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Abstract

Negation in conversation — conversational negation — is inherently difficult to
model. It does not follow straightforward rules such as negation in mathematics.
Instead of just denying information, it additionally elicits alternatives. This process
builds on the listener’s understanding of the negation and its context. This thesis will
propose a series of frameworks to model conversational negation in compositional,
distributional semantics, particularly in DisCoCirc. We will grow the scope of the
negation from (1) individual words to (2) multiple words to (3) evolving meanings
to (4) sentences, each step building on the previous.

For the negation of individual words, we propose and experimentally validate
multiple operations. Building on psychological observations, these negations model
information denial using logical negation. However, they additionally capture the
listener’s understanding of the world to derive the contexts in which a word usually
appears. These contexts are utilised to correct the result of the logical negation
to match the human intuition of conversational negation. Following psychological
experiments, we grow the scope of conversational negation by composing the
negations of individual words to model the negation of multiple words. Thus,
the negation of a sentence becomes a negation of a subset of its parts. Here, the
context informs the correct interpretation of the negation. Expanding to evolving
meanings, which are inherent to DisCoCirc, we propose a third framework. This
conversational negation of evolving meanings acts upon the update structure of
the negated sentence. Once more, the context informs the correct interpretation
of the negation. Finally, we combine the negation frameworks to propose an
all-encompassing conversational negation operation for sentences in DisCoCirc.
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The meaning of “no”

1
Introduction

Contents
1.1 Negation in conversation . . . . . . . . . . . . . . . . . . 1
1.2 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . 3
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Negation in conversation

Negation in natural language, conversational negation, is intrinsic to all human

languages. It differentiates human communication from that of other animals (Horn,

1972). However, it is complicated. Conversational negation does not follow clear

cut rules such as negation in mathematics. For millennia, philosophers, logicians,

psychologists, and linguists have tried to understand the deceptively simple-looking

word no. There are many differing views on interpreting negation, ranging back

as far as Plato (Lee, 1972).

This MSc thesis will propose a framework that models conversational negation of

sentences in compositional, distributional semantics. For this, we will start by mod-

elling the negation of words, grow the scope to multiple words and evolving meanings

and finally combine our proposals to model conversational negation of sentences.

We will rely on the interpretation of conversational negation presented by Prado

and Noveck (2006). They identify two diametrically opposed views; the narrow view

and the search-for-alternatives-view. On the one hand, the narrow view proposes

1
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that negation’s sole function is to deny a proposition (Evans, 1996). On the other

hand, psychologists such as Oaksford and Stenning (1992) view negation not only

as a simple denial of information but rather as eliciting alternatives in the listener’s

mind. In their search-for-alternatives-view, humans seek to interpret a negation by

considering possible alternatives. Prado and Noveck (2006) propose a combination

of both views, in that humans initially view negation as information denial but later

embark on a search for alternatives, if necessary. This search for alternatives, when

it occurs, marks one key difference between conversational negation in language

and logical negation in mathematics. Let us consider the following two sentences:

a) This is not a chicken; this is a goose.

b) This is not a chicken; this is a spaceship.

Despite both sentences being grammatically and logically correct, the latter seems

unusual. The alternatives to the word chicken, elicited in the listener’s mind,

seem to include goose but not spaceship. Therefore the second sentence defies

our expectations.

We observe that these alternatives, elicited by the negation, are inherently

context dependent (Kruszewski et al., 2016). If we talk about not chicken in the

context of animals, we might refer to geese, while in the context of meat, we might

instead talk about beef. Even the alternative of spaceship might be plausible under

the right ’contextual pressure’ (Oaksford & Stenning, 1992). For example, in some

prequel to Star Trek, the spaceships might have rather unusual cloaking mechanisms.

Therefore, the core hypothesis at the heart of this thesis is:

conversational negation is context dependent

This hypothesis will guide our frameworks throughout the growing scope of negations

we are modelling.

In a second step, we notice that the search-for-alternatives-view can be extended

to the negation of sentences. Take, for example, the sentence “Bob did not drive
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to Oxford by car.”. Following Oaksford and Stenning (1992), under the search-

for-alternatives-view, we can interpret this statement in multiple ways, including

but not limited to:

a) Bob did not drive to Oxford by car - Alice did

b) Bob did not drive to Oxford by car - He drove to Cambridge

c) Bob did not drive to Oxford by car - He drove a van

The negation’s interpretation depends not only on the alternatives the listener

elicits but also on what they perceive to be the target of the negation (Oaksford

& Stenning, 1992) — here marked by being underlined. This is, once more,

informed by the context. For example, in a text about Bob’s favourite car trip,

the destination of the adventure is most likely the target of the negation — Bob

did not drive to Oxford by car.

This thesis aims to capture these and some additional intuitions about conver-

sational negation. We will propose a framework compatible with the DisCoCirc

model by Coecke (2020), a model for categorical, compositional, distributional

semantics. The DisCoCirc model provides a method to represent written text as

circuits. These circuits represent the interaction of meanings in texts and model

how sentences update preconceived notions in our heads. To make our framework

for conversational negation compatible with this framework, we additionally have

to model the negation of evolving meanings such as actors about whom we learn

details throughout a story (see Section 3.4 for an explanation of evolving meaning).

We will conclude by providing a framework for conversational negation of sentences.

1.2 Outline of the thesis

To provide the reader with the necessary background, we will summarize the

definitions of and graphical representation for monoidal, compact closed categories

(Chapter 2). Then we will recapitulate the categorical, compositional, distributional

frameworks, going from DisCoCat (Coecke et al., 2010) to DisCoCirc (Coecke,

2020) (Chapter 3).
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From there, we will first introduce a framework that captures the conversational

negation of words and experimentally validate it (Chapter 4). Next, utilising this

framework, we will capture the conversational negation of multiple words (Chapter 5).

Then we will explore the negation of dynamically evolving meanings (Chapter 6).

Finally, we put the frameworks together to introduce an operation for conversational

negation of sentences compatible with the DisCoCirc framework (Chapter 7).

We observe that throughout the thesis, we grow the scope of the negation;

from individual words to multiple words to dynamic meanings to sentences. As

all these negations build on the same fundamental observation — negation is

context dependent — the chapters are structured in a repeating manner, reflecting

this growth. In each chapter, we will start with an intuition into the negation,

propose a general framework and finish by exploring how the influence of the

context could be quantified. Observing this structure will hopefully increase

accessibility. It also allows us to compare the different frameworks more easily

and to see how they interact.

1.3 Contributions

As part of the research for this MSc thesis, we published two papers; Rodatz

et al. (2021) and Shaikh et al. (2021)1. Much of the work in those two papers

is integrated into this thesis. Beyond the already published papers, findings will

be generalised, elaborated upon, and experiments will be extended. Additionally,

final steps will be taken towards making the findings applicable to the DisCoCirc

framework. The contributions of this thesis are:

1) For conversational negation of words (Chapter 4)

1a) Propose a framework based on weighted sums - generalising the proposal

from Rodatz et al. (2021) thereby providing more freedom for additional

exploration and unifying our proposals for converstional negation
1I have been in contact with Lucy Traves about the fact that citing our papers may give away

my identity. We have agreed that it is more important to cite the papers.
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1b) Propose a method to derive these weights - as presented in Rodatz et al.

(2021)

1c) Experimentally validate the proposed framework - expanding upon the

experiments in Rodatz et al. (2021) by exploring more aspects and

proposing new experiments

2) For conversational negation of multiple words (Chapter 5)

2a) Propose a framework based on weighted sums - as presented in Shaikh

et al. (2021)

2b) Propose an intuition for a method to derive these weights - as presented

in Shaikh et al. (2021)

3) For conversational negation of evolving meanings (Chapter 6)

3a) Propose a framework based on weighted sums - a new framework that

overcomes the challenges of the proposal in Shaikh et al. (2021)

3b) Propose an intuition for a method to derive these weights - utilizing the

work presented in Shaikh et al. (2021)

4) For conversational negation of sentences (Chapter 7)

4a) Propose a framework based on weighted sums - thereby tying the proposed

frameworks together to make conversational negation applicable to the

DisCoCirc framework



A graphical account

2
Categorical introduction

Contents
2.1 Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Monoidal categories . . . . . . . . . . . . . . . . . . . . . 8
2.3 Symmetric monoidal category . . . . . . . . . . . . . . . 11
2.4 Compact closed categories . . . . . . . . . . . . . . . . . 13
2.5 Monoidal functors . . . . . . . . . . . . . . . . . . . . . . 14

The branch of mathematics known as category theory formalises mathematical

structures by solely considering objects and morphisms between those objects.

This chapter will introduce symmetric, compact closed, monoidal categories

and their graphical representation (surveyed by Selinger, 2011). Additionally,

we will introduce functors between monoidal categories, mapping structure from

one category into another. We will utilise this functor by observing that the

representations of both grammar and meaning of words are modelled by compact

closed categories. This allows us to compose the meaning of words through updates

informed by the grammar to derive the meaning of sentences and texts.

We will only give a brief introduction to all the categorical concepts used

in this thesis. For a more comprehensive overview, we recommend to refer to

Coecke and Paquette (2011) for an introduction to applied category theory and

Coecke and Kissinger (2017) for an overview of the graphical language used

throughout this thesis.

6
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2.1 Categories

We will begin by defining a category:

Definition 1. A category C consists of:

1. a collection of objects |C|

2. for every pair of objects A,B ∈ |C|, a collection of morphisms C(A,B) from

A to B (we often write f ∈ C(A,B) as f : A→ B)

3. for any three objects A,B,C ∈ |C|, a composition operation −◦− : C(A,B)×

C(B,C) → C(A,C) such that any two morphisms f ∈ C(A,B), g ∈ C(B,C)

can be composed to g ◦ f ∈ C(A,C) (read “g after f”)

4. for every object A ∈ C, an identity morphism idA : A→ A

such that the composition operation is associative and the identity morphism is the

unit, that is:

1. for any three morphisms f : A→ B, g : B → C, h : C → D, we have:

h ◦ (g ◦ f) = (h ◦ g) ◦ f

2. for all morphisms f : A→ B we have:

f ◦ idA = f = idB ◦ f

In the graphical language for categories, objects are represented as wires and

morphisms are represented as boxes. We thus have (reading from top to bottom):

Object Morphism Identity
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The identity morphism gets a special representation as a naked wire. It thus looks

identical to the representation of an object. Intuitively the identity morphism

leaves the object untouched.

We can compose morphisms by putting them after one another:

where the dotted box is the new morphism g ◦ f from A to C. The dotted box

is usually not drawn in the diagrammatic representation.

Associativity and unitality are thus intrinsic to our representation, we have:

C

D

B

C

D

We can omit the dotted box due to associativity. The unitality of the identity allows

us to move morphisms along a wire, as long as they do not pass another morphism.

This simple example illustrates one of the major appeals of the diagrammatic

representation; complicated equalities and proofs become intuitive. Instead of

relying on an equation to enforce equality between expressions, equal expressions are

naturally the same under our representation. This effect is much more pronounced

once equations become larger.

2.2 Monoidal categories

While categories in general allow us to compose morphisms sequentially, monoidal

categories allow us to also compose morphisms in parallel.
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Definition 2 (Heunen and Vicary, 2018, Definition 1.1). A monoidal category

C is a category equipped with:

1. a bifunctor ⊗ : C × C → C, called the tensor product. This bifunctor assigns

each pair of objects A,B ∈ |C| to a composite object A⊗B and each pair of

morphisms f : A→ B, g : C → D to a parallel composition f ⊗ g : A⊗ C →

B ⊗D

2. a unit object I ∈ |C|

3. for any three objects A,B,C ∈ |C|, a natural isomorphism αA,B,C : (A⊗B)⊗

C → A⊗ (B ⊗ C) called the associator

4. for any object A ∈ |C|, a natural isomorphism λA : I ⊗ A→ A called the left

unitor

5. for any object A ∈ |C|, a natural isomorphism ρA : A⊗ I → A called the right

unitor

The associator and unitors must obey the triangle equations:

∀A,B ∈ |C|, ρA ⊗ idB = (idA ⊗ λB) ◦ αA,I,B

and the pentagon equations:

∀A,B,C,D ∈ |C|, αA,B,C⊗D ◦ αA⊗B,C,D

= (idA ⊗ αB,C,D) ◦ αA,B⊗C,D ◦ (αA,B,C ⊗ idD)

The triangle and pentagon equations require α, λ and ρ to interact in an

expectable manner1.

A monoidal category is strict when the associator and unitors are identities.

As every monoidal category is monoidally equivalent to a strict monoidal category

(Heunen & Vicary, 2018, Theorem 1.38), we will omit the natural isomorphisms

and consider them as equalities.
1The triangle and pentagon equations have more readable representations as commuting

diagrams, as shown in Heunen and Vicary (2018, Equations 1.1, 1.2). We will not elaborate on
those here. Instead, we refer the reader to the cited material.



2.2. Monoidal categories 10

Graphically, the unit is simply not drawn. Parallel composition via the tensor

product is drawn as putting the morphism next to each other. We get:

Unit object

Due to the properties of strict monoidal categories, the order of applying the

monoidal bifunctor becomes irrelevant. This allows us to draw any number of wires

next to each other via multiple applications of the tensor product.

Monoidal categories give rise to special morphisms ρ : I → A from the unit

object to any other object A ∈ |C|. These morphisms are called states. As I can be

considered the trivial object, every state corresponds to a unique initialisation of

object A (Heunen & Vicary, 2018). This will be convenient later when we observe

that in finite-dimensional Hilbert spaces, each state ρ : I → A corresponds to a

unique vector in A. Morphisms ψ : A→ I are called effects. States and effects have

special representations in the graphical calculus, as the wire for the unit is not drawn.

They respectively have no inputs and one output or one input and no outputs:

A state An effect

The graphical calculus is sound and complete for monoidal categories. It allows

for easy derivations within a given category. We have:

Theorem 1 (Heunen and Vicary, 2018, Theorem 1.8). A well-typed equation

between morphisms in a monoidal category follows from the axioms if and only if it

holds in the graphical language up to planar isotopy.
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This means that two morphisms represented by their respective diagrams are

equal if and only if we can continuously deform one diagram into the other. For

example, we have:

(2.1)

We have to imagine each diagrammatic representation of a morphism surrounded by a

box, which we cannot cross during deformations. The grey, dotted box indicates this.

The first equality holds as we can move the ψ1 ◦ ρ around to plane without crossing

any wires to get it from the first position to the second position. This is indicated by

the green, dotted arrow on the left. The second equality does not hold, as we cannot

move the state-effect-pair to the third position on the right without crossing the

right wire coming out of g. This is indicated by the red dotted arrow. Thus there is

no planar isotopy. Here the true power of the diagrammatic representation becomes

clearer. Writing out this (in-)equality in classical terms is much less readable. A

proof of this (in-)equality becomes substantially more complicated.

2.3 Symmetric monoidal category

A symmetric monoidal category allows us to swap wires.

Definition 3 (Heunen and Vicary, 2018, Definition 1.17, 1.20). A symmetric

monoidal category C is a monoidal category equipped with a natural isomorphism

σA,B : A⊗B → B ⊗A called the braid, which satisfies the hexagon equations2 such

that for all A,B,C ∈ |C|, we have:

αB,C,A ◦ σA,B⊗C ◦ αA,B,C = (idB ⊗ σA,C) ◦ αB,A,C ◦ (σA,B ⊗ idC)
2The hexagon equations can also be written as commuting diagrams. We refer the interested

reader to Heunen and Vicary (2018, Equation 1.15, 1.16).
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and:

α−1
C,A,B ◦ σA⊗B,C ◦ α−1

A,B,C = (σA,C ⊗ idB) ◦ α−1
A,C,B ◦ (idA ⊗ σB,C)

Additionally the braid is self inverse, i.e.:

σB,A ◦ σA,B = idA⊗B

Graphically we represent the braid as swapping wires:

Thus the braid being its own inverse becomes:

Intuitively we simply straighten out the wire by pulling one over the other. Complex

interactions can thus be simplified.

Symmetric, monoidal categories allow us to move states past wires. We have:

We draw the identity object as a dotted wire to illustrate our derivation. In the

first step, we utilise the self inverse of the braid. Then we use the naturality of

the braid, which allows us to move morphisms past the braid. In the final step,

we straighten out the wires and omit the identity to make our final equation more
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appealing. This ability to move states past wires will later become helpful in

modelling conversational negation in sentences. It also means that the inequality in

Equation 2.1 would be an equality in a symmetric, monoidal category. We apply this

process to both the state and the effect to move the state-effect-pair past the wire.

2.4 Compact closed categories

The final category we are going to introduce are compact closed categories.

Definition 4 (Kartsaklis et al., 2016). A compact closed category C is a

monoidal category where every object A ∈ |C| has a left and right adjoint Al and Ar

and morphisms:

εrA : A⊗ Ar → I ηrA : I → Ar ⊗ A

εlA : Al ⊗ A→ I ηlA : I → A⊗ Al

such that the yanking equations hold:

(idA ⊗ εlA) ◦ (ηlA ⊗ idA) = idA (εrA ⊗ idA) ◦ (idA ⊗ ηrA) = idA

(εlA ⊗ idAl) ◦ (idAl ⊗ ηlA) = idAl (idAr ⊗ εrA)◦ (ηrA⊗ idAr) = idAr

Diagrammatically we represent the morphisms as:

These morphisms are also referred to as cup and cap. The yanking equations

correspond to:
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Diagrammatically, these equations correspond to ‘yanking’ the wire straight.

When a compact closed category C is symmetric, we have Al = Ar =: A∗. This

single object is then called the dual of A. For the dual holds:

(A∗)∗ = A

2.5 Monoidal functors

A functor is a mapping between two categories that preserves the categorical struc-

ture.

Definition 5. Let C,D be categories. A functor F : C → D is a mapping that:

• maps every object X ∈ |C| to an object F (X) ∈ |D|

• maps every morphism f : A→ B in C to a morphism F (f) : F (A)→ F (B)

in D.

The mapping of morphisms has to respect the identity and interact well with

sequential composition, i.e.:
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1. for all X ∈ |C|, we have F (idX) = idF (X)

2. for all morphisms f : A→ B, g : B → C, we have F (g ◦ f) = F (g) ◦ F (f)

Among monoidal categories, the strictermonoidal functors are defined to preserve

the monoidal structure. We have:

Definition 6 (Kartsaklis et al., 2016). Let C,D be monoidal categories. A monoidal

functor F : C → D is a functor that respects the monoidal unit and tensor product.

