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Algorithms for quantum computing are an important cornerstone in the field of quantum technolo-
gies. However the language we use to describe them can be clunky and awkward - expositions of
quantum protocols are often interspersed with explanatory sentences. This inhibits the understand-
ing of such protocols and also the designing of new protocols. In this case study report I discuss
a new approach to the language of quantum processes that uses intuitive diagrammatic reasoning
backed up with the rigorous mathematics of category theory.

I. INTRODUCTION

Shor’s factoring algorithm [1] kick-started the field of
quantum computing algorithms [2] and sparked a world-
wide program of research in quantum technologies that
is still growing more than 20 years on - the European
commission announced last month plans for a e 1 billion
investment in a ‘large-scale EU-wide quantum technolo-
gies flagship’ [3, 4].

Quantum algorithms are still important today; they
promise huge speedups over classical algorithms for im-
portant computational tasks [5]. However, just like with
classical algorithms, it is difficult to design new quan-
tum algorithms. It is also difficult to understand how
quantum algorithms work - there has been much discus-
sion over precisely which feature of quantum theory gives
quantum algorithms their edge [6].

This case study is about designing new formalisms for
quantum theory that will give us a clearer and more nat-
ural language for thinking about quantum computing al-
gorithms, as well as other topics in quantum theory more
generally.

Part of the difficulty in analyzing algorithms lies in
the established formalism of quantum mechanics. The
three main paradigms for studying quantum computing
are the circuit or gate-based model [7], quantum walks [8]
and adiabatic quantum computation [9]. The standard
presentations of each look very different, yet the same
quantum theory underlies them all - they all consist of
quantum and classical systems undergoing quantum and
classical maps. The same can be said for the quantum
teleportation protocol [10], and quantum communication
protocols generally.

Established quantum theory is grounded in von Neu-
mann’s Hilbert space formalism [11, 12]. One of the first
critics of von Neumann’s formalism was, surprisingly, von
Neumann himself! In a letter to Garrett Birkhoff in 1935,
von Neumann said

“I would like to make a confession that may
seem immoral: I do not believe absolutely in
Hilbert space no more (sic).”

What brought von Neumann to this belief (or lack of)

was the abstract nature of the mathematical definitions
that lay at the heart of his formalism. True to his word,
he devoted much of his later career to an, ultimately
unsucessful, pursuit of a better formulation [13].

To be more precise, two features of Hilbert space
in particular make quantum algorithm design difficult.
Firstly, the foundations of von Neumann’s quantum me-
chanics are couched in abstract mathematical definitions
- there is no operational meaning to them. This contrasts
with the other great physical theory, relativity, whose
ideas are built from the very operational concepts of mov-
ing rods and clocks and using them to measure time and
length. Secondly, the theory is very ‘low-level’: many
of the symbols we write in the algebra of Hilbert spaces
are required purely for mechanistic book-keeping, they
don’t tell us anything about what’s really happening.
A strong analogy can be made here with programming
languages: computer programs written in low-level pro-
gramming languages are much longer than those written
in high-level languages for which the mechanistic book-
keeping is implicit. For quantum computing algorithms
a higher level of language would be invaluable [14].

This is where the word ‘categorical’ comes in. Over
the past three decades or so work has been underway
in defining new quantum theories that have operational
foundations and can be described in a higher-level lan-
guage. The mathematics underlying this work is called
category theory. Category theory is the mathematical
theory of systems (‘objects’ in category theory parlance)
and the processes (‘morphisms’) that they undergo [15].
This extremely general mathematics has several nice fea-
tures for quantum theory: it is process-oriented and so
inherently operational, it deals very naturally with com-
posite systems (entanglement is fundamental to quantum
theory [16] and so composite systems should be funda-
mental in our formalism), and it allows us to build up
quantum theories axiomatically - something that comes
in very useful in foundational questions in quantum the-
ory.

Perhaps the most appealing aspect of category the-
ory is that for many of the quantum theories built from
it a picture calculus is permitted. That is, calculations
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can be represented using diagrams, and these diagrams
can be manipulated to prove new equalities in a rigorous
fashion. Moreover these picture calculuses can be ‘com-
plete’: meaning that anything provable in the theory can
be proved with graphical manipulations alone. This is
astonishing: once the rules for creating and manipulat-
ing diagrams are established, the algebra can be thrown
away!

