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Abstract

Much work has been done on trying to understand and classify multipar-
tite entanglement. For the past few years Categorical Quantum Mechanics
[AC04], which introduces a formalism of quantum mechanics in terms of
Symmetric Monoidal Categories (SMCs), has been used successfully in de-
scribing quantum systems at a high level of abstraction. From this work
emerges a graphical calculus which is powerful enough to express any N -
qubit entangled state and suitable for automated reasoning [CK10]. In
[CKMR11] the authors show that it is possible to encode rational arith-
metic within the GHZ/W-calculus.

In this dissertation, we propose an extension of the encoding of rational
arithmetic to complex numbers and show how it is possible to approximate
the complex field with arbitrary precision. We also present the work done
on quantomatic [DD+] in order to support multiple theories. Finally, we
show how both rational and complex arithmetics were implemented in this
software.
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Chapter 1

Introduction

It can be said that one of the main conceptual differences between Quan-
tum Computer Science and Classical Computer Science lies in the fact that
a Quantum Bit (qubit) can be in a superposition of the form α1|0〉 +
α2|1〉, (α1, α2) ∈ C2. The construction of complex systems built from a
combination of qubits gives access to a world which is still inaccessible to
classical computing devices [BBC+93] [Ben92] [Sho97]. The foundations of
Quantum Mechanics were laid in the early 1930’s by von Neumann [vN96],
who provided a robust framework based on Hilbert spaces in order to de-
scribe the behaviour of quantum systems. However, if one describes a qubit
using C2 and composes systems using the tensor product ⊗, the complexity
of the whole system will increase exponentially with the number of qubits
and in spite of the improvements brought forth by Dirac’s notation, obtain-
ing a nice, structural view of the system remains a difficult task. Thus,
the Hilbert space formalism is perfect for performing operations on qubits
since, in any case, it all boils down to multiplying matrices. Unfortunately,
it makes it hard to reason about the system, to have a semantic approach
to Quantum Mechanics.

Categorical Quantum Mechanics [AC04] aims, among other things, at
solving this problem. Within this framework it is possible to develop graph-
ical languages describing quantum processes and even to automate the rea-
soning thanks to graph rewriting.

In this dissertation we will focus on one of the applications of this frame-
work: the encoding and automating of rational arithmetic within a graphical
calculus. The reader can benefit from reading this work with either of two
approaches in mind :

• The reader who is already familiar with Categorical Quantum me-
chanics and its applications will probably be interested in learning
how expressive and powerful the GHZ/W-calculus is and how the
tools implementing automated reasoning have evolved over the past
few months.

6



• The reader who has a basic knowledge of Category Theory can see
this dissertation as a means of getting acquainted with Categorical
Quantum Mechanics through an example.

The contributions of this thesis are the following:

• We extend the encoding of rational arithmetic within the GHZ/W-
calculus to the field of complex numbers.

• We propose a set of rewrite rules which allow the automation of this
encoding.

• We present in this thesis the work undertaken to achieve a full support
of arbitrary theories in quantomatic [DD+].

• We implement rational arithmetic in quantomatic : core theory and
rewrite rules.

• We implement complex arithmetic in quantomatic by implementing
another theory and the corresponding rewrite rules.

• We suggest the implementation of plug-ins in quantomatic and give
a proof of concept.

In the next section, which assumes familiarity with basic notions about
categories, we give some necessary background. Then, in chapter 3, we recall
the theory behind encoding of rational arithmetic in the GHZ/W-calculus.
In chapter 4 we propose an extension from rational arithmetic to complex
arithmetic. Chapters 5 and 6 are dedicated to Quantomatic : the theory of
Open Graphs behind it and the actual implementation of both rational and
complex arithmetic.
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Chapter 2

Background

As stated in the introduction, this dissertation deals with the Categorical
interpretation of quantum mechanics [AC04] and, specifically, the graphical
calculi that this framework allows to define. We give here the references and
definitions required to fully understand what follows in this dissertation.

2.1 Categorical Quantum Mechanics

2.1.1 Category Theory

The reader is expected to be well acquainted with category theory and es-
pecially monoidal categories, a key concept in the graphical interpretation
of quantum processes. The lecture notes on Category Theory referenced
by [AT11] are a good starting point. [CP09] gives a perfect introduction
for the physicist interested in Category Theory and Quantum Computer
Science while a good book on this topic would be [Lan98].

2.1.2 Quantum Computer Science

Familiarity with Quantum Computer Science and von Neumann’s formalism
is also important. Andreas Doering’s lecture notes [Doe10] on the topic pro-
vide a good introduction to this formalism and to the important concepts of
Quantum Computer Science. Furthermore, Categorical Quantum Mechan-
ics [AC04] will be used more extensively. This framework describes quantum
processes in terms of monoidal categories with additional structures. Most
of the essential structures that one can depict in von Neumann’s formalism
can be expressed in terms of monoidal categories and it makes it possible
to give a more abstract and yet structural picture of quantum processes.
A good introduction to this topic can be found in [Coe05] and [Coe09]. In
order to illustrate what can be done within this framework we show how
states, as we know them in von Neumann’s formalism, can be expressed.
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First, let us recall a few important definitions and theorems.

Definition A monoidal category (C,⊗, I, α, λ, ρ) is a category C with a bi-
functor ⊗ : C ×C → C, an object I ∈ C and three natural isomorphisms α, λ
and ρ

αA,B,C : A× (B × C)
∼=−→ (A×B)× C

λA : I ×A ∼=−→ A

ρA : A× I ∼=−→ A

such that λI = ρI : I × I → I and that the following diagrams commute:

A× (B × (C ×D)) (A×B)× (C ×D) ((A×B)× C)×D

A× ((B × C)×D) (A× (B × C))×D

α α

α

id× α α× id

A× (I ×B) (A× I)×B

A×B

α

id× λ
ρ× id

Definition A symmetric monoidal category (SMC) is a monoidal category
(C,⊗, I, α, λ, ρ) together with an additional natural isomorphism

σA,B : A⊗B ∼=−→ B ⊗A

such that for all A,B and C:

σB,A ◦ σA,B = idA⊗B, λA ◦ σA,I = ρA .

Example 2.1.1. If we call FdHilb the category of finite Hilbert spaces and
linear maps, then (FdHilb,⊗,C) is an SMC.

The tutorial chapters of [CD11] contain further information on the no-
tions that we give hereafter.

Definition [AC05] A †−symmetric monoidal category (†−SMC) is a sym-
metric monoidal category equipped with an identity-on-objects contravari-
ant endofunctor

(−)† : Cop → C
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which assigns to each morphism f : A→ B an adjoint morphism f † : B → A
which coherently preserves the monoidal structure, that is:

(f ◦ g)† = g† ◦ f †, (f ⊗ g)† = f † ⊗ g†, 1†A = 1A, f †† = f .

Example 2.1.2. FdHilb is a †-SMC, (−)† being the functor which asso-
ciates any linear map with its adjoint as we know them in linear algebra.

More information about the specific properties of compact closed cate-
gories can found in [KL80].

Definition The points of A in a category C are the morphisms of the type
ψ : I → A.

Definition The scalars of C are the points of I in C.

Example 2.1.3. Any linear map ψ : C→ H, H ∈ Obj(FdHilb) is uniquely
determined by ψ(1). It is then possible to express states as we know them
using the points defined above. Similarly, scalars being just a special kind of
vector, we see that any scalar c ∈ C can be expressed as a scalar in the sense
of the previous definition.

It is possible to define a scalar multiplication and to prove that points
and scalars behave as expected in FdHilb regarding distributivity and other
noteworthy properties [CD11]. Let us also remark that FdHilb is not the
only interesting category which can be equipped with the required struc-
tures. The category FRel of finite sets and binary relations and its subcat-
egory Spek [Spe07] [CE11b] are also rich enough to simulate protocols as
important as quantum teleportation.

2.2 Graphical Calculus

We saw in the previous section that two kinds of composition can be observed
in SMCs. The composition law ◦ is inherent to categories and the tensor
product ⊗ exists as such because those categories are monoidal. Thus, mor-
phisms can be composed along two different dimensions, one corresponding
to ◦ and another one corresponding to ⊗. One can see the composition of
morphisms as a temporal dimension whereas the tensor product corresponds
to a spatial dimension. Using the tensor diagram notation introduced by
Penrose [Pen71], the author of [Sel07] introduces a graphical notation for
morphisms in Compact Closed Categories. For a review of graphical lan-
guages defined in monoidal categories see [Sel09] by the same author.

Objects are represented as edges labelled with the names of the cor-
responding objects and arrows as boxes labelled by the names of the cor-
responding morphisms. When the domains and codomains of the arrows
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are obvious, edges are left unlabelled. Usual composition of morphisms is
expressed by connecting outputs to inputs and tensor product is given by
putting boxes side by side. The identity arrow is represented by a blank
edge.

f ⊗ g = f g f ◦ g =

f

g

.

Using this notation, the well known, yet not trivial, property

(f1 ◦ f2)⊗ (g1 ◦ g2) = (f1 ⊗ g1) ◦ (f2 ◦ g2)

becomes obvious and is automatically embedded within the graphical cal-
culus:

f1

f2

g1

g2

.

The symmetry map σ is represented by crossed wires:

σ = .

Finally, bras and kets can also be captured by this graphical calculus.
Define |ψ〉 :: 1A 7→ |ψ〉 and 〈ψ| can coherently be represented by:

|ψ〉 =
ψ

〈ψ| = ψ .

The soundness of this graphical calculus was showed by Joyal and Street
[JS91] and is stated in the following theorem:

Theorem 2.2.1. Two maps consisting of arbitrary compositions and tensor
products of smaller maps : f :

⊗
Ai →

⊗
Bj and swap maps σA,B are equal

if their graphical representations are equal.
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2.3 Commutative Frobenius Algebras

Definition Let C = (C, ⊗, I, α, λ, ρ) be a monoidal category with monoidal
product ⊗ and unit I. A monoid M in C is an object M ∈ Ob(C) together
with two arrows µ : M ⊗ M → M,η : I → M such that the following
diagrams commute:

M � (M ⊗M) (M ⊗M)⊗M M ⊗M

M ⊗M M,

α µ⊗ id

µ

id⊗ µ µ

e⊗M (M ⊗M) M ⊗ e

M.

η ⊗ id

id⊗ η

µ
λ

ρ

Note that the definition of the monoid M = (M,µ, η) makes use of the
structures of the monoidal category C (namely of the unit I, the associator
α and the isomorphisms λ and ρ).

Moreover, if µ = µ ◦ σ the monoid is said commutative.

In the graphical languages described in the previous section, a monoid

(M,µ, η) is represented by a triple (M, , ) and the previous conditions
can be expressed graphically by

= = = .

Remark A monoid in the monoidal category (Set,×, {∗}) is a monoid in
the usual sense. Indeed, if (M,µ, η) is a monoid in Set it can easily be
verified that (M,µ, η({∗}) meets all the conditions required to be a monoid
in the usual sense.

Definition A comonoid in a monoidal category C is a monoid in the dual
category Cop. Graphically a comonoid is represented by the triple (M, δ =

, ε = ).
Moreover, if σ ◦ δ = δ the comonoid is said cocommutative.

Remark In FdHilb comonoids are coalgebras.

We can now define a structure which is of great importance for a cate-
gorical interpretation of quantum processes: Frobenius Algebras. Note that
we give here the categorical definition of a Frobenius algebra. Hence, this
is, more or less, a misuse of the word algebra.
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Definition A Frobenius Algebra (A,µ, η, δ, ε) in a monoidal category C con-
sists of a monoid (A,µ, η) and a comonoid (A, δ, ε) such that the diagrams

A⊗A A⊗A⊗A

A A⊗A,

δ ⊗ 1A

δ

µ 1A ⊗ µ

A⊗A A⊗A⊗A

A A⊗A,

1A ⊗ δ

δ

µ µ⊗ 1A

commute, or explicitly, that (µ ⊗ 1A)(1A ⊗ δ) = (1A ⊗ µ)(δ ⊗ 1A) = δµ.

Graphically, a Frobenius algebra depicted by (A, , , , ) verifies
the identities

• (A, , ) is a monoid : = and =

=

• (A, , ) is a comonoid : = and =

=

• Frobenius condition : =

If (A, , ) and (A, , ) are respectively commutative and co-
commutative, then the Frobenius Algebra is said commutative.

Hereafter Commutative Frobenius Algebras (CFAs) will be distinguished
by the colour of their dots.

Example 2.3.1. Given an orthonormal basis {|0〉, . . . , |d − 1〉} of Cd the
maps

µ =
∑

i |i〉〈ii| : Cd ⊗ Cd → Cd η =
∑

i |i〉 : C→ Cd

δ =
∑

i |ii〉〈i| : Cd → Cd ⊗ Cd ε =
∑

i〈i| : Cd → C

form a CFA on Cd.

We will now give an important result regarding CFAs and a few useful
pieces of notation that we will reuse in the next chapters.
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Definition Given a CFA F = (A,µ, η, δ, ε) an F-graph is a map obtained
from the vertical and horizontal composition of µ, δ, η, ε, σ and 1A. An F-
graph is said connected if its graphical representation is connected.

We will now state a weaker version of the theorem proved in [Koc03].

Theorem 2.3.2. Any connected F-graph with no loops admits the normal
form

...

...

.

When a graph is reduced to such a form it is called a Spider, which is
defined by its number of inputs n and its number of outputs m.

Snm :=
...

...

When a spider has no input or output, the spiders S0
m and Sn0 are defined

by

S0
m := S1

m ◦ Sn0 := ◦ Sn1 .

Definition The map S0
2 (resp. S2

0) is called a cap (resp. a cup).

Proposition 2.3.3. [CW87] For any Frobenius Algebra (A, , ,

, )

= =

holds. This is known as the compactness property. A short proof which
makes use only of the conditions defining Frobenius Algebras can be found
in [Her10].

We will see at the end of this chapter how the notion of CFA can be
used in quantum mechanics and we will use those definitions extensively
throughout the rest of this dissertation.
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2.4 Multipartite Entanglement

Entanglement is often described as the most powerful characteristic of quan-
tum systems. Quantum teleportation and superdense coding are use cases of
this property. In quantum computer science, entanglement has been used to
develop algorithms that boost computational power significantly [Sho97]. It
is often useful to arrange quantum states in classes which reflect their com-
putational power. We give a definition of the most widely used classification
and use it to show that the case in which n = 3 qubits, two states, namely
GHZ and W, stand out. The interested reader will find useful information
in [DVC00].

Definition Two states are LOCC-equivalent if and only if they can be de-
terministically inter-converted with local physical operations and classical
communication. (LOCC standing for Local Operations and Classical Com-
munication.)

Definition Two states are SLOCC-equivalent if and only if they can be
made LOCC-equivalent with a non-zero probability. SLOCC standing for
Stochastic LOCC.

Theorem 2.4.1. For an n qubit system, two states |ψ〉 and |φ〉 are SLOCC-
equivalent iff there exist invertible linear maps Li : C2 → C2, i ∈ {1, . . . , n}
such that

|ψ〉 = (L1 ⊗ . . .⊗ Ln)|φ〉.

If we consider a system with three qubits A,B and C there are different
classes of entanglements under SLOCC:

• A−B−C : in this configuration the qubits are not entangled and the
system can be reduced to |0〉 ⊗ |0〉 ⊗ |0〉.

• A−BC, AB −C or C −AB : two of the qbits are entangled and the
system can be reduced to 1√

2
|0〉 ⊗ (|00〉+ |11〉) = |0〉 ⊗ |Bell〉).

• ABC : genuine three-qubit entanglement.

If a state |ψ〉 can be converted under SLOCC into a state |φ〉 then we
note |φ〉 2 |ψ〉. As suggested by this piece of notation, 2 is a preorder
relation and it defines the notion of a maximally entangled state.

In the case n = 3, which is one of interest for us, there are two maximally
entangled states with respect to SLOCC: |GHZ〉 and |W 〉 [DVC00]

|GHZ〉 = 1√
2
(|000〉+ |111〉)

|W 〉 = 1√
2
(|001〉+ |010〉+ |100〉)
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and we can represent the poset of classes for three qubits:

A−B − C

|0〉 ⊗ |Bell〉

|GHZ〉 |W 〉

.

A good intuition as to what these states are is given in [CE11a]. It seems
that the |W 〉 expresses a kind of pairwise entanglement between the qubits,
whereas the |W 〉 state is globally shared between all the qubits.

2.5 The GHZ/W Calculus

Having introduced the GHZ and W states in the previous section and hav-
ing given the main rules used for the graphical representation of quantum
processes in †-SMCs, it is now possible to introduce the graphical calculus
that will be of specific interest in the next chapters : the GHZ/W Calculus.

2.5.1 Speciality - Antispeciality

As we will see in the next section, the GHZ and W states are closely related
to the notion of Speciality and Antispeciality, which we define here.

Definition A CFA (A, , , , ) is called a Special Commutative

Frobenius Algebra (SCFA) if

= .

Definition A CFA (A, , , , ) is called an Antispecial Commu-

tative Frobenius Algebra (ACFA) if

=

where

:= :=

In FdHilb the a direct link can be made between SCFAs (resp ACFAs)
on C2and the GHZ (resp the W) state.
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Theorem 2.5.1. [CK10] For any SCFA on C2, the induced frobenius state
is SLOCC-equivalent to |GHZ〉.

Theorem 2.5.2. [CK10] For any ACFA on C2, the induced frobenius state
is SLOCC-equivalent to |W 〉.

It is, then, interesting to see which CFAs induce the |GHZ〉 and the
|W 〉 states because any |GHZ〉 (resp |W 〉) structure is a |GHZ〉 (resp |W 〉)
state.

A SCFA corresponding to a |GHZ〉 structure is, for instance, defined by
the four maps

= |0〉〈00|+ |1〉〈11| = |0〉+ |1〉
= |00〉〈0|+ |11〉〈1| = 〈0|+ 〈1|,

whereas an example of a W -structure would be

= |1〉〈11|+ |0〉〈01|+ |0〉〈10| = |1〉
= |00〉〈0|+ |01〉〈1|+ |10〉〈1| = 〈0|.

Any CFA (A, , , , ) induces a tripartite state defined by

the spider S0
3 . Thus, we can see easily that the GHZ and W structure given

above induce the states

:= = |000〉+ |111〉 = |GHZ〉 1

and

:= = |001〉+ |010〉+ |100〉 = |W 〉 2.

Remark In the previous example we give an equality between the graph-
ical representation of a map and its corresponding expression in the Dirac
notation. Obviously, this requires doing some (easy) calculations. Because
these calculations are not of any real interest to the reader, we will never
show them and shall give the result directly. However, a program written by
the author made available in the appendix can be used to check the validity
of the statements made in this dissertation. The corresponding command
will be given as a footnote and will allow an easy verification of the identity.

1./g2m.py "otimes(deltaGHZ, id) * deltaGHZ * etaGHZ" "otimes(otimes(zero,

zero), zero) + otimes(otimes(one, one), one)"
2./g2m.py "otimes(deltaW, id) * deltaW * etaW" "otimes(otimes(one, zero),

zero) + otimes(otimes(zero, one), zero) + otimes(otimes(zero, zero), one)"
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2.5.2 GHZ/W Pairs

Of course, the maps defining the GHZ and W structures can be composed
and give rise to a multitude of states. In [CK10] Coecke and Kissinger
suggest defining GHZ/W pairs which behave particularly nicely in FdHilb
and produce a number of powerful results.

Definition A SCFA (A, , , , ) and an ACFA (A,

, , , ) form a GHZ/W Pair if the following conditions hold:

1. | := =

2.

|

= | |

3. =

4. | =

Remark The map defined by the first condition is pronounced ’tick’. In
FdHilb, it corresponds to the X Pauli gate 3.

| =

(
0 1
1 0

)
Note also that by compactness | is self-inverse.

The axioms given above can be used inside a bigger graph in order to es-
tablish graphical properties. Indeed, the GHZ/W calculus is sound but not
complete : whenever a property holds in the graphical calculus, it is true,
however two very different graphs can represent the same map. It is then
possible to prove interesting results using uniquely pattern matching and
graph rewriting. In order to illustrate this process, and because we will need
them later on, we will now prove a couple of graphical lemmas.

Lemma 2.5.3.

|

= | |

Proof.

|

= | | = | |

Lemma 2.5.4. [Her10] | =

Proof. = || =

|
| =

|| |

=

|

= |

3g2m.py "X" "otimes(cupW, id) * otimes(id, capGHZ)"
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2.5.3 Plugging

When working in a category for which the objects are finite, it is possible to
prove graphically properties using a technique called plugging. Combining
this technique and the axioms of the GHZ/W calculus allows one to prove
much more graphical identities.

In the case of a qubit, we consider the category FdHilb and GHZ/W
pairs are defined over Q = C2. In this particular configuration we have the
following result:

Lemma 2.5.5. [CK10] For a GHZ/W pair on H in FdHilb with dim(H) ≥
2, the points , | span a 2-dimensional space.

In the case H = Q, we conclude that they form a basis, and if two linear
maps coincide on a basis then, they are equal. Consequently

f = g ∧
|

f =

|

g ⇔ f = g

holds.

2.5.4 Phases

Definition [CKMR11] For a given CFA (A, , , , ), a phase
f : A→ A is a morphism of the form

ψ :=
ψ

for some element ψ : I → A.

We will see in the next chapter how some properties of GHZ phases can
be used in order to implement rational arithmetic.

Example 2.5.6. What are the GHZ phases in FdHilb? Let |ψ〉 : α|0〉+ |1
be the state of a qubit. We take |ψ|2 = D which is 2 in the case of a qubit,
and |ψ〉 is of the form |0〉+ eıθ|1〉, θ ∈ [0, 2π[. For more details as to why we
choose to restrain ourselves to |ψ|2 = D see [CD11]. Then phases are the

maps ◦ (1⊗ ψ) and they admit the following family of matrices:

=

(
1 0
0 eıθ

)
.
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Chapter 3

Rational Arithmetic in the
GHZ/W Calculus

In this chapter we give a commented summary of The GHZ/W-calculus con-
tains rational arithmetic [CKMR11]. Indeed, this paper sets the foundation
upon which this is based and should be read by the interested reader. How-
ever, in an effort to make this thesis self-contained, we will give and explain
the main results here, so that the next chapter about complex arithmetic
can be understood without reading [CKMR11].

3.1 Properties of GHZ phases

We give here a few important theorems and corollaries carefully proved by
plugging in [CKMR11].

Theorem 3.1.1.

|

ψ

ψ =
ψψ

As we shall see shortly, this theorem expresses, up to a scalar, a kind of

distributivity law of the GHZ-phase over .

Theorem 3.1.2. ψ = |

ψ

For GHZ-phases let us define a very suggestive piece of notation.

1
ψ

=

|
|

ψ = |
ψ
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Theorem 3.1.3.
1
ψ

ψ

= |

ψψ

The map (resp ) will be called addition (resp multipli-

cation). Similarly, (resp ) is call the unit for addition (resp unit
for addition). Moreover, the following corollary shows that, up to a scalar,
there is a distributivity law of multiplication over addition.

Corollary 3.1.4. |

ψ

ψ

Φ φ

=

ψψ Φ φ

In order to do arithmetic on N, the following encoding of natural numbers
is defined:

0

=
n+ 1

=
n

We can now verify that behaves as expected and that addition and
multiplication interact as in the case of natural numbers.

Remark When working in FHilbp invertible scalars can be ignored and
we will use simplified versions of the previous theorems.

Example 3.1.5. is the normal addition. (Using Th. 2.3.2)

n m

=

n m

. . . . . .

=

n m

. . . . . .

=

m+ n

Example 3.1.6. and interact like normal addition and normal
multiplication.

a
b c

3.1.1
====

aa b c

3.1.1
====

b c

a a

. . .

a a

. . .

=

b c

a . . . a a . . . a

=

a(b+ c)

21



3.2 Multiplicative inverses

From Th. 3.1.3 it follows that the tick map behaves like a multiplicative
inverse.

Corollary 3.2.1. |
ψ ψ

= |

ψ ψ

Thus, it is possible to encode multiplicative inverses:

1
n

:= |

. . .

= |

n

and providing that m 6= 0, positive fractions can be encoded as well:

n
m

=

1
m

n

=

n1
m

Using the basic properties of CFAs, the axioms of the GHZ/W-Calculus
and the theorems given in the previous section, it can be easily shown that
rational fractions behave like normal fractions with respect to addition and
multiplicative laws. Detailed proofs can be found in [CKMR11] and very
similar proofs can be found in the next chapter.

Example 3.2.2. Multiplication

n
m

n′

m′

=

nn′

mm′

Example 3.2.3. Addition of fractions also behaves as expected:

n
m

n′

m′

=

nm′+mn′

mm′

3.3 Additive inverses

Additive inverses can also be encoded in the GHZ/W-Calculus but require
the addition of a new map, × , which

• is involutive.

• is a phase for .
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• is such that , × is a plugging set.

A map meeting all these conditions is suitable to encode additive in-
verses.

Theorem 3.3.1.

×

ψψ
= ×

ψψ

Finally, the set of axioms required to encode rational arithmetic is com-
plete once one defines

−ψ

:= ×
ψ

− n
m

:= ×

n
m

.

Remark In FdHilb, × is -Z, Z being the Pauli Z gate.

3.4 Conclusion

We gave here a quick summary of [CKMR11], the goal of this chapter being
to introduce the important notions required to understand the next chapters.
Let us recall here the simplified versions (no scalars) of Th.3.1.1, Th.3.1.2
and Th.3.1.3.

ψ =
ψψ

ψ =

1
ψ

ψ

= .
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Chapter 4

Complex Arithmetic

We propose here an encoding of complex arithmetic in the GHZ/W Calculus
as well as an alternative to the definition of additive inverses given in the
previous chapter.

4.1 ı

Suppose we have a point : I → Q. Suppose further that verifies

|

= (4.1)

up to a scalar. For a reason that will soon become clear we call this point ı.

Remark All the equalities given in this chapter are given up to a scalar,
providing they are invertible.

Proposition 4.1.1.

|

= ⇔ =

Proof. Proof by double implication.

Suppose that

|

= .

Then

|

3.1.1
====

|

3.2.1
==== =

3.1.2
====
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Conversely, suppose that = .

Then

|

3.1.1
====

| |

3.2.1
====

|

= | 3.1.2
====

Intuitively, this proposition reveals the fact that, in normal complex
arithmetic, ı can be equivalently defined as being solution of ı+ 1

ı = 0 or of
ı2 + 1 = 0.

4.2 Additive Inverses

We propose a way to define additive inverses using .

Proposition 4.2.1. The map acts as an additive inverse operation.

Proof. For any point ψ : I → Q

ψ

ψ

3.1.1
==== ψ

4.1.1
====

ψ 3.1.2
====

4.3 Encoding

We propose here an encoding of complex numbers based on the encoding
for natural numbers exposed in the previous chapter. Recall that positive
numbers are encoded as follows:

0

=
n+ 1

=
n

For z = a+ ıb, (a, b) ∈ N2 we define

z

:=
a

b

=

a b

. . . . . .
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Example 4.3.1. behaves like normal addition for complex numbers.

a+ ıb c+ ıd

=

a
b
c

d

=

a
b
c

d

3.1.1
====

b d

a+ c

. . . . . .

=
a+ c

b+ d

Using a very similar proof one can also show that (a + ıb)(c + ıd) = ac −
bd+ ı(ad+ bc).

Proposition 4.3.2. | =

Proof. | =
| 3.2.1

====

| |

=
|

=

This proposition justifies a more compact encoding of negative imaginary
numbers which does not use the additive inverse defined earlier and yet is
consistent with the rest of the encoding.

a− ıb
:=

|

a
b

= |

|

a b

. . . . . .

Corollary 4.3.3. The additive inverse map is involutive.

Proof.
2.3.2

====
4.3.2

====

|

3.1.3
====
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Proposition 4.3.4. and form a plugging set.

Proof. By contradiction. Suppose that and are proportional.

Then, since we write equalities up to a scalar, = and we

have

‖2.3.2, 4.1.1 ‖

=

6=

Proposition 4.3.5. is a phase for .

Proof. Trivial using theorem 2.3.2.

We note that verifies all the conditions to be an additive inverse

map as defined in [CKMR11]. This shows that this encoding is consistent
with the one defined in the previous chapter. Conversely, if a map × is

involutive, a phase for , { and × } is a plugging set and the

map is of the form for some point : I → Q then we have = .

The proof is given in the annex.

Remark ı being defined up to a scalar in 4.1, the illegible points |ψ〉 =
k(α|0〉+ β|1〉)(k, α, β) ∈ C∗ × C2 in FdHilb are such that{

α2 + β2 = 0
αβ = 0.

The solutions are {(α = eı(
π
4
+nπ

2
), β = αe−ı

π
2 ), n = 0, 1} ∪ {(α = e−ı(

π
4
+nπ

2
), β =

αeı
π
2 ), n = 0, 1}. An interesting example of such a point being |ψ〉 =
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−ı(eı 3π4 |0〉 + e−ı
3π
4 |1〉) because the definition of additive inverses given in

this encoding coincides with the one given in the previous chapter, i.e. mi-
nus the Z-Pauli gate.

4.4 Conclusion

We saw here that with the addition of only a point, the GHZ/W Calculus
is powerful enough to approximate the complex field with arbitrary preci-
sion. The main advantage in this approach is that it enable ones to define
imaginary numbers and additive inverses at the same time. Considering
that the GHZ/W-calculus is based only on CFAs, this encoding is a nice
demonstration of the expressiveness of this calculus.
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Chapter 5

From Open Graphs to
Quantomatic

As stated in the introduction, one of the many doors opened by the SMC
formalism of quantum physics is the possibility to reason about graphs au-
tomatically through graph pattern matching and term rewriting. In order
to give the reader an idea of what we mean by those terms we will start
this chapter by showing how these techniques can be used on a concrete
example.

5.1 An Intuitive Approach

Let us prove that

|

| = | [Roy11] and let us analyse carefully how

reasoning about graphs works.

Proof. A detailed proof of this is result is as follows:

|

| = || | (

|

= | | )

= | ( | is involutive)

= | ( = )

= |

In each step a part of the graph is identified as being a match for one of
the rules of the GZH/W-calculus. Then, the subgraph is replaced accord-
ingly. In the axioms, the dangling wires (input/outputs) can be matched by
anything. In the first rewrite, the input is plugged to for instance. In
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order to make this kind of process more rigorous and to automate it, a few
important notions need to be defined:

• graphs are not usual graphs because edges need not to be connected
at both ends ; they are Open Graphs

• Pattern Matching for Open Graphs

• Graph Rewriting of Open Graphs

All these definitions are necessary to understand what quantomatic [DD+]
is, exactly, and how it works. That is why the rest of this chapter includes
important results taken from the fields of pattern matching, graph theory
and term rewriting. A thorough tutorial on these topics can be found in
[DK10].

5.2 Open Graphs

Open Graphs extend the usual notion of graph as we know it. Again, we
will choose a category theoretic approach to this topic. This approach yields
equivalent, yet sometimes unusual, definitions.

Definition A directed graph G is a functor from the category with two
objects and two arrows defined by •⇒ • to Set.

Consequently, the category of graphs is a functor category, and a mor-
phism of graphs is a natural transformation. Unfolding this definition, the
object on the left identifies the Edges of the graph and the one on the right
identifies the Vertices. The arrows are used to match each edge with its
corresponding source and target.

We recall here the definitions of full subcategories and slice categories.
More information and examples about those can be found [HSB04] and
[vO02].

Definition A category A is a full subcategory of B if for any A,A′ ∈ Ob(A),
homA(A,A′) = homB(A,A′).

Example 5.2.1. The category Grp of all groups and groups homomor-
phisms is a full subcategory of Mon, the category of all monoids and monoid
morphisms. Indeed, Grp is a subcategory of Mon. Moreover, let f be a
group homomorphism from (A, ·) to (A′, ∗). Then, f is such that f(x · y) =
f(x) ∗ f(y) and f(x · x−1) = f(e) = f(x) ∗ f(x)−1 = e′. Conversely, if
f is a monoid morphism from the group (A, ·, e) to the group (A′, ∗, e′)
then f(x · y) = f(x) ∗ f(y) and for any x ∈ A, f(x−1 · x) = f(e) = e′ =
f(x) ∗ f(x−1). The unicity of the inverse implies f(x−1) = f(x)−1.
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Definition Let A be an object in the category C. The slice category (C/A)
is the category which has for objects all arrows g with codomain A. An
arrow from g : B → A to h : B′ → A is an arrow k : B → B′ such that

B B′

A

k

g

h

commutes.

Open Graphs are typed graphs: vertices in the usual sense are ’proper’
vertices or edge-points. One can interpret edge-points as dummy points
inserted along the edges. Thus, in its most simple definition, an open-graph
admits only two types of vertices. As suggested in [DK10], we call G2 the
following object of Graph:

G2 := V ε .

Definition The category OGraph is the full subcategory of the slice cat-
egory Graph/G2.
Open graphs are the objects of OGraph.

Proposition 5.2.2. [DK10] OGraph has coproducts, given by disjoint
union of the underlying typed graphs.

Definition The set inputs (resp outputs) of an open graph G, noted In(G)
(resp Out(G)) is the set of in-edges (resp out-edges) of G. An in-edge (resp
out-edge) e is an edge-point such that there does not exist any edge which
admits e as target (resp source).

Definition The boundary graph of an open graph is the graph B := In(G)+
Out(G). By definition, the coproduct induces a unique map b : B → G. b
is called the boundary map of G.

Definition Two open-graphs L and R share the same boundary graph, B,

by boundary maps b1 and b2, when L
b1←− B

b2−→, In(L) ∼= In(R), Out(L) ∼=
Out(R) and

In(L) In(R)

L B R

Out(L) Out(R)

0 1 2

3 4 5

∼

∼

l

r

li

ri

lo

ro
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commutes. Note that the commutativity of triangles 0, 2, 3 and 5 is given
by the coproduct structure of B.

The list of definitions given above is quite dense; that is why we illustrate
them here and show that they define beautifully the intuitive notions given
in the first section.

L :=

a b c

lw lx ly lz

liw lox liy loz

, R :=

rw ry rz

riw row riy roz

L and R share the same boundary: The boundary of L (resp R) is given by
the point-graph lw, lx, ly, lz resp( rw, ry, rz). The boundary maps of L and
R are represented under the graphs using the dashed arrows. Obviously,
In(L) ∼= In(R) and Out(L) ∼= Out(R). Take, for instance the relations
ρ1 = (liw, r

i
w), (liy, r

i
y) and ρ2 = (lox, r

o
w), (loz, r

o
z). Having done that, the com-

mutativity of triangles 1 and 4 becomes trivial. Recall that commutativity
of triangles 0, 2, 3 and 5 is given by construction, B being a coproduct.

5.3 Matching

As seen earlier in the introductory section of this chapter, the notion of
matching allows to identify a graph to a part of a larger graph. We give
here the definition of a matching in the context of open graphs as it is defined
in [DK10].

Definition The edge neighbourhood N(v) of a vertex v is the set of all edges
that are connected to v (incoming or outgoing).

Remark Recall that what we call a vertex in the context of open graphs is
a point of type V . Edge-points are not included here.

Definition Let G,H ∈ Ob(OGraph) and f ∈ HomOGraph(G,H). f is
a local isomorphism when, for every vertex v (i.e. point of type V ), the
restriction of the edge function of f to N(v) is a bijection : fv : N(v)

∼−→
N(f(v)).

Definition Let G,H ∈ Ob(OGraph). A monomorphism m : G → H is
called a matching when it is a local isomorphism. We say that G matches
H at m.

Definition A span H1
f←− G g−→ H2 is called boundary coherent when f and

g are matchings and

• ∀p ∈ In(G) at least one of f(p) and g(p)is an input
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• ∀p ∈ Out(G) at least one of f(p) and g(p)is an output

All the tools necessary to perform operations on open graphs are now
defined. Given a pair of open graphs two operations are possible: merging
and substraction. All these operations are part of the rewriting process of
graphs in the GHZ/W Calculus and will be illustrated at the end of this
chapter. The following definitions are taken from [DK10], where they are
given with more details and followed by related theorems.

Definition Let H1
m1←−− G

g−→ H2 be a boundary coherent span. The
pushout

M H2

H1 G

m′
2

m′
1 m2

m1

is called merging of H1 and H2 on G by m1 and m2 and is noted M :=
G1 +m1,m2 G2.

If G is a point-graph then the merging is called a plugging and is noted
M := H1+

∗
m1,m2

.

Remark Recall that apart from the category theoretic definition of graphs
given above, a graph G can be equivalently defined a 4−-tuple (P,E, s, t),
P and E being the sets of points and edges respectively and s and t being
the maps which associate each edge with its source and target respectively.

Definition The substraction of G from M at a match m : G→M , written
M −m G is the open graph H defined as follows:

PH = (PM\m[PG]) + PB
EH = (EM\m[EG])

sH(e) =

{
bo(p) if p ∈ Out(G) and m(p) = sM (e)
sM (e) otherwise

tH(e) =

{
bi(p) if p ∈ In(G) and m(p) = tM (e)
tM (e) otherwise

5.4 Rewriting

Definition A span L
b1←− G b2−→ such that L and R share the same boundary

is called a rewrite rule. The rule is said to rewrite G to G′ at matching m
when G′ is defined by the double pushout as follows:
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L B R

G G−m L G′.

b1

b2

m

This expresses the fact that L is removed from G and replaced by R to form
a new graph G′.

We now have the required framework to automatically apply rewrite
rules to the open graphs used in the GHZ/W-calculus. However, in concrete
use cases, the need to express infinite sets of rewrite rules emerges. This is
required in order to express the spider rule, for instance : LHS must match a
vertex with any number of inputs. !−boxes aim at solving this issue [DD09]:
any part of the graph which is inside a !−box can be replicated any number
of times, all the vertices inside the !−box being connected to the outside in
the same way. Rewrite rules expressed using !−boxes allow graph pattern
matching: a single rule can match more than one graph.

The set of graphs generated by a !−box graph is given by any sequence
of the following operations:

• Copy: copy a !−box and the incident edges

• Drop: unbang vertices

• Merge: merge two !−box

• Kill: remove a !−box and its content

Quantomatic implements the Copy, Drop and Kill operations and allows
to reason about !−graphs. Figure 5.1 shows how the spider rule for vertices
of type GHZ is implemented in quantomatic. The graph on the left is the
LHS and the graph on the right, the RHS. Thus, the rule is implemented
by induction and the merging of multiple requires many applications.

5.5 Quantomatic

Quantomatic is a tool which automates the graph rewriting process : given
a set of rewrite rules and a graph, it solves the sub-graph isomorphism
problem in order to find which rules’ LHSs are matchings for the graph and
rewrites the graph accordingly. Technical details of the implementation of
quantomatic and its capabilities are given in the next chapter. Here we
will see, through an example, how quantomatic implements the techniques
given above.
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Figure 5.1: Rewrite rule making use of !−boxes in order to express the spider
rule for GHZ vertices. Banged vertices are called boundary vertices.

Remark In this chapter we studied open graphs typed by G2. Those graphs
admit only one type of vertex. It is possible to define and reason about
graphs typed by more complex type-graphs [DK10]. Consider, for example
the graphs used in the GHZ/W-calculus : vertices can be of type GHZ or
W.

Let us consider the rewriting of

|
|

by the rule

|
| ⇒ .

Figure 5.2 shows what these graphs look like in quantomatic. The vertices
labelled c and d are the boundary vertices. The identity map is then rep-
resented by two boundary vertices connected by a wire. Seen as an open
graph and introducing the ”dummy” edge-points, here is the graph that our
example is based upon:

G =

a b c d
by bz

biy boz

In this graph, the vertices a and d are of type GHZ while the vertices b and
c are of type TICK.
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Figure 5.2: Top: Graph being rewritten. Bottom: Rewrite rule implemented
in quantomatic.

5.5.1 Rewrite Rule

We consider the following span, the boundary maps being defined by the
dashed lines :
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a b
ly lz

biy boz

ry rz

L

B

R

The fact that In(L) ∼= In(R) and Out(L) ∼= Out(R) is implied by the graph.
Thus the span L← G→ R is a rewrite rule.

5.5.2 Matching

The next step is to show that there exists a matching L → G. Let us use
the following names on G and L:

I II III IV

α β γ δ ε ζ η θ
G

L 1 2

a b c d

We define f : L → G, such that f(1) =II f(2) =III (we are interested only
in vertices). Then L matches G at f .

Indeed, on the one hand we have N(1) = {a, b} and N(2) = {c, d} and
on the other hand N(II) = {γ, δ} and N(III) = {ε, ζ}. Thus it is clear that
f1(N(1))

∼−→ N(f1(1)) and f2(N(2))
∼−→ N(f2(2)).

5.5.3 Rewriting

Finally, knowing that G can be rewritten by L⇒ R at f , we can rewrite it
by double pushout:

1 2

I II III IV I IV I IV

Remark This example requires to extend slightly the definitions given
above as G has four vertices with two different types.
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5.5.4 Automation

quantomatic recreates this process:

• Share the same boundray : Checked when the set of rules is
loaded

• Matching : The software finds all possible matchings and applies the
first match by alphabetical order. See Figure 5.3

• Rewriting : The graph is rewritten by successive application of
rewrite rules. See Figure 5.4,

Figure 5.3: Quantomatic proposes a list of matching rules. The user can
choose to apply a specific rule or just apply automatically the first one.
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Figure 5.4: The rule is applied and the graph rewritten.
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Chapter 6

Implementation in
Quantomatic

So far we have mainly described the theoretical aspects of Quantomatic.
This chapter aims at giving a technical account of the software explaining
which modifications were required in order to automate the theories pre-
sented in chapters 3 and 4.

6.1 Coding

6.1.1 Description of the software

Quantomatic is divided in two parts:

Overview

• The front-end that we usually call GUI.

• The back-end that we usually call Core.

The core is written in Poly/ML and can be run as a standalone appli-
cation through a console interface. The rewrite rules and the graphs are
exported/imported using an XML format. A typical session would be:

1. Launch the Core.

2. Load a set of rules, called ruleset.

3. Create a new graph or load an existing one.

4. Normalize.

Thanks to the GUI, written in JAVA, it is possible to visualize graphs
and communicate more easily with the core : it provides a user friendly
interface with the core.
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Graph Param

We will not describe in detail the implementation of Quantomatic. There is,
however, a structure which is of great interest to us : GRAPH PARAM.
This is the structure which determines which theory the software will reason
about. Whenever a new theory is declared, one needs to create a new
instance of GRAPH PARAM and specify, among other things, what the
types of the vertices and of the edges are. Each vertex type is identified by
a string used for human interactions.

For instance, in the case of the GHZ/W-calculus, there are two types of
vertices, GHZ (identified by ’GHZ’) and W (identified by ’W’), and they do
not carry any data. The edges are also of type ’unit’.

Graphs

As mentioned above, graphs are stored in an XML format. They can be
loaded and saved from both the core and the gui. In the end, the core is the
one actually in charge of generating/parsing the XML code.

The structure of a graph file is very informative as it mirrors the struc-
tures defined by the core.

<graph>
<ver tex name=” name o f the ve r t ex ”>

<type>GHZ</ type>
<data />

</ ver tex>
<ver tex name=” another name ”>

<type>edge−po int</ type>
<data />

</ ver tex>
. . .
<edge name=” name of the edge ” d i r=” true ”

source=” name o f source ve r t ex ”
t a r g e t=” nam e o f t a rg e t v e r t ex ”>

<type>uni t</ type>
<data />

</ edge>
. . .
<bangbox name=” name of the bangbox ”>

<ver tex>name of banged vertex 1</
ver tex>

<ver tex>name of banged vertex 2</
ver tex>

. . .
</bangbox>
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. . .
</graph>

Note the possibility to specify whether an edge is directed. Of course,
the types of the vertices must correspond to the types declared by the theory
loaded by the core.

In figure 6.1 we show how a graph is represented by the GUI. In this
case, the graph is taken from the X/Z-calculus in which vertices carry data.
This explains the coloured labels represented under the nodes.

Figure 6.1: A graph displayed by the GUI.

Rulesets

Rulesets are also defined in XML files. Within the file, each rule must have
a unique name and it is possible to ’tag’ them in order to have groups of
rules which are conceptually close. Some rules can be enabled by default.

The structure of a ruleset is the following:

<r u l e s e t>
<a l l r u l e s>

<r u l e>
<name>Name of ru le 1</name>
<d e f i n i t i o n>

< l h s>Here the LHS . . .</
l h s>

</ rhs>Here the RHS . . .<
/ rhs>

</ d e f i n i t i o n>
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</ r u l e>
. . .
<tags>Rules can be tagged here</ tags>
<a c t i v e>

<r u l e>
N a m e o f r u l e a c t i v e b y d e f a u l t 1
</ r u l e>

<r u l e>
N a m e o f r u l e a c t i v e b y d e f a u l t 2
</ r u l e>

. . .
</ a c t i v e>

</ a l l r u l e s>
</ r u l e s e t>

Figure 6.2 shows how rulesets are displayed. A list of rules is available
in the side-bar and rules can enabled/disabled by tag or by selection. It is
also possible to open a specific rule.

Figure 6.2: A ruleset represented in the GUI.

6.1.2 Support for multiple theories

When Quantomatic was designed its goal was to implement theX/Z-calculus
[CD11], also called the Red-Green Calculus. Thus, this theory was harcoded
in both the core and the gui. A substantial amount of work has been done
in order to support multiple theories. As suggested above, the ruleset and
the GRAPH PARAM must agree on the theory which is in use. When it
comes to represent the graphs, the GUI must also support different repre-
sentations for the vertices. It is now possible to implement a new theory like
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the GHZ/W-calculus in a matter of minutes, thanks to the work that has
been done over the past few months. The hardcoded part in the core has
been reduced to only a few lines and the GUI supports a change of theory
on-the-fly.

The author worked mainly on the GUI and implemented what we will call
theory visualization. Indeed, each graphical calculus supported by quantomatic

is characterized by the shape and the color of its vertices. In order to be able
to switch easily from an arbitrary theory to another, a theory visualization
is defined in an XML file which specifies all the data required by both the
core and the GUI. Thus, implementing a new theory is actually defining a
consistent triple (GRAPH PARAM, Ruleset, Theory Visualization).

The structure of a theory-visualization file is the following:

<theory name=” n a m e o f t h i s v i s u a l i z a t i o n ”
implements=”

name of the implemented GRAPH PARAM”>
<nodetype name=”name o f the ver tex type ”>

<data type=”None or St r ing or
MathExpression”></ data>

<v i s u a l i z a t i o n>
<node s v g F i l e=”node . svg ”/>
< l a b e l f i l l =” f f f f f f or any

c o l o r ”/>
</ v i s u a l i z a t i o n>

</ nodetype>
. . .

</ theory>

In Figure 6.3 we see that the toolbox is dynamically created when the
theory-visualization file is loaded. It provides an easy access to !−boxes
operations.

6.1.3 Perspectives

The implementation of a 2.0 version of Quantomatic is under active devel-
opment and will support theory switching on-the-fly from both the core and
the GUI.

As new theories are implemented new needs are emerging. For instance,
the ”plugging” technique presented earlier is not something that can be
automated. In order to use this technique efficiently one would need to
implement a kind of proof strategy.

The construction of graphs representing rational or complex expressions
in the GHZ/W-calculus is time consuming and error prone. However, they
obey simple rules and could be automated. Similarly, if someone works
frequently with quantum logic gates, it could be handy to build graphs
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Figure 6.3: The toolbox with two different theory visualizations. Left: X/Z.
Right: GHZ/W

automatically corresponding to boolean expressions. Plug-ins, which one
could see as macros, may help to solve those issues. A proof-of-concept has
been developed and has been used in order to automatically build graphs
corresponding to rational or complex expressions.

Figure 6.4: Proof-of-concept for the plugin system. The complex expression
entered on the left is parsed using a JavaScript script and the graph is
generated on the right.
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6.2 Rewrite Rules for complex and rational arith-
metic

The theories presented in Chapters 3 and 4 admit rewrite rules expressed in
term of graph patterns described in Chapter 5.

6.2.1 Rational arithmetic

The following rewrite rules were given in [CKMR11]:

= =
|

=

6.2.2 Complex Arithmetic

We give here our modified version of the rules which describe rational arith-
metic in the GHZ/W-Calculus.

| =

||

| =

|

|

|

=

Note that the case z/0 is not avoided by this reduced set of rules. For that
to happen it would be required to split the second rule into three different
rules. Moreover, the more compact definition of ı given above is expressed
by:

=

| |
=
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6.3 Implementation and Results

Even if succeeding in implementing arbitrary theories represents an impor-
tant step towards a full implementation of rational arithmetic, one last point
should be clarified : in the first rule given above, provided the graph is an
undirected one, LHS matches RHS and the software enters an infinite loop.
For this reason it is important to use directed graphs in Quantomatic (which
is was not the case so far) and to implement the directed versions of the spi-
der theorem and of all the rules mentioned in the previous section.

Finally, a version implementing rational arithmetic and set up to work
out of the box is available at
https://benjaminfrot@github.com/benjaminfrot/quantomatic.git

, branch arithdemo:

> g i t c l one https : // benjaminfrot@github . com/ benjaminf rot / quantomatic . g i t
> cd quantomatic
> g i t checkout arithdemo

Figure 6.5 (resp 6.6) shows how complex (resp rational) arithmetic is
implemented in quantomatic and how a typical rewriting works: the user
creates a graph and then normalises it. It is possible to stop the process
at any moment and quantomatic will display the number of rewrites that
were applied.



Figure 6.5: Complex Arithmetic: Top: Graph created by the complex arith-
metic plug-in and corresponding to (1 + ı)(2 + ı). Middle: Graph being
rewritten. Bottom: Result, 3ı+ 2 + ı2.
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Figure 6.6: Rational Arithmetic: Top: Graph created by the rational arith-
metic plug-in and corresponding to (1 + 2)/3− 1. Bottom: Result, 0.
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Chapter 7

Conclusion

We discussed the possibility to encode rational arithmetic within the GHZ/W-
calculus and proposed an extension to that encoding. We then gave an ac-
count of the mathematical foundations of Quantomatic. Finally, we showed
how the encodings exposed in the first half of this dissertation where imple-
mented in Quantomatic and saw that this represents a significant milestone
for the project.

In the introduction, we mentioned two approaches to reading this work:

• The reader who is familiar with the notions discussed earlier will proba-
bly notice that the GHZ/W-calculus extended with a minor extension
is able to approximate the real or complex fields with an arbitrary
precision. This gives an idea of the expressiveness and power of that
language, which is based only on the CFAs, when compared to the
X/Z-calculus, for instance.

Another important result of this dissertation is the fact Quantomatic
has reached a significant milestone: an easy and fast implementation
of arbitrary theories. Thus, this software is becoming both a theorem
prover for Quantum Mechanics and tool for the researcher who wants
to test the consistency of a new theory.

• The less experienced reader will probably remember how Categorical
Quantum Mechanics and the tools it allows to define (graphical calcu-
lus, automated reasoning) can be used in order to describe quantum
systems. Again, this formalism should be compared to the Hilbert
space formalism initiated by von Neumann.

Future work will follow two directions : the theoretic aspect and
Quantomatic. Indeed, even if the implementation of complex arith-
metic is a nice demonstration of what can be done within the GHZ/W-
calculus, it would be interesting to see whether these encodings can be
used to prove new results. Quantomatic will be released in its version
2.0 very soon. However, new features such as plug-ins and strategies

50



would be useful in improving the user-interface and the power of the
tool respectively.
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Appendix A

Proof for 4.3

We give here the proof for the claim made in 4.3: If a map × is involutive,

a phase for , and × is a plugging set and the map is of the

form for some point : I → Q then we have = .

Proof. Let us suppose that the map meets all the conditions

stated above. Then, according to [CKMR11], it acts as an additive inverse
and for we have

=

⇒ =
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Appendix B

Code Listing

The following script can be used to easily verify whether two maps, expressed
either in graphical notation or Dirac notation, are equal.

#!/ usr / b in / python

from numpy import kron , matrix
from math import s q r t
import sys

#######################

def otimes ( a , b ) :
return kron ( a , b)

######################
def main ( ) :

#A few u s e f u l d e f i n i t i o n s
zero = matrix ( ”1 ; 0” )
one = matrix ( ”0 ; 1” )
zeroT = zero . t ranspose ( )
oneT = one . t ranspose ( )
p lus = ( zero + one ) / s q r t (2 )
minus = ( zero − one ) / s q r t (2 )
plusT = plus . t ranspose ( )
minusT = minus . t ranspose ( )

#### GHZ/W Calcu lus
#########################################################

#deltaGHZ |00><0| + |11><1|
deltaGHZ = kron ( zero , ze ro ) ∗zeroT + kron ( one , one ) ∗

oneT
#epsilonGHZ <0| + <1|
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epsilonGHZ = zeroT + oneT
#muGHZ |0><00| + |1><11|
muGHZ = zero ∗kron ( zeroT , zeroT ) + one∗kron (oneT ,

oneT )
#etaGHZ |0> + |1>
etaGHZ = zero + one

#deltaW |00><0| + |01><1| + |10><1|
deltaW = kron ( zero , ze ro ) ∗zeroT + kron ( zero , one ) ∗

oneT + kron ( one , ze ro ) ∗oneT
#epsilonW <0|
epsilonW = zeroT
#muW |1><11| + |0><01| + |0><10|
muW = one∗kron (oneT , oneT ) + zero ∗kron ( zeroT , oneT )

+ zero ∗kron (oneT , zeroT )
#etaW |1>
etaW = one

#t i c k
t i c k = matrix ( ”0 1 ; 1 0” )

#swap
swap = matrix ( ”1 0 0 0 ; 0 0 1 0 ; 0 1 0 0 ; 0 0 0

1” )
#i d
id = matrix ( ”1 0 ; 0 1” )

#Extra d e f i n i t i o n s
capGHZ = deltaGHZ ∗ etaGHZ
cupGHZ = epsilonGHZ ∗ muGHZ
capW = deltaW ∗ etaW
cupW = epsilonW ∗ muW

X = matrix ( ”0 1 ; 1 0” )

i f ( l en ( sys . argv ) < 2) :
print ” s c r i p t ’ expr1 ’ [ ’ expr2 ’ ] ”
print ’Ex : python g2m . py ”deltaGHZ ∗ etaW”

’
print ’ or : python g2m . py ”deltaGHZ ∗ etaW”

” otimes (etaW , etaW) ” ’
print ” ∗ = \\ c i r c l e ; ot imes (x , y ) = x \

otimes y”
print ””
print ” Ava i l ab l e : deltaGHZ , muGHZ,

epsilonGHZ , etaGHZ , deltaW , muW,
epsilonW , etaW , t i ck , swap , id , capGHZ ,
cupGHZ, capW, cupW”

print ””
sys . e x i t (0 )
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l e f tHands ide = eva l ( sys . argv [ 1 ] )

print sys . argv [ 1 ] + ” :\n” + s t r ( l e f tHands ide )
print ””

i f ( l en ( sys . argv ) > 2) :
r ightHands ide = eva l ( sys . argv [ 2 ] )

print sys . argv [ 2 ] + ” :\n” + s t r (
r ightHands ide )

print ””
try :

print ( l e f tHands ide ==
rightHands ide ) . f l a t t e n ( ) . a l l ( )

except :
print False

i f name == ” main ” :
main ( )
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