscularOrgan u ∃isPartOf.CirculatorySystem
MuscularOrgan ≡ Organ u ∃isPartOf.MuscularSystem
CardiovascularOrgan ≡ Organ u ∃isPartOf.CirculatorySystem
O_Id7894 : Heart

Ontology reasoning:
– extracting implicit information from the explicit information
in ontologies

Heart v CardiovascularOrgan
O_Id7894 : ∃isPartOf.(MuscularSystem t CirculatorySystem)

Standard reasoning tasks:
Classification:
– compute all subsumptions A v B between named classes
Instance retrieval:
– compute all implicit instances i of a class C.

Ontology reasoners: FaCT++, KAON2, Pellet, Racer, CEL,

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 6/26

Safety and Modules

OUTLINE

1 BACKGROUND

2 SAFETY AND MODULES
Motivation
Formalization

3 ALGORITHMS

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 7/26

Safety and Modules Motivation

CLASSICAL REASONING SUPPORT

FOR ONTOLOGIES

Provides engine for querying of
ontologies

Provides tools for ontology
development:

4 Checking global consistency
4 Detecting unsatisfiable classes
4 Detecting unintended

subsumptions

Not sufficient for large-scale
ontology development

ONTOLOGY

O

? : A

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 8/26

Safety and Modules Motivation

CLASSICAL REASONING SUPPORT

FOR ONTOLOGIES

Provides engine for querying of
ontologies
Provides tools for ontology
development:

4 Checking global consistency
4 Detecting unsatisfiable classes
4 Detecting unintended

subsumptions

Not sufficient for large-scale
ontology development

ONTOLOGY

O

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 8/26

Safety and Modules Motivation

CLASSICAL REASONING SUPPORT

FOR ONTOLOGIES

Provides engine for querying of
ontologies
Provides tools for ontology
development:

4 Checking global consistency

4 Detecting unsatisfiable classes
4 Detecting unintended

subsumptions

Not sufficient for large-scale
ontology development

ONTOLOGY

O

Male u Female v ⊥
Sam : Male
Sam : Female

|= ⊥

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 8/26

Safety and Modules Motivation

CLASSICAL REASONING SUPPORT

FOR ONTOLOGIES

Provides engine for querying of
ontologies
Provides tools for ontology
development:

4 Checking global consistency
4 Detecting unsatisfiable classes

4 Detecting unintended
subsumptions

Not sufficient for large-scale
ontology development

ONTOLOGY

O

Male u Female v ⊥
Hermaphrodite v

Male u Female
|= Hermaphrodite v ⊥

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 8/26

Safety and Modules Motivation

CLASSICAL REASONING SUPPORT

FOR ONTOLOGIES

Provides engine for querying of
ontologies
Provides tools for ontology
development:

4 Checking global consistency
4 Detecting unsatisfiable classes
4 Detecting unintended

subsumptions

Not sufficient for large-scale
ontology development

ONTOLOGY

O

Man ≡ Male t Female
Man ≡ Male
|= Female v Male

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 8/26

Safety and Modules Motivation

CLASSICAL REASONING SUPPORT

FOR ONTOLOGIES

Provides engine for querying of
ontologies
Provides tools for ontology
development:

4 Checking global consistency
4 Detecting unsatisfiable classes
4 Detecting unintended

subsumptions

Not sufficient for large-scale
ontology development

ONTOLOGY

O

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 8/26

Safety and Modules Motivation

ONTOLOGY ENGINEERING

AT THE LARGE SCALE

Collaborative development
Involves experts in different
fields
Continuous process
The notion of modularity
becomes apparent

ONTOLOGY ENGINEERING

Deseases

Genes

Chemicals

Drugs

Anatomy

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 9/26

Safety and Modules Motivation

ONTOLOGY ENGINEERING

AT THE LARGE SCALE

Collaborative development
Involves experts in different
fields
Continuous process
The notion of modularity
becomes apparent
Problems:

4 Safe integration of
ontologies

4 Partial ontology reuse

ONTOLOGY ENGINEERING

Deseases

Genes

Chemicals

Drugs

Anatomy

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 9/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS
GeneticDisorder ≡ . . .
CysticFibrosis ≡ . . .

|= CysticFibrosis v GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

|= CysticFibrosis_EUProject v GeneticDisorder_Project

ONTOLOGY REUSE

O

O′

??

