MODULARITY FOR ONTOLOGIES: FROM THEORY TO PRACTICE

Yevgeny Kazakov

(based on joint works with Bernardo Cuenca Grau, Ian Horrocks and Ulrike Sattler)

The University of Oxford

November 20, 2007

OUTLINE

1 BACKGROUND

2 MOTIVATION

3 THEORY

4 PRACTICE

- Ontologies are vocabularies of terms for specific subjects
 - drugs (NCI)
 - genes (GO)
 - human anatomy (Galen, SNoMed)
 - biological processes (BioPAX)
 - geography (Ordnance Survey)
 - wines (Wine)
 - pizzas (Pizzas)
 - tourism (Travel)
 -

Two types of axioms

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

- Two types of axioms
 - Terminalogical axiom [Schema]

 $Heart \equiv MuscularOrgan \sqcap \exists isPartOf.CirculatorySystem$

- Two types of axioms
 - Terminalogical axiom [Schema]
 - Assertions [Data]

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

The syntax

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

- The syntax
 - Atomic concepts [Classes]

```
Heart = MuscularOrgan □ ∃ isPartOf.CirculatorySystem

O_Id7894 : Heart
```


- The syntax
 - Atomic concepts [Classes]
 - Atomic roles [Properties]

Heart ≡ MuscularOrgan □ = (isPartOf). CirculatorySystem

- The syntax
 - Atomic concepts [Classes]
 - Atomic roles [Properties]
 - Individuals

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

- The syntax
 - Atomic concepts [Classes]
 - Atomic roles [Properties]
 - Individuals
 - Constructors

Heart Muscular Organ Spart Of. Circulatory System

O Id7894: Heart

The semantics

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}) \cdot^{\mathcal{I}}$
 - lacktriangle $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)

 $Heart \equiv Muscular Organ \ \sqcap \ \exists \, is Part Of. Circulatory System$

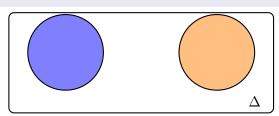
- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}} \cdot \mathcal{I})$
 - lacksquare $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
 - \blacksquare $\cdot^{\mathcal{I}}$ is an interpretation function

Heart =	MuscularOrgan	∃isPartOf.CirculatorvSvsten	n
i icaii =	iviusculai Oluali II		

- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $lack \Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
 - ^I is an interpretation function

Atomic concepts ⇒ sets

Heart ≡ MuscularOrgan ☐ ∃isPartOf.CirculatorySystem

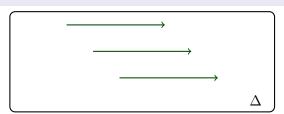


- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $lack \Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
 - ^I is an interpretation function

Atomic concepts ⇒ sets

Atomic roles ⇒ binary relations

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem



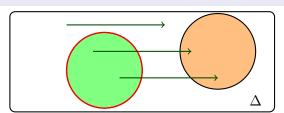
- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - lacksquare $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
 - ^I is an interpretation function

Atomic concepts ⇒ sets Atomic roles ⇒ binary relations Individuals ⇒ elements

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

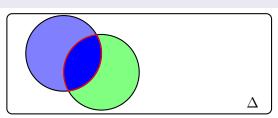
- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $lack \Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
 - Is an interpretation function
 - Constructors ⇒ set operators

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem



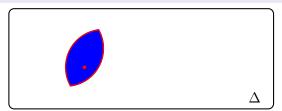
- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - lacksquare $\Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
 - Is an interpretation function
 - Constructors ⇒ set operators

Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem



- The semantics
 - Interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$
 - $lack \Delta^{\mathcal{I}}$ is an interpretation domain (non-empty set)
 - ^I is an interpretation function
 - Constructors ⇒ set operators
 - It is a model iff all axioms hold

Heart = MuscularOrgan □ ∃isPartOf.CirculatorySystem



A HIERARCHY OF ONTOLOGY LANGUAGES

Name	DL syntax	First-Order syntax	
intersection	$C_1 \sqcap C_2$	$C_1(x) \wedge C_2(x)$	
union	$C_1 \sqcup C_2$	$C_1(x) \vee C_2(x)$	$= \mathcal{A}$
complement	$\neg C$	$\neg C(x)$	\mathcal{L}
value restriction	∀ <i>r</i> . <i>C</i>	$\forall y.[r(x,y) \to C(y)]$	\mathcal{C}
existential restr.	∃ <i>r</i> . <i>C</i>	$\exists y.[r(x,y) \land C(y)]$	
concept assertion	i:C	C(i)	
role assertion	$(i_1,i_2):r$	$r(i_1,i_2)$	
transitivity	Trans(r)	$\forall xyz.[r(x,y) \land r(y,z) \rightarrow r(x,z)]$	$=\mathcal{S}$
functionality	Funct(r)	$\forall xyz.[r(x,y) \land r(x,z) \rightarrow y \simeq z]$	$+\mathcal{F}$
role inclusion	$r_1 \sqsubseteq r_2$	$\forall xy.[r_1(x,y) \rightarrow r_2(x,y)]$	$+\mathcal{H}$
inverse roles	$[\dots r^- \dots]$	$[\dots r(y,x)\dots]$	$+\mathcal{I}$
number restriction	$\leq n r$	$\exists^{\leq n} y. r(x, y)$	$+\mathcal{N}$
qualified nr. restr.	$\leq n r.C$	$\exists^{\leq n} y. [r(x, y) \land C(y)]$	$+\mathcal{Q}$
nominals	{ <i>i</i> }	$x \simeq i$	$+\mathcal{O}$

