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Abstract

Until this research, the evaluation work on the categorical model of sentence

meaning (Coecke et al.) [6] has only been limited to small datasets that

contain simple phrases with no recursive grammatical structures. Each of

them only considered limited language units individually [16][19][30][31]. In

this project, the categorical framework is instantiated on some concrete dis-

tributional models. It is the first unified practical model that handles most

language units (nouns, verbs, prepositions, adjectives, adverbs, relative pro-

nouns, conjunctions, and disjunctions) and complex grammatical structures

(arbitrary sentences of any lengths). This project also conducts the first

large-scale generic evaluation for the categorical model, based on the “term-

definition” classification method first introduced by (Kartsaklis et al.) [19].

Specifically, the experiment is divided into the following steps. First, how

well the categorical model performs on di↵erent types of phrases, including

simple subject/object/possessive relative pronoun phrases, prepositions, and

adjective phrases. Here, the categorical model gives good results in general.

The second step is to mix all simple phases of di↵erent types. In this case,

the categorical model also gives better results than the bag-of-words baseline

models. The last step is to introduce complex sentences with recursive gram-

matical structures, the experiment shows that categorical doesn’t give better

results than the baseline methods in this case. Based on the experiment and

its results, a detailed discussion is given at the end to analyze the cause for

all results obtained. Some insights into building practical categorical models

are shared, and some potential future work is mentioned.
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Chapter 1

Introduction

But what is the meaning of the
word ‘five’? No such thing was
in question here, only how the
word ‘five’ is used.

Ludwig Wittgenstein

Natural language is ambiguous and messy in its nature. People have been

seeking ways to automate the process of understanding natural language for a

long time. From the early ages, philosophers had been looking for frameworks

of understanding natural language. Aristotle tried to compress the di↵erent

types of “constructions” into truth statements, with words as terms of dif-

ferent types, and inference is made from terms [25]. Later Frege developed

the mathematical framework of logic, and provided a way to represent and

inference the truth theoretic system to reason about propositions [11], and

Montague gave a framework to reason syntax using logic [9]. All of these are

based on the idea that words have meaning and a sentence is a functional

composition of words. On the other hand, Wittgenstein argued in his Philo-

sophical Investigations [40] that a word’s meaning depends on its context of

use.

In modern age, enabling computers to understand natural language is

one of the central tasks of machine intelligence. Based on di↵erent schools

of thoughts, di↵erent approaches in computational linguistics have been in-

vented. In particular, most of these methods can be classified into formal

semantics and distributional semantics.

Formal semantic approaches model language using a type-logical frame-

work. In this framework, semantics is from logical expressions derived from
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CHAPTER 1. INTRODUCTION

syntax structures of a sentence. Distributional semantics provides a vector

space model that enables similarity comparison between linguistic units.

In recent years, due to the availability of large amounts of text online, and

an increase of computing power, distributional semantics gained great success

in many applications, such as machine translation, text mining, synonym

discovery and paraphrasing. In such models, vector spaces have been used

to express the meaning of natural language. However, there is one problem

of distributional semantics to build sentence vectors: it is hard to find a

particular sentence in any corpus, even though a big corpus is used. Therefore,

if sentences are considered as the basic units, their vectors will contain many

zeros, which will make similarity comparison nearly impossible.

Thus incorporating compositional information into distributional models

of word meaning is important to fix this problem and improve the practical

results. Theoretically, Coecke et. al. [6] discovered that pregroups grammar

and vector spaces with linear maps share a compact closed structure. Un-

der this framework, a categorical model of sentence meaning was developed.

Sadrzadeh et al. [30][31] further developed models for sentences involving

subject, object and possessive relative pronouns. In all of these papers, toy

experiments were performed, and a few other more formal but small scale

evaluations on simple phrases were performed [16][19].

This research is to build a practical model and perform a generic, large

scale evaluation on the categorical compositional-distributional model. The

practical model is built based on some concrete distributional models, then

a systematical evaluation is performed. The evaluation is divided into the

following steps: the first step is to perform a larger scale experiment of rel-

ative pronouns, transitive verbs, intransitive verbs, adjectives, adverbs, and

prepositions; the second step is to perform evaluations on sentences with re-

cursive grammatical structures; lastly, an evaluation on a few mixed, relatively

large datasets is performed. The dataset used for evaluation in this project is

extracted from the Oxford Junior Dictionary, and the method is to classify def-

initions (sentences) to their corresponding terms (nouns), as first introduced

in (Kartsaklis et al.) [19].

The results show that the categorical model gives better results on non-

recursive sentences in general, but gives slightly lower accuracy on complex

sentences with recursive structures, but not significantly worse. The back-

ground chapter will introduce the theories behind related models used in this

Page 7



CHAPTER 1. INTRODUCTION

paper, the methodology chapter will give details about the ways di↵erent

types of words are modeled, and how the practical model was built, as well

as the evaluation methods. The experimental work chapter will introduce the

term-definition classification work in this project, and list the results. In the

discussion chapter, I will give some analysis of the results, and some insights

into the practical model and the results obtained from the experiments. Some

future work is mentioned at the end.
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Chapter 2

Background

Expressing meaning is one of the core tasks in Computational Linguistics,

because it is the slate of many important applications, including paraphrase

identification, question-answering systems, text summarization, information

retrieval, machine translation and so on.

There are two “camps” in Computational Linguistics for a long time: the

formal semantic models, and the distributional semantic models. The former

tells compositional information of a sentence but does not provide quantitative

information such as similarity, while the latter is quantitative but does not

contain compositional information [6].

In this chapter, an introduction to the background is given: the formal

semantics and the distributional models. After that, I introduce the theoreti-

cal framework of the categorical model of meaning, which builds up a passage

between the two seemingly orthogonal approaches.

2.1 Formal semantics

Rooted in Frege’s view of language is the idea that the meaning of a sentence

is some functional composition of the meaning of individual words it contains

[11]. That is, given a sentence, the semantics of this sentence is composed of

the meaning of the individual words and the rules of combining these words,

just like a thought is a composition of senses [12]. Indeed, with the words

and the grammars, a person can produce new sentences and use them to

express what he/she wants to say. Later Montague gave a systematic way of

formalizing natural language semantics in his revolutionary papers EFL, UG,
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CHAPTER 2. BACKGROUND

PTQ, in which he claimed that natural language is naturally incoherent; but

the semantics of it can be represented using some well known tools from logic,

such as type theory and lambda-calculus.(Barwise, Jon and Robin Cooper.

1981) [1].

To use Montague’s method, there are two steps: first one needs to perform

syntactic analysis over a sentence. Syntax can be represented based on a set

of grammars, such grammars can be modeled in various ways, such as CFG

(Context-free grammars), CCG (combinatory categorial grammar), PCCG

(Probabilistic CCG), PCFG (Probabilistic CFG) [41][13]. The semantics can

be represented by logical expressions: one widely used way is to use lambda

calculus expressions combined with higher-order logic [26][17]. Usually, a sen-

tence is firstly parsed based on some grammars first, then a logical expression

can be assigned to each individual words (for a relational word, it will be a

predicate). After this, each node in the parse tree can be assigned a logical

expression. The logical expression at the root will represent the meaning of

this sentence. For example, a sentence “men like football” can be analyzed in

the following way:

Syntactic Analysis Semantics

S ! NP V P V P (NP )

NP ! men, football men, football

V P ! V NP V (NP )

V ! like �xy, like(x, y)

NP : football

V (NP ) : �x, like(x, football)

V : �xy, like(x, y)

S : like(men, football)

NP : men

Figure 2.1: Syntactic analysis and parse tree and semantics of a sentence

More complicated sentences can also be analyzed using this method. The

benefit of formal semantic approaches is that as long as the logical structure
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CHAPTER 2. BACKGROUND

of a sentence is obtained, the truth value of a sentence can be calculated. In

real world applications, this greatly helps analyze the inference of a sentence.

However, formal semantics is not really quantitative, and simply using

truth values cannot tell a lot of things, such as the similarity between words,

which can be calculated from distributional models described below. Formal

semantics also fails when a sentence is grammatically correct but has no sense

in term of semantics. For example, Chomsky’s example “colorless green ideas

sleep furiously” in his Syntactic Structures [2]. In other cases, such as id-

ioms and metaphors, where the semantic of a sentence is not exactly what it

suggests literally, formal semantics also will not work well. Moreover, formal

semantics approaches always su↵er from ambiguity of sentence, lack of context

data, and complexity issues in practice.

2.2 Distributional semantics

In his Philosophical Investigation, Wittgenstein states: “For a large class

of cases–though not for all–in which we employ the word ‘meaning’ it can

be defined thus: the meaning of a word is its use in the language” [40]. In

general, “meaning” can refer to a number of things. For example, the meaning

of “cup” can be considered in many aspects: a cup is for drinking, a cup is

usually put on a table, it’s usually made from glass, and when you drop a

cup from your hand, it can break, etc. When you think about this word, its

meaning is really only what its related context suggests to be.

The implication in practice is that a word’s meaning can be largely deter-

mined by a collection of the co-occurring words within a certain window in a

large corpora, such as ukWac (Ferraresi et al., 2008) [10], the British National

Corpus, and Gigaword (Gra↵ et al. 2003) [14]. A word has stronger relation

to a word co-occurs with it frequently than a word does not appear many

times with it in a large corpus. Normally, a semantic model is a vector space,

and each word is a vector in this vector space. The basis of this vector space

denotes some features of the semantic space.

The biggest benefit of vector space representation is similarity comparison.

For example, with a proper vector space model, it is very easy to show that

“dog” is close to “cat” and “mammal”, but further from other words, such

as “bank”. The cosine distance between two word vectors represent their
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CHAPTER 2. BACKGROUND

similarity. Given two words “cat” and “dog”, they can be expressed as
�!
cat and

�!
dog in some semantic vector space, and their distance is

�!
cat·

�!
dog

k�!catkk
�!
dogk

. This model

has already been useful in many fields, such as word clustering, automatic

thesauri discovery, information retrieval and paraphrasing.

2.3 Compositionality in distributional models

of meaning

The two camps are thought to be orthogonal methods, and either of them has

pros and cons complementary to the other. In recent years, adding composi-

tional information to distributional models had been investigated.

The three basic models introduced below will be the baseline models in

the experiment later.

2.3.1 Additive models

The simplest idea is to add all word vectors in a sentence together, and produce

a new vector representing the sentence. The vector for a sentence containing

n words will be calculated as following:

���������!
W1W2 . . .Wn

=
nX

i=1

�!
W

i

A simple example:

�������������������!
Mike Studies Economies =

���!
Mike+

�����!
Studies+

�������!
Economies

The additive model has been proved to be very e�cient in computing, and

has given good results in experiments [24]. The main problem of the additive

model is that the addition operation is commutative, therefore “cat catches

mouse” will be equal to “mouse catches cat”. However, this can be solved,

as stated in [24], by adding scalar factors to di↵erent words:
���������!
W1W2 . . .Wn

=
P

n

i=1 ci
�!
W

i

, where {c
i

}
i

is a set of coe�cients. In this case, the result is never
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CHAPTER 2. BACKGROUND

commutative anymore, but how to determine the values of those scalar factors

is another problem.

