MODULARITY FOR ONTOLOGIES: THEORY AND PRACTICE

Yevgeny Kazakov (based on joint works with Bernardo Cuenca Grau, Ian Horrocks and Ulrike Sattler)

The University of Oxford

November 20, 2007

* 曰 > () 4 문 > () 4 문 > () 문 >

OUTLINE

1 BACKGROUND

2 SAFETY AND MODULES

- Motivation
- Formalization

3 ALGORITHMS

<□> < => < => < => < =| = <0 < 0

ONTOLOGIES AND ONTOLOGY LANGUAGES

Ontologies are vocabularies of terms for specific subjects

- chemical elements
- genes
- human anatomy
- clinical procedures

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

◆母 ▶ ◆ 臣 ▶ ★ 臣 ▶ 三日 → のへの

ONTOLOGIES AND ONTOLOGY LANGUAGES

Two types of axoioms

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

< □> < E> < E> E| = のQ@

ONTOLOGIES AND ONTOLOGY LANGUAGES

Two types of axoioms

Terminalogical axiom [Schema]

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

< □> < E> < E> E| = のQ@

ONTOLOGIES AND ONTOLOGY LANGUAGES

Two types of axoioms

- Terminalogical axiom [Schema]
- Assertions [Data]

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

◆母 ▶ ◆ 臣 ▶ ★ 臣 ▶ 三日 → のへの

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

A B A A B A B B B A A A

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages

Atomic concepts [Classes]

ENAEN ELE MAR

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages

- Atomic concepts [Classes]
- Roles [Properties]

Heart \equiv MuscularOrgan $\sqcap \exists isPartOf$.CirculatorySystem O_Id7894 : Heart

ONTOLOGIES AND ONTOLOGY LANGUAGES

- The syntax of DL-based ontology languages
 - Atomic concepts [Classes]
 - Roles [Properties]
 - Individuals

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894: Heart

<□> → □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ →

ONTOLOGIES AND ONTOLOGY LANGUAGES

- The syntax of DL-based ontology languages
 - Atomic concepts [Classes]
 - Roles [Properties]
 - Individuals
 - Constructors

Heart MuscularOrgan SPartOf.CirculatorySystem

<□> → □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ →

ONTOLOGIES AND ONTOLOGY LANGUAGES

The syntax of DL-based ontology languages

- Atomic concepts [Classes]
- Roles [Properties]
- Individuals
- Constructors

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem			
O_Id7894 : Heart	<owl:class rdf:id="Heart"> <owl:equivalentclass> <owl:class></owl:class></owl:equivalentclass></owl:class>		
OWL syntax: (XML+RDF)	<pre><owl:intersectionof rdf:parsetype="Collection"> <owl:class rdf:id="MuscularOrgan"> <owl:restriction> <owl:onproperty> <owl:objectproperty rdf:id="isPartOf"> </owl:objectproperty></owl:onproperty> <owl:class rdf:id="CirculatorySystem"></owl:class> </owl:restriction></owl:class> </owl:intersectionof></pre>		

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

ENAEN ELE MAR

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages

• Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

< □ > < □ > < 亘 > < 亘 > < 亘 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}})^{\mathcal{I}}$

• $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

3 1 4 3

ONTOLOGIES AND ONTOLOGY LANGUAGES

- The set-theoretic semantics for ontology languages
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}} \cdot^{\mathcal{I}})$
 - $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
 - $\cdot^{\mathcal{I}}$ is an interpretation function

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem O_Id7894 : Heart

3 > < 3 >

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages

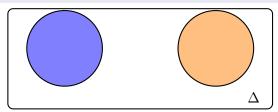
• Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
- \mathcal{I} is an interpretation function

Atomic concepts \Rightarrow sets

Heart ≡ (MuscularOrgan) □ ∃ isPartOf CirculatorySystem)

O_Id7894 : Heart



A B A A B A B B B A A A

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages

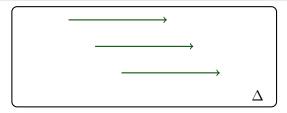
• Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
- \mathcal{I} is an interpretation function

Atomic concepts \Rightarrow sets Roles \Rightarrow binary relations

Heart \equiv MuscularOrgan \sqcap \exists isPartOf.CirculatorySystem

O_Id7894 : Heart



3 1 4 3 1

ONTOLOGIES AND ONTOLOGY LANGUAGES

The set-theoretic semantics for ontology languages

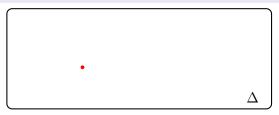
• Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
- \mathcal{I} is an interpretation function

Atomic concepts \Rightarrow sets Roles \Rightarrow binary relations Individuals \Rightarrow elements

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem

O_Id7894: Heart



ONTOLOGIES AND ONTOLOGY LANGUAGES

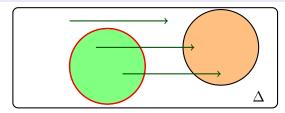
The set-theoretic semantics for ontology languages

• Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
- \mathcal{I} is an interpretation function
- Constructors ⇒ set operators

Heart \equiv MuscularOrgan \sqcap \exists isPartOf.CirculatorySystem

O_Id7894 : Heart



ONTOLOGIES AND ONTOLOGY LANGUAGES

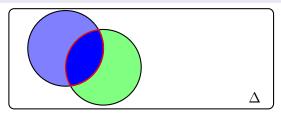
The set-theoretic semantics for ontology languages

• Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

- $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
- \mathcal{I} is an interpretation function
- Constructors ⇒ set operators

Heart \equiv MuscularOrgan $\sqcap \exists$ isPartOf.CirculatorySystem

O_Id7894 : Heart



ONTOLOGIES AND ONTOLOGY LANGUAGES

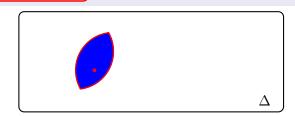
The set-theoretic semantics for ontology languages

• Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

) Id7894 : Heart

- $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
- \mathcal{I} is an interpretation function
- Constructors ⇒ set operators
- I is a model iff all axioms hold

Heart) = MuscularOrgan □ ∃isPartOf.CirculatorySystem



A B A A B A B B B A A A

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart ≡ MuscularOrgan ⊓ □ ∃isPartOf.CirculatorySystem

O_Id7894 : Heart

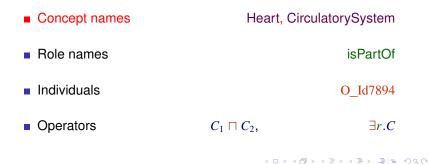
Translation to the first-order logic:

 Concept names 	Heart, Cir	rculatorySystem
 Role names 		isPartOf
Individuals		O_Id7894
 Operators 	$C_1 \sqcap C_2$,	∃r.C

ONTOLOGIES AND FIRST-ORDER LOGIC

Heart = MuscularOrgan ⊓ □ ∃isPartOf.CirculatorySystem

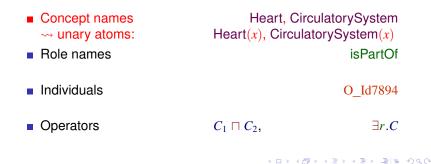
O_Id7894 : Heart



ONTOLOGIES AND FIRST-ORDER LOGIC

Heart(x) \equiv MuscularOrgan(x) \sqcap \sqcap \exists isPartOf.CirculatorySystem(x)

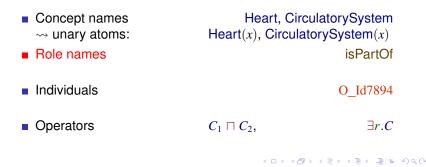
 $O_Id7894 : Heart(x)$



ONTOLOGIES AND FIRST-ORDER LOGIC

 $Heart(x) \equiv MuscularOrgan(x) \sqcap \\ \sqcap fisPartOf.CirculatorySystem(x)$

 $O_Id7894 : Heart(x)$



ONTOLOGIES AND FIRST-ORDER LOGIC

 $Heart(x) \equiv MuscularOrgan(x) \sqcap \\ \exists sPartOf(x, y). CirculatorySystem(x)$

