

ONTOLOGY REUSE: BETTER SAFE THAN SORRY

Bernardo Guenca Grau, Ian Horrocks, Yevgeny Kazakov and Ulrike Sattler

The University of Manchester

June 8, 2007

REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

 Currently DL-based tools provide reasoning support for development of ontologies as monolithic objects :

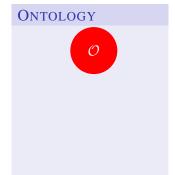
< 17 ×

3 1 4 3

- 12

REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

- Currently DL-based tools provide reasoning support for development of ontologies as monolithic objects :
 - Checking global consistency



< 17 ×

(4) (3) (4) (4) (4)

- 12

REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

- Currently DL-based tools provide reasoning support for development of ontologies as monolithic objects :
 - Checking global consistency
 - Detecting unsatisfiable classes

• (1) • (1) • (1)

REASONING SUPPORT FOR ONTOLOGY DEVELOPMENT

- Currently DL-based tools provide reasoning support for development of ontologies as monolithic objects :
 - Checking global consistency
 - Detecting unsatisfiable classes
 - Detecting unintended subsumptions

A (10) A (10)

- 14

- Currently DL-based tools provide reasoning support for development of ontologies as monolithic objects :
 - Checking global consistency
 - Detecting unsatisfiable classes
 - Detecting unintended subsumptions
- (No?) reasoning support for modular development of ontologies:

A (10) A (10) A (10)

- 31

- Currently DL-based tools provide reasoning support for development of ontologies as monolithic objects :
 - Checking global consistency
 - Detecting unsatisfiable classes
 - Detecting unintended subsumptions
- (No?) reasoning support for modular development of ontologies:
 - Build big ontologies from smaller once

- Currently DL-based tools provide reasoning support for development of ontologies as monolithic objects :
 - Checking global consistency
 - Detecting unsatisfiable classes
 - Detecting unintended subsumptions
- (No?) reasoning support for modular development of ontologies:
 - Build big ontologies from smaller once
 - Collaboratively

- Currently DL-based tools provide reasoning support for development of ontologies as monolithic objects :
 - Checking global consistency
 - Detecting unsatisfiable classes
 - Detecting unintended subsumptions
- (No?) reasoning support for modular development of ontologies:
 - Build big ontologies from smaller once
 - Collaboratively
 - In a modular way

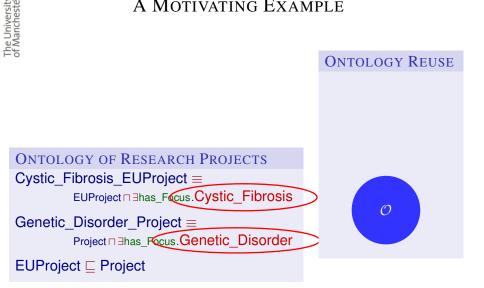
A MOTIVATING EXAMPLE

ONTOLOGY REUSE

ONTOLOGY OF RESEARCH PROJECTS Cystic_Fibrosis_EUProject ≡ EUProject □ ∃has_Focus.Cystic_Fibrosis Genetic_Disorder_Project ≡ Project □ ∃has_Focus.Genetic_Disorder

EUProject
Project

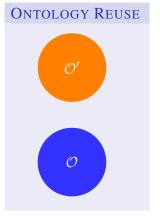
▲冊▶▲≣▶★≣▶ ≣|= のQ@



°ONTOLOGY OF MEDICAL TERMS Genetic_Disorder $\equiv \dots$ Cystic_Fibrosis $\equiv \dots$

ONTOLOGY OF RESEARCH PROJECTS Cystic_Fibrosis_EUProject ≡ EUProject□∃has_Focus.Cystic_Fibrosis Genetic_Disorder_Project ≡ Project□∃has_Focus.Genetic_Disorder

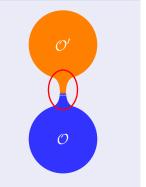
EUProject
Project



°ONTOLOGY OF MEDICAL TERMS Genetic_Disorder $\equiv \dots$ Cystic_Fibrosis $\equiv \dots$

ONTOLOGY OF RESEARCH PROJECTS Cystic_Fibrosis_EUProject ≡ EUProject□∃has_Focus.Cystic_Fibrosis Genetic_Disorder_Project ≡ Project□∃has_Focus.Genetic_Disorder

EUProject
Project



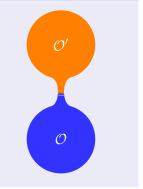
°ONTOLOGY OF MEDICAL TERMS Genetic_Disorder $\equiv \dots$ Cystic_Fibrosis $\equiv \dots$

⊨ Cystic_Fibrosis ⊑ Genetic_Disorder

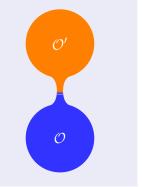
ONTOLOGY OF RESEARCH PROJECTS Cystic_Fibrosis_EUProject ≡ EUProject □ ∃has_Focus.Cystic_Fibrosis Genetic Disorder Project ≡

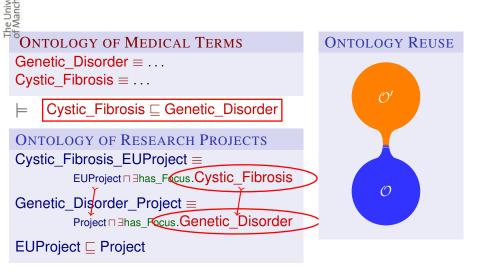
Project □ ∃has_Focus.Genetic_Disorder

EUProject C Project



⊨ Cystic_Fibrosis ⊑ Genetic_Disorder



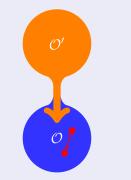


(日本) (日本) (日本) (日本)

Cystic_Fibrosis
Genetic_Disorder

```
ONTOLOGY OF RESEARCH PROJECTS
Cystic_Fibrosis_EUProject ≡
EUProject□∃has_Focus.Cystic_Fibrosis
Genetic_Disorder_Project ≡
Project□∃has_Focus.Genetic_Disorder
```

EUProject
Project



Cystic_Fibrosis_EUProject ⊑ Genetic_Disorder_Project

°ONTOLOGY OF MEDICAL TERMS Genetic_Disorder $\equiv \dots$ Cystic_Fibrosis $\equiv \dots$

⊨ Cystic_Fibrosis ⊑ Genetic_Disorder

```
ONTOLOGY OF RESEARCH PROJECTS

Cystic_Fibrosis_EUProject ≡

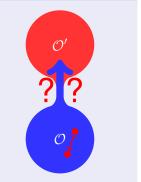
EUProject□∃has_Focus.Cystic_Fibrosis

Genetic_Disorder_Project ≡ ∫

Project□∃has_Focus.Genetic_Disorder

EUProject ⊑ Project
```

ONTOLOGY REUSE

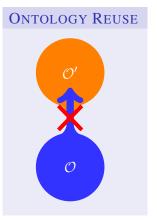


⊨ Cystic_Fibrosis_EUProject ⊑ Genetic_Disorder_Project

WHY IS IT IMPORTANT TO PRESERVE THE MEANING OF THE IMPORTED ONTOLOGY?

Keeping the ontologies modular:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly

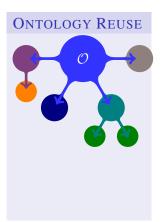


A (10) A (10)

WHY IS IT IMPORTANT TO PRESERVE THE MEANING OF THE IMPORTED ONTOLOGY?

Keeping the ontologies modular:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly
- 2 Facilitates modular development of ontologies

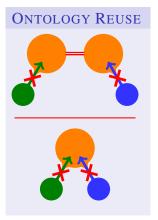


A (10) A (10)

WHY IS IT IMPORTANT TO PRESERVE THE MEANING OF THE IMPORTED ONTOLOGY?

Keeping the ontologies modular:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly
- 2 Facilitates modular development of ontologies
 - Ontologies that use safely the same ontology can be safely combined

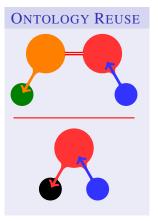


・ロト ・日 ・ ・ ヨ

WHY IS IT IMPORTANT TO PRESERVE THE MEANING OF THE IMPORTED ONTOLOGY?

Keeping the ontologies modular:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly
- 2 Facilitates modular development of ontologies
 - Ontologies that use not safely the same ontology might not be safely combined

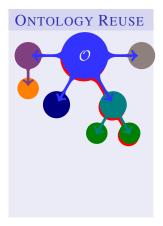


A (10) × (10) × (10)

WHY IS IT IMPORTANT TO PRESERVE THE MEANING OF THE IMPORTED ONTOLOGY?

1 Keeping the ontologies modular:

- Every ontology developer is responsible for his own domain
- The ontology which is merely reused, is not supposed to change even implicitly
- 2 Facilitates modular development of ontologies
 - Ontologies that use safely the same ontology can be safely combined
 - The developer of every ontologies can work independantly and only with ontologies that are imported.



• E

FORMALISING "SAFE REUSE OF ONTOLOGIES"

ONTOLOGY REUSE

0'

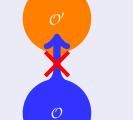
INFORMALLY DEFINITION

An ontology \mathcal{O} safely reuses ontology \mathcal{O}' if \mathcal{O} does not change the "meaning" of the reused symbols from \mathcal{O}' during the import.

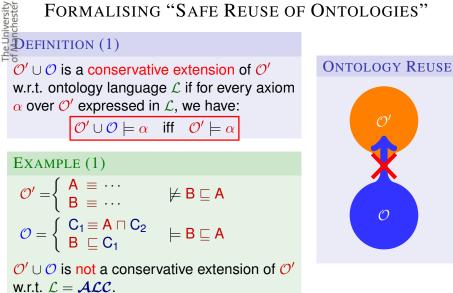
FORMALISING "SAFE REUSE OF ONTOLOGIES" DEFINITION (1) $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have: $\mathcal{O}' \cup \mathcal{O} \models \alpha$ iff $\mathcal{O}' \models \alpha$

INFORMALLY DEFINITION

An ontology \mathcal{O} safely reuses ontology \mathcal{O}' if \mathcal{O} does not change the "meaning" of the reused symbols from \mathcal{O}' during the import.

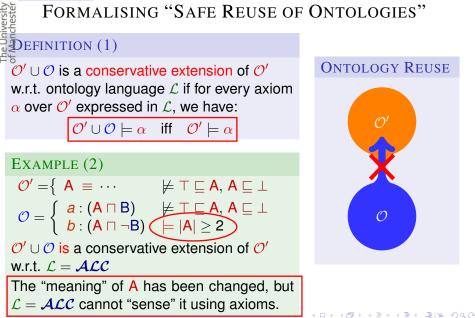


(日本) (日本) (日本) (日本)



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

FORMALISING "SAFE REUSE OF ONTOLOGIES" DEFINITION (1)**ONTOLOGY REUSE** $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if for every axiom α over \mathcal{O}' expressed in \mathcal{L} , we have: $\mathcal{O}' \cup \mathcal{O} \models \alpha \quad \text{iff} \quad \mathcal{O}' \models \alpha$ EXAMPLE (2) $\mathcal{O}' = \{ \mathsf{A} \equiv \cdots \}$ $\not\models \top \sqsubseteq \mathsf{A}, \mathsf{A} \sqsubseteq \bot$ $\mathcal{O} = \left\{ \begin{array}{ll} a : (\mathsf{A} \sqcap \mathsf{B}) \\ b : (\mathsf{A} \sqcap \neg \mathsf{B}) \end{array} \middle| \nvDash \top \sqsubseteq \mathsf{A}, \mathsf{A} \sqsubseteq \bot \right.$ () $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. $\mathcal{L} = \mathcal{ALC}$



FORMALISING "SAFE REUSE OF ONTOLOGIES"

DEFINITION (2)

 $\mathcal{O}' \cup \mathcal{O}$ is a model conservative extension of \mathcal{O}' w.r.t. ontology language \mathcal{L} if every model of \mathcal{O}' can be expanded to a model of $\mathcal{O}' \cup \mathcal{O}$:

 $\forall \mathcal{I} \models \mathcal{O}' \exists \mathcal{J} \models \mathcal{O} : \mathcal{I}|_{\mathcal{O}'} = \mathcal{J}|_{\mathcal{O}'}$

EXAMPLE (2) $\mathcal{O}' = \{ A \equiv \cdots \quad \not\models \top \sqsubseteq A, A \sqsubseteq \bot$ $\mathcal{O} = \{ \begin{array}{l} a : (A \sqcap B) \quad \not\models \top \sqsubseteq A, A \sqsubseteq \bot$ $b : (A \sqcap \neg B) \quad \models |A| \ge 2$ $\mathcal{O}' \cup \mathcal{O} \text{ is a conservative extension of } \mathcal{O}'$ w.r.t. $\mathcal{L} = \mathcal{ALC}$, but not model conservative The "meaning" of A has been changed, but $\mathcal{L} = \mathcal{ALC}$ cannot "sense" it using axioms.

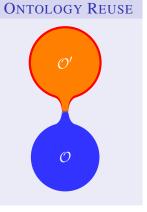
ONTOLOGY REUSE



・ロト < 団ト < 豆ト < 豆ト < 三日 < のへの

SAFETY FOR EVOLVING ONTOLOGIES

■ Ontologies are developed ⇒ evolve



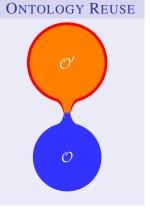
3 1 4 3

▶ 크네님

< 172 ▶

SAFETY FOR EVOLVING ONTOLOGIES

■ Ontologies are developed ⇒ evolve



3 1 4 3

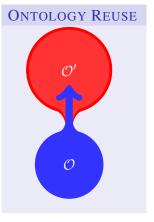
▶ 크네님

< - 10 → 1

MANCHESTER 1824

SAFETY FOR EVOLVING ONTOLOGIES

- Ontologies are developed ⇒ evolve
- Even if O is importing safely one version of O', this might no longer hold for another version



MANCHESTER 1824

SAFETY FOR EVOLVING ONTOLOGIES

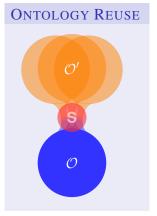
- he Universi f Manchest
- Ontologies are developed ⇒ evolve
- Even if O is importing safely one version of O', this might no longer hold for another version
- Instead of focusing on the reused ontology one could focus just on the reused symbols and treat the ontology as a "black box".

ONTOLOGY REUSE

SAFETY OF AN ONTOLOGY FOR A SIGNATURE

DEFINITION (SAFETY FOR A SIGNATURE)

 \mathcal{O} is safe for a signature **S** w.r.t. an ontology language \mathcal{L} if for every \mathcal{O}' formulated over \mathcal{L} with $Sg(\mathcal{O}') \cap Sg(\mathcal{O}) \subseteq S$, we have that $\mathcal{O} \cup \mathcal{O}'$ is a conservative extension of \mathcal{O}' .



MANCHESTER 1824

SAFETY OF AN ONTOLOGY FOR A SIGNATURE

DEFINITION (SAFETY FOR A SIGNATURE)

 \mathcal{O} is safe for a signature **S** w.r.t. an ontology language \mathcal{L} if for every \mathcal{O}' formulated over \mathcal{L} with $Sg(\mathcal{O}') \cap Sg(\mathcal{O}) \subseteq S$, we have that $\mathcal{O} \cup \mathcal{O}'$ is a conservative extension of \mathcal{O}' .

THEOREM (SUFFICIENT CONDITION)

An ontology \mathcal{O} is safe for a signature **S** if for every interpretation \mathcal{I} there exists a model \mathcal{J} of \mathcal{O} which coincides with \mathcal{I} on **S**:

 $\forall \, \mathcal{I} \, \exists \, \mathcal{J} \models \mathcal{O} : \, \mathcal{I}|_{\mathbf{S}} = \mathcal{J}|_{\mathbf{S}}$

ONTOLOGY REUSE \mathcal{O}' S \mathcal{O}

・ 同 ト ・ 日 ト ・ 日 日

MANCHESTER 1824

The University of Manchester

DECIDING SAFETY: HOW HARD IS IT?

- Checking if $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. \mathcal{L} :
 - is 2-EXPTIME-complete for $\mathcal{L} = \mathcal{ALCQI}$

[Ghilardi, Lutz & Wolter, 2006]

• is uncecidable for $\mathcal{L} = \mathcal{ALCQIO}$

[Lutz, Walther & Wolter, 2007]

A (10) A (10)

MANCHESTER

DECIDING SAFETY: HOW HARD IS IT?

- Checking if $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. \mathcal{L} :
 - is 2-EXPTIME-complete for $\mathcal{L} = \mathcal{ALCQI}$
 - [Ghilardi, Lutz & Wolter, 2006]
 - is uncecidable for $\mathcal{L} = \mathcal{ALCQIO}$

[Lutz, Walther & Wolter, 2007]

■ Checking if O' ∪ O is a model-conservative extension of O' is highly undecidable for ALC-ontologies.

[Ghilardi, Lutz & Wolter, 2006]

A (10) A (10)

▶ Ξ Ξ • • • • •

MANCHESTER

he Universit Manchesté

DECIDING SAFETY: HOW HARD IS IT?

- Checking if $\mathcal{O}' \cup \mathcal{O}$ is a conservative extension of \mathcal{O}' w.r.t. \mathcal{L} :
 - is 2-EXPTIME-complete for $\mathcal{L} = \mathcal{ALCQI}$
 - [Ghilardi, Lutz & Wolter, 2006] is uncecidable for $\mathcal{L} = \mathcal{ALCQIO}$

[Lutz, Walther & Wolter, 2007]

• Checking if $\mathcal{O}' \cup \mathcal{O}$ is a model-conservative extension of \mathcal{O}' is highly undecidable for \mathcal{ALC} -ontologies.

[Ghilardi, Lutz & Wolter, 2006]

THEOREM (UNDECIDABILITY FOR SAFETY)

Given and ALC-ontology O and a signature S, it is *undecidable* whether O is safe for S w.r.t. $\mathcal{L} = ALCO$.

PROOF.

Reduction to the domino tiling problems.

LOCALITY: SAFER THAN THE SAFEST SAFETY

The main idea:

- To prove that O is safe for S it is sufficient to extend any interpretation I of symbols from S to a model of O
- Let us try to extend *I* by interpreting every new symbol as the empty set

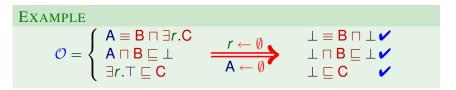
▶ 글(글)

A (10) A (10)

LOCALITY: SAFER THAN THE SAFEST SAFETY

The main idea:

- To prove that O is safe for S it is sufficient to extend any interpretation I of symbols from S to a model of O
- Let us try to extend *I* by interpreting every new symbol as the empty set

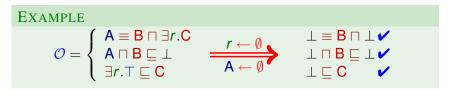


< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

LOCALITY: SAFER THAN THE SAFEST SAFETY

The main idea:

- To prove that O is safe for S it is sufficient to extend any interpretation I of symbols from S to a model of O
- Let us try to extend *I* by interpreting every new symbol as the empty set



DEFINITION (LOCALITY FOR $\mathcal{L} = \mathcal{SHOIQ}$)

An ontology \mathcal{O} is local w.r.t. **S** if $\mathcal{J} \models \mathcal{O}$ for every \mathcal{J} which interpret all concept and role names not in **S** as the empty set.