2.3.2 Multiplicative models

The multiplicative model is also a so-called ”bag of words” model. Instead

of adding vectors, it point-wise multiplies all vectors in a sentence to produce

sentence vector.

���������!
W1W2 . . .Wn

=
nY

i=1

�!
W

i

Again, a simple example can be:

�������������������!
Mike Studies Economies =

���!
Mike�

�����!
Studies��������!

Economies

The multiplicative model still su↵ers from the commutative problem; and

by adding coe�cients to weight the individual words (as shown in the additive

model) will not solve this problem either. In addition, if the vectors are sparse,

the sentence vectors computed from point-wise multiplications will contain a

large number of zeros, which will make similarity comparison very imprecise.

In most cases this is not a desired property. The use of some smoothing tech-

niques can avoid too many zero entries in the resulted vectors [24]. Although

the multiplicative method is commutative, Edward Grefenstette [15] pointed

out that the multiplicative model evaluated in [24] shows better ability for

disambiguation on verbs. This is mainly because multiplication is an infor-

mation non-increasing process. As shown in the next chapter this property,

and the information non-decreasing property of the additive method can help

with modeling disjunctions and conjunctions.

2.3.3 Sentence living in tensor space

One elegant idea is to represent sentences as tensor products of words (Smolen-

sky, 1990, [24]). A sentence of n words can be represented by:

Page 13
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���������!
W1W2 . . .Wn

=W1 ⌦W2 ⌦ · · ·⌦W

n

�������������������!
Mike Studies Economies =

���!
Mike⌦

�����!
Studies⌦�������!

Economies

In this approach, sentence vectors live in higher dimensional spaces. Also

tensor product is non-commutative, so it does not have the bag-of-words mod-

els’ problem of commutative property.

In addition, Clark and Pulman further proposed the idea to embed word

types into the representation of vectors [3]. But long sentences produce higher

dimensional vectors, and sentences of di↵erent lengths will fall into vector

spaces of di↵erent orders. Therefore they will not be comparable to each

other. Both of these problems make this approach not feasible in practice.

2.3.4 Other models

Some research makes use of the topological structures of sentences, especially

in the applications where similarity comparison is important. In these meth-

ods, a sentence is firstly parsed by some dependency parser. The similarity of

two sentences depends on the common edges of the trees (word-overlap) [39].

Remarkably, Vasile Rus, et al. (2008) used a graph based model [29]. In their

paper, text is firstly converted into a graph according to some dependency-

graph formalism (text ! dependency graph). The graph is thus a represen-

tation of the sentence. After that, the sentence similarity problem is reduced

to a graph isomorphism search (graph subsumption or containment). Rus’

model obtained very positive results for paraphrasing.

Other feasible models have also been proposed. For example, many deep

learning based models have been developed recently. Socher et al. [34][35][36]

used recursive neural networks (RNN) that parse natural language sentences

and produce vectors for sentences based on compositionality. The model works

for sentences with variable sizes, and it works particularly well on identifying

negations. Their recursive auto-encoder model has been applied to paraphrase

detection and prediction of sentiment distribution, which also obtained very
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CHAPTER 2. BACKGROUND

good results [33][37].

Coecke et al. (2010) [6] proposed a categorical framework of meaning

which takes advantage of the fact that both a pregroup grammar and the

category of finite-dimensional vector spaces with linear maps share a compact

closed structure. The construction of a sentence vector from word vectors

is performed by tensor contraction. The framework preserves the order of

words, and more importantly, does not su↵er from the dimensionality expan-

sion problems of other tensor-product approaches, since the tensor contraction

process guarantees that every sentence vector will live in a basic vector space.

And the following section will introduce the categorical model in details.

2.4 A categorical framework of meaning

The categorical model provides a mathematical foundation of a compositional

distributional models of meaning. The essentiality of category theory here as

a passage is described in (Coecke et. al.) [6].

First I will start with the basic components will be used in this paper.

2.4.1 Category

A category C can be defined as following:

1. a collection of objects

2. a collection of morphisms (or arrows)

3. each morphism has domain (dom) A and codomain (cod) B, therefore a

morphism f can be written as f : A ! B

4. there is a composition operation � for each pair of arrows f, g, with

cod(f) = dom(g), g � f : dom(f) ! cod(g), composition operation satis-

fies the associative law.

5. for each object A, there is an identity morphism 1
A

: A ! A. For any

morphism f : A ! B, there is f � 1
A

= f , 1
B

� f = f .

Based on this simple definition of category, many other categories can be

constructed with some additional structures. They have strong expressive

power to model many existing mathematical structures. For more details

about Category Theory itself, one can refer to Benjamin Pierece’s book [27].
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2.4.2 Monoidal category

Another essential property we want to capture in natural language is the

“parallel composition”. A sentence “W1W2...Wm

” can be represented by ten-

sor W1 ⌦W2 ⌦ ...⌦W

m

. Each of these words can be a vector, or a tensor of

any order, and they are composed in parallel by monoidal tensor.

Here, each word can either live in a vector space of order 1, or live in a

higher-order vector space. The resulted sentence vector is the tensor prod-

uct of all words sequentially. To capture parallel composition, the feature of

monoidal category is useful.

A monoidal category is a category that admits monoidal tensor: For each

ordered pair of objects (A, B), there is a parallel composite object A ⌦ B,

where ⌦ is called the monoidal tensor. There is a unit object I in a monoidal

category, satisfying the following property:

A⌦ I = A = I ⌦ A

For each pair of morphisms (f : A ! B, g : C ! D), there is a parallel

composite morphism f ⌦ g : A⌦ C ! B ⌦D.

Monoidal category further requires bifunctoriality for any pair of mor-

phisms (f : A ! B, g : B ! C) [6]:

(g1 ⌦ g2) � (f1 ⌦ f2) = (g1 � f1)⌦ (g2 � f2)

A Graphical Language for monoidal categories is useful to show many

properties in simple ways. It is introduced in many articles and will be used

directly in this paper, for details refer to [5][6][30]. In this graphical language,

objects (types) are depicted by wires and morphisms (processes) are depicted

by boxes.

For example, the bifunctoriality can be depicted by:

g1

f1

g2

f2

g1

f1

g2

f2

=

A

B

C

A

B

C

A

B

C C

B

A
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2.4.3 Compact closed categories

A compact closed category is a monoidal category, where every object A has

left and right duals Al

, A

r, and satisfying:

(A⌦ B)l ⇠=
�
B

l ⌦ A

l

�

(A⌦ B)r ⇠= (Br ⌦ A

r)

and there are morphisms ✏ and ⌘, where

✏

l : Al ⌦ A ! I

✏

r : A⌦ A

r ! I

⌘

l : I ! A⌦ A

l

⌘

r : I ! A

r ⌦ A

These morphisms satisfy the following equalities:

(1
A

⌦ ✏

l) � (⌘l ⌦ 1
A

) =1
A

(✏r ⌦ 1
A

) � (1
A

⌦ ⌘

r) =1
A

(✏l ⌦ 1
A

l) � (1
A

l ⌦ ⌘

l) =1
A

l

(1
A

r ⌦ ✏

r) � (⌘r ⌦ 1
A

r) =1
A

r

The graphical language for compact closed category is the “String Dia-

grams”. A detailed introduction can be found in the categorical categorical

quantum mechanics papers [4] and (Sadrzadeh et al.) [30]. Graphically, the ✏

and ⌘ maps are ”bending” the wires:

⌘

l :
A

A

l

⌘

r :
A

r

A

✏

l : A

A

l

✏

r : A

r

A

And the morphisms’ equalities can be depicted respectively as:
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=

A

A A

A

=

A

A

A

A

=

Al

Al

Al

Al

=

Ar

Ar Ar

Ar

2.4.4 Pregroups grammar and FVect as compact closed

categories

The original work of Lambek Calculus were found to be useful to introduce

as a mathematical model for syntactic calculus in the categorical model here

[6]. Using Lambek Calculus, a sentence with compound word types can be

reduced based on the rules of partial order. A phrase or a sentence is gram-

matically correct if it can be reduced to a proper type it expects, and it is not

grammatical if otherwise. For example, in a transitive sentence “women love

beauty”. The word “women” is a noun and has type n; the word “beauty”

is a noun and has type n, the word “love” is a transitive verb and has type

(nr

sn

l), where nr is the right adjoint of n, and n

l is the left adjoint of n. The

type of the transitive verb “love” means that the verb expects a subject on

its left (i.e. the subject) and expects an object on its right (i.e. the object).

The type of this sentence can be reduced as following:

n(nr

sn

l)n ! (nnr)s(nl

n) ! s

Graphically, this reduction can be depicted as:
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s nlnr nn

Women Love Beauty

For a formal definition, a pregroup is a partially ordered monoid (P,
, ·, 1), and each object p 2 P has left and right adjoints pl and p

r. It can be

represented as (P,, ·, 1, (�)l, (�)r). To make it more specific, I explain each

part in this six-tuple:

• P is a collection of primitive objects

•  is the partial ordering relation on collection P

• · is monoid multiplication, for objects a, b 2 P , a · b 2 P . Note that · is
non-commutative and it is associative. An intuitive way to understand

· is string concatenation on a set of strings.

• there is a unit 1 2 P , and 1 · a = a · 1

• For each element a 2 P , there are left and right adjoints a

l 2 P and

a

r 2 P . The adjoints satisfy a

l · a  1  a · al and a · ar  1  a

r · a.
Some other important properties of adjoints: The adjoints of an object

are unique; 1l = 1 = 1r; (a · b)l = b

l · al, (a · b)r = b

r · ar; alr = a = a

rl;

a  b ) b

l  a

l and b

r  a

r.

A Pregroup is a compact closed category because [6]:

• Objects in the category are posets.

• Morphisms in the category are partial orders in Lambek Calculus, that

is a morphism of type A ! B , there is A  B. For each pair of objects,

there is at most one morphism between them.

• The monoidal multiplication in pregroup is the monoidal tensor. Given

any two morphisms a  b and c  d, the tensor between two morphisms

is a · c  b · d. The Bifunctoriality property is also satisfied. It worth

noting that unlike the FVect described below, this is not a symmetrical

monoid.
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• Each object has left and right adjoints. The epsilon maps and eta maps

are: ✏

l : pl · p  1, ✏r : p · pr  1, ⌘l : 1  p · pl and ⌘

r : 1  p

r · p.
They correspondes to the “cups” and “caps” in the graphically language

respectively.

