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The goal

Simplification for the system IIB:

Frobenius x Frobenius
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(a.k.a. the phase-free fragment of the ZX-calculus)
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¢ (Biased) AC rules are not terminating:

Ak A-d

e Solution: use unbiased simplifications:
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e — need infinitely many rules, or rule schemas



I-boxes: simple diagram schemas
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Unbiased Frobenius algebras



Unbiased bialgebras
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Interacting bialgebras are linear relations

IB = LinRelz,

e LinRelz, has:
e objects: N
e morphisms: R : m — nis a subspace R C Z}! x Z}
e tensor is @, composition is relation-style
e Pseudo-normal forms can be interpreted as:
e white spiders := place-holders
e grey spiders := vectors spanning the subspace
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Lets see how this works...

e Not unique! We can always add or remove a vector that is the sum of
two other spanning vectors and get the same space:
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e ‘Addition” operation can be written as a !-box rule:
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e We can also apply this forward then backward to get a ‘rotation’ rule:

=L

¢ Note this rule decreases the arity of the white dot on the left by 1.



Thanks!

e Joint work with Lucas Dixon, Alex Merry, Ross Duncan, Vladimir
Zamdzhiev, David Quick, Hector Miller-Bakewell and others

e See: quantomatic.github.io



