
A RESOLUTION DECISION PROCEDURE FOR

SHOIQ

Yevgeny Kazakov and Boris Motik

The University of Manchester

August 20, 2006

SHOIQ IS A DESCRIPTION LOGIC!

a family language for knowledge representation:

HappyFather ≡ Human u (>2 hasChild) u
u ∀hasChild.(Famous t Rich)

Distinguished by:

Formal semantics (set-theoretic)
Decidability for key reasoning problems (satisfiability,
subsumption, instance)

Related to:

(Multi-) Modal Logics, Dynamic Logics
Fragments of First-Order Logic (guarded, two-variable)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 2/18

DESCRIPTION LOGICS:

a family language for knowledge representation:

HappyFather ≡ Human u (>2 hasChild) u
u ∀hasChild.(Famous t Rich)

Distinguished by:

Formal semantics (set-theoretic)
Decidability for key reasoning problems (satisfiability,
subsumption, instance)

Related to:

(Multi-) Modal Logics, Dynamic Logics
Fragments of First-Order Logic (guarded, two-variable)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 2/18

DESCRIPTION LOGICS:

a family language for knowledge representation:

HappyFather ≡ Human u (>2 hasChild) u
u ∀hasChild.(Famous t Rich)

Distinguished by:

Formal semantics (set-theoretic)
Decidability for key reasoning problems (satisfiability,
subsumption, instance)

Related to:

(Multi-) Modal Logics, Dynamic Logics
Fragments of First-Order Logic (guarded, two-variable)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 2/18

DESCRIPTION LOGICS:

a family language for knowledge representation:

HappyFather ≡ Human u (>2 hasChild) u
u ∀hasChild.(Famous t Rich)

Distinguished by:

Formal semantics (set-theoretic)
Decidability for key reasoning problems (satisfiability,
subsumption, instance)

Related to:

(Multi-) Modal Logics, Dynamic Logics
Fragments of First-Order Logic (guarded, two-variable)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 2/18

APPLICATION OF DESCRIPTION LOGICS

Databases (Schema Integration)
Ontologies (Knowledge Bases):

Rigorous description of terms in specific domains
(Anatomy, Food, Cars)
Access information by performing queries:

?-Car u ∃hasTransmittion.Automatic u
u ∃hasPart.(Engene u (>6 hasPart.Cylider))

Semantic Web:
Ontology Web Language OWL (W3C standard)
Annotation of enteries using “semantic” mark-up
Provide “the meaning” of entries

<owl:Class rdf:ID="http:
//www.ontology.com/US/states/WA">Washington</owl>

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 3/18

<owl:Class
rdf:ID="http://www.ontology.com/US/states/WA">Washington</owl>
rdf:ID="http://www.ontology.com/US/states/WA">Washington</owl>

WHAT IS IT ABOUT SHOIQ?

DL SHOIQ is a logical counterpart of OWL DL
Development of OWL DL-ontologies requires reasoning:

computation of class trees (Heart v Organ)
evaluation of queries (?-Car u . . .)

reasoning (OWL) = theorem proving (SHOIQ)
Reasoning in SHOIQ can be reduced to C2 (the two
variable fragment with counting)

C2 is decidable [Grädel et al., 1997]
C2 is NExpTime-compete [Pacholski et al., 2000],
[Pratt-Hartmann, 2005]
but these procedures are not practical (“guess-and-check”)

[Horrocks & Sattler, 2005] – the first (and the only up until
now) goal-directed procedure for SHOIQ
Now we can decide SHOIQ also by resolution!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 4/18

WHAT IS IT ABOUT SHOIQ?

DL SHOIQ is a logical counterpart of OWL DL
Development of OWL DL-ontologies requires reasoning:

computation of class trees (Heart v Organ)
evaluation of queries (?-Car u . . .)

reasoning (OWL) = theorem proving (SHOIQ)

Reasoning in SHOIQ can be reduced to C2 (the two
variable fragment with counting)

C2 is decidable [Grädel et al., 1997]
C2 is NExpTime-compete [Pacholski et al., 2000],
[Pratt-Hartmann, 2005]
but these procedures are not practical (“guess-and-check”)

[Horrocks & Sattler, 2005] – the first (and the only up until
now) goal-directed procedure for SHOIQ
Now we can decide SHOIQ also by resolution!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 4/18

WHAT IS IT ABOUT SHOIQ?

DL SHOIQ is a logical counterpart of OWL DL
Development of OWL DL-ontologies requires reasoning:

computation of class trees (Heart v Organ)
evaluation of queries (?-Car u . . .)

reasoning (OWL) = theorem proving (SHOIQ)
Reasoning in SHOIQ can be reduced to C2 (the two
variable fragment with counting)

C2 is decidable [Grädel et al., 1997]
C2 is NExpTime-compete [Pacholski et al., 2000],
[Pratt-Hartmann, 2005]

but these procedures are not practical (“guess-and-check”)

[Horrocks & Sattler, 2005] – the first (and the only up until
now) goal-directed procedure for SHOIQ
Now we can decide SHOIQ also by resolution!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 4/18

WHAT IS IT ABOUT SHOIQ?

DL SHOIQ is a logical counterpart of OWL DL
Development of OWL DL-ontologies requires reasoning:

computation of class trees (Heart v Organ)
evaluation of queries (?-Car u . . .)

reasoning (OWL) = theorem proving (SHOIQ)
Reasoning in SHOIQ can be reduced to C2 (the two
variable fragment with counting)

C2 is decidable [Grädel et al., 1997]
C2 is NExpTime-compete [Pacholski et al., 2000],
[Pratt-Hartmann, 2005]
but these procedures are not practical (“guess-and-check”)

[Horrocks & Sattler, 2005] – the first (and the only up until
now) goal-directed procedure for SHOIQ
Now we can decide SHOIQ also by resolution!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 4/18

WHAT IS IT ABOUT SHOIQ?

DL SHOIQ is a logical counterpart of OWL DL
Development of OWL DL-ontologies requires reasoning:

computation of class trees (Heart v Organ)
evaluation of queries (?-Car u . . .)

reasoning (OWL) = theorem proving (SHOIQ)
Reasoning in SHOIQ can be reduced to C2 (the two
variable fragment with counting)

C2 is decidable [Grädel et al., 1997]
C2 is NExpTime-compete [Pacholski et al., 2000],
[Pratt-Hartmann, 2005]
but these procedures are not practical (“guess-and-check”)

[Horrocks & Sattler, 2005] – the first (and the only up until
now) goal-directed procedure for SHOIQ

Now we can decide SHOIQ also by resolution!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 4/18

WHAT IS IT ABOUT SHOIQ?

DL SHOIQ is a logical counterpart of OWL DL
Development of OWL DL-ontologies requires reasoning:

computation of class trees (Heart v Organ)
evaluation of queries (?-Car u . . .)

reasoning (OWL) = theorem proving (SHOIQ)
Reasoning in SHOIQ can be reduced to C2 (the two
variable fragment with counting)

C2 is decidable [Grädel et al., 1997]
C2 is NExpTime-compete [Pacholski et al., 2000],
[Pratt-Hartmann, 2005]
but these procedures are not practical (“guess-and-check”)

[Horrocks & Sattler, 2005] – the first (and the only up until
now) goal-directed procedure for SHOIQ
Now we can decide SHOIQ also by resolution!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 4/18

WHY A RESOLUTION-BASED DECISION

PROCEDURE FOR SHOIQ?

different from the tableau-based approach

search for proofs vs. search for models

likely to behave differently for different types of problems:

Tableau is good for reasoning with large schema
(terminologies)
Resolution is useful for reasoning with large data
(assertions) [Hustadt, Motik & Sattler, 2004]

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 5/18

WHY A RESOLUTION-BASED DECISION

PROCEDURE FOR SHOIQ?

different from the tableau-based approach

search for proofs vs. search for models

likely to behave differently for different types of problems:

Tableau is good for reasoning with large schema
(terminologies)
Resolution is useful for reasoning with large data
(assertions) [Hustadt, Motik & Sattler, 2004]

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 5/18

WHY A RESOLUTION-BASED DECISION

PROCEDURE FOR SHOIQ?

different from the tableau-based approach

search for proofs vs. search for models

likely to behave differently for different types of problems:

Tableau is good for reasoning with large schema
(terminologies)
Resolution is useful for reasoning with large data
(assertions) [Hustadt, Motik & Sattler, 2004]