FVect is the category where finite-dimensional vector spaces over R are

objects, linear maps are morphisms and vector space tensor is monoidal tensor

[6]. There is also inner product for the vector spaces. FVect is a compact

closed category when vector spaces on R are objects, linear maps between

vector spaces are morphisms, and vector space tensor product is monoidal

tensor, the unit is the scalars in R. There is also an isomorphism V1 ⌦ V2
⇠=

V2 ⌦ V1 for any tensor objects V1 ⌦ V2 and V2 ⌦ V1. This makes FVect a

symmetrical monoidal category. Every vector space has a dual vector space

(conjugate transpose) V ⇤. Since the vector space is over R, the dual space is

its transpose, and V

⇠= V

⇤. Because of the symmetrical property of FVect,

the left adjoint and right adjoint of a vector space are the same, and they are

equal to its dual: V l = V

⇤ = V

r. We also assume that the vector spaces have

fixed basis {�!n
i

}
i

, and there is inner product over a vector space. The epsilon

and eta maps can be concretely defined as:

✏

l = ✏

r : V ⌦ V ! R ::
X

ij

c

ij

�!
n

i

⌦�!
n

j

!
X

ij

c

ij

h�!n
i

|�!n
j

i

⌘

l = ⌘

r : R ! V ⌦ V :: 1 !
X

ij

c

ij

�!
n

i

⌦�!
n

j

The fact that FVect is a compact closed category can then be verified

[6][15].

2.4.5 A passage from syntax to semantics

The previous subsection has shown that the Pregroups Grammars and Vector

spaces with linear maps share the same compact closed structure. The cat-

egorical framework unites these two important aspects of natural language:

compositional information represented by grammar and meaning represented

by vector space. In practice, this means that a sentence’s grammatical struc-

ture can be reduced based on the word types and rules in the grammar, and

this can be a guidance of how the tensor of a sentence can be reduced to a
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basic order-1 vector. This takes into account the composition information of

a sentence, in the same time it reduces sentence vector into a basic vector

(order 1), solved the dimensionality problem.

In the original work of (Coecke et al.) [6], the “meaning” of language is

considered to be the product category FVect ⇥ P , in which a pair of vector

space and grammar type (V, a) is an object and a pair of linear map and

pregroup order relation (f,) is a morphism. This product category is also

a compact closed category. In particular, there are four morphisms: (✏l,),

(✏r,), (⌘l,) and (⌘r,). The sentence’s type can be reduced based on the

grammar, and the corresponding vector space linear maps are applied to the

words’ vectors. Concrete examples of di↵erent types of phrases and sentences

will be given in the Methodology Chapter.

2.4.6 Frobenius Algebra

Frobenius algebra is useful in modeling relative pronouns, as will be shown

later. It will also be essential for building practical model in the experiment

[30][19].

A Frobenius algebra over a symmetrical monoidal category (C,⌦, I) can

be defined as a tuple (V, �,#, µ, ⇠), where V is an object of C, and �,#, µ, ⇠

have types:

� : V ! V ⌦ V

# : V ! I

µ : V ⌦ V ! V

⇠ : I ! V

Moreover we require the Frobenius condition:

(1
V

⌦ µ) � (� ⌦ 1
V

) = � � µ = (µ⌦ 1
V

) � (1
V

⌦ �)

If the category is FVect (finite-dimensional vector space and linear maps)

as introduced before, the morphisms �,#, µ, ⇠ are linear maps. Again, we

assume the vector space N has a fixed basis {n
i

}
i

, the maps can be written as
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[19][30]:

� : N ! N ⌦N :: �!n
i

! �!
n

i

⌦�!
n

i

# : N ! I :: �!n
i

! 1

µ : N ⌦N ! N :: �!n
i

⌦�!
n

i

! �!
n

i

⇠ : I ! N :: 1 ! �!
n

i

2.5 Progress of building practical models and

evaluation of the categorical model

Since the theory does not imply how the word vectors should be built, nor how

the reduction on vectors should be performed, this leaves experimental work

in practice. There were several simple and small scale experiments available.

Grefenstette et. al. [16] gave a set of useful practical way to build vectors for

relational words including intransitive and transitive verbs from a large corpus,

and evaluated a small set of simple phrases, concluded that the categorical

model gave good results. Kartsaklis et. al. [19] further stipulated choices of

sentence spaces, and introduced an interesting way of performing evaluation

(term-definition classification on dictionary term-definition pairs), which was

used in this project for large scale evaluation. Furthermore, in each of the

papers of building categorical models, the authors usually performed small

scale evaluations to prove e↵ectiveness of the methods [6][16].

However, there was no unified, large scale evaluation on di↵erent types

of words that can be modeled before this research. In addition, there was

no practical model so far that can experiment with and evaluate complex

sentences, with recursive grammatical structures. This project builds such

a practical model, and performs a unified, large scale evaluation on di↵erent

types of phrases, and moreover, on complex sentences. The experiment results

will help with further research on practical construction of the categorical

model.
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Methodology

In this section, a set of practical solutions of building the categorical model

are provided. First di↵erent semantic word spaces are introduced, then the

particular ways of creating vectors for di↵erent types of relational words in

this paper. Lastly, I introduce the details of implementing the model, which

will be used in the experimental work in the next chapter.

3.1 Semantic word spaces for the categorical

model

Semantic word space is the basic building block of distributional semantic

models, and the tensor spaces for relational words are built upon the basic

semantic word spaces.

A semantic word space is a vector space of words’ semantics, in which each

word is represented by a vector. Each dimension of the vector space represents

one certain feature. In a conventional vector space, each dimension of a word

vector is the co-occurrence count of another word within a window over a

large corpora. The vector space used in this project is from an experiment

conducted by Kartsaklis et al. [18]. The vectors were trained from the ukWaC

corpus (Ferraresi et al. 2008) [10], and used 2000 content words (excluding

the 50 most frequent “stop” words) as the basis. The context is set up to be

a 5-word window from each side of the target word. A vector is created for

every content word that has at least 100 occurrences in the ukWaC corpus.

The semantic space is scored 0.77 Spearman’s rank correlation coe�cient (i.e.

Spearman’s ⇢) on a benchmark dataset of Rubenstein and Goodenough (1965)
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[18][28]. In the vector space, each word has a tag to denote its type. There are

four types of words: noun, verb, adjective, and adverb. All vectors contain

only positive numbers.

There are also other types of semantic word spaces being built so far.

One popular type of semantic vectors is the so called neural vectors using

machine learning techniques, such as neural networks. These models usually

produce decent word vector spaces of relatively low dimensions ( 300). I

experimented two neural vector spaces during a very early stage of this project:

The vector space trained by Turian et al. [38], which implemented the model

introduced by Collobert and Weston (2008) [7], as well as the Word2Vec tool

developed by Mikolov et al. [23]. However, having negative values is not a

desired property in the multiplicative model, and hence the categorical model.

This result will be shown in the experiment chapter.

It was also experimented by Kartsaklis et al. [18] to reduce the original

vector space to a 300 dimensional vector space using Singular Vector Decom-

position (SVD). After the SVD process, the vector space has a much lower

dimension (300), but introduces negative numbers as well. Thus in the exper-

iment, I used the vector space before SVD, which is 2000-dimensional.

3.2 Sentence space

As the categorical framework actually does not imply a particular sentence

space, Kartsaklis et. al. [19] gave a clear comparison of two feasible sentence

spaces in practice: S = N ⌦N and S = N [19]. When sentences are instan-

tiated on S = N ⌦ N , it comes with the problem that sentences of di↵erent

grammatical structure and di↵erent lengths will have vectors of di↵erent or-

ders. This will cause troubles when comparing arbitrary sentences. In this

project, sentence vectors of order 1 (S = N) will be preferred because of its

ability to compare sentences of any grammatical structures in the basic vector

space, by calculating the cosine distance between these vectors. In the later

session “Implementation Details”, I will explain how a an arbitrary sentence

can be reduced to a basic vector based on the categorical framework with

some simplification described below.
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3.3 Create tensors for relational words

Another practical issue that the categorical framework does not specify is

how the tensors for relational words are created. For example, the matrix for

adjectives and the order-3 tensors (“cubes”) for transitive verbs, etc. As the

pregroup types of words show in the background chapter, there are basic order-

1 vectors (usually the nouns), and there are multi-linear maps (the relational

words, usually functional words such as verbs, adjectives, etc.). The relational

words should be “applied” to other words, and they are tensors of higher

orders.

This research focuses on creating tensor spaces directly from corpus. Grefen-

stette et. al. introduced a general way to create vectors for relational words

in [16]. It specifically discussed how the tensors for intransitive words and

transitive words can be trained from a corpus: in the intransitive case, the

subjects of the intransitive words were added together in the corpus, in the

transitive case, tensor of each subject-object pair of the transitive verb in a

corpus is added.

It is worth noting that in the original theory, an intransitive verb is a

matrix and a transitive verb is a tensor of order 3 (“a cube”). The method

mentioned above creates tensors that are one-order less than it supposes to be.

To solve this problem, one way is to directly construct higher-order vectors

is to add the verb itself in the tensor product, another way is to use machine

learning techniques to help construct the tensors. Considering the time and

space required for the first approach, these two methods are not included in

the scope of this experiment.

Instead, Frobenius algebra can help solve this problem. Applying the

Frobenius � map can copy one “wire” of the relational word’s tensor, then

produce a diagonal matrix or a order-3 tensor, then the tensors for relational

words will have the right orders. In a transitive verb’s case, based on which

part to “copy”, there are so called “CpSbj” and “CpObj” methods. “CpSbj”

copies the “row” dimension of a transitive verb’s matrix, and “CpObj” copies

the “column” dimension os a transitive verb’s matrix, using the � map. These

two methods can be depicted below:
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CpSbj CpObj

However, we suspect later this simplification will a↵ect the performance

in practice.

Based on the models and techniques introduced so far, we can now extend

the model to many other concrete types of words.

3.3.1 Noun-modifying prepositions

Noun modifying prepositions are taken into consideration in this research. A

noun modifying preposition functions in a similar way as a transitive verb.

Consider the phrase “cup on table”: here “cup” is a noun, “table” is another

noun, and “on” is connecting them. In this case, “cup” and “table” can be

regarded as the subject and the object, just like in a transitive verb phrase.

From this observation, noun-modifying prepositions can be modeled.