 $O_Id7894 : Heart(x)$

Translation to the first-order logic:

- Concept names ~ unary atoms:
- Role names ~> binary atoms:
- Individuals

Heart, CirculatorySystem Heart(x), CirculatorySystem(x) isPartOf isPartOf(x, y) O_Id7894

Operators

 $C_1 \sqcap C_2, \qquad \exists r.C$

◆母 ▶ ◆ 臣 ▶ ★ 臣 ▶ 三日 → のへの

ONTOLOGIES AND FIRST-ORDER LOGIC

 $\begin{aligned} \mathsf{Heart}(x) &\equiv \mathsf{MuscularOrgan}(\mathsf{x}) \sqcap \\ &\sqcap \exists \mathsf{isPartOf}(x,y).\mathsf{CirculatorySystem}(\mathsf{x}) \end{aligned}$

O_Id7894: Heart(x)

Operators

Translation to the first-order logic:

 Concept names → unary atoms: Heart, CirculatorySystem → binary atoms: Heart(x), CirculatorySystem(x)

 Role names → binary atoms: isPartOf → binary atoms: isPartOf(x,y)

 Individuals O_Id7894

Yevgeny Kazakov Modularity for Ontologies: Theory and Practice

 $C_1 \sqcap C_2$.

 $\exists r.C$

◆母 ▶ ◆ 臣 ▶ ★ 臣 ▶ 三日 → のへの

ONTOLOGIES AND FIRST-ORDER LOGIC

 $\begin{aligned} \text{Heart}(x) &\equiv \text{MuscularOrgan}(x) \sqcap \\ \sqcap \exists \text{isPartOf}(x, y).\text{CirculatorySystem}(x) \\ \text{HeartO_Id7894} \end{aligned}$

Translation to the first-order logic:

- Concept names
 ~ unary atoms:
- Role names
 w binary atoms:
- Individuals
 ~> constants:
- Operators

Heart, CirculatorySystem Heart(x), CirculatorySystem(x) isPartOf isPartOf(x, y) O_Id7894 O_Id7894 $C_1 \sqcap C_2$, $\exists r.C$

ONTOLOGIES AND FIRST-ORDER LOGIC

 $Heart(x) \equiv MuscularOrgan(x) \sqcap$ $\sqcap \exists sPartOf(x, y) : CirculatorySystem(x)$ $Heart(O_Id7894)$

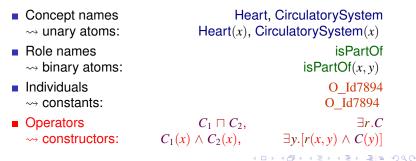
Translation to the first-order logic:

- Concept names
 ~ unary atoms:
- Role names
 w binary atoms:
- Individuals
 ~~ constants:
- Operators

Heart, CirculatorySystem Heart(x), CirculatorySystem(x) isPartOf isPartOf(x,y) O_Id7894 O_Id7894 $C_1 \sqcap C_2$, $\exists r.C$

ONTOLOGIES AND FIRST-ORDER LOGIC

 $Heart(x) \equiv MuscularOrgan(x) \land \\ \land \exists y.[isPartOf(x, y] \land CirculatorySystem(x)] \\ Heart(O_Id7894)$



ONTOLOGIES AND FIRST-ORDER LOGIC

 $\begin{aligned} \text{Heart}(x) &\equiv \text{MuscularOrgan}(x) \land \\ & \land \exists y.[\text{isPartOf}(x,y) \land \text{CirculatorySystem}(x)] \\ & \text{Heart}(\text{O_Id7894}) \end{aligned}$

Translation to the first-order logic:

- Concept names ~> unary atoms:
- Role names
 w binary atoms:
- Individuals
 ~~ constants:
- Operators
 ~> constructors:

 $\begin{array}{c} \text{Heart, CirculatorySystem} \\ \text{Heart}(x), \text{CirculatorySystem}(x) \\ \text{isPartOf} \\ \text{isPartOf}(x,y) \\ \text{O_Id7894} \\ \text{O_Id7894} \\ C_1 \sqcap C_2, \qquad \exists r.C \\ C_1(x) \land C_2(x), \qquad \exists y.[r(x,y) \land C(y)] \end{array}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A HIERARCHY OF ONTOLOGY LANGUAGES

Name	DL syntax	First-Order syntax	
intersection	$C_1 \sqcap C_2$	$C_1(x) \wedge C_2(x)$	
union	$C_1 \sqcup C_2$	$C_1(x) \lor C_2(x)$	$ =\mathcal{A} $
complement	$\neg C$	$\neg C(x)$	\mathcal{L}
value restriction	$\forall r.C$	$\forall y. [r(x, y) \to C(y)]$	C
exist restriction	$\exists r.C$	$\exists y.[r(x,y) \land C(y)]$	
concept assertion	i:C	C(i)	
role assertion	$(i_1,i_2):r$	$r(i_1,i_2)$	

315

물 🕨 🖈 🖻

A HIERARCHY OF ONTOLOGY LANGUAGES

Name	DL syntax	First-Order syntax	
intersection	$C_1 \sqcap C_2$	$C_1(x) \wedge C_2(x)$	
union	$C_1 \sqcup C_2$	$C_1(x) \vee C_2(x)$	$= \mathcal{A}$
complement	$\neg C$	$\neg C(x)$	\mathcal{L}
value restriction	$\forall r.C$	$\forall y.[r(x,y) \to C(y)]$	С
exist restriction	$\exists r.C$	$\exists y.[r(x,y) \land C(y)]$	
concept assertion	i:C	C(i)	
role assertion	$(i_1, i_2) : r$	$r(i_1,i_2)$	
transitivity	Trans(r)	$\forall xyz. [r(x, y) \land r(y, z) \to r(x, z)]$	= S
functionality	Funct(r)	$\forall xyz. [r(x, y) \land r(x, z) \to y \simeq z]$	$+\mathcal{F}$
role inclusion	$r_1 \sqsubseteq r_2$	$\forall xy.[r_1(x,y) \to r_2(x,y)]$	$+\mathcal{H}$

三日 のへの

3 1 4 3

A HIERARCHY OF ONTOLOGY LANGUAGES

Name	DL syntax	First-Order syntax	
intersection	$C_1 \sqcap C_2$	$C_1(x) \wedge C_2(x)$	
union	$C_1 \sqcup C_2$	$C_1(x) \vee C_2(x)$	$ =\mathcal{A} $
complement	$\neg C$	$\neg C(x)$	\mathcal{L}
value restriction	$\forall r.C$	$\forall y. [r(x, y) \to C(y)]$	С
exist restriction	$\exists r.C$	$\exists y.[r(x,y) \land C(y)]$	
concept assertion	<i>i</i> : <i>C</i>	C(i)	
role assertion	$(\mathbf{i}_1,\mathbf{i}_2):r$	$r(i_1,i_2)$	
transitivity	Trans(r)	$\forall xyz. [r(x, y) \land r(y, z) \to r(x, z)]$	= S
functionality	Funct(r)	$\forall xyz. [r(x, y) \land r(x, z) \to y \simeq z]$	$ +\mathcal{F} $
role inclusion	$r_1 \sqsubseteq r_2$	$\forall xy.[r_1(x,y) \to r_2(x,y)]$	$+\mathcal{H}$
inverse roles	$[\ldots]r^{-}[\ldots]$	$[\dots]r(y,x)[\dots]$	$+\mathcal{I}$