That is:

1. there exists a morphism3 ID → F (IC) in D

2. F (A) ⊗ F (B) → F (A ⊗ B) is a natural transformation, which satisfies the

corresponding coherence conditions

Such a functor is called strongly monoidal when the morphism and natural

transformation are invertible.

3We use subscripts to the monoidal units to make explicit the category to which they belong.
In particular, this morphism is in D from the monoidal unit of D to the image of the monoidal
unit of C under F .
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Historically, linguists differentiate between syntax — grammatical rules — and

semantics – the meaning of words and sentences. For both, computer linguists have

devised computational methods to analyse their respective aspects.

Lambek’s (1999) pregroup grammar can be utilised to check whether sentences

are typed correctly, i.e. whether they are grammatically correct. However, while

pregroup grammar can model the interaction between words to form coherent

sentences, it does not attribute meaning to the individual words. It, therefore,

cannot provide meaning for the entire sentence.

16
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Distributional semantics, based on the distributional hypothesis (Firth, 1957),

provides a way to model the meaning of a word w as vectors calculated from a large

text corpus, for example, by considering the words with which w often co-occurs.

However, distributional semantics struggles with larger sentences.

One of the main differences between words and sentences is that to understand

a word, we need to know its meaning. New words are impossible to understand

without an explanation or sufficient context. To understand a sentence, it is sufficient

to know the meaning of its parts and the way they interact. The sentence itself

becomes a composition of its smaller parts. Therefore humans can easily understand

sentences that they have never encountered before.

To model the meaning of sentences, Coecke et al. (2010) combine grammar with

the meaning of words to derive the meaning of sentences. They observe that both

the representation of grammar provided by Lambek (1999) and vector spaces used

to model the meaning of words have the same categorical, compact closed structure.

Thus, they propose the DisCoCat framework. DisCoCat provides a method to

derive meanings of sentences from their grammatical structure and the meaning

of their words. Later, Coecke (2020) generalises the framework to DisCoCirc by

observing that sentences are not fixed meaning states but processes that update

the already existing notions we have in our heads. This observation allows Coecke

to compose sentences to model the meaning of entire texts.

These observations were made possible by the categorical abstraction for both

meaning and grammar. The diagrammatic language, applied in this process, was

originally introduced for quantum computing (Abramsky & Coecke, 2004). The

extensive use of the tensor product makes this approach to natural language

processing exponentially expensive on classical computers. For that reason, recent

research has focused on implementing these frameworks on quantum computers

(Coecke et al., 2020; Lorenz et al., 2021).

In this section, we will introduce a method to represent meaning with finite-

dimensional vectors. Next, we will present Pregroup grammar, a model for grammar

in language. We will then introduce the DisCoCat framework, which we generalise
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to DisCoCirc. Both DisCoCat and DisCoCirc were initially introduced with vectors

and pregroup grammar. However, they are open to any other representation of

meaning and grammar, as long as they have the same categorical structure. We

will introduce the frameworks with these examples due to their simplicity. In

particular, with the move to DisCoCirc, the choice of grammar will become less

relevant. A lot of the complexity required to express language in a 1-dimensional

string (i.e. written text or spoken language) will be stripped away. Finally, we

will define positive operators, an extension of vectors, as a richer representation

of meaning. We will later utilise positive operators in the experimental validation

of our proposed conversational negation framework (Section 4.5).

3.1 Representing words

3.1.1 Distributional semantics

Distributional semantics is built around the distributional hypothesis. This hy-

pothesis, as popularized by Firth (1957), asserts that:

a word is characterised by the company it keeps

This hypothesis allows us to represent words and their meaning as a simple vector

in a finite-dimensional vector space. The meaning of all words can, for example, be

computed from a large corpus of texts via co-occurrence. To calculate the meaning

of words, first n context words c1, ..., cn are being selected. The meaning of some

word w is then represented as an n-dimensional vector. Each entry i in the vector

is calculated by counting how often w co-occurs with the context words ci, i.e. how

often w and ci are used in close proximity to one another.

Thus for example, if the context words contain sweet, sour, green and blue,

then the word apple could have values 4, 3, 3, 0 at the respective entries in it’s

meaning vector. This reflects that apples are often said to be sweet or sour and

green but are never mentioned in the company of blue.

While this might seem like a primitive approach to word meaning, it gives remark-

able results. Coecke et al. (2010) give a good overview of interesting applications of
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distributional semantics, including word sense discrimination and disambiguation

(McCarthy et al., 2004; Schütze, 1998), language modeling (Bellegarda, 2000) and

document retrieval (Salton et al., 1975).

Many of these results are achieved by modelling the vectors in Hilbert spaces,

which are vector spaces with an inner product. This inner product provides a

distance function to measure how related two words are. Words that are closely

related tend to live close to each other in the respective Hilbert space. Additionally,

Hilbert spaces provide the necessary structure for our representation of meaning

to form a compact closed category.

While distributional semantics gives good results for modelling words in isolation,

it is inadequate for phrases or sentences. This is in part because the longer phrases

get, the rarer they are in any given text. Therefore a substantially larger text corpus

is required to gather comparable amounts of data. Additionally, distributional

semantics can only model phrases already present in the corpus and cannot derive

the meaning of new sentences.

Some approaches to composing word meanings include the bag-of-words-view

where meaning vectors are simply averaged, ignoring their grammatical interaction.

Thus sentences like “Humans eat chicken.” and “Chicken eat humans.” give

identical result. These methods perform surprisingly well, for example, in automatic

essay grading (Landauer et al., 1997) and coherence assessment (Foltz et al., 1998).

Mitchell and Lapata (2010) provide alternative element-wise combination methods.

Many of these either ignore grammatical structure or struggle with comparing

grammatically different sentences. Reasons for composing meanings and some

approaches are outlined in Baroni (2013).

3.1.2 Hilbert spaces as a compact closed category

Finite-dimensional Hilbert spaces form a category FHilb with objects being the

finite-dimensional Hilbert spaces and morphisms being linear maps between Hilbert

spaces. This category is symmetric and compact closed, with the monoidal product

being the tensor product (Coecke & Paquette, 2011). As this category is symmetric,
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for some object V , we have V l = V r. We refer to this single object as the dual

V ∗. Every Hilbert space V is isomorphic to its dual V ∗. As we consider strict

monoidal categories, we can therefore treat the dual map as the identity. Thus

we have V = V ∗. In terms, η and ε are defined as follows:

ηV : I → V ⊗ V :: 1 7→
∑
i

⇀ni ⊗ ⇀ni

εV : V ⊗ V → I ::
∑
i,j

ci,j⇀vi ⊗ ⇀wj 7→
∑
i,j

ci,j 〈⇀vi|⇀wi〉

for some Hilbert space V with some basis {⇀ni}i. For the second equation, we utilise

the bra-ket notation, where ∑i,j ci,j
⇀vi ⊗ ⇀wj is some vector in V ⊗ V . The yanking

equations can then be verified. For example, for the first equation we have:

Let ⇀v ∈ A be a vector. Then:

((idA ⊗ εlA) ◦ (ηlA ⊗ idA))(⇀v) = (idA ⊗ εlA)((
∑
i

⇀ni ⊗ ⇀ni)⊗ ⇀v)

=
∑
i

⇀ni ⊗ 〈⇀ni|⇀v〉

= ⇀v

= idA(⇀v)

Thus ((idA⊗ εlA) ◦ (ηlA⊗ idA))(⇀v) = idA(⇀v) for all ⇀v ∈ A. Therefore we can conclude

that the two maps are equivalent.

3.2 Representing grammar

3.2.1 Pregroup grammar

Pregroup grammar (Lambek, 1999) provides a mathematical framework to analyse

the structure of natural language. In pregroup grammar, each class of words, such as

nouns or transitive verbs, is assigned a type. If the words in a sentence combine to

reduce to some specific type, we consider the sentence typed well, i.e. grammatically

correct. On the other hand, if the types of the words do not reduce to this specific

type, the sentence is ill typed, i.e. grammatically incorrect.

First, we define:
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Definition 7 (Coecke et al., 2010). A partially ordered monoid (P, ≤, ·, 1)

is a partially ordered set (P, ≤), equipped with a monoid multiplication − · − and

an object 1. Where the monoid multiplication is associative and 1 is the unit, i.e.:

∀p, q, r ∈ P, (p · q) · r = p · (q · r)

∀p ∈ P, p · 1 = p = 1 · p

such that:

∀p, q, r ∈ P, p ≤ q =⇒ p · r ≤ q · r ∧ r · p ≤ r · q

Based on Definition 7, we can define:

Definition 8 (Coecke et al., 2010). A pregroup (P, ≤, ·, 1, (−)l, (−)r) is a

partially ordered monoid (P, ≤, ·, 1) equipped with the unitary operations (−)l,

(−)r called left and right adjoint, such that:

∀p ∈ P, pl · p ≤ 1 ≤ p · pl ∧ p · pr ≤ 1 ≤ pr · p

We normally omit the dot when composing elements. Thus instead of p · q we

write pq.

A pregroup grammar can be freely generated over a set of basic elements

(Kartsaklis et al., 2013). A simple example, given in Coecke et al. (2010), is built

on the two elements s and n. The objects of the pregroup grammar are thus

n, s and all the infinitely many adjoints we can construct inluding nr, nl and

(nl)l = nll. Each word is then assigned a type made up of compounds of the

elements in our grammar. We then say that a sentence is typed correctly if the

types of its components can be reduced to s. We assign nouns to the type n and

transitive verbs to the type nrsnl. This reflects that a transitive verb expects a

noun on the left and on the right to form a grammatically correct sentence. The

sentence “Alice loves Bob” will then become:
Alice loves Bob

noun transitive verb noun
n nrsnl n



3.2. Representing grammar 22

Therefore, the type of the sentence is nnrsnln, which, using the rules of the

pregroup, we can reduce to:

nnrsnln ≤ 1snln (3.1)

≤ 1s1 (3.2)

= s (3.3)

Thus this sentence can be reduced to s and is therefore correctly typed.

We observe a couple of caveats. First of all, this approach only considers the

grammatical role of words. Therefore the sentence “Travel loves house.”, which

is also of the form noun – transitive verb – noun is considered grammatically correct.

Secondly, we have to admit that this is a massively simplified example. Pregroup

grammar becomes a lot more complex when trying to model all words in the English

language. For example, some words might be able to play different roles depending

on how they are used; the word like could be used as a verb (“I like you.”) or as

a preposition (“It is like this.”). Various approaches have been developed to

overcome these challenges, such as probabilistic approaches (Kornai, 2011) or other

grammatical systems with the same categorical structure (Yeung & Kartsaklis, 2021).

3.2.2 Pregroups as a compact closed category

Pregroups form a compact closed category (Coecke et al., 2010). The objects

of the category are the types. Any two types a, b are connected by a morphism

a → b if and only if a ≤ b. This category is monoidal, where − · − provides

the monoidal product. The monoidal unit is then given by 1. The cup and cap,

required for the compact closure, are respectively:

εrA : A · Ar ≤ 1 ηrA : 1 ≤ Ar · A

εlA : Al · A ≤ 1 ηlA : 1 ≤ A · Al

Thus we can visualise Equation 3.1 diagrammatically as:
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On the left-hand side, the first dotted box corresponds to the reduction to Equa-

tion 3.1 and the second dotted box corresponds to the second reduction to Equa-

tion 3.2. We can rewrite the two reductions to a single reduction on the right-hand

side.

3.3 DisCoCat - from words to sentences

Coecke et al. (2010) propose a categorical, compositional, distributional approach

to natural language processing. They observe that pregroup grammars and vector

spaces form compact closed categories. The idea is that grammar informs the

interaction between the words. This interaction is then mapped to the vectors,

which represent the meanings. Through this interaction, the vectors are combined

to form the meaning of the entire sentence. We thus get the meaning of a sentence

from the meaning of the words interacting informed by grammar. We use category

theory to compose distributional meanings (DisCoCat).

To do this, we need a strong monoidal functor from the grammar category to

the meaning category. This functor then maps objects to objects and morphisms to

morphisms. Thus for each object in the pregroup grammar, we have to assign a

corresponding finite-dimensional vector space to represent the meaning of the words.

We can map the noun object n to some vector space N of dimension d. With this

choice, we decide that all nouns will be represented by a vector of d dimensions.

This choice, therefore, informs the amount of information we can convey per word.

It is a design choice that will have to be made depending on the respective task.

Having mapped n to N , we map the adjoints of n to the adjoint of N . For example,
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we have nl maps to N l. However, as finite vector spaces are self-dual, we have n

maps to N l = N . Thus all adjoints of n map to N . Similarly, we map the sentence

object s and its adjoints to some vector space S. Once again, the dimension of

S determines the size of the vectors representing sentences. The individual words

then live in compounds of these vector spaces, according to the type they have

been assigned (nouns in N and transitive verbs in N ⊗ S ⊗ N).

Once the choice of vector spaces has been made, the rest of the functor follows

trivially. For example, the cups and caps of n in the pregroup will be mapped to the

cups and caps of N in the vector space. Diagrammatically this can be represented as:

where the arrow is the monoidal functor. While this looks rather trivial, it is

a very powerful observation. The cups on the left simply correspond to the ≤

relation in our pregroup grammar. They have no other meaning. The cups on

the right, in the category FHilb, are operations on vectors that describe how

to derive a vector in S from three vectors in N , N ⊗ S ⊗ N and N respectively.

Therefore on the right, we have an operation on meaning. Observing that vectors

in some vector space A have a one-to-one correspondence with states I → A,

we can now plug in the meaning of our concrete words Alice, love and Bob to

calculate the meaning of the entire sentence.
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Thus the overall diagram corresponds to one big state Alice loves Bob : I → S;

it has no inputs and one output in S. This state corresponds to a vector in S, which

represents the meaning of our sentence. While our diagram looks to represent a

morphism I ⊗ I ⊗ I → S, due to the unitality of the object I this is equal to a

morphism I → S. In a sense, we could imagine one large triangle around the entire

sentence, giving us a state with no inputs and one output in S.

In contrast to some previous approaches to combining vectors, the DisCoCat

framework guarantees all sentences to live in the same space, independent of

their grammatical structure. Amongst other things, this allows the comparison of

grammatically different sentences. This is something other compositional approaches

struggle with (Coecke et al., 2010). Implementations of the DisCoCat outperform

other frameworks in certain academic benchmarks (Grefenstette & Sadrzadeh,

2011; Kartsaklis & Sadrzadeh, 2013).

More formally, we can define:

Definition 9 (Sadrzadeh et al., 2018). An instantiation of the DisCoCat framework

is given by a quantuple (Csyn, Csem, F, JK) where Csyn is a compact close category for

the syntax. Csem is a compact closed category for the semantics. F : Csyn → Csem
is a strongly monoidal functor from the syntax category to the semantics category.

JK : Σ∗ → Csem is a map from any string in the (English) language to the category

of semantics.

The meaning of a string of words w1, ..., wn can then be calculated as

Jw1...wnK := F (α)(Jw1K⊗ ...⊗ JwnK)

where the morphism α in the syntax category denotes the grammatical structure of

the string w1...wn.

While we presented the framework with pregroups and vectors, it is open to

any choice of grammar and meaning as long as they have the same categorical

structure. Other grammars that have been explored include CCG (Yeung &

Kartsaklis, 2021) while other meaning representations include positive operators
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(Coecke & Meichanetzidis, 2020), Montague-style Boolean-valued semantics (Coecke

et al., 2010) and conceptual spaces (Bolt et al., 2019; Tull, 2021). Therefore,

we do not exclusively rely on the distributional hypothesis as long as we find a

suitable representation for meanings. For example, recent implementations on

actual quantum computers learned the meanings of words as part of a training

process, thereby mixing standard supervised learning with this new framework

(Lorenz et al., 2021).

3.4 DisCoCirc - from sentences to texts

The DisCoCat framework provides a method to combine the meaning of words

to the meaning of sentences. The DisCoCirc framework (Coecke, 2020) combines

the meaning of sentences to the meaning of entire texts. The central observation

for this transition is that:

A sentence is not a state, but a process

The underlying idea is that a sentence is not something that has a fixed meaning,

i.e. a (meaning) state. Instead, we have preconceived meanings in our heads, such

as concepts or people. Sentences update these meanings. They become processes

that take our existing, preconceived meanings and provide additional information,

with which we can update them.

Coecke differentiates between:

• static words: words which are not altered by the text

• dynamic words: words which are altered by the text

For example, the actors in a story are represented by dynamic words; we learn

who they are, how they interact and what they do.

We can consider the following short text:

Alice is old.

Alice loves Bob.

Bob is happy.
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The three sentences in the DisCoCat framework look like this:

But we can observe that throughout this text, we gain increasing information

about Alice and Bob. We can consider them as dynamic words. Instead of closing

their wires, we open them up as such:

Therefore, the dynamic words are not states but meanings that are already

present and carried on wires. We thus assume that there exists a wire, labelled

Alice and Bob which carries our preconceived notion of these two dynamic words.
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While initially, sentences had no inputs and one output, they now have inputs

and outputs. The sentences become processes that take in the meaning of the

dynamic words and produce a sentence meaning.

One restriction of DisCoCat is that it does not give any indication of the meaning

representation for sentences. In the move to DisCoCirc, we impose that the type

of a sentence is the tensor product of the dynamic words. In a sense, sentences

update the meaning of the dynamic words. We, for example, have:

Therefore the sentence becomes a morphism that takes in two wires and outputs

two wires. The right-hand side shows this high-level view; the sentence becomes a

process that updates the dynamic meanings of Alice and Bob. This allows us to

sequentially compose the processes to one big circuit in which we initialise both

Alice and Bob only once in the very beginning.
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The original Alice and Bob states contain all preconceptions we have associated

with their names — such as gender or origin. However, throughout the text, we

increasingly get new information such that at the end of the text, we have new

values on the corresponding wires.

Next, we observe that some words do not carry a meaning but rather an

operation. The verb to be can appear in many, completely different contexts.

Rather than bringing new meaning, it informs how the surrounding words interact.

We can model the word is as such:

where the black box is an update mechanism (Coecke, 2020). In Section 3.5.5 we

propose some concrete update mechanisms for our choice of meaning representation.