The Pregroup type of a noun modifying preposition is n

r

nn

l, and the

Pregroup type of a noun is simply n. Given a word vector space N, and a

fixed basis {�!n
i

}
i

, the linear map to produce sentence meaning vector is:

f = ✏N ⌦ 1S ⌦ ✏N

Applying the linear map to the vectors of words, the graphic calculus can

be depicted as following:

cup on table

Algebraically, the vector of “cup” and “table” can be expressed as �!cup =
P
i

wi
�!
ni and

��!
table =

P
k

vk
�!
nk respectively, and preposition “on” can be ex-

pressed as �!
on =

P
ijk

P ijk
�!
ni ⌦ �!

nj ⌦ �!
nk, where w

i

, v

k

, P

ijk

are corresponding

coe�cients.
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Applying the linear map f to the tensor of word vectors:

f

⇣�!
cup⌦�!

on⌦
��!
table

⌘

=✏

r

N

⌦ 1
N

⌦ ✏

l

N

h�!
cup⌦�!

on⌦
��!
table

i

=✏

r

N

⌦ 1
N

⌦ ✏

l

N

" 
X

i

m

i

�!
n

i

!
⌦
 
X

ijk

P

ijk

�!
n

i

⌦�!
n

j

⌦�!
n

k

!
⌦
 
X

k

v

k

�!
n

k

!#

=✏

r

N

⌦ 1
N

⌦ ✏

l

N

"
X

ijk

P

ijk

m

i

v

k

�!
n

i

⌦�!
n

i

⌦�!
n

j

⌦�!
n

k

⌦�!
n

k

#

=
X

ijk

P

ijk

✏

r

N

(�!n
i

⌦�!
n

i

)⌦ 1
N

(�!n
j

)⌦ ✏

l

N

(�!n
k

⌦�!
n

k

)

=
X

ijk

P

ijk

m

i

v

k

h�!n
i

|�!n
i

i ⌦ �!
n

j

⌦ h�!n
k

|�!n
k

i

=
X

ijk

P

ijk

m

i

v

k

1⌦�!
n

j

⌦ 1

⇠=
X

ijk

P

ijk

m

i

v

k

�!
n

j

The above equation is exactly �!
cup ⇥

⇣�!
on⇥

��!
table

⌘
T

. However, due to the

di�culty of creating order-3 tensors for relational words, in practical, Frobe-

nius models are used in this experiment. Since there is no particular emphasis

on either using CpSbj or using CpObj, the final vector is the addition (hence

average in cosine distance sense) of two vectors from CpSubj and CpObj. In

the CpSubj case, the derivation of “cup on table” is:
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µ

N

⌦ ✏

l

⇥�!
cup⌦�!

on⌦
��!
table

⇤

=µ

N

⌦ ✏

l

⇥
 
X

i

mi
�!
n

i

!
⌦
 
X

ijk

P

ik

�!
n

i

⌦�!
n

k

!
⌦
X

k

v

k

�!
n

k

⇤

= µ

N

⌦ ✏

l

⇥X

ijk

P

ik

m

i

vk
�!
ni ⌦�!

ni ⌦�!
nk ⌦�!

nk

⇤

=
X

ik

P

ik

m

i

v

k

µ

N

(�!ni ⌦�!
ni )⌦ ✏

l

N

(�!n
k

⌦�!
n

k

)

=
X

ik

P

ik

m

k

v

k

�!
n

i

⌦ 1

⇠=
X

ik

P

ik

m

i

v

k

�!
n

i

= �!
cup�

⇣�!
on⇥

��!
table

⌘
T

The commutative diagram is:

N ⌦N

r ⌦N

l ⌦N

1
N

⌦ �

r

N

⌦ 1
N

⌦ 1
N

N ⌦N

r ⌦N

r ⌦N

l ⌦N

✏

r

N

⌦ 1r
N

⌦ ✏

l

N

N

r ⇠= N

�
µ

N

⌦ ✏

l

N

�

�
✏

r

N

⌦ 1
N

⌦ ✏

l

N

�
� (1

N

⌦ �

N

⌦ 1⌦ 1)

Graphically, CpSubj is depicted as below:

R OS

CpObj is very similar to CpSbj for prepositions. The only di↵erence is that

it is the object “wire” that gets copied. The detail of derivation is waived here

because it is very similar, the graphical calculus is depicted below:
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R OS

The final result is the addition of CpSubj vector and CpObj vector.

3.3.2 Transitive verbs

Following the original mathematical model for transitive verbs in [6], transitive

sentences/phrases can be modeled in the following way.

First a transitive verb has Pregroup type nr

sn

l. It is a tensor of order-3 in

FVect: N
s

⌦S⌦N

o

, where N
s

is the vector space for subject, N
o

is the vector

space for object, and S is space for sentence. The linear map that transforms

meaning of words to meaning of sentence is:

f = ✏

r

N

⌦ 1
S

⌦ ✏

l

N

Any transitive sentence’s meaning, take an example, “cat likes milk”, can

be computed by applying the linear map f to the tensor of words.

f

⇣�!
cat⌦

��!
like⌦

��!
milk

⌘

=
�
✏

r

N

⌦ 1
N

⌦ ✏

l

N

� ⇥�!
cat⌦

��!
like⌦

��!
milk

⇤

=
�
✏

r

N

⌦ 1
N

⌦ ✏

l

N

� ⇥
 
X

i

m

i

�!
n

i

!
⌦
 
X

ijk

P

ijk

�!
n

i

⌦�!
n

j

⌦�!
n

k

!
⌦
 
X

k

v

k

�!
n

k

!
⇤

=
�
✏

r

N

⌦ 1
N

⌦ ✏

l

N

� ⇥X

ijk

P

ijk

m

i

v

k

�!
n

i

⌦�!
n

i

⌦�!
n

j

⌦�!
n

k

⌦�!
n

k

⇤

=
X

ijk

P

ijk

m

i

v

k

✏

r

N

(�!n
i

⌦�!
n

i

)⌦ 1
N

(�!n
j

)⌦ ✏

l

N

(�!n
k

⌦�!
n

k

)

=
X

ijk

P

ijk

m

i

v

k

h�!n
i

|�!n
i

i ⌦ �!
n

j

⌦ h�!n
k

|�!n
k

i

=
X

ijk

P

ijk

m

i

v

k

1⌦�!
n

j

⌦ 1

⇠=
X

ijk

P

ijk

m

i

v

k

�!
n

j

Similarly, the final result is
�!
cat ⇥

⇣��!
like⇥

��!
milk

⌘
T

. In this experiment,
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again, the Frobenius model are more suitable in practice. The final vector is

the addition of two vectors from CpSubj and CpObj. In the CpSubj case, the

derivation of ”cat likes milk” is:

�
µ

N

⌦ ✏

l

� ⇥�!
cat⌦

��!
like⌦

��!
milk

⇤

= (µ
N

⌦ ✏

l

)
⇥
 
X

i

mi
�!
n

i

!
⌦
 
X

ik

P

ik

�!
n

i

⌦�!
n

k

!
⌦
 
X

k

v

k

�!
n

k

!
⇤

=
�
µ

N

⌦ ✏

l

� ⇥X

ijk

P
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�!
n

i

=
�!
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⇣��!
like⇥

��!
milk

⌘
T

The graphical calculus is presented beblow:

cat like milk

The CpObj case is similar to CpSbj in that it is copying the object “wire”.

The detailed calculation is omitted, the graphical calculus is presented here:

cat like milk

3.3.3 Adjectives and intransitive verbs

An adjective can be thought as a noun modifier. It has the Pregroup type

nn

l, which expects a noun on its right. Assuming the noun being modified

lives in space N, then the linear map that produces the vector for the phrase

from the vectors for the noun in an adjective phrase is:
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f = 1N ⌦ ✏

l

N

Take a very simple example phrase “red goat”, given a fixed basis {�!n
i

}
i

,

the two words can be represented by:

�!
red =

X

ij

A

ij

�!
n

i

⌦�!
n

j

��!
goat =

X

j

m

j

�!
n

j

By applying the linear map f to the meaning space of the adjective phrase,

the result can be derived in the following way:

�
I

N

⌦ ✏

l

N

� h�!
red⌦��!

goat

i

=
�
I

N

⌦ ✏
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ij
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red⇥��!

goat

T

Graphically, it can be depicted as:

red goat

In the model, I created the adjectives using
�!
adj =

P
i

�!
w

i

, where each
�!
w

i

is one word modified by this adjective in the corpus, and the equation

is summing over all such word vectors. This will create a vector of order 1
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for the adjective at the end. Therefore, in order to create a true “matrix”

for adjectives, Frobenius operator � map is used again to “copy” the vector

and make it a diagonal matrix. Then the matrix can be applied to the noun.

Graphically, this process can be depicted as following:

red goat

The details of derivation is not shown here, the reader can easily verify

that the final result is
�!
red ⇥ ��!

goat, where the vector
�!
red here is a diagonal

matrix. Use a commutative diagram, this process is:

N

l ⌦N

�

l

N

⌦ 1
N

N

l ⌦N

l ⌦N

1l
N

⌦ ✏

l

N

N

l ⇠= N

�
1l
N

⌦ ✏

l

N

�
�
�
�

l

N

⌦ 1
N

�

Intransitive verbs have the same rule as adjectives in a sentence or a noun

phrase, except that it occurs on its subject’s right, thus it has pregroup type

n

r

n. It modifies a noun and act as a linear map of order-2. The model for an

intransitive verb can be easily drawn based on the adjective’s model described

above.

3.3.4 Adverbs

Adverbs are more “free” (and more complicated) because there are many po-

sitions in a sentence where an adverb can occur. Adverbs occupying di↵erent

positions will have di↵erent types. For a specific example, see (Lambek 2008,

page 32) [21]. In general, an adverb can be modifying an adjective, a verb,
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a preposition or a sentence, depending on where the adverb occurs in that

sentence.

Take an intransitive verb-modifying adverb for an example: the adverb

has type (nr

s)r(nr

s) ! s

r

n

rr

n

r

s if it is on the right side of the verb; it has

type (nr

s)(nr

s)l ! n

r

ss

l

n. Adjective-modifying adverbs have similar types.

Here an adverb is a order-4 tensor in FVect. When an adverb is modifying a

transitive verb, it is a order-6 tenor.

An adverb can also be a sentence modifier. In this case, an adverb can

have type s

r

s or ss

l, depending on which side of the sentence this adverb

appears. Since a sentence is instantiated on a basic vector, an adverb is a

matrix in this case.

One interesting simplification that is worth noticing is from Lambek [20][22].

It assigns an adverb a basic type ↵. Any other word modified by an adverb is

thus reduced to its own type: give a word of any type t, t↵  t and ↵t  t [20].

However, this does not give us freedom in terms of vector spaces, since the

type ↵ can represent tensors of di↵erent orders in a real sentence depending

on what it modifies.

A order-4 or a order-6 tensor is not feasible to build in practice because

of the training time and space requirements. We need some simplification

on adverbs. First of all, verb-modifying adverbs are not considered in this

project. From the dataset, there are a few adjective-modifying adverbs and

sentence-modifying adverbs. We will only consider these two here.