A HIERARCHY OF ONTOLOGY LANGUAGES

Name	DL syntax	First-Order syntax	
intersection	$C_1 \sqcap C_2$	$C_1(x) \wedge C_2(x)$	
union	$C_1 \sqcup C_2$	$C_1(x) \vee C_2(x)$	$ =\mathcal{A} $
complement	$\neg C$	$\neg C(x)$	\mathcal{L}
value restriction	$\forall r.C$	$\forall y.[r(x,y) \to C(y)]$	C
exist restriction	$\exists r.C$	$\exists y.[r(x,y) \land C(y)]$	
concept assertion	i:C	C(i)	
role assertion	$(i_1, i_2) : r$	$r(i_1,i_2)$	
transitivity	Trans(r)	$\forall xyz. [r(x, y) \land r(y, z) \to r(x, z)]$	= S
functionality	Funct(r)	$\forall xyz. [r(x, y) \land r(x, z) \to y \simeq z]$	$+\mathcal{F}$
role inclusion	$r_1 \sqsubseteq r_2$	$\forall xy.[r_1(x,y) \to r_2(x,y)]$	$+\mathcal{H}$
inverse roles	$[\ldots]r^{-}[\ldots]$	$[\dots]r(y,x)[\dots]$	$+\mathcal{I}$
number restriction	$\leq n r$	$\exists^{\leq n} y. r(x, y)$	$+\mathcal{N}$
qualified nr. restr.	$\leq n r.C$	$\exists^{\leq n} y. [r(x, y) \land C(y)]$	$+\mathcal{Q}$

Background

A HIERARCHY OF ONTOLOGY LANGUAGES

A DECEMBER OF A			
Name	DL syntax	First-Order syntax	
intersection	$C_1 \sqcap C_2$	$C_1(x) \wedge C_2(x)$	
union	$C_1 \sqcup C_2$	$C_1(x) \vee C_2(x)$	$= \mathcal{A}$
complement	$\neg C$	$\neg C(x)$	\mathcal{L}
value restriction	$\forall r.C$	$\forall y.[r(x,y) \to C(y)]$	С
exist restriction	$\exists r.C$	$\exists y.[r(x,y) \land C(y)]$	
concept assertion	i:C	C(i)	
role assertion	$(i_1, i_2) : r$	$r(i_1,i_2)$	
transitivity	Trans(r)	$\forall xyz. [r(x, y) \land r(y, z) \to r(x, z)]$	= S
functionality	Funct(r)	$\forall xyz. [r(x, y) \land r(x, z) \to y \simeq z]$	$+\mathcal{F}$
role inclusion	$r_1 \sqsubseteq r_2$	$\forall xy.[r_1(x,y) \to r_2(x,y)]$	$+\mathcal{H}$
inverse roles	$[\ldots]r^{-}[\ldots]$	$[\ldots]r(y,x)[\ldots]$	$+\mathcal{I}$
number restriction	$\leq n r$	$\exists^{\leq n} y. r(x, y)$	$+\mathcal{N}$
qualified nr. restr.	$\leq n r.C$	$\exists^{\leq n} y. [r(x, y) \land C(y)]$	$+\mathcal{Q}$
nominals	{ <i>i</i> }	$x \simeq i$	$+\mathcal{O}$
e.g. OWL DL $\rightsquigarrow \mathcal{SHOIN}$			

 $\label{eq:Heart} \begin{array}{l} \mbox{Heart} \equiv \mbox{MuscularOrgan} \sqcap \exists is PartOf.CirculatorySystem \\ \mbox{MuscularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.MuscularSystem \\ \mbox{CardiovascularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.CirculatorySystem \\ \mbox{O_Id7894}: \mbox{Heart} \end{array}$

Ontology reasoning:

- extracting implicit information from the explicit information in ontologies

A B A A B A B B B A A A

 $\label{eq:Heart} \begin{array}{l} \mbox{Heart} \equiv \mbox{MuscularOrgan} \sqcap \exists is PartOf.CirculatorySystem\\ \mbox{MuscularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.MuscularSystem\\ \mbox{CardiovascularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.CirculatorySystem\\ \mbox{O_Id7894}: \mbox{Heart} \end{array}$

Ontology reasoning:

- extracting implicit information from the explicit information in ontologies

Heart CardiovascularOrgan

A B A A B A B B B A A A

 $\label{eq:Heart} \begin{array}{l} \mbox{Heart} \equiv \mbox{MuscularOrgan} \sqcap \exists is PartOf.CirculatorySystem\\ \mbox{MuscularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.MuscularSystem\\ \mbox{CardiovascularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.CirculatorySystem\\ \mbox{O_Id7894}: \mbox{Heart} \end{array}$

- Ontology reasoning:
 - extracting implicit information from the explicit information in ontologies
 - Heart CardiovascularOrgan
 - O_Id7894 : ∃isPartOf.(MuscularSystem ⊔ CirculatorySystem)

ADA EN EN ANA

 $\label{eq:Heart} \begin{array}{l} \mbox{Heart} \equiv \mbox{MuscularOrgan} \sqcap \exists is PartOf.CirculatorySystem \\ \mbox{MuscularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.MuscularSystem \\ \mbox{CardiovascularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.CirculatorySystem \\ \mbox{O_Id7894}: \mbox{Heart} \end{array}$

- Ontology reasoning:
 - extracting implicit information from the explicit information in ontologies
 - Heart CardiovascularOrgan
 - O_Id7894 : ∃isPartOf.(MuscularSystem ⊔ CirculatorySystem)
- Standard reasoning tasks:

 $\label{eq:Heart} \begin{array}{l} \mbox{Heart} \equiv \mbox{MuscularOrgan} \sqcap \exists is PartOf.CirculatorySystem \\ \mbox{MuscularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.MuscularSystem \\ \mbox{CardiovascularOrgan} \equiv \mbox{Organ} \sqcap \exists is PartOf.CirculatorySystem \\ \mbox{O_Id7894}: \mbox{Heart} \end{array}$

- Ontology reasoning:
 - extracting implicit information from the explicit information in ontologies
 - Heart CardiovascularOrgan
 - O_Id7894 : ∃isPartOf.(MuscularSystem ⊔ CirculatorySystem)
- Standard reasoning tasks:
 - Classification:
 - compute all subsumptions $A \sqsubseteq B$ between <u>named</u> classes

< ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■ > < ■

 $\label{eq:heart} \begin{array}{l} \mathsf{Heart} \equiv \mathsf{MuscularOrgan} \sqcap \exists \mathsf{isPartOf}.\mathsf{CirculatorySystem} \\ \mathsf{MuscularOrgan} \equiv \mathsf{Organ} \sqcap \exists \mathsf{isPartOf}.\mathsf{MuscularSystem} \\ \mathsf{CardiovascularOrgan} \equiv \mathsf{Organ} \sqcap \exists \mathsf{isPartOf}.\mathsf{CirculatorySystem} \\ \mathsf{O}_\mathsf{Id7894}: \mathsf{Heart} \\ \end{array}$

- Ontology reasoning:
 - extracting implicit information from the explicit information in ontologies
 - Heart CardiovascularOrgan
 - O_Id7894 : ∃isPartOf.(MuscularSystem ⊔ CirculatorySystem)
- Standard reasoning tasks:
 - Classification:
 - compute all subsumptions $A \sqsubseteq B$ between <u>named</u> classes
 - Instance retrieval:
 - compute all implicit instances *i* of a class *C*.

 $\label{eq:heart} \begin{array}{l} \mathsf{Heart} \equiv \mathsf{MuscularOrgan} \sqcap \exists \mathsf{isPartOf}.\mathsf{CirculatorySystem} \\ \mathsf{MuscularOrgan} \equiv \mathsf{Organ} \sqcap \exists \mathsf{isPartOf}.\mathsf{MuscularSystem} \\ \mathsf{CardiovascularOrgan} \equiv \mathsf{Organ} \sqcap \exists \mathsf{isPartOf}.\mathsf{CirculatorySystem} \\ \mathsf{O}_\mathsf{Id7894}: \mathsf{Heart} \\ \end{array}$

- Ontology reasoning:
 - extracting implicit information from the explicit information in ontologies
 - Heart CardiovascularOrgan
 - O_Id7894 : ∃isPartOf.(MuscularSystem ⊔ CirculatorySystem)
- Standard reasoning tasks:
 - Classification:
 - compute all subsumptions $A \sqsubseteq B$ between <u>named</u> classes
 - Instance retrieval:
 - compute all implicit instances *i* of a class *C*.
- Ontology reasoners: FaCT++, KAON2, Pellet, Racer, CEL,