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 10/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

“If something hasFocus then it is a Project”

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

“If something hasFocus then it is a Project”

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

“Any instance of Project is different from any instance of
CysticFibrosis and any instance of GeneticDisorder”

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

“Any instance of Project is different from any instance of
CysticFibrosis and any instance of GeneticDisorder”

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

“Every instance of Project that hasFocus on
CysticFibrosis, also hasFocus on GeneticDisorder”

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

“Every instance of Project that hasFocus on
CysticFibrosis, also hasFocus on GeneticDisorder”

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

“Any instance of Project is different from any instance of
CysticFibrosis and any instance of GeneticDisorder”

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

“Every instance of Project that hasFocus on
CysticFibrosis, also hasFocus on GeneticDisorder”

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v ä

∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

|= > v ∃hasFocus.[¬CysticFibrosis t GeneticDisorder]

|= > v Project
|= CysticFibrosis u GeneticDisorder v ⊥

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project ä

Project u
(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

??

|= > v ∃hasFocus.[¬CysticFibrosis t GeneticDisorder]
|= > v Project

|= CysticFibrosis u GeneticDisorder v ⊥

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡ [. . .]

GeneticDisorder_Project ≡ [. . .]

EUProject v Project

∃hasFocus.> v Project

Project u ä

(CysticFibrosis u GeneticDisorder) v ⊥

∀hasFocus.CysticFibrosis v
∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

O

O′

!!!!!!

|= > v ∃hasFocus.[¬CysticFibrosis t GeneticDisorder]
|= > v Project
|= CysticFibrosis u GeneticDisorder v ⊥

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 11/26

Safety and Modules Motivation

SAFE ONTOLOGY INTEGRATION:
WHY IS IT IMPORTANT?

1 Independent ontology development:
á Every ontology developer is responsible

for his own domain
á The ontology which is merely reused, is

not supposed to change even implicitly

2 Modular integration of ontologies:

á Ontologies which import safely a
common ontology can be combined

á Non-safety leads to corrupted
ontologies

á Ontology developers can continue
working independently

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 12/26

Safety and Modules Motivation

SAFE ONTOLOGY INTEGRATION:
WHY IS IT IMPORTANT?

1 Independent ontology development:
á Every ontology developer is responsible

for his own domain
á The ontology which is merely reused, is

not supposed to change even implicitly
2 Modular integration of ontologies:

á Ontologies which import safely a
common ontology can be combined

á Non-safety leads to corrupted
ontologies

á Ontology developers can continue
working independently

ONTOLOGY REUSE

O

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 12/26

Safety and Modules Motivation

SAFE ONTOLOGY INTEGRATION:
WHY IS IT IMPORTANT?

1 Independent ontology development:
á Every ontology developer is responsible

for his own domain
á The ontology which is merely reused, is

not supposed to change even implicitly
2 Modular integration of ontologies:

á Ontologies which import safely a
common ontology can be combined

á Non-safety leads to corrupted
ontologies

á Ontology developers can continue
working independently

ONTOLOGY REUSE

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 12/26

Safety and Modules Motivation

SAFE ONTOLOGY INTEGRATION:
WHY IS IT IMPORTANT?

1 Independent ontology development:
á Every ontology developer is responsible

for his own domain
á The ontology which is merely reused, is

not supposed to change even implicitly
2 Modular integration of ontologies:

á Ontologies which import safely a
common ontology can be combined

á Non-safety leads to corrupted
ontologies

á Ontology developers can continue
working independently

ONTOLOGY REUSE

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 12/26

Safety and Modules Motivation

SAFE ONTOLOGY INTEGRATION:
WHY IS IT IMPORTANT?

1 Independent ontology development:
á Every ontology developer is responsible

for his own domain
á The ontology which is merely reused, is

not supposed to change even implicitly
2 Modular integration of ontologies:

á Ontologies which import safely a
common ontology can be combined

á Non-safety leads to corrupted
ontologies

á Ontology developers can continue
working independently

ONTOLOGY REUSE

O

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 12/26

Safety and Modules Motivation

PARTIAL ONTOLOGY REUSE

Available ontologies often big and
contain lots of irrelevant information

Instead of importing the full ontology
one could import a part that describes
just the necessary vocabulary — A
module O′1 in O′ w.r.t. O.

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 13/26

Safety and Modules Motivation

PARTIAL ONTOLOGY REUSE

Available ontologies often big and
contain lots of irrelevant information
Instead of importing the full ontology
one could import a part that describes
just the necessary vocabulary — A
module O′1 in O′ w.r.t. O.

ONTOLOGY OF RESEARCH PROJECTS
CysticFibrosis_EUProject ≡

EUProjectu∃hasFocus.CysticFibrosis

GeneticDisorder_Project ≡
Projectu∃hasFocus.GeneticDisorder

EUProject v Project

ONTOLOGY REUSE

O

O′

O′1

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 13/26

Safety and Modules Formalization

SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

O′ ∪ O is a conservative extension of O′
w.r.t. ontology language L if for every axiom
α over O′ expressed in L, we have:

O′ ∪ O |= α iff O′ |= α

INFORMAL DEFINITION

An ontology O safely reuses ontology O′ if
O does not change the “meaning” of the
reused symbols from O′ during the import.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 14/26

Safety and Modules Formalization

SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

O′ ∪ O is a conservative extension of O′
w.r.t. ontology language L if for every axiom
α over O′ expressed in L, we have:

O′ ∪ O |= α iff O′ |= α

INFORMAL DEFINITION

An ontology O safely reuses ontology O′ if
O does not change the “meaning” of the
reused symbols from O′ during the import.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 14/26

Safety and Modules Formalization

SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

O′ ∪ O is a conservative extension of O′
w.r.t. ontology language L if for every axiom
α over O′ expressed in L, we have:

O′ ∪ O |= α iff O′ |= α

EXAMPLE (1)

O′ =
{

A ≡ · · ·
B ≡ · · · 6|= B v A

O =
{

C1≡ A u C2
B v C1

|= B v A

O′ ∪ O is not a conservative extension of O′
w.r.t. L = ALC.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 14/26

Safety and Modules Formalization

SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

O′ ∪ O is a conservative extension of O′
w.r.t. ontology language L if for every axiom
α over O′ expressed in L, we have:

O′ ∪ O |= α iff O′ |= α

EXAMPLE (2)
O′ =

{
A ≡ · · · 6|= > v A, A v ⊥

O =
{

a : (A u B)
b : (A u ¬B)

6|= > v A, A v ⊥

O′ ∪ O is a conservative extension of O′
w.r.t. L = ALC

The “meaning” of A has been changed, but
L = ALC cannot “detect” it using axioms.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 14/26

Safety and Modules Formalization

SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

O′ ∪ O is a conservative extension of O′
w.r.t. ontology language L if for every axiom
α over O′ expressed in L, we have:

O′ ∪ O |= α iff O′ |= α

EXAMPLE (2)
O′ =

{
A ≡ · · · 6|= > v A, A v ⊥

O =
{

a : (A u B)
b : (A u ¬B)

6|= > v A, A v ⊥
|= |A| ≥ 2

O′ ∪ O is a conservative extension of O′
w.r.t. L = ALC
The “meaning” of A has been changed, but
L = ALC cannot “detect” it using axioms.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 14/26

Safety and Modules Formalization

SAFE REUSE OF ONTOLOGIES

DEFINITION (2)

O′ ∪ O is a model conservative extension of
O′ w.r.t. ontology language L if every model
of O′ can be expanded to a model of O′ ∪O:

∀ I |= O′ ∃J |= O : I|O′ = J |O′

EXAMPLE (2)
O′ =

{
A ≡ · · · 6|= > v A, A v ⊥

O =
{

a : (A u B)
b : (A u ¬B)

6|= > v A, A v ⊥
|= |A| ≥ 2

O′ ∪ O is a conservative extension of O′
w.r.t. L = ALC, but not model conservative
The “meaning” of A has been changed, but
L = ALC cannot “detect” it using axioms.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 14/26