It is worth trying to create tensors of di↵erent orders for di↵erent types

of adverbs. However, in this project, I took a simpler approach: use bag-of-

words model locally. An adverb is “restristing” information because it usually

confines the meaning of a word or a phrase it modifies. Therefore, I use the

multiplicative model here because of its information non-increasing property.

To train an adverb’s vector
�!
adv, simply add all words’ vectors �!w

i

this adverb

modifies directly:
�!
adv =

P
i

�!
w

i

. In terms of an adjective modifying adverb, we

can think of the process of multiplication a “matrix point-wise multiplication”,

where the adverb and adjective’s matrices are both diagonal matrices. Thus

it reduces to two vectors’ point-wise multiplication. For example, a sentence

“a very thin thread” has “very thin” first represented as a adverb modified

adjective, a new adjective vector for “very thin” is first created by point-

wise multiplying the two words’ vectors, then it is used to modify the noun

“thread”. In terms of a sentence modifying adverb, we can think of the process
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of multiplication a vector point-wise multiplication. For example, a sentence

“Quickly, we believed him”. In this case, the final sentence vector created

can be point-wise multiplication of the adverb “quickly” and the vector of the

sentence “we believed him”.

3.3.5 Compound verb

In real sentences, compound verbs are often used. There are di↵erent types

of compound verbs. Here I give a few examples:

• Prepositional verbs: “rely on”, “climb over”. Here the prepositions are

acting as normal prepositions and they are used together with verbs to

apply on particular objects.

• Phrasal verbs: “break down”, “work out”. Here the prepositions are

acting like adverbs.

• A compound single word as a verb: “water-proof”

• Verbs with Auxiliaries: Examples are “am thinking”, “have been doing”.

In the first two cases, a transitive verb-modifying preposition has type

(nr

sn

l)r(nr

sn

l). It is a order-6 tensor in FVect. Again I did a simplification

by using the additive model on such cases locally. Both a transitive verb and

a preposition live in the same order-3 tensor space as linear maps. Therefore,

I treat a prepositional verb as a new verb that is close to both to the verb and

the preposition. Similar to the adverbs, for simplification, vector addition is

used here. For example, the vector for the prepositional verb “rely on” will

be (
��!
rely + �!

on). There are a few prepositional verbs and phrasal verbs in the

experimental dataset.

A compound single word is treated as a single verb in this project. If such

a verb occurs in the BNC corpus, it will be considered as one word, therefore

it makes no di↵erence from a normal verb.

Verbs with auxiliaries are not considered in this research.

3.3.6 Relative pronouns

The work of (Sadrzadeh et. al) [30][31] gave a very detailed explanation in

their two papers to model relative pronouns. In the first paper, subject and
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object relative pronouns were modeled [30], in the second paper, possessive

relative pronouns were modeled [31]. In this research, I followed the models

as these two papers suggested. Here I repeat the outline of how these mod-

els work, using the table below (Sbj refers to subject relative pronouns, Obj

refers to object relative pronouns, Poss Subj refers to possessive subject rela-

tive pronouns, Poss Obj refers to possessive object relative pronouns, ✏, ⌘ are

maps of compact closed category and �, µ,#, ⇠ are maps of Frobenius algebra

introduced in the background chapter, ’s is a map of type N ! N that sends

a subject/object to its owner):

pregroup type meaning space corresponding morphism

Sbj n

r

ns

l

n N ⌦N ⌦ S ⌦N (1
N

⌦ µ

N

⌦ ⇠

S

⌦ 1
N

)

� (⌘
N

⌦ ⌘

N

)

Obj n

r

nn

ll

s

l

N ⌦N ⌦N ⌦ S (1
N

⌦ µ

N

⌦ 1
N

⌦ ⇠

S

)

� (⌘
N

⌦ ⌘

N

)

Poss Subj n

r

ns

l

nn

l

N ⌦N ⌦ S ⌦N ⌦N µ

N

� (1
N

⌦0
s)

� (1
N

⌦ µ

N

⌦ #

S

⌦ ✏

N

)

Poss Obj n

r

nn

ll

s

l

n

l

N ⌦N ⌦N ⌦ S ⌦N µ

N

� (0s⌦ 1
N

)

� (✏
N

⌦ #

S

⌦ µ

N

⌦ 1
N

)

Table 3.1: Categorical models for relative pronouns

For details and graphical calculus, refer to (Sadrzadeh et. al) [30][31].

3.3.7 Disjunctions and conjunctions

Conjunctions are phrases connected by “and” or its equivalent words/notations,

disjunctions are phrases connected by “or”, comma or their equivalent words/

notations. Conjunction phrases are like “and” in logic, which is information

restricting (non-increasing); disjunction phrases are like “or” in logic, which is

information adding (non-decreasing). I created conjunction phrases’ seman-

tic vectors using vector point-wise multiplication, and disjunction phrases’

semantic vectors using vector addition.

For example, vector for a phrase “dogs and cats” can be constructed in

the following way:

���������!
dogs and cats =

��!
dogs���!

cats

Page 35



CHAPTER 3. METHODOLOGY

A disjunction phrase “year, month, hour” can be constructed in the fol-

lowing way:

������������!
year month hour =��!

year +
����!
month+

��!
hour

I consider a conjunction/disjunction phrase as a “compound” word/phrase

that is an average of all the individual components in it. Therefore, vector

point-wise multiplication and addition for such phrases inside a categorical

framework is reasonable in practice.

3.3.8 Sentence vs. phrase

In all the above discussions, we assumed that we were mostly working on

sentences: the types finally reduce to sentence type s. In the experiment,

all definitions from the dictionary are essentially noun phrases since they are

defining nouns. The only di↵erence we are going to make, is to replace s type

with n type when it is necessary.

3.4 Implementation of a practical categorical

model

This section will introduce how the relational word vectors were trained from

the British National Corpus (BNC), then outline the specific way in this

project to parse sentences/phrases so that the evaluation can be performed

accurately. Lastly, I will introduce the algorithm that takes the parse infor-

mation for a sentence, and computes the sentence vector.

3.4.1 Corpus for training

There are multiple large English corpus available for facilitating Computa-

tional Linguistics/NLP tasks. I adopted the British National Corpus (BNC),

with CCG (combinatory categorial grammar) parsing information 1. The BNC

has about 100 million words, selected from a wide range of written and spoken

1This corpus data was given by Dimitri Kartsaklis and Edward Grefenstette from the
Computational Linguistics Group of Oxford University Computer Science Department.
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sources. The version I obtained is a CCG parsed BNC corpus available at the

Computational Linguistics Group of Oxford Computer Science Department.

CCG is very similar to pregoup grammars in structure, and additional infor-

mation is given in the corpus to help identify the words’ types and relations.

3.4.2 Train transitive verb matrices

A matrix for a transitive verb was trained by summing all subject/object ten-

sors with which the transitive verb appeared in the corpus:
P

i

subject

i

⌦
object

i

. This can be achieved by a simple algorithm. However scanning

through the BNC and constructing the matrices is time consuming. When

the 2000-dimensional word vectors are used, the space for each verb’s matrix

is huge. Because the nature of this project is an evaluation of the categorical

model, I only need to create matrices for less than 200 verbs. The strategy

used in the training process was to store every verb’s matrix in a separate file

to avoid a single, oversized file (shelve file) for all verb matrices. However,

this will not be practical in any real-world applications, thus reducing the

dimensionality of the word vector space is a necessary task (e.g. performing

non-negative matrix factorization). If the dimension of the word vectors is

300, then the size of a matrix is reduced from 20002 to 3002 in terms of the

number of entries.

3.4.3 “Direct tensor”: another way to create transitive

verb’s tensor

Instead creating a transitive verb’s tensor using the method introduced in

previous subsection, there is a simple way. For each transitive verb v in

the semantic word vector space, its matrix can be directly created by v ⌦
v. This approach gave di↵erent but consistent results. As shown in the

experimental work chapter, I will denote this method as “VT-Direct” and

denote the method introduced in the previous section as “VT-BNC”.

3.4.4 Train preposition matrices

Training noun-modifying preposition matrices was very much like training

transitive verb matrices. The two nouns on the two sides of a preposition
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have same rules as the subject and the object of a transitive verb. Thus

training process was exactly the same as training transitive verb matrices.

3.4.5 Train adjective/adverb vectors

A vector for an adjective was trained by summing all nouns’ vectors with

which the adjective appears in the corpus:
P

i

noun

i

. A vector for an adverb

is trained by summing all words’ vectors with which the adverb appears in

the corpus:
P

i

word

i

[19].

3.4.6 Train intransitive verb vectors

An intransitive verb’s vector is also trained in a similar way: summing all

subjects with which the intransitive verb appears in the corpus:
P

i

subject

i

.

3.4.7 Adding once vs. adding all

When training all these vector and tensor spaces for relational words, there

are two di↵erent methods. Take a transitive verb’s matrix as an example: a

transitive verb’s matrix is the sum over all the tensors of subject/object pairs

in a corpus,
P

i

subject

i

⌦ object

i

. One approach is to add tensor of each pair

(subject
i

, object

i

) only once, the other approach is to add tensors of all pairs,

regardless of how many times the pair appears in the corpus. I suspected that

the first approach would give di↵erent results since the vectors created would

be di↵erent. However some intermediate experiments showed that the two

approaches gave very similar performance under this experimental setting.

Thus in the final experiment, I used the second approach because it takes less

time to train.

3.4.8 Parse arbitrary sentences for the categorical model

Before using the categorical model to produce the vector for a sentence, pars-

ing is an essential step because the information of how a sentence is composed

is required. In particular, the parse should reflect how the words should be

composed so that the types in the sentence can be reduced grammatically.

There are many parsers available, such as the C&C parser developed by Cur-

ran et al. [8], which can produce CCG parse tree for a given sentence. CCG
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is very close to pregroups grammar, thus a CCG parse can be converted to

pregroup grammar. However, all parsers su↵er from inaccuracy, and in many

cases they produce wrong parse.

As we need to carefully evaluate the performance of the categorical model,

and compare it to other models, inaccurate/wrong parse for a sentence is not

acceptable. Therefore, I used a simple notation to parse sentences, and later I

parsed all definitions used in this experiment by hand to guarantee accuracy.

This part will provide an introduction to this notation. Based on the

methodology introduced in the previous chapter, there are the following op-

erations in this simple notation system:

1. Inner product as tensor contraction operation of an order-3 relational

word. This is denoted by “|” in the sentence parse information.

2. Point-wise multiplication as tensor contraction operation of an order-2

relational word. This is denoted by “*” in the parse information. No-

tably, there is no “point-wise multiplication” in the theoretical frame-

work, but under the Frobenius setting, a matrix for an order-2 relational

word is essentially a diagonal matrix. Therefore, the inner product of

such a matrix with a vector will be equal to point-wise multiplication of

the diagonal vector for the relational word, and the order-1 word vector

being modified. Point-wise multiplication for conjunctions and adverbs

is also denoted by “*”.

