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Symmetric monoidal categories

f : A→ B := f

B

A

g ◦ f :=
g

f
f ⊗ g := gf

1A := A 1I := σA,B :=
A B

B A
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States, effects, numbers

Morphisms in/out of the monoidal unit get special names:

state :=

(
ρ : I → A

)

effect :=

(
π : A→ I

)

number :=

(
λ : I → I

)
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Interpretation: discarding + causality

Consider a special family of discarding effects:

A A⊗B := A B I := 1

This enables us to say when a process is causal :

Φ

B

A

= A

“If the output of a process is discarded,
it doesn’t matter which process happened.”
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The classical case

Mat(R+) is the category whose objects are natural numbers and
morphisms are matrices of positive numbers. Then:

=
(
1 1 · · · 1

)
ρ =

∑
i

ρi = 1

Causal states = probability distributions
Causal processes = stochastic maps
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The quantum case

CPM is the category whose objects are Hilbert spaces and morphisms are
completely postive maps. Then:

= Tr(−) ρ = Tr(ρ) = 1

Causal states = density operators
Causal processes = CPTPs
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Causal structure of a process

Φ

A B C D

D ′C ′A′ B ′

E

E ′

A causal structure on Φ associates input/output pairs with a set of
ordered events:

G :=


(A,A′) ↔ A
(B,B ′) ↔ B
(C ,C ′) ↔ C
(D,D ′) ↔ D
(E ,E ′) ↔ E

A C

B D

E
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Causal structure of a process

Definition
Φ admits causal structure G, written Φ � G if the output of each event
only depends on the inputs of itself and its causal ancestors.
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Causal structure of a process

Definition
Φ admits causal structure G, written Φ � G if the output of each event
only depends on the inputs of itself and its causal ancestors.

A C

B D

E

Φ

A B C D

B ′

E

=

D EB

B ′

A

Φ′

C
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Example: one-way signalling

A

�Φ

A′

B

B ′

A

B

Φ′

BA

=Φ

A′

B

B ′ A′

A

P(A′|AB) = P(A′|A)
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Example: non-signalling

A

�Φ

A′

B

B ′

A

B

A

�Φ

A′

B

B ′ A

B

Φ′

BA

=Φ

A′

B

B ′ A′

A

= Φ′′

A B

A′ B ′

Φ

B

B ′

P(A′|AB) = P(A′|A) P(B ′|AB) = P(B ′|B)
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An acyclic diagram comes with a canonical choice of causal structure:

A C

B D

E

a c

b d

e

�

Theorem
All acyclic diagrams of processes admit their associated causal structure if
and only if all processes are causal.
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Higher-order causal structure

We can also define (super-)processes with higher-order causal structure:

w = w =Φ1 Φ2

Φ2

Φ1

These can introduce definite, or indefinite causal structure:

s

ρ0

= s

ρ1

=

e.g. Quantum Switch, OCB W -matrix, ...
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The questions

Q1: Can we define a category whose types express causal structure?

Q2: Can we define a category whose types express higher-order
causal structure?

It turns out answering Q2 gives the answer to Q1.
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Compact closed categories

An easy way to get higher-order processes is to use compact closed
categories:

Definition
An SMC C is compact closed if every object A has a dual object A∗, i.e.
there exists ηA : I → A∗ ⊗ A and εA : A⊗ A∗ → I , satisfying:

(εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A (1A∗ ⊗ εA) ◦ (ηA ⊗ 1A∗) = 1A∗

= A

A

A

A∗ = A∗

A∗

A∗

A
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Higher-order processes
Processes send states to states:

fρ

ρ

7→

In compact closed categories, everything is a state, thanks to process-state
duality :

f : A(B ↔ f ρf
: A∗ ⊗ B

⇒ higher order processes are the same as first-order processes: f 7→
f

w

 : (A(B)((C(D)
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Some handy notation
We can treat everything as a state, and write states in any shape we like:

A

B

C

D

:=
w

A∗ B C∗ D
w

Then plugging shapes together means composing the appropriate caps:

Φ

B

A

D

C

:=

DA∗

w
C∗B CB∗

Φ
w
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Some handy notation

It looks like we can now freely work with higher-order causal processes:

X

w

v

A

B

C

D

Y

: A((B(C )(D

...but theres a problem.
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The compact collapse

In a compact closed category:

(A⊗ B)∗ = A∗ ⊗ B∗

Which gives:

(A(B)(C ∼= (A(B)∗ ⊗ C
∼= (A∗ ⊗ B)∗ ⊗ C
∼= A⊗ B∗ ⊗ C
∼= B∗ ⊗ A⊗ C
∼= B(A⊗ C

⇒ everything collapses to first order!
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The compact collapse

But first-order causal 6= second-order causal:∀Φ causal . Φ =w



So, causal types are richer than compact-closed types. In particular:

A(B := (A⊗ B∗)∗ 6∼= A∗ ⊗ B

If we drop this iso from the definition of compact closed, we get a
∗-autonomous category.
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Definition
A ∗-autonomous category is a symmetric monoidal category equipped with
a full and faithful functor (−)∗ : Cop → C such that, by letting:

A(B := (A⊗ B∗)∗ (1)

there exists a natural isomorphism:

C(A⊗ B,C ) ∼= C(A,B(C ) (2)
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The recipe

Precausal category C 7→ Caus[C]

compact closed category ∗-autonomous category
of ‘raw materials’ capturing ‘logic of causality’

Mat(R+) 7→ higher-order stochastic maps
CPM 7→ higher-order quantum channels
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Precausal categories
Precausal categories give ‘good’ raw materials, i.e. discarding behaves well
w.r.t. the categorical structure. The standard examples are Mat(R+) and
CPM.

Definition
A precausal category is a compact closed category C such that:

(C1) C has discarding processes for every system

(C2) For every (non-zero) system A, the dimension of A:

dA := A

is an invertible scalar.

(C3) C has enough causal states

(C4) Second-order causal processes factorise
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Enough causal states

∀ρ causal .
ρ

f = g

ρ

 =⇒ f = g
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Second-order causal processes factorise


∀Φ causal .

Φ =w

 =⇒


∃Φ1,Φ2 causal .

=

Φ1

Φ2

w
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Theorem
In a pre-causal category, one-way signalling processes factorise:

 ∃ Φ′ causal .

Φ = Φ′

 =⇒


∃ Φ1,Φ2 causal .

Φ =
Φ1

Φ2
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Proof. Treat Φ as a second-order process by bending wires. Then for any
causal Ψ, we have:

Φ

Ψ

=

Ψ

Φ′

Φ′

Ψ
= =

So Φ is second-order causal. By (C4):

Φ
=

Φ2

Φ1

=⇒ Φ =
Φ2

Φ′
1
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Theorem (No time-travel)

No non-trivial system A in a precausal category C admits time travel. That
is, if there exist systems B and C such that:

Φ

A B

CA

causal =⇒ ΦA

B

C

causal

then A ∼= I .
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Proof. For any causal process Ψ and causal state :

Φ

A B

CA

:= Ψ

A

A

C

B

is causal.

So:

ΦA

B

C
=

B

= 1=A Ψ

Applying (C4):

A =

ρ
A

A
=⇒ A =

ρ
A

A

for some ρ causal.So ρ ◦ = 1Aand ◦ ρ = 1I is causality.
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Causal states

A process is causal, a.k.a. first order causal, if and only if it preserves the
set of causal states:

fρ

ρ

=⇒causal causal

That is, it preserves:

c =

{
ρ : A

∣∣∣∣ ρ = 1

}
⊆ C(I ,A)

We define Caus[C] by equipping each object with a generalisation of the
set c , and requiring processes to preserve it.
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Duals and closure

Note any set of states c ⊆ C(I ,A) admits a dual, which is a set of effects:

c∗ :=

{
π : A∗

∣∣∣∣ ∀ρ ∈ c .
ρ

π
= 1

}

The double-dual c∗∗ is a set of states again.

Definition
A set of states c ⊆ C(I ,A) is closed if c = c∗∗.
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Flatness

If c is the set of causal states, discarding ∈ c∗, and up to some rescaling,
discarding-transpose:

1
D

i.e. the maximally mixed state ∈ c .

We make this symmetric c ↔ c∗, and call this propery flatness:

Definition
A set of states c ⊆ C(I ,A) is flat if there exist invertible numbers λ, µ
such that:

λ ∈ c µ ∈ c∗
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The main definition

Definition
For a precausal category C, the category Caus[C] has as objects pairs:

A := (A, cA ⊆ C(I ,A))

where cA is closed and flat. A morphism f : A→ B is a morphism
f : A→ B in C such that:

ρ ∈ cA =⇒ f ◦ ρ ∈ cB
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The main theorem

Theorem
Caus[C] is a ∗-autonomous category, where:

A⊗ B := (A⊗ B, (cA ⊗ cB)∗∗) I := (I , {1I})

A
∗ := (A∗, c∗

A
)
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Connectives

One connective ⊗ becomes 3 interrelated ones:

A⊗ B

A` B := (A∗ ⊗ B
∗)∗

A(B := A
∗ ` B ∼= (A⊗ B

∗)∗

• ⊗ is the smallest joint state space that contains all product states

• ` is the biggest joint state space normalised on all product effects:

cA`B =

ρ : A⊗ B

∣∣∣∣ ∀π ∈ c∗A, ξ ∈ c∗B .
π

ρ

ξ
= 1


• ( is the space of causal-state-preserving maps
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Example: first-order systems

First order := systems of the form A = (A, { }∗)

cA⊗B := (cA ⊗ cB)∗∗ = ( )∗ = all causal states

cA`B :=

ρ : A⊗ B

∣∣∣∣ ∀π ∈ c∗A, ξ ∈ c∗B .
π

ρ

ξ
= 1

 = all causal states

Theorem
For first order systems, A⊗ B ∼= A` B.
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When ⊗ 6= `

For f.o. A,A′,B,B ′:

(A(A
′) ` (B(B

′) ∼= A
∗ ` A

′ ` B
∗ ` B

′

∼= A
∗ ` B

∗ ` A
′ ` B

′

∼= (A⊗ B)∗ ` A
′ ` B

′

∼= (A⊗ B)∗ ` (A′ ⊗ B
′)

∼= A⊗ B(A
′ ⊗ B

′

(A(A
′) ` (B(B

′) = all causal processes
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Theorem
(A(A

′)⊗ (B(B
′) = causal, non-signalling processes

Proof. (idea) The causal states for (A(A
′)⊗ (B(B

′) are:{
Φ1 Φ2

}∗∗
We show:

w

A

A′

B

B ′ ∈

{
Φ1 Φ2

}∗

is also normalised for all non-signalling processes:

w

NS

This follows from a graphical proof using all 4 precausal axioms.
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Refining causal structure

Since I ∼= I
∗ = (I , {1}), a standard theorem of ∗-autonomous gives a

canonical embedding:

(A(A
′)⊗ (B(B

′) ↪→ (A(A
′) ` (B(B

′)

What about in between?

(A(A
′)⊗ (B(B

′) ↪→ · · · ↪→ (A(A
′) ` (B(B

′)
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One-way signalling

Theorem
One-way signalling processes are processes of the form:

Φ

A B

B ′A′

: A( (A′( B)( B
′
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One-way signalling

Proof.

Exploiting the relationship between one-way signalling and
second-order causal:

Φ

Ψ

=

Ψ

Φ′

Φ′

Ψ
= =

we have:

Φ

A B

B ′A′

: (A′( B)( (A(B
′)

Then ∗-autonomous structure gives a canonical iso:

(A′( B)( (A(B
′) ∼= A((A′( B)(B

′
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Further examples

• n-party non-signalling:

. . .

. . .

Φ : (A1(A
′
1)⊗ · · · ⊗ (An(A

′
n)

• Quantum n-combs:

w

...

: A1((A′1((· · · )(An)(A
′
n
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Further examples

• Compositions of those things:

...
...

w w ′
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Further examples

• Indefinite causal structures (e.g. quantum switch, OCB W -process,
Baumeler-Wolf):

+ 1
4
√
2


σz

σz

+

σz σx

σz



+1
8




− −

− − − −

−

−

+ +

−

− −−

[
(A1(A

′
1)⊗ . . .⊗ (An(A

′
n)

]∗
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Automation

The internal logic of ∗-autonomous categories is multiplicative linear logic
(MLL):

⇒ use off-the-shelf theorem provers to prove causality theorems.

Aleks Kissinger and Sander Uijlen A categorical semantics for causal structure December 8, 2019 45 / 47



Automation

The internal logic of ∗-autonomous categories is multiplicative linear logic
(MLL):

⇒ use off-the-shelf theorem provers to prove causality theorems.

Aleks Kissinger and Sander Uijlen A categorical semantics for causal structure December 8, 2019 45 / 47



Automation

For example, we can show using llprover that:

(A(A
′)⊗ (B(B

′)

↪→

A((A′(B)(B
′

↪→

(A(A
′) ` (B(B

′)
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Thanks

...and some refs:

• A categorical semantics for causal structure. arXiv:1701.04732

• Causal structures and the classification of higher order quantum
computation. Paulo Perinotti. arXiv:1612.05099
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