The first sentence thus looks like this:

where we use the yanking equations to deform the diagram to get the right-hand

side. The sentence can be seen to updating Alice with the property old.

Similarly, entire classes of words have an operational meaning rather than an

inherent meaning. This includes relative pronouns (Sadrzadeh et al., 2013, 2014)

and conjunctions (Duneau, 2021). In this thesis, we will similarly propose an

operation for negation.

Going a step further, Coecke and Wang (2021) observe that language is highly

complex but has to be compressed into one-dimensional strings to make it usable for

humans. Trying to remove the arbitrary, unnecessary complexity imposed by human

limitations, they propose introducing internal wiring for all grammatical types, even
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those that additionally carry meaning. The internal wiring is manually imposed

based on our understanding of human grammar. Therefore, in the diagrammatic

representation, we capture not only the meaning of the words but also their

grammatical role. When combining the grammatical role with the grammatical

interaction, the latter being informed by the grammar, language circuits simplify

considerably. They propose the idea of a grammatical normal form, which allows a

general simplification of all language diagrams. In this view, even the transitive

verb can be seen as an update to the evolving meanings, using the verb form

introduced in Grefenstette and Sadrzadeh (2011) and Kartsaklis and Sadrzadeh

(2014). For the example “Alice loves Bob”, we have:

This shows that the word love can simply be seen as an update that connects

both Alice and Bob.

These simplifications through the introduction of internal wires ensure that

sentences with the same informational content will act similarly. For example, the

two sentences “Alice likes the flowers that Bob gives Claire” and “Bob

gives Claire the flowers that Alice likes” might convey the same informa-

tional content but have very different grammatical structures. Therefore, in classical

approaches, they often get very different representations. Through the internal

wires, these differences get stripped away to show their similarity while preserving

the subtle, causal differences1(Coecke & Wang, 2021).

In this thesis, we will assume that all sentences can be modelled as a collection

of meaning states that inform the evolving meanings via updates. Each meaning
1Does Bob give Claire the flowers because Alice likes them? Or does Alice happen to like

the flowers that Bob picked?
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state updates one or multiple wires. Furthermore, we will assume that each word

acts upon the wires in consecutive order. This is an oversimplification that does

not consider more complex words. However, it suffices to convey the ideas proposed

in this thesis. Future work will have to generalise this to all language circuits once

they have been fully formalised2. Thus in this view, our example text looks like this:

3.5 A meaning representation
- positive operators

3.5.1 Definition

DisCoCat and DisCoCirc allow for any compact closed category to be utilised to

represent meaning. We introduced the frameworks at the example of the category of

finite-dimensional Hilbert spaces and linear maps FHilb. Throughout the remainder

of this thesis, we will use the richer category of positive operators with completely

positive maps, known as CPM(FHilb). The objects of CPM(FHilb) are defined as:

Definition 10. A positive operator is a complex matrix that is:

• Hermitian - equal to its own conjugate transpose

• positive semidefinite - has only non-negative eigenvalues
2This work is currently still in progress.
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The morphisms of CPM(FHilb) are:

Definition 11. A completely positive map is a linear map that preserves the

positivity of operators, i.e. maps positive operators to positive operators.

The category CPM(FHilb) can be seen as an extension to the category of

finite-dimensional Hilbert spaces FHilb. It can be obtained from FHilb via the

CPM construction, which was originally introduced by Selinger (2007). In this

construction, pure state positive operators are constructed from a unit vector |v〉

of a finite-dimensional Hilbert space by taking the outer product |v〉 〈v|. All other

positive operators are a linear combination of pure states. This CPM construction

has a beautiful, intuitive diagrammatic representation found in Selinger (2007).

CPM(FHilb) offers two advantages over FHilb, due to which this category has

been chosen. First, in contrast to vectors, which by themselves cannot model an

ordering on meaning (Balkir et al., 2016), positive operators have ordering relations,

which allow us to measure entailment (Section 3.5.3). Secondly, positive operators

can be used to encode ambiguity and allow for later disambiguation (Coecke &

Meichanetzidis, 2020; Piedeleu et al., 2015) (Section 3.5.4).

3.5.2 Kernel and support

Throughout this thesis, we will be talking about the kernel and support of positive

operators. The kernel and support of a matrix are defined in linear algebra. As

positive operators are matrices, these definitions apply. We will recall the definitions

and elaborate on what they mean for positive operators.

Definition 12. Let M be a matrix with corresponding linear transformation T :

Cn → Cm. The kernel of M , written ker(M), is the set of vectors ⇀v ∈ Cn such that

T (⇀v) = ⇀0. It forms a subspace of Cn.

The support is then defined as all other vectors, i.e.:

Definition 13. Let M be a matrix with corresponding linear transformation T :

Cn → Cm. The support of M , written supp(M), is the set of vectors ⇀v ∈ Cn such

that T (⇀v) 6= ⇀0.
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Any positive operator A with spectral decomposition∑i λi |i〉 〈i| has eigenvectors

|i〉 and corresponding eigenvalues λi. By the definition of positive operators we have

λi ≥ 0 for all i. The kernel is then spanned by the eigenvectors with eigenvalue 0.

When representing words as positive operators, we can view the eigenbasis as

the properties of the word. The eigenvectors spanning the kernel are not present in

the word, while the eigenvectors in the support are present with degree λi.

3.5.3 Entailment

A word w1 entails a word w2 if every w1 is a w2. Thus dog entails animal as every

dog is an animal. Bankova et al. (2019) and Lewis (2019) propose some measures

to quantify entailment between positive operators. Some desirable properties

for entailment measures are:

• They are graded - most dogs are pets. Thus dog highly (but not fully) entails

pet

• They are asymmetric - all dogs are animals but not all animals are dogs.

Thus dog fully entails animal but not the other way around.

• They are pseudo-transitive - dogs are animals and dogs are fluffy thus

animals can be fluffy.

One order on positive operators is the Löwner order:

Definition 14. The Löwner order, v, is a partial order on positive operators.

Let A,B be positive operators. We have:

A v B ⇔ B− A is a positive operator

This corresponds to saying

A v B ⇔ ∃ a positive operator D such that A + D = B

While this order is asymmetric, it is not graded.
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We will consider three generalisations on the Löwner order as graded entailment

measures. In our later experiments, we will evaluate all three of them.

Bankova et al. (2019) propose a weighted generalisation of the Löwner order,

called k-hyponomy.

Definition 15. k-hyponomy, in short khyp, is a weighted partial order on positive

operators. Let A,B be positive operators. We have:

A vk B ⇔ B− kA is a positive operator

for some maximal k ∈ [0, 1]. We then say A entails B with strength k.

Lewis (2020) observes that this corresponds to saying there exist positive

operators D and E with E of the form E = (1 − k)A such that:

A + D = B + E

She points out that the k-hyponomy is not robust to errors, as it requires the support

of A to be fully included in the support of B for a non-zero entailment. We can

generalise khyp by utilising Bankova et al. (2019, Theorem 2), which states

Theorem 2 (Bankova et al., 2019, Theorem 2). For positive operators A,B such

that:

supp(A) ⊆ supp(B)

the maximum k such that B− kA is a positive operator is given by k = 1
λ
where λ

is the maximum eigenvalue of B+A. Where B+ is the Moore-Penrose inverse, which

we will later introduce as the support-inverse-negation (Section 4.2.1.1).

We can then generalise khyp by lifting the restriction that the support of A has

to be contained in the support of B. We can calculate the generalised khyp as 1
λ
in

all cases. This means that B− kA does not have to result in a positive operator,

which is undesirable. However, as a plausibility measure, this is tolerable. We

note that in our experiments (Section 4.5) this generalisation performs considerably

better than the normal khyp .
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Lewis (2019) instead proposes to lighten the restriction on the error term E by

defining it to be a positive operator constructed by diagonalising B− A and setting

all positive eigenvalues to 0 and taking the absolute value of all negative eigenvalues

(Lewis, 2019). She then defines the two more robust measures kE and kBA.

Definition 16. Let A,B be positive operators then:

kE = 1− ‖E‖
‖A‖

kBA =
∑
i λi∑
i |λi|

= Trace(D− E)
Trace(D + E)

where λi are the eigenvalues of E and ‖−‖ is the Frobenious norm.

kE is an asymmetric measure that ranges from 0 (when E = A) to 1 (when

E = 0). kBA is symmetric up to a factor of -1 in that kBA(A,B) = −kBA(B,A).

It ranges from −1 (when D = 0) to 1 (when E = 0). We will explore all three

entailment measures experimentally (Section 4.5).

3.5.4 Ambiguity

A meaning is ambiguous if it can be interpreted in more than one way. A simple

example could be the word capital which might refer to money or a city. Positive

operators allow encoding multiple meanings at once via mixing - taking weighted

sums over the different meanings. We could thus define the positive operator

of capital as:

JcapitalK = Jcapital the moneyK + Jcapital the cityK

where we use the double brackets to indicate that we refer to the positive operator

of a particular word.

Coecke and Meichanetzidis (2020) show how different meaning updates can be

used to disambiguate ambiguous meanings. The encoding of ambiguity will be

relevant when modelling negation, the interpretation of which can be ambiguous

depending on the context.
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3.5.5 Composition operations

An essential aspect of the DisCoCirc framework is the process of updating meaning.

For example, the representation for “Alice is old” updates the dynamic meaning

of Alice with the word old. Diagrammatically we have:

update
morphism

The black box is the update morphism, which takes in the two meanings and

produces a new one.

Positive operators allow for various update operations, over which De las Cuevas

et al. (2020) provides a good overview. We will consider four of those; the spider,

fuzz, phaser and diag. The other options are undesirable, discarding too much

information, as pointed out by De las Cuevas et al. (2020). While some of these

operations have psychological motivation, the most optimal choice will be established

empirically during our experiments (Section 4.5).

3.5.5.1 Spider

Definition 17. Let A,B be positive operators, then

spider(A,B) := Us(A⊗ B)U†s

where

Us =
∑
i

|i〉 〈ii|

where {|i〉}i is some basis.

The spider forms a dagger special commutative Frobenius algebra (Coecke

& Kissinger, 2017). The commutativity is an undesired property (Coecke &

Meichanetzidis, 2020), making the order of sentences irrelevant. With such an

update operation, the following two excerpts from recipes would be considered

identical (Coecke & Meichanetzidis, 2020):
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Recipe 1 Recipe 2

Add eggs to the mixture. Bake the mixture.

Bake the mixture. Add eggs to the mixture.

We observe that the spider is basis dependent. Thus to use the spider, one first

has to choose a basis, which will determine the basis of the output.

3.5.5.2 Fuzz

Definition 18. Let A,B be positive operators with B = ∑
i xiPi, then

fuzz(A, B) :=
∑
i

xiPi ◦ A ◦ Pi

Lewis (2020) calls this operation Kmult. Intuitively, the fuzz does a fuzzy update

on the positive operator. It returns a mixture of having done multiple different

updates, one for each projector Pi (Coecke & Meichanetzidis, 2020).

3.5.5.3 Phaser

Definition 19. Let A,B be positive operators with B = ∑
i x

2
iPi, then

phaser(A, B) := (
∑
i

xiPi) ◦ A ◦ (
∑
i

xiPi)

Lewis (2020) calls this operation Bmult. Van de Wetering (2018) shows that

it corresponds to the quantum Baysian update.

This operation updates A with the square root of B. While this may seem

unintuitive at first, Coecke and Meichanetzidis (2020) show that this operation

generalises the spider operation. Furthermore, we note that both the fuzz and the

phaser preserve the second input’s eigenbasis and that neither of the operations

is commutative.

Neither phaser nor fuzz are completely positive maps. Therefore they are not

internal to the category of CPM(FHilb). In other words, they do not exist in our

category of choice. Coecke and Meichanetzidis (2020) provide a richer category

to which both operations are internal by applying a second CPM construction to

CPM(FHilb) (explored in Ashoush, 2015). For this thesis, we will remain using
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positive operators. We will thus ignore this observation, knowing that there are

categorical constructions to overcome these objections.

3.5.5.4 Diag

Definition 20. Let A,B be positive operators, then

diag(A, B) := dg(A) ◦ dg(B)

where dg(X) sets all non-diagonal entries of the matrix X to 0.

As diag sets all non-diagonal entries to 0, the outcome of diag will always be in

the computational basis. This is an undesirable property, and we will see that diag

does not perform well in our experimental evaluation (see Section 4.5).

3.5.6 Normalisation

To restrict the magnitudes of the entailment measures, the positive operators have

to be normalised. Bankova et al. (2019) propose two normalisation conventions;

(1) normalising the positive operators to trace 1 and (2) normalising the operators

to a maximum eigenvalue of at most 1. As pointed out by Van de Wetering

(2016), the first option trivialises khyp for k = 1 (i.e. crisp Löwner order), in

that A vk=1 B ⇒ A = B. Therefore we will follow Lewis (2020) in choosing

normalisation to maximum eigenvalue of 1. This choice guarantees particularly

nice properties for the Löwner order. In particular, the maximally mixed state

is the bottom element and all pure states are maximal (Van de Wetering, 2018).

This normalisation also guarantees that Lewis’s (2020) logical negation operation

(see Section 4.2.1.1) preserves positivity.



“Not a chicken”

4
Conversational negation of words

Contents
4.1 Intuition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 The framework . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.1 Filling the negation box . . . . . . . . . . . . . . . . . . 41
4.2.2 Pre-computing a worldly context . . . . . . . . . . . . . 47

4.3 Determining the context . . . . . . . . . . . . . . . . . . 48
4.3.1 Context from entailment hierarchies . . . . . . . . . . . 49
4.3.2 Context from positive operator entailment . . . . . . . . 50
4.3.3 A toy example . . . . . . . . . . . . . . . . . . . . . . . 52

4.4 More negation frameworks . . . . . . . . . . . . . . . . . 53
4.4.1 A toy example - reprise . . . . . . . . . . . . . . . . . . 54

4.5 Experimental validation . . . . . . . . . . . . . . . . . . 55
4.5.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . 57
4.5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.6 Additional exploration . . . . . . . . . . . . . . . . . . . 67

4.1 Intuition

As mentioned in the introduction, the conversational negation of words not only

denies information, it elicits alternatives (Oaksford & Stenning, 1992). This search

for alternatives builds on an intuitive understanding of the world that most humans

possess. Let us come back to the example from the introduction:

a) This is not a chicken; this is a goose.

b) This is not a chicken; this is a spaceship.

39
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We recall that the second sentence feels strange. It does not match the

alternatives a listener considers when talking about not chicken.

The core hypothesis for our thesis is:

conversational negation is context dependent

This reflects that not chicken in the context of animals elicits other alterna-

tives than in the context of meat. Our framework has to capture the ambiguity

of the different contexts which could have been assumed for the negation. These

contexts depend on multiple factors, including the surrounding text as well as

the understanding of the world that a speaker assumes a listener to have. Our

framework will capture this intuitive understanding of the world in an ambiguous

mixture of all contexts in which the negated word could occur. After the negation,

we rely on the disambiguation of the DisCocirc framework to disambiguate the

negation through the context contained in the text.

To model the negation, we additionally observe that negation can be viewed as

an operation; if we know the meaning of some word w, we can derive the meaning

of not w. Thus, if I define a new concept in this thesis, you can derive the meaning

of its negation without me having to explain it explicitly.

4.2 The framework

The interpretation of the negation depends on the context. This context informs the

possible alternatives. Thus our framework has to consider all possible contexts. For

this, we utilise ambiguity. Ambiguity allows us to encode the possible interpretations

of the negation in a single operation via a weighted mixture. Conversational negation

of a word becomes a weighted mixture of the different interpretations, where each

interpretation represents a negation under a different context. The weight of each

element in the mixture then represents how likely an individual context is. Therefore
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the framework for conversational negation of words is:

where C is the set of all contexts, CNword(c) is the negation of w under the context

c ∈ C and pc is the weight of context c.

This leaves us with two tasks; determining the operation inside the nega-

tion box under a given context and determining the different contexts and their

associated weights.

4.2.1 Filling the negation box

To model the conversational negation with its search for alternatives, we take

the view of Prado and Noveck (2006). They propose that negation takes two

stages; initially only denying information and secondly analysing the negation for

alternatives. We thus need two ingredients; a logical negation to model information

denial and a way to inform the search for alternatives.

4.2.1.1 Logical negation

Logical negation, which we will denote by ¬, occurs in many fields of mathematics.

In a sense, the logical negation of some word w should capture everything that is

not w. This section will explore four candidate operations for the logical negation;

one based on the additive inverse, introduced by Lewis (2020) and three based on

the multiplicative inverse, presented by us, in Rodatz et al. (2021). All operations

are defined for positive operators, with which the later experimental validation will

be conducted (see Section 4.5). Nevertheless, the general idea of the framework

applies to other meaning spaces as long as they provide a logical negation and

a method to encode ambiguity.
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To assess our choices of logical negation theoretically, we will consider two

important properties of logical negation in classical logic; the double negative and

the contrapositive. The double negative states:

¬(¬P ) = P

for some P , i.e. something that is “not not a dog” is a dog. In a conversation,

the double negation often conveys a slightly different meaning than the simple,

positive statement. However, as we are considering logical negation operations,

this is an obvious property.

The contrapositive states:

P v Q⇐⇒ ¬Q v ¬P

for some P,Q. We have that every dog is an animal; therefore, something not

being an animal means it cannot be a dog either. The contrapositive requires the

logical negation to interact well with the entailment measures. As our entailment

measures are graded, we will generalise the contrapositive to:

P vk Q⇐⇒ ¬Q vk′ ¬P

where optimally k = k′.

We will analyse the four negation operations with respect to the desired properties

of double negation and contrapositive.

Subtraction-from-identity-negation – Lewis (2020) introduces and experi-

mentally validates a logical negation operation for positive operators.

Definition 21 (Lewis, 2020). The subtraction-from-identity-negation, called

¬sub, is a unitary function from positive operators to positive operators. Let X be a

positive operator, then we define

¬subX := I− X

where I is the identity matrix with the same dimensions as X.
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This operation preserves positivity of operators (given the right choice of

normalisation. See Section 3.5.6) and, in the case of projectors, maps to their

orthonormal subspace. Therefore this operation is similar to proposals to logically

negate vectors by mapping them to the orthogonal subspace (Widdows & Peters,

2003). This logical negation satisfies the double negative (see Theorem 3 in the

Appendix). It also satisfies the graded contrapositive for kBA (Lewis, 2020). It

satisfies the contrapositive for khyp when khyp = 1, i.e. crisp Löwner order (see

Theorem 5 in the Appendix). Therefore it also satisfies the contrapositive for kE

when kE = 1 (see Theorem 6 in the Appendix). However, Lewis (2020) shows that

it does not satisfy the contrapositive for kE in general.