3. Addition for disjunctions and compound verbs, denoted by “+”.

There are a few additional remarks on notations:

1. Every word is associated with a type, separated by “#”

2. Every sentence is recursively parsed. In the parse tree, the root is “Fi-

nal”, non-leaf nodes are named in capital characters, and leaf nodes are

the words in the phrase.

3. Each node in the parse tree is separated by “!!”.

4. Each string after “=” only contains one kind of operation.

5. Determinators and quantifiers are not taken into consideration.
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Given a sentence, the parse of this sentence can be denoted as a recursive

structure. Here is one simple example of an adjective phrase:

Term: fibre (noun)

Definition: a thin thread

Parse: Final=very#d*thin#a*thread#n

A more complicated example involves some recursive structure:

Term: bank (noun)

Definition: the ground near the edge of a river, canal, or lake

Parse: A=river#n+canal#n+lake#n!!B=edge#n|of#p|A!!Final=ground#n|near#p|B

3.4.9 Recursive sentences vs. non-recursive sentences

In this paper, a recursive sentence is a sentence which cannot be parsed

without using the notation recursively; a non-recursive sentence is a sen-

tence which can be parsed without using the notation recursively. The pur-

pose of this di↵erentiation to evaluate the categorical model’s performance on

simple and complex sentences later.

3.4.10 Algorithm to calculate a sentence vector

Based on the helper notation and methodologies introduced in section 3.4.8,

the following algorithms are proposed to calculate a sentence’s vector.

The algorithm parse takes in a sentence’s parse information, and a string

of the parse of current node, denoted by the notation in the previous section,

returns a vector. It assumes that a word semantic vector space and relational

words’ tensor spaces are ready to use. The body of this algorithm first looks

at the input string, which is the compositional information of current level

in a parse tree. For example, A=river#n+canal#n+lake#n in the previous

example, or the root Final=ground#n|near#p|B. If it is a single word, then

the algorithm returns a vector or a tensor according to its type; if it is a

phrase, the algorithm will first determine which kind of phrase it is, then call

itself recursively to return a proper vector. The algorithm follows the models

Page 40



CHAPTER 3. METHODOLOGY

explained in the methodology chapter, except that I omitted the ’s map in

the cases of possessive subject relative pronoun and possessive object relative

pronoun, because the training was not successful. However it will be shown in

the experimental work chapter that the practical model still gave significantly

better results.

Another algorithm senVec, takes the string of a sentence’s parse tree,

and calls parse on the root of this parse tree. It returns the vector for the

sentence.

I used Python’s numpy, scipy, and shelve libraries to construct this algo-

rithm.

Algorithm: senVec

Data: A string of a sentence’s parse sp
Result: the vector of the sentence
Body:

get a dictionary from the parse sp as pDic
return parse(pDic[’Final’], pDic)

Algorithm 1: Construct a dictionary of parse information and return a
vector for an arbitrary sentence
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Algorithm: parse

Data: cStr: parse of current node in parse tree, pDic: dictionary of parse
Result: the vector at this level of parse tree
Body:

if cStr is a primitive word type then

switch cStr type do

According to the phrase’s type, return the word’s vector or tensor
endsw

end

if cStr represents a transitive verb phrase then

get subject phrase (subj), verb phrase (verb), object phrase (obj) from pDic

return parse (subj, pDic)� (parse (verb, pDic)⇥ parse (obj, pDic))
T
+

(parse (subj, pDic)⇥ parse (verb, pDic))� parse (subj, pDic)
T

end

if cStr represents an adjective phrase then

get the adjective (adj) and the noun phrase (np) being modified by the
adjective from pDic
return parse (np, pDic)� parse (adj, pDic)

end

if cStr represents an adverb phrase then

get the adverb (adv) and the verb phrase (vp) being modified by the adjective
from pDic
return parse (vp, pDic)� parse (adv, pDic)

end

if cStr represents a preposition verb phrase then

get subject left phrase (psubj), preposition phrase (prep), right phrase (pobj)
from pDic

return parse (psubj, pDic)� (parse (prep, pDic)⇥ parse (pobj, pDic))
T
+

(parse (psubj, pDic)⇥ parse (prep, pDic))� parse (psubj, pDic)
T

end

if cStr represents a conjunction phrase then

get an array of sub phrases pi from pDic
return

P
i parse (pi, pDic)

end

if cStr represents a disjunction phrase then

get an array of sub phrases pi from pDic
return

Q
i parse (pi, pDic)

end

if cStr represents a subject relative pronoun phrase then

get subject phrase (subj), verb phrase (verb), object phrase (obj) from pDic

return parse (subj, pDic)� (parse (verb, pDic)⇥ parse (obj, pDic))
T

end

if cStr represents an object relative pronoun phrase then

get subject phrase (subj), verb phrase (verb), object phrase (obj) from pDic

return (parse (subj, pDic)⇥ parse (verb, pDic))� parse (subj, pDic)
T

end

if cStr represents a possessive subject relative pronoun phrase then

get possessor phrase (poss), subject noun phrase (subj), verb phrase (verb),
object noun phrase (obj) from pDic
return parse (poss, pDic)� parse (subj, pDic)�
(parse (verb, pDic)⇥ parse (obj, pDic))

T

end

if cStr represents a possessive object relative pronoun phrase then

get possessor phrase (poss), subject noun phrase (subj), verb phrase (verb),
object noun phrase (obj) from pDic
return parse (poss, pDic)� (parse (subj, pDic)⇥ parse (verb, pDic))�
parse (subj, pDic)

T

end

Algorithm 2: Parse and return vector on each level of parse tree
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Experimental work

4.1 A term-definition classification task

The experimental work of this research is based on a term-definition classi-

fication task first introduced by Kartsaklis et al. [19] to match terms with

phrases. In their paper 112 terms from the Oxford Junior Dictionary were

extracted. Each term in the dataset contains three definitions from the Ox-

ford Junior Dictionary itself [32], the Oxford Concise School Dictionary, and

the WordNet [19]. The task was to treat terms as classes, and use cosine dis-

tance as similarity. Finally, a definition is assigned to the term which is most

similar (smallest cosine distance). The results were evaluated by calculating

the accuracy of the classification task. Nouns and verbs with very simple

definitions were evaluated in their experiment, and the categorical model was

scored slightly higher than the baseline models.

In this experiment, I used the mean reciprocal rank (MRR) in addition to

accuracy. MRR gives more objective results, it considers “how good” the vec-

tors are instead of just looking at how many definitions are matched exactly.

This experiment involves larger datasets, therefore MRR is necessary to give

a good idea for each model’s overall performance.

4.2 Extract datasets for evaluation

In this experiment, I extracted data only from the Oxford Junior Dictionary,

and all terms are nouns; therefore all definitions are noun phrases. There

are thousands of words in the dictionary; each word contains at least one
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definition. I used a collection of 221 nouns’ term-definition pairs randomly

extracted from the dictionary, and each term only keeps one definition. I

classified the definition phrases into two types: non-recursive phrases and

recursive phrases as introduced in section 3.4.9.

Examples of non-recursive phrases are “a particular thing” and “woman

who rules a country”. They are non-recursive because “a particular thing” is

a direct composition of an adjective “particular” and a noun “thing”, where

“particular” is an adjective that expects one argument on its right; and

“woman who rules a country” is a direct composition of “woman”, “rules”

and “country”, where “rules” is a transitive verb that expects two arguments.

Examples of recursive phrases are “a lot of loud noise” and “a big party with

a lot of dancing”. The first phrase has “loud noise” and then “a lot of loud

noise”; the second phrase has “a big party”, “a lot of dancing”, and the two

parts get composed as “a big party with a lot of dancing”.

There are 104 term-definition pairs containing non-recursive (simple) phrases

and 77 term-definition pairs containing recursive (complex) phrases. Some

additional term-definition pairs are added to this dataset to create a unified

evaluation at the end.

I also created datasets for a few specific cases in order to evaluate the

categorical model on di↵erent types of relational words under the current

experimental setting. Specifically, subject/object relative pronoun phrases,

preposition phrases, transitive verb phrases and adjective phrases. They are

mostly simple (non-recursive) phrases. There are not enough non-recursive

phrases for disjunctions, conjunctions and adverbs to extract from the dictio-

nary dataset I obtained; therefore the specific evaluation on these three types

of words is not performed in this experiment.

The datasets are available in the Appendix.

4.3 Baseline evaluation methods

This section introduces the baseline methods of creating vectors for phrases

and sentences: the additive model, the multiplicative model, and a head word

model.
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4.3.1 An additive model

In the additive model, a sentence vector is created by adding all the order-1

word vectors from the sentence. In practice, the additive model can add all

word vectors in a sentence. However, because of the stop words (very frequent

words) and some insignificant words (words not contributing to the meaning

of a sentence, such as prepositions, logical words, etc.), adding all words might

not give good results. The reason is that stop words occur so frequently that

they can be with any other words. For example, “very”, “is”, and “of” can

appear everywhere in an article. Their vectors will have similar numbers for

each entry element, which means the they will not contribute much about the

meaning of a sentence overall. Instead, adding these vectors could reduce the

accuracy of the sentence vector produced.

In the actual experiment I conducted, the sentence was first preprocessed

to remove all stop words and insignificant words (such as determinators). The

model then adds the rest words’ vectors to produce a sentence vector.

4.3.2 A multiplicative model

In the multiplicative model, a sentence vector is created by point-wise mul-

tiplying all the order-1 word vectors in the sentence. Again in practice, the

multiplicative model can point-wise multiply all word vectors in a sentence.

However, the stop words and insignificant words will not contribute to the sen-

tence vector positively. In the actual experiment, stop words and insignificant

words were dropped.

4.3.3 Head word of sentence

In some cases, the head word of a sentence is most significant and could

stand in a position that best represents a sentence. One good example is a

the term-definition pair, “coach” and “bus that takes people”, where “bus” is

already very close to “coach”. This is obviously not always true. For example,

consider the term-definition pair, “clerk” and “someone who writes letters”.

The word “someone” in some case would not be a good representative for the

term “clerk”. The head word model surely does not capture all the important

information of the sentence. However, this method is nevertheless a trivial

baseline method.
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4.4 Experimental results

With all the theoretical preparations and experimental settings, this section

presents the main results from the experiment. For all the tables presented in

this section, “CM” is short for the categorical model, “AM” is short for the

additive model, “HM” is short for the head-word model, “MM” is short for

the multiplicative model. If the transitive verb tensors are created from the

BNC (section 3.4.2), I denote it as “VT-BNC” in the table’s caption; If the

transitive verb tensors are created using the method in section 3.4.3, I denote

it as “VT-Direct” in a table’s caption.