In the next section I will give an overview of how cate-
gory theory is used to build high-level, operational quan-
tum theories with composition of systems built in nat-
urally. In sections 3-5 I will present recent progress in
developing such formalisms, and using them to better un-
derstand quantum algorithms and quantum theory more
widely. Section 6 concludes the report with speculations
on future prospects of diagrammatic reasoning for quan-
tum algorithms.

II. BUILDING DIAGRAMMATIC THEORIES

The use of diagrams to aid calculation isn’t a new con-
cept, it emerges naturally in all areas of science and
mathematics. Perhaps the most famous example in
physics is the Feynman diagram. Attempts to imbue
these diagrams with a rigorous mathematical meaning
really began with a study of Feynman diagrams and a col-
lection of other diagrammatic calculational aids in 1991
[17]. This is when the power of category theory in for-
mulating diagrammatic theories first came to light.

Soon after this result, work began in earnest, and has
continued ever since, to try and formulate a quantum
mechanics imbued with the rigour of category theory [18–
22].

So how do we go about building a diagrammatic the-
ory using category theory? Category theory is the study
of processes, and so category theories are sometimes re-
ferred to as ‘process theories’. The most generic process
theory within this framework is the theory of single ‘ob-
jects’ A,B,C . . . (that is, systems: A might be a single
qubit, B a qubit plus a classical bit, etc.) undergoing
‘morphisms’ f, g, h . . . (that is, processes: f might be
the morphism that takes a qubit and appends a clas-
sical bit, thereby mapping object A to object B). We
can represent processes in this theory with diagrams in
which objects are represented by solid lines or ‘wires’,
and morphisms as boxes with input and output wires.
Figure 1(a) shows such a diagram: conventionally time
progresses up the page, so this diagram shows the mor-
phism f that maps object A to object B. As well as
objects and morphisms we require a rule for composing
morphisms sequentially, usually denoted ‘◦’. Figure 1(b)
shows a diagram for the composite morphism g◦f , where
g is a morphism that maps object B to object C.

From this general starting point we add new elements
of our diagrammatic theory to enable it to describe more

FIG. 1. Elementary category-theoretic diagrams. As drawn
here time progresses upwards. (a) morphism f maps object
A to B, that is f : A 7→ B. (b) g : B 7→ C, so the composite
g ◦ f : A 7→ C.

complex processes. In this way we can build up theories
axiomatically. For a quantum theory we need, at the min-
imum, a ‘parallel composition’ or tensor product ⊗ that
allows us to consider composite objects and morphisms,
and also a swap operation for exchanging the position of
two objects. For a more thorough description, see Bob
Coecke’s paper “Introducing Categories to the Practicing
Physicist” [23].

Categorical diagrammatic theories give us a high-level
language for describing complex sequences of processes
between quantum systems. While this can’t describe
anything not already present in the Hilbert space for-
malism of quantum mechanics, it can expose the struc-
ture of quantum algorithms and other complicated quan-
tum protocols. Category theory provides the background
mathematical framework for building these process theo-
ries: from this new diagrammatic theories can be crafted,
and from these complicated quantum computing and
communication protocols can be analyzed with reference
only to the high-level diagrammatic language provided.

This isn’t to say that categorical diagrammatic theo-
ries should supplant Hilbert space quantum mechanics
entirely - sometimes it will be appropriate to deal with
the low-level explicit detail (this is exactly what hap-
pens in programming languages). However, when used
according to their strengths, the diagrammatic theories
discussed here can and do facilitate new insights.

III. TOPOLOGY OF QUANTUM ALGORITHMS

In 2013 a result was published that exemplifies the use
of high-level categorical quantum theories to gain new
insight into quantum computing algorithms [24]. Using
such a theory, the canonical Deutsch-Jozsa [25], single-
shot Grover [26] and Hidden-subgroup [27] algorithms
were formulated diagrammatically and analyzed. The
resulting process diagrams are shown in figure 2.