Inverse-negations – We introduced these multiplicative inverses in Rodatz et al.

(2021) based on the observation that the matrix inverse reverses Löwner order

(Baksalary et al., 1989). As the matrix inverse is not well defined for all positive

operators, we propose two generalisations, respectively acting on the matrix’s

support and kernel and then combining them into one operation, in total, giving

us three negation operations.

We recall from Section 3.5.2 that the kernel of a matrix is the subspace of vectors

mapped to 0 under M . It is spanned by all eigenvectors with eigenvalue 0. The

support is the set of vectors mapped to something other than 0 under M .

Definition 22 (Rodatz et al., 2021). The support-inverse-negation, called

¬supp, is a unitary function from positive operators to positive operators. Let X be a

positive operator with spectral decomposition X = ∑
i λi |i〉 〈i|, then we define:

¬suppX :=
∑
i


1
λi
|i〉 〈i| if λi > 0

0 otherwise

Thus the support-inverse-negation calculates the inverse of the support and

leaves the kernel unchanged. It is equal to the Moore-Penrose generalised matrix

inverse. It equals the normal matrix inverse when the kernel is empty. The support-

inverse-negation satisfies the contrapositive for khyp when rank(A) = rank(B) (see

Theorem 7 in the Appendix) and for kBA when the two matrices are invertible and
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have the same eigenbasis (see Corollary 1 in the Appendix). It does not satisfy

the contrapositive for kE (see Section A.1.2.2 in the Appendix).

The motivation behind the logical negation is that the logical negation of w

captures everything that is not w. However, the support-inverse-negation leaves the

kernel of the matrix untouched. Therefore it does not match that intuition, as some

word w′ whose support lives in the kernel of w, will still be in the kernel of ¬suppw.

Therefore we define the kernel-inverse-negation next to the support-inverse-negation.

Definition 23 (Rodatz et al., 2021). The kernel-inverse-negation, called ¬ker,

is a unitary function from positive operators to positive operators. Let X be a positive

operator with spectral decomposition X = ∑
i λi |i〉 〈i|, then we define:

¬kerX :=
∑
i

0 if λi > 0
1 otherwise

The kernel-inverse-negation captures everything that is in the kernel of the

operator being negated; it is defined as the identity over the kernel. It is equal to

the limit of normalising the support-inverse-negation after setting all zero-valued

eigenvalues to ε for ε ↓ 0. However, it does not preserve the information of the

support. Thus any two matrices with the same kernel will have the same inverse,

independent of their other eigenvalues. This also means that applying the kernel-

inverse-negation twice leads to the maximally mixed state over the support. It

therefore does not satisfy the double negative (see counterexample A.1.1.3). The

kernel-inverse-negation satisfies the contrapositive for all entailment measures when

k = 1 (see Corollary 2, Theorem 10 and Theorem 11 in the Appendix).

Intuitively the negation of a word should contain both elements close to the

original words (i.e., elements in the support) and elements far away from the original

word (i.e., elements in the kernel). Therefore the logical negation of a word should

have non-zero values in the support and the kernel of the negated matrix. As neither

the support-inverse-negation nor the kernel-inverse-negation fulfill that property,

we propose one final logical negation, which combines both negations. We have:
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Definition 24 (Rodatz et al., 2021). The inverse-negation, called ¬inv, is a

unitary function from positive operators to positive operators. Let X be a positive

operator with spectral decomposition X = ∑
i λi |i〉 〈i|, then we define:

¬invX := normalise(¬suppX) + ¬kerX

=
∑
i


λmin

λi
if λi > 0

1 otherwise

where λmin is the smallest non-zero eigenvalue.

By normalising the support-inverse-negation, we guarantee that the outcome

is still normalised correctly. Furthermore, we normalise before the addition to

ensure that the smallest eigenvalue in the support will have the same value as the

eigenvectors in the kernel, therefore weighing both negations equally. While the

inverse-negation guarantees values in both the kernel and support of the negated

matrix, it has some curious properties. For example, a matrix with eigenvalues

only 1 and 0 will become the maximally mixed state. It also does not satisfy

the double negative (see counterexample A.1.1.4) or any of the contrapositives

(see Section A.1.2.4 in the Appendix).

Comparing the negations – We have introduced four different forms of logical

negation, one based on the additive inverse and three based on the multiplicative

inverse. Each fulfill some of the desired properties. However, none of them fulfill

all. The following table gives an overview:

Table 4.1: Theoretical analysis of the properties of the proposed logical negation
operations

¬sub ¬supp ¬ker ¬inv
Double

negation

khyp for k = 1
when
rank(A) =
rank(B)

for k = 1

Contra-
positive kE for k = 1 for k = 1

kBA

for same
e.b. and
invertible

for k = 1



4.2. The framework 46

The orange ticks hold only under certain conditions. We note that while the

inverse-negation has no nice theoretical properties, it at least captures elements

in both the kernel and support of the negated operator. We will see that the

subtraction-from-identity-negation not only has decent theoretical properties but

also outperforms the other negations in our experiments (Section 4.5). Chapter A.1

in Appendix A contains all the proofs and counter examples for each of the properties

in Table 4.1 as already mentioned throughout this section.

We observe that logical negation is not linear (intuitively ¬(A∧B) 6= ¬A∧¬B).

Thus no linear map and therefore no morphism in CPM(FHilb) can capture the

logical negation1. Indeed none of our proposed operations are linear. Therefore

none of them exist in our meaning category CPM(FHilb). We will have to step

out of our category to perform our calculations. It is left for future work to devise

other categories which allow for native logical negation operations.

4.2.1.2 A first framework

Having defined possible operations to model logical negation, we propose to model

conversational negation of words w under a given context c in two steps:

1. Take the logical negation of w to model denial of information

2. Update the result with the context c to inform the search for alternatives

This aligns with Prado and Noveck’s (2006) view on how humans perceive negation.

As mentioned earlier, to deal with the different contexts, we will take a weighted

sum over all possible contexts.

Diagrammatically the framework, called CNword1, looks as follows:

¬

1We recall that morphisms in CPM(FHilb) were linear maps, which preserve positivity.
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In a sense, each summand in the framework can be understood as saying “It is

not a w but it is still a c” (i.e. “It is not a dog but it is still an

animal.”). We then sum over all these sentences.

The framework is flexible to the choice of logical negation and update op-

eration. In Section 4.5, we will experimentally compare different choices and

their interactions.

4.2.2 Pre-computing a worldly context

We can utilise the diagrammatic calculus to rewrite our framework as:

¬

¬

¬

(*)

(4.1)

where the dotted box signals the scope of the sum. The first equality holds as the

negation of w is not directly affected by the sum. The second equality, marked by

a ∗, does not always hold. This is since some of the composition operations are

basis dependent (the spider, fuzz and phaser). The equality does not hold when

the basis of the composition is dependent on the context2.

We thus define a second framework, which we call CNword2:

¬ where

2Both, the star and the dotted box to mark the scope of the sum, are only necessary because
some of the operations depend on the context. If we fix the operations (and do not adapt their
basis depending on the context), these derivations would be trivial.
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This is the framework for conversational negation proposed by us in Rodatz et al.

(2021). This second framework is equivalent to the first one for some but not all

choices of composition. Additionally to different results, it provides a different view

on the negation. Instead of summing over all negations under different contexts, we

have one worldly context, wcw, which captures a weighted sum of all contexts in which

the word could appear. Thus instead of summing over different interpretations, this

framework corresponds to saying “It is not w but it must still occur in

the context, in which we know w to usually occur.” Where the context,

in which w usually occurs is captured by the worldly context of w called wcw.

The advantage of this framework is that the context becomes a single meaning

state, which we can pre-compute. This simplifies the language circuits by hiding

the sum and reduces computation. We will explore both frameworks experimentally

in Section 4.5. However, before we can apply either framework, we must determine

the contexts in which a word appears and their respective weights.

4.3 Determining the context

In addition to filling the negation box, we must determine the contexts in which

a word occurs and their respective weights. These contexts encode the listener’s

understanding of the world, which is not explicitly present in a given text. The

motivation behind these contexts is to re-introduce this knowledge to the framework.

The contexts should capture and grade all situations in which a particular word can

occur, which are then combined via a weighted mixture, i.e. ambiguity. Depending

on the present text, the appropriate choice of context should then occur after the

negation during further meaning updates utilising the process of disambiguation

as presented in Coecke and Meichanetzidis (2020). Our experimental validation in

Section 4.5 focuses on validating correlations between alternatives to a negation

elicited by a human reader and alternatives elicited by our frameworks. Experiments

on the later disambiguation of the negation require experiments that go beyond

individual sentences and are left for future work.
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We will propose two methods for deriving context; (1) utilising external entail-

ment hierarchies and (2) from the entailment information encoded in the positive

operators. Our experimental validation will mainly focus on the first approach but

provide some insights into the potential feasibility of the second.

4.3.1 Context from entailment hierarchies

One method to derive context from an external source is utilising entailment

hierarchies such as the human-curated WordNet (Miller, 1995) or the unsupervised

Hearst patterns (Hearst, 1992). Entailment hierarchies provide for each word w

several more general words of which w is a type. These more general words grow

in scope, each encompassing the previous until eventually reaching the broadest

word. In the case of WordNet, this is entity. For the word chicken, WordNet

would provide an entailment structure such as:

where each arrow represents an entailment relation. All entailment relations

taken together form a tree, with entity being the root. We thus obtain a directed

path from the word chicken to entity. From this path we learn that each chicken

is a bird, each bird is an animal, and each animal is an entity. We use this

information to derive the context in which a word is most likely to appear. We

usually think of chicken in the context of bird. Sometimes we think of it in the

context of animal, and even less frequently, we think of it in the context of entity.

Thus something that is not a chicken is most likely to be another bird, such as a

goose. It is slightly less likely to be another animal such as a dog. It is even less
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likely to be another entity such as a spaceship. We propose to build the context

of a word out of the elements in this entailment hierarchy, where words lower in

the hierarchy have a higher weight than more distant words.

Let h1, ..., hn be such a path from some word w to the word entity in the

entailment hierarchy ordered from closest to furthest. Then we define the con-

text of w to be:

C = {h1, ..., hn}

and restrict the weights such that:

∀i, j ∈ {1, ..., n}, i < j ⇐⇒ phi
> phj

In Section 4.5 we will experimentally explore various gradings on the weights.

We assume that a positive operator for a word w encodes all the meanings of

the words that are a type of w. Thus the positive operator for animal encodes

bird, chicken, goose and dog. In the experiments, we guarantee this through

the way we construct the positive operators (see Section 4.5.2).

One observation is that chicken can refer to different meanings, such as chicken

the food and chicken the animal. WordNet captures these meanings in SynSets

each having their own entailment hierarchy towards entity. For example, we

could get a second hierarchy chicken → meat → food → entity. We propose

taking the union over all the hierarchies, providing one big context for all possible

meanings. The disambiguation through meaning updates of the surrounding text

determines the correct interpretation via later updates, similar to the disambiguation

illustrated in Coecke and Meichanetzidis (2020). While the mechanics of meaning

updates suggest this works, these assumptions have to be experimentally validated.

This is left for future work.

4.3.2 Context from positive operator entailment

One challenge with WordNet is that it does not contain graded entailment. Proper-

ties such as “most dogs are pets” are therefore not quantified within WordNet.
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While there are proposals to extend WordNet to include such information (Ahsaee

et al., 2014; Boyd-Graber et al., 2005), they have not been implemented yet.

One property of positive operators is that they can encode graded entailment

information. Thus instead of relying on external sources, we can extract the

entailment information encoded in the positive operators.

To utilise the entailment information encoded in the positive operators, we

propose to generalise the idea mentioned in the previous section. Instead of having

an entailment tree as provided by WordNet, we can build a directed, weighted

graph. In this graph each word corresponds to a vertex and each edge (w1, w2)

corresponds to an entailment relation. The weight of the edge (w1, w2) is the

value of the graded entailment w1 vk w2. For any word pair (w1, w2) we thus get

two values; p and q such that w1 vp w2 and w2 vq w1. They correspond to the

weights on the respective edges from w1 to w2 and from w2 to w1. In an idealised

setting, words are in one of three relations:

• They are synonyms - in this case, both p and q are high

• They are not related - in this case, both p and q are low

• One contains the other - in this case, one of p and q is high, while the other

is low (every dog is an animal but not every animal is a dog)

We can thus see that the relation of w1 and w2 is dependent on both p and q.

To calculate the contexts of some word w, we have to consider all other words

w1, ...wn to which w is connected. We will thus have the weights p1, ..., pn and

q1, ..., qn on the connecting edges, respectively from w to wi and from wi to w.

We then define:

C = {w1, ..., wn}

and the respective weights are:

pwi
= f(pi, qi)

where f is some function of the weights pi and qi.
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4.3.3 A toy example

We will give a toy example to see how the frameworks work in action. For this toy

example, we will use the subtraction-from-identity-negation, ¬sub, as logical negation

and the spider as composition. For simplicity, we will assume that our words are

pure states, such that all operations can be done in the computational basis. This

means that the basis of the composition does not change depending on the context.

Therefore the equalities in Equation 4.1 hold, and both proposed frameworks are

identical. For this example, we will use CNword2 as it requires fewer computations.

For CNword2, we first calculate the weighted sum of all contexts to get the worldly

context capturing all contexts in which the word usually occurs. The conversational

negation is then calculated with respect to this worldly context.

Let us say we want to find the negation of the words chicken to derive the

meaning of the sentences “This is not a chicken”. Let us additionally assume

that {JchickenK, JgooseK, JdogK, JspaceshipK} are pure states, which form the

orthonormal basis of the meaning space we are working in. In practice, the

orthonormal basis is usually much larger, and our meanings are not orthogonal.

These simplifications are for the sake of this toy example to give an intuition

about the framework.

We first have to calculate the worldly context of the words chicken. Similar

to the earlier example in Section 4.3.1 we will assume that the entailment tree of

chicken is made up out of bird → animal → entity with:

JbirdK =1
2JchickenK + 1

2JgooseK

JanimalK =1
3JchickenK + 1

3JgooseK + 1
3JdogK

JentityK =1
4JchickenK + 1

4JgooseK + 1
4JdogK

+ 1
4JspaceshipK

The worldly context of chicken is then made up of a weighted sum of these

contexts, where the closer contexts are weighted higher than the contexts further
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away. For example, we would have:

JwcchickenK =1
2JbirdK + 1

3JanimalK + 1
6JentityK

≈2
5JchickenK + 2

5JgooseK + 3
20JdogK

+ 1
20JspaceshipK

We can see that the worldly context of chicken contains chicken. This is logical,

as the contexts in which chicken usually occurs by definition contain chicken.

But then, to calculate the conversational negation of chicken, we first have

to apply ¬sub to JchickenK. We get:

¬sub(JchickenK) = JgooseK + JdogK + JspaceshipK

In the second step, we combine the logical negation with the worldly context. Using

the spider in the computational basis, we get:

spider(¬sub(JchickenK), JwcchickenK) = 2
5JgooseK + 3

20JdogK + 1
20JspaceshipK

We see that the final result not only contains all entities which are not chicken,

but it also preserves the proportions of the worldly context.

4.4 More negation frameworks

The motivation for the framework, which we originally introduced in Rodatz et al.

(2021) was based on the psychological observations by Prado and Noveck (2006).

We will additionally present a second framework. Instead of first negating and then

updating with the context, we will negate with respect to the context. This is akin

to Hermann et al.’s (2013) proposal of giving each vector a domain and a value

within that domain, where the negation leaves the domain untouched and only

affects the value. The main difference is that we will sum over various contexts;

therefore, in a sense, consider multiple domains.
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For do this, we will generalise the subtraction-from-identity-negation to a

subtraction from the context. We define:

where the minus-operation is defined as:

:= c− khyp(c, w) ∗ w

We thus define the negation under a given context as subtracting the word from

the context. We scale w by khyp, as khyp(c, w) is the maximal value such that

c − khyp(c, w) ∗ w is positive. Thus by utilising khyp, we ensure that the outcome

of our negation is indeed positive.

We can similarly rewrite this framework to get a second proposal based on our

intuition with the previous framework. Once more, we rewrite the framework first to

compute the worldly context and then apply the negation. Therefore, we do not sum

over the outcomes of the negation. Instead, we first sum over the contexts and then

compute the negation. This change will yield a different result, as the khyp calculation

is done after the summation of the contexts. We thus get a fourth framework:

4.4.1 A toy example - reprise

We will once more negate chicken to illustrate the new frameworks. In particular,

we will illustrate the workings of CNword4.
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We recall that the pure states JchickenK, JgooseK, JdogK and JspaceshipK form

the orthonormal basis of the meaning space we are working in. Our calculations

for the worldly context of chicken gave us:

JwcchickenK ≈
2
5JchickenK + 2

5JgooseK + 3
20JdogK

+ 1
20JspaceshipK

But then to calculate the negation of chicken under CNword4 we first have to

calculate khyp(JwcchickenK, JchickenK). We have:

JwcchickenK−
2
5JchickenK =

(2
5JchickenK + 2

5JgooseK + 3
20JdogK + 1

20JspaceshipK)− 2
5JchickenK ≥ 0

For any value higher than 2
5 the outcome would not be positive anymore, as

we would have a negative value for JchickenK. Thus we can conclude that

khyp(JwcchickenK, JchickenK) = 2
5 . But then we can compute the negation of chicken

as:

CNword4(JchickenK) = JwcchickenK−
2
5JchickenK

= 2
5JgooseK + 3

20JdogK + 1
20JspaceshipK

In this simplified scenario, the negation of chicken under CNword4 is identical

to the negation under CNword2.

4.5 Experimental validation

We have defined four different frameworks for the conversational negation of words.

In this section, we will run experiments to validate and compare our proposals.

The four frameworks are:
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¬¬

For our experiments, we use the dataset provided by Kruszewski et al. (2016)3.

Kruszewski et al. created over a thousand word pairs which create sentences with

a negation. They then asked human participants to rate these sentences on how

plausible they are to occur in a normal conversation. They proposed various methods

to predict the plausibility rating, some of which achieve a high correlation with

human intuition. However, they do not present a framework to calculate a meaning

representation of the result of conversational negation.

We claim that our proposed frameworks calculate a meaning representation

of conversational negation. To check whether the results of our frameworks are

sensible, we will check if they match human intuition. We will therefore check if the

alternatives elicited by our frameworks correlate to the alternatives humans consider.

In contrast to Kruszewski et al., our primary goal is not to predict plausibility.

Instead, we use the predicted plausibility ratings to verify our framework. We

observe that we expect an operation for conversational negation to perform well

in these experiments. However, a good performance is not sufficient to prove that

an operation does model conversational negation. Doing well at these experiments

is a necessary but not sufficient condition. We therefore do additional data

exploration in Section 4.6.

3The data set is available at http://marcobaroni.org/PublicData/alternatives_dataset.zip.

http://marcobaroni.org/PublicData/alternatives_dataset.zip
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4.5.1 Dataset

Kruszewski et al.’s (2016) dataset contains 1231 pairs of nouns (wN , wA) of a

word to be negated wN and an alternative wA. These word pairs were made into

sentences of the form “This is not a wN, it is a wA.”. For example ”This

is not a lemon, it is a truth.”.

The word pairs were created by picking 50 common nouns as wN . Kruszewski

et al. then consulted various sources to find possible alternatives for wN , ranging

from synonyms to random words. Finally, they gave these sentences to human

participants to rate them on a scale from 1 to 5 on how plausible they are to appear

in a human conversation (with 1 being very implausible and 5 being very plausible).

4.5.2 Methodology
4.5.2.1 Building positive operators

We build positive operators from GloVe vectors of dimension 50. GloVe vectors

are vector representations for words. They are built by an unsupervised algorithm

from large text corpora via co-occurrence (Pennington et al., 2014). The vectors

we use were trained on Wikipedia and newspaper articles.

To build the positive operators, we utilise the method proposed by Lewis (2019).

Following Lewis’s example, we use the entailment data found in WordNet. To

calculate the positive operator for some word w, we take the following steps:

1. Find all words that are a type of w, let us call them w1, ..., wn

2. Find their corresponding GloVe vectors vw, vw1 , ..., vwn

3. Calculate JwK = ∑
v∈{vw,v1,...,vn} |v〉 〈v|

where we use the fact that we can obtain positive operators from vectors by taking

the outer product. Thus, the positive operator of w contains the vector for w and

the vectors for words that are a type of w. For example, we build the positive

operator for animal from the vectors for animal, dog, golden retriever, bird,

.... Following Lewis, we weigh all vectors equally. We could probably obtain
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better results in our experiments with more complicated methods for building

positive operators. For example, such methods could consider the distance to

the word w in the entailment hierarchy. However, as the goal of the experiments

is mainly to validate and compare our conversational negation frameworks, we

did not explore this further.

4.5.2.2 The experiments

Having built the positive operators, for each word pair (wN , wA), we calculate the

conversational negation of wN and then calculate the similarity with wA. We consider

these similarity measures as the plausibility for wA to be a valid alternative to not wN .

We then compare these scores with the human plausibility ratings via the Pearson

correlation. The code with which the experiments were conducted is available at

https://github.com/BenjaminRodatz/ConvNegWord/tree/master. The results will

be analysed with respect to the framework and choice of operation for the frameworks.

Additional analysis will concern the choice of context grading and similarity measure.

Framework and operation comparison

In our experiments, we compare the four frameworks proposed in this chapter.

Additionally, as a baseline, we display the correlations obtained from comparing the

wN with wA (labelled wN) and the correlation of comparing the worldly context

of wN with wA (labelled wcwN
).

For the first two negation frameworks, we compare the four logical negations

¬sub, ¬supp,¬ker and ¬inv, and the four composition operations spider, fuzz, phaser

and diag. For the basis dependent operations (spider, fuzz and phaser) we try

both the basis of wN - the word being negated (referred to as ’w’) and the basis

of the context (referred to as ’c’).

Context comparison

For all frameworks, we utilise WordNet to calculate the context, as proposed in

Section 4.3.1. As outlined in Section 4.3, we want to weigh context words that are

further away from the negated word less than closer words. We explore different

https://github.com/BenjaminRodatz/ConvNegWord/tree/master
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monotone decreasing weight functions based on the distance to the word. For a

word w with the hypernyms h1, ..., hn ordered from closest to furthest, we compare:

phi
= polyx(i) := (n− i)x

phi
= expx(i) := (1 + x

10)(n−i)

phi
= hyp-kEx(i) := (n− i)x

2 kE(w, hi)

phi
= hyp-khypx(i) := (n− i)x

2 khyp(hi, w)

The first two functions are simple polynomial and exponential functions. The

second two functions are polynomial. However, the result is then multiplied by

the entailment of the word and the respective context. This is similar to the

proposal of Section 4.3.2.

In Rodatz et al. (2021), we only explored the first three context functions,

but further experiments have shown that the last one performs particularly well.

We have additionally explored other context functions combining other similarity

measures proposed thought this thesis with monotone functions. However, we

only present the most successful results.

For all of our context functions, a fixed x value has to be picked. The x

parameter indicates to what degree distance in the entailment tree should be

taken into account. We explore multiple. At x = 0 all contexts are weighted

equally. For example poly0 = (n − i)0 = 1. Thus all contexts have the same

weight, independent of their distance i. For higher x values, more distant contexts

have comparably lower weights. For poly10 = (n − i)10 smaller i values get a

substantially larger weight than higher i values.

Similarity measure comparison

To find the plausibility rating, we calculate the similarity between the conversa-

tional negation of wN and wA. We use the three entailment measures khyp, kE and

kBA as well as the trace similarity. Trace similarity is defined as such:
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Figure 4.1: Correlation with human intuition of logical negation (left) and conversational
negation CNword1 with phaser (’c’), ¬sub and simtrace (right)

Definition 25. Let A,B be positive operators. Then the trace similarity of A

and B is defined as:

simtrace(A,B) := dot(A,B)
trace(A) · trace(B)

This is analogous to the cosine similarity for vectors, commonly used for sim-

ilarity measures on vectors. We use this measure as a baseline on top of our

entailment measures.

For the asymmetric measures, khyp and kE, we calculate entailment in both

directions. We will call the entailment from CNword(wN) to wA, kE1 and khyp1

respectively and the entailment from wA to CNword(wN ), kE2 and khyp2 respectively.

We will point out once more that we are not using the basic khyp but rather the

generalisation proposed in Section 3.5.3, which does not enforce supp(A) ⊆ supp(B)

for a non-zero entailment A vkhyp B.

4.5.3 Results

The analysis reveals that our best framework (CNword1 with ¬sub, the phaser in the

basis of wN and simtrace) achieves a statistically significant Pearson correlation of

0.654 with the human ratings when paired with the context function hyp-khyp4.

Figure 4.1 (right) shows for each word pair the similarity result on the x-axis

vs the human rating on the y-axis.
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In contrast to this, comparing the logical negation (¬sub) with the alternative

via the trace similarity gives a negative correlation with human intuition (shown

Figure 4.1 on the left). This negative correlation comes from logical negation

capturing the opposite of the word. In a sense, it gives a result that is maximally far

away from the original word. This contradicts Kruszewski et al.’s (2016) observation

that the alternatives to a negation mostly appear in similar contexts as the original

word. These results illustrate that simple logical negation does not capture the

human intuition of conversational negation. However, upon amending the results

with the worldly context, the correlation becomes positive.

We tested the four different frameworks with different choices of operations for

the first two frameworks (as explained in the methodology). All the correlation

results can be found in Table 4.2. The first two frameworks give the same result

for many composition operations; they are displayed only once in those cases

(those entries are labelled as framework CNword1&CNword2). This table displays the

correlation under the context function hyp-khyp4 for which we get maximal values

with CNword1 and CNword2. Appendix B.1 shows the same correlations under the

context function poly4, for which CNword3 and CNword4 perform optimally. This is

also the context function we chose in Shaikh et al. (2021). Therefore the results

presented here differ from the ones presented in the paper. All correlations above 0.4

are highlighted in green. We will now explore this data for the different variables.

4.5.3.1 Framework comparison

All four frameworks achieve Pearson correlations above 0.55 (and above 0.58 for the

other context function). However, CNword1 and CNword2 in the combination with

the phaserw and ¬sub achieves the highest correlation of 0.654. Neither CNword3

nor CNword4 achieve a correlation of 0.6 or higher.

Both CNword2 and CNword4 are much faster computationally, given that compo-

sitions and entailment calculations only have to be done once per negation.

The analysis reveals that both the comparison between the word and its

alternative (row wN) and the comparison of the worldly context of wN with the
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Table 4.2: Pearson correlation of different framework under context function hyp-khyp4
with human intuition. Correlations above 0.4 are highlighted in green.

Framework Logical
negation

Compo-
sition kE1 kE2 khyp1 khyp2 kBA simtrace

wN
— — 0.464 0.551 0.303 -0.003 0.268 0.575

wcwN
— — 0.409 0.569 0.300 0.407 0.303 0.651

CNword1

&

CNword2

(negations
give same
results
under
these com-
position
opera-
tions)

¬sub

spiderw -0.193 -0.259 0.285 0.253 0.247 -0.050
phaserw 0.375 0.590 0.305 0.403 0.298 0.654
fuzzw -0.233 -0.111 0.299 0.212 0.261 0.468
diag -0.263 -0.281 0.300 -0.024 0.258 -0.077

¬supp

spiderw 0.167 0.295 0.232 -0.120 0.159 0.404
phaserw -0.151 0.149 0.246 0.080 0.148 0.185
fuzzw -0.186 0.062 0.244 0.059 0.146 0.019
diag -0.262 -0.009 0.217 0.060 0.131 -0.059

¬ker

spiderw -0.251 -0.250 0.102 0.141 0.146 -0.463
phaserw 0.284 0.413 0.310 0.293 0.201 0.579
fuzzw -0.228 -0.117 0.293 0.093 0.185 0.275
diag -0.248 -0.215 0.290 -0.049 0.182 0.001

¬inv

spiderw -0.170 -0.039 0.237 0.047 0.124 0.157
phaserw 0.305 0.453 0.312 0.186 0.193 0.587
fuzzw -0.223 -0.110 0.301 0.012 0.172 0.227
diag -0.256 -0.219 0.295 -0.044 0.173 -0.024

CNword1

¬sub
spiderc -0.106 0.156 0.298 0.344 0.242 0.474
phaserc -0.265 -0.343 0.301 -0.260 0.265 -0.317
fuzzc -0.258 -0.245 0.301 -0.061 0.266 -0.071

¬supp
spiderc 0.226 0.330 0.240 0.218 0.159 0.448
phaserc -0.077 0.013 0.235 0.082 0.150 0.274
fuzzc -0.210 -0.024 0.231 0.025 0.153 0.068

¬ker
spiderc -0.120 0.088 0.237 0.254 0.145 0.432
phaserc -0.267 -0.280 0.296 -0.208 0.183 -0.333
fuzzc -0.244 -0.202 0.295 -0.061 0.184 -0.083

¬inv
spiderc -0.003 0.220 0.242 0.320 0.130 0.463
phaserc -0.262 -0.219 0.300 -0.101 0.177 -0.151
fuzzc -0.236 -0.194 0.300 -0.052 0.176 -0.065

CNword2

¬sub
spiderc -0.155 0.025 0.301 0.197 0.211 0.284
phaserc -0.278 -0.302 0.309 0.095 0.233 -0.272
fuzzc -0.257 -0.168 0.309 0.101 0.236 -0.038

¬supp
spiderc 0.212 0.410 0.245 0.110 0.166 0.410
phaserc -0.043 0.069 0.248 -0.264 0.161 0.274
fuzzc -0.200 -0.010 0.231 0.030 0.153 0.076

¬ker
spiderc -0.181 0.004 0.240 0.120 0.118 0.089
phaserc -0.271 -0.257 0.308 0.073 0.138 -0.325
fuzzc -0.203 -0.141 0.306 0.098 0.139 -0.035

¬inv
spiderc -0.055 0.170 0.236 0.264 0.106 0.338
phaserc -0.270 -0.171 0.304 0.056 0.134 -0.178
fuzzc -0.186 -0.129 0.307 0.103 0.134 -0.034

CNword3 — — 0.113 0.297 0.301 0.247 0.169 0.574

CNword4 — — 0.117 0.249 0.302 0.135 0.140 0.556



4.5. Experimental validation 63

alternative (row wcwN
) achieve very high correlations with the human intuition. As

in distributional semantics, the negation of a word and the word itself appear in

similar contexts (Mohammad et al., 2013; Oaksford & Stenning, 1992). For example

fast and slow will both co-occur in contexts of speed, racing and driving.

Therefore, they have very similar representations. Thus simply comparing the

word with its alternative is a good indicator of the plausibility of the negation.

Neither leaving the word as is nor the worldly context are plausible operations for

modelling conversational negation. This once more reflects the point that while

these experiments are necessary for any negation operation to pass, they are not

sufficient to prove that it is indeed a valid operation for negation.

4.5.3.2 Operation comparison

The first two frameworks are dependent on the choice of operations. Therefore,

we will compare the correlations of CNword1 and CNword2 for the choice of logical

negation, composition and basis as they are displayed in Table 4.2.

Logical negation

We compare the subtraction-from-identity-negation (¬sub), support-inverse-negation

(¬supp), kernel-inverse-negation (¬ker) and the matrix-inverse-negation (¬inv). ¬sub
clearly outperforms the other negations in most cases. It is the only logical negation

which achieves correlations above 0.6. It does this, despite not having optimal

theoretical interaction with some of the entailment measures (see Table 4.1).

We recall that the logical negation ¬inv is the sum of ¬ker and ¬supp. As

expected, the fact that it acts both on the kernel and the support makes it

outperform its parts in most cases.

Composition

We compare four different composition operations; spider, phaser, fuzz and diag.

As expected, diag does not give statistically relevant correlations. It puts the result

in the computation basis, erasing both inputs’ eigenbasis and removing relevant
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information. Fuzz does not perform well either, with only one correlation above 0.4

(in the basis of the word, marked by ’w’, and in combination with ¬sub and simtrace).

The best operation is phaser, which not only gives the maximal correlation

but performs well with most similarity measures — in the basis ’w’ and with

¬sub it gives a correlation above 0.29 for all similarity measures. Even with ¬inv

and ¬ker and in the basis ’w’, it has correlations of at least 0.18. In the basis of

’w’ it only does not interact well with ¬supp. Overall, this speaks to a desirable

robustness of the results provided by the phaser.

The spider also gives good correlations, though not as high as the phaser. It is

the only composition operation that performs better in the basis of the context (’c’)

than in the basis of the word (’w’). This makes the spider also the only composition

operation where the choice between framework CNword1 and CNword2 becomes truly

relevant, giving correlations above 0.45 only for the first framework.

Basis

Spider, fuzz and phaser are basis dependent. The choice of basis of the composition

determines the eigenbasis of the result. In our experiments, we compare choosing

between one of two bases. The first basis is the eigenbasis of the word being negated,

to which we refer as ’w’. The second basis is the eigenbasis of the context to

which we refer as ’c’. Choosing between those two bases corresponds to choosing

which word determines the eigenbasis of the outcome while the other word informs

the spectrum. For fuzz and phaser ’w’ (the basis of the negated word) performs

better. This finding matches our psychological motivation of updating the results

of the logical negation by the context. The application of the context updates

the eigenspectrum of the logical negation; we leverage the worldly knowledge to

grade the weights of the logical negation.

For the spider, the eigenbasis of the context ’c’ gives better correlations. Here it

is important to observe that CNword1 and CNword2 have different correlations when

choosing the basis of the context. CNword1 outperforms CNword2 in the basis of the
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Figure 4.2: Influence of different context functions on correlation of CNword1 (with
phaserc, ¬sub and simtrace) with human intuition

context. Intuitively, it seems better to consider the basis of the individual words

rather than the combination of the words (i.e. the worldly context).

4.5.3.3 Context comparison

The context functions we explore are:

phi
= polyx(i) := (n− i)x

phi
= expx(i) := (1 + x

10)(n−i)

phi
= hyp-kEx(i) := (n− i)x

2 kE(w, hi)

phi
= hyp-khypx(i) := (n− i)x

2 khyp(hi, w)

for a word w with the hypernyms h1, ..., hn ordered from closest to furthest.

Figure 4.2 shows the correlation with human rating (on the y-axis) in relation

to the x parameter of the four correlation functions. We recall that the x parameter

quantifies to what degree the distance in the entailment hierarchy should be

considered. To obtain these values, we used the highest performing negation

framework (CNword1/CNword2 with the phaser in the basis ’w’ and the simtrace).

We can see that the first three context functions peak around 0.630. hyp-khypx

peaks at a maximal correlation of 0.654, therefore slightly outperforming the other

context functions. All four functions eventually peak, showing that the context
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should not be too close to the original word. Additionally we can observe that at

x = 0, hyp-kE0(i) = kE(w, hi) and hyp-khyp0(i) = khyp(w, hi) still perform very

well. Both functions achieve correlations above 0.56 with hyp-kE0 scoring as high

as 0.58. As at x = 0, these functions do not take the WordNet distance into

account. This observation indicates the potential of the proposal in Section 4.3.2.

However, it is important to observe that WordNet still informs the words being

explored as context. So these context functions only remove the dependence on

WordNet for determining the weights.

The frameworks CNword3 and CNword4 perform slightly better under the poly-

nomial context function. However, the basic observations are comparable. Thus

we omit their graphs here. As they perform optimally under poly4, we have added

a second framework comparison table in the Appendix, which is constructed with

that context function (see Appendix B.1).

4.5.3.4 Similarity measure comparison

The best correlations are generally achieved with the trace similarity and kE2. The

fact that the trace similarity does well is expected as similar similarity measures

for vectors have achieved high correlations in the original experiments (Kruszewski

et al., 2016). While trace similarity might be a high performing similarity measure,

it is not useful as an entailment measure since it is symmetric. The second-best

performing similarity measure is kE2. Under poly4, kE2 scores as high as 0.604 (see

Appendix B.1). The good performance of kE is surprising when considering that

the theoretic analysis of its interaction gives unfavourable results (see Table 4.1).

khyp1 and kBA are the only similarity measures that give reliably positive

correlation (ranging from 0.102 to 0.312 for khyp1 and 0.106 to 0.303 for kBA).