4.4.1 Evaluate relative pronouns

The first experiment is about subject, object, and possessive relative pro-

nouns. From the Oxford Junior Dictionary and (Sadrzadeh et al.) [30][31],

10 possessive relative pronoun phrases, 10 object relative pronoun phrases,

and 16 subject relative pronoun phrases are extracted. They are all simple

phrases and most of them don’t have recursive sentence structures. The result

is presented in the tables below. Results in Table 4.1 Table 4.2, and Table 4.3

show scores using verb vectors trained from the BNC. Table 4.4, Table 4.5,

and Table 4.6 show the results using the method suggested in section 3.4.3.

CM AM HM MM

Accuracy 6/10 5/10 4/10 6/10

Accuracy 0.60 0.50 0.40 0.60

MRR 0.7458 0.6736 0.5025 0.7750

Table 4.1: Possessive relative pronoun, VT-BNC, 10 pairs

CM AM HM MM

Hits 3/10 6/10 2/10 7/10

Accuracy 0.30 0.60 0.20 0.70

MRR 0.5000 0.7144 0.4035 0.8000

Table 4.2: Object relative pronoun, VT-BNC, 10 pairs
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CM AM HM MM

Hits 7/16 5/16 6/16 6/16

Accuracy 0.44 0.31 0.38 0.38

MRR 0.5699 0.5262 0.5051 0.5563

Table 4.3: Subject relative pronoun, VT-BNC, 16 pairs

CM AM HM MM

Hits 7/10 5/10 4/10 6/10

Accuracy 0.70 0.50 0.40 0.60

MRR 0.8167 0.6736 0.5025 0.7750

Table 4.4: Possessive relative pronoun, VT-Direct, 10 pairs

CM AM HM MM

Hits 8/10 6/10 2/10 7/10

Accuracy 0.80 0.60 0.20 0.70

MRR 0.8750 0.7144 0.4035 0.8000

Table 4.5: Object relative pronoun, VT-Direct, 10 pairs

CM AM HM MM

Hits 6/16 5/16 6/16 6/16

Accuracy 0.38 0.31 0.38 0.38

MRR 0.5509 0.5262 0.5051 0.5563

Table 4.6: Subject relative pronoun, VT-Direct, 16 pairs

4.4.2 Evaluate adjectives

An adjective’s vector is trained from the BNC by adding all nouns modified by

it. The result shows that with the current setting, the categorical model does

not perform outstandingly from other models; instead, it gives similar results

to the bag-of-words models. In addition, the categorical model, together with

the additive and multiplicative models, outperform the head word model. This

shows the non-triviality of the categorical model (Table 4.7).
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CM AM HM MM

Hits 14/31 15/31 7/31 14/31

Accuracy 0.45 0.48 0.23 0.45

MRR 0.6079 0.6169 0.3866 0.6122

Table 4.7: Adjective vectors trained from the BNC, 31 pairs

4.4.3 Evaluate prepositions

Preposition vectors are trained from the BNC corpus, as described in the

methodology chapter. The result shows that the accuracy and MRR of the

categorical model is only slightly higher than other models, but the di↵erence

is not significant (Table 4.8).

CM AM HM MM

Hits 9/37 7/37 9/37 9/37

Accuracy 0.24 0.19 0.24 0.24

MRR 0.4030 0.3584 0.3140 0.4017

Table 4.8: Preposition vectors trained from the BNC, 37 pairs

4.4.4 A mixed evaluation on non-recursive phrases

This experiment is mixing all terms defined by relative pronoun phrases, ad-

jective phrases, and preposition phrases. They are all simple phrases, and

most of them do not contain any recursive structure.

The reason of this experiment is that, by mixing di↵erent types of words,

the experiment shows whether the vectors computed from the models work as

well as the case that only single type of phrases appear. The final result shows

that the categorical model gives better overall results. Again, since there are

verb phrases, two di↵erent ways of creating verb vectors are evaluated here,

and they give similar results (Table 4.9, Table 4.10).

4.4.5 An evaluation on recursive phrases

77 pairs of terms and definitions are selected from the Oxford Junior Dic-

tionary. All of these terms’ definitions have recursive structures. Using the
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CM AM HM MM

Hits 25/104 20/104 15/104 23/104

Accuracy 0.24 0.19 0.14 0.22

MRR 0.3445 0.3238 0.2128 0.3461

Table 4.9: Mixed evaluation on 104 simple phrases, VT-BNC

CM AM HM MM

Hits 25/104 20/104 15/104 23/104

Accuracy 0.24 0.19 0.14 0.22

MRR 0.3481 0.3238 0.2128 0.3461

Table 4.10: Mixed evaluation on 104 simple phrases, VT-Direct

algorithm introduced in section 3.4.10, a phrase of a definition can be decom-

posed recursively to build a vector for the definition phrase. In this section I

show that although the categorical model has shown better performance (or

at least non-trivial performance) on the simple phrases, it is outperformed by

the bag-of-words models in this case (Table 4.11, Table 4.12). Also notably,

the additive model has similar performance with the multiplicative model,

given the word vector space in this experiment setting.

CM AM HM MM

Hits 10/77 12/77 10/77 12/77

Accuracy 0.13 0.16 0.13 0.16

MRR 0.2441 0.2585 0.2134 0.2956

Table 4.11: Recursive phrases, VT-BNC, 77 pairs

CM AM HM MM

Hits 9/77 12/77 10/77 12/77

Accuracy 0.12 0.16 0.13 0.16

MRR 0.2363 0.2585 0.2134 0.2956

Table 4.12: Recursive phrases, VT-Direct, 77 pairs
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4.4.6 An overall evaluation

Finally, there is an overall evaluation involving all pairs mentioned above, and

some additional pairs extracted from the dictionary. The result shows that

the categorical model gives slightly lower results than the bag-of-word models

in MRR, and gives lower accuracy. However it is not significant (Table 4.13,

Table 4.14).

CM AM HM MM

Hits 21/221 28/221 24/221 26/221

Accuracy 0.10 0.13 0.11 0.12

MRR 0.1854 0.2150 0.1648 0.2346

Table 4.13: 221 terms, VT-BNC

CM AM HM MM

Hits 22/221 28/221 24/221 26/221

Accuracy 0.10 0.13 0.11 0.12

MRR 0.1870 0.2150 0.1648 0.2346

Table 4.14: 221 terms, VT-Direct
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Discussion

5.1 Overall performance of the categorical model

The primary objective of this research is to give a unified evaluation for the

categorical compositional-distributional model. With the current experimen-

tal setting, there are a few observations:

1. The categorical model is non-trivial: the results show that the cate-

gorical model outperforms the head-word baseline. This is as expected

because the head-word baseline model is only a vague and sometimes in-

accurate approximation to the meaning of a whole phrase. It is expected

that the categorical model, the additive model, and the multiplicative

model give better results, because they take more information into ac-

count from a phrase.

2. The categorical model gives better performance on non-recursive phrases

(i.e. simple phrases). I expected that the categorical model gives better

results than any other bag-of-words baseline models because the cat-

egorical model not only considers individual words’ meaning, but also

considers the compositional information in the phrase. It treats rela-

tional words as multi-linear maps and compose the vectors in a mean-

ingful way. The experiment also shows that the categorical model does

not give significantly better results (rather, it is just a bit better than

the additive model and the multiplicative model). I suspect that this

is because of the simplification during the training of relational words’

vectors: I used the Frobenius algebra operation � to expand a vector
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to a diagonal matrix, this matrix is obviously lack of information to

represent because of the zero entries in the matrix.

3. The categorical model is outperformed by the baseline models on re-

cursive phrases (i.e. complex phrases), the disadvantage is not signif-

icant as well. I suspect that the inaccuracy is amplified during the

long chain of matrix/vector operations. This can be seen from the fact

that unlike other experiments, the head-word model gives similar results

to other models. The inaccuracy-amplification could make the addi-

tive/multiplicative/categorical models perform worse on these phrases

than on the simple cases.

Besides these observations and analysis, there are also a few interesting

discoveries worth mentioning. I will discuss them in the following sections.

5.2 Vectors with negative values

I conducted experiments on two neural vector spaces. The vector space de-

veloped by Turian gave very low accuracy and MRR on all models, therefore

the result is not very suggestive. The Word2Vec vectors gave good results on

additive model in the term-definition classification task. However, it gives bad

results on multiplicative model. As the categorical model essentially involves

a large amount of multiplication operations, it also gives bad results.

The table below shows one experiment using the Word2Vec vectors as

semantic word vectors, relational word tensors are trained from the BNC.

The dataset is a collection of 59 term-definition pairs. The result (Table

5.1) shows that the multiplicative model and the categorical model give poor

accuracy and MRR.

CM AM HM MM

Hits 0/59 27/59 8/59 6/59

Accuracy 0.00 0.46 0.14 0.10

MRR 0.07 0.60 0.24 0.17

Table 5.1: Performance of the Word2Vec vectors

I suspect that the negative results these neural vectors give is because the

neural vectors have negative values, and vectors with negative values cannot
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present good results after vector point-wise multiplication, because the values

are drastically changed after the multiplication. This is intuitive because the

categorical model involves tensor contraction (inner product) and vector point-

wise multiplication in this experimental setting. When the multiplications

are performed, the sentence vectors after calculation are never accurate to

represent the meaning of the phrases.

Thus with similar experiment settings, it is suggested to use semantic

vectors that contain only positive numbers.

5.3 The role of abstract words

During the experiment, I suspected that the performance of the categorical

model and other distributional models was a↵ected negatively by the occur-

rence of abstract (or vague) words (such as “people”, “someone”, “thing”),

because such a word is so frequent that its vector contains almost equal num-

bers. When such a vector is used in the models, it will not contribute to the

results, instead, it lowers the performance.

To test this idea, two smaller datasets were extracted from the 221 pairs in

the experiment. One dataset contains 21 terms that are defined by abstract

(vague) words and frequent words. The other dataset contains 21 terms that

are defined by very specific (but not very frequent) words. These two datasets

are also available in the Appendix.

The result shows that my speculation is indeed the case. The following two

tables (Table 5.2, Table 5.3) show that the models are sensitive to “vague”

and “specific” words, and the categorical model gives more significantly better

result on terms defined by “specific” words.

CM AM HM MM

Hits 12/21 10/21 6/21 11/21

Accuracy 0.57 0.48 0.29 0.52

MRR 0.674 0.601 0.478 0.639

Table 5.2: Phrases of “specific” words, VT-BNC
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CM AM HM MM

Hits 6/21 5/21 2/21 6/21

Accuracy 0.29 0.24 0.10 0.29

MRR 0.411 0.388 0.226 0.446

Table 5.3: Phrases of “vague” words, VT-BNC
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Future work

6.1 Further investigation into phrases of “vague”

and “specific” words

One immediate task that could be done is to expand datasets of phrases of

“vague” words and phrases of “specific” words. A large scale evaluation of

this could help the understanding of the performance of distributional models

over di↵erent types of words, and especially how the categorical model reacts

on the di↵erence.