The University of Manchester

PROPERTIES OF LOCALITY

+ If every \mathcal{O} is local w.r.t. **S** then \mathcal{O} is safe for **S**:

Yevgeny Kazakov Ontology Reuse: Better Safe than Sorry

A B > A B > A B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Safe Ontology Reuse

PROPERTIES OF LOCALITY

- + If every \mathcal{O} is local w.r.t. **S** then \mathcal{O} is safe for **S**:
- + Checking locality can be done using any standard DL-reasoner.

-

< 同 > < 回 > < 回

PROPERTIES OF LOCALITY

- + If every \mathcal{O} is local w.r.t. **S** then \mathcal{O} is safe for **S**:
- + Checking locality can be done using any standard DL-reasoner.
- + There is a sufficient syntactical condition for locality which can be verified in polynomial time.

JI SOCO

A (10) A (10)

MANCHESTER 1824

The University of Manchester

IMPERIAL EVALUATION

- We have implemented our algorithm and tried it on a library of 300 OWL ontologies.
- It turned out that in almost all cases when OWL ontologies import each other our syntactic locality conditions hold
 - 1 There are 96 ontologies that import others
 - 2 All except for 11 enjoy our syntactical conditions
 - 3 Among non-local, 7 are written in OWL-Full
 - 4 In the remaining 4 the problem is caused by mapping axioms
 - $A \equiv B$ and can be fixed by replacing A with B in O.

CONCLUSIONS

- We formalized the requirements for safe ontology reuse using the notions of conservative extensions
- We proved that safety is undecidable for extensions of ALCO
- We formulated sufficient conditions for safety using the semantic and syntactic localities
- Preliminary empirical evaluation is encouraging
- B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U.Sattler. A logical framework for modularity of ontologies. In Proc. of IJCAI 2007
- 2 B. Cuenca Grau, I. Horrocks, Y. Kazakov, and U. Sattler. Just the right amout: Extracting modules from ontologies. In Proc. of WWW 2007

MANCHESTER

Syntactic Locality

SYNTACTIC LOCALITY $C^{\emptyset} ::= A^{\emptyset} | C^{\emptyset} \sqcap C | C^{\emptyset} \sqcup C^{\emptyset} | \neg C^{\Delta} | \exists r^{\emptyset} \cdot C | \exists r \cdot C^{\emptyset}$ $C^{\Delta} ::= C^{\Delta} \sqcup C | C^{\Delta} \sqcap C^{\Delta} | \neg C^{\emptyset} | \forall r^{\emptyset} \cdot C | \forall r \cdot C^{\Delta}$ $Ax_synt_local ::= C^{\emptyset} \sqsubseteq C | C \sqsubseteq C^{\Delta}$

The University of Manchester

MANCHESTER 1824

The University of Manchester

OTHER LOCALITY CONDITIONS

Other locality conditions can be defined by choosing different ways to interpret the symbols that are not in **S**:

EXAMPLES AND COMPARISON OF DIFFERENT LOCALITIES

r ←	Ø	$\Delta imes \Delta$	id	Ø	$\Delta imes \Delta$	id
$A \leftarrow$	Ø	Ø	Ø	Δ	Δ	Δ
$A \equiv B \sqcap \exists r.C$	 Image: A start of the start of	1	1	X	×	X
A ⊓ C ⊑ ⊥	1	1	1	×	×	X
$\exists r. \top \sqsubseteq A$	1	×	×	1	\checkmark	\checkmark
Functional(r)	1	×	1	1	×	\checkmark
<u>a</u> : A	×	×	×	\checkmark	\checkmark	\checkmark
r(<i>a</i> ,b)	×	1	×	×	\checkmark	X
∀ <i>r</i> .C ⊑ ∃r.D	X	×	X	X	×	×

▶ 글(글)

• (1) • (1) • (1)