All other measures are more volatile with respect to the composition operation,

basis or logical negation.

For the asymmetric measures, the comparison from wA to CNword(wN) mostly

performs better than from CNword(wN ) to wA, i.e. kE2 outperforms kE1. This holds

for kE and khyp but also for kBA which is symmetric up to a factor of -1. For kBA too
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wA to CNword(wN) gives the positive correlations, while the other direction gives

negative correlations. This is rather surprising, as the question “How much does

not wN entail wA?” seems more relevant than “How much does wA entail

not wN?”. However, the latter seems to give results closer to human intuition.

4.6 Additional exploration

For the previous experiments, it is crucial to observe that any conversational negation

operation must perform well in these experiments. However, a good performance

is not sufficient for something to be a negation operation. A good example of

this are leaving the word as is, i.e. the identity operation, and taking the worldly

context. They are both obviously not good choices for conversational negation.

Nevertheless, they perform pretty well in our experiments.

We have four different frameworks that perform well in the experiments. Each of

them is a potential candidate for being the operation for conversational negation of

choice. However, further explorations are necessary to evaluate their performance.

Intuitively, we would like the result of the negation to be as different from the

original as possible while still observing our previous experiments. The results of

logical negation, in a sense, form the complete opposite of the original, but they

defy human intuition and thus do not pass our experiments. To get an idea how the

outcomes of our frameworks compare, we compare the following six operations; the

identity (marked by ’wN ’), taking the worldly context (marked by ’wcwN
’), logical

negation (marked by ¬), the CNword1 (with the identity negation and phaserw - this

is equal to CNword2 under the same configuration.), the CNword3 and CNword4. For

each of these six operations, we calculate the negation of wN under the operations

and pair-wise compare the results. For this comparison, we take the Frobenius

norm of the difference between the two resulting matrices. The averages of the

pair-wise similarities are shown in Table 4.3. To get a more intuitive feeling for

the results, we visualise them in Figure 4.3. We use the Fruchterman-Reingold

force-directed algorithm (Hansen et al., 2020) to draw the results as a weighted

graph. Each operation corresponds to one vertex, and their similarity weights the
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Table 4.3: Average distance between various negation operations (Frobenius norm of
the difference of any two operations)

wN wcwN ¬ CNword1 CNword3 CNword4
wN 0.0 0.655 6.816 0.686 0.998 1.073

wcwN 0.655 0.0 6.542 0.262 0.744 0.708
¬ 6.816 6.542 0.0 6.548 6.603 6.548

CNword1 0.686 0.262 6.548 0.0 0.713 0.693
CNword3 0.998 0.744 6.603 0.713 0.0 0.156
CNword4 1.073 0.708 6.548 0.693 0.156 0.0

Figure 4.3: Visualisation of distance between negation operations. The edge weight and
length is informed by their average distance (displayed in Table 4.3)

edges. Their weight informs the edge width and length. We omitted the logical

negation as it would destroy the nuances of the other relations due to its high

weights. We can see that the word, wN , and worldly context, wcwN
, are quite close.

Surprisingly, CNword1 also seems to produce results that are close to these two

vertices. Intuitively, this does not speak for the framework to be a good choice of

negation as we would expect the negation of a word to be dissimilar to the original.

The other two frameworks are much further away.

Further explorations of the CNword1 and CNword2 show that the impact of the

logical negation is less than initially expected. Words, represented by 50 × 50

matrices, often have one or two larger eigenvalues, with the rest being near 0.

Thus the logical negation of such a word results in a positive operator with many

eigenvalues close to 1. This result is often similar to the identity matrix. After the

logical negation, the impact of the original word on the overall outcome is smaller
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than expected. This lets us conclude that the current implementation of CNword1

might not be an optimal candidate for conversational negation. To be precise, the

fault most likely lies with our choice of logical negation as it seems, for our dataset,

to make all outcomes similar to the identity matrix, independent on the input.

Based on these observations, we can conclude that additional experiments are

necessary to validate our proposals. Hence, new experimental designs have to be

conceived, and data sets created. This is left for future work. However, we have

shown that our frameworks are decent candidates, all built based on the same

hypothesis; negation is context dependent.

Additionally, it is unclear if our current method to build the positive operators

is optimal. We build our positive operators from vectors created via co-occurrence.

As a word and its negation often appear in similar contexts (Kruszewski et al.,

2016), the outcome of negation must be similar to the original. This complicates the

process of negation, as the correct result is not intuitively apparent. Other methods

to create positive operators or other meaning representations, such as conceptual

spaces, might overcome these complications. The proposed frameworks, mainly the

first two, are valid in all meaning spaces that offer weighted mixtures and logical

negations. Therefore, they could be applied to other meaning representations.
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5.1 Intuition

In this section, we will take the negation of words to the negation of sentences. As

we will be relying on the negation of individual words, we require the constituents of

our sentence to be meaning states, similar to sentences in the DisCoCat framework.

We do not yet allow for evolving meanings, i.e. open wires. Still, this section

will be written for the DisCoCirc framework. Therefore, we will view sentences as

meaning states updating wires. This will later allow us to combine the negation

of multiple words with the negation of wires to construct one all-encompassing

negation for the DisCoCirc framework. For now, we will assume that all inputs

to a sentence are states and can therefore be negated by the negation operation

proposed in the previous section.

As pointed out by Oaksford and Stenning (1992), under the alternatives view,

the negation of a sentence can be viewed as a negation of a subset of its words. The

negation of “Bob drove to Oxford by car.” could be interpreted as:

70



5.1. Intuition 71

a) Bob did not drive to Oxford by car - Alice did

b) Bob did not drive to Oxford by car - He carpooled

c) Bob did not drive to Oxford by car - He drove to
Cambridge

d) Bob did not drive to Oxford by car - He drove a van

e) Bob did not drive to Oxford by car - Alice carpooled to
Oxford

where the underlined word(s) are the target of the negation. The last sentence

is one of many examples of multiple constituents being negated at once. Thus

the interpretation of the negation depends on not only the elicited alternatives

but also the target of the negation. While some of these interpretations seem to

be more plausible than others, the listener has to use different sources of context

to derive which interpretation is correct.

In contrast to the negation of words, we observe that the search for alternatives

does not always occur during the negation of sentences. As pointed out by Prado and

Noveck (2006), negation can also be used for simple information denial. For example,

let us consider the sentence ”I have not watched Pulp Fiction.”. While this

could be interpreted based on the previous intuition (maybe someone else watched

it), the statement could also convey information denial. In a conversation about

movies, I may simply want to express that I have not watched this particular

movie yet. While information denial could potentially be modelled via logical

negation — as assumed in Chapter 4 for individual words — our experimental

validation does not tackle this challenge. In particular, we do not know how

logical negation acts when negating multiple words instead of just a single word

as initially proposed by Lewis (2020). Therefore, for the remainder of this thesis,

we will continue to consider negation under the search-for-alternatives-view and

leave the narrow view for future work.
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5.2 The framework

Based on the previous intuition, we view the negation of multiple words as a

negation of a subset of the words. For this, we propose to utilise the previously

introduced framework to model the conversational negation of individual words

(see Section 4). As the correct target of the negation is not usually obvious, we

once more utilise a weighted sum. We sum over the different interpretations of

the negation, depending on the intended target. Thus the negation of the n words

w1, ..., wn is a mixture of all interpretations where we negate only one of the words

plus all the negations where we negate two words and so on:

:=

n∑
i=1

p{wi} (w1 ⊗ · · · ⊗ CNword(wi)⊗ · · · ⊗ wn) +

n∑
i=1

n∑
j=i+1

p{wi,wj} (w1 ⊗ · · · ⊗ CNword(wi)⊗ . . .

⊗CNword(wj)⊗ · · · ⊗ wn)

+ . . .

More formally for some set of words W = {w1, ..., wn}, we define the negation to

be the sum over all non-empty subsets W ′ ⊆ W , called the negation sets, to get:

:=
∑

W ′⊆W
W ′ 6=∅

pW ′

n⊗
i=1

wi if wi 6∈ W ′

CNword(wi) if wi ∈ W ′

Each summand of the weighted sum, identified by a negation set, thus corresponds

to one set of words targeted by the negation. Each negation set corresponds to a

different interpretation. We enforce the negation set to be non-empty, as an empty

negation set would correspond to never applying CNword. We would thus get the

original, positive meaning as an interpretation of our negation.

Sentences in language circuits are made up of two parts; meaning states and

updates. The updates combine the evolving meanings present in the text and the
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meaning states. The conversational negation of multiple words manipulates the

value of the meaning states but leaves the structure of the updates untouched.

Thus, the negation of multiple words can be computed by adding the negation

operation before the meaning updates.

We propose to view negation as a function that acts upon the language circuit

of a sentence without a negation. We call this function CN for conversational

negation. Thus, for example, applying this function to the sentence “Alice loves

Bob” gives us:

+ +

where we sum over all non-empty subsets of {Alice, love, Bob}. The alter-

natives that are being elicited for the negated words are determined by the CNword

operation. Here we can use one of the frameworks proposed in the previous chapter.

Alternatively, CNmulti works with any unitary conversational negation operation

on meaning states that models conversational negation.

5.3 Determining the context

For the conversational negation of multiple words, the context informs the targets

of the negation. Each selection of targets to be negated then correspond to

one interpretation of the negation. The remaining challenge is to extract the

appropriate weights for each interpretation from the context. The context can
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come in various forms, such as the person who is speaking and their intention. In

spoken language, intonation can inform the correct interpretation by the speaker

emphasising the negation’s target.

For more complex sentences, the grammatical structure can be another factor.

Take the previous example; “Bob did not drive to Oxford by car”. This sen-

tence adds the final detail of the mode of transport — by car. Intuitively, such a

detail is more likely to be the intention of the negation. If the speaker would simply

like to express that Bob drove to a different location, the shorter sentence “Bob

did not drive to Oxford” would suffice. The second example, “Alice does not

love Bob”, is more ambiguous with respect to the grammatical structure.

Another source of context is the surrounding text; the interpretation of the

negation should line up with the information conveyed in the remaining text. Let

us, for example, consider a text about Bob’s favourite car trip. In that context,

the target of the negation “Bob did not drive to Oxford by car” is probably

the location of the trip.

Overall no single source of context is sufficient. For optimal results, various

mixtures of context are required. However, we can make a general observation;

psychologically, we know that humans are less capable of focusing on a large number

of details. This also holds for negations (Evans, 1989; Oaksford & Stenning, 1992).

Thus we can say that larger negation sets should generally have lower weights

than smaller negation sets. In fact, Oaksford and Stenning (1992) only consider

negation sets of size 1. Intuitively this corresponds to the alternative “Alice drove

to London.” to be perceived as less plausible when considering “Bob did not

drive to Oxford by car.”. Such an interpretation would require considerably

more contextual pressure to be reasonable.

In contrast to the conversational negation of words, we do not rely on the

DisCoCirc framework to extract the context from the text. Instead, we propose to

derive the influence of the context externally. This is due to the higher complexity

of the negation, which current encodings of ambiguity do not capture.
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5.3.1 Weights from entailment - an example

This section will give an intuition on how to quantify the context from surrounding

sentences using entailment measures. Interpretations of a negation that highly

entail the surrounding text are more likely to be the intended meaning. They should

thus get a higher weight. For this quantification, sentences closer to the negation

should have a greater influence than sentences further away.

To illustrate this intuition, let us consider a simplified example where we have

a negation followed immediately by a clarification. Both sentences are of the

identical, simple grammatical structure:

This is not a cute dog

This is a cute cat

We color the sentences to ease the reading of this example with the negated

sentence being red. For the sake of simplicity, we will assume that the possible

negation sets are {cute}, {dog} and {cute, dog}, ignoring that this could also

be part of the intended target1. We thus have to determine the respective weights

p{cute}, p{dog} and p{cute, dog}. To the human reader, given the clarification in the

second sentence, the correct interpretation of the negation is obvious. The object

we are talking about seems to be a “cute cat”, which is something cute that is

not a dog. Therefore the correct negation set should be {dog}.

To arrive at the same result, we will compare each possible interpretation of the

negation with the follow-up sentence. For this, we will use the previously introduced

entailment measures, represented by v. While we have performed small scale

experiments upon which we base our intuitions, more extensive experiments have

to be conceived to draw reliable conclusions. For now, we will rely on intuitions to

convey our ideas. Our entailments will be categorised into low, medium, high and

fully, where fully corresponds to maximal entailment, reserved for the entailment

of a word with itself. We use the fact that our two sentences are of the same
1The alternative elicited by the negation could be “This is not a cute dog - that is”.

We will ignore this case to reduce the number of possible negation sets.
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grammatical structure and compare them word-by-word, i.e. we compare the

adjectives and nouns, respectively. We have:

• not cute dog v cute cat - cute fully entails cute, as something cute is

indeed cute. The entailment form CNword(dog) to cat is medium. Something

that is not a dog could be many other animals including a cat. Overall the

entailment is high. We have:

not cute dog cute cat Entailment
cute cute fully
CNword(dog) cat medium
Overall: high

• not cute dog v cute cat - The entailment of CNword(cute) with cute is

medium. This is due to the fact that in distributional semantics, negation

of a word and the word itself appear in similar contexts (Mohammad et al.,

2013; Oaksford & Stenning, 1992). However, the entailment from dog to cat

is low; something that is a dog is not a cat. Therefore the overall score of

this interpretation is low.

not cute dog cute cat Entailment
CNword(cute) cute medium
dog cat low
Overall: low

• not cute dog v cute cat - CNword(cute) and cute have a medium entail-

ment due to them appearing in similar contexts. Similarly the entailment

from CNword(dog) to cat is medium. Overall the entailment in medium.

not cute dog cute cat Entailment
CNword(cute) cute medium
CNword(dog) cat medium
Overall: medium



5.3. Determining the context 77

Thus the negation set {dog} has the highest entailment, matching our in-

tuition as humans.

In this example, we rely on both sentences having the same grammatical structure

to compare the sentences word-by-word. One goal would be to compare any

two sentences, independent of their grammatical structure. This would, amongst

other things, require an update mechanism that preserves entailment relations

during composition. This is open research. Some promising results can be found

in De las Cuevas et al. (2020), Kartsaklis and Sadrzadeh (2016a, 2016b), and

Sadrzadeh et al. (2018).
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6.1 Intuition

One central feature of the DisCoCirc framework is that it allows for meanings of

dynamic words to evolve throughout a text. Meanings of dynamic words, such as

actors in a story, become wires instead of simple states. This change allows for the

text to update these words as the story evolves. When designing an operation for

conversational negation applicable in DisCoCirc, these evolving meanings need to

be treated differently than static words. We will therefore propose a new framework

for the negation of evolving meanings.

Let us consider a text with Alice, Bob, Charles and Dave. These four actors

78
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will be our dynamic words. Let us assume we know the following details about them:

Alice is a human. Alice is a mathematician.

Bob is a human. Bob is a physicist.

Charles is a human. Charles is a pianist.

Dave is a dog. Dave is a pet.

Let us now consider the following sentence:

Alice does not publish a paper.

To interpret this negation, the first task would be to determine the correct negation

set. The target of the negation could contain Alice, publish or the paper.

Let us assume we know that a paper is being published. Thus we know the

intention of this negation is to express that someone other than Alice publishes

a paper. To model this sentence, we have to model the negation of the evolving

meaning, which we call Alice.

Intuitively, if Alice is not publishing the paper, someone else is. This someone

else must either be Bob, Charles or Dave. Thus to model the interpretation “Alice

does not publish a paper.”, we have to consider these three alternatives. Know-

ing the information we previously gained about our actors, a human reader would

agree that the most likely alternative is Bob - another scientist. However, Charles,

being another human, is still more likely to publish a paper than the dog Dave.

We observe that under this interpretation, we do not learn anything about

Alice. We only gain information about the other actors in the text. If the

intention of the negation were to give us more information about Alice, we would

have picked a different negation set. For example the negation set {publish}

could be interpreted as:

Alice does not publish a paper - She is writing on a paper

The intended meaning of the negation is most likely to be a mixture of these

interpretations, for which we will again use ambiguity via weighted sums. However,
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in this section, we will model negation sets containing only dynamic words, such

as, in this particular case, the negation set {Alice}.

6.2 The framework

To develop a framework for this negation, we will first consider the positive sentence:

Alice publishes a paper.

Diagrammatically the sentence would look like this:

where on the right-hand side, we merge “publishes a paper” into a single meaning

state as indicated by the dotted triangle on the left-hand side. Additionally, we use

the symmetry of our category to move this state to the right of all actors. This

second step will later simplify our generalisations.

To model this interpretation of the negation, we observe that the meaning of the

negated sentence becomes “Someone other than Alice publishes a paper.”.

While we may not definitively know who that other person is, we assume it must be

another person in our story. Thus it must be one of the other evolving meanings.

Applying the negation function to our sentence, we thus get:
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The negation becomes a weighted sum of the actors other than Alice having

published a paper. The weights p(Bob), p(Charles) and p(Dave) correspond to the

plausibility of these respective evolving meanings to be the correct interpretation.

More formally we have:

with the set E = {Alice, Bob, Charles, Dave} being our evolving meanings.

update(ei) corresponds to updating the i-th evolving meaning with the meaning

state:

As a second example, we will consider another sentence, which updates multiple

evolving meanings at once. Let us consider “Alice loves Bob.”. This sentence has

two updates; one to Alice and one to Bob. If we take the same evolving meanings

as in the previous example, this sentence will look like this:
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On the right-hand side, we once more move the meaning state to the right using

the symmetry.

Let us assume we wanted to model the negation of this sentence, in particular

the negation set {Bob}. Thus we want to model the sentence “Alice loves

someone other than Bob”. In our story that could be Charles or Dave but it

could also be Alice herself. This last alternative can be read as:

Alice does not love Bob - She only loves herself

Diagrammatically these three cases would thus correspond to:

More formally, the update function now contains two updates. To interpret

our negation, we move the second update box around while leaving the first one

in place. Thus we can write our negation as:
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where E = {Alice, Bob, Charles, Dave} is the set of our evolving meanings.

