Using Redundancy and Basicness for Obtaining Decision Procedures for Fragments of FO-logic

Yevgeny Kazakov

Plan of the Talk

I. Fragments of FO-logic II. Decision procedures III. Redundancy and Basicness

10-12 December, 2003

I. Fragments of FO-logic

10-12 December, 2003

Fragments of FO-logic

- Many problems from different fields can be naturally represented in FO-logic:
 - Knowledge representation (description logics)
 - Planning
 - Formal linguistics
 - Relational databases

Fragments of FO-logic

Example. The Basic Description Logic:

 $\mathcal{ALC} ::= A \mid C_1 \sqcap C_2 \mid C_1 \sqcup C_2 \mid \neg C \mid \forall R.C \mid \exists R.C.$

- where C, C_1 , C_2 concepts (unary relations) build from:
- A basic concepts (initial sets) and
- R roles (binary relations).
- Reasoning problem: Concept Subsumption

Fragments of FO-logic

Description logic as FO-fragment:

 $\mathcal{ALC} ::= A$ $C_1 \sqcap C_2$ $C_1 \sqcup C_2$ $\neg C$ $\forall R.C$ $\exists R.C.$ **Subsumption**

 $|A(x) = :: \mathcal{FO}[\mathcal{ALC}]$ $|C_1(x) \wedge C_2(x)|$ $|C_1(x) \lor C_2(x)|$ $|\neg C(x)$ $\forall y.(R(x,y) \rightarrow C(y))$ $\exists y.(R(x,y) \land C(y)).$

Entailment Problem: $C(x) \rightarrow D(x)$

II. Decision procedures

- How to explain good computational properties of description logics?
 - "Good" model properties:
 - Finite model property
 - Tree model property
- Basis for Tableau-based decision procedures.

 $\exists S | . A \sqcap$

 $\exists R \mid \exists S.A \sqcap$

 $R \mid \exists S.(\neg A \sqcap B)$

R

- Extensions of description-like logics are harder to handle:
 - $\mathcal{ALC} + O$ nominals (one-element sets) + $S \square R$ - role hierarchies + Transitive(R) - transitive roles + $\exists \leq n R.C, \exists \geq n R.C$ - counting
 - UML class diagramms
 - \mathcal{OWL} ontology language for semantic web

- Extensions of description-like logics are harder to handle:
 - ALC + counting no finite model property;
 - ALC + transitive roles no tree model property;
 - *ALC* + counting + transitive roles + unrestricted role hierarhcies - undecidable
 - Decision procedures rely on heavy modeltheoretic analysis:
 - "Good" model representation property

- Alternative approach: use general theorem provers for FO-logic.
 - Advantage:
 - No need to invent anything;
 - Soundness and completeness are guarantied;
 - Easy to implement: just write a translator to FO-logic and use existing theorem provers.
 - However:
 - Still need to prove termination.
 - Relatively slow in comparison to specialized decision procedures.