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 5/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SYNTAX

AXIOMS
Researcher ≡ Human u ∀produce.Paper

Researcher (Rob)

Basic building blocks of DLs:

Concept names

Role names

Individuals

Operators

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 6/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SYNTAX

AXIOMS
Researcher ≡ Human u ∀produce.Paper äTerminology

Researcher (Rob) äAssertions

Basic building blocks of DLs:

Concept names

Role names

Individuals

Operators

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 6/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SYNTAX

AXIOMS
Researcher ≡ Human u ∀produce.Paper äTerminology

Researcher (Rob) äAssertions

Basic building blocks of DLs:

Concept names

Role names

Individuals

Operators

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 6/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SYNTAX

AXIOMS
Researcher ≡ Human u ∀produce.Paper äTerminology

Researcher (Rob) äAssertions

Basic building blocks of DLs:

Concept names – sets: Researcher, Human, Paper

Role names

Individuals

Operators

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 6/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SYNTAX

AXIOMS
Researcher ≡ Human u ∀produce.Paper äTerminology

Researcher (Rob) äAssertions

Basic building blocks of DLs:

Concept names – sets: Researcher, Human, Paper

Role names – binary relations: produces

Individuals

Operators

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 6/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SYNTAX

AXIOMS
Researcher ≡ Human u ∀produce.Paper äTerminology

Researcher (Rob) äAssertions

Basic building blocks of DLs:

Concept names – sets: Researcher, Human, Paper

Role names – binary relations: produces

Individuals – constants: Rob

Operators

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 6/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SYNTAX

AXIOMS
Researcher ≡ Human u ∀produce.Paper äTerminology

Researcher (Rob) äAssertions

Basic building blocks of DLs:

Concept names – sets: Researcher, Human, Paper

Role names – binary relations: produces

Individuals – constants: Rob

Operators – logical constructors: C1 u C2, ∀r .C, A ≡ C

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 6/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SEMANTICS

AXIOMS
Researcher ≡ Human u ∀produces.Paper

Researcher (Rob)

Basic building blocks of DLs:

Concept names Researcher, Human, Paper

Role names produces

Individuals Rob

Operators C1 u C2, ∀r .C, A ≡ C

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 7/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SEMANTICS

AXIOMS
Researcher ≡ Human u ∀produces.Paper

Researcher (Rob)

Basic building blocks of DLs:

Concept names Researcher, Human, Paper
 unary atoms: Researcher(x), Human(x), Paper(x)
Role names produces

Individuals Rob

Operators C1 u C2, ∀r .C, A ≡ C

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 7/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SEMANTICS

AXIOMS
Researcher ≡ Human u ∀produces.Paper

Researcher (Rob)

Basic building blocks of DLs:

Concept names
 unary atoms: Researcher(x), Human(x), Paper(x)
Role names produces
 binary atoms: produces(x,y)
Individuals Rob

Operators C1 u C2, ∀r .C, A ≡ C

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 7/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SEMANTICS

AXIOMS
Researcher ≡ Human u ∀produces.Paper

Researcher (Rob)

Basic building blocks of DLs:

Concept names
 unary atoms: Researcher(x), Human(x), Paper(x)
Role names
 binary atoms: produces(x,y)
Individuals Rob
 constants: Rob
Operators C1 u C2, ∀r .C, A ≡ C

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 7/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SEMANTICS

AXIOMS
Researcher ≡ Human u ∀produces.Paper

Researcher (Rob)

Basic building blocks of DLs:

Concept names
 unary atoms: Researcher(x), Human(x), Paper(x)
Role names
 binary atoms: produces(x,y)
Individuals
 constants: Rob
Operators C1 u C2, ∀r .C, A ≡ C
 constructors: C1(x) ∧ C2(x), ∀y .[r(x , y)→C(y)],

∀x .[A(x) ≡ C(x)]

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 7/18

Description Logics and Ontologies DLs: Basics

DESCRIPTION LOGICS: SEMANTICS

AXIOMS
Researcher(x) ≡ Human(x) u ∀y .[produces(x , y) → Paper(y)]

Researcher (Rob)

Basic building blocks of DLs:

Concept names
 unary atoms: Researcher(x), Human(x), Paper(x)
Role names
 binary atoms: produces(x,y)
Individuals
 constants: Rob
Operators
 constructors: C1(x) ∧ C2(x), ∀y .[r(x , y)→C(y)],

∀x .[A(x) ≡ C(x)]

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 7/18

Description Logics and Ontologies DLs: Basics

HIERARCHY OF DLS

Basic Description Logic ALC: u,t,¬,∀r .C,∃r .C,v
 S

Transitive Roles: Transitive(r)

Role Hierarchies: r1 v r2 H

Inverse Roles: r2
− I

Qualified Number Restrictions: (>n r .C), (6n r .C) Q

= SHIQ

Nominals: {i} O

= SHOIQ

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 8/18

Description Logics and Ontologies DLs: Basics

HIERARCHY OF DLS

Basic Description Logic ALC: u,t,¬,∀r .C,∃r .C,v
 S

Transitive Roles: Transitive(r)

Role Hierarchies: r1 v r2 H

Inverse Roles: r2
− I

Qualified Number Restrictions: (>n r .C), (6n r .C) Q

= SHIQ

Nominals: {i} O

= SHOIQ

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 8/18

Description Logics and Ontologies DLs: Basics

HIERARCHY OF DLS

Basic Description Logic ALC: u,t,¬,∀r .C,∃r .C,v
 S

Transitive Roles: Transitive(r)

Role Hierarchies: r1 v r2 H

Inverse Roles: r2
− I

Qualified Number Restrictions: (>n r .C), (6n r .C) Q

= SHIQ

Nominals: {i} O

= SHOIQ

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 8/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n

C v {i1} t {i2} t · · · t {in} |C| ≤ n

C w {i1} t {i2} t · · · t {in} |C| ≥ n
{ip} u {iq} v ⊥, p < q

Large cardinality restrictions:

C0

C1

i |C0| ≥ 1
|C1| ≥ 2

C0 v {i}
C1 v (>1 r−.C0)
C2 v (>1 r−.C1)

· · ·
Cn v (>1 r−.Cn−1)

> v (62 r .>)

C0

C1

C2

i |C0| ≤ 1
|C1| ≤ 2
· · ·
|Cn| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n

C v {i1} t {i2} t · · · t {in} |C| ≤ n
C w {i1} t {i2} t · · · t {in} |C| ≥ n
{ip} u {iq} v ⊥, p < q

Large cardinality restrictions:

C0

C1

i |C0| ≥ 1
|C1| ≥ 2

C0 v {i}
C1 v (>1 r−.C0)
C2 v (>1 r−.C1)

· · ·
Cn v (>1 r−.Cn−1)

> v (62 r .>)

C0

C1

C2

i |C0| ≤ 1
|C1| ≤ 2
· · ·
|Cn| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n
Large cardinality restrictions:

C0 w {i}
C0 v (>2 r .C1)

C0

C1

i |C0| ≥ 1
|C1| ≥ 2

C0 v {i}
C1 v (>1 r−.C0)
C2 v (>1 r−.C1)

· · ·
Cn v (>1 r−.Cn−1)

> v (62 r .>)

C0

C1

C2

i |C0| ≤ 1
|C1| ≤ 2
· · ·
|Cn| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n
Large cardinality restrictions:

C0 w {i}
C0 v (>2 r .C1)
C1 v (>2 r .C2)
· · ·
Cn−1 v (>2 r .Cn)

C0

C1

C2

i |C0| ≥ 1
|C1| ≥ 2

C0 v {i}
C1 v (>1 r−.C0)
C2 v (>1 r−.C1)

· · ·
Cn v (>1 r−.Cn−1)

> v (62 r .>)

C0

C1

C2

i |C0| ≤ 1
|C1| ≤ 2
· · ·
|Cn| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n
Large cardinality restrictions:

C0 w {i}
C0 v (>2 r .C1)
C1 v (>2 r .C2)
· · ·
Cn−1 v (>2 r .Cn)

> v (61 r−.>)

C0

C1

C2

i |C0| ≥ 1
|C1| ≥ 2

C0 v {i}
C1 v (>1 r−.C0)
C2 v (>1 r−.C1)

· · ·
Cn v (>1 r−.Cn−1)

> v (62 r .>)

C0

C1

C2

i |C0| ≤ 1
|C1| ≤ 2
· · ·
|Cn| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n
Large cardinality restrictions: |C| ≥ 2n

C0 w {i}
C0 v (>2 r .C1)
C1 v (>2 r .C2)
· · ·
Cn−1 v (>2 r .Cn)

> v (61 r−.>)

C0

C1

C2

i |C0| ≥ 1
|C1| ≥ 2
· · ·
|Cn| ≥ 2n

C0 v {i}
C1 v (>1 r−.C0)
C2 v (>1 r−.C1)

· · ·
Cn v (>1 r−.Cn−1)

> v (62 r .>)

C0

C1

C2

i |C0| ≤ 1
|C1| ≤ 2
· · ·
|Cn| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n
Large cardinality restrictions: |C| ≥ 2n, |C| ≤ 2n

C0 w {i}
C0 v (>2 r .C1)
C1 v (>2 r .C2)
· · ·
Cn−1 v (>2 r .Cn)

> v (61 r−.>)

C0

C1

C2

i |C0| ≥ 1
|C1| ≥ 2
· · ·
|Cn| ≥ 2n

C0 v {i}
C1 v (>1 r−.C0)
C2 v (>1 r−.C1)

· · ·
Cn v (>1 r−.Cn−1)

> v (62 r .>)

C0

C1

C2

i |C0| ≤ 1
|C1| ≤ 2
· · ·
|Cn| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n
Large cardinality restrictions: |C| ≥ 2n, |C| ≤ 2n

C0 w {i}
C0 v (>2 r .C1)
C1 v (>2 r .C2)
· · ·
Cn−1 v (>2 r .Cn)

> v (61 r−.>)

C0

C1

C2

i |C0| ≥ 1
|C1| ≥ 2
· · ·
|Cn| ≥ 2n

C0 v {i}
C1 v (>1 r−.C0)
C2 v (>1 r−.C1)

· · ·
Cn v (>1 r−.Cn−1)

> v (62 r .>)

C0

C1

C2

ii |C0| ≤ 1
|C1| ≤ 2
· · ·
|Cn| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n
Large cardinality restrictions: |C| ≥ 2n, |C| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Description Logics and Ontologies SHOIQ

EXPRESSIVE POWER OF SHOIQ
Cardinality restrictions: |C| ≤ n, |C| ≥ n
Large cardinality restrictions: |C| ≥ 2n, |C| ≤ 2n

Huge cardinality restrictions: |C| ≥ 22n
, |C| ≤ 22n

Bn u · · · u B0 v {i}
> v (>1 r−.>)

> v (62 r .>)

B0 v ∀r .¬B0
¬B0 v ∀r . B0

Bi+1 u Bi v ∀r . Bi+1 – bits “count” over r
¬Bi+1 u Bi v ∀r .¬Bi+1

Bi+1 u ¬Bi v ∀r .[(¬Bi+1 u Bi) t (Bi+1 u ¬Bi)]
¬Bi+1 u ¬Bi v ∀r .[(Bi+1 u Bi) t (¬Bi+1 u ¬Bi)]

Bn u · · · u B1 u B0 = 0

Bn u · · · u B1 u ¬B0 = 1

Bn u · · · u ¬B1 u B0 = 2
. . .
= 2n

i

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 9/18

Resolution Decision Procedures

RESOLUTION-BASED PROCEDURES:
THE BASIC PRINCIPLES

Invented by Joyner Jr. (1976)
Allows one to use existing automated theorem provers
(SPASS, VAMPIRE) as decision procedures
The general idea is as follows:

1 Define a clause class for the target fragment
2 Show that this class is closed under inferences
3 Show the class is finite for a fixed signature

Many decision procedures are based on this principle:

clause classes E, S+, E+, etc. [Fermüller et al., 1993]
modal logics [Schmidt, 1997], [Hustadt, 1999],
fragments of first-order logic [Bachmair et al., 1993],
[Ganzinger & de Nivelle, 1999].

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 10/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow

Problematic situations:
Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow
Problematic situations:

EXAMPLE

A(c)
A v ∃r.A

 A(c) ¬A(x) ∨ A(f(x))

A(f(c))

A(f(f(c)))
· · ·

Problem: the depth grows

The reason: the selected literal is not the deepest one
Solution: resolve on the depest literal

Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow
Problematic situations:

EXAMPLE

A(c)
A v ∃r.A

 A(c) ¬A(x) ∨ A(f(x))

A(f(c))

A(f(f(c)))
· · ·

Problem: the depth grows
The reason: the selected literal is not the deepest one

Solution: resolve on the depest literal

Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow
Problematic situations:

EXAMPLE

A(c)
A v ∃r.A

 A(c) ¬A(x) ∨ A(f(x))

A(f(c))

A(f(f(c)))
· · ·

Problem: the depth grows
The reason: the selected literal is not the deepest one
Solution: resolve on the depest literal

Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow
Problematic situations:

EXAMPLE

A(c)
A v ∀R.A

 A(c) ¬A(x) ∨ ¬R(x , y) ∨ A(y)

¬R(c, y1) ∨ A(y1)

¬R(c, y1) ∨ ¬R(y1, y2) ∨ A(y2)
. . .

Problem: variables got duplicated

The reason: the unified expression does not contain all
variables of the clause
Solution: resolve on the expression with all variables

Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow
Problematic situations:

EXAMPLE

A(c)
A v ∀R.A

 A(c) ¬A(x) ∨ ¬R(x , y) ∨ A(y)

¬R(c, y1) ∨ A(y1)

¬R(c, y1) ∨ ¬R(y1, y2) ∨ A(y2)
. . .

Problem: variables got duplicated
The reason: the unified expression does not contain all
variables of the clause

Solution: resolve on the expression with all variables

Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow
Problematic situations:

EXAMPLE

A(c)
A v ∀R.A

 A(c) ¬A(x) ∨ ¬R(x , y) ∨ A(y)

¬R(c, y1) ∨ A(y1)

¬R(c, y1) ∨ ¬R(y1, y2) ∨ A(y2)
. . .

Problem: variables got duplicated
The reason: the unified expression does not contain all
variables of the clause
Solution: resolve on the expression with all variables

Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow
Problematic situations: depth or no. of variables grows
Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Resolution Decision Procedures

HOW TO TURN RESOLUTION INTO

A DECISION PROCEDURE?

Tweak the parameters of a prover (ordering and selection
function) so that the size of clauses does not grow
Problematic situations: depth or no. of variables grows
Decidability is typically a consequence that all expressions
in clauses are covering:

every functional term of an expression contains all variables

EXAMPLE
¬A(x) ∨ r(x , f(x , y)) term f(x , y) is covering
¬A(x) ∨ x ' c term c is not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 11/18

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

i

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i – not covering
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y) – not covering

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i ä

O v ∃r.O 2.¬O(x) ∨ r(x , f (x))
 3.¬O(x) ∨ O(f (x))

> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) äof the same form

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i ä

O v ∃r.O 2.¬O(x) ∨ r(x , f (x))
 3.¬O(x) ∨ O(f (x))

> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) äof the same form
. . . 8.¬O(x) ∨ x ' g(g(i)) äproduces deeper
. . . 9.¬O(x) ∨ x ' g(g(g(i))) äclauses

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i ä

O v ∃r.O 2.¬O(x) ∨ r(x , f (x))
 3.¬O(x) ∨ O(f (x))

> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) ä

add new: 8.¬O(x) ∨ i ' g(i) äconsequence of 1 and 7

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) follows from 1 and 8
8.¬O(x) ∨ i ' g(i) äconsequence of 1 and 7

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

REDUNDANCY FOR CLAUSES

A clause is redundant if it follows
from smaller clauses

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) follows from 1 and 8
larger than 1,

8.¬O(x) ∨ i ' g(i) ä

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

REDUNDANCY FOR CLAUSES

A clause is redundant if it follows
from smaller clauses

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) follows from 1 and 8
larger than 1,
but not larger than 8!

8.¬O(x) ∨ i ' g(i) ä

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

REDUNDANCY FOR CLAUSES

A clause is redundant if it follows
from smaller clauses

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

REDUNDANCY FOR CLAUSES

A clause is redundant if it follows
from smaller clauses

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) wait a bit. . .
OR[7; 3] : 8.¬O(x) ∨ f (x) ' g(i)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

REDUNDANCY FOR CLAUSES

A clause is redundant if it follows
from smaller clauses

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) wait a bit. . .
OR[7; 3] : 8.¬O(x) ∨ f (x) ' g(i)

add: 9.¬O(x) ∨ i ' g(i) äconsequence of 5 and 8

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

REDUNDANCY FOR CLAUSES

A clause is redundant if it follows
from smaller clauses

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) wait a bit. . .
OR[7; 3] : 8.¬O(x) ∨ f (x) ' g(i) follows from 5 and 9

larger than 5,
and larger than 9!

9.¬O(x) ∨ i ' g(i) äconsequence of 5 and 8

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

REDUNDANCY FOR CLAUSES

A clause is redundant if it follows
from smaller clauses

Deciding SHOIQ by Resolution

DIFFICULTIES WITH SHOIQ IN RESOLUTION

EXAMPLE

O v {i} 1.¬O(x) ∨ x ' i
O v ∃r.O 2.¬O(x) ∨ r(x , f (x))

 3.¬O(x) ∨ O(f (x))
> v 61 r−.> 4.¬r(x , y) ∨ x ' g(y)

OR[1; 3] : 5.¬O(x) ∨ f (x) ' i
OR[2; 4] : 6.¬O(x) ∨ x ' g(f (x))

OP[5; 6] : 7.¬O(x) ∨ x ' g(i) wait a bit. . .
OR[7; 3] : 8.¬O(x) ∨ f (x) ' g(i) remove!

9.¬O(x) ∨ i ' g(i) äconsequence of 5 and 8

The saturation procedure terminates!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 12/18

REDUNDANCY FOR CLAUSES

A clause is redundant if it follows
from smaller clauses

Deciding SHOIQ by Resolution

NOMINAL GENERATION

The idea is developed into a
new simplification rule that
introduces constants

the constants are reused when
the rule has been applied to
α(x) and f (x) before.

there is a second variant of
this rule for a different type of
clauses

NOMINAL GENERATION
α(x) ∨

∨n
i=1 f (x) ' ti

α(x) ∨
∨n

i=1 f (x) ' ci
α(x) ∨

∨n
j=1 ci ' tj
1 ≤ i ≤ n

where (i) ci are fresh constants for
ti and α

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 13/18

Deciding SHOIQ by Resolution

NOMINAL GENERATION

The idea is developed into a
new simplification rule that
introduces constants

the constants are reused when
the rule has been applied to
α(x) and f (x) before.

there is a second variant of
this rule for a different type of
clauses

NOMINAL GENERATION
α(x) ∨

∨n
i=1 f (x) ' ti

α(x) ∨
∨k

i=1 f (x) ' ci
α(x) ∨

∨n
j=1 ci ' tj
1 ≤ i ≤ k

where (i) ci are fresh constants for
ti and α , (ii) k=n for the first appli-
cation of rule for α(x) and f (x), oth-
erwise k and ci are reused

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 13/18

Deciding SHOIQ by Resolution

NOMINAL GENERATION

The idea is developed into a
new simplification rule that
introduces constants

the constants are reused when
the rule has been applied to
α(x) and f (x) before.

there is a second variant of
this rule for a different type of
clauses

NOMINAL GENERATION 1
α(x) ∨

∨n
i=1 f (x) ' ti

α(x) ∨
∨k

i=1 f (x) ' ci
α(x) ∨

∨n
j=1 ci ' tj
1 ≤ i ≤ k

where (i) ci are fresh constants for
ti and α , (ii) k=n for the first appli-
cation of rule for α(x) and f (x), oth-
erwise k and ci are reused

NOMINAL GENERATION 2
α(x) ∨

∨n
i=1 f (x) ' ti ∨

∨n
i=1 x ' ci

.

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 13/18

Deciding SHOIQ by Resolution

TERMINATION AND COMPLEXITY ANALYSIS

Every application of the rule
can increase the number of
constants by at most a
polynomial factor

There are at most
exponentially many
applications possible
(exponentially many pairs α(x)
and f (x))

Hence the procedure
terminates, with the upper
bound: 3EXPTIME

NOMINAL GENERATION
α(x) ∨

∨n
i=1 f (x) ' ti

α(x) ∨
∨k

i=1 f (x) ' ci
α(x) ∨

∨n
j=1 ci ' tj
1 ≤ i ≤ k

where (i) ci are fresh constants for
ti and α , (ii) k=n for the first appli-
cation of rule for α(x) and f (x), oth-
erwise k and ci are reused

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 14/18

Deciding SHOIQ by Resolution

TERMINATION AND COMPLEXITY ANALYSIS

Every application of the rule
can increase the number of
constants by at most a
polynomial factor

There are at most
exponentially many
applications possible
(exponentially many pairs α(x)
and f (x))

Hence the procedure
terminates, with the upper
bound: 3EXPTIME

NOMINAL GENERATION
α(x) ∨

∨n
i=1 f (x) ' ti

α(x) ∨
∨k

i=1 f (x) ' ci
α(x) ∨

∨n
j=1 ci ' tj
1 ≤ i ≤ k

where (i) ci are fresh constants for
ti and α , (ii) k=n for the first appli-
cation of rule for α(x) and f (x), oth-
erwise k and ci are reused

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 14/18

Deciding SHOIQ by Resolution

TERMINATION AND COMPLEXITY ANALYSIS

Every application of the rule
can increase the number of
constants by at most a
polynomial factor

There are at most
exponentially many
applications possible
(exponentially many pairs α(x)
and f (x))

Hence the procedure
terminates, with the upper
bound: 3EXPTIME

NOMINAL GENERATION
α(x) ∨

∨n
i=1 f (x) ' ti

α(x) ∨
∨k

i=1 f (x) ' ci
α(x) ∨

∨n
j=1 ci ' tj
1 ≤ i ≤ k

where (i) ci are fresh constants for
ti and α , (ii) k=n for the first appli-
cation of rule for α(x) and f (x), oth-
erwise k and ci are reused

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 14/18

Deciding SHOIQ by Resolution

WHY IS IT SO HARD?

In SHOIQ it is possible to express very large cardinality
restrictions like |C| ≤ 22n

, |D| ≥ 22m
.

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 15/18

Deciding SHOIQ by Resolution

WHY IS IT SO HARD?

In SHOIQ it is possible to express very large cardinality
restrictions like |C| ≤ 22n

, |D| ≥ 22m
.

Hence, it is possible to encode combinatorial constraints
involving very big numbers:

EXAMPLE

|A t B| ≤ 22n
, |A t C| ≥ 22m+k , |B t C| ≥ 22k

, |C| ≤ 2n

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 15/18

Deciding SHOIQ by Resolution

WHY IS IT SO HARD?

In SHOIQ it is possible to express very large cardinality
restrictions like |C| ≤ 22n

, |D| ≥ 22m
.

Hence, it is possible to encode combinatorial constraints
involving very big numbers

Such problems (in particular, the pigeon hole principle) are
known to be hard for resolution since it is not really capable
to deal with numbers

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 15/18

Conclusions

CONCLUSIONS

We have found a decision procedure for SHOIQ based on
basic superposition calculus which runs in 3ExpTime

High complexity is due to combination of:
nominals + number restrictions + inverse roles
The restriction of the procedure to simpler languages
(SHOIQ, ALC) behaves like procedures known before
hence it exhibits “pay as you go” behaviour
The restricted version for SHIQ has proved itself in
practice in system KAON2 1

No additional degree of non-determinism is introduced by
NOMINAL GENERATION rules
Future developments: Integration of algebraic reasoning
into resolution?

1http://www.kaon2.semanticweb.org

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 16/18

http://www.kaon2.semanticweb.org

Conclusions

Thank You!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 17/18

COMPARISON WITH THE TABLEAU PROCEDURE

Constants introduced by Nominal
Generation correspond (in some
way) to “nominal nodes”.
The exact number of different
constants is not guessed, but
equality constraints are generated
“Blocking” is native in resolution
by subsumption deletion
No “yo-yo” effect in resolution,
since deletion of clauses is
permanent

(A picture from the presentation by Horrocks & Sattler on
“A Tableau Decision Procedure for SHOIQ” [2005])

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ 18/18

	Description Logics and Ontologies
	DLs: Basics
	SHOIQ

	Resolution Decision Procedures
	Deciding SHOIQ by Resolution
	

	Conclusions
	

	Appendix

