Complexity Bounds for Regular Games

Paul Hunter¹ and Anuj Dawar²

¹Institut für Informatik Humboldt University, Berlin

²Computer Laboratory University of Cambridge

Mathematical Foundations of Computer Science, 2005

- Regular games: History and Motivation
- Condition types: Translations and Succinctness
- Completeness results
- Consequences and further work

An infinite game (V, E, Win) consists of:

- Two players Player 0 and Player 1
- An arena (V, E), and
- A winning condition $Win \subseteq V^{\omega}$.

Player 0 and Player 1 alternately move a token around (V, E) for an infinite number of moves generating an infinite sequence of vertices $\pi \in V^{\omega}$.

Player 0 wins if and only if $\pi \in Win$.

An infinite game (V, E, Win) consists of:

- Two players Player 0 and Player 1
- An arena (V, E), and
- A winning condition $Win \subseteq V^{\omega}$.

Player 0 and Player 1 alternately move a token around (V, E) for an infinite number of moves generating an infinite sequence of vertices $\pi \in V^{\omega}$.

Player 0 wins if and only if $\pi \in Win$.

An infinite game (V, E, Win) consists of:

- Two players Player 0 and Player 1
- An arena (V, E), and
- A winning condition $Win \subseteq V^{\omega}$.

Player 0 and Player 1 alternately move a token around (V, E) for an infinite number of moves generating an infinite sequence of vertices $\pi \in V^{\omega}$.

Player 0 wins if and only if $\pi \in Win$.

A game (V, E, Win) is regular if there exists $\mathcal{F} \subseteq 2^V$ such that

 $\pi \in \operatorname{Win} \iff \inf(\pi) \in \mathcal{F}$

where $inf(\pi)$ is the set of vertices occurring infinitely often in π .

A game (V, E, Win) is regular if there exists $\mathcal{F} \subseteq 2^V$ such that

$$\pi \in \operatorname{Win} \iff \inf(\pi) \in \mathcal{F}$$

where $inf(\pi)$ is the set of vertices occurring infinitely often in π .

Close connections with infinite automata

- Equivalent to infinite alternating automata
- Used to show equivalence of Muller, Rabin and Parity tree automata, giving
 - Complementation of languages defined by Rabin tree automata
 - Decidability of S2S, SnS, Muller acceptance, ...

Close connections with infinite automata

- Equivalent to infinite alternating automata
- Used to show equivalence of Muller, Rabin and Parity tree automata, giving
 - Complementation of languages defined by Rabin tree automata
 - Decidability of S2S, SnS, Muller acceptance, ...

A regular game is:

- Determined (Martin, 1975)
- Decidable (McNaughton, 1993)

Decision Problem

Given a regular game (V, E, Win) and a starting position $v \in V$ does Player 0 win from v?

A regular game is:

- Determined (Martin, 1975)
- Decidable (McNaughton, 1993)

Decision Problem

Given a regular game (V, E, Win) and a starting position $v \in V$ does Player 0 win from v?

A regular game is:

- Determined (Martin, 1975)
- Decidable (McNaughton, 1993)

Decision Problem

Given a regular game (V, E, Win) and a starting position $v \in V$ does Player 0 win from v?

 $\langle \mathcal{I}_{(V,E)}, \operatorname{Acc}_{(V,E)} \rangle$ where $\operatorname{Acc}_{(V,E)} \subseteq \mathcal{I}_{(V,E)} \times V^{\omega}$

For regular games $Acc_{(V,E)} \subseteq \mathcal{I}_{(V,E)} \times 2^V$

Example

$$\langle \mathcal{I}_{(V,E)}, \operatorname{Acc}_{(V,E)} \rangle$$
 where $\operatorname{Acc}_{(V,E)} \subseteq \mathcal{I}_{(V,E)} \times V^{\omega}$

For regular games $Acc_{(V,E)} \subseteq \mathcal{I}_{(V,E)} \times 2^V$

Example

$$\langle \mathcal{I}_{(V,E)}, \operatorname{Acc}_{(V,E)}
angle$$
 where $\operatorname{Acc}_{(V,E)} \subseteq \mathcal{I}_{(V,E)} imes V^{\omega}$

For regular games $Acc_{(V,E)} \subseteq \mathcal{I}_{(V,E)} \times 2^V$

Example

$$\langle \mathcal{I}_{(V,E)}, \operatorname{Acc}_{(V,E)}
angle$$
 where $\operatorname{Acc}_{(V,E)} \subseteq \mathcal{I}_{(V,E)} imes V^{\omega}$

For regular games $Acc_{(V,E)} \subseteq \mathcal{I}_{(V,E)} \times 2^V$

Example

Examples	
Muller:	Colours vertices and explicitly lists a set of subsets of the colours Instance: (C, χ, \mathcal{F}) where $\chi : V \to C$ and $\mathcal{F} \subseteq 2^C$ Acceptance: $\chi(\inf(\pi)) \in \mathcal{F}$
	Assigns each vertex a priority and accepts sets with even minimal priority Instance: χ where $\chi : V \to \omega$ Acceptance: $\min(\chi(\inf(\pi)))$ is even
	Explicitly lists a family of subsets of $W \subseteq V$ and only considers the vertices in W Instance: (W, \mathcal{F}) where $W \subseteq V$ and $\mathcal{F} \subseteq 2^W$ Acceptance: $\inf(\pi) \cap W \in \mathcal{F}$
	Describes sets using a boolean formula with elements of V as atomic propositions

Examples	
Muller:	Colours vertices and explicitly lists a set of subsets of the colours Instance: (C, χ, \mathcal{F}) where $\chi : V \to C$ and $\mathcal{F} \subseteq 2^C$ Acceptance: $\chi(\inf(\pi)) \in \mathcal{F}$
Parity:	Assigns each vertex a priority and accepts sets with even minimal priority Instance: χ where $\chi : V \to \omega$ Acceptance: $\min(\chi(\inf(\pi)))$ is even
	Explicitly lists a family of subsets of $W \subseteq V$ and only considers the vertices in W Instance: (W, \mathcal{F}) where $W \subseteq V$ and $\mathcal{F} \subseteq 2^W$ Acceptance: $\inf(\pi) \cap W \in \mathcal{F}$
	Describes sets using a boolean formula with elements of V as atomic propositions

Examples	
Muller:	Colours vertices and explicitly lists a set of subsets of the colours
	Instance: (C, χ, \mathcal{F}) where $\chi : V \to C$ and $\mathcal{F} \subseteq 2^C$ Acceptance: $\chi(\inf(\pi)) \in \mathcal{F}$
Parity:	Assigns each vertex a priority and accepts sets with even minimal priority
	Instance: χ where $\chi : V \to \omega$
	Acceptance: $\min(\chi(\inf(\pi)))$ is even
Win-set:	Explicitly lists a family of subsets of $W \subseteq V$ and only considers the vertices in W
	Instance: (W, \mathcal{F}) where $W \subseteq V$ and $\mathcal{F} \subseteq 2^W$
	Acceptance: $\inf(\pi) \cap W \in \overline{\mathcal{F}}$
	Describes sets using a boolean formula with
	elements of V as atomic propositions

Examples	
Muller:	Colours vertices and explicitly lists a set of subsets of the colours Instance: (C, χ, \mathcal{F}) where $\chi : V \to C$ and $\mathcal{F} \subseteq 2^C$ Acceptance: $\chi(\inf(\pi)) \in \mathcal{F}$
Parity:	Assigns each vertex a priority and accepts sets with even minimal priority Instance: χ where $\chi : V \to \omega$ Acceptance: min $(\chi(inf(\pi)))$ is even
Win-set:	Explicitly lists a family of subsets of $W \subseteq V$ and only considers the vertices in W Instance: (W, \mathcal{F}) where $W \subseteq V$ and $\mathcal{F} \subseteq 2^W$ Acceptance: $\inf(\pi) \cap W \in \mathcal{F}$
Emerson-Lei:	Describes sets using a boolean formula with elements of V as atomic propositions

Soufflé: Translations

Condition type \mathfrak{A} is translatable to condition type \mathfrak{B} if there is a polynomial time algorithm which, for *every* game of type \mathfrak{A} , produces a condition of type \mathfrak{B} that describes the same game.

Example

An explicitly presented game can be translated to a Muller game by taking the identity function as a colouring and using the same list of sets. Thus the Explicit condition type is translatable to the Muller condition type.

Example

Suppose we have a Muller game where half the vertices are coloured blue, half are red, and the list of sets is $\{\{red\}\}$. The explicit game equivalent to this requires exponentially more space to describe. Thus the Muller condition type is not translatable to the Explicit condition type.

Soufflé: Translations

Condition type \mathfrak{A} is translatable to condition type \mathfrak{B} if there is a polynomial time algorithm which, for every game of type \mathfrak{A} , produces a condition of type \mathfrak{B} that describes the same game.

Example

An explicitly presented game can be translated to a Muller game by taking the identity function as a colouring and using the same list of sets. Thus the Explicit condition type is translatable to the Muller condition type.

Example

Suppose we have a Muller game where half the vertices are coloured blue, half are red, and the list of sets is $\{\{red\}\}$. The explicit game equivalent to this requires exponentially more space to describe. Thus the Muller condition type is not translatable to the Explicit condition type.

Soufflé: Translations

Condition type \mathfrak{A} is translatable to condition type \mathfrak{B} if there is a polynomial time algorithm which, for every game of type \mathfrak{A} , produces a condition of type \mathfrak{B} that describes the same game.

Example

An explicitly presented game can be translated to a Muller game by taking the identity function as a colouring and using the same list of sets. Thus the Explicit condition type is translatable to the Muller condition type.

Example

Suppose we have a Muller game where half the vertices are coloured blue, half are red, and the list of sets is $\{\{red\}\}\}$. The explicit game equivalent to this requires exponentially more space to describe. Thus the Muller condition type is not translatable to the Explicit condition type.

If \mathfrak{A} is translatable to \mathfrak{B} but \mathfrak{B} is not translatable to \mathfrak{A} , we say \mathfrak{B} is more succinct than \mathfrak{A} .

Theorem

- The Emerson-Lei type is more succinct than the Muller type
- The Muller type is more succinct than the Win-set type
- The Win-set type is more succinct than the Explicit type

Corollary

- Deciding Muller games reduces to deciding Emerson-Lei games
- Deciding Win-set games reduces to deciding Muller games
- Deciding Explicit games reduces to deciding Win-set games

If \mathfrak{A} is translatable to \mathfrak{B} but \mathfrak{B} is not translatable to \mathfrak{A} , we say \mathfrak{B} is more succinct than \mathfrak{A} .

Theorem

- The Emerson-Lei type is more succinct than the Muller type
- The Muller type is more succinct than the Win-set type
- The Win-set type is more succinct than the Explicit type

Corollary

- Deciding Muller games reduces to deciding Emerson-Lei games
- Deciding Win-set games reduces to deciding Muller games
- Deciding Explicit games reduces to deciding Win-set games

If \mathfrak{A} is translatable to \mathfrak{B} but \mathfrak{B} is not translatable to \mathfrak{A} , we say \mathfrak{B} is more succinct than \mathfrak{A} .

Theorem

- The Emerson-Lei type is more succinct than the Muller type
- The Muller type is more succinct than the Win-set type
- The Win-set type is more succinct than the Explicit type

Corollary

- Deciding Muller games reduces to deciding Emerson-Lei games
- Deciding Win-set games reduces to deciding Muller games
- Deciding Explicit games reduces to deciding Win-set games

Deciding Win-set games is PSPACE complete

Proof (Sketch).

- Membership in PSPACE follows from PSPACE algorithm for Emerson-Lei games (Nerode, Remmel, Yakhnis 1996)
- PSPACE hardness is shown with a reduction from QSAT (Quantified Satisfiability)

Deciding Win-set games is PSPACE complete

Proof (Sketch).

- Membership in PSPACE follows from PSPACE algorithm for Emerson-Lei games (Nerode, Remmel, Yakhnis 1996)
- PSPACE hardness is shown with a reduction from QSAT (Quantified Satisfiability)

Deciding Win-set games is PSPACE complete

Proof (Sketch).

- Membership in PSPACE follows from PSPACE algorithm for Emerson-Lei games (Nerode, Remmel, Yakhnis 1996)
- PSPACE hardness is shown with a reduction from QSAT (Quantified Satisfiability)

$$\Phi = \ldots \forall x_1 \exists x_0.\phi$$

$$\Phi = \ldots \forall x_1 \exists x_0 . (x_0 \land x_1 \land \neg x_3) \lor \ldots \lor (\neg x_0 \land x_2 \land x_3)$$

$$\Phi = \ldots \forall x_1 \exists x_0 (x_0 \land x_1 \land \neg x_3) \lor \ldots \lor (\neg x_0 \land x_2 \land x_3)$$

$$\Phi = \ldots \forall x_1 \exists x_0 . (x_0 \land x_1 \land \neg x_3) \lor \ldots \lor (\neg x_0 \land x_2 \land x_3)$$

$$\Phi = \ldots \forall x_1 \exists x_0 . (x_0 \land x_1 \land \neg x_3) \lor \ldots \lor (\neg x_0 \land x_2 \land x_3)$$

$$\Phi = \ldots \forall x_1 \exists x_0 . (x_0 \land x_1 \land \neg x_3) \lor \ldots \lor (\neg x_0 \land x_2 \land x_3)$$

$$\Phi = \ldots \forall x_1 \exists x_0 . (x_0 \land x_1 \land \neg x_3) \lor \ldots \lor (\neg x_0 \land x_2 \land x_3)$$

$$W = \{x_i, \neg x_i : 0 \le i \le n\}$$

 $\mathcal{F} = \{S_i, S_i \cup \{x_i\}, S_i \cup \{\neg x_i\} : i \text{ even}\} \text{ where } S_i = \{x_j, \neg x_j : j < i\}$

Corollary

Deciding Emerson-Lei games is PSPACE complete

Corollary

Deciding Muller games is PSPACE complete

Corollary

Deciding Muller games on arenas with bounded tree-width is PSPACE complete

Corollary

The non-emptiness and model-checking problems for Muller tree automata are PSPACE complete

Corollary

Deciding Emerson-Lei games is PSPACE complete

Corollary

Deciding Muller games is PSPACE complete

Corollary

Deciding Muller games on arenas with bounded tree-width is PSPACE complete

Corollary

The non-emptiness and model-checking problems for Muller tree automata are PSPACE complete

Corollary

Deciding Emerson-Lei games is PSPACE complete

Corollary

Deciding Muller games is PSPACE complete

Corollary

Deciding Muller games on arenas with bounded tree-width is PSPACE complete

Corollary

The non-emptiness and model-checking problems for Muller tree automata are PSPACE complete

- Examined winning conditions in isolation introducing some new conditions and a notion of reduction
- Shown PSPACE completeness for Win-set games a result which extends to decision problems associated with Muller tree automata.

- Complexity of explicitly presented games
- Complexity of Win-set games on arenas with bounded tree-width

- Examined winning conditions in isolation introducing some new conditions and a notion of reduction
- Shown PSPACE completeness for Win-set games a result which extends to decision problems associated with Muller tree automata.

- Complexity of explicitly presented games
- Complexity of Win-set games on arenas with bounded tree-width

- Examined winning conditions in isolation introducing some new conditions and a notion of reduction
- Shown PSPACE completeness for Win-set games a result which extends to decision problems associated with Muller tree automata.

- Complexity of explicitly presented games
- Complexity of Win-set games on arenas with bounded tree-width

- Examined winning conditions in isolation introducing some new conditions and a notion of reduction
- Shown PSPACE completeness for Win-set games a result which extends to decision problems associated with Muller tree automata.

- Complexity of explicitly presented games
- Complexity of Win-set games on arenas with bounded tree-width