OUTLINE

2 SAFETY AND MODULES

- Motivation
- Formalization

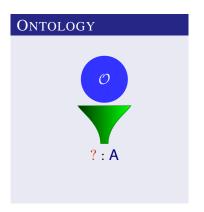
3 Algorithms

<□> < => < => < => < =| = <0 < 0

7/26

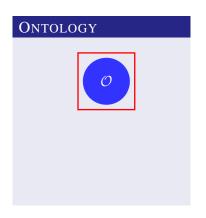
CLASSICAL REASONING SUPPORT FOR ONTOLOGIES

 Provides engine for querying of ontologies



CLASSICAL REASONING SUPPORT FOR ONTOLOGIES

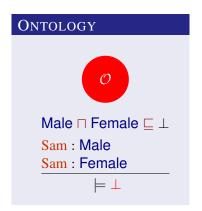
- Provides engine for querying of ontologies
- Provides tools for ontology development:



▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● 9 Q @

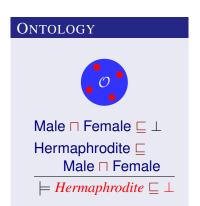
CLASSICAL REASONING SUPPORT FOR ONTOLOGIES

- Provides engine for querying of ontologies
- Provides tools for ontology development:
 - ✓ Checking global consistency



CLASSICAL REASONING SUPPORT FOR ONTOLOGIES

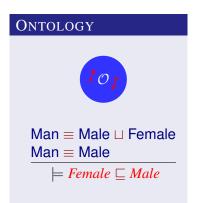
- Provides engine for querying of ontologies
- Provides tools for ontology development:
 - Checking global consistency
 - ✓ Detecting unsatisfiable classes



<□> → □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ →

CLASSICAL REASONING SUPPORT FOR ONTOLOGIES

- Provides engine for querying of ontologies
- Provides tools for ontology development:
 - Checking global consistency
 - Detecting unsatisfiable classes
 - Detecting unintended subsumptions



CLASSICAL REASONING SUPPORT FOR ONTOLOGIES

- Provides engine for querying of ontologies
- Provides tools for ontology development:
 - Checking global consistency
 - Detecting unsatisfiable classes
 - Detecting unintended subsumptions
- Not sufficient for large-scale ontology development

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● 9 Q @

Motivation

ONTOLOGY ENGINEERING AT THE LARGE SCALE

- Collaborative development
- Involves experts in different fields
- Continuous process
- The notion of modularity becomes apparent

▲ E ▶ ▲ E ▶ E E 9 Q Q

Motivation

ONTOLOGY ENGINEERING AT THE LARGE SCALE

- Collaborative development
- Involves experts in different fields
- Continuous process
- The notion of modularity becomes apparent
- Problems:
 - Safe integration of ontologies
 - ✓ Partial ontology reuse

▲ Ξ ▶ ▲ Ξ ▶ Ξ Ι Ξ ● QQO

Motivation

A MOTIVATING EXAMPLE

ONTOLOGY REUSE

ONTOLOGY OF RESEARCH PROJECTS

 $CysticFibrosis_EUProject \equiv$

EUProject

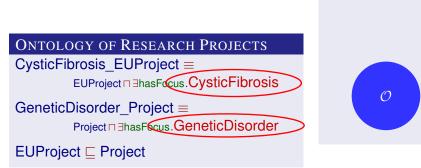
GeneticDisorder_Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject
Project

Motivation

A MOTIVATING EXAMPLE



Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS

GeneticDisorder \equiv ... CysticFibrosis \equiv ...

ONTOLOGY OF RESEARCH PROJECTS

 $CysticFibrosis_EUProject \equiv$

EUProject

$GeneticDisorder_Project \equiv$

Project

HasFocus.GeneticDisorder

EUProject 🗆 Project

ONTOLOGY REUSE

Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS

GeneticDisorder \equiv ... CysticFibrosis \equiv ...

ONTOLOGY OF RESEARCH PROJECTS

 $CysticFibrosis_EUProject \equiv$

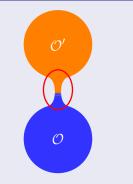
EUProject

GeneticDisorder_Project =

Project

EUProject 🗆 Project

ONTOLOGY REUSE



A CONTRACTOR

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS

GeneticDisorder $\equiv \dots$ CysticFibrosis $\equiv \dots$

⊨ CysticFibrosis ⊑ GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS

 $CysticFibrosis_EUProject \equiv$

EUProject

 $GeneticDisorder_Project \equiv$

Project

EUProject 드 Project

ONTOLOGY REUSE

Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS

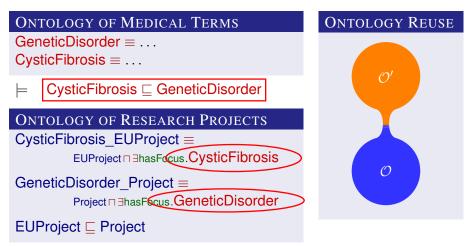
GeneticDisorder \equiv ... CysticFibrosis \equiv ...

⊨ CysticFibrosis ⊑ GeneticDisorder

ONTOLOGY REUSE

Motivation

A MOTIVATING EXAMPLE



Motivation

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS

GeneticDisorder $\equiv \dots$ CysticFibrosis $\equiv \dots$

⊨ CysticFibrosis ⊑ GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject =

EUProject

 $GeneticDisorder_Project \equiv$

Project

EUProject C Project

= CysticFibrosis_EUProject ⊑ GeneticDisorder_Project

A MOTIVATING EXAMPLE

ONTOLOGY OF MEDICAL TERMS

GeneticDisorder $\equiv \dots$ CysticFibrosis $\equiv \dots$

⊨ CysticFibrosis ⊑ GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS

 $CysticFibrosis_EUProject \equiv$

EUProject

 $GeneticDisorder_Project \equiv$

Project

EUProject
Project

ONTOLOGY REUSE

・ロト < 同ト < 目ト < 目ト < 目本 のへの

⊨ CysticFibrosis_EUProject ⊑ GeneticDisorder_Project

Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS

- CysticFibrosis_EUProject $\equiv [\dots]$
- $GeneticDisorder_Project \equiv [\dots]$
- $\mathsf{EUProject}\sqsubseteq\mathsf{Project}$

Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS CysticFibrosis_EUProject \equiv [...] GeneticDisorder_Project \equiv [...] EUProject \sqsubseteq Project

"If something hasFocus then it is a Project"

Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS CysticFibrosis_EUProject \equiv [...] GeneticDisorder_Project \equiv [...] EUProject \sqsubseteq Project \exists hasFocus. $\top \sqsubseteq$ Project

ONTOLOGY REUSE

"If something hasFocus then it is a Project"

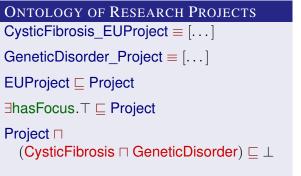
Motivation

ONTOLOGY REUSE

MODELLING ERRORS

"Any instance of Project is different from any instance of CysticFibrosis and any instance of GeneticDisorder"

MODELLING ERRORS



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

"Any instance of Project is different from any instance of CysticFibrosis and any instance of GeneticDisorder"

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS CysticFibrosis_EUProject ≡ [...] GeneticDisorder_Project ≡ [...] EUProject ⊑ Project ∃hasFocus.⊤ ⊑ Project Project ⊓ (CysticFibrosis ⊓ GeneticDisorder) ⊑ ⊥

ONTOLOGY REUSE



"Every instance of Project that hasFocus on CysticFibrosis, also hasFocus on GeneticDisorder"

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS

- $CysticFibrosis_EUProject \equiv [\dots]$
- $GeneticDisorder_Project \equiv [\dots]$
- EUProject C Project
- $\exists hasFocus. \top \sqsubseteq Project$

Project ⊓

 $(CysticFibrosis \sqcap GeneticDisorder) \sqsubseteq \bot$

∀hasFocus.CysticFibrosis ⊑ ∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

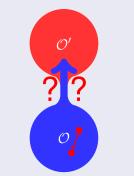
"Every instance of Project that hasFocus on CysticFibrosis, also hasFocus on GeneticDisorder"

Motivation

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS CysticFibrosis EUProject $\equiv [...]$ GeneticDisorder Project \equiv [...] EUProject C Project \exists hasFocus. $\top \Box$ Project Project ⊓ (CysticFibrosis \Box GeneticDisorder) $\Box \perp$ ∀hasFocus.CysticFibrosis □ ∃hasFocus.GeneticDisorder

ONTOLOGY REUSE



"Any instance of Project is different from any instance of CysticFibrosic and ony instance of GeneticDisorder"

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS

- $CysticFibrosis_EUProject \equiv [\dots]$
- $GeneticDisorder_Project \equiv [\dots]$
- EUProject C Project
- $\exists hasFocus. \top \sqsubseteq Project$

Project ⊓

 $(CysticFibrosis \sqcap GeneticDisorder) \sqsubseteq \bot$

d)asFocus.CysticFibrosis ⊑ ∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

"Every instance of Project that hasFocus on CysticFibrosis, also hasFocus on GeneticDisorder"

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS CysticFibrosis EUProject $\equiv [...]$ GeneticDisorder Project \equiv [...] EUProject C Project \exists hasFocus. $\top \Box$ Project Project ⊓ (CysticFibrosis \sqcap GeneticDisorder) $\sqsubseteq \perp$ VhasFocus.CysticFibrosis ∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

 $\models \top \sqsubseteq \exists hasFocus.[\neg CysticFibrosis \sqcup GeneticDisorder]$

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS

- $CysticFibrosis_EUProject \equiv [...]$
- $GeneticDisorder_Project \equiv [\dots]$
- EUProject C Project
- \exists hasFocus. $\top \sqsubseteq$ Project \blacktriangleleft

Project ⊓

 $(\mathsf{CysticFibrosis} \sqcap \mathsf{GeneticDisorder}) \sqsubseteq \bot$

∀hasFocus.CysticFibrosis ⊑ ∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

 $\models \top \sqsubseteq \exists hasFocus.[\neg CysticFibrosis \sqcup GeneticDisorder] \\ \models \top \sqsubseteq Project$

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● 의 Q @

MODELLING ERRORS

ONTOLOGY OF RESEARCH PROJECTS CysticFibrosis EUProject $\equiv [...]$ GeneticDisorder Project \equiv [...] EUProject Project ∃hasFocus.⊤ □ Project Project ⊓ (CysticFibrosis \sqcap GeneticDisorder) $\sqsubseteq \perp$ ∀hasFocus.CysticFibrosis □ ∃hasFocus.GeneticDisorder

ONTOLOGY REUSE

★ 코 ▶ ★ 코 ▶ / 로 ⊨

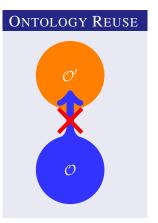
 $\models \top \sqsubseteq \exists hasFocus.[\neg CysticFibrosis \sqcup GeneticDisorder] \\\models \top \sqsubseteq Project$

 $= \mathsf{CysticFibrosis} \sqcap \mathsf{GeneticDisorder} \sqsubseteq \bot$

SAFE ONTOLOGY INTEGRATION: Why is it Important?

Independent ontology development:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly

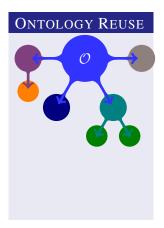


ADA ELE AEA ARA

SAFE ONTOLOGY INTEGRATION: Why is it Important?

Independent ontology development:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly
- 2 Modular integration of ontologies:

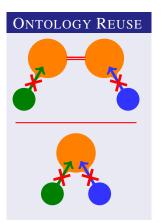


ADA ELE AEA ARA

SAFE ONTOLOGY INTEGRATION: Why is it Important?

Independent ontology development:

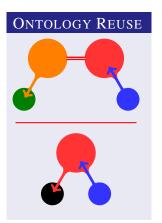
- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly
- 2 Modular integration of ontologies:
 - Ontologies which import safely a common ontology can be combined



SAFE ONTOLOGY INTEGRATION: Why is it Important?

Independent ontology development:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly
- 2 Modular integration of ontologies:
 - Ontologies which import safely a common ontology can be combined
 - Non-safety leads to corrupted ontologies

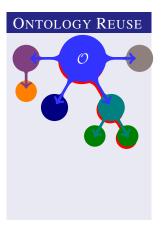


<□> → □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ →

SAFE ONTOLOGY INTEGRATION: Why is it Important?

Independent ontology development:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly
- 2 Modular integration of ontologies:
 - Ontologies which import safely a common ontology can be combined
 - Non-safety leads to corrupted ontologies
 - Ontology developers can continue working independently



<□> → □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ →

PARTIAL ONTOLOGY REUSE

 Available ontologies often big and contain lots of irrelevant information

ONTOLOGY OF RESEARCH PROJECTS

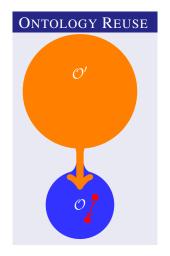
CysticFibrosis_EUProject =

EUProject

GeneticDisorder_Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject C Project

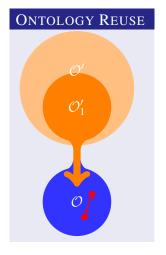


▲ E ▶ ▲ E ▶ E E 9 Q Q

PARTIAL ONTOLOGY REUSE

- Available ontologies often big and contain lots of irrelevant information
- Instead of importing the full ontology one could import a part that describes just the necessary vocabulary — A module O'₁ in O' w.r.t. O.

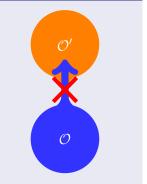
EUProject Project



A B A A B A B B B A A A

SAFE REUSE OF ONTOLOGIES

ONTOLOGY REUSE



INFORMAL DEFINITION

An ontology \mathcal{O} safely reuses ontology \mathcal{O}' if \mathcal{O} does not change the "meaning" of the reused symbols from \mathcal{O}' during the import.

SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

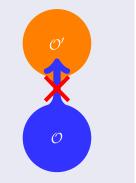
 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have:

 $\mathcal{O}' \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \models \alpha$

INFORMAL DEFINITION

An ontology \mathcal{O} safely reuses ontology \mathcal{O}' if \mathcal{O} does not change the "meaning" of the reused symbols from \mathcal{O}' during the import.

ONTOLOGY REUSE



SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

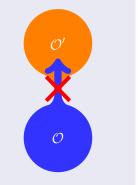
 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have:

 $\mathcal{O}' \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \models \alpha$

EXAMPLE (1) $\mathcal{O}' = \begin{cases} A \equiv \cdots \\ B \equiv \cdots \end{cases} \not\models B \sqsubseteq A$ $\mathcal{O} = \begin{cases} C_1 \equiv A \sqcap C_2 \\ B \sqsubseteq C_1 \end{cases} \not\models B \sqsubseteq A$

 $\mathcal{O}' \cup \mathcal{O}$ is not a conservative extension of \mathcal{O}' w.r.t. $\mathcal{L} = \mathcal{ALC}$.

ONTOLOGY REUSE



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have:

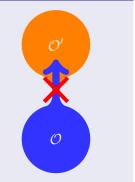
 $\mathcal{O}'\cup\mathcal{O}\models \alpha \quad \text{iff} \quad \mathcal{O}'\models \alpha$

EXAMPLE (2)

$$\mathcal{O}' = \left\{ \begin{array}{ll} \mathsf{A} \equiv \cdots & \not\models \top \sqsubseteq \mathsf{A}, \mathsf{A} \sqsubseteq \bot \\ \mathcal{O} = \left\{ \begin{array}{ll} a : (\mathsf{A} \sqcap \mathsf{B}) & \not\models \top \sqsubseteq \mathsf{A}, \mathsf{A} \sqsubseteq \bot \\ b : (\mathsf{A} \sqcap \neg \mathsf{B}) \end{array} \right. \end{array} \right.$$

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. $\mathcal{L} = \mathcal{ALC}$

ONTOLOGY REUSE



SAFE REUSE OF ONTOLOGIES

DEFINITION (1)

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have:

 $\mathcal{O}' \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \models \alpha$

EXAMPLE (2)

$$\mathcal{O}' = \left\{ \begin{array}{l} \mathsf{A} \equiv \cdots \qquad \not\models \top \sqsubseteq \mathsf{A}, \mathsf{A} \sqsubseteq \bot \\ \mathcal{O} = \left\{ \begin{array}{l} a : (\mathsf{A} \sqcap \mathsf{B}) \\ b : (\mathsf{A} \sqcap \neg \mathsf{B}) \end{array} \middle| \not\models |\mathsf{A}| \ge 2 \end{array} \right\}$$

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. $\mathcal{L} = \mathcal{ALC}$ The "meaning" of A has been changed, but $\mathcal{L} = \mathcal{ALC}$ cannot "detect" it using axioms.