Recalling that time progresses upwards in these di-
agrams, we see that each algorithm is separated into
preparation (1), dynamics (2) and measurement (3)
phases. The dynamics phase consists of a unitary ora-
cle operations, common to each algorithm. The oracle
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FIG. 2. Categorical diagrammatic representations of the
Deutsch-Jozsa, single-shot Grover and hidden subgroup algo-
rithms [24]. Each algorithm consists of three steps, indicated
by dashed lines (these form no part of the diagrams them-
selves). These are the preparation phase (1), the dynamics
phase (2) and the measurement phase (3).

maps a state of the form |i〉 |j〉 to |i〉 |f(i) + j〉, where
‘+’ is the relevant addition operation and the function
f characterized in the task the algorithm is attempting
to perform. The diagrammatic form of unitary oracles is
key to each representation in figure 2, and is explored in
more detail in [28].

These diagrammatic representations expose these well-
studied algorithms in a new light: the diagrams clearly
have a common topological structure. Using this in-
sight new proofs of correctness were found for the three
algorithms, and generalizations of each algorithm were
presented. The generalization of the single-shot Grover
algorithm was completely new. Generalizations for the
Deutsch-Jozsa and Hidden subgroup algorithms already
existed [27, 29, 30], however the high-level description
permitted by this formulation allowed for an improved
analysis.

IV. ZX-CALCULUS

‘ZX-Calculus’ is the name given to a diagrammatic pro-
cess theory for pure state qubit quantum mechanics with
post-selected measurements. It was introduced in [18, 31]
and refined in [32]. By virtue of its category-theoretic
grounding it is more flexible than the standard circuit no-
tation used in gate-based quantum computing [7], and it
is more fundamental too - the elementary physical gates
of quantum computing are seen in ZX-calculus to be built
from more fundamental, though individually unphysical,
components [33].

While developing the ZX-calculus has taken some time,
the formalism itself is straightforward to learn. Its dia-
grams are built from a set of elementary building blocks
that are straightforwardly defined. Particularly useful for
learning ZX-calculus is a built-in ‘usual interpretation of’
mapping from ZX-calculus diagrams to their ‘usual inter-
pretation’ in terms of the familiar Dirac notation (up to
normalization factors). For example, the usual interpre-

tation of a wire, denoted J | K, is the identity operation:

J | K = |0〉〈0|+ |1〉〈1| . (1)

The most important building blocks of ZX-calculus are
the eponymous Z and X ‘phase spiders’ (diagrams taken
from [32]):

= |0〉⊗m〈0|⊗n + eiα |1〉⊗m〈1|⊗n , (2)

= |+〉⊗l〈+|⊗k + eiβ |−〉⊗l〈−|⊗k , (3)

where |+〉 and |−〉 are the eigenstates of the single-qubit
Pauli-X operator. These can take arbitrary numbers of
input and output qubits, and act as generalized phase
gates in complementary bases usually referred to as Z
and X after the standard Pauli-Z and Pauli-X bases of a
qubit [7].

Adding diagram elements for transformations between
the bases, a SWAP operation, creation and measurement
of a Bell state, and for the number 1/2 we have a full list
of the building blocks for the ZX-calculus.

With this fairly simple list much can be achieved. The
biggest early success of ZX-calculus was its use in for-
mulating a high-level description of measurement based
quantum computing (MBQC) [34]. In MBQC a com-
plex entangled many-qubit state is prepared, after which
single qubit measurements are performed. This, surpris-
ingly, results in a computationally useful state. When
formulated in the language of ZX-calculus, a little di-
agrammatic reasoning makes clear the relationship be-
tween the single qubit measurements and the effects they
have on the final system state.

The full scope of ZX-calculus is an open question. It
has been shown to be complete for stabilizer quantum
mechanics on pure qubit states [35, 36], and for an ap-
proximately universal gate on a single qubit [32]. Proving
approximate universality for larger systems is a topic of
current research. Whatever the outcome of those inves-
tigations, the ZX-calculus should certainly be taken seri-
ously as an alternative to conventional quantum circuit
diagrams.