We define the first update to be on Alice and the second update on someone

other than Bob. The update box is defined as:

We can generalise the negation to cover all interpretations where we negate a

non-empty subset of the evolving meanings. Thus instead of only modeling “Alice

does not love Bob.” we model the negation sets {Alice}, {Bob} and {Alice,

Bob} simultaneously with one sum. We have:

with init = (Alice, Bob) ∈ E × E is the initial update structure on the positive

sentence. We thus sum over all update structures which are not the original one.

Each of our three negation sets contains multiple of the summands. {Alice} contains

all updates where e1 6= Alice ∧ e2 = Bob, i.e. all updates where only Alice is

negated. {Bob} contains all updates where e1 = Alice∧e2 6= Bob and finally {Alice,

Bob} contains the remaining updates for which we have e1 6= Alice ∧ e2 6= Bob.

Thus the sum covers exactly all non-empty negation sets of the evolving meanings.

Once more, there is a grading in the plausibility of each interpretation enforced

by the respective weights p(e1,e2).

In general, we can take any sentence with m words and a total of m′ updates

in a text of n evolving meanings. The negation of any subset of the evolving

meanings could be modelled as follows:
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where init is the original update structure of the sentence and update(e) performs

m′ updates specified by e ∈ Em′ . We sum over all update structures that are

not the original one.

The conversational negation of evolving meanings can be viewed as logical

negation on the set of evolving meanings. After the logical negation, it is graded

by the weights to align the results with human intuition. The negation of evolving

meanings changes the update structure but leaves the meaning states untouched.

This directly contrasts with the negation of multiple words, which changes the

meaning states but leaves the update structure in place.

We are currently not modelling the option that the alternative to the negated

dynamic word is not present in the circuit. Maybe Alice loves neither herself,

Bob, Charles nor Dave but some other person. One option is for each negation to

introduce a new wire, which represents other potential lovers of Alice. However,

such a design choice would raise many other questions; is that wire ever accessible

for future updates? What if we do figure out that Alice loves Dave? Then the

wire becomes obsolete. We leave this question to future work and assume that all

possible alternative evolving meanings are present in the text and, therefore, in the

circuit. This assumption is reasonable as the intention of the evolving meanings is

to capture all entities about which we might want to talk. Therefore they should

also include the potential alternatives to a negation.

6.3 Determining the context

After having proposed a framework to model the negation of evolving meanings,

the remaining challenge becomes once again to derive the weights that inform
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our interpretations.

Two primary sources inform our weights; similarity and relations. Similarity

refers to evolving meanings having similar attributes. In our previous example, the

most plausible alternative to the one scientist is the other scientist. This intuition

is based on the knowledge we have about the attributes of the actors. The second

source, relations, refers to evolving meanings having a connection. For example,

we could imagine two siblings that are in no way similar - different preferences,

jobs, gender. However, the sentence “SiblingA does not take care of their

sick mother.” could plausibly be interpreted as the other sibling taking care of

the mother instead. Despite them not being similar, having a relation — being

siblings — makes them plausible alternatives to one another.

The second source of context could potentially be modelled with relation graphs

extracted from the text. This is left for future work. For the first source of context,

we will propose an approach to quantify the similarity of evolving meanings via

the previously introduced negation of multiple words (see Section 5).

6.3.1 Weights from similarity - actors as sentences
6.3.1.1 Intuition

One key feature of language circuits is removing grammatical complexity and

extracting the core meaning updates of sentences. This makes different texts with

the same informational content identical. For example, the two sentences:

Bob is a dog.

Bob is happy.

result in the same circuit as the single sentence:

Bob, who is a dog, is happy.

We can observe this feature to motivate viewing the updates on an actor as

a single long sentence of static words. A series of updates to a wire can be bent

using the yanking equations. The series of updates can then be seen as a single



6.3. Determining the context 86

process through which multiple meaning updates inform a single wire. For example,

for the meaning updates w1, ..., wn on some wire we have:

where on the right-hand side, the dotted box surrounds a single process that

updates the incoming wire.

We can now use the negation of multiple words on the meaning states updating

the wire. We thus get:

 

 

 

   

CN

The outcome of this process then carries the meaning of things being similar

but not equal to the original.

6.3.1.2 An example

To explore an example, we can apply this to our previous story where “Alice

does not publish a paper” to find plausible alternatives to Alice. We recall

that our text has the following four actors:

Alice is a human. Alice is a mathematician.

Bob is a human. Bob is a physicist.

Charles is a human. Charles is a pianist.

Dave is a dog. Dave is a pet.
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Alice’s wire has three updates; the fact that it carries the meaning of something

called Alice, the fact that this is a human and a scientist. The first meaning

update with Alice contains all preconceptions about something that is an Alice

which are then refined with the further meaning updates.

Applying the yanking equations to Alice’s wire, we get:

Applying the negation function then gives us:

Therefore the negated wire of Alice, to which we will refer as “not Alice”,

is a weighted sum over the different negation sets containing {Alice, human,

mathematician}. “not Alice” might thus be someone who is a human and a

mathematician but not called Alice (negation set {Alice}). Or “not Alice”

refers to another person with the same name who is not a mathematician (negation

set {mathematician}). Which negation set, and thus interpretation of the negation,
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is correct depends on the context. Here methods such as proposed in Section 5.3

could be applied.

The possible alternatives to Alice, namely Bob, Charles and Dave have

different entailment from “not Alice”. This entailment value depends on the choice

of negation set. To see what the maximal entailment from “not Alice” could be, we

will pick the best negation set for each alternative. Similar to the previous example

in Section 5.3.1 we will refrain from actual numbers and instead give intuitions on

the level of entailment. Once more, these will be categorised into low, medium, high

and fully, where fully corresponds to maximal entailment from of a word to itself.

To simplify this example, we will use the fact that each evolving meaning has

three attributes; their name, their genus and their profession. We will thus compare

these attributes one-by-one. In an actual text, this simplification is unrealistic.

Instead, we should compare the actual state of the evolving meanings, relying on the

update mechanisms to preserve entailment. This is a similar observation as made in

Section 5.3 and is equally reliant on future work. In our simplified scenario, we have:

• Bob is a human physicist. Thus the highest entailment between “not Alice” and

Bob can be achieved, when picking the negation set {Alice, mathematician}.

We will compare the values of Bob and “not Alice” under this particular

negation set element-wise to gain an intuition on the overall entailment.

We have that someone who is not named Alice can have many other names

including Bob. Thus the entailment from CNword(Alice) to Bob is medium.

human fully entails itself. CNword(mathematician) highly entails physicist,

as physics is a very plausible alternative to mathematics. Overall we get a high

entailment. We have:

“not Alice” Bob Entailment
CNword(Alice) Bob medium
human human fully
CNword(mathematician) physicist high
Overall: high
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• Claire is a human pianist. As for Bob the best entailment can be achieved

with the negation set {Alice, mathematician}. We will once more consider

the entailments between “not Alice” and Claire.

Similar to Bob, we have that CNword(Alice) entails Claire with medium

entailment and human fully entails itself. However, CNword(mathematician)

entails pianist with only medium entailment. While both of them are

professions, we are less likely to think of a pianist when saying that someone

is not a mathematician. Overall the entailment is medium.

“not Alice” Claire Entailment
CNword(Alice) Claire medium
human human fully
CNword(mathematician) pianist medium
Overall: medium

• Dave is a pet dog. For him the best negation set is {Alice, human, mathematician}.

We have that CNword(Alice) entails Dave with medium entailment. Our

preconceptions about the name Dave are as similar to our preconceptions about

Alice as they are for Bob or Claire. Something that is not human could be

a dog with medium entailment. But we do not think of a pet when talking

about not mathematician. Thus this final entailment is low. Overall we have

a low entailment. We have:

“not Alice” Dave Entailment
CNword(Alice) Dave medium
CNword(human) dog medium
CNword(mathematician) pet low
Overall: low

Overall Bob has the highest potential entailment from Alice. Charles has a higher

potential than Dave. This matches our intuition of Bob being a reasonable alternative.

However, the final outcome is dependent on the context, which determines the
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negation set. Thus, if the negation set is {Alice, human, mathematician}, Dave

might still have a higher entailment than the other two alternatives.

This example gives an intuition on how conversational negation of multiple

words could be utilised to inform the conversational negation of evolving meanings.

The conversational negation of multiple words allows us to calculate the similarity

between actors. One aspect that this example does not consider is interacting

meanings; DisCoCirc allows multiple meanings to interact via updates, such as

the transitive verb love which connects two wires.

6.3.1.3 Interacting wires

This general approach is still applicable to interacting wires. Let us consider

the three sentences:

Alice is alone.

Bob is bald.

Alice avoids Bob.

These sentences have the same diagrammatic representation as the sentence:

Alice, who is alone, avoids Bob, who is bald.

Once more we can use the yanking equations to get the two equal circuits:

Thus someone similar to “not Alice” might be someone who is with people

but avoids bald Bob (negation set {alone}). It might alternatively be someone

who is alone but avoids bald Dave (negation set {Dave}). Similar to the previous

case, someone who is similar to Alice shares some attributes with her and has

other attributes that are different. Thus the negation of Alice can be computed

analogously. We have:
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CN

+

+ +

In this particular story, Alice and Bob are entangled with each other. Therefore

their respective negations have identical diagrammatic representations, namely

the one above. For both Alice and Bob their negation corresponds to negating a

subset of the updates to Alice and Bob. However, they are not identical, as the

corresponding weights for the negation sets differ. The more plausible negation sets

for Bob are not the same as the more plausible negation sets for Alice.

We have to observe that with interacting wires, the previous example of

entailment measures becomes more complicated. The dimension of an actor depends

on how many different interactions they have. Thus the representation of two actors

and their relations might have different dimensions. Therefore current entailment

measures are not applicable. This challenge is left for future work.
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Utilising the negation of multiple words for the negation of evolving meaning

is helpful to inform the plausibilities. However, it cannot, by itself, be utilised

as a negation in the DisCoCirc framework, as it removes the positive instance

of the evolving meaning being negated. In our example, the wire which used to

contain Alice now contains something similar but not equal to Alice. In fact,

when Alice interacts with other evolving meanings, such as Bob in our second

example, negating Alice also removes the positive instance of Bob. Therefore, after

the negation, a simple sentence such as “Alice is happy.” could not be modelled

as Alice has been replaced by “not Alice”. Thus we propose to solely utilise this

method to inform the weights of the conversational negation framework propose

earlier in this section. The actual negation of evolving meanings is modelled via

a change in the update structure of the sentence.
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Conversational negation of sentences
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7.1 Intuition

A sentence in DisCoCirc acts on evolving meanings, which are being updated

by some meaning states. We have now proposed three different conversational

negations respectively for words, multiple words and evolving meanings. While

the negations of words and multiple words change the meaning states, they do

not affect the update structure. On the other hand, the negation of evolving

meanings only changes the update structure, leaving the meaning states unaffected.

Therefore, to fully model the negation of a sentence in the DisCoCirc framework,

we have to combine these negations to form a new framework that changes both

the meaning states and the update structure.

The negation of a sentence must sum over all possible interpretations of the

sentence, which are not identical to the original, positive statement. Being different

from the original can either mean being different with regards to the meaning states,

different with regards to the updates or different with regards to both.
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7.2 The framework

Let us consider a sentence of m words, with m′ updates acting in a story of n

actors with an initial update structure init ∈ Em′ . We negate this sentence by

applying the CN function, which maps it as follows:

where the operation update(e) takes the meaning states and updates the correspond-

ing evolving meanings as defined by the parameter e. The operation CNmulti(W ′)

corresponds to a single summand of the CNmulti negation, namely the one under

the negation set W ′. More formally we have:

:=
m⊗
i=1

wi if wi 6∈ W ′

CNword(wi) if wi ∈ W ′

We observe that we either negate a meaning state in its entirety or not at all. Thus,

for example, for the transitive verb love we either negate both outputs or neither.

It is not possible to negate only one output of a given meaning state.

For e = init∧W ′ 6= ∅ the framework is identical to CNmulti, i.e. we only change

the meaning states. For e 6= init ∧W ′ = ∅, the negation is identical the negation of

evolving meanings. When e 6= init ∧W ′ 6= ∅, we combine both frameworks.
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As an example, we will negate the sentence “Alice loves Bob” where Alice

and Bob are evolving meanings in a text that additionally talks about Charles

and Dave. The positive sentence thus looks like:

After applying the negation function, we get:

where E = {Alice, Bob, Charles, Dave}.

The interpretation of the sentence as “Alice does not love Bob”, i.e. the

negation set {love}, would then correspond to W ′ = {love}, (e1, e2) = init =

(Alice, Bob). It thus corresponds to only negating the static meaning of love and

leaving all other aspects as is. Diagrammatically we have:

We observe that CNmulti({love}) resolves to applying the conversational negation

of words to the meaning state love.

The negation set {Bob} corresponds to W ′ = ∅, e1 = Alice, e2 6= Bob, i.e.

leaving the meaning states as is and iterating over all update structures where the

first target is Alice and the second target is not Bob. We have:
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CNmulti(∅) resolves to the identity, i.e. not doing anything. Thus this interpretation

corresponds to the negation set {Bob} in Chapter 6.

Larger negation sets such as {love, Bob} correspond to W ′ = {love}, e1 =

Alice, e2 6= Bob, i.e. both negating the static meaning of love and iterating over

all update structures where the first update is to Alice and the second update

is to someone other than Bob. We have:

All these different interpretations are graded via the weights pe,W ′ , which can be

derived from various sources of context.
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8.1 Overview

In this thesis, we have modelled the search-for-alternatives-view on conversational

negation of different scopes. Each of our negation frameworks are built on the

underlying hypothesis that:

conversational negation is context dependent

This hypothesis manifests itself in our frameworks through weighted sums. We use

ambiguity, captured by weighted sums, to create a negation for all potential contexts.

Table 8.1 gives an overview of the four different scopes of negation we have

modelled and how they interact with the context. For the negation of words,

we sum directly over different contexts that inform the alternatives elicited by

the negation. For the negation of multiple words, the context is not explicitly

utilised in the framework. Instead, it is used to inform the weights of the sum.
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Table 8.1: Overview over the proposed negation frameworks of various scopes

Scope Summands Role of context Affects
Words Contexts Directly incorporated Meaning states

Multiple words Target of negation Informs weights Meaning states

Evolving
meanings

Alternative evolving
meanings

Informs weights Update structure

Sentences Interpretation of
negation

Informs weights Both

Each summand corresponds to different targets of the negation, identified by the

respective negation sets. Similarly, for the negation of evolving meanings, the

context is not an explicit part of the operation anymore. Instead, we rely on

external calculations to extract the relevant information from the context, in this

case, the intended alternative to an evolving meaning. Our final framework for

conversational negation combines all our proposals into one operation. The core

observation is that we have negations acting on the meaning states and negations

acting on the update structure. Combining them, we propose an operation that

can be applied to any sentence modelled in the DisCoCirc framework.

We observe that only for the negation of words, we propose to incorporate the

context as part of the framework directly. For the other negations, we utilise our

understanding of the negation to create the possible interpretations over which we

sum. The context is then used to inform the plausibility of each interpretation

which is captured in the weights.

While this thesis and the two accompanying papers — Rodatz et al. (2021)

and Shaikh et al. (2021) — make good strides towards conversational negation,

they raise new questions for future work.

We observed that negations are dependent on context, which is not necessarily

explicit in a given text. Therefore, we proposed using external sources of context

to derive and grade the different interpretations of a negation. We introduce

this mechanism to the DisCoCirc framework for the purpose of negation. For
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all negation frameworks, we would like to explore additional sources of context.

One overarching challenge is to find meaning representations that can embed

some of these sources of context directly, therefore reducing the reliance on the

external derivation of the context. For example, this could be explored utilising

conceptual spaces (Bolt et al., 2019).

8.2 Negation of words

In the case of the negation of words, we propose four different frameworks. Addi-

tionally, we propose a method to create and weigh the contexts. We validate the

frameworks and the context creations experimentally. These results give us some

insights into which approaches do not work, such as taking the logical negation or

certain composition operations in the negation frameworks CNword1 and CNword2.

However, we need to create further experiments to compare frameworks that perform

well at our experiments. Further experiments should aim to differentiate the high-

performing frameworks based on additional properties expected from a negation.

Additionally, we should explore alternative implementations. Especially the context

creation for the negation of words could profit from additional work. Finally,

methods to implement the proposal in Section 4.3.2 to remove the necessity of

external entailment hierarchies should be created and validated.

We would also like to explore the disambiguation of negations throughout a

text. Ambiguity in a negation takes two parts; (1) negating ambiguous meanings

and (2) the ambiguity introduced by the negation. The former is already partially

incorporated into the framework by considering different interpretations of a word in

the context. However, the ambiguity introduced by the negation through summing

over multiple contexts has received less attention. Ideally, the remaining meaning

updates from the text serve to disambiguate the right choice of context, similar

to how meaning update disambiguate meanings. While the current experimental

setup allowed for some small scale experiments to confirm this intuition, larger,

more structured experiments have to be conducted to explore the disambiguation

of negations throughout a text.
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8.3 Negation of multiple words

For the conversational negation of multiple words, we propose a framework utilising

the negation of individual words. We additionally propose a method to derive the

weights from the surrounding text. Both the negation framework and the method to

derive the weights should be experimentally validated. Being a comparatively new

proposal, the DisCoCirc framework, in contrast to the older DisCoCat framework,

has little experimental validation. As a result, there are still implementation details

concerning the broader framework to be solved. These details have to be solved

before the negation of multiple words can be explored experimentally.

Additionally, we should explore other methods of extracting the weights for

the negation. These include, among others, grammatical structure, the location

of the speaker and the intention of the speaker.

Our model only focuses on the negation of single word constituents. Therefore

the following alternative to the sentence cannot be modelled:

Bob does not publish a paper - Bob is lazy

where the negated constituent is publish a paper, which elicits the alternative

of being lazy. We focused on single word constituents for the purpose of clarity

and to be able to utilise the previously defined negation of words. However, the

framework can be extended to contain multi-word constituents by adding additional

summands. The two main challenges to overcome are (1) finding the constituents

and (2) calculating the negation of a multi-word constituent. For the first challenge,

constituent trees could be a helpful tool (Anderson, 2018, Chapter 8). For the

second challenge, the negation of words framework has to be extended to handle

multi-word constituents. Expanding the framework to multi-word constituents could

also enable us to model the negation of non-conjunctive composition as exemplified

by the “pet fish” problem (Coecke & Lewis, 2015).
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8.4 Negation of evolving meanings

For the conversational negation of evolving meanings, we propose a framework

that changes the update structure. Additionally, we propose a method to derive

the weights based on the negation of multiple words. Both the framework as

well as the context creation are not yet experimentally validated. They, too, rely

on the DisCoCirc framework.

