

A RESOLUTION DECISION PROCEDURE FOR SHOIQ

Yevgeny Kazakov and Boris Motik

The University of Manchester

August 20, 2006

▲ロト ▲母ト ▲ヨト ▲ヨト 三国市 のへで

SHOIQ IS A DESCRIPTION LOGIC!

3

(4) (3) (4) (4) (4)

< 17 ▶

The University of Mancheste

DESCRIPTION LOGICS:

a family language for knowledge representation:

HappyFather \equiv Human \sqcap (\geq 2 hasChild) \sqcap \sqcap \forall hasChild.(Famous \sqcup Rich)

-

< 同 > < 回 > < 回 > <

DESCRIPTION LOGICS:

a family language for knowledge representation:

HappyFather \equiv Human \sqcap (\geq 2 hasChild) \sqcap \sqcap \forall hasChild.(Famous \sqcup Rich)

Distinguished by:

- Formal semantics (set-theoretic)
- Decidability for key reasoning problems (satisfiability, subsumption, instance)

DESCRIPTION LOGICS:

a family language for knowledge representation:

HappyFather \equiv Human \sqcap (\geq 2 hasChild) \sqcap \sqcap \forall hasChild.(Famous \sqcup Rich)

Distinguished by:

- Formal semantics (set-theoretic)
- Decidability for key reasoning problems (satisfiability, subsumption, instance)
- Related to:
 - (Multi-) Modal Logics, Dynamic Logics
 - Fragments of First-Order Logic (guarded, two-variable)

APPLICATION OF DESCRIPTION LOGICS

- Databases (Schema Integration)
- Ontologies (Knowledge Bases):
 - Rigorous description of terms in specific domains (Anatomy, Food, Cars)
 - Access information by performing queries:
- ?- Car □ ∃hasTransmittion.Automatic □ □ ∃hasPart.(Engene □ (≥ 6 hasPart.Cylider))
 - Semantic Web:
 - Ontology Web Language OWL (W3C standard)
 - Annotation of enteries using "semantic" mark-up
 - Provide "the meaning" of entries

<owl:Class rdf:ID="http:</pre>

//www.ontology.com/US/states/WA">Washington</owl>

지 문 지 문 문 문

MANCHESTER

★ E ► ★ E

213 DQC

- **DL** SHOIQ is a logical counterpart of OWL DL
- Development of *OWL DL*-ontologies requires reasoning:
 - computation of class trees (Heart ⊆ Organ)
 - evaluation of queries (?- Car □ ...)

MANCHESTER

The University of Mancheste

• reasoning (OWL) = theorem proving (SHOIQ)

- **DL** SHOIQ is a logical counterpart of OWL DL
- Development of *OWL DL*-ontologies requires reasoning:
 - computation of class trees (Heart ⊆ Organ)
 - evaluation of queries (?- Car □ ...)

MANCHESTER

The University of Mancheste

- reasoning (\mathcal{OWL}) = theorem proving (\mathcal{SHOIQ})
- Reasoning in SHOIQ can be reduced to C² (the two variable fragment with counting)
 - C² is decidable [Grädel et al., 1997]
 - C² is NExpTime-compete [Pacholski et al., 2000], [Pratt-Hartmann, 2005]

- **DL** SHOIQ is a logical counterpart of OWL DL
- Development of *OWL DL*-ontologies requires reasoning:
 - computation of class trees (Heart ⊆ Organ)
 - evaluation of queries (?- Car □ ...)

MANCHESTER

The University of Mancheste

- reasoning (OWL) = theorem proving (SHOIQ)
- Reasoning in SHOIQ can be reduced to C² (the two variable fragment with counting)
 - C² is decidable [Grädel et al., 1997]
 - C² is NExpTime-compete [Pacholski et al., 2000], [Pratt-Hartmann, 2005]
 - but these procedures are not practical ("guess-and-check")

- **DL** SHOIQ is a logical counterpart of OWL DL
- Development of *OWL DL*-ontologies requires reasoning:
 - computation of class trees (Heart ⊆ Organ)
 - evaluation of queries (?- Car □ ...)

MANCHESTER

The Universit

- reasoning (OWL) = theorem proving (SHOIQ)
- Reasoning in SHOIQ can be reduced to C² (the two variable fragment with counting)
 - C² is decidable [Grädel et al., 1997]
 - C² is NExpTime-compete [Pacholski et al., 2000], [Pratt-Hartmann, 2005]
 - but these procedures are not practical ("guess-and-check")
- [Horrocks & Sattler, 2005] the first (and the only up until now) goal-directed procedure for SHOIQ

- **DL** SHOIQ is a logical counterpart of OWL DL
- Development of *OWL DL*-ontologies requires reasoning:
 - computation of class trees (Heart ⊆ Organ)
 - evaluation of queries (?- Car □ ...)

MANCHESTER

The University of Mancheste

- reasoning (\mathcal{OWL}) = theorem proving (\mathcal{SHOIQ})
- Reasoning in SHOIQ can be reduced to C² (the two variable fragment with counting)
 - C² is decidable [Grädel et al., 1997]
 - C² is NExpTime-compete [Pacholski et al., 2000], [Pratt-Hartmann, 2005]
 - but these procedures are not practical ("guess-and-check")
- [Horrocks & Sattler, 2005] the first (and the only up until now) goal-directed procedure for SHOIQ
- Now we can decide *SHOTQ* also by resolution!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ

3 1 4 3

different from the tableau-based approach

MANCHESTER

The University of Manchester

search for proofs vs. search for models

Attraction WHY A RESOLUTION-BASED DECISION PROCEDURE FOR SHOIQ?

MANCHESTER

- different from the tableau-based approach
 - search for proofs vs. search for models
- likely to behave differently for different types of problems:
 - Tableau is good for reasoning with large schema (terminologies)
 - Resolution is useful for reasoning with large data (assertions) [Hustadt, Motik & Sattler, 2004]

DESCRIPTION LOGICS: SYNTAX

AXIOMS

The University of Manchester

Researcher \equiv Human $\sqcap \forall$ produce.Paper Researcher (Rob)

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ

315

3 1 4 3

DESCRIPTION LOGICS: SYNTAX

AXIOMS

The University of Manchester

Researcher ≡ Human □ ∀produce.Paper < Terminology Researcher (Rob) < Assertions

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ

315

< 同 > < 三 > < 三

DESCRIPTION LOGICS: SYNTAX

The University of Mancheste

Researcher \equiv Human $\sqcap \forall$ produce.Paper \blacktriangleleft Researcher (Rob)

TerminologyAssertions

Basic building blocks of DLs:

- Concept names
- Role names
- Individuals
- Operators

Basic building blocks of DLs:

Concept names – sets:

Researcher, Human, Paper

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

- Role names
- Individuals
- Operators

MANCHESTER

DESCRIPTION LOGICS: SYNTAX

Basic building blocks of DLs:

- Researcher, Human, Paper Concept names – sets:
- Role names binary relations:
 - Individuals
- Operators

produces

Operators

The University of Mancheste

The University of Mancheste

• Operators – logical constructors: $C_1 \sqcap C_2$, $\forall r.C$, $A \equiv C$

AXIOMS

Researcher ≡ Human ⊓ ∀produces.Paper Researcher (Rob)

- Basic building blocks of DLs:
 - Concept namesResearcher, Human, Paper• Role namesproduces• IndividualsRob• Operators $C_1 \sqcap C_2$, $\forall r.C$, $A \equiv C$

AXIOMS

Researcher \equiv Human $\sqcap \forall$ produces.Paper Researcher (Rob)

Basic building blocks of DLs:

 Concept names unary atoms: Role names 	Resea	Researcher, Hur rcher(x), Human(>	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Individuals			Rob
 Operators 	$C_1 \sqcap C_2$,	∀ <i>r</i> . <i>C</i> ,	$A \equiv C$

문 문

(4) (3) (4) (4) (4)

AXIOMS

Researcher ≡ Human ⊓ ∀produces.Paper Researcher (Rob)

Basic building blocks of DLs:

AXIOMS

Researcher \equiv Human $\sqcap \forall$ produces.Paper Researcher (Rob)

Basic building blocks of DLs:

 Concept names → unary atoms: Role names 	Researc	cher(x), Human(x), Paper(x)
 → binary atoms: Individuals 		pr	oduces(x,y) Rob
→ constants:			Rob
Operators	$C_1 \sqcap C_2$,	∀ <i>r</i> . <i>C</i> ,	$A \equiv C$

315

< 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > < 0 > <

AXIOMS

Researcher \equiv Human $\sqcap \forall$ produces.Paper Researcher (Rob)

Basic building blocks of DLs:

AXIOMS

The University of Mancheste

Researcher(x) \equiv Human(x) $\sqcap \forall y.[produces(x, y) \rightarrow Paper(y)]$ Researcher (Rob)

Basic building blocks of DLs:

• Concept names
$$\rightsquigarrow$$
 unary atoms:Researcher(x), Human(x), Paper(x)• Role names
 \rightsquigarrow binary atoms:produces(x,y)• Individuals
 \rightsquigarrow constants:produces(x,y)• Operators
 \rightsquigarrow constructors: $C_1(x) \land C_2(x), \quad \forall y . [r(x, y) \rightarrow C(y)], \\ \forall x . [A(x) \equiv C(x)]$

MANCHESTER

The University of Manchester

HIERARCHY OF DLS

- Basic Description Logic \mathcal{ALC} : $\Box, \Box, \neg, \forall r. C, \exists r. C, \sqsubseteq$ Transitive Roles: Transitive(r)

◆母 ▶ ◆ 臣 ▶ ★ 臣 ▶ 三日 → のへの

 $\mathbf{r}_1 \sqsubseteq \mathbf{r}_2$

 r_2^-

MANCHESTER.

The University of Manchester

HIERARCHY OF DLS

- Basic Description Logic *ALC*: □, □, ¬, ∀r.C, ∃r.C, ⊑
 Transitive Roles: Transitive(r)
- **Role Hierarchies:**
- Inverse Roles:
- Qualified Number Restrictions: $(\geq nr.C)$, $(\leq nr.C)$

= SHIQ

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

 \mathcal{H}

 \mathcal{I}

	MA	ANCHES 182
ie University Manchester		Basic
1 Jo		Tranc

ER

HIERARCHY	OF	DLS
-----------	----	-----

- Basic Description Logic *ALC*: □, □, ¬, ∀r.C, ∃r.C, ⊑
 Transitive Roles: Transitive(r)
 - Role Hierarchies: $r_1 \sqsubseteq r_2$ \mathcal{H}
- Inverse Roles: $r_2^- \mathcal{I}$
- Qualified Number Restrictions: $(\ge nr.C)$, $(\le nr.C)$

= SHIQ

0

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Nominals:

= *SH***O***IQ*

{i}

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ

EXPRESSIVE POWER OF SHOIQ

- Cardinality restrictions: $|C| \le n$
 - $C \sqsubseteq \{i_1\} \sqcup \{i_2\} \sqcup \cdots \sqcup \{i_n\}$ $|C| \le n$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Expressive Power of SHOIQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
 - $\begin{array}{l} C \sqsubseteq \{i_1\} \sqcup \{i_2\} \sqcup \cdots \sqcup \{i_n\} \\ C \sqsupseteq \{i_1\} \sqcup \{i_2\} \sqcup \cdots \sqcup \{i_n\} \\ \{i_p\} \sqcap \{i_q\} \sqsubseteq \bot, \quad p < q \end{array}$

MANCHESTER

SHOIQ

EXPRESSIVE POWER OF SHOTQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
- Large cardinality restrictions:
 - $\begin{array}{c} C_0 \sqsupseteq \{i\} \\ C_0 \sqsubseteq (\geqslant 2 \, r. \, C_1) \end{array} \qquad \begin{array}{c} i \bullet & C_0 \\ \bullet & C_1 \end{array} \qquad \begin{array}{c} |C_0| \ge 1 \\ |C_1| \ge 2 \end{array}$

The University of Manchester MANCHESTER 1824

< □> < E> < E> E| = の Q ()

SHOIQ

EXPRESSIVE POWER OF SHOTQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
- Large cardinality restrictions:

MANCHESTER 1824

The University of Manchester

SHOIQ

EXPRESSIVE POWER OF SHOTQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
- Large cardinality restrictions:

MANCHESTER

SHOIQ

EXPRESSIVE POWER OF SHOTQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
- Large cardinality restrictions: $|C| \ge 2^n$
 - $C_0 \supseteq \{i\}$ $C_0 \sqsubseteq (\ge 2r.C_1)$ $C_1 \sqsubseteq (\ge 2r.C_2)$... $C_{n-1} \sqsubseteq (\ge 2r.C_n)$ $\top \sqsubseteq (\le 1r^-.\top)$

$ C_0 C_1 $	\geq	1 2
 <i>C</i> _n	\geq	2 ⁿ

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ

MANCHESTER

EXPRESSIVE POWER OF SHOTQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
- Large cardinality restrictions: $|C| \ge 2^n$, $|C| \le 2^n$

MANCHESTER

EXPRESSIVE POWER OF SHOTQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
- Large cardinality restrictions: $|C| \ge 2^n$, $|C| \le 2^n$

MANCHESTER

EXPRESSIVE POWER OF SHOTQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
- Large cardinality restrictions: $|C| \ge 2^n$, $|C| \le 2^n$
- Huge cardinality restrictions: $|C| \ge 2^{2^n}$, $|C| \le 2^{2^n}$

MANCHESTER

SHOIQ

EXPRESSIVE POWER OF SHOTQ

- Cardinality restrictions: $|C| \le n$, $|C| \ge n$
- Large cardinality restrictions: $|C| \ge 2^n$, $|C| \le 2^n$
- Huge cardinality restrictions: $|C| \ge 2^{2^n}$, $|C| \le 2^{2^n}$

Invented by Joyner Jr. (1976)

MANCHESTER

The University of Mancheste

- Allows one to use existing automated theorem provers (SPASS, VAMPIRE) as decision procedures
- The general idea is as follows:
 - Define a clause class for the target fragment
 - 2 Show that this class is closed under inferences
 - Show the class is finite for a fixed signature

Many decision procedures are based on this principle:

- clause classes *E*, *S*⁺, *E*⁺, etc. [Fermüller et al., 1993]
- modal logics [Schmidt, 1997], [Hustadt, 1999],
- fragments of first-order logic [Bachmair et al., 1993], [Ganzinger & de Nivelle, 1999].

How to Turn Resolution Into A Decision Procedure?

Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

Problem: the depth grows

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

- Problem: the depth grows
- The reason: the selected literal is not the deepest one

EL SQA

(日本) (日本) (日本)

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

- Problem: the depth grows
- The reason: the selected literal is not the deepest one
- Solution: resolve on the depest literal

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

Problem: variables got duplicated

The Universit

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

EXAMPLE

- Problem: variables got duplicated
- The reason: the unified expression does not contain all variables of the clause

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

EXAMPLE

- Problem: variables got duplicated
- The reason: the unified expression does not contain all variables of the clause
- Solution: resolve on the expression with all variables

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations: depth or no. of variables grows
- Decidability is typically a consequence that all expressions in clauses are covering:

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations: depth or no. of variables grows
- Decidability is typically a consequence that all expressions in clauses are covering:
- every functional term of an expression contains all variables

EXAMPLE $\neg A(x) \lor r(x, f(x, y))$ term f(x, y) is covering $\neg A(x) \lor x \simeq c$ term c is not covering

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

EXAMPLE

$O \sqsubseteq \{i\}$	\rightsquigarrow
O ⊑ ∃r.O	\rightsquigarrow
	\rightsquigarrow
$\top \sqsubseteq \leq 1 r^{-}.\top$	\rightsquigarrow

1.
$$\neg O(x) \lor x \simeq i$$

2. $\neg O(x) \lor r(x, f(x))$
3. $\neg O(x) \lor O(f(x))$
4. $\neg r(x, y) \lor x \simeq g(y)$

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

EXAMPLE

$O \sqsubseteq \{i\}$	\rightsquigarrow
O ⊑ ∃r.O	\rightsquigarrow
	\rightsquigarrow
⊤ ⊑ ≼ 1 r⁻.⊤	\rightsquigarrow

1. $\neg O(x)$ ($x \simeq i$) – not covering 2. $\neg \overline{O(x)} \lor r(x, f(x))$ 3. $\neg O(x) \lor \overline{O(f(x))}$ 4. $\neg r(x, y)$ ($x \simeq g(y)$) – not covering

315

(4) (3) (4) (3)

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

DIFFIC

$O \sqsubseteq \{i\}$	\rightsquigarrow	1. $\neg O(x) \lor x \simeq i$
0 ⊑ ∃r.0	\rightsquigarrow	2. $\neg \overline{\mathbf{O}(x)} \lor \mathbf{r}(x, f(x))$
	\rightsquigarrow	$3. \neg O(x) \lor \overline{O(f(x))}$
$\top \sqsubseteq \leq 1 r^{-}. \top$	\rightsquigarrow	4. $\neg \mathbf{r}(x, y) \lor x \simeq \mathbf{g}(y)$

$$OR[1;3]: 5. \neg O(x) \lor \underline{f(x)} \simeq i$$

$$OR[2;4]: 6. \neg O(x) \lor x \simeq \underline{g(f(x))}$$

$$OP[5;6]: 7. \neg O(x) \lor x \simeq \underline{g(i)}$$

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

EXAMPLE

The University of Manchester

$O \sqsubseteq \{i\}$	\rightsquigarrow	1. $\neg O(x) \lor x \simeq i \blacktriangleleft$
O ⊑ ∃r.O	\rightsquigarrow	2. $\neg \overline{O(x)} \lor r(x, f(x))$
	\rightsquigarrow	3. $\neg O(x) \lor \overline{O(f(x))}$
$\top \sqsubseteq \leq 1 r^{-}. \top$	\rightsquigarrow	$4. \neg r(x, y) \lor \overline{x} \simeq \overline{g}(y)$

OR[1;3]: 5. $\neg O(x) \lor \underline{f(x)} \simeq i$ OR[2;4]: 6. $\neg O(x) \lor x \simeq \underline{g(f(x))}$ OP[5;6]: 7. $\neg O(x) \lor x \simeq \underline{g(i)} \blacktriangleleft$ of the same form

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

EXAMPLE

he University f Manchester

O ⊑ { <i>i</i> }	\rightsquigarrow	1. ¬O(<i>x</i>) ∨ <i>x</i> ≃ <i>i</i> ◀
0 ⊑ ∃r.0	\rightsquigarrow	2. $\neg \overline{O(x)} \lor r(x, f(x))$
	\rightsquigarrow	3. $\neg O(x) \lor \overline{O(f(x))}$
⊤ ⊑ ≼ 1 r⁻.⊤	\rightsquigarrow	4. $\neg r(x, y) \lor x \simeq g(y)$

 $OR[1;3]: 5. \neg O(x) \lor \underline{f(x)} \simeq i$ $OR[2;4]: 6. \neg O(x) \lor x \simeq \underline{g(f(x))}$ $OP[5;6]: 7. \neg \underline{O(x)} \lor x \simeq \underline{g(i)} \blacktriangleleft \text{ of the same form}$ $\dots 8. \neg \underline{O(x)} \lor x \simeq \underline{g(g(i))} \blacktriangleleft \text{ produces deeper}$ $\dots 9. \neg O(x) \lor x \simeq \underline{g(g(g(i)))} \blacktriangleleft \text{ clauses}$

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

EXAMPLE

he University f Manchester

O ⊑ { <i>i</i> }	\rightsquigarrow	1. $\neg O(x) \lor x \simeq i \blacktriangleleft$
O ⊑ ∃r.O	\rightsquigarrow	2. $\neg \overline{\mathcal{O}(x)} \lor r(x, f(x))$
	\rightsquigarrow	3. $\neg O(x) \lor \overline{O(f(x))}$
$\top \sqsubseteq \leq 1 r^{-}. \top$	\rightsquigarrow	$4. \neg r(x, y) \vee x \simeq g(y)$

OR[1;3]: 5. $\neg O(x) \lor \underline{f(x)} \simeq i$ OR[2;4]: 6. $\neg O(x) \lor \overline{x} \simeq \underline{g}(\underline{f(x)})$ OP[5;6]: 7. $\neg \underline{O(x)} \lor x \simeq \underline{g(i)} \blacktriangleleft$ add new: 8. $\neg \overline{O(x)} \lor i \simeq \underline{g(i)} \blacktriangleleft$ consequence of 1 and 7

DIFFICULTIES WITH SHOID in resolution

EXAMPLE $\mathbf{O} \sqsubseteq \{i\}$ \rightsquigarrow \rightsquigarrow 0 ⊑ ∃r.0 $\top \sqsubseteq \leq 1r^{-}. \top \rightsquigarrow$

from smaller clauses

 $OR[1;3]: 5. \neg O(x) \lor f(x) \simeq i$ $OR[2; 4] : 6. \neg O(x) \lor x \simeq g(f(x))$ $\mathsf{OP}[5; 6] : 7 \neg \mathsf{O}(x) \lor x \simeq g(i)$ $8.\neg O(x) \lor i \simeq q(i) \lt$ consequence of 1 and 7

follows from 1 and 8

A B K A B K

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

EXAMPLE

- $\begin{array}{cccc}
 0 \sqsubseteq \{i\} & & \rightsquigarrow \\
 0 \sqsubseteq \exists r.0 & & \rightsquigarrow \\
 & & & & & \\
 \top \sqsubseteq \leqslant \mathbf{1} r^-.\top & & & & \\
 \end{array}$
- 1. $\neg O(x) \lor x \simeq i$ REDUNDANCY FOR CLAUSES

A clause is redundant if it follows from smaller clauses

 $OR[1;3]: 5. \neg O(x) \lor \underline{f(x)} \simeq i$ $OR[2;4]: 6. \neg O(x) \lor x \simeq \underline{g(f(x))}$ $OP[5;6]: 7. \neg \underline{O(x)} \lor x \simeq \underline{g(i)}$

follows from 1 and 8 larger than 1,

8. $\neg \underline{O(x)} \lor i \simeq g(i) \blacktriangleleft$

DIFFICULTIES WITH SHOID in resolution

EXAMPLE

MANCHESTER

- $\begin{array}{cccc}
 0 \sqsubseteq \{i\} & & \rightsquigarrow \\
 0 \sqsubseteq \exists r.0 & & \rightsquigarrow \\
 & & & & & \\
 \top \sqsubseteq \leqslant \mathbf{1} r^-.\top & & & & \\
 \end{array}$
- $1. \neg O(x) \lor x \simeq i$ REDUNDANCY FOR CLAUSES

A clause is redundant if it follows from smaller clauses

OR[1;3]: 5. $\neg O(x) \lor \underline{f(x)} \simeq i$ OR[2;4]: 6. $\neg O(x) \lor x \simeq \underline{g(f(x))}$ OP[5;6]: 7. $\neg \underline{O(x)} \lor x \simeq \underline{g(i)}$

follows from 1 and 8 larger than 1, but not larger than 8!

8. $\neg O(x) \lor i \simeq g(i) \blacktriangleleft$

EXAMPLE

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

The University of Manchester

0 ⊑	<i>{i}</i>
0 ⊑	∃r.O

 $\top \sqsubseteq \leq 1 r^{-} . \top ~ \rightsquigarrow$

A clause is redundant if it follows from smaller clauses

 $OR[1;3]: 5. \neg O(x) \lor \underline{f(x)} \simeq i$ $OR[2;4]: 6. \neg O(x) \lor x \simeq \underline{g}(\underline{f(x)})$ $OP[5;6]: 7. \neg O(x) \lor x \simeq \underline{g}(i)$

 $\sim \rightarrow$

A B F A B F

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

ne University Mancheste

EXAMPLE

- $\begin{array}{c}
 0 \sqsubseteq \{i\} & \rightsquigarrow \\
 0 \sqsubseteq \exists r.0 & \rightsquigarrow \\
 \neg \neg & \neg \\
 \top \sqsubseteq \leqslant \mathbf{1} r^{-}.\top & \rightsquigarrow
 \end{array}$
- $1. \neg O(x) \lor x \simeq i$ REDUNDANCY FOR CLAUSES

A clause is redundant if it follows from smaller clauses

 $OR[1;3]: 5. \neg O(x) \lor \overline{f(x)} \simeq i$ $OR[2;4]: 6. \neg O(x) \lor x \simeq g(f(x))$ $OP[5;6]: 7. \neg O(x) \lor x \simeq g(i)$ wait a bit... $OR[7;3]: 8. \neg O(x) \lor f(x) \simeq g(i)$

A B F A B F

EXAMPLE

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

The Univ of Manch

 $\begin{array}{cccc}
0 \sqsubseteq \{i\} & & \rightsquigarrow \\
0 \sqsubseteq \exists r.0 & & \rightsquigarrow \\
& & & & \\
\top \sqsubseteq \leqslant 1 r^{-}.\top & & & \\
\end{array}$

1. $\neg O(x) \lor x \simeq i$ REDUNDANCY FOR CLAUSES

A clause is redundant if it follows from smaller clauses

 $OR[1;3]: 5. \neg O(x) \lor \underline{f(x)} \simeq i$ $OR[2;4]: 6. \neg O(x) \lor x \simeq \underline{g}(\underline{f(x)})$ $OP[5;6]: 7. \neg \underline{O(x)} \lor x \simeq \underline{g}(i)$ wait a bit... $OR[7;3]: 8. \neg \overline{O(x)} \lor \underline{f(x)} \simeq \underline{g}(i)$ add: $9. \neg O(x) \lor i \simeq \underline{g}(i) \blacktriangleleft$ consequence of 5 and 8

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

he Univers Manches

EXAMPLE

- $\begin{array}{cccc}
 0 \sqsubseteq \{i\} & & \rightsquigarrow \\
 0 \sqsubseteq \exists r.0 & & \rightsquigarrow \\
 & & & & \\
 \top \sqsubseteq \leqslant \mathbf{1} r^-. \top & & & \\
 \end{array}$
- 1. $\neg O(x) \lor x \simeq i$ REDUNDANCY FOR CLAUSES

A clause is redundant if it follows from smaller clauses

 $OR[1;3] : 5. \neg O(x) \lor \underline{f(x)} \simeq i$ $OR[2;4] : 6. \neg O(x) \lor x \simeq \underline{g}(\underline{f(x)})$ $OP[5;6] : 7. \neg O(x) \lor x \simeq \underline{g}(i)$ $OR[7;3] : 8. \neg O(x) \lor \underline{f(x)} \simeq \underline{g}(i)$

wait a bit...

follows from 5 and 9 larger than 5, and larger than 9!

9. $\neg O(x) \lor i \simeq g(i) \blacktriangleleft$ consequence of 5 and 8

DIFFICULTIES WITH \mathcal{SHOIQ} in resolution

Manchest

A clause is redundant if it follows from smaller clauses

 $OR[1;3] : 5. \neg O(x) \lor \underline{f(x)} \simeq i$ $OR[2;4] : 6. \neg O(x) \lor x \simeq \underline{g(f(x))}$ $OP[5;6] : 7. \neg O(x) \lor x \simeq \underline{g(i)}$ wait a bit... $OR[7;3] : 8 \neg O(x) \lor \underline{f(x)} \simeq \underline{g(i)}$ remove! $9. \neg O(x) \lor \underline{i} \simeq \underline{g(i)} \blacktriangleleft$ consequence of 5 and 8

The saturation procedure terminates!

NOMINAL GENERATION

 The idea is developed into a new simplification rule that introduces constants

NOMINAL GENERATION $\frac{\alpha(x) \lor \bigvee_{i=1}^{n} f(x) \simeq t_{i}}{\alpha(x) \lor \bigvee_{i=1}^{n} f(x) \simeq c_{i}}$ $\alpha(x) \lor \bigvee_{j=1}^{n} c_{j} \simeq t_{j}$ $1 \le i \le n$

where (i) c_i are fresh constants for t_i and α

MANCHESTER

NOMINAL GENERATION

- The idea is developed into a new simplification rule that introduces constants
- the constants are reused when the rule has been applied to $\alpha(x)$ and f(x) before.

 $\frac{\alpha(x) \lor \bigvee_{i=1}^{n} f(x) \simeq t_{i}}{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}$ $\frac{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}{\alpha(x) \lor \bigvee_{j=1}^{n} c_{i} \simeq t_{j}}$ $1 \le i \le k$

where (i) c_i are fresh constants for t_i and α , (ii) k=n for the first application of rule for $\alpha(x)$ and f(x), otherwise k and c_i are reused

• (1) • (1) • (1)

MANCHESTER

NOMINAL GENERATION

- The idea is developed into a new simplification rule that introduces constants
- the constants are reused when the rule has been applied to α(x) and f(x) before.
- there is a second variant of this rule for a different type of clauses

NOMINAL GENERATION 1 $\frac{\alpha(x) \lor \bigvee_{i=1}^{n} f(x) \simeq t_{i}}{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}$ $\alpha(x) \lor \bigvee_{j=1}^{n} c_{i} \simeq t_{j}$ $1 \le i \le k$

where (i) c_i are fresh constants for t_i and α , (ii) k=n for the first application of rule for $\alpha(x)$ and f(x), otherwise k and c_i are reused

NOMINAL GENERATION 2 $\alpha(x) \lor \bigvee_{i=1}^{n} f(x) \simeq t_i \lor \bigvee_{i=1}^{n} x \simeq c_i$

- 12

ne University Manchester

MANCHESTER

TERMINATION AND COMPLEXITY ANALYSIS

 Every application of the rule can increase the number of constants by at most a polynomial factor

$\frac{\alpha(x) \lor \bigvee_{i=1}^{n} f(x) \simeq t_{i}}{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}$ $\frac{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}{\alpha(x) \lor \bigvee_{j=1}^{n} c_{i} \simeq t_{j}}$ $1 \le i \le k$

where (i) c_i are fresh constants for t_i and α , (ii) k=n for the first application of rule for $\alpha(x)$ and f(x), otherwise k and c_i are reused

向下 イヨト イヨ

TERMINATION AND COMPLEXITY ANALYSIS

- Every application of the rule can increase the number of constants by at most a polynomial factor
- There are at most exponentially many applications possible (exponentially many pairs α(x) and f(x))

$\frac{\alpha(x) \lor \bigvee_{i=1}^{n} f(x) \simeq t_{i}}{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}$ $\frac{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}{\alpha(x) \lor \bigvee_{j=1}^{n} c_{i} \simeq t_{j}}$ $1 \le i \le k$

where (i) c_i are fresh constants for t_i and α , (ii) k=n for the first application of rule for $\alpha(x)$ and f(x), otherwise k and c_i are reused

< 回 > < 回 > < 回 >

TERMINATION AND COMPLEXITY ANALYSIS

- Every application of the rule can increase the number of constants by at most a polynomial factor
- There are at most exponentially many applications possible (exponentially many pairs α(x) and f(x))
- Hence the procedure terminates, with the upper bound: <u>3EXPTIME</u>

 $\frac{\alpha(x) \lor \bigvee_{i=1}^{n} f(x) \simeq t_{i}}{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}$ $\frac{\alpha(x) \lor \bigvee_{i=1}^{k} f(x) \simeq c_{i}}{\alpha(x) \lor \bigvee_{j=1}^{n} c_{i} \simeq t_{j}}$ $1 \le i \le k$

where (i) c_i are fresh constants for t_i and α , (ii) k=n for the first application of rule for $\alpha(x)$ and f(x), otherwise k and c_i are reused

・ 戸 ト ・ ヨ ト ・ ヨ ト

-

WHY IS IT <mark>SO</mark> HARD?

■ In *SHOTQ* it is possible to express very large cardinality restrictions like $|C| \le 2^{2^n}$, $|D| \ge 2^{2^m}$.

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ

- 12

• • • • • • •

WHY IS IT <mark>S</mark>O HARD?

- In SHOIQ it is possible to express very large cardinality restrictions like |C| ≤ 2^{2ⁿ}, |D| ≥ 2^{2^m}.
- Hence, it is possible to encode combinatorial constraints involving very big numbers:

EXAMPLE

MANCHESTER

The University of Manchester

 $|\mathsf{A}\sqcup\mathsf{B}|\leq 2^{2^n},\,|\mathsf{A}\sqcup\mathsf{C}|\geq 2^{2^m+k},\,|\mathsf{B}\sqcup\mathsf{C}|\geq 2^{2^k},\,|\mathcal{C}|\leq 2^n$

JI SOCO

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

The University of Manchester

WHY IS IT <mark>S</mark>O HARD?

- In *SHOTQ* it is possible to express very large cardinality restrictions like $|C| \le 2^{2^n}$, $|D| \ge 2^{2^m}$.
- Hence, it is possible to encode combinatorial constraints involving very big numbers
- Such problems (in particular, the pigeon hole principle) are known to be hard for resolution since it is not really capable to deal with numbers

ELE NOR

< 同 > < 回 > < 回 > <

Conclusions

CONCLUSIONS

We have found a decision procedure for SHOIQ based on basic superposition calculus which runs in 3ExpTime

MANCHESTER

- High complexity is due to combination of: nominals + number restrictions + inverse roles
- The restriction of the procedure to simpler languages (SHOIQ, ALC) behaves like procedures known before
- hence it exhibits "pay as you go" behaviour
- The restricted version for SHIQ has proved itself in practice in system KAON2¹
- No additional degree of non-determinism is introduced by NOMINAL GENERATION rules
- Future developments: Integration of algebraic reasoning into resolution?

¹http://www.kaon2.semanticweb.org

Conclusions

Thank You!

Yevgeny Kazakov and Boris Motik A Resolution Decision Procedure for SHOIQ

315

COMPARISON WITH THE TABLEAU PROCEDURE

- Constants introduced by Nominal Generation correspond (in some way) to "nominal nodes".
- The exact number of different constants is not guessed, but equality constraints are generated
- "Blocking" is native in resolution by subsumption deletion
- No "yo-yo" effect in resolution, since deletion of clauses is permanent

(A picture from the presentation by Horrocks & Sattler on "A Tableau Decision Procedure for SHOIQ" [2005])

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・