MANCHESTER 1824
 A Resolution Decision Procedure for SHOIQ

Yevgeny Kazakov and Boris Motik

The University of Manchester
August 20, 2006

SHOIQ IS A DESCRIPTION LOGIC!

DESCRIPTION LOGICS:

- a family language for knowledge representation:

$$
\begin{aligned}
\text { HappyFather } \equiv \text { Human } \sqcap(\geqslant & 2 \text { hasChild) } \sqcap \\
& \sqcap \forall \text { hasChild.(Famous } \sqcup \text { Rich })
\end{aligned}
$$

DESCRIPTION LOGICS:

- a family language for knowledge representation:

```
HappyFather \equiv Human }\sqcap(\geqslant2\mathrm{ hasChild) }
    \square\mathrm{ hasChild.(Famous }\sqcup\mathrm{ Rich)}
```

■ Distinguished by:

- Formal semantics (set-theoretic)
- Decidability for key reasoning problems (satisfiability, subsumption, instance)

DESCRIPTION LOGICS:

- a family language for knowledge representation:

HappyFather \equiv Human $\sqcap(\geqslant 2$ hasChild) \sqcap

$\sqcap \forall$ hasChild.(Famous \sqcup Rich)
■ Distinguished by:

- Formal semantics (set-theoretic)
- Decidability for key reasoning problems (satisfiability, subsumption, instance)
- Related to:
- (Multi-) Modal Logics, Dynamic Logics
- Fragments of First-Order Logic (guarded, two-variable)

Application of Description Logics

- Databases (Schema Integration)
- Ontologies (Knowledge Bases):
- Rigorous description of terms in specific domains (Anatomy, Food, Cars)
- Access information by performing queries:

```
?- Car \sqcap \existshasTransmittion.Automatic }
    \exists\mathrm{ hasPart.(Engene }\square\mathrm{ ( }\geqslant6\mathrm{ hasPart.Cylider))}
```

- Semantic Web:
- Ontology Web Language $\mathcal{O} \mathcal{W} \mathcal{L}$ (W3C standard)
- Annotation of enteries using "semantic" mark-up
- Provide "the meaning" of entries

```
<owl:Class rdf:ID="http:
//www.ontology.com/US/states/WA">Washington</owl>
```


What is it About SHOIQ?

What is it About SHOIQ?

- DL $\mathcal{S H O} \mathcal{I Q}$ is a logical counterpart of $\mathcal{O W \mathcal { L } \mathcal { L }}$
- Development of $\mathcal{O W \mathcal { L }} \mathcal{D \mathcal { L }}$-ontologies requires reasoning:
- computation of class trees (Heart \sqsubseteq Organ)
- evaluation of queries (?-Car $\sqcap \ldots$...)
- reasoning $(\mathcal{O W L})=$ theorem proving $(\mathcal{S H O} \mathcal{Z})$

What is it About SHOIQ?

- DL $\mathcal{S H O \mathcal { L } \mathcal { Q }}$ is a logical counterpart of $\mathcal{O W \mathcal { L }} \mathcal{D}$
- Development of $\mathcal{O W \mathcal { L }} \mathcal{D \mathcal { L }}$-ontologies requires reasoning:
- computation of class trees (Heart \sqsubseteq Organ)
- evaluation of queries (?-Car $\sqcap \ldots$...)
- reasoning $(\mathcal{O} \mathcal{W} \mathcal{L})=$ theorem proving $(\mathcal{S H O \mathcal { I }})$
 variable fragment with counting)
- \mathcal{C}^{2} is decidable [Grädel et al., 1997]
- \mathcal{C}^{2} is NExpTime-compete [Pacholski et al., 2000], [Pratt-Hartmann, 2005]

What is it About SHOIQ?

- DL $\mathcal{S H O \mathcal { L } \mathcal { Q }}$ is a logical counterpart of $\mathcal{O W \mathcal { L }} \mathcal{D}$
- Development of $\mathcal{O W \mathcal { L }} \mathcal{D \mathcal { L }}$-ontologies requires reasoning:
- computation of class trees (Heart \sqsubseteq Organ)
- evaluation of queries (?-Car $\sqcap \ldots$...)
- reasoning $(\mathcal{O} \mathcal{W} \mathcal{L})=$ theorem proving $(\mathcal{S H O \mathcal { I }})$
- Reasoning in $\mathcal{S H O} \mathcal{I} \mathcal{Q}$ can be reduced to \mathcal{C}^{2} (the two variable fragment with counting)
- \mathcal{C}^{2} is decidable [Grädel et al., 1997]
- \mathcal{C}^{2} is NExpTime-compete [Pacholski et al., 2000], [Pratt-Hartmann, 2005]
■ but these procedures are not practical ("guess-and-check")

What is it About SHOIQ?

- DL $\mathcal{S H O \mathcal { H } \mathcal { Q }}$ is a logical counterpart of $\mathcal{O W \mathcal { L } \mathcal { L }}$
- Development of $\mathcal{O W \mathcal { L }} \mathcal{D \mathcal { L }}$-ontologies requires reasoning:
- computation of class trees (Heart \sqsubseteq Organ)
- evaluation of queries (?-Car $\sqcap \ldots$...)
- reasoning $(\mathcal{O W L})=$ theorem proving $(\mathcal{S H O} \mathcal{O})$
- Reasoning in $\mathcal{S H O} \mathcal{I} \mathcal{Q}$ can be reduced to \mathcal{C}^{2} (the two variable fragment with counting)
- \mathcal{C}^{2} is decidable [Grädel et al., 1997]
- \mathcal{C}^{2} is NExpTime-compete [Pacholski et al., 2000], [Pratt-Hartmann, 2005]
- but these procedures are not practical ("guess-and-check")

■ [Horrocks \& Sattler, 2005] - the first (and the only up until now) goal-directed procedure for $\mathcal{S H O} \mathcal{I} \mathcal{Q}$

What is it About SHOIQ?

- DL $\mathcal{S H O \mathcal { I } \mathcal { Q }}$ is a logical counterpart of $\mathcal{O W \mathcal { L }} \mathcal{D}$
- Development of $\mathcal{O W \mathcal { L }} \mathcal{D \mathcal { L }}$-ontologies requires reasoning:
- computation of class trees (Heart \sqsubseteq Organ)
- evaluation of queries (?-Car $\sqcap \ldots$)
- reasoning $(\mathcal{O W L})=$ theorem proving $(\mathcal{S H O} \mathcal{O})$
- Reasoning in $\mathcal{S H O} \mathcal{I} \mathcal{Q}$ can be reduced to \mathcal{C}^{2} (the two variable fragment with counting)
- \mathcal{C}^{2} is decidable [Grädel et al., 1997]
- \mathcal{C}^{2} is NExpTime-compete [Pacholski et al., 2000], [Pratt-Hartmann, 2005]
- but these procedures are not practical ("guess-and-check")

■ [Horrocks \& Sattler, 2005] - the first (and the only up until now) goal-directed procedure for $\mathcal{S H O} \mathcal{I} \mathcal{Q}$

- Now we can decide $\mathcal{S H O \mathcal { O } \mathcal { Q }}$ also by resolution!

1824
 Why a Resolution-Based Decision Procedure for SHOIQ?

Why a Resolution-Based Decision Procedure for SHOIQ?

- different from the tableau-based approach
- search for proofs vs. search for models

Why a Resolution-Based Decision Procedure for SHOIQ?

- different from the tableau-based approach
- search for proofs vs. search for models
- likely to behave differently for different types of problems:
- Tableau is good for reasoning with large schema (terminologies)
- Resolution is useful for reasoning with large data (assertions) [Hustadt, Motik \& Sattler, 2004]

Description Logics: Syntax

Axioms

Researcher \equiv Human $\sqcap \forall$ produce.Paper
Researcher (Rob)

Description Logics and Ontologies

Description Logics: Syntax

AXIOMS
 Researcher \equiv Human $\sqcap \forall$ produce.Paper < Terminology Researcher (Rob)
 < Assertions

Description Logics: Syntax

Axioms

Researcher \equiv Human $\sqcap \forall$ produce.Paper Researcher (Rob)

Terminology
 < Assertions

- Basic building blocks of DLs:
- Concept names
- Role names
- Individuals
- Operators

Description Logics: Syntax

Axioms

Researcher > Human \forall produce.Paper < Terminology
Researcher (Rob)
< Assertions

- Basic building blocks of DLs:
- Concept names - sets:

Researcher, Human, Paper

- Role names
- Individuals
- Operators

Description Logics: Syntax

Axioms

Researcher \equiv Human $\ulcorner\forall$ produce.Paper < Terminology
Researcher (Rob)
< Assertions

- Basic building blocks of DLs:
- Concept names - sets:

Researcher, Human, Paper

- Role names - binary relations:
- Individuals
- Operators

Description Logics: Syntax

AXIOMS

Researcher \equiv Human $\sqcap \forall$ produce.Paper Researcher Rob)
< Terminology
< Assertions

■ Basic building blocks of DLs:

- Concept names - sets:

Researcher, Human, Paper

- Role names - binary relations:
- Individuals - constants:
- Operators

Description Logics: Syntax

Axioms

Researcher \equiv Human $\sqcap \forall p$ roduce.Paper < Terminology
Researcher (Rob)
< Assertions

- Basic building blocks of DLs:
- Concept names - sets:

Researcher, Human, Paper

- Role names - binary relations:
produces
■ Individuals - constants:
- Operators - logical constructors: $\quad C_{1} \sqcap C_{2}, \quad \forall r . C, \quad A \equiv C$

Description Logics: SEmantics

Axioms

Researcher \equiv Human $\sqcap \forall$ produces.Paper
Researcher (Rob)

- Basic building blocks of DLs:
- Concept names

Researcher, Human, Paper

- Role names
- Individuals
- Operators
$C_{1} \sqcap C_{2}$,
$\forall r . C$,
$A \equiv C$

Description Logics: SEmantics

AXIOMS

Researcher \equiv Human $\sqcap \forall$ produces.Paper
Researcher (Rob)

■ Basic building blocks of DLs:

- Concept names \rightsquigarrow unary atoms:
- Role names

Researcher, Human, Paper Researcher(x), Human(x), Paper(x) produces

- Individuals
- Operators
$C_{1} \sqcap C_{2}$,
$\forall r . C$,
$A \equiv C$

Description Logics: SEmantics

AXIOMS

Researcher \equiv Human $\sqcap \forall$ produces.Paper
Researcher (Rob)

- Basic building blocks of DLs:
- Concept names
\rightsquigarrow unary atoms:
- Role names
\rightsquigarrow binary atoms:
- Individuals

Researcher(x), Human(x), Paper(x) produces
produces(x,y)
Rob

- Operators
$C_{1} \sqcap C_{2}$,
$\forall r . C$,
$A \equiv C$

Description Logics: SEmantics

AXIOMS

Researcher \equiv Human $\sqcap \forall$ produces.Paper
Researcher (Rob)

- Basic building blocks of DLs:
- Concept names \rightsquigarrow unary atoms:
- Role names
\rightsquigarrow binary atoms:
Researcher(x), Human(x), Paper(x)
- Individuals
\rightsquigarrow constants:
- Operators
$C_{1} \sqcap C_{2}$,
$\forall r . C$,
Rob

	produces (x, y) Rob
$C_{1} \sqcap C_{2}$,	$\forall r . C, \quad$Rob
$A \equiv C$	

Description Logics: SEMANTICS

AXIOMS

Researcher \equiv Human $\sqcap \forall$ produces.Paper
Researcher (Rob)

- Basic building blocks of DLs:
- Concept names
\rightsquigarrow unary atoms:
Researcher(x), Human(x), Paper(x)
- Role names
\rightsquigarrow binary atoms:
produces(x,y)
- Individuals
\rightsquigarrow constants:
Rob
- Operators
\rightsquigarrow constructors:

$$
\begin{array}{cc}
C_{1} \sqcap C_{2}, & \forall r . C, \\
C_{1}(x) \wedge C_{2}(x), & \forall y \cdot[r(x, y) \rightarrow C(y)], \\
& \forall x \cdot[A(x) \equiv C(x)]
\end{array}
$$