6.2 Negative phrases

Negative phrases and sentences are not discussed in this work. However nega-

tive phrases are not unusual. (Coecke et al.) [6] has already modeled negative

sentences within the categorical framework. An e↵ective way of evaluating

how the categorical model performs on negative phrases and sentences is nec-

essary.

6.3 Reduce size of semantic word vector space

As stated previously, under the experimental setting of this project, only vec-

tor spaces containing positive numbers can be used because they work on

multiplication and inner product. The vector is 2000-dimension, taking more

than 5Gb space on disk (as a shelve database). When training relational
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word vectors, a matrix for one relational word can take up to 1Gb space on

disk. Even for evaluation task, this is over sized. Any attempt to reduce the

size of semantic word space is plausible. One possible attempt is to perform

non-negative matrix factorization on the vector space to produce a word vec-

tor space of lower dimensionality while preserving its performance on word

similarity comparison.

6.4 Other ways of training relational word vec-

tors

The relational words’ representations are created using a tensor based ap-

proach in this project, and the tensors are created directly from the BNC

corpus. However, this approach only creates tensors that are 1-order less than

it should be. For example, an adjective’s vector is created by adding all nouns’

vectors modified by the adjective in the corpus. The result is a order-1 vector

instead of a matrix. The Frobenius algebra copy operation creates a diagonal

matrix, which might not contain enough information for how the adjective is

modifying other nouns. Same for a transitive verb, the outcome is a matrix

instead of a “cube”, hence Frobenius algebra copy operation is used to expand

it to a cube. However the cube only has non-zero numbers on its diagonal

plane, which again might not be a complete representation of a transitive verb.

However, the tensor-based approach in the experiment cannot create a

adjective matrix or a transitive verb “cube” easily, because there is no infor-

mation to represent the extra order. Some machine learning techniques can

be used to create complete “matrices” and “cubes”.
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Conclusion

A practical categorical model was instantiated on concrete distributional mod-

els in this research. It could compute vectors for complex sentences and

phrases based on the categorical model of sentence meaning. A dataset for

large-scale evaluation was extracted from the Oxford Junior Dictionary. Based

on the practical model and the evaluation dataset, a large scale, generic eval-

uation was performed. The experimental results has been giving valuable

insights into the practice of building distributional models and especially,

building categorical models. Future practical models and experiments can

be set up based on this work.
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Appendix

Dictionary data for evaluation

Table 1: Phrases with recursive structures

# term definition

1 annual a plant which lives only one year

2 balloon a small, coloured, rubber bag that you can blow up

3 band a group of people who play music together

4 blast a sudden wind, a rush of air

5 board a long, thin piece of wood

6 bonnet the part of a car that covers the engine

7 ball a big party with a lot of dancing

8 bank the ground near the edge of a river, canal, or lake

9 block a thick piece of something hard and solid

10 calf a young cow, elephant, or whale

11 chalk a kind of soft, white rock

12 chapel a kind of small church

13 cheek rude behaviour or speech

14 chest a big, strong box

15 churn a large container for milk

16 circle a round shape like a ring or a wheel

17 cloud dust or smoke that looks like a cloud

18 conductor someone who sells tickets on a bus

19 cone a case for seeds of evergreen trees

20 country a land with its own people and laws

21 crack a sudden, loud noise

22 cricket an insect that makes a shrill sound

23 crystal a small, hard, shiny piece of something

Continued on next page
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Table 1 – Continued from previous page

# term definition

24 enemy the people fighting against you

25 energy the power that comes from coal, electricity, and gas

26 eye the small hole in a needle

27 fibre a very thin thread

28 file a collection of information on a computer

29 force strength, power, violence

30 fraction a small part of something

31 funnel a chimney on a ship or steam engine

32 gear part of a bicycle or car

33 hemisphere one half of the earth

34 hip a red berry on a rose

35 horn a brass musical instrument that You blow into

36 jaw the lower part of the face

37 joint a large piece of meat

38 knight a man in armour who rode into battle on a horse

39 mass a large number or amount

40 needle a very thin, pointed leaf

41 o�cer a policeman or policewoman

42 orange the colour of this fruit

43 pack a group of dogs or wolves

44 patch a small piece of something

45 peace a time free for war

46 pilot someone who steers a ship in narrow, di�cult places

47 plan a map of a building or a town

48 point the sharp end of something

49 princess the daughter of a king or queen

50 programme a talk, play, or show on the radio or television

51 property a house or other building with land around it

52 prophet a great religious teacher

53 racket a lot of loud noise

54 rally a race for cars or motorcycles

55 result the score or marks at the end of a game, competition, or test

56 roll a very small loaf of bread

57 room enough space for something

58 scent a liquid with a sweet smell
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59 scooter a motorbike with a small engine

60 service a meeting in church with prayers and singing

61 shower a short fall of rain or snow

62 shutter a wooden cover that fits over a window

63 skin the outer covering of your body

64 space the area or distance between things

65 station a building for policemen or firemen

66 stick a long, thin piece of wood

67 straw dry stalks of corn

68 survey a careful look at something

69 tank a large container for liquid

70 tip the part at the end of something

71 title the name of a book, film, picture, or piece of music

72 tragedy a play with a very sad ending

73 tube a long, thin, round container

74 video a videotape with a film or television programmes on it

75 volume one of a set of books

76 wall one of the sides of a building or room

77 youth a boy or young man

Table 2: 104 simple phrases, mostly non-recursive

# term definition

1 article a particular thing

2 beast a big animal

3 boar a male pig

4 break a short rest

5 cabin a small hut

6 card thick paper

7 chart a big map

8 fat greasy meat

9 fiber a thin thread

10 glory great fame

11 hall a big room

12 heaven a happy place
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13 hint a useful idea

14 inspector an important policeman

15 iron a strong metal

16 jet a fast aeroplane

17 labour hard work

18 lane a narrow road

19 line a long mark

20 noise an unpleasant sound

21 note a short letter

22 perfume a nice smell

23 place a particular area

24 pouch a small bag

25 shaft a thin pole

26 sponge a soft cake

27 spot a round mark

28 star a famous singer

29 stream a small river

30 trail a rough path

31 scrap a small piece

32 article a piece of writing

33 bazaar a market in Africa

34 beam a line of light

35 area a part of a place

36 bar a long piece of wood

37 bow a knot with loops

38 brow the top of a hill

39 character someone in a story

40 chestnut a kind of tree

41 child a son or daughter

42 code a set of rules

43 composition a piece of music

44 cotton thread for sewing

45 course a series of lessons

46 dummy a model of a person

47 entry a way into place
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48 figure the shape of a body

49 foot a measure of length

50 fortune a lot of money

51 hardware the machinery of a computer

52 head the person in charge

53 lock a piece of hair

54 machinery the parts of a machine

55 peak the top of a mountain

56 pound a measure for weight

57 prisoner someone in prison

58 pyramid the shape of a pyramid

59 rock a sort of music

60 sale the selling of things

61 scene part of a play

62 shot the firing of a gun

63 speech the power of speaking

64 stone a measure for weight

65 vision a kind of dream

66 yard a measure for length

67 centre the middle of something

68 charge the cost of something

69 dance a party where people dance

70 den a place where an animal lives

71 gum a sweet that you chew

72 idea something that you have thought of

73 idol a person that people love

74 sight something that you see

75 sole fish that you eat

76 view everything that you see

77 football game that boy like

78 skirt garment that woman wear

79 boot shoe that covers the ankle

80 clerk someone who writes letters

81 coach a bus that takes people

82 coat the fur that covers an animal
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83 draught air that blows into a room

84 fan something that blows air

85 groom a person who looks after horses

86 group people who play music

87 landlord a person who looks after a hotel

88 mark a stain, spot, or line that spoils something

89 ruler someone who rules a country

90 writing something that you have written

91 emperor person who rule empire

92 queen woman who reign country

93 plug plastic which stop water

94 carnivore animal who eat meat

95 widow woman whose husband die

96 orphan child whose parent die

97 teacher person whose job educate children

98 comedian artist whose joke entertain people

99 priest clergy whose sermon people follow

100 commander military whose order marine obey

101 clown entertainer whose trick people enjoy

102 assistant person whose job help boss

103 inspector someone whose job check things

104 model someone whose job wear clothes

Table 3: Some additional entires

# term definition

1 bill a bird’s leak

2 bug an insect

3 cab a taxi

4 cap a lid

5 case a container

6 choice choosing

7 dash a hurried rush

8 disc a record

9 flight an escape
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10 fringe an edge

11 ground the earth

12 kid a young goat

13 kiosk a telephone box

14 land a country

15 lord a nobleman

16 lump a swelling

17 marriage a wedding

18 mate a friend

19 mill gentle

20 pace a step

21 paper a newspaper

22 plane an aeroplane

23 power strength

24 project a plan

25 rail a bar or rod

26 reception a welcome

27 remain ruins

28 ring a circle

29 row a quarrel

30 rubbish nonsense

31 scholar a pupil

32 score twenty

33 side an edge

34 spirit a ghost

35 standard a flag

36 sum an amount

37 sweet very pleasant

38 time seconds, minutes, hours, days, weeks, months, years

39 term a word or phrase

40 track a path

41 unit the number one

42 business a shop or firm or industry
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# term definition

1 article a particular thing

2 place a particular area

3 article a piece of writing

4 area a part of a place

5 character someone in a story

6 chestnut a kind of tree

7 dummy a model of a person

8 entry a way into place

9 fortune a lot of money

10 head the person in charge

11 lock a piece of hair

12 machinery the parts of a machine

13 prisoner someone in prison

14 rock a sort of music

15 scene part of a play

16 vision a kind of dream

17 centre the middle of something

18 idol a person that people love

19 sight something that you see

20 view everything that you see

21 clerk someone who writes letters

Table 5: Phrases that contain “specific words”

# term definition

1 boar a male pig

2 fiber a thin thread

3 hint a useful idea

4 iron a strong metal

5 yet a fast aeroplane

6 lane a narrow road

7 perfume a nice smell

8 bow a knot with loops

9 cotton thread for sewing
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10 hardware the machinery of a computer

11 shot the firing of a gun

12 skirt garment that woman wear

13 boot shoe that covers the ankle

14 queen woman who reign country

15 carnivore animal who eat meat

16 widow woman whose husband die

17 orphan child whose parent die

18 comedian artist whose joke entertain people

19 commander military whose order marine obey

20 clown entertainer whose trick people enjoy

21 model someone whose job wear clothes
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