
The Elements for Logic

In Compositional Distributional
Models of Meaning

Joshua Steves: 1005061

St Peter’s College

University of Oxford

A thesis submitted for the degree of

MSc Mathematics and Foundations of Computer Science

2016

Acknowledgements

I would like to acknowledge my supervisor Bob Coecke, as well as the other

members of the Concepts group, Martha Lewis, Dan Marsden, Maaike

Zwart, and Fabrizio Genovese, whose thoughts, insights, and guidance

helped lead me to the results appearing in this thesis.

Abstract

Distributional compositional categorical models of meaning provide a for-

malism of natural language by combining distributional vector based mod-

els of word meaning and compositional models of grammar using the

shared structure of a compact closed category. Word meanings and gram-

matical type-checking reductions are combined in the category of finite-

dimensional Hilbert spaces, inspired by the mathematical formalism of

quantum mechanics and quantum information protocols. The action of

logic in these compositional distributional models is not immediately clear

because logical functional words do not have a meaning in the distribu-

tional sense. The main elements of logic are entailment, negation, con-

junction, and disjunction, which we will define within the current com-

positional distributional models of meaning. An entailment relation can

be defined in these models by extending the models to include a natural

notion of lexical entailment. Selinger’s CPM-construction on any compact

closed category provides the necessary extension. Applied to vectors in

a Hilbert space, this extension leads to Von Neumann’s density matrices,

widely used in modelling quantum physics. In this enhanced framework, it

becomes possible to model entailment using a canonical ordering on den-

sity matrices due to Löwner. We will define negation using Bell-states and

a unitary map operating on the sentence meaning space. Negation defined

in this way will lead to a natural interaction with the entailment structure.

Selinger’s CPM construction returns a compact closed category as well, so

the construction can be iterated to model multiple features of language.

Applying the CPM-construction to density matrices yields dual density

matrices, which linguistically will model ambiguity and lexical entailment

together. After iterating the CPM-construction we can define conjunction

and disjunction using environment structures to take two different kinds

of sums, one correlating to ambiguity and the other correlating to entail-

ment. Dual density matrices can be transformed into density matrices

allowing comparisons in CPM2 using the same entailment relation.

Contents

1 Introduction 1

1.1 Background . 1

1.2 Outline and New Contributions . 2

2 Distributional Compositional Categorical Models of Meaning 4

2.1 Categorical Framework . 4

2.1.1 Monoidal Categories . 4

2.1.2 Compact Closed Categories 7

2.2 Compositional Meaning through Pregroups 10

2.2.1 Pregroups as Compact Categories 11

2.3 Distributional Meaning . 12

2.4 Combining Syntax and Semantics . 12

2.5 Frobenius Algebras . 13

3 Density Matrices: Modelling Entailment, Ambiguity, and Negation 17

3.1 Doubling and the CPM Construction 17

3.2 Ambiguity . 21

3.3 Entailment and k-Hyponymy . 22

3.3.1 k-Hyponymy . 23

3.3.2 k-hyponymy for Positive Sentences 25

3.4 Negation . 26

3.4.1 Relative Pronouns Revisited 29

4 Dual Density Matrices: Combining Entailment and Ambiguity to

Model Conjunction/Disjunction 31

4.1 Environment Structures . 32

4.2 CPM2 . 35

4.2.1 Dual Density Matrices . 37

4.3 Modeling Ambiguity and Entailment 38

i

4.3.1 k-Hyponymy in CPM2 . 39

4.4 Conjunction and Disjunction . 40

4.4.1 Interaction with Entailment Structure 41

4.4.2 ”Respectively” . 42

4.5 Example . 42

5 Conclusions 46

5.1 Future Work . 47

6 Appendix 48

6.1 Proof of Proposition 4.2.2 . 48

Bibliography 50

ii

Chapter 1

Introduction

1.1 Background

Developing a mathematical model for meaning in language has been an important

and challenging problem for many years. Aside from being a generally interesting

problem intellectually and improving our understanding of how we use language,

mathematical models for natural language have important applications in computer

science. Models of meaning are relied on for natural language processing tasks such

as information retrieval, automatic summarization, machine translation, and many

more. Two main approaches to finding a formalization of language have been pursued

in the past: distributional and symbolic.

Distributional theories of meaning use statistical techniques to extract word mean-

ings from large corpora. The distributional hypothesis is that a word’s meaning can be

understood by the words which it appears together with. Distributional models, such

as those used by Google’s search algorithms, represent the meaning of words as vec-

tors in finite-dimensional vector spaces by using co-occurrence statistics from corpora.