Description Logics: SEmantics

AXIOMS

Researcher $(x) \equiv \operatorname{Human}(x) \sqcap \forall y \cdot[\operatorname{produces}(x, y) \rightarrow \operatorname{Paper}(y)]$ Researcher (Rob)

- Basic building blocks of DLs:
- Concept names
\rightsquigarrow unary atoms:
Researcher(x), Human(x), Paper(x)
- Role names
\rightsquigarrow binary atoms:
produces(x,y)
- Individuals
\rightsquigarrow constants:
- Operators
\rightsquigarrow constructors: $\quad C_{1}(x) \wedge C_{2}(x), \quad \forall y \cdot[r(x, y) \rightarrow C(y)]$,

$$
\forall x \cdot[A(x) \equiv C(x)]
$$

Description Logics and Ontologies

Hierarchy of DLs

- Basic Description Logic $\mathcal{A L C}$: $\left.\begin{array}{c}\sqcap, \sqcup, \neg, \forall r . C, \exists r . C, \sqsubseteq \\ \text { Transitive(r) }\end{array}\right\} \mathcal{S}$

Hierarchy of DLs

- Basic Description Logic $\mathcal{A L C}$

■ Transitive Roles:
■ Role Hierarchies:

$$
r_{1} \sqsubseteq r_{2}
$$

■ Inverse Roles:

$$
\left.\sqcap, \sqcup, \neg, \forall r . C, \exists r . C, \sqsubseteq \begin{array}{c}
\text { Transitive }(\mathrm{r})
\end{array}\right\} \mathcal{S}
$$

\mathcal{H}

$$
\mathrm{r}_{2}{ }^{-} \quad \mathcal{I}
$$

■ Qualified Number Restrictions: ($\geqslant n r . C), \quad(\leqslant n r . C) \quad \mathcal{Q}$

Hierarchy of DLs

- Basic Description Logic $\mathcal{A L C}: \quad \sqcap, \sqcup, \neg, \forall r . C, \exists r . C, \sqsubseteq$
- Transitive Roles:

■ Role Hierarchies:
■ Inverse Roles:
■ Qualified Number Restrictions:
$(\geqslant n r . C), \quad(\leqslant n r . C) \quad \mathcal{Q}$
$=\mathcal{S H \mathcal { H } \mathcal { Q }}$
■ Nominals:
\{i\}
$=\mathcal{S H O} \mathcal{I} \mathcal{Q}$

Expressive Power of $\mathcal{S H O \mathcal { I } \mathcal { Q }}$

■ Cardinality restrictions: $|C| \leq n$

- $C \sqsubseteq\left\{i_{1}\right\} \sqcup\left\{i_{2}\right\} \sqcup \cdots \sqcup\left\{i_{n}\right\} \quad|C| \leq n$

Expressive Power of $\mathcal{S H O} \mathcal{H} \mathcal{Q}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$
- C $\sqsubseteq\left\{i_{1}\right\} \sqcup\left\{i_{2}\right\} \sqcup \cdots \sqcup\left\{i_{n}\right\}$
$|C| \leq n$
- $C \sqsupseteq\left\{i_{1}\right\} \sqcup\left\{i_{2}\right\} \sqcup \cdots \sqcup\left\{i_{n}\right\}$
$C \mid \geq n$ $\left\{i_{p}\right\} \sqcap\left\{i_{q}\right\} \sqsubseteq \perp, \quad p<q$

Expressive Power of $\mathcal{S H O \mathcal { O } \mathcal { Q }}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$

■ Large cardinality restrictions:

- $C_{0} \sqsupseteq\{i\}$ $C_{0} \sqsubseteq\left(\geqslant 2 r . C_{1}\right)$

$$
\begin{aligned}
& \left|C_{0}\right| \geq 1 \\
& \left|C_{1}\right| \geq 2
\end{aligned}
$$

Expressive Power of $\mathcal{S H O \mathcal { H } \mathcal { Q }}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$
- Large cardinality restrictions:
$\square C_{0} \sqsupseteq\{i\}$

$$
\begin{aligned}
& C_{0} \sqsubseteq\left(\geqslant 2 r \cdot C_{1}\right) \\
& C_{1} \sqsubseteq\left(\geqslant 2 r \cdot C_{2}\right) \\
& \dddot{C_{n-1} \sqsubseteq\left(\geqslant 2 r \cdot C_{n}\right)}
\end{aligned}
$$

$$
\begin{aligned}
& \left|C_{0}\right| \geq 1 \\
& \left|C_{1}\right| \geq 2
\end{aligned}
$$

Expressive Power of $\mathcal{S H O \mathcal { H } \mathcal { Q }}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$

■ Large cardinality restrictions:
$\square C_{0} \sqsupseteq\{i\}$ $C_{0} \sqsubseteq\left(\geqslant 2 r . C_{1}\right)$
$C_{1} \sqsubseteq\left(\geqslant 2 r . C_{2}\right)$
$C_{n-1} \sqsubseteq\left(\geqslant 2 r . C_{n}\right)$
$\top \sqsubseteq\left(\leqslant 1 r^{-} . \top\right)$

$$
\begin{aligned}
& \left|C_{0}\right| \geq 1 \\
& \left|C_{1}\right| \geq 2
\end{aligned}
$$

Expressive Power of $\mathcal{S H O \mathcal { H }}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$
- Large cardinality restrictions: $|C| \geq 2^{n}$
- $C_{0} \sqsupseteq\{i\}$ $C_{0} \sqsubseteq\left(\geqslant 2 r . C_{1}\right)$
$C_{1} \sqsubseteq\left(\geqslant 2 r . C_{2}\right)$
$C_{n-1} \sqsubseteq\left(\geqslant 2 r . C_{n}\right)$
$\top \sqsubseteq\left(\leqslant 1 r^{-} . \top\right)$

$$
\begin{aligned}
& \left|C_{0}\right| \geq 1 \\
& \left|C_{1}\right| \geq 2 \\
& \ldots \\
& \left|C_{n}\right| \geq 2^{n}
\end{aligned}
$$

Expressive Power of $\mathcal{S H O} \mathcal{H} \mathcal{Q}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$
\square Large cardinality restrictions: $|C| \geq 2^{n},|C| \leq 2^{n}$
- $C_{0} \sqsupseteq\{i\}$

$$
\begin{aligned}
& C_{0} \sqsubseteq\left(\geqslant 2 r \cdot C_{1}\right) \\
& C_{1} \sqsubseteq\left(\geqslant 2 r \cdot C_{2}\right) \\
& \dddot{C_{n-1}} \sqsubseteq\left(\geqslant 2 r \cdot C_{n}\right) \\
& \top \sqsubseteq\left(\leqslant 1 r^{-} . \top\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left|C_{0}\right| \geq 1 \\
& \left|C_{1}\right| \geq 2 \\
& \ldots \\
& \left|C_{n}\right| \geq 2^{n}
\end{aligned}
$$

- $C_{0} \sqsubseteq\{i\}$
$C_{1} \sqsubseteq\left(\geqslant 1 r^{-} . C_{0}\right)$
$C_{2} \sqsubseteq\left(\geqslant 1 r^{-} . C_{1}\right)$
$C_{n} \sqsubseteq\left(\geqslant 1 r^{-} . C_{n-1}\right)$
$\top \sqsubseteq(\leqslant 2 r . T)$

$\left|C_{0}\right| \leq 1$
$\left|C_{1}\right| \leq 2$
$\left|C_{n}\right| \leq 2^{n}$

Expressive Power of $\mathcal{S H O} \mathcal{H} \mathcal{Q}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$
\square Large cardinality restrictions: $|C| \geq 2^{n},|C| \leq 2^{n}$
- $C_{0} \sqsupseteq\{i\}$

$$
\begin{aligned}
& C_{0} \sqsubseteq\left(\geqslant 2 r \cdot C_{1}\right) \\
& C_{1} \sqsubseteq\left(\geqslant 2 r \cdot C_{2}\right) \\
& \dddot{C_{n-1} \sqsubseteq\left(\geqslant 2 r . C_{n}\right)} \\
& T \sqsubseteq\left(\leqslant 1 r^{-} . \top\right)
\end{aligned}
$$

$$
\begin{aligned}
& \left|C_{0}\right| \geq 1 \\
& \left|C_{1}\right| \geq 2 \\
& \ldots \\
& \left|C_{n}\right| \geq 2^{n}
\end{aligned}
$$

- $C_{0} \sqsubseteq\{i\}$
$C_{1} \sqsubseteq\left(\geqslant 1 r^{-} . C_{0}\right)$
$C_{2} \sqsubseteq\left(\geqslant 1 r^{-} . C_{1}\right)$
$C_{n} \sqsubseteq\left(\geqslant 1 r^{-} . C_{n-1}\right)$
$\top \sqsubseteq(\leqslant 2 r . T)$

$\left|C_{0}\right| \leq 1$
$\left|C_{1}\right| \leq 2$
$\left|C_{n}\right| \leq 2^{n}$

Expressive Power of $\mathcal{S H O \mathcal { L } \mathcal { Q }}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$

■ Large cardinality restrictions: $|C| \geq 2^{n},|C| \leq 2^{n}$

- Huge cardinality restrictions: $|C| \geq 2^{2^{n}},|C| \leq 2^{2^{n}}$

Expressive Power of $\mathcal{S H O} \mathcal{H} \mathcal{Q}$

- Cardinality restrictions: $|C| \leq n,|C| \geq n$
- Large cardinality restrictions: $|C| \geq 2^{n},|C| \leq 2^{n}$
- Huge cardinality restrictions: $|C| \geq 2^{2^{n}},|C| \leq 2^{2^{n}}$

$$
\begin{aligned}
& \mathrm{B}_{n} \sqcap \cdots \sqcap \mathrm{~B}_{0} \sqsubseteq\{i\} \\
& \top \sqsubseteq\left(\geqslant 1 r^{-} \cdot \top\right) \\
& \top \sqsubseteq(\leqslant 2 r \quad . \top) \\
& \mathrm{B}_{0} \sqsubseteq \forall r . \neg \mathrm{B}_{0} \\
& \neg \mathrm{~B}_{0} \sqsubseteq \forall r . \mathrm{B}_{0}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{B}_{i+1} \sqcap \quad \mathrm{~B}_{i} \sqsubseteq \forall r . \mathrm{B}_{i+1} \quad \text { - bits "count" over } r \\
& \neg \mathrm{~B}_{i+1} \sqcap \quad \mathrm{~B}_{i} \sqsubseteq \forall r . \neg \mathrm{B}_{i+1} \\
& \mathrm{~B}_{i+1} \sqcap \neg \mathrm{~B}_{i} \sqsubseteq \forall r .\left[\left(\neg \mathrm{B}_{i+1} \sqcap \mathrm{~B}_{i}\right) \sqcup\left(\mathrm{B}_{i+1} \sqcap \neg \mathrm{~B}_{i}\right)\right] \\
& \neg \mathrm{B}_{i+1} \sqcap \neg \mathrm{~B}_{i} \sqsubseteq \forall r .\left[\left(\mathrm{B}_{i+1} \sqcap \mathrm{~B}_{i}\right) \sqcup\left(\neg \mathrm{B}_{i+1} \sqcap \neg \mathrm{~B}_{i}\right)\right]
\end{aligned}
$$

Resolution-Based Procedures: THE BASIC PRINCIPLES

■ Invented by Joyner Jr. (1976)

- Allows one to use existing automated theorem provers (Spass, Vampire) as decision procedures
- The general idea is as follows:

1 Define a clause class for the target fragment
2 Show that this class is closed under inferences
3 Show the class is finite for a fixed signature

- Many decision procedures are based on this principle:

■ clause classes $\mathcal{E}, \mathcal{S}^{+}, \mathcal{E}^{+}$, etc. [Fermüller et al., 1993]

- modal logics [Schmidt, 1997], [Hustadt, 1999],
- fragments of first-order logic [Bachmair et al., 1993], [Ganzinger \& de Nivelle, 1999].

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

Example

- Problem: the depth grows

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

Example

- Problem: the depth grows
- The reason: the selected literal is not the deepest one

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

ExAMPLE

- Problem: the depth grows
- The reason: the selected literal is not the deepest one
- Solution: resolve on the depest literal

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

Example

$\mathrm{A}(c)$

$\mathrm{A} \sqsubseteq \forall \mathrm{R} . \mathrm{A}$$\quad$| | $\frac{\mathrm{A}(c)}{\mathrm{R}\left(\mathrm{c}, y_{1}\right)} \vee \frac{\neg \mathrm{A}(x)}{\mathrm{A}\left(y_{1}\right)} \vee \neg \mathrm{R}(x, y) \vee \mathrm{A}(y)$ |
| :--- | :--- |
| | $\neg \mathrm{R}\left(\mathrm{c}, y_{1}\right) \vee$ |
| $\neg \mathrm{R}\left(y_{1}, y_{2}\right) \vee \underline{\mathrm{A}\left(y_{2}\right)}$ | |

- Problem: variables got duplicated

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

Example

$\mathrm{A}(c)$

$\mathrm{A} \sqsubseteq \forall \mathrm{R} . \mathrm{A}$$\quad$| $\neg \mathrm{R}\left(\mathrm{c}, y_{1}\right) \vee \mathrm{A}\left(y_{1}\right)$ | |
| :--- | :--- |
| | |
| | $\neg \mathrm{R}\left(\mathrm{c}, y_{1}\right) \vee \neg \mathrm{R}\left(y_{1}, y_{2}\right) \vee \underline{\mathrm{A}\left(y_{2}\right)}$ |

- Problem: variables got duplicated
- The reason: the unified expression does not contain all variables of the clause

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations:

Example

- Problem: variables got duplicated
- The reason: the unified expression does not contain all variables of the clause
- Solution: resolve on the expression with all variables

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations: depth or no. of variables grows

■ Decidability is typically a consequence that all expressions in clauses are covering:

How to Turn Resolution Into A Decision Procedure?

- Tweak the parameters of a prover (ordering and selection function) so that the size of clauses does not grow
- Problematic situations: depth or no. of variables grows
- Decidability is typically a consequence that all expressions in clauses are covering:
- every functional term of an expression contains all variables

ExAMPLE

$\neg A(x) \vee \mathrm{r}(x, \mathrm{f}(x, y)) \quad$ term $\mathrm{f}(x, y)$ is covering
$\neg A(x) \vee x \simeq c \quad$ term c is not covering

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in resolution

EXAMPLE

$\mathrm{O} \sqsubseteq\{i\}$
$\rightsquigarrow \quad$ 1. $\neg \mathrm{O}(x) \vee x \simeq i$
$O \sqsubseteq \exists r . O$
\rightsquigarrow
2. $\neg \mathrm{O}(x) \vee \mathrm{r}(x, f(x))$
\rightsquigarrow
3. $\neg \mathrm{O}(x) \vee \mathrm{O}(f(x))$
$\top \sqsubseteq \leqslant 1 r^{-} . \top$
\rightsquigarrow
4. $\neg r(x, y) \vee x \simeq g(y)$

DIfficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ In resolution

EXAMPLE

$\mathrm{O} \sqsubseteq\{i\}$
\rightsquigarrow

1. $\neg \mathrm{O}(x) \quad x \simeq i-$ not covering
$\mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O}$
2. $\neg \overline{\mathrm{O}(x)} \vee \mathrm{r}(x, f(x))$
\rightsquigarrow
3. $\neg \mathrm{O}(x) \vee \overline{\mathrm{O}(f(x))}$
$\top \sqsubseteq \leqslant 1 r^{-} . \top \rightsquigarrow$
4. $\neg r(x, y) \vee x \simeq g(y)-$ not covering

ExAMPLE

$\mathrm{O} \sqsubseteq\{i\}$
$\rightsquigarrow \quad$ 1. $\neg \mathrm{O}(x) \vee x \simeq i$
$\mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O}$
\rightsquigarrow
2. $\neg \overline{\mathrm{O}(x)} \vee \mathrm{r}(x, f(x))$
$\rightsquigarrow \quad$ 3. $\neg \mathrm{O}(x) \vee \overline{\mathrm{O}(f(x))}$
$\top \sqsubseteq \leqslant 1 r^{-} . \top \rightsquigarrow 4 . \neg r(x, y) \overline{\vee x \simeq g(y)}$
$\mathrm{OR}[1 ; 3]: 5 . \neg \mathrm{O}(x) \vee f(x) \simeq i$
$\mathrm{OR}[2 ; 4]$: 6. $\neg \mathrm{O}(x) \vee x \simeq g(f(x))$
$\mathrm{OP}[5 ; 6]: 7 . \neg \mathrm{O}(x) \vee x \simeq g(i)$

ExAMPLE

$\mathrm{O} \sqsubseteq\{i\}$
\leadsto

1. $\neg \mathrm{O}(x) \vee x \simeq i<$
$\mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O}$
\leadsto
2. $\neg \overline{\mathrm{O}(x)} \vee \mathrm{r}(x, f(x))$
$\leadsto \quad$ 3. $\neg \mathrm{O}(x) \vee \overline{\mathrm{O}(f(x))}$
$\top \sqsubseteq \leqslant 1 r^{-} . \top \rightsquigarrow 4 . \neg r(x, y) \overline{\vee x \simeq g(y)}$
$\mathrm{OR}[1 ; 3]: 5 . \neg \mathrm{O}(x) \vee f(x) \simeq i$
OR[2; 4] : 6. $\neg \mathrm{O}(x) \vee x \simeq g(f(x))$
$\mathrm{OP}[5 ; 6]: 7 . \neg \mathrm{O}(x) \vee x \simeq g(i)<$ of the same form

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in resolution

Example

$\mathrm{O} \sqsubseteq\{i\}$
\leadsto

1. $\neg \mathrm{O}(x) \vee x \simeq i<$
$\mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O}$
\rightsquigarrow
2. $\neg \overline{\mathrm{O}(x)} \vee \mathrm{r}(x, f(x))$
$\rightsquigarrow \quad$ 3. $\neg \mathrm{O}(x) \vee \overline{\mathrm{O}(f(x))}$
$\top \sqsubseteq \leqslant 1 r^{-} . \top \quad \rightsquigarrow \quad$ 4. $\neg \mathrm{r}(x, y) \overline{\vee x \simeq g(y)}$
$\mathrm{OR}[1 ; 3]: 5 . \neg \mathrm{O}(x) \vee f(x) \simeq i$
OR[2; 4] : 6. $\neg \mathrm{O}(x) \vee x \simeq g(f(x))$
$\mathrm{OP}[5 ; 6]: 7 . \neg \mathrm{O}(x) \vee x \simeq g(i)<$ of the same form
\ldots. 8. $\neg \mathrm{O}(x) \vee x \simeq g(g(i))<$ produces deeper
... 9. $\neg \mathrm{O}(x) \vee x \simeq g(g(g(i)))<$ clauses

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in resolution

ExAMPLE

$$
\begin{array}{lll}
\mathrm{O} \sqsubseteq\{i\} & \rightsquigarrow & \text { 1. } \neg \mathrm{O}(x) \vee x \simeq i<\overline{\mathrm{O}(x)} \vee \mathrm{r}(x, f(x)) \\
\mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} & \rightsquigarrow & \text { 2. } \neg \mathrm{O}(\mathrm{O}(x) \vee \overline{\mathrm{O}(f(x))} \\
& \rightsquigarrow & \text { 3. } \\
\mathrm{T} \sqsubseteq \leqslant 1 \mathrm{r}^{-} . \top & \rightsquigarrow & \text { 4. } \neg \underline{\mathrm{r}(x, y)} \vee \overline{x \simeq g(y)}
\end{array}
$$

$\mathrm{OR}[1 ; 3]: 5 . \neg \mathrm{O}(x) \vee f(x) \simeq i$
$\mathrm{OR}[2 ; 4]$: 6. $\neg \mathrm{O}(x) \vee x \simeq g(f(x))$
$\mathrm{OP}[5 ; 6]: 7 . \neg \mathrm{O}(x) \vee x \simeq g(i)$
add new: 8. $\neg \mathrm{O}(x) \vee i \simeq g(i)<$ consequence of 1 and 7

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in Resolution

Example

$$
\begin{aligned}
& \mathrm{O} \sqsubseteq\{i\} \quad \rightsquigarrow \quad \text { 1. }-\mathrm{O}(x) \vee x \simeq i \\
& \mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} \quad \rightsquigarrow \hat{\text { REDUNDANĆY FOR " ClaUSES }} \\
& T \sqsubseteq \leqslant 1 r^{-} . T \rightsquigarrow \quad \text { A clause is redundant if it follows } \\
& \mathrm{OR}[1 ; 3] \text { : 5. } \neg \mathrm{O}(x) \vee f(x) \simeq i \\
& \text { OR[2; 4]: 6. } \neg \mathrm{O}(x) \vee x \simeq g(f(x)) \\
& \text { OP[5; 6]:7 } \neg \mathrm{O}(x) \vee x \simeq g(i) \quad \text { follows from } 1 \text { and } 8 \\
& \text { 8. } \neg \mathrm{O}(x) \vee i \simeq g(i)<\text { consequence of } 1 \text { and } 7
\end{aligned}
$$

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in Resolution

ExAMPLE

$$
\begin{aligned}
& \begin{array}{lll}
\mathrm{O} \sqsubseteq\{i\} & \rightsquigarrow & 1 . \neg \mathrm{O}(x) \vee x \simeq i \\
\mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} & \rightsquigarrow & \hat{\text { REDUNDANCY FOR CLAUSES }} \\
\mathrm{T} \sqsubseteq \leqslant 1 \mathrm{r}^{-} . \top & \rightsquigarrow & \rightsquigarrow
\end{array} \begin{array}{l}
\text { A clause is redundant if it follows } \\
\text { from smaller clauses }
\end{array} \\
& \mathrm{OR}[1 ; 3]: 5 . \neg \mathrm{O}(x) \vee \underline{f(x)} \simeq i \\
& \mathrm{OR}[2 ; 4] \text { : 6. } \neg \mathrm{O}(x) \vee x \simeq g(f(x)) \\
& \text { OP[5; 6] : } 7 \underline{\square \mathrm{O}(x) \vee x \simeq g(i)} \\
& \text { follows from } 1 \text { and } 8 \\
& \text { larger than 1, } \\
& \text { 8. } \neg \underline{O}(x) \vee i \simeq g(i)<
\end{aligned}
$$

DIFFICULTIES WITH $\mathcal{S H} \mathcal{H} \mathcal{I} \mathcal{Q}$ in Resolution

ExAMPLE

$$
\begin{aligned}
& \mathrm{O} \sqsubseteq\{i\} \quad \rightsquigarrow \quad \text { 1. } \neg \mathrm{O}(x) \vee x \simeq i \\
& \mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} \quad \rightsquigarrow \hat{\text { REDUNDANCY FOR CLAUSES }} \\
& T \sqsubseteq \leqslant 1 r^{-} . T \rightsquigarrow \quad \text { A clause is redundant if it follows } \\
& \mathrm{OR}[1 ; 3]: 5 . \neg \mathrm{O}(x) \vee f(x) \simeq i \\
& \text { OR[2; 4] : 6. } \neg \mathrm{O}(x) \vee x \simeq g(f(x)) \\
& \text { OP[5; 6]: } 7 \xrightarrow{\neg \mathrm{O}(x) \vee x \simeq g(i)} \quad \text { follows from } 1 \\
& \text { but not larger than 8! } \\
& \text { 8. } \neg \mathrm{O}(x) \vee i \simeq g(i)<
\end{aligned}
$$

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in Resolution

EXAMPLE

$$
\left.\begin{array}{lll}
\mathrm{O} \sqsubseteq\{i\} & \rightsquigarrow & 1 . \neg \mathrm{O}(x) \vee \\
\mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} & \rightsquigarrow & \hat{\text { REDUNDAN }}
\end{array}, \begin{array}{ll}
& \rightsquigarrow
\end{array}\right)
$$

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in resolution

ExAMPLE

$$
\begin{aligned}
& \begin{array}{lll}
\mathrm{O} \sqsubseteq\{i\} & \rightsquigarrow & 1 . \neg \mathrm{O}(x) \vee x \simeq i \\
\mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} & \rightsquigarrow & \hat{\text { REDUNDANCY FOR CLAUSES }} \\
\mathrm{T} \sqsubseteq \leqslant 1 \mathrm{r}^{-} . \top & \rightsquigarrow & \rightsquigarrow
\end{array} \begin{array}{l}
\text { A clause is redundant if it follows } \\
\text { from smaller clauses }
\end{array} \\
& \mathrm{OR}[1 ; 3] \text { : 5. } \neg \mathrm{O}(x) \vee f(x) \simeq i \\
& \text { OR[2; 4] : 6. } \neg \mathrm{O}(x) \vee x \simeq g(\underline{f(x)}) \\
& \mathrm{OP}[5 ; 6]: 7 . \neg \mathrm{O}(x) \vee x \simeq g(i) \quad \text { wait a bit... } \\
& \mathrm{OR}[7 ; 3]: 8 . \neg \overline{\mathrm{O}(x)} \vee \underline{f(x)} \simeq g(i)
\end{aligned}
$$

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in Resolution

Example

$$
\begin{aligned}
& \mathrm{O} \sqsubseteq\{i\} \quad \rightsquigarrow \quad \text { 1. } \neg \mathrm{O}(x) \vee x \simeq i \\
& \mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} \quad \rightsquigarrow \hat{\text { REDUNDANCY FOR CLAUSES }} \\
& T \sqsubseteq \leqslant 1 r^{-} . T \rightsquigarrow \quad \text { A clause is redundant if it follows } \\
& \mathrm{OR}[1 ; 3] \text { : 5. } \neg \mathrm{O}(x) \vee f(x) \simeq i \\
& \text { OR[2; 4]: 6. } \neg \mathrm{O}(x) \vee x \simeq g(f(x)) \\
& \text { OP[5; 6] : 7. } \neg \mathrm{O}(x) \vee x \simeq g(i) \quad \text { wait a bit. . . } \\
& \mathrm{OR}[7 ; 3] \text { : 8. } \neg \overline{\mathrm{O}(x)} \vee \underline{f(x)} \simeq g(i) \\
& \text { add: } 9 . \neg \mathrm{O}(x) \vee i \simeq g(i)<\text { consequence of } 5 \text { and } 8
\end{aligned}
$$

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in resolution

Example

$$
\begin{aligned}
& \mathrm{O} \sqsubseteq\{i\} \quad \rightsquigarrow \quad \text { 1. } \neg \mathrm{O}(x) \vee x \simeq i \\
& \mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} \quad \rightsquigarrow \hat{\mathrm{REDUNDANCY} \text { FOR ClAUSES }} \\
& T \sqsubseteq \leqslant 1 r^{-} . T \rightsquigarrow \quad \text { A clause is redundant if it follows } \\
& \mathrm{OR}[1 ; 3] \text { : 5. } \neg \mathrm{O}(x) \vee f(x) \simeq i \\
& \text { OR[2; 4]: 6. } \neg \mathrm{O}(x) \vee x \simeq g(f(x)) \\
& \mathrm{OP}[5 ; 6]: 7 . \neg \mathrm{O}(x) \vee x \simeq g(i) \quad \text { wait a bit. . . } \\
& \text { OR }[7 ; 3]: 8 . \neg \overline{\mathrm{O}(x)} \vee \underline{f(x)} \simeq g(i) \quad \text { follows from } 5 \text { and } 9 \\
& \text { larger than 5, } \\
& \text { and larger than 9! } \\
& \text { 9. } \neg \mathrm{O}(x) \vee i \simeq g(i)<\text { consequence of } 5 \text { and } 8
\end{aligned}
$$

Difficulties with $\mathcal{S H \mathcal { H } \mathcal { I }}$ in Resolution

Example

$$
\begin{aligned}
& \mathrm{O} \sqsubseteq\{i\} \quad \rightsquigarrow \quad \text { 1. }-\mathrm{O}(x) \vee x \simeq i \\
& \mathrm{O} \sqsubseteq \exists \mathrm{r} . \mathrm{O} \quad \rightsquigarrow \hat{\text { REDUNDANĆY FOR " ClaUnes }} \\
& T \sqsubseteq \leqslant 1 r^{-} . T \rightsquigarrow \quad \text { A clause is redundant if it follows } \\
& \mathrm{OR}[1 ; 3] \text { : 5. } \neg \mathrm{O}(x) \vee f(x) \simeq i \\
& \text { OR[2; 4]: 6. } \neg \mathrm{O}(x) \vee x \simeq g(f(x)) \\
& \mathrm{OP}[5 ; 6]: 7 . \neg \mathrm{O}(x) \vee x \simeq g(i) \quad \text { wait a bit. . . } \\
& \text { OR }[7 ; 3]: 8 \rightarrow O(x) \sim g(i) \quad \text { remove! } \\
& \text { 9. } \neg \mathrm{O}(x) \vee i \simeq g(i)<\text { consequence of } 5 \text { and } 8
\end{aligned}
$$

- The saturation procedure terminates!

NOMINAL GENERATION

- The idea is developed into a new simplification rule that introduces constants

Nominal Generation

$$
\begin{array}{r}
\alpha(x) \vee \bigvee_{i=1}^{n} f(x) \simeq t_{i} \\
\hline \alpha(x) \vee \bigvee_{i=1}^{n} f(x) \simeq c_{i} \\
\alpha(x) \vee \bigvee_{j=1}^{n} c_{i} \simeq t_{j} \\
1 \leq i \leq n
\end{array}
$$

where (i) c_{i} are fresh constants for t_{i} and α

NOMINAL GENERATION

- The idea is developed into a new simplification rule that introduces constants
- the constants are reused when the rule has been applied to $\alpha(x)$ and $f(x)$ before.

NOMINAL GENERATION

$$
\begin{array}{r}
\alpha(x) \vee \bigvee_{i=1}^{n} f(x) \simeq t_{i} \\
\hline \alpha(x) \vee \bigvee_{i=1}^{k} f(x) \simeq c_{i} \\
\alpha(x) \vee \bigvee_{j=1}^{n} c_{i} \simeq t_{j} \\
1 \leq i \leq k
\end{array}
$$

where (i) c_{i} are fresh constants for t_{i} and α, (ii) $k=n$ for the first application of rule for $\alpha(x)$ and $f(x)$, otherwise k and c_{i} are reused

NOMINAL GENERATION

- The idea is developed into a new simplification rule that introduces constants
- the constants are reused when the rule has been applied to $\alpha(x)$ and $f(x)$ before.
- there is a second variant of this rule for a different type of clauses

NOMINAL GENERATION 1

$$
\begin{array}{r}
\alpha(x) \vee \bigvee_{i=1}^{n} f(x) \simeq t_{i} \\
\hline \alpha(x) \vee \bigvee_{i=1}^{k} f(x) \simeq c_{i} \\
\alpha(x) \vee \bigvee_{j=1}^{n} c_{i} \simeq t_{j} \\
1 \leq i \leq k
\end{array}
$$

where (i) c_{i} are fresh constants for t_{i} and α, (ii) $k=n$ for the first application of rule for $\alpha(x)$ and $f(x)$, otherwise k and c_{i} are reused

$$
\begin{aligned}
& \text { NOMINAL GENERATION } 2 \\
& \alpha(x) \vee \bigvee_{i=1}^{n} f(x) \simeq t_{i} \vee \bigvee_{i=1}^{n} x \simeq c_{i}
\end{aligned}
$$

TERMINATION AND COMPLEXITY ANALYSIS

- Every application of the rule can increase the number of constants by at most a polynomial factor

Nominal Generation

$$
\begin{array}{r}
\alpha(x) \vee \bigvee_{i=1}^{n} f(x) \simeq t_{i} \\
\hline \alpha(x) \vee \bigvee_{i=1}^{k} f(x) \simeq c_{i} \\
\alpha(x) \vee \bigvee_{j=1}^{n} c_{i} \simeq t_{j} \\
1 \leq i \leq k
\end{array}
$$

where (i) c_{i} are fresh constants for t_{i} and α, (ii) $k=n$ for the first application of rule for $\alpha(x)$ and $f(x)$, otherwise k and c_{i} are reused

TERMINATION AND COMPLEXITY ANALYSIS

- Every application of the rule can increase the number of constants by at most a polynomial factor
- There are at most exponentially many applications possible (exponentially many pairs $\alpha(x)$ and $f(x)$)

NOMINAL GENERATION

$$
\begin{array}{r}
\alpha(x) \vee \bigvee_{i=1}^{n} f(x) \simeq t_{i} \\
\hline \alpha(x) \vee \bigvee_{i=1}^{k} f(x) \simeq c_{i} \\
\alpha(x) \vee \bigvee_{j=1}^{n} c_{i} \simeq t_{j} \\
1 \leq i \leq k
\end{array}
$$

where (i) c_{i} are fresh constants for t_{i} and α, (ii) $k=n$ for the first application of rule for $\alpha(x)$ and $f(x)$, otherwise k and c_{i} are reused

TERMINATION AND COMPLEXITY ANALYSIS

- Every application of the rule can increase the number of constants by at most a polynomial factor
- There are at most exponentially many applications possible (exponentially many pairs $\alpha(x)$ and $f(x)$)

NOMINAL GENERATION

$$
\begin{array}{r}
\alpha(x) \vee \bigvee_{i=1}^{n} f(x) \simeq t_{i} \\
\hline \alpha(x) \vee \bigvee_{i=1}^{k} f(x) \simeq c_{i} \\
\alpha(x) \vee \bigvee_{j=1}^{n} c_{i} \simeq t_{j} \\
1 \leq i \leq k
\end{array}
$$

where (i) c_{i} are fresh constants for t_{i} and α, (ii) $k=n$ for the first application of rule for $\alpha(x)$ and $f(x)$, otherwise k and c_{i} are reused

- Hence the procedure terminates, with the upper bound: 3EXPTIME

Why Is It So Hard?

■ In $\mathcal{S H O \mathcal { L } \mathcal { Q }}$ it is possible to express very large cardinality restrictions like $|C| \leq 2^{2^{n}},|D| \geq 2^{2^{m}}$.

Why Is It So Hard?

■ In $\mathcal{S H O \mathcal { I } \mathcal { Q }}$ it is possible to express very large cardinality restrictions like $|C| \leq 2^{2^{n}},|D| \geq 2^{2^{m}}$.

- Hence, it is possible to encode combinatorial constraints involving very big numbers:

ExAMPLE

$$
|\mathrm{A} \sqcup \mathrm{~B}| \leq 2^{2^{n}},|\mathrm{~A} \sqcup \mathrm{C}| \geq 2^{2^{m}+k},|\mathrm{~B} \sqcup \mathrm{C}| \geq 2^{2^{k}},|C| \leq 2^{n}
$$

Why Is It So Hard?

■ In $\mathcal{S H O \mathcal { I } \mathcal { Q }}$ it is possible to express very large cardinality restrictions like $|C| \leq 2^{2^{n}},|D| \geq 2^{2^{m}}$.

■ Hence, it is possible to encode combinatorial constraints involving very big numbers

- Such problems (in particular, the pigeon hole principle) are known to be hard for resolution since it is not really capable to deal with numbers

Conclusions

■ We have found a decision procedure for $\mathcal{S H O \mathcal { I } \mathcal { Q } \text { based on }}$ basic superposition calculus which runs in 3ExpTime
■ High complexity is due to combination of: nominals + number restrictions + inverse roles

- The restriction of the procedure to simpler languages ($\mathcal{S H O} \mathcal{H} \mathcal{Q}, \mathcal{A L C}$) behaves like procedures known before
■ hence it exhibits "pay as you go" behaviour
- The restricted version for $\mathcal{S H \mathcal { H } \mathcal { Q }}$ has proved itself in practice in system KAON2 ${ }^{1}$
■ No additional degree of non-determinism is introduced by Nominal Generation rules
- Future developments: Integration of algebraic reasoning into resolution?
${ }^{1}$ http://www.kaon2.semanticweb.org

Thank You!

Comparison with the Tableau Procedure

- Constants introduced by Nominal Generation correspond (in some way) to "nominal nodes".
- The exact number of different constants is not guessed, but equality constraints are generated
- "Blocking" is native in resolution by subsumption deletion
■ No "yo-yo" effect in resolution, since deletion of clauses is permanent

(A picture from the presentation by Horrocks \& Sattler on
"A Tableau Decision Procedure for SHOIQ" [2005])