V. QUANTUM FOUNDATIONS - SPEKKEN’S
TOY MODEL

Exactly what it is that gives quantum algorithms their
speedup over their classical counterparts is an important
question [6]. Very closely related is the more fundamen-
tal question of ‘what is it that makes quantum mechanics
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quantum?’ - is absolutely all of the machinery required,
or does it boil down to a small number of key ingredients?
In 2004 Robert Spekkens presented a toy theory that
went some way to answering that question [37]. With a
very simple theory, thereafter known as ‘Spekken’s toy
model’, many of the phenomena normally associated ex-
clusively with quantum mechanics could be reproduced,
including for example incompatible observables, telepor-
tation, and no-cloning. One important difference how-
ever between the toy model and quantum theory is that
the toy model is a local theory - the Bell inequalities
aren’t violated [38].

In 2011 Coecke, Edwards and Spekkens took a cate-
gorical diagrammatic approach to try to pin down the
difference between quantum theory and the toy model
even further [39]. They defined a diagrammatic theory
for the toy model, which they dubbed Spek, and for sta-
bilizer quantum mechanics (a restricted version of full
quantum theory [40]) which they called Stab. This pro-
vided them with an equivalent diagrammatic machinery
with which to analyze the two theories.

It was found that while the physical reason for the
difference in the two theories was that Spek is a local
theory whereas Stab is not, it can further be said that
the structural difference lay in the ‘phase group’ of in-
dividual systems. Found in either theory are three pairs
of orthogonal state for an individual system that can be
arranged along three axes - the Bloch sphere arrange-
ment for Stab and an analogous arrangement for Spek.
The ‘phase group’ of the theories is the group structure
of the equatorial states, as defined by the transforma-
tions allowed in the theory. The phase group of Spek
is Z4 and the phase group of Stab is Z2 × Z2, where
Zn is the group of 2π/n planar rotations. This result
pins down more precisely the role non-locality plays in
quantum theory.

The graphical calculus for Spekken’s toy model has
since been developed further and shown to be complete
[36] - that is, any equality derivable in the theory can be
derived with diagrammatic reasoning alone. This opens
the door to further investigations into the nature of non-
locality in quantum theory, with potential implications
for quantum protocol design that takes advantage of non-
local effects, including computing and communication.

VI. CONCLUSIONS

To summarize, the body of work discussed here shows us
that we can build graphical theories of quantum processes
that are mathematically rigorous, founded on operational
ideas and that allow high-level descriptions of compli-
cated processes. These complicated processes can be rep-
resented with two-dimensional diagrams rather than the
normal one-dimensional representation of lines of alge-
bra. The evolution of composite systems is inherently a

process in at least two dimensions - one dimension for
time, and at least one for the arrangement of the sub-
systems. This is essentially why a diagrammatic descrip-
tion is high-level: the mechanistic book-keeping normally
required in this compression to one dimension becomes
superfluous and can easily, and rigorously, be made im-
plicit.

Future Work

The usefulness of the diagrammatic theories discussed
here is only just beginning to be tapped. Substantial
work has already been completed in developing suitable
graphical theories for quantum computing algorithms us-
ing the tools of category theory, and these theories are
now ready to be used themselves as useful tools. There
is of course further work to be done in theory develop-
ment; in the near future we can hope to see results re-
garding the question of whether the ZX-calculus is com-
plete for an approximately universal gate set on multiple
qubits. General quantum theory can also be formulated
as a graphical theory in this way, the details of this are
to be published later this year in an upcoming textbook
on diagrammatic reasoning and quantum theory [41].

Diagrammatic theories provide high-level descriptions
of quantum processes that are particularly useful for com-
plicated protocols involving multiple interacting quan-
tum systems. Uptake of the graphical approach to an-
alyzing quantum computing algorithms has so far been
limited, and so there are a limited number of results pub-
lished so far. The causation here goes both ways how-
ever - the lack of many results, or of one very significant
result, leaves many unconvinced that switching over to
a new framework for quantum algorithms is worth the
effort. A significant result would change this, so the fu-
ture of the approach described here hinges on whether
diagrammatic reasoning can directly aid in pushing back
the boundaries of knowledge in a significant jump that
reveals something truly new.
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