Symbolic theories describe the compositional properties of grammatical structure in

language. Lambek pioneered the use of Pregroups to model syntax and grammar of

natural language [17]. Pregroup models of grammar effectively type-check sentences

determining when a string of words is a grammatically correct sentence. However,

these symbolic theories have no way of determining individual word meanings. Dis-

tributional, vector based models on the other hand extract word meanings, but have

no obvious compositional structure.

Using ideas from the mathematical formalism of quantum mechanics, Coecke et al.

in [10], developed a Distributional Compositional Categorical (DisCoCat) model of

meaning bridging the gap between the two previously incompatible approaches. The

authors were able to make this passage by recognizing that Finite Dimensional Vector

1

Spaces and Pregroups share the categorical structure of a compact-closed category.

These new models were able to outperform previous linguistic models because they

provided a means to compare meaning at the sentence and word level [13, 15].

An open problem in the DisCoCat models is how language and logic interact. One

issue in modelling logic within the current framework is that functional words, such

as not, and, or, etc., do not have a meaning in the distributional sense. Progress has

been made in modelling certain kinds of functional words such as relative pronouns

by using the structure of Frobenius algebras [31, 32].

In [23], Von Neumann introduced density operators to describe systems in quan-

tum mechanics that could be in a variety of states, each with a given probability.

Density operators are not standard probability distributions and carry important

extra structure. We can obtain density matrices from our vector based models by fol-

lowing a categorical construction due to Selinger, called the CPM-construction [34].

Density operators can be applied to computational linguistics to cover two different

properties of natural language: ambiguity and lexical entailment [4, 26]. The CPM-

construction can also be iterated in order to model ambiguity and entailment together

using dual density matrices.

Towards understanding logic in the DisCoCat models, [4] described an entailment

relation based on a partial ordering of density matrices. Negation, conjunction, and

disjunction remain to be defined in DisCoCat models. In this paper I define the

key elements to understand logic in the DisCoCat models: entailment, negation,

conjunction, and disjunction.

1.2 Outline and New Contributions

The goal of this paper is to define and describe the necessary elements to understand

and formalize logic in natural language. The necessary components needed for logic

are models of entailment, negation, conjunction, and disjunction. I will describe in

this paper how to model these four elements needed for logic and describe how they

interact. This paper is divided into three main chapters organized by the level of

category being used and discussed (C vs. CPM(C) vs. CPM2(C)).
Chapter 2 provides an overview of the DisCoCat model and discusses the relevant

mathematical formalism necessary to understand these models of meaning. I begin by

providing the necessary elements of category theory and describe a graphical calculus

for compact closed categories. I separately discuss the compositional structure of

Pregroups and the distributional vector based models and show how these can be

2

combined through the mathematics of compact closed categories. I further show how

meanings of words and sentences can be compared in the DisCoCat model using the

inner product of the vector spaces. Finally I define a Frobenius algebra over our

categories, which can be used to model relative pronouns, but will also be helpful in

the constructions of chapter 4.

I will discuss in Chapter 3 the CPM-construction and how density matrices can

be used to model entailment and ambiguity. I will describe a partial order structure

on density matrices that allows for a logical description of entailment that operates at

both the word and sentence level as in [4]. The first new contributions to the existing

models appears at the end of chapter 3; I define a map to model negation and analyze

how this model of negation interacts with the entailment structure.

Chapter 4 begins with a description of environment structures, which are used

in [6] to give an axiomatic description of Selinger’s CPM-construction. The CPM-

construction can also be iterated (CPM2) to move from density matrices to dual-

density matrices, similar to the way we passed from vectors to density matrices.

Iterating the CPM construction allows us to model both ambiguity and lexical en-

tailment together. I contribute a model of conjunction and disjunction (and and

or) using the extra features that dual density matrices provide over normal density

operators. Finally, I will analyze how conjunction and disjunction interact with the

entailment relation and negation as defined in chapter 3.

3

Chapter 2

Distributional Compositional
Categorical Models of Meaning

Distributional Compositional Categorical models of meaning, as the name suggests,

unite compositional and distributional theories of linguistics via category theory. We

begin by introducing the necessary category theory, that of compact closed categories.

We will present briefly compositional theory using Lambek’s Pregroups and show

how Pregroups have the structure of a compact closed category. Additionally we

will describe a vector based distributional model of meaning, revealing again how

it is realized in a compact closed category. Because Pregroups and vector spaces

share categorical structure we can combine them using a strongly monoidal functor.

Finally, we will introduce Frobenius algebras as extra structures we can add to our

categories that allow us to enrich the linguistic models.

2.1 Categorical Framework

2.1.1 Monoidal Categories

Definition 2.1.1. (Monoidal Category)

A monoidal category (C,⊗, I, α, λ, ρ) consists of:

• A family of objects Ob(C);

• A set of morphisms C(A,B) for every ