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Quantum Picturalism

The idea: Describe quantum theory entirely in terms of:
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Not in terms of:

• Hilbert space

• self-adjoint operators, unitary transformations

• calculations with matrices/complex numbers

• ....

(though some may be emergent notions)
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Why?

• Simpler!

(1⊗σ⊗k)◦(σ⊗1⊗1⊗1)◦
(f ⊗ g ⊗ 1⊗ 1) ◦ (h⊗ 1) =
(g ⊗ f ) ◦ (1⊗ k) ◦ (h ⊗ 1)

vs. k

k

h

f

=f

g

h

g

• New perspective = new insights

• Reconstruction ⇐ ‘diagrammatic backbone’ + extra assms

e.g. Pavia 2010 and Hardy 2011
Hardy (2010): “we join the quantum picturalism revolution”

• A ‘theory playground’

e.g. QT vs. real/boolean-valued/modal QT,
stabiliser QT vs. Spekken’s toy theory, OPTs, ...

• New calculational tools, applications in quantum
info/computation
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Processes

• A process is anything with zero or more inputs and zero or
more outputs

• For example, this function:

f (x , y) = x2 + y

...is a process when takes two real numbers as input, and
produces a real number as output.

• We could also write it like this:

f

R R

R

• The labels on wires are called system-types or just types
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More processes

• Similarly, computer programs are processes

• For example, a program that sorts lists might look like this:

quicksort

lists

lists

• These are also perfectly good processes:

binoculars

light

light light

light

cooking

bacon

breakfast

eggs food

baby

love

poonoise
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Diagrams

• We can combine simple processes to make more complicted
ones, described by diagrams:

g

f h

D

A

C

B

A A

• The golden rule: only connectivity matters!
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Types and Process Theories

• Connections are only allowed where the types match

• Ill-typed diagrams are undefined:

noise

love

baby

poo

food

quicksort

?

• In fact, these processes don’t ever make sense to plug together

• A family of processes which do make sense together is called a
process theory

Aleks Kissinger Foundations 2016, LSE Quantum Picturalism 8 / 49



Types and Process Theories

• Connections are only allowed where the types match

• Ill-typed diagrams are undefined:

noise

love

baby

poo

food

quicksort

?

• In fact, these processes don’t ever make sense to plug together

• A family of processes which do make sense together is called a
process theory

Aleks Kissinger Foundations 2016, LSE Quantum Picturalism 8 / 49



Types and Process Theories

• Connections are only allowed where the types match

• Ill-typed diagrams are undefined:

noise

love

baby

poo

food

quicksort

?

• In fact, these processes don’t ever make sense to plug together

• A family of processes which do make sense together is called a
process theory

Aleks Kissinger Foundations 2016, LSE Quantum Picturalism 8 / 49



Process Theory: Definition

A process theory consists of:

• a set T of system-types,

• a set P of processes

which are:

• closed under forming diagrams:

g

f h

D

A

C

B

A

7→

A

A

d

CA

∈ P

A
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Special processes: states and effects

• Processes with no inputs are called states:

ψ

Interpret as: preparing a system in a particular configuration,
where we don’t care what came before.

• Processes with no outputs are called effects:

π

Interpret as: testing for a property π, where we don’t care
what happens after.
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Numbers

• A number is a process with no inputs or outputs, written as:

λ or just: λ

Interpret as: what happens when a state meets an effect

This is called the (generalised) Born rule

• From properties of diagrams, we get:

λ · µ := λ µ 1 :=
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Numbers

• A number is a process with no inputs or outputs, written as:

λ or just: λ

Interpret as: what happens when a state meets an effect

ψ

πeffect

state
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Process theories in general

Q: What kinds of behaviour can we study using just diagrams, and
nothing else?

A: (Non-)separability
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Separability for states

• Separable:

ψ = ψ1 ψ2

• vs. ‘completely non-separable’:

Definition

A state ψ is called cup-state if there exists an effect φ, called a
cap-effect, such that:

φ

ψ

=

ψ

φ
=
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Cup-states

• By introducing some clever notation:

:= ψ := φ

• Then these equations:

φ

ψ

=

ψ

φ
=

• ...look like this:

= =
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Yank the wire!

= =
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A no-go theorem for separability

Theorem

If a process theory (i) has cup-states for every type and (ii) every
state separates, then it has trivial dynamics.

Proof. Suppose a cup-state separates:

= ψ1 ψ2

Then for any f :

f
=

f
=

ψ2ψ1

f
=

ψ1

f

ψ2 =:

φ

π
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Transpose

f

A

B
∼=←→ f

B

A

=: f T

f = f

i.e.
(f T )T = f
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Tranpose = rotation

A bit of a deformation:

f ; f

allows some clever notation:

f := f

= = ==
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Transpose = rotation
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Adjoint = reflection

ψ
†
7→ ψ

state ψ testing for ψ

Extends from states/effects to all processes:

B

A

f
†
7→ f

A

B
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4 kinds of box

f f

ff

adjoint adjoint

conjugate

conjugate

transpose

A A

B B

A A

B B
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Doubling

If the ‘numbers’ of our process theory are complex numbers (e.g.
as in linear maps), then we have a problem:

ψ

φeffect

state
complex number 6= probability!
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Doubling

Solution: multiply by the conjugate:

ψ

φ
;

ψ

φ

ψ

φ

(i.e. use the ‘plain old’ Born rule: 〈φ|ψ〉〈φ|ψ〉 = |〈φ|ψ〉|2)
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Doubling

New problem: We lost this:

ψ

πeffect

state
probability

...which was the basis of our interpretation for states, effects, and
numbers.
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Doubling

Solution: Make a new process theory with doubling ‘baked in’:

ψψ
:=ψ̂

φφ
:=φ̂

Then:

effect

state

probability

ψψ

φφ:=

:=ψ̂

φ̂
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Doubling

The new process theory has doubled systems Ĥ := H ⊗ H:

:=

and processes:

double

 f

 := =f̂ ff
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:=

and processes:

double

 f

 := =f̂ ff

Aleks Kissinger Foundations 2016, LSE Quantum Picturalism 26 / 49



Doubling preserves diagrams

f

g

h

=

k

l

=⇒
ĝ

ĥf̂

=

k̂

l̂
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...but kills global phases

λ λ = 1 (i.e. λ = e iα)

=⇒

double

 λ f

 = f λ λ f = f f = f̂
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Discarding

Doubling also lets us do something we couldn’t do before:

throw
stuff away!

ψ̂

How? Like this:

:=
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Discarding

For normalised ψ, the two copies annihilate:

ψ̂
=

ψ ψ

=
ψ

ψ
=
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Quantum maps

Definition

The process theory of quantum maps has as types (doubled)
Hilbert spaces Ĥ and as processes:

f̂

. . .{ }

. . .
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Causality

A quantum map is called causal if:

Φ =

If we discard the output of a process,
it doesn’t matter which process happened.

causal ⇐⇒ deterministically physically realisable
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Consequence: no signalling

ρ

Claire BobAleks

ΨΦ
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Consequences of doubling + causality

• Impossibility of deterministic teleporation:

Aleks Bob BobAleks

=

ρ

• Purification/Stinespring dilation

Φ =
f̂

• Quantum no-broadcasting theorem

∆ = ∆= =⇒ =

ρ

Φ

Aleks Kissinger Foundations 2016, LSE Quantum Picturalism 34 / 49



Classical and quantum interaction

 quantum :=

 6=

 classical :=


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Classical and quantum interaction

encode :=

measure :=
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Quantum teleportation: take 2

ρ

Aleks Bob

?

?
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Complementarity

=

Interpretation:

(encode in ) THEN (measure in ) = (no data flow)
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e.g. Stern-Gerlach

N

S

S N S

N

blocked!

0

=
X -measurement

1st Z -measurement

0

2nd Z -measurement
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e.g. Quantum Key Distribution

Aleks Bob

=

Eve Aleks Eve Bob
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Graphical calculus

Complementarity + group structure = ZX-calculus:

α
... =

β

......

......

α+β

...

...
...

β

...
...

...

α+β

...

...

α

=...

≈

... ...

........

≈

-π
2

π
2

π
2

-π
2

π
2

-π
2

-π
2

A sound and complete equational theory for stabilizer quantum
mechanics.
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Quantum circuit simplification

π
4

-π
4

-π
4

π
4

-π
2

π
4

= =

π
4

-π
4

=
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Measurement-based quantum computation

Z Z

Z Z

Z

Z

Z

Z

Z

Z

Z

Z
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Quantum algorithms

f̂:=Ûf

⇒ simple derivations of Deutsch-Jozsa, quantum seach, and
hidden subgroup algorithms.
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GHZ/Mermin non-locality

quantum theory any local theory

π
2

π
20

π
2

π
20 0

π
2

π
2 00 0

π0 π π

π

=
=

yA
i yC

izAi yB
i zCizBi

yA
i yB

i yC
izCizBizAi

0

=
=
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Multipartite entanglement

SLOCC-classification of 3 qubits:
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Automation

Quantomatic:
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• Categorical Quantum Mechanics I: Causal Quantum Processes. Coecke
and Kissinger. arXiv:1510.05468

• Categorical Quantum Mechanics II: Classical-Quantum Interaction.
Coecke and Kissinger. arXiv:1605.08617

• Categories of Quantum and Classical Channels. Coecke, Kissinger,
Heunen. arXiv:1305.3821
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Thanks! Joint work with:

...
Abramsky, Backens, Coecke, Duncan, Edwards, Gogioso, Hadzihasanovic,

Heunen, Lal, Merry, Pavlovic, Paquette, Perdrix, Quick, Selinger, Vicary, Wang,
Zamdzhiev, ...and many more!

http://quantomatic.github.io
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