ONTOLOGY REUSE

● > < 目 > < 目 > < 目 > < 目 > < 目

SAFE REUSE OF ONTOLOGIES

DEFINITION (2)

 $\mathcal{O}' \cup \mathcal{O}$ is a model conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if every model of \mathcal{O}' can be expanded to a model of $\mathcal{O}' \cup \mathcal{O}$:

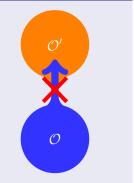
 $\forall \mathcal{I} \models \mathcal{O}' \exists \mathcal{J} \models \mathcal{O} : \mathcal{I}|_{\mathcal{O}'} = \mathcal{J}|_{\mathcal{O}'}$

EXAMPLE (2)

$$\mathcal{O}' = \left\{ \begin{array}{ll} \mathsf{A} \equiv \cdots & \not\models \top \sqsubseteq \mathsf{A}, \mathsf{A} \sqsubseteq \bot \\ \mathcal{O} = \left\{ \begin{array}{ll} a : (\mathsf{A} \sqcap \mathsf{B}) & \not\models \top \sqsubseteq \mathsf{A}, \mathsf{A} \sqsubseteq \bot \\ b : (\mathsf{A} \sqcap \neg \mathsf{B}) & \models |\mathsf{A}| \ge 2 \end{array} \right. \right.$$

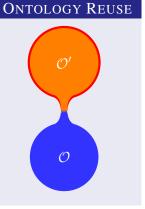
 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. $\mathcal{L} = \mathcal{ALC}$, but not model conservative The "meaning" of A has been changed, but $\mathcal{L} = \mathcal{ALC}$ cannot "detect" it using axioms.

ONTOLOGY REUSE



SAFETY FOR EVOLVING ONTOLOGIES

• Ontologies are developed \Rightarrow evolve

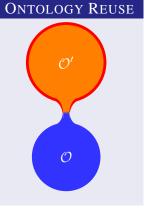


★ E ► ★ E ► E = 9 < 0</p>

< 🗇 🕨

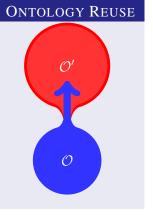
SAFETY FOR EVOLVING ONTOLOGIES

• Ontologies are developed \Rightarrow evolve



SAFETY FOR EVOLVING ONTOLOGIES

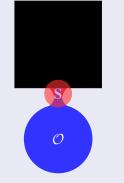
- Ontologies are developed ⇒ evolve
- Even if *O* is importing safely one version of *O'*, this might no longer hold for another version



SAFETY FOR EVOLVING ONTOLOGIES

- Ontologies are developed ⇒ evolve
- Even if *O* is importing safely one version of *O*', this might no longer hold for another version
- Instead of focusing on the reused ontology one could focus just on the reused symbols and treat the ontology as a "black box".

ONTOLOGY REUSE

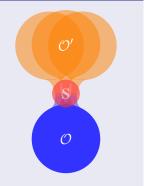


SAFETY OF AN ONTOLOGY FOR A SIGNATURE

DEFINITION (SAFETY FOR A SIGNATURE)

 \mathcal{O} is safe for a signature S w.r.t. an ontology language \mathcal{L} if for every \mathcal{O}' formulated over \mathcal{L} with $Sg(\mathcal{O}') \cap Sg(\mathcal{O}) \subseteq S$, we have that $\mathcal{O} \cup \mathcal{O}'$ is a conservative extension of \mathcal{O}' .

ONTOLOGY REUSE



SAFETY OF AN ONTOLOGY FOR A SIGNATURE

DEFINITION (SAFETY FOR A SIGNATURE)

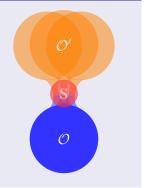
 \mathcal{O} is safe for a signature S w.r.t. an ontology language \mathcal{L} if for every \mathcal{O}' formulated over \mathcal{L} with Sg(\mathcal{O}') \cap Sg(\mathcal{O}) \subseteq S, we have that $\mathcal{O} \cup \mathcal{O}'$ is a conservative extension of \mathcal{O}' .

THEOREM (SUFFICIENT CONDITION)

An ontology \mathcal{O} is safe for a signature **S** if for every interpretation \mathcal{I} there exists a model \mathcal{J} of \mathcal{O} that coincides with \mathcal{I} on **S**:

 $\forall \, \mathcal{I} \, \exists \, \mathcal{J} \models \mathcal{O} : \, \mathcal{I}|_{S} = \mathcal{J}|_{S}$

ONTOLOGY REUSE



<□> → □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ → < □ →

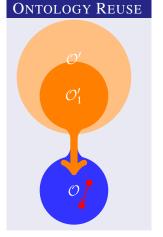
Safety and Modules

Formalization

MODULE FOR ONTOLOGY

INFORMAL DEFINITION

An ontology \mathcal{O}'_1 is a module in ontology \mathcal{O}' for the importing ontology \mathcal{O} , if importing \mathcal{O}'_1 into \mathcal{O} instead of \mathcal{O}' has the same impact on the "meaning" symbols in \mathcal{O} .



MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

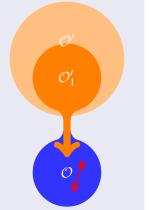
 \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. \mathcal{O} and ontology language \mathcal{L} if for every axiom α over \mathcal{O} expressed in \mathcal{L} , we have:

 $\mathcal{O'}_1 \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O'} \cup \mathcal{O} \models \alpha$

INFORMAL DEFINITION

An ontology \mathcal{O}'_1 is a module in ontology \mathcal{O}' for the importing ontology \mathcal{O} , if importing \mathcal{O}'_1 into \mathcal{O} instead of \mathcal{O}' has the same impact on the "meaning" symbols in \mathcal{O} .

ONTOLOGY REUSE



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

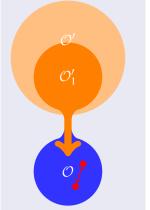
 \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. \mathcal{O} and ontology language \mathcal{L} if for every axiom α over \mathcal{O} expressed in \mathcal{L} , we have:

$$\mathcal{O'}_1 \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O'} \cup \mathcal{O} \models \alpha$$

OBSERVATION

The empty ontology is a module in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L} if $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O} w.r.t. \mathcal{L} .

ONTOLOGY REUSE



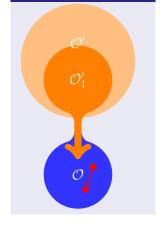
MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

 \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. \mathcal{O} and ontology language \mathcal{L} if for every axiom α over \mathcal{O} expressed in \mathcal{L} , we have:

$$\mathcal{O'}_1 \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O'} \cup \mathcal{O} \models \alpha$$

EXAMPLE $\mathcal{O}' = \begin{cases} A \equiv B \sqcap \exists r.C \\ A \sqcap D \sqsubseteq \bot \\ C_1 \equiv \cdots \\ C_2 \sqsubseteq \cdots \end{cases} \text{ (does not contain D)}$



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

ONTOLOGY REUSE

MODULE FOR ONTOLOGY

DEFINITION (MODULE FOR ONTOLOGY)

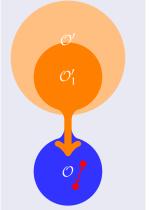
 \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. \mathcal{O} and ontology language \mathcal{L} if for every axiom α over \mathcal{O} expressed in \mathcal{L} , we have:

$$\mathcal{O'}_1 \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O'} \cup \mathcal{O} \models \alpha$$

EXAMPLE $\mathcal{O}'_{1} = \begin{cases} A \equiv B \sqcap \exists r.C \\ A \equiv D \equiv \bot \\ C_{1} \equiv \cdots \\ C_{2} \equiv \cdots \end{cases} \text{ (does not contain D)}$

 \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. \mathcal{O} and $\mathcal{L} = \mathcal{ALC}$.

ONTOLOGY REUSE

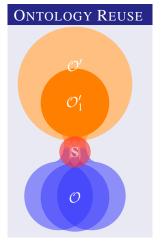


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

MODULE IN ONTOLOGY FOR A SIGNATURE

DEFINITION (MODULE FOR SIGNATURE)

 \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. **S** and ontology language \mathcal{L} if for every ontology \mathcal{O} formulated over \mathcal{L} with $Sg(\mathcal{O}) \cap Sg(\mathcal{O}') \subseteq S$, we have that \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. \mathcal{O} .



MODULE IN ONTOLOGY FOR A SIGNATURE

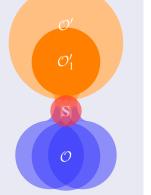
DEFINITION (MODULE FOR SIGNATURE)

 \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. **S** and ontology language \mathcal{L} if for every ontology \mathcal{O} formulated over \mathcal{L} with $Sg(\mathcal{O}) \cap Sg(\mathcal{O}') \subseteq S$, we have that \mathcal{O}'_1 is a module in \mathcal{O}' w.r.t. \mathcal{O} .

THEOREM (SUFFICIENT CONDITION)

An ontology \mathcal{O}'_1 is module in \mathcal{O}' w.r.t. a signature **S** if for every model \mathcal{I} of \mathcal{O}'_1 there exists a model \mathcal{J} of \mathcal{O}' that coincides with \mathcal{I} on S:

$$\forall \, \mathcal{I} \, \exists \, \mathcal{J} \models \mathcal{O} : \, \mathcal{I}|_{S} = \mathcal{J}|_{S}$$



OUTLINE

2 SAFETY AND MODULES

- Motivation
- Formalization

3 ALGORITHMS

<□> < => < => < => < =| = <0 < 0

Reasoning Problems

1	Not	Input	Task	
	T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	
	T2	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}	

Reasoning Problems

- A.					
4	Not	Input	Task		
	T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}		
	T2	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}		
	Т3	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}		
	T4	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S and \mathcal{L}		

Reasoning Problems

Not	Input	Task	
T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	
T2	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}	
Т3	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	
T4	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S and \mathcal{L}	
T3m	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	
T4m	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	

REASONING PROBLEMS

Not	Input	Task
T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}
T2	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}
Т3	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}
T4	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S and \mathcal{L}
T3m*	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}
T4m*	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. S and $\mathcal L$

*variants=[all / some / union of] minimal modules

< 172 ▶

∃ ► ★ Ξ ► Ξ Ξ = • • • • •

REASONING PROBLEMS

Input	Task	
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}	
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S and \mathcal{L}	
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	
	0, 0', L 0, S , L 0, 0', L 0, S , L 0, 0', L	InputTask $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Check if \mathcal{O} is safe for \mathbf{S} w.r.t. \mathcal{L} $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathbf{S} and \mathcal{L} $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Extract minimal module(s) in \mathcal{O}' w.r.t. \mathbf{S} and \mathcal{L}

*variants=[all / some / union of] minimal modules

THEOREM

Checking if $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. \mathcal{L} is 2-EXPTIME-complete for $\mathcal{L} = \mathcal{ALCQI}$ [Ghilardi, Lutz & Wolter, 2006] and is uncecidable for $\mathcal{L} = \mathcal{ALCQIO}$ [Lutz, Walther & Wolter, 2007].

A B A A B A B B B A A A

REASONING PROBLEMS

Input	Task	
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	8
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}	
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S and \mathcal{L}	
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	8
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	
	0, 0', L 0, S , L 0, 0', L 0, S , L 0, 0', L	InputTask $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Check if \mathcal{O} is safe for \mathbf{S} w.r.t. \mathcal{L} $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathbf{S} and \mathcal{L} $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Extract minimal module(s) in \mathcal{O}' w.r.t. \mathbf{S} and \mathcal{L}

*variants=[all / some / union of] minimal modules

THEOREM

Checking if $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. \mathcal{L} is 2-EXPTIME-complete for $\mathcal{L} = \mathcal{ALCQI}$ [Ghilardi, Lutz & Wolter, 2006] and is uncecidable for $\mathcal{L} = \mathcal{ALCQIO}$ [Lutz, Walther & Wolter, 2007].

Corollary: Then so are the tasks T1 and T3m*

► 4 3 ► 1

REASONING PROBLEMS

Not	Input	Task	
T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	8
T2	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}	
Т3	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	
T4	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S and \mathcal{L}	
T3m*	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	8
T4m*	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	
T4m*		Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	

*variants=[all / some / union of] minimal modules

THEOREM

Given an ontology \mathcal{O} consisting only of a single \mathcal{ALC} -axiom, and a signature \mathbf{S} , it is undecidable whether \mathcal{O} is safe for \mathbf{S} w.r.t. $\mathcal{L} = \mathcal{ALCO}$.

DOCHER SENSE

REASONING PROBLEMS

Not	Input	Task				
	•					
T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	0			
T2	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}	8			
Т3	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}				
T4	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S and \mathcal{L}				
T3m*	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	6			
T4m*	$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	8			
*varianta [all / asma / union of minimal modulos						

*variants=[all / some / union of] minimal modules

THEOREM

Given an ontology \mathcal{O} consisting only of a single \mathcal{ALC} -axiom, and a signature **S**, it is undecidable whether \mathcal{O} is safe for **S** w.r.t. $\mathcal{L} = \mathcal{ALCO}$.

Corollary: Then so are the tasks T2 and T4m*

3 1 4 3 1

REASONING PROBLEMS

Input	Task	
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	8
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Check if \mathcal{O} is safe for S w.r.t. \mathcal{L}	6
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	?
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S and \mathcal{L}	?
$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	6
$\mathcal{O}, \mathbf{S}, \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	8
	0, 0', L 0, S , L 0, 0', L 0, S , L 0, 0', L	InputTask $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Check if \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Check if \mathcal{O} is safe for \mathbf{S} w.r.t. \mathcal{L} $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Extract a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. \mathbf{S} and \mathcal{L} $\mathcal{O}, \mathcal{O}', \mathcal{L}$ Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L} $\mathcal{O}, \mathbf{S}, \mathcal{L}$ Extract minimal module(s) in \mathcal{O}' w.r.t. \mathbf{S} and \mathcal{L}

*variants=[all / some / union of] minimal modules

How to obtain a practical solution for T3 and T4?

■▶ ▲ ■▶ ■ ■ ■ ● 9 Q @

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology \mathcal{O} is safe for a signature **S** if for every interpretation \mathcal{I} there exists a model \mathcal{J} of \mathcal{O} that coincides with \mathcal{I} on **S**:

$$\forall \, \mathcal{I} \, \exists \, \mathcal{J} \models \mathcal{O} : \, \mathcal{I}|_{S} = \mathcal{J}|_{S}$$

The main idea:

■ To prove that O is safe for S it is sufficient to extend any interpretation I of symbols from S to a model of O

물 이 제 물 이 물 날

A SUFFICIENT CONDITION FOR SAFETY

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology O is safe for a signature **S** if for every interpretation \mathcal{I} there exists a model \mathcal{J} of \mathcal{O} that coincides with \mathcal{I} on S:

$$\forall \, \mathcal{I} \, \exists \, \mathcal{J} \models \mathcal{O} : \, \mathcal{I}|_{S} = \mathcal{J}|_{S}$$

The main idea:

- To prove that O is safe for S it is sufficient to extend any interpretation \mathcal{I} of symbols from S to a model of \mathcal{O}
- Let us try to extend \mathcal{I} by interpreting every new symbol as the empty set

DOCHER SENSE

A SUFFICIENT CONDITION FOR SAFETY

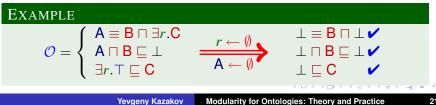
THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology O is safe for a signature **S** if for every interpretation \mathcal{I} there exists a model \mathcal{J} of \mathcal{O} that coincides with \mathcal{I} on **S**:

$$\forall \, \mathcal{I} \, \exists \, \mathcal{J} \models \mathcal{O} : \, \mathcal{I}|_{S} = \mathcal{J}|_{S}$$

The main idea:

- To prove that \mathcal{O} is safe for **S** it is sufficient to extend any interpretation \mathcal{I} of symbols from S to a model of \mathcal{O}
- Let us try to extend \mathcal{I} by interpreting every new symbol as the empty set



LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology \mathcal{O} is local w.r.t. **S** if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interprets all concept and role names not in **S** as the empty set.

A B A A B A B B B A A A

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology \mathcal{O} is local w.r.t. **S** if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interprets all concept and role names not in **S** as the empty set.

+ If every \mathcal{O} is local w.r.t. S then \mathcal{O} is safe for S:

DOCHER SENSE

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology \mathcal{O} is local w.r.t. **S** if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interprets all concept and role names not in **S** as the empty set.

- + If every \mathcal{O} is local w.r.t. **S** then \mathcal{O} is safe for **S**:
- + Checking locality can be done using any standard DL-reasoner.

B A B A B B B A A A

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology \mathcal{O} is local w.r.t. **S** if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interprets all concept and role names **not** in **S** as the empty set.

- + If every \mathcal{O} is local w.r.t. **S** then \mathcal{O} is safe for **S**:
- + Checking locality can be done using any standard DL-reasoner.
- + There is a sufficient syntactical condition for locality which can be verified in polynomial time.

▲ ■ ▶ ▲ ■ ▶ ▲ ■ ■ ● 9 Q @

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology \mathcal{O} is local w.r.t. **S** if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interprets all concept and role names **not** in **S** as the empty set.

- + If every \mathcal{O} is local w.r.t. S then \mathcal{O} is safe for S:
- + Checking locality can be done using any standard DL-reasoner.
- + There is a sufficient syntactical condition for locality which can be verified in polynomial time.

SYNTACTIC LOCALITY

$$C^{\emptyset} ::= \mathsf{A}^{\emptyset} \mid C^{\emptyset} \sqcap \mathbf{C} \mid C^{\emptyset} \sqcup C^{\emptyset} \mid \neg C^{\Delta} \mid \exists r^{\emptyset} \cdot \mathbf{C} \mid \exists r \cdot C^{\emptyset}$$
$$C^{\Delta} ::= C^{\Delta} \sqcup \mathbf{C} \mid C^{\Delta} \sqcap C^{\Delta} \mid \neg C^{\emptyset} \mid \forall r^{\emptyset} \cdot \mathbf{C} \mid \forall r \cdot C^{\Delta}$$
$$Ax_synt_local ::= C^{\emptyset} \sqsubseteq \mathbf{C} \mid \mathbf{C} \sqsubseteq C^{\Delta}$$

A MODULE-EXTRACTION ALGORITHM BASED ON LOCALITY

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology \mathcal{O}'_1 is module in \mathcal{O}' w.r.t. a signature **S** if for every model \mathcal{I} of \mathcal{O}'_1 there exists a model \mathcal{J} of \mathcal{O}' that coincides with \mathcal{I} on **S**: $\forall \mathcal{I} \exists \mathcal{J} \models \mathcal{O} : \mathcal{I}|_{\mathbf{S}} = \mathcal{J}|_{\mathbf{S}}$

PROPOSITION (MODULES AND SAFETY)

If $\mathcal{O}' \setminus \mathcal{O}'_1$ is safe for $\mathbf{S} \cup \text{Sg}(\mathcal{O}'_1)$ then \mathcal{O}'_1 is a module in \mathcal{O}' for \mathbf{S} .

23/26

A MODULE-EXTRACTION ALGORITHM BASED ON LOCALITY

THEOREM (SUFFICIENT CONDITION, REMINDER)

An ontology \mathcal{O}'_1 is module in \mathcal{O}' w.r.t. a signature **S** if for every model \mathcal{I} of \mathcal{O}'_1 there exists a model \mathcal{J} of \mathcal{O}' that coincides with \mathcal{I} on **S**: $\forall \mathcal{I} \exists \mathcal{J} \models \mathcal{O} : \mathcal{I}|_{\mathbf{S}} = \mathcal{J}|_{\mathbf{S}}$

PROPOSITION (MODULES AND SAFETY)

If $\mathcal{O}' \setminus \mathcal{O}'_1$ is safe for $\mathbf{S} \cup \text{Sg}(\mathcal{O}'_1)$ then \mathcal{O}'_1 is a module in \mathcal{O}' for \mathbf{S} .

Algorithm for extracting a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S:

- **1** Initialize \mathcal{O}'_1 to be an empty ontology: $\mathcal{O}'_1 := \emptyset$
- **2** Find an axiom $\alpha \in \mathcal{O}' \setminus \mathcal{O}'_1$ that is is local w.r.t. $\mathbb{S} \cup \operatorname{Sg}(\mathcal{O}'_1)$
- **3** Move α into \mathcal{O}'_1 and repeat until no other α left.

・ロト < 同ト < 目ト < 目ト < 目本 のへの

EMPERICAL EVALUATION

Ontology	# Atomic	c A1: Prompt-Factor		A2: Mod. in [CG'06]		A3: Locbased mod.	
	Concepts	Max.(%)	Avg.(%)	Max.(%)	Avg.(%)	Max.(%)	Avg.(%)
NCI	27772	87.6	75.84	55	30.8	0.8	0.08
SNOMED	255318	100	100	100	100	0.5	0.05
GO	22357	1	0.1	1	0.1	0.4	0.05
SUMO	869	100	100	100	100	2	0.09
GALEN-Small	2749	100	100	100	100	10	1.7
GALEN-Full	24089	100	100	100	100	29.8	3.5
SWEET	1816	96.4	88.7	83.3	51.5	1.9	0.1
DOLCE-Lite	499	100	100	100	100	37.3	24.6

[SK'04] H. Stuckenschmidt & M. Klein Structure-based partitioning of large class hierarchies. ISWC 2004

[CG'06] B. Cuenca Grau, B. Parsia, E. Sirin, & A. Kalyanpur. Modularity and Web Ontologies. KR 2006

CONTRIBUTIONS

- Formalization for the notions for safety and modules using logical notions of conservative extension
- Theoretical studies for the relevant tasks (decidability, complexity)
- Practical algorithms for extracting modules and safety checking with guarantied correctness of the results
- B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U.Sattler. A logical framework for modularity of ontologies. In Proc. of IJCAI 2007
- B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amout: Extracting modules from ontologies. In Proc. of WWW 2007
- B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular Reuse of Ontologies: Theory and Practice. JAIR 2008, to appear

OTHER LOCALITY CONDITIONS

Other locality conditions can be defined by choosing different ways to interpret the symbols that are not in **S**:

EXAMPLES AND COMPARISON OF DIFFERENT LOCALITIES

r ←	Ø	$\Delta\times\Delta$	id	Ø	$\Delta\times\Delta$	id	
$A \leftarrow$	Ø	Ø	Ø	Δ	Δ	Δ	
$A \equiv B \sqcap \exists r.C$	 Image: A start of the start of	1	✓	X	×	X	
A ⊓ C ⊑ ⊥	1	\checkmark	1	×	×	X	
$\exists r. \top \sqsubseteq A$	1	×	×	1	1	\checkmark	
Functional(r)	1	×	1	1	×	\checkmark	
<i>a</i> : A	X	×	×	1	1	\checkmark	
r(<i>a</i> , b)	×	\checkmark	×	×	1	X	
$\forall r. C \sqsubseteq \exists r. D$	X	×	X	X	×	×	