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A category for protocols

I Fix a category V. Think of the objects as state spaces, morphisms as pure
state evolution.

I Goal: construct a category that is useful for reasoning about quantum
protocols.

I To accomplish this, we should generalise in two ways:
1. pure states =⇒ mixed states
2. quantum data =⇒ quantum + classical data

I Concretely:
1. |ψ〉 ∈ H =⇒ ρ ∈ L(H)
2. operators in L(H) =⇒ elements in C*-algebra A

I Abstractly:
1. V =⇒ CPM[V]
2. CPM[V] =⇒ category of “abstract C*-algebras”



Compact closed categories

I Objects are represented as wires, morphisms are boxes

I Horizontal and vertical composition:

A

C

C

AB

B

B

f

g ◦ f =
g B B′ B′

AA′ A′A

B

f ⊗ g = f g

I Crossings (symmetry maps):



Turning stuff upside-down: duals and daggers

I Compact closure: all objects H have duals H∗, characterised by duality
maps. Think: dual space.

==

I We define a functor † : Vop → V that respects all the compact closed
structure, and (f †)† = f . Think: conjugate-transpose.

I This gives us 4 ways to represent (the data of) a ket:
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I ...or any other map for that matter:
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Completely positive maps

I To see how we construct abstract CPMs, consider the concrete case. Any
CPM can be represented using Kraus matrices:

Θ(ρ) =
∑
i

BiρB
†
i

I We can eliminate the sum by purification. Let B =
∑

i |i〉 ⊗ Bi , then:

Θ(ρ) = ρ

B

B†



Completely positive maps (cont’d)

I In a compact closed category, maps ρ : A→ A are the same as points
ρ̂ : I → A∗ ⊗ A, and operators Θ : [A→ A]→ [B → B] are the same as
first order maps Θ̂ : A∗ ⊗ A→ B∗ ⊗ B.

B†

B

=⇒· · · BB∗

I This is equivalent to the trace-based definition of Θ, up to bending some
wires.
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The category CPM[V]

I The category CPM[V] has the same objects as V

I A morphism from A to B is a V-morphism from A∗ ⊗ A to B∗ ⊗ B, such
that there exists same X and some map g : A→ X ⊗ B where:

= g∗ gf

I If X = A⊗ B, then X ∗ = B∗ ⊗ A∗. To maintain this “mirror image”, the
monoidal product involves a reshuffling of wires:

=f g⊗ f g
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Classical data

I In CPM[FHilb], the (normalised) points of an object A are density
matrices and maps are CPMs, as required.

I In the density matrix formalism, meaurement can be expressed by
projecting an arbitrary density matrix ρ onto the diagonal w.r.t. some
basis:

mZ (ρ) = Diag(probZ (ρ, 1), probZ (ρ, 2), probZ (ρ, 3), . . .)

I ...but ρ is an arbitrary state, whereas the RHS is a classical probability
distribution. It lives in a tiny corner of L(H).

I We would like objects not just for the whole quantum state space, but for
classical or semi-classical subspaces.



Adding classical objects to CPM[V]

I There are two ways, due to Selinger, to extend CPM[V] such that
CPM[FHilb] will have all of these classical objects:

1. Freely add biproducts. All classical objects can be expressed as direct sums
of 1D matrix algebras L(C).

2. Freely split idempotents. This effectively adds all subspaces of L(H) whose
associated projection maps P : L(H)→ L(H) are CPMs. Subalgebras are a
special case.

I However, one may be “too small” and one may be “too big”. Some
evidence:

1. The objects of CPM[Rel] are fairly degenerate (indiscreet groupoids), so
CPM[Rel]⊕ are just sums of degenerate things.

2. Split†(CPM[FHilb]) may have objects which are not physically relevant.
(open problem)



Another approach: defining “abstract” C*-algebras

I The objects in CPM[V] can be thought of as the abstract analogue of
matrix algebras. When V = FHilb, L(Cn) ∼= Mn(C).

I Rather than starting at CPM[V] and trying to extend, start with a notion
of abstract C*-algebra, internal to V.

I Vicary 2008: dagger-Frobenius algebras in FHilb are in 1-to-1
correspondence with finite-dimensional C*-algebras

I A dagger-FA on an object A is a tuple (A, , , , ) such that

( )† = and ( )† = and:
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The category CP∗[V]

I ...



CP∗[V] is dagger-compact closed

I ...



CP∗[FHilb] and CP∗[Rel]

I CP∗[FHilb] is equivalent to the category of finite-dimensional C*-algebras
and completely positive maps

I In Rel, dagger-normalisable Frobenius algebras must be special (loop =
identity).



The “pants” algebra

I ...



CPM[V] ⊆ CP∗[V]

I ...



Stoch[V] ⊆ CP∗[V]

I ...



CPM[V]⊕ ⊆ CP∗[V] ⊆ Split†(CPM[V])

I ...



Future work

I Generalisation to infinite dimensions

I How many notions from the C*-algebra approach to quantum info can be
imported into CP∗[V]? Already, many can be used verbitim, e.g.
commutative subalgebras, POVMs, broadcasting maps, ...

I CBH characterised QM in information-theoretic terms. Often criticised for
being too concrete. We have reproduced some parts of their theorem, as
well as shown counter-examples (e.g. commutativity is strictly stronger
than broadcasting) for CP∗[V].

I For V 6= FHilb, can we make sense of the objects of CP∗[V] as state
spaces and the morphisms as evolutions? For instance, the category Stab
of stabiliser states and (post-selected) Clifford circuits faithfully embeds
into CP∗[Rel].

I Can we characterise categories of the form CP∗[V] axiomatically, as with
CPM[V]?