Safety and Modules Formalization

SAFETY FOR EVOLVING ONTOLOGIES

Ontologies are developed⇒ evolve

Even if O is importing safely one
version of O′, this might no longer hold
for another version
Instead of focusing on the reused
ontology one could focus just on the
reused symbols and treat the ontology
as a “black box”.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 15/26

Safety and Modules Formalization

SAFETY FOR EVOLVING ONTOLOGIES

Ontologies are developed⇒ evolve

Even if O is importing safely one
version of O′, this might no longer hold
for another version
Instead of focusing on the reused
ontology one could focus just on the
reused symbols and treat the ontology
as a “black box”.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 15/26

Safety and Modules Formalization

SAFETY FOR EVOLVING ONTOLOGIES

Ontologies are developed⇒ evolve
Even if O is importing safely one
version of O′, this might no longer hold
for another version

Instead of focusing on the reused
ontology one could focus just on the
reused symbols and treat the ontology
as a “black box”.

ONTOLOGY REUSE

O

O′

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 15/26

Safety and Modules Formalization

SAFETY FOR EVOLVING ONTOLOGIES

Ontologies are developed⇒ evolve
Even if O is importing safely one
version of O′, this might no longer hold
for another version
Instead of focusing on the reused
ontology one could focus just on the
reused symbols and treat the ontology
as a “black box”.

ONTOLOGY REUSE

O

O′

S

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 15/26

Safety and Modules Formalization

SAFETY OF AN ONTOLOGY FOR A SIGNATURE

DEFINITION (SAFETY FOR A SIGNATURE)

O is safe for a signature S w.r.t. an ontology
language L if for every O′ formulated over L
with Sg(O′) ∩ Sg(O) ⊆ S, we have that
O ∪O′ is a conservative extension of O′.

THEOREM (SUFFICIENT CONDITION)

An ontology O is safe for a signature S if for
every interpretation I there exists a model
J of O that coincides with I on S:

∀ I ∃J |= O : I|S = J |S

ONTOLOGY REUSE

O

O′

S

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 16/26

Safety and Modules Formalization

SAFETY OF AN ONTOLOGY FOR A SIGNATURE

DEFINITION (SAFETY FOR A SIGNATURE)

O is safe for a signature S w.r.t. an ontology
language L if for every O′ formulated over L
with Sg(O′) ∩ Sg(O) ⊆ S, we have that
O ∪O′ is a conservative extension of O′.

THEOREM (SUFFICIENT CONDITION)

An ontology O is safe for a signature S if for
every interpretation I there exists a model
J of O that coincides with I on S:

∀ I ∃J |= O : I|S = J |S

ONTOLOGY REUSE

O

O′

S

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 16/26

Safety and Modules Formalization

MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

O′1 is a module in O′ w.r.t. O and ontology
language L if for every axiom α over O
expressed in L, we have:

O′1 ∪ O |= α iff O′ ∪ O |= α

INFORMAL DEFINITION

An ontology O′1 is a module in ontology O′
for the importing ontology O, if importing
O′1 into O instead of O′ has the same
impact on the “meaning” symbols in O.

ONTOLOGY REUSE

O

O′

O′1

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 17/26

Safety and Modules Formalization

MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

O′1 is a module in O′ w.r.t. O and ontology
language L if for every axiom α over O
expressed in L, we have:

O′1 ∪ O |= α iff O′ ∪ O |= α

INFORMAL DEFINITION

An ontology O′1 is a module in ontology O′
for the importing ontology O, if importing
O′1 into O instead of O′ has the same
impact on the “meaning” symbols in O.

ONTOLOGY REUSE

O

O′

O′1

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 17/26

Safety and Modules Formalization

MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

O′1 is a module in O′ w.r.t. O and ontology
language L if for every axiom α over O
expressed in L, we have:

O′1 ∪ O |= α iff O′ ∪ O |= α

OBSERVATION

The empty ontology is a module in O′ w.r.t.
O and L if O′ ∪ O is a conservative
extension of O w.r.t. L.

ONTOLOGY REUSE

O

O′

O′1

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 17/26

Safety and Modules Formalization

MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

O′1 is a module in O′ w.r.t. O and ontology
language L if for every axiom α over O
expressed in L, we have:

O′1 ∪ O |= α iff O′ ∪ O |= α

EXAMPLE

O′ =
{

A ≡ B u ∃r.C
A u D v ⊥

O =
{

C1≡ · · ·
C2v · · ·

(does not contain D)

O′1 is a module in O′ w.r.t. O and
L = ALC.

ONTOLOGY REUSE

O

O′

O′1

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 17/26

Safety and Modules Formalization

MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

O′1 is a module in O′ w.r.t. O and ontology
language L if for every axiom α over O
expressed in L, we have:

O′1 ∪ O |= α iff O′ ∪ O |= α

EXAMPLE

O′1 =
{

A ≡ B u ∃r.C
A u D v ⊥

O =
{

C1≡ · · ·
C2v · · ·

(does not contain D)

O′1 is a module in O′ w.r.t. O and
L = ALC.

ONTOLOGY REUSE

O

O′

O′1

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 17/26

Safety and Modules Formalization

MODULE IN ONTOLOGY FOR A SIGNATURE

DEFINITION (MODULE FOR SIGNATURE)

O′1 is a module in O′ w.r.t. S and ontology
language L if for every ontology O
formulated over L with Sg(O) ∩ Sg(O′) ⊆ S,
we have that O′1 is a module in O′ w.r.t. O.

THEOREM (SUFFICIENT CONDITION)

An ontology O′1 is module in O′ w.r.t. a
signature S if for every model I of O′1 there
exists a model J of O′ that coincides with I
on S:

∀ I ∃J |= O : I|S = J |S

ONTOLOGY REUSE

O

O′

O′1

S

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 18/26

Safety and Modules Formalization

MODULE IN ONTOLOGY FOR A SIGNATURE

DEFINITION (MODULE FOR SIGNATURE)

O′1 is a module in O′ w.r.t. S and ontology
language L if for every ontology O
formulated over L with Sg(O) ∩ Sg(O′) ⊆ S,
we have that O′1 is a module in O′ w.r.t. O.

THEOREM (SUFFICIENT CONDITION)

An ontology O′1 is module in O′ w.r.t. a
signature S if for every model I of O′1 there
exists a model J of O′ that coincides with I
on S:

∀ I ∃J |= O : I|S = J |S

ONTOLOGY REUSE

O

O′

O′1

S

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 18/26

Algorithms

OUTLINE

1 BACKGROUND

2 SAFETY AND MODULES
Motivation
Formalization

3 ALGORITHMS

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 19/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L

§

T2 O, S, L Check if O is safe for S w.r.t. L

§

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L

?

T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L

?

T3m

*

O, O′, L Extract minimal module(s) in O′ w.r.t. O and L

§

T4m

*

O, S, L Extract minimal module(s) in O′ w.r.t. S and L

§

*variants=[all / some / union of] minimal modules

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L

§

T2 O, S, L Check if O is safe for S w.r.t. L

§

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L

?

T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L

?
T3m

*

O, O′, L Extract minimal module(s) in O′ w.r.t. O and L

§

T4m

*

O, S, L Extract minimal module(s) in O′ w.r.t. S and L

§

*variants=[all / some / union of] minimal modules

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L

§

T2 O, S, L Check if O is safe for S w.r.t. L

§

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L

?

T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L

?

T3m

*

O, O′, L Extract minimal module(s) in O′ w.r.t. O and L

§

T4m

*

O, S, L Extract minimal module(s) in O′ w.r.t. S and L

§

*variants=[all / some / union of] minimal modules

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L

§

T2 O, S, L Check if O is safe for S w.r.t. L

§

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L

?

T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L

?

T3m* O, O′, L Extract minimal module(s) in O′ w.r.t. O and L

§

T4m* O, S, L Extract minimal module(s) in O′ w.r.t. S and L

§

*variants=[all / some / union of] minimal modules

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L

§

T2 O, S, L Check if O is safe for S w.r.t. L

§

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L

?

T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L

?

T3m* O, O′, L Extract minimal module(s) in O′ w.r.t. O and L

§

T4m* O, S, L Extract minimal module(s) in O′ w.r.t. S and L

§

*variants=[all / some / union of] minimal modules

THEOREM

Checking if O′ ∪ O is a conservative extension of O′ w.r.t. L is
2-EXPTIME-complete for L = ALCQI [Ghilardi, Lutz & Wolter,
2006] and is uncecidable for L = ALCQIO [Lutz, Walther &
Wolter, 2007].

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L §

T2 O, S, L Check if O is safe for S w.r.t. L

§

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L

?

T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L

?

T3m* O, O′, L Extract minimal module(s) in O′ w.r.t. O and L §

T4m* O, S, L Extract minimal module(s) in O′ w.r.t. S and L

§

*variants=[all / some / union of] minimal modules

THEOREM

Checking if O′ ∪ O is a conservative extension of O′ w.r.t. L is
2-EXPTIME-complete for L = ALCQI [Ghilardi, Lutz & Wolter,
2006] and is uncecidable for L = ALCQIO [Lutz, Walther &
Wolter, 2007].

Corollary: Then so are the tasks T1 and T3m*

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L §

T2 O, S, L Check if O is safe for S w.r.t. L

§

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L

?

T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L

?

T3m* O, O′, L Extract minimal module(s) in O′ w.r.t. O and L §

T4m* O, S, L Extract minimal module(s) in O′ w.r.t. S and L

§

*variants=[all / some / union of] minimal modules

THEOREM

Given an ontology O consisting only of a single ALC-axiom, and
a signature S, it is undecidable whether O is safe for S w.r.t.
L = ALCO.

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L §

T2 O, S, L Check if O is safe for S w.r.t. L §

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L

?

T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L

?

T3m* O, O′, L Extract minimal module(s) in O′ w.r.t. O and L §

T4m* O, S, L Extract minimal module(s) in O′ w.r.t. S and L §

*variants=[all / some / union of] minimal modules

THEOREM

Given an ontology O consisting only of a single ALC-axiom, and
a signature S, it is undecidable whether O is safe for S w.r.t.
L = ALCO.

Corollary: Then so are the tasks T2 and T4m*

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

REASONING PROBLEMS

Not Input Task
T1 O, O′, L Check if O is safe for O′ w.r.t. L §

T2 O, S, L Check if O is safe for S w.r.t. L §

T3 O, O′, L Extract a module O′1 in O′ w.r.t. O and L ?
T4 O, S, L Extract a module O′1 in O′ w.r.t. S and L ?
T3m* O, O′, L Extract minimal module(s) in O′ w.r.t. O and L §

T4m* O, S, L Extract minimal module(s) in O′ w.r.t. S and L §

*variants=[all / some / union of] minimal modules

How to obtain a practical solution for T3 and T4?

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 20/26

Algorithms

A SUFFICIENT CONDITION FOR SAFETY

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology O is safe for a signature S if for every interpretation
I there exists a model J of O that coincides with I on S:

∀ I ∃J |= O : I|S = J |S

The main idea:
To prove that O is safe for S it is sufficient to extend any
interpretation I of symbols from S to a model of O

Let us try to extend I by interpreting every new symbol as
the empty set

EXAMPLE

O =


A ≡ B u ∃r.C
A u B v ⊥
∃r.> v C

r ← ∅
A← ∅

⊥ ≡ B u ⊥4

⊥ u B v ⊥4

⊥ v C 4

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 21/26

Algorithms

A SUFFICIENT CONDITION FOR SAFETY

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology O is safe for a signature S if for every interpretation
I there exists a model J of O that coincides with I on S:

∀ I ∃J |= O : I|S = J |S

The main idea:
To prove that O is safe for S it is sufficient to extend any
interpretation I of symbols from S to a model of O
Let us try to extend I by interpreting every new symbol as
the empty set

EXAMPLE

O =


A ≡ B u ∃r.C
A u B v ⊥
∃r.> v C

r ← ∅
A← ∅

⊥ ≡ B u ⊥4

⊥ u B v ⊥4

⊥ v C 4

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 21/26

Algorithms

A SUFFICIENT CONDITION FOR SAFETY

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology O is safe for a signature S if for every interpretation
I there exists a model J of O that coincides with I on S:

∀ I ∃J |= O : I|S = J |S

The main idea:
To prove that O is safe for S it is sufficient to extend any
interpretation I of symbols from S to a model of O
Let us try to extend I by interpreting every new symbol as
the empty set

EXAMPLE

O =


A ≡ B u ∃r.C
A u B v ⊥
∃r.> v C

r ← ∅
A← ∅

⊥ ≡ B u ⊥4

⊥ u B v ⊥4

⊥ v C 4

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 21/26

Algorithms

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology O is local w.r.t. S if J |= O for every J which
interprets all concept and role names not in S as the empty set.

+ If every O is local w.r.t. S then O is safe for S:
+ Checking locality can be done using any standard

DL-reasoner.
+ There is a sufficient syntactical condition for locality which

can be verified in polynomial time.

SYNTACTIC LOCALITY

C∅ ::= A∅ | C∅ u C | C∅ t C∅ | ¬C∆ | ∃r∅ .C | ∃r.C∅

C∆ ::= C∆ t C | C∆ u C∆ | ¬C∅ | ∀r∅.C | ∀r.C∆

Ax_synt_local ::= C∅ v C | C v C∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 22/26

Algorithms

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology O is local w.r.t. S if J |= O for every J which
interprets all concept and role names not in S as the empty set.

+ If every O is local w.r.t. S then O is safe for S:

+ Checking locality can be done using any standard
DL-reasoner.

+ There is a sufficient syntactical condition for locality which
can be verified in polynomial time.

SYNTACTIC LOCALITY

C∅ ::= A∅ | C∅ u C | C∅ t C∅ | ¬C∆ | ∃r∅ .C | ∃r.C∅

C∆ ::= C∆ t C | C∆ u C∆ | ¬C∅ | ∀r∅.C | ∀r.C∆

Ax_synt_local ::= C∅ v C | C v C∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 22/26

Algorithms

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology O is local w.r.t. S if J |= O for every J which
interprets all concept and role names not in S as the empty set.

+ If every O is local w.r.t. S then O is safe for S:
+ Checking locality can be done using any standard

DL-reasoner.

+ There is a sufficient syntactical condition for locality which
can be verified in polynomial time.

SYNTACTIC LOCALITY

C∅ ::= A∅ | C∅ u C | C∅ t C∅ | ¬C∆ | ∃r∅ .C | ∃r.C∅

C∆ ::= C∆ t C | C∆ u C∆ | ¬C∅ | ∀r∅.C | ∀r.C∆

Ax_synt_local ::= C∅ v C | C v C∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 22/26

Algorithms

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology O is local w.r.t. S if J |= O for every J which
interprets all concept and role names not in S as the empty set.

+ If every O is local w.r.t. S then O is safe for S:
+ Checking locality can be done using any standard

DL-reasoner.
+ There is a sufficient syntactical condition for locality which

can be verified in polynomial time.

SYNTACTIC LOCALITY

C∅ ::= A∅ | C∅ u C | C∅ t C∅ | ¬C∆ | ∃r∅ .C | ∃r.C∅

C∆ ::= C∆ t C | C∆ u C∆ | ¬C∅ | ∀r∅.C | ∀r.C∆

Ax_synt_local ::= C∅ v C | C v C∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 22/26

Algorithms

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology O is local w.r.t. S if J |= O for every J which
interprets all concept and role names not in S as the empty set.

+ If every O is local w.r.t. S then O is safe for S:
+ Checking locality can be done using any standard

DL-reasoner.
+ There is a sufficient syntactical condition for locality which

can be verified in polynomial time.

SYNTACTIC LOCALITY

C∅ ::= A∅ | C∅ u C | C∅ t C∅ | ¬C∆ | ∃r∅ .C | ∃r.C∅

C∆ ::= C∆ t C | C∆ u C∆ | ¬C∅ | ∀r∅.C | ∀r.C∆

Ax_synt_local ::= C∅ v C | C v C∆

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 22/26

Algorithms

A MODULE-EXTRACTION ALGORITHM

BASED ON LOCALITY

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology O′1 is module in O′ w.r.t. a signature S if for every
model I of O′1 there exists a model J of O′ that coincides with I
on S: ∀ I ∃J |= O : I|S = J |S

PROPOSITION (MODULES AND SAFETY)

If O′ \ O′1 is safe for S ∪ Sg(O′1) then O′1 is a module in O′ for S.

Algorithm for extracting a module O′1 in O′ w.r.t. S:
1 Initialize O′1 to be an empty ontology: O′1 := ∅
2 Find an axiom α ∈ O′ \ O′1 that is is local w.r.t. S ∪ Sg(O′1)
3 Move α into O′1 and repeat until no other α left.

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 23/26

Algorithms

A MODULE-EXTRACTION ALGORITHM

BASED ON LOCALITY

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology O′1 is module in O′ w.r.t. a signature S if for every
model I of O′1 there exists a model J of O′ that coincides with I
on S: ∀ I ∃J |= O : I|S = J |S

PROPOSITION (MODULES AND SAFETY)

If O′ \ O′1 is safe for S ∪ Sg(O′1) then O′1 is a module in O′ for S.

Algorithm for extracting a module O′1 in O′ w.r.t. S:
1 Initialize O′1 to be an empty ontology: O′1 := ∅
2 Find an axiom α ∈ O′ \ O′1 that is is local w.r.t. S ∪ Sg(O′1)
3 Move α into O′1 and repeat until no other α left.

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 23/26

Algorithms

EMPERICAL EVALUATION

Ontology] Atomic A1: Prompt-Factor A2: Mod. in [CG’06] A3: Loc.-based mod.

Concepts Max.(%) Avg.(%) Max.(%) Avg.(%) Max.(%) Avg.(%)

NCI 27772 87.6 75.84 55 30.8 0.8 0.08

SNOMED 255318 100 100 100 100 0.5 0.05

GO 22357 1 0.1 1 0.1 0.4 0.05

SUMO 869 100 100 100 100 2 0.09

GALEN-Small 2749 100 100 100 100 10 1.7

GALEN-Full 24089 100 100 100 100 29.8 3.5

SWEET 1816 96.4 88.7 83.3 51.5 1.9 0.1

DOLCE-Lite 499 100 100 100 100 37.3 24.6

[SK’04] H. Stuckenschmidt & M. Klein Structure-based partitioning
of large class hierarchies. ISWC 2004

[CG’06] B. Cuenca Grau, B. Parsia, E. Sirin, & A. Kalyanpur.
Modularity and Web Ontologies. KR 2006

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 24/26

Algorithms

CONTRIBUTIONS

Formalization for the notions for safety and modules using
logical notions of conservative extension
Theoretical studies for the relevant tasks (decidability,
complexity)
Practical algorithms for extracting modules and safety
checking with guarantied correctness of the results

1 B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U.Sattler. A
logical framework for modularity of ontologies. In Proc. of
IJCAI 2007

2 B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler.
Just the right amout: Extracting modules from ontologies. In
Proc. of WWW 2007

3 B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler.
Modular Reuse of Ontologies: Theory and Practice. JAIR
2008, to appear

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 25/26

OTHER LOCALITY CONDITIONS

Other locality conditions can be defined by choosing different
ways to interpret the symbols that are not in S:

EXAMPLES AND COMPARISON OF DIFFERENT LOCALITIES
r← ∅ ∆×∆ id ∅ ∆×∆ id
A← ∅ ∅ ∅ ∆ ∆ ∆

A ≡ B u ∃r.C 3 3 3 7 7 7

A u C v ⊥ 3 3 3 7 7 7

∃r.> v A 3 7 7 3 3 3

Functional(r) 3 7 3 3 7 3

a : A 7 7 7 3 3 3

r(a,b) 7 3 7 7 3 7

∀r.C v ∃r.D 7 7 7 7 7 7

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice 26/26

	Background
	Safety and Modules
	Motivation
	Formalization

	Algorithms
	Appendix