e.g. W3C standard OWL DL $\rightsquigarrow \mathcal{SHOIN}$

Heart \equiv MuscularOrgan \sqcap \exists isPartOf.CirculatorySystem MuscularOrgan \equiv Organ \sqcap \exists isPartOf.MuscularSystem CardiovascularOrgan \equiv Organ \sqcap \exists isPartOf.CirculatorySystem O_Id7894: Heart

Ontology reasoning = extracting implicit information

Heart \equiv MuscularOrgan \sqcap \exists isPartOf.CirculatorySystem MuscularOrgan \equiv Organ \sqcap \exists isPartOf.MuscularSystem CardiovascularOrgan \equiv Organ \sqcap \exists isPartOf.CirculatorySystem O_Id7894: Heart

- Ontology reasoning = extracting implicit information
 - Heart ⊆ CardiovascularOrgan


```
<u>Heart</u> ≡ <u>MuscularOrgan</u> □ ∃isPartOf.CirculatorySystem

MuscularOrgan ≡ Organ □ ∃isPartOf.MuscularSystem

CardiovascularOrgan ≡ Organ □ ∃isPartOf.CirculatorySystem

O_Id7894 : Heart
```

- Ontology reasoning = extracting implicit information
 - Heart CardiovascularOrgan


```
Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

MuscularOrgan ≡ Organ □ ∃isPartOf.MuscularSystem

CardiovascularOrgan ≡ Organ □ ∃isPartOf.CirculatorySystem

O_Id7894 : Heart
```

- Ontology reasoning = extracting implicit information
 - Heart CardiovascularOrgan


```
Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

MuscularOrgan ≡ Organ □ ∃isPartOf.MuscularSystem

CardiovascularOrgan ≡ Organ □ ∃isPartOf.CirculatorySystem

O_Id7894 : Heart
```

- Ontology reasoning = extracting implicit information
 - Heart ⊆ CardiovascularOrgan


```
\begin{aligned} & \text{Heart} \equiv \text{MuscularOrgan} \sqcap \exists is PartOf. Circulatory System} \\ & \text{MuscularOrgan} \equiv \text{Organ} \sqcap \exists is PartOf. Muscular System} \\ & \underline{\text{CardiovascularOrgan}} \equiv \underline{\text{Organ}} \sqcap \underline{\exists} is PartOf. Circulatory System} \\ & \underline{\text{O\_Id7894}} : \text{Heart} \end{aligned}
```

- Ontology reasoning = extracting implicit information
 - <u>Heart</u> <u> CardiovascularOrgan</u>


```
Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

MuscularOrgan ≡ Organ □ ∃isPartOf.MuscularSystem

CardiovascularOrgan ≡ Organ □ ∃isPartOf.CirculatorySystem

O_Id7894: Heart
```

- Ontology reasoning = extracting implicit information
 - Heart ⊆ CardiovascularOrgan
 - O_Id7894 : ∃isPartOf.(MuscularSystem □ CirculatorySystem)


```
Heart ≡ MuscularOrgan □ ∃isPartOf.CirculatorySystem

MuscularOrgan ≡ Organ □ ∃isPartOf.MuscularSystem

CardiovascularOrgan ≡ Organ □ ∃isPartOf.CirculatorySystem

O_Id7894 : Heart
```

- Ontology reasoning = extracting implicit information
 - Heart ⊆ CardiovascularOrgan
 - O_Id7894 : ∃isPartOf.(MuscularSystem □ CirculatorySystem)
- Standard reasoning tasks:


```
Heart \equiv MuscularOrgan \sqcap \existsisPartOf.CirculatorySystem MuscularOrgan \equiv Organ \sqcap \existsisPartOf.MuscularSystem CardiovascularOrgan \equiv Organ \sqcap \existsisPartOf.CirculatorySystem O_Id7894: Heart
```

- Ontology reasoning = extracting implicit information
 - Heart ⊆ CardiovascularOrgan
 - O_Id7894 : ∃isPartOf.(MuscularSystem □ CirculatorySystem)
- Standard reasoning tasks:
 - Classification:
 - compute all subsumptions A
 □ B between <u>named</u> classes


```
Heart \equiv MuscularOrgan \sqcap \existsisPartOf.CirculatorySystem MuscularOrgan \equiv Organ \sqcap \existsisPartOf.MuscularSystem CardiovascularOrgan \equiv Organ \sqcap \existsisPartOf.CirculatorySystem O_Id7894: Heart
```

- Ontology reasoning = extracting implicit information
 - Heart □ CardiovascularOrgan
 - $\blacksquare \big[\underbrace{O_Id7894} : \exists isPartOf.(MuscularSystem \sqcap CirculatorySystem) \\$
- Standard reasoning tasks:
 - Classification:
 - compute all subsumptions A
 □ B between named classes
 - Instance retrieval:
 - compute all (implicit) instances i of a class C.

Heart \equiv MuscularOrgan \sqcap \exists isPartOf.CirculatorySystem MuscularOrgan \equiv Organ \sqcap \exists isPartOf.MuscularSystem CardiovascularOrgan \equiv Organ \sqcap \exists isPartOf.CirculatorySystem O_Id7894: Heart

- Ontology reasoning = extracting implicit information
 - Heart ⊆ CardiovascularOrgan
 - $\qquad \qquad \textbf{O_Id7894}: \exists is PartOf. (Muscular System \sqcap Circulatory System) \\$
- Standard reasoning tasks:
 - Classification:
 - compute all subsumptions $A \sqsubseteq B$ between <u>named</u> classes
 - Instance retrieval:
 - compute all (implicit) instances i of a class C.
- Ontology reasoners: FaCT++, Pellet, Racer, KAON2, CEL,

OUTLINE

1 BACKGROUND

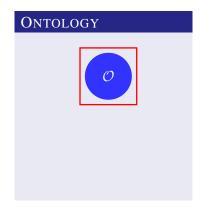
2 MOTIVATION

3 THEORY

4 PRACTICE

REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

Debugging:



REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

- Debugging:
 - Checking global consistency

REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

- Debugging:
 - Checking global consistency
 - ✓ Detecting unsatisfiable classes

REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

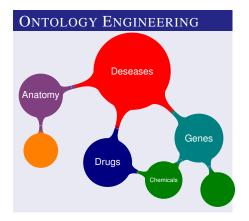
- Debugging:
 - Checking global consistency
 - Detecting unsatisfiable classes
 - Detecting unintended subsumptions

REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

- Debugging:
 - Checking global consistency
 - ✓ Detecting unsatisfiable classes
 - Detecting unintended subsumptions
- Not sufficient for large-scale ontology development Ontologies ~ Wikipedia

ONTOLOGY ENGINEERING AT THE LARGE SCALE

- Sharing of resources
- Collaborative development
- Continuous process
- The notion of modularity becomes apparent



ONTOLOGY ENGINEERING AT THE LARGE SCALE

- Sharing of resources
- Collaborative development
- Continuous process
- The notion of modularity becomes apparent
- Challenges:
 - Safe integration
 - 2 Partial reuse

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject =

EUProject □ ∃hasFocus.CysticFibrosis

GeneticDisorder Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject □ Project

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject =

EUProject □ ∃hasFocus. CysticFibrosis

GeneticDisorder Project =

Project □ ∃hasFecus.GeneticDisorder

EUProject □ Project

ONTOLOGY OF MEDICAL TERMS

```
GeneticDisorder ≡ . . . CysticFibrosis ≡ . . .
```

ONTOLOGY OF RESEARCH PROJECTS

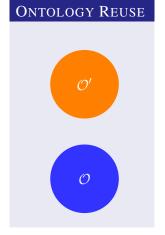
CysticFibrosis_EUProject =

EUProject □ ∃hasFocus.CysticFibrosis

GeneticDisorder_Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject □ Project



ONTOLOGY OF MEDICAL TERMS

```
GeneticDisorder ≡ . . . CysticFibrosis ≡ . . .
```

ONTOLOGY OF RESEARCH PROJECTS

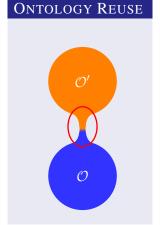
CysticFibrosis_EUProject =

EUProject □ ∃hasFocus.CysticFibrosis

GeneticDisorder_Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject □ Project



ONTOLOGY OF MEDICAL TERMS

```
GeneticDisorder ≡ . . . CysticFibrosis ≡ . . .
```

□ CysticFibrosis □ GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject ≡

EUProject □ ∃hasFocus.CysticFibrosis

GeneticDisorder_Project =

Project □∃hasFocus.GeneticDisorder

EUProject

□ Project

ONTOLOGY OF MEDICAL TERMS

GeneticDisorder ≡ . . . CysticFibrosis ≡ . . .

□ CysticFibrosis □ GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject ≡

EUProject □ hasFocus.CysticFibrosis

LOT TOJECTITS has rocus. Cystic ribrosi

 $GeneticDisorder_Project =$

Project hasFocus.GeneticDisorder

EUProject

□ Project

ONTOLOGY OF MEDICAL TERMS

GeneticDisorder ≡ . . . CysticFibrosis ≡ . . .

⊨ CysticFibrosis

GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject =

EUProject □ ∃hasFocus.CysticFibrosis

GeneticDisorder Project =

Project □ ∃hasFscus.GeneticDisorder

EUProject

□ Project

ONTOLOGY OF MEDICAL TERMS

```
GeneticDisorder ≡ . . . CysticFibrosis ≡ . . .
```

⊨ CysticFibrosis

GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject =

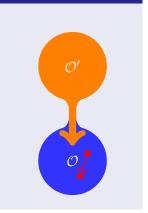
EUProject □ ∃hasFocus.CysticFibrosis

GeneticDisorder_Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject

□ Project



ONTOLOGY OF MEDICAL TERMS

```
GeneticDisorder ≡ . . . CysticFibrosis ≡ . . .
```

□ CysticFibrosis □ GeneticDisorder

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject =

EUProject □ ∃hasFocus.CysticFibrosis

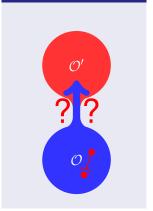
GeneticDisorder_Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject

□ Project

□ CysticFibrosis_EUProject □ GeneticDisorder_Project



PARTIAL ONTOLOGY REUSE

 Available ontologies are often big and contain lots of irrelevant information

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject =

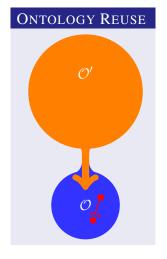
EUProject □ ∃hasFocus.CysticFibrosis

GeneticDisorder_Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject

□ Project



PARTIAL ONTOLOGY REUSE

- Available ontologies are often big and contain lots of irrelevant information
- A module is a part that "expresses completely" the reused vocabulary.

ONTOLOGY OF RESEARCH PROJECTS

CysticFibrosis_EUProject =

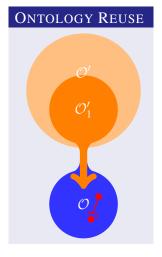
EUProject □ ∃hasFocus.CysticFibrosis

GeneticDisorder_Project =

Project □ ∃hasFocus.GeneticDisorder

EUProject

□ Project



OUTLINE

1 BACKGROUND

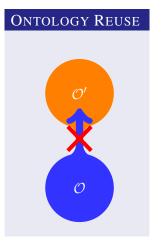
2 MOTIVATION

3 THEORY

4 PRACTICE

INFORMALLY

An ontology \mathcal{O} safely reuses ontology \mathcal{O}' if \mathcal{O} does not change the "meaning" of the reused symbols from \mathcal{O}' .



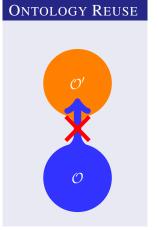
DEFINITION (1)

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have:

$$\mathcal{O}' \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \models \alpha$$

INFORMALLY

An ontology \mathcal{O} safely reuses ontology \mathcal{O}' if \mathcal{O} does not change the "meaning" of the reused symbols from \mathcal{O}' .



DEFINITION (1)

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have:

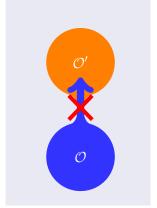
$$\mathcal{O}' \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \models \alpha$$

EXAMPLE (1)

$$\mathcal{O}' = \left\{ \begin{array}{l} \mathsf{A} \equiv \cdots \\ \mathsf{B} \equiv \cdots \end{array} \right. \not\models \mathsf{B} \sqsubseteq \mathsf{A}$$

$$\mathcal{O} = \left\{ \begin{array}{l} \mathsf{C}_1 \equiv \mathsf{A} \sqcap \mathsf{C}_2 \\ \mathsf{B} \sqsubseteq \mathsf{C}_1 \end{array} \right. \models \mathsf{B} \sqsubseteq \mathsf{A}$$

 $\mathcal{O}' \cup \mathcal{O}$ is **not** a conservative extension of \mathcal{O}' w.r.t. $\mathcal{L} = \mathcal{ALC}$.



DEFINITION (1)

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have:

$$\mathcal{O}' \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \models \alpha$$

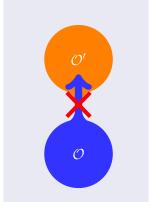
EXAMPLE (2)

$$\mathcal{O}' = \{ A \equiv \cdots \not \models \top \sqsubseteq A, A \sqsubseteq \bot \}$$

$$\not\models \top \sqsubseteq A, A \sqsubseteq \bot$$

$$\mathcal{O} = \left\{ \begin{array}{ll} a: (\mathsf{A} \sqcap \mathsf{B}) & \not\models \top \sqsubseteq \mathsf{A}, \ \mathsf{A} \sqsubseteq \bot \\ b: (\mathsf{A} \sqcap \neg \mathsf{B}) \end{array} \right.$$

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' wrt $\mathcal{L} = ACC$



DEFINITION (1)

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have:

$$\mathcal{O}' \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \models \alpha$$

$E_{XAMPLE}(2)$

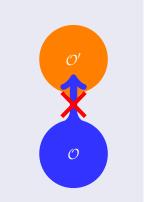
$$\mathcal{O}' = \{ A \equiv \cdots \}$$

$$\mathcal{O}' = \{ A \equiv \cdots \qquad \not\models \top \sqsubseteq A, A \sqsubseteq \bot \}$$

$$\mathcal{O} = \left\{ \begin{array}{l} a : (\mathsf{A} \sqcap \mathsf{B}) & \not\models \top \sqsubseteq \mathsf{A}, \ \mathsf{A} \sqsubseteq \bot \\ b : (\mathsf{A} \sqcap \neg \mathsf{B}) & \models |\mathsf{A}| \ge 2 \end{array} \right\}$$

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. $\mathcal{L} = \mathcal{ALC}$

The "meaning" of A has changed, but $\mathcal{L} = \mathcal{ALC}$ cannot "see" the change.



DEFINITION (2)

 $\mathcal{O}' \cup \mathcal{O}$ is a model conservative extension of \mathcal{O}' if every model of \mathcal{O}' can be expanded to a model of $\mathcal{O}' \cup \mathcal{O}$:

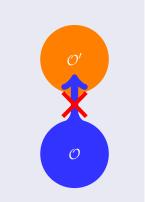
$$\forall \mathcal{I} \models \mathcal{O}' \exists \mathcal{J} \models \mathcal{O} : \mathcal{I}|_{\mathcal{O}'} = \mathcal{J}|_{\mathcal{O}'}$$

EXAMPLE (2)

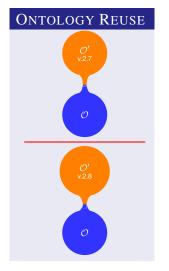
$$\mathcal{O}' = \left\{ \begin{array}{ll} \mathsf{A} \equiv \cdots & \not\models \top \sqsubseteq \mathsf{A}, \, \mathsf{A} \sqsubseteq \bot \\ \mathcal{O} = \left\{ \begin{array}{ll} a : (\mathsf{A} \sqcap \mathsf{B}) & \not\models \top \sqsubseteq \mathsf{A}, \, \mathsf{A} \sqsubseteq \bot \\ b : (\mathsf{A} \sqcap \neg \mathsf{B}) & \models |\mathsf{A}| \ge 2 \end{array} \right.$$

 $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. $\mathcal{L} = \mathcal{ALC}$, but not model conservative

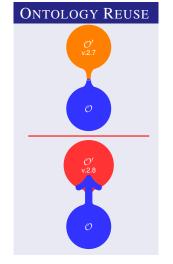
The "meaning" of A has changed, but $\mathcal{L} = \mathcal{ALC}$ cannot "see" the change.



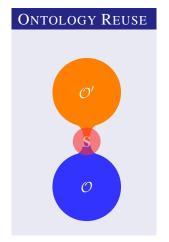
Ontologies evolve over time



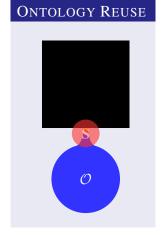
- Ontologies evolve over time
- If \mathcal{O} safely for \mathcal{O}' then it is expected to remain safe for new versions of \mathcal{O}' .



- Ontologies evolve over time
- If \mathcal{O} safely for \mathcal{O}' then it is expected to remain safe for new versions of \mathcal{O}' .
- The notion of safety can be formulated for the interface signature instead



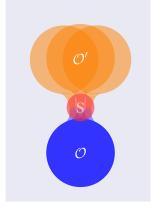
- Ontologies evolve over time
- If \mathcal{O} safely for \mathcal{O}' then it is expected to remain safe for new versions of \mathcal{O}' .
- The notion of safety can be formulated for the interface signature instead
- Thus treating \mathcal{O}' as a black box



SAFETY FOR A SIGNATURE

DEFINITION (SAFETY FOR A SIGNATURE)

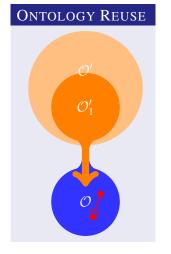
 \mathcal{O} is safe for a signature \mathbf{S} w.r.t. an ontology language \mathcal{L} if for every \mathcal{O}' formulated over \mathcal{L} with $\operatorname{Sg}(\mathcal{O}') \cap \operatorname{Sg}(\mathcal{O}) \subseteq \mathbf{S}$, we have that $\mathcal{O} \cup \mathcal{O}'$ is a conservative extension of \mathcal{O}' .



MODULE FOR AN ONTOLOGY

INFORMALLY

An ontology \mathcal{O}_1' is a module in ontology \mathcal{O}' for the importing ontology \mathcal{O} , if importing \mathcal{O}_1' into \mathcal{O} instead of \mathcal{O}' does not change the "meaning" of the symbols in \mathcal{O} .



MODULE FOR AN ONTOLOGY

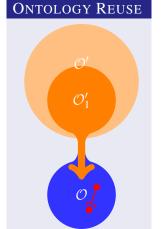
DEFINITION (MODULE FOR ONTOLOGY)

 \mathcal{O}_1' is a module in \mathcal{O}' w.r.t. \mathcal{O} and ontology language \mathcal{L} if for every axiom α over \mathcal{O} expressed in \mathcal{L} , we have:

$$\mathcal{O}'_1 \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \cup \mathcal{O} \models \alpha$$

INFORMALLY

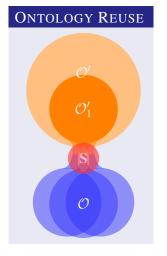
An ontology \mathcal{O}_1' is a module in ontology \mathcal{O}' for the importing ontology \mathcal{O} , if importing \mathcal{O}_1' into \mathcal{O} instead of \mathcal{O}' does not change the "meaning" of the symbols in \mathcal{O} .



MODULE FOR A SIGNATURE

DEFINITION (MODULE FOR SIGNATURE)

 \mathcal{O}_1' is a module in \mathcal{O}' w.r.t. \mathbf{S} and ontology language \mathcal{L} if for every ontology \mathcal{O} formulated over \mathcal{L} with $\mathrm{Sg}(\mathcal{O})\cap\mathrm{Sg}(\mathcal{O}')\subseteq\mathbf{S}$, we have that \mathcal{O}_1' is a module in \mathcal{O}' w.r.t. \mathcal{O} .



Not	Input	Task
T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}
T2	\mathcal{O} , \mathbb{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$

Not	Input	Task	
		Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	
T2	\mathcal{O} , \mathbf{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$	
		Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	
T4	\mathcal{O} , \mathbf{S} , \mathcal{L}	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	

Not	Input	Task
		Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}
T2	\mathcal{O} , \mathbb{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$
		Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}
T4	\mathcal{O} , \mathbf{S} , \mathcal{L}	Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathbb{S} and \mathcal{L}

^{*}variants=[all / some / union of] minimal modules

Not	Input	Task
		Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}
T2	\mathcal{O} , \mathbb{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$
		Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}
T4	\mathcal{O} , \mathbf{S} , \mathcal{L}	Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathbb{S} and \mathcal{L}

*variants=[all / some / union of] minimal modules

THEOREM

Checking if $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. \mathcal{L} is

- uncecidable for $\mathcal{L} = \mathcal{ALCQIO}$ [2].
- 2-ExpTime-complete for $\mathcal{L} = \mathcal{ALC}$ [1] and $\mathcal{L} = \mathcal{ALCQI}$ [2]
- *ExpTime-complete* for $\mathcal{L} = \mathcal{EL}$ [3]
- [1] Ghilardi, Lutz & Wolter, KR'06
- [2] Lutz, Walther & Wolter, IJCAI'07 [3] Lutz & Wolter, CADE'07

Not	Input	Task	
		Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	8
T2	\mathcal{O} , \mathbf{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$	
		Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	8
T4	\mathcal{O} , \mathbf{S} , \mathcal{L}	Extract minimal module(s)* in \mathcal{O}' w.r.t. S and $\mathcal L$	

*variants=[all / some / union of] minimal modules

THEOREM

Checking if $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. \mathcal{L} is

- uncecidable for $\mathcal{L} = \mathcal{ALCQIO}$ [2].
- 2-ExpTime-complete for $\mathcal{L} = \mathcal{ALC}$ [1] and $\mathcal{L} = \mathcal{ALCQI}$ [2]
- *ExpTime-complete* for $\mathcal{L} = \mathcal{EL}$ [3]

Corollary: Then so are the tasks T1 and T3

- [1] Ghilardi, Lutz & Wolter, KR'06
- [2] Lutz, Walther & Wolter, IJCAl'07 [3] Lutz & Wolter, CADE'07

REASONING PROBLEMS

Not	Input	Task	
		Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	8
T2	\mathcal{O} , \mathbf{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$	
		Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	8
T4	\mathcal{O} , \mathbf{S} , \mathcal{L}	Extract minimal module(s)* in \mathcal{O}' w.r.t. ${\bf S}$ and $\mathcal L$	

*variants=[all / some / union of] minimal modules

THEOREM ([3])

Given an \mathcal{ALC} -axiom α , and a signature \mathbb{S} , it is undecidable whether $\mathcal{O} = \{\alpha\}$ is safe for \mathbb{S} w.r.t. $\mathcal{L} = \mathcal{ALCO}$.

[3] Cuenca-Grau, Horrocks, Kazakov & Sattler, WWW-2007

REASONING PROBLEMS

Not	Input	Task	
		Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	8
T2	\mathcal{O} , \mathbb{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$	8
		Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	8
T4	\mathcal{O} , \mathbf{S} , \mathcal{L}	Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathbf{S} and \mathcal{L}	8

*variants=[all / some / union of] minimal modules

THEOREM ([3])

Given an \mathcal{ALC} -axiom α , and a signature \mathbb{S} , it is undecidable whether $\mathcal{O} = \{\alpha\}$ is safe for \mathbb{S} w.r.t. $\mathcal{L} = \mathcal{ALCO}$.

Corollary: Then so are the tasks T2 and T4

[3] Cuenca-Grau, Horrocks, Kazakov & Sattler, WWW-2007

REASONING PROBLEMS

Not	Input	Task	
		Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	8
T2	\mathcal{O} , \mathbb{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$	8
		Extract minimal module(s)* in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	8
T4	\mathcal{O} , \mathbf{S} , \mathcal{L}	Extract minimal module(s)* in \mathcal{O}' w.r.t. S and $\mathcal L$	8

*variants=[all / some / union of] minimal modules

OPEN PROBLEMS

Is safety for a signature decidable for $\mathcal{L} = \mathcal{ALC}$? $\mathcal{L} = \mathcal{EL}$? If yes, what is the complexity?

OUTLINE

1 BACKGROUND

2 MOTIVATION

3 THEORY

4 PRACTICE

REASONING PROBLEMS: A PRAGMATIC APPROACH

Not	Input	Task	
T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check whether \mathcal{O} is safe for \mathcal{O}' w.r.t. \mathcal{L}	8
T2	\mathcal{O} , \mathbb{S} , \mathcal{L}	Check whether $\mathcal O$ is safe for $\mathbf S$ w.r.t. $\mathcal L$	8
T3	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	8
T4	\mathcal{O} , \mathbb{S} , \mathcal{L}	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	8

REASONING PROBLEMS: A PRAGMATIC APPROACH

		Task "sufficiently"	
T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check whether \mathcal{O} is vsafe for \mathcal{O}' w.r.t. \mathcal{L}	8
		Check whether $\mathcal O$ is safe for $\mathbb S$ w.r.t. $\mathcal L$	8
		Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	
T4	\mathcal{O} , \mathbb{S} , \mathcal{L}	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	8

Develop practical sufficient conditions for safety

REASONING PROBLEMS: A PRAGMATIC APPROACH

		Task "sufficiently"	
T1	$\mathcal{O}, \mathcal{O}', \mathcal{L}$	Check whether \mathcal{O} is value for \mathcal{O}' w.r.t. \mathcal{L}	8
		Check whether $\mathcal O$ is vale for $\mathbf S$ w.r.t. $\mathcal L$	8
		Extract minimal module(s) in \mathcal{O}' w.r.t. \mathcal{O} and \mathcal{L}	8
T4	\mathcal{O} , \mathbf{S} , \mathcal{L}	Extract minimal module(s) in \mathcal{O}' w.r.t. S and \mathcal{L}	8

- small
- Develop practical sufficient conditions for safety
- Develop algorithms for extracting reasonably small but not necessarily minimal modules

A SUFFICIENT CONDITION FOR SAFETY

THEOREM (SUFFICIENT CONDITION)

An ontology \mathcal{O} is safe for a signature \mathbb{S} if for every interpretation \mathcal{I} there exists a model \mathcal{J} of \mathcal{O} that coincides with \mathcal{I} on \mathbb{S} :

$$\forall \, \mathcal{I} \, \exists \, \mathcal{J} \models \mathcal{O} : \, \mathcal{I}|_{\mathbf{S}} = \mathcal{J}|_{\mathbf{S}}$$

The main idea:

■ To prove that O is safe for S it is sufficient to extend any interpretation I of symbols from S to a model of O

A SUFFICIENT CONDITION FOR SAFETY

THEOREM (SUFFICIENT CONDITION)

An ontology \mathcal{O} is safe for a signature \mathbb{S} if for every interpretation \mathcal{I} there exists a model \mathcal{J} of \mathcal{O} that coincides with \mathcal{I} on \mathbb{S} :

$$\forall \, \mathcal{I} \, \exists \, \mathcal{J} \models \mathcal{O} : \, \mathcal{I}|_{\mathbf{S}} = \mathcal{J}|_{\mathbf{S}}$$

The main idea:

- To prove that O is safe for S it is sufficient to extend any interpretation I of symbols from S to a model of O
- We try to interpret every new symbol as the empty set

A SUFFICIENT CONDITION FOR SAFETY

THEOREM (SUFFICIENT CONDITION)

An ontology \mathcal{O} is safe for a signature \mathbb{S} if for every interpretation \mathcal{I} there exists a model \mathcal{J} of \mathcal{O} that coincides with \mathcal{I} on \mathbb{S} :

$$\forall \ \mathcal{I} \ \exists \ \mathcal{J} \models \mathcal{O} : \ \mathcal{I}|_{\mathbf{S}} = \mathcal{J}|_{\mathbf{S}}$$

The main idea:

- To prove that O is safe for S it is sufficient to extend any interpretation I of symbols from S to a model of O
- We try to interpret every new symbol as the empty set

EXAMPLE

$$\mathcal{O} = \left\{ \begin{array}{l} \mathsf{A} \equiv \mathsf{B} \sqcap \exists r.\mathsf{C} \\ \mathsf{A} \sqcap \mathsf{B} \sqsubseteq \bot \\ \exists r.\top \sqsubseteq \mathsf{C} \end{array} \right.$$

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology \mathcal{O} is local w.r.t. \mathbb{S} if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interprets all concept and role names not in \mathbb{S} as the empty set.

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology \mathcal{O} is local w.r.t. \mathbb{S} if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interprets all concept and role names not in \mathbb{S} as the empty set.

✓ If O is local w.r.t. S then O is safe for S:

LOCALITY

DEFINITION (LOCALITY FOR ONTOLOGY LANGUAGES)

An ontology \mathcal{O} is local w.r.t. \mathbb{S} if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interprets all concept and role names not in \mathbb{S} as the empty set.

- ✓ If O is local w.r.t. S then O is safe for S:
- Can be verified using any DL-reasoner.

PROPOSITION (MODULES AND SAFETY)

If $\mathcal{O}' \setminus \mathcal{O}'_1$ is safe for $S \cup Sg(\mathcal{O}'_1)$ then \mathcal{O}'_1 is a module in \mathcal{O}' for S.

Proposition (Modules and Safety)

If $\mathcal{O}' \setminus \mathcal{O}'_1$ is safe for $\mathbb{S} \cup \operatorname{Sg}(\mathcal{O}'_1)$ then \mathcal{O}'_1 is a module in \mathcal{O}' for \mathbb{S} .

EXTRACTING MODULES

Given: \mathcal{O}' and \mathbb{S}

Compute: a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S

- Initialize $\mathcal{O}'_1 := \emptyset$
- Find $\alpha \in \mathcal{O}' \setminus \mathcal{O}'_1$ such that α is not local w.r.t. $S \cup Sg(\mathcal{O}'_1)$
- 3 Move α into \mathcal{O}'_1
- Repeat until fixpoint

Proposition (Modules and Safety)

If $\mathcal{O}' \setminus \mathcal{O}'_1$ is safe for $\mathbb{S} \cup \operatorname{Sg}(\mathcal{O}'_1)$ then \mathcal{O}'_1 is a module in \mathcal{O}' for \mathbb{S} .

EXTRACTING MODULES

Given: \mathcal{O}' and \mathbb{S}

Compute: a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S

- Initialize $\mathcal{O}'_1 := \emptyset$
- Find $\alpha \in \mathcal{O}' \setminus \mathcal{O}'_1$ such that α is not local w.r.t. $S \cup Sg(\mathcal{O}'_1)$
- 3 Move α into \mathcal{O}'_1
- Repeat until fixpoint



Proposition (Modules and Safety)

If $\mathcal{O}' \setminus \mathcal{O}'_1$ is safe for $\mathbb{S} \cup \operatorname{Sg}(\mathcal{O}'_1)$ then \mathcal{O}'_1 is a module in \mathcal{O}' for \mathbb{S} .

EXTRACTING MODULES

Given: \mathcal{O}' and \mathbb{S}

Compute: a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S

- Initialize $\mathcal{O}'_1 := \emptyset$
- Find $\alpha \in \mathcal{O}' \setminus \mathcal{O}'_1$ such that α is not local w.r.t. $S \cup Sg(\mathcal{O}'_1)$
- 3 Move α into \mathcal{O}'_1
- Repeat until fixpoint

Proposition (Modules and Safety)

If $\mathcal{O}' \setminus \mathcal{O}'_1$ is safe for $\mathbb{S} \cup \operatorname{Sg}(\mathcal{O}'_1)$ then \mathcal{O}'_1 is a module in \mathcal{O}' for \mathbb{S} .

EXTRACTING MODULES

Given: \mathcal{O}' and \mathbb{S}

Compute: a module \mathcal{O}'_1 in \mathcal{O}' w.r.t. S

- Initialize $\mathcal{O}'_1 := \emptyset$
- **2** Find $\alpha \in \mathcal{O}' \setminus \mathcal{O}'_1$ such that α is not local w.r.t. $\mathbf{S} \cup \operatorname{Sg}(\mathcal{O}'_1)$
- 3 Move α into \mathcal{O}'_1
- Repeat until fixpoint

EMPIRICAL RESULTS

Ontology	# Atomic	A1: Prompt-Factor [1]		A2: Mod. in [2]		A3: Locbased mod.	
	Concepts	Max.(%)	Avg.(%)	Max.(%)	Avg.(%)	Max.(%)	Avg.(%)
NCI	27772	87.6	75.84	55	30.8	0.8	0.08
SNOMED	255318	100	100	100	100 0.5		0.05
GO	22357	1	0.1	1	0.1	0.4	0.05
SUMO	869	100	100	100	100	2	0.09
GALEN-Small	2749	100	100	100	100	10	1.7
GALEN-Full	24089	100	100	100	100	29.8	3.5
SWEET	1816	96.4	88.7	83.3	51.5	1.9	0.1
DOLCE-Lite	499	100	100	100	100	37.3	24.6

- [1] H. Stuckenschmidt & M. Klein Structure-based partitioning of large class hierarchies. ISWC 2004
- [2] B. Cuenca Grau, B. Parsia, E. Sirin, & A. Kalyanpur. Modularity and Web Ontologies. KR 2006

OUR CONTRIBUTIONS

- Formalization for the notions for safety and modules using conservative extension
- Theoretical studies for the relevant tasks (decidability, complexity)
- Practical algorithms for extracting modules and safety checking with guarantied correctness of the results
- B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U.Sattler. A logical framework for modularity of ontologies. In Proc. of IJCAI 2007
- 2 B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amout: Extracting modules from ontologies. In Proc. of WWW 2007
- B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Modular Reuse of Ontologies: Theory and Practice. JAIR 2008

OTHER LOCALITY CONDITIONS

Other locality conditions can be defined by choosing different ways to interpret the symbols that are not in S:

EXAMPLES AND COMPARISON OF DIFFERENT LOCALITIES								
r ←	Ø	$\Delta \times \Delta$	id	Ø	$\Delta \times \Delta$	id		
$A \leftarrow$	Ø	Ø	Ø	Δ	Δ	Δ		
$A \equiv B \sqcap \exists r.C$	1	✓	1	X	X	X		
$A \sqcap C \sqsubseteq \bot$	1	✓	1	X	X	X		
$\exists r. \top \sqsubseteq A$	1	X	X	1	✓	✓		
Functional(r)	1	X	1	1	X	✓		
<i>a</i> : A	X	X	X	1	✓	✓		
r(<i>a</i> , b)	X	\checkmark	X	X	\checkmark	X		
$\forall r.C \sqsubseteq \exists r.D$	X	X	X	X	X	X		