Another challenge we have to solve to negate evolving meanings is incorporating

more complex update structures, which will probably be necessary for some

grammatical constructions. Here we rely on a formalisation of the update structures,

which is currently being explored. The first steps towards the final product are,

for example, made in Coecke and Wang (2021).

8.5 Negation of sentences

The negation of sentences combines the negation of multiple words with the negation

of evolving meanings to change the meaning states and the update structure. While

we have proposed methods to derive weights throughout the different negation

frameworks, many still have to be formalised and experimentally validated.

Similar to the negation of multiple words, we would like to explore multi-

constituent negation. In particular, negating an evolving meaning and a meaning

state simultaneously. For example, we could have the following interpretation:

Alice is not playing with Bob - She is sleeping

This interpretation simultaneously negates the meaning state for playing and

the evolving meaning of Bob. In this case, it removes the update to Bob, while

negating the meaning state.

8.6 Final remarks

Overall we have proposed a series of frameworks for conversational negation with

growing scope — each relying on intuitions gained from the previous. The main

challenges lie in formalising the derivation of weights and experimental validation.
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Considering future work, we would also like to focus on other terms of con-

versational logic, such as and, or and all. For this, the action of these logical

elements has to be explored, and their interaction with each other and negation

formalised. A long-term goal is to propose a broader framework for conversational

logic for compositional, distributional semantics.
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A
Proofs

A.1 Negation Properties

A.1.1 Double negative
A.1.1.1 The subtraction-from-identity-negation

Theorem 3. The subtraction-from-identity-negation obeys the double negative. For

any positive operator A we have:

¬sub(¬subA) = A (A.1)

Proof. We have:

¬sub(¬subA) = ¬sub(I− A) (A.2)

= I− (I− A) (A.3)

= (I− I) + A (A.4)

= A (A.5)

A.1.1.2 The support-inverse-negation

Theorem 4. The support-inverse-negation obeys the double negative. For any

positive operator A we have:

¬supp(¬suppA) = A (A.6)
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Proof. For any positive operators A with spectral decomposition A = ∑
i λi |i〉 〈i|.

We have A′ := ¬suppA has the same eigenbasis. Thus A′ has spectral decomposition∑
i λ
′
i |i〉 〈i| for some set of eigenvalues λ′. Therefore ¬suppA′ = ∑

i λ
′′
i |i〉 〈i| =: A′′

once more has the same eigenbasis. Thus, to show that A = A′′ we have to show

that for all i we have λi = λ′′i .

For λi = 0, we have λ′i = 0 by the definition of ¬supp and thus similarly λ′′i = 0 = λi.

For λi > 0, we have λ′i = 1
λi
> 0 and thus λ′′i = 1

λ′i
= λi.

Thus in both cases λi = λ′′i and therefore we have shown that A = A′′.

A.1.1.3 The kernel-inverse-negation

The kernel-inverse-negation does not obey the double negative.

We give a simple counter example. Let:

A =
(

0.5 0
0 0

)
(A.7)

This matrix has eigenvectors:

X1 =
(

1
0

)
, X2 =

(
0
1

)
(A.8)

with respective eigenvalues λ1 = 0.5 and λ2 = 0. Thus we have:

¬kerA =
(

0 0
0 1

)
(A.9)

with eigenvalues λ′1 = 0 and λ′2 = 1 for the same eigenvectors as A. But then:

¬ker(¬kerA) =
(

1 0
0 0

)
6= A (A.10)

Thus ¬ker does not obey the double negative. Applying the kernel-inverse-negation

twice results in the identity over the support of the original matrix.

A.1.1.4 The inverse-negation

The inverse-negation does not obey the double negative.

We give a simple counter example. Let:

A =

0.1 0 0
0 1 0
0 0 0

 (A.11)
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This matrix has eigenvectors:

X1 =

1
0
0

 , X2 =

0
1
0

 , X3 =

0
0
1

 (A.12)

with respective eigenvalues λ1 = 0.1, λ2 = 1 and λ3 = 0. We have:

¬suppA =

10 0 0
0 1 0
0 0 0

 (A.13)

which we normalise to get:

normalise(¬suppA) =

1 0 0
0 0.1 0
0 0 0

 (A.14)

Additionally we have:

¬kerA =

0 0 0
0 0 0
0 0 1

 (A.15)

Thus:

¬invA = normalise(¬suppA) + ¬kerA =

1 0 0
0 0.1 0
0 0 1

 (A.16)

But then, as the kernel of ¬invA is empty, we have:

¬inv(¬invA) = normalise(¬supp(¬invA)) =

0.1 0 0
0 1 0
0 0 0.1

 6= A (A.17)

Thus ¬inv does not obey the double negative.

A.1.2 Contrapositive

During the thesis, we abuse the notation of entailment by not always clearly

specifying the concrete entailment measure we use. This was done as the choice of

entailment is always sufficiently clear from the context. Throughout these proofs,

we use a slightly adapted notation, where we specify the choice of entailment. For

two positive operators A,B, we will write A vkhyp
k B to symbolise an entailment

of strength k from A to B under the entailment measure khyp. A similar notation

will be used for kE and kBA.
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A.1.2.1 The subtraction-from-identity-negation

khyp -

Theorem 5. For two positive operators A and B we have:

A vkhyp
k ⇐⇒ ¬subB v

khyp
k ¬subA (A.18)

when k = 1

Proof. We have:

A vkhyp
k B ⇐⇒ B− kA ≥ 0 (A.19)

where we use “≥ 0” to denote that an operator is positive.

Thus:

¬subB v
khyp
k ¬subA = (I− B) vkhyp

k (I− A) (A.20)

⇐⇒ (I− A)− k · (I− B) ≥ 0 (A.21)

⇐⇒ (1− k) · I− A + k · B ≥ 0 (A.22)

But for k = 1 we have:

(1− k) · I− A + k · B = B− A (A.23)

Thus, for k = 1, we have:

(I− A)− k · (I− B) ≥ 0 ⇐⇒ B− A ≥ 0 ⇐⇒ A vkhyp
1 B (A.24)

and therefore:

A vkhyp
1 B ⇐⇒ ¬subB v

khyp
1 ¬subA (A.25)
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kE - Lewis (2019) shows that the subtraction-from-identity-negation does

not preserves the contrapositive for kE in general.

However, we have:

Theorem 6. For two positive operators A and B we have:

A vkE
k ⇐⇒ ¬subB vkE

k ¬subA (A.26)

when k = 1

Proof. We have:

A vkE
1 B ⇐⇒ E = 0 (A.27)

But if E = 0 that means that B − A is positive, i.e. no error term is required. But

then by Theorem 5, we know that ¬subA − ¬subB is positive. Thus E ′ = 0 when

calculating:

¬subB vkE
1 ¬subA ⇐⇒ E ′ = 0 (A.28)

Thus we have:

A vkE
1 B ⇐⇒ ¬subB vkE

1 ¬subA (A.29)

kBA - Lewis (2019) shows that the subtraction-from-identity-negation pre-

serves the contrapositive for kBA.

A.1.2.2 The support-inverse-negation

khyp -

Theorem 7 (Rodatz et al., 2021). For two positive operators A and B with

rank(A) = rank(B), khyp is reversed under ¬supp:

A vkhyp
k B ⇐⇒ ¬suppB v

khyp
k ¬suppA (A.30)
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Proof. From Baksalary et al. (1989, Theorem 4.3), ¬supp reverses Löwner order (i.e.

khyp with k = 1) when rank(A) = rank(B), meaning

A vkhyp
1 B ⇐⇒ ¬suppB v

khyp
1 ¬suppA (A.31)

Thus

A vkhyp
k B⇐⇒ B− kA ≥ 0 (A.32)

⇐⇒ kA vkhyp
1 B (A.33)

⇐⇒ ¬suppB v
khyp
1 ¬supp(kA) (A.34)

⇐⇒ ¬supp(kA)− ¬suppB ≥ 0 (A.35)

⇐⇒ 1
k

(¬suppA)− ¬suppB ≥ 0 (A.36)

⇐⇒ ¬supp(A)− k(¬suppB) ≥ 0 (A.37)

⇐⇒ ¬suppB v
khyp
k ¬suppA (A.38)

where we use “≥ 0” to denote that an operator is positive.

We use the fact that kA has the same spectral decomposition A with all

eigenvalues are multiplied by k to get from Equation A.35 to Equation A.36.

kE - For any two positive operators A,B, we have

A vkE
k B with k = 1− ‖E‖

‖A‖ (A.39)

Similarly we have

¬suppB vkE
k′ ¬suppA with k′ = 1− ‖E′‖

‖¬suppB‖
(A.40)

Thus, even if E = E′, which is the case for A and B having the same eigenbasis,

‖A‖ 6= ‖¬suppB‖. Thus the contrapositive does not hold.
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kBA -

Theorem 8 (Rodatz et al., 2021). For two invertible positive operators A and B

with the same eigenbasis, kBA is reversed by matrix inverse:

B−1 vkBA
k A−1 ⇐⇒ A vkBA

k B (A.41)

Proof.

B−1 vkBA
k A−1 ⇐⇒ k =

∑
i λ

i
A−1 − λiB−1∑

i

∣∣∣λiA−1 − λiB−1

∣∣∣ (A.42)

=
∑
i

1
λi

A
− 1

λi
B∑

i

∣∣∣∣ 1
λi

A
− 1

λi
B

∣∣∣∣ (A.43)

=
∑
i λ

i
B − λiA∑

i |λiB − λiA|
(A.44)

⇐⇒ A vkBA
k B (A.45)

using that for some invertible matrix X with spectral decomposition X = ∑
i λi |i〉 〈i|,

we have X−1 = ∑
i

1
λi
|i〉 〈i| to get from Equation A.42 to A.43.

But then as for an invertible matrix ¬supp is equal to the matrix inverse, we have:

Corollary 1. For two invertible positive operators A and B, with the same eigenbasis,

kBA is reversed by ¬supp, i.e.:

A vkBA
k B ⇐⇒ ¬suppB vkBA

k ¬suppA (A.46)

A.1.2.3 The kernel-inverse-negation

khyp -

Theorem 9. For two positive operators A and B we have:

A vkhyp
k B ⇐⇒ ¬kerB v

khyp
1 ¬kerA (A.47)

Please observe that on the right-hand side, we have k′ = 1.
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Proof. We have:

A vkhyp
k B ⇐⇒ supp(A) ⊆ supp(B) (A.48)

⇐⇒ ker(B) ⊆ ker(A) (A.49)

⇐⇒ supp(¬kerB) ⊆ supp(¬kerA) (A.50)

But then, as we know that for any positive operator X, we know that ¬kerX is the

identity over its support, we have:

A vkhyp
k B ⇐⇒ ¬kerB v

khyp
1 ¬kerA (A.51)

Corollary 2. For two invertible density matrices A and B, the contrapositive is

observed for crisp Löwner order. We have:

A vkhyp
1 B ⇐⇒ ¬kerB v

khyp
1 ¬kerA (A.52)

kE -

Theorem 10. For two positive operators A and B, we have:

A vkE
1 B ⇐⇒ ¬kerB vkE

1 ¬kerA (A.53)

Proof. We have:

A vkE
1 B ⇐⇒ E = 0 (A.54)

But if E = 0 that means that B − A is positive, i.e. no error term is required. But

then by Corollary 2, we know that ¬kerA− ¬kerB is positive. Thus E ′ = 0 when

calculating:

¬kerB vkE
1 ¬kerA ⇐⇒ E ′ = 0 (A.55)

Thus we have:

A vkE
1 B ⇐⇒ ¬kerB vkE

1 ¬kerA (A.56)
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kBA -

Theorem 11. For two positive operators A and B, we have:

A vkBA
1 B ⇐⇒ ¬kerB vkBA

1 ¬kerA (A.57)

Proof. We have:

A vkBA
1 B ⇐⇒ E = 0 (A.58)

But if E = 0 that means that B − A is positive, i.e. no error term is required. But

then by Corollary 2, we know that ¬kerA− ¬kerB is positive. Thus E ′ = 0 when

calculating:

¬kerB vkBA
1 ¬kerA ⇐⇒ E ′ = 0 (A.59)

Thus we have:

A vkBA
1 B ⇐⇒ ¬kerB vkBA

1 ¬kerA (A.60)

A.1.2.4 The inverse-negation

khyp - Despite have some desirable interaction with khyp for both ¬supp and

¬ker, ¬inv does not interact well with khyp. This is due to the normalisation of

the support-inverse-negation before taking the sum. We can take for example the

following two matrices with the same rank:

A =

0.1 0 0
0 1 0
0 0 0

 (A.61)

B =

1 0 0
0 1 0
0 0 0

 (A.62)

Then A vkhyp
1 B when considering khyp as we have:

B− A =

0.9 0 0
0 0 0
0 0 0

 ≥ 0 (A.63)
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But we have

¬invA =

1 0 0
0 0.1 0
0 0 1

 see example in A.1.1.4) (A.64)

¬invB =

1 0 0
0 1 0
0 0 1

 (A.65)

Therefore we only have ¬invB v
khyp
0.1 ¬invA as for any higher k we would have a

negative eigenvalue for the second eigenvector. Thus for this simple example, we

have shown that the contrapositive does not hold.

kE - The contrapositive does not hold for ¬supp. Thus for all positive

operators, that have an empty kernel, the contrapositive also does not hold for ¬inv.

Thus ¬inv does not obey the contrapositive.

kBA - While the contrapositive may hold for ¬supp and ¬ker under certain

conditions, it does not hold for ¬inv. In particular, even if both positive operators

are invertible, the normalisation after taking the support-inverse-negation destroys

the contrapositive. This is similar to the example for the contrapositive for khyp.



B
Additional Data

B.1 Framework comparison

The results presented in Section 4.5.3 are for the frameworks under the context

function hyp-khyp4. Under that function we get an optimal value of 0.654 for

CNword1 and CNword2. CNword3 and CNword4 perform optimally under poly4. The

results are presented in Table B.1. The scores in this table correspond to the

scores presented in Rodatz et al. (2021)1

One key observation is that under this function, more frameworks perform well,

yet none as good as the optimal framework under hyp-khyp4.

1Please observe that these scores slightly differ from the scores presented in Rodatz et al. (2021).
This difference is due to minor changes in the implementation for missing data and rounding. The
differences are not significant.
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Table B.1: Pearson correlation of different framework under context function poly4
with human intuition. Correlations above 0.4 are highlighted in green.

Framework Logical
negation

Compo-
sition kE1 kE2 khyp1 khyp2 kBA simtrace

wN
— — 0.464 0.551 0.303 -0.003 0.268 0.575

wcwN
— — 0.440 0.599 0.294 0.475 0.318 0.628

CNword1

&

CNword2

(negations
give same
results
under
these com-
position
opera-
tions)

¬sub

spiderw -0.190 -0.220 0.278 0.231 0.269 -0.094
phaserw 0.414 0.604 0.302 0.493 0.303 0.627
fuzzw -0.232 -0.074 0.293 0.241 0.271 0.460
diag -0.260 -0.234 0.293 0.028 0.269 -0.038

¬supp

spiderw 0.176 0.400 0.259 -0.072 0.182 0.385
phaserw -0.147 0.146 0.250 0.076 0.148 0.180
fuzzw -0.178 0.064 0.256 0.044 0.146 0.021
diag -0.236 0.028 0.173 0.053 0.121 -0.048

¬ker

spiderw -0.253 -0.246 0.116 0.110 0.172 -0.459
phaserw 0.354 0.459 0.306 0.298 0.213 0.555
fuzzw -0.223 -0.075 0.296 0.097 0.183 0.294
diag -0.243 -0.172 0.294 -0.003 0.180 0.040

¬inv

spiderw -0.159 -0.016 0.250 0.081 0.149 0.127
phaserw 0.343 0.494 0.309 0.230 0.215 0.566
fuzzw -0.223 -0.088 0.296 0.04 0.195 0.255
diag -0.253 -0.201 0.290 -0.007 0.196 0.009

CNword1

¬sub
spiderc -0.067 0.271 0.290 0.505 0.256 0.526
phaserc -0.270 -0.320 0.296 -0.269 0.275 -0.302
fuzzc -0.262 -0.207 0.296 0.016 0.276 -0.067

¬supp
spiderc 0.258 0.397 0.250 0.265 0.165 0.458
phaserc -0.106 -0.001 0.235 0.071 0.148 0.268
fuzzc -0.218 -0.015 0.230 0.057 0.145 0.046

¬ker
spiderc -0.086 0.183 0.268 0.383 0.180 0.523
phaserc -0.271 -0.290 0.291 -0.202 0.204 -0.323
fuzzc -0.239 -0.199 0.291 -0.023 0.204 -0.075

¬inv
spiderc 0.053 0.306 0.281 0.385 0.152 0.475
phaserc -0.266 -0.234 0.294 -0.102 0.197 -0.173
fuzzc -0.228 -0.190 0.295 -0.012 0.196 -0.059

CNword2

¬sub
spiderc -0.152 0.068 0.282 0.366 0.241 0.322
phaserc -0.270 -0.279 0.303 0.151 0.259 -0.262
fuzzc -0.252 -0.125 0.302 0.143 0.261 -0.01

¬supp
spiderc 0.256 0.417 0.261 0.057 0.174 0.429
phaserc -0.069 0.032 0.245 -0.287 0.148 0.282
fuzzc -0.193 -0.016 0.229 0.036 0.136 0.088

¬ker
spiderc -0.173 0.031 0.267 0.215 0.170 0.252
phaserc -0.254 -0.259 0.306 0.100 0.187 -0.283
fuzzc -0.212 -0.135 0.303 0.112 0.188 -0.018

¬inv
spiderc -0.014 0.247 0.275 0.342 0.140 0.375
phaserc -0.256 -0.188 0.302 0.059 0.180 -0.16
fuzzc -0.176 -0.127 0.303 0.117 0.179 -0.016

CNword3 — — 0.237 0.477 0.305 0.388 0.241 0.598

CNword4 — — 0.240 0.424 0.306 0.257 0.224 0.583
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