Saturation-based Decision Procedures

 $A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z); \neg B(c) \lor \neg H(f(x),x) \lor \neg A(x);$ $B(y) \lor \neg D(z) \lor E(x,z); \neg B(c) \lor \neg H(f(x),x) \lor \neg A(x);$ $C(fx) \lor \neg B(gy) \lor E(x,y); A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z);$ $C(fx) \lor \neg B(gy) \lor E(x,y); A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z);$ $\neg B(c) \lor \neg H(f(x), x) \lor \neg A(x); C(fx) \lor \neg B(gy) \lor E(x, y);$ $\neg B(c) \lor \neg H(f(x), x) \lor \neg A(x); A(x) \lor \neg B(fx) \lor C(y);$ $A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z); \neg B(c) \lor \neg H(f(x),x) \lor \neg A(x);$ $B(y) \lor \neg D(z) \lor E(x,z); \neg B(c) \lor \neg H(f(x),x) \lor \neg A(x);$ $C(fx) \lor \neg B(y) \lor \neg B(f) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z);$ $C(fx) \lor \neg B(gy) \lor E(x,y) = (fx) \neg B(gy) \lor E(x,y)$ $\neg B(c) \lor \neg H(x), x) \lor \neg A(z),$ $B(y) \neg D(z) \lor E(x,z);$ $\vee \nabla \neg B(fx) \vee$ $B(y) \vee = E z) \vee E$ $A(x) \lor \neg B(fx) \lor \neg$ $f(x), x) \vee \neg A(x)$ VE(, y); $) \lor C(y); B(y) \lor \neg D(y) \lor I(x,z); \neg B(y) \lor \neg H(f(x),x) \lor \neg A(x);$ $C(fx) \lor \neg B(gy) \lor E(x,y); A(x) \lor$ B(f) $\lor VC(y)$ $C(fx) \lor B(gy) \lor E(x,y); D(gy) \lor \neg D(z) \lor D(x,z); \neg D(c) \lor \neg H(f(x),x) \lor \neg A(x);$ $\neg B(c) \lor \neg H(f(x), w) \lor \neg A(w) \lor (w) \lor ($ $C(fx) \lor \neg B(gy) \lor E(x,y); A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z);$ $C(fx) \lor \neg B(gy) \lor E(x, y); C(fx) \lor \neg B(gy) \lor E(x, y);$ $\neg B(c) \lor \neg H(f(x), x) \lor \neg A(x); C(fx) \lor \neg B(gy) \lor E(x, y);$ $A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z); \neg B(c) \lor \neg H(f(x),x) \lor \neg A(x);$ $C(fx) \lor \neg B(gy) \lor E(x,y); A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z);$ $C(fx) \lor \neg B(gy) \lor E(x,y); A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z);$ $\neg B(c) \lor \neg H(f(x), x) \lor \neg A(x); C(fx) \lor \neg B(gy) \lor E(x, y);$ $\neg B(c) \lor \neg H(f(x), x) \lor \neg A(x); C(fx) \lor \neg B(gy) \lor E(x, y);$ $A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z); \neg B(c) \lor \neg H(f(x),x) \lor \neg A(x);$ $A(x) \lor \neg B(fx) \lor C(y); B(y) \lor \neg D(z) \lor E(x,z); \neg B(c) \lor \neg H(f(x),x) \lor \neg A(x);$

10-12 December, 2003

The Guarded Fragment

Saturating the Guarded Fragment

Guarded Fragment With Transitivity

- Transitivity and functionality axioms are outside the Guarded Fragment.
- Does GF loose decidability when some predicates are allowed to be transitive, or functional?
 - YES [Grädel,1999]: <u>GF³ with one functional or</u> transitive predicate is <u>undecidable</u>.
- How to explain decidability of modal and description logics with transitivity?
 - [Ganzinger et al.,1999]: <u>GF²[T] is undecidable, but</u> monadic-GF²[T] is decidable.

16

Guarded Fragment With Transitivity

- Is GF decidable when transitive predicates can appear in guards only? => [GF+TG]?
- > What is the complexity of monadic-GF[T]?
- [Szwast,Tendera,2001]: [GF+TG] is in DEXPTIME, monadic-GF[T] is NEXPTIME-hard.
- ≻[Kierionski,2002,2003]: [GF+TG→] is EXPSPACEhard, [GF+TG] is DEXPTIME-hard.

III. Redundancy and Basicness

10-12 December, 2003

Why Transitivity Is Hard?

Consider the resolution inferences with transitivity: $\begin{bmatrix}
1. & \neg xTy \lor \neg yTz \lor xTz; \\
2. & \neg \alpha(x) \lor \underline{f_T(x)Tx}; \\
OR[1;2]: & 3. & \neg \alpha(x) \lor \neg xTz_1 \lor \underline{f_T(x)Tz_1}; \\
OR[1;3]: & 4. & \neg \alpha(x) \lor \neg xTz_1 \lor \neg z_1Tz_2 \lor \underline{f_T(x)Tz_2}; \\
OR[1;4]: & 5. & \neg \alpha(x) \lor \neg xTz_1 \lor \neg z_1Tz_2 \lor \neg z_2Tz_3 \lor \underline{f_T(x)Tz_3};
\end{bmatrix}$

> The clause 4 can be obtained another way:

- 1. $\neg xTz_1 \lor \neg z_1Tz_2 \lor xTz_2; \quad \forall \neg f_T(x)Tz_1 \lor \neg z_1Tz_2 \lor f_T(x)Tz_2; \\ \exists \cdot \neg \alpha(x) \lor \neg xTz_1 \lor f_T(x)Tz_1;$
 - $\Rightarrow 4. \neg \alpha \overline{(x)} \lor \neg x T z_1 \lor \neg z_1 T z_2 \lor f_T(x) T z_2;$

> With the smaller instance of transitivity clause!

Redundancy

- Abstract notion of redundancy [Bachmair,Ganzinger,1990]:
 - A ground clause C is redundant w.r.t. a set of ground clauses N if $N_{\prec C} \vdash C$;
 - An inference $C_1, C_2 \vdash C$ is redundunt w.r.t. N if $N_{\prec max(C_1,C_2)} \vdash C$.

➤ How to show that inference is redundant?
Lemma [Four Clauses] The inference $C_1 \lor C_2 \lor \underline{A}, D_1 \lor D_2 \lor \neg \underline{A} \vdash C_1 \lor C_2 \lor D_1 \lor D_2$ is redundant w.r.t. $C_1 \lor D_1 \lor B, C_2 \lor D_2 \lor \neg B \in N$ with $A \prec B$.

Redundancy

1.
$$\neg xTy \lor \neg yTz \lor xTz;$$

3. $\neg \alpha(x) \lor \neg xTz_1 \lor \underline{f_T(x)Tz_1};$
 $OR[1;3]: 1a: \neg \underline{f_T(s)Tt} \lor \neg tTh \lor \underline{f_T(s)Th};$
 $3a: \neg \alpha(s) \lor \neg sTt \lor \underline{f_T(s)Tt};$
 $\Rightarrow \neg \alpha(s) \lor \neg sTt \lor \neg tTh \lor \underline{f_T(s)Th};$
And by: 1b: $\neg sTt \lor \neg tTh \lor \underline{sTh};$
 $3b: \neg \alpha(s) \lor \neg \underline{sTh} \lor \underline{f_T(s)Th};$
 \Rightarrow Inferece redundant by
Lemma [Four Clauses] since
 $\underline{f_T(s)Tt} \succ sTt!$

Basicness

 $s\sigma$, and

Ordered Paramodulation.

$$OP: \frac{C \lor \underline{s} \simeq t \quad D \lor L[\underline{s'}]}{C \sigma \lor D \sigma \lor L[t] \sigma}$$
where (i) $\sigma = mgu(s, s')$, (ii) $s \simeq t$ and

eligible, (iii) $t\sigma$

(iv)' s' is not below a substitutional position.

This restriction can be strengthen to basicness:.

¥

1.
$$\neg xTy \lor \neg yTz \lor xTz;$$

2. $\neg \alpha(x) \lor \underline{f_T(x)Tx}; \leftarrow "$ Source" of f_T
OR[1;2]: 3. $\neg \alpha(x) \lor \neg xTz_1 \lor \underline{f_T(x)Tz_1};$

V

L[s']

are

(iv) s' is not a variable.

Basicness

- Only paramodulation to the "source" of Skolem function is needed.
 - Helps to avoid the "dangerous" paramodulation inferences:

3.
$$\neg a(x) \lor \underline{f_T(x)Tx};$$

 $C : \neg xTy \lor \alpha(x) \lor \beta(y) \lor \underline{f_T(x) \simeq y};$
 $D : \neg xTz \lor \alpha'(x) \lor \beta'(z) \lor \underline{f_T(x) \simeq z};$

 Eligible paramodulation inferences produce redundant clauses only.

Conclusions

- ➤ Using advanced refinements of saturation-based procedures it is possible establish decidability and complexity results for very expressive fragments of FO-logic.
 - In particular, decidability of [GF+TG] can be established using redundancy and basicness.
 - Basicness is important: allowing conjunctions of transitive relations in guards leads to undecidability.
- New perspectives for designing saturation-based decision procedures.

Thank you

10-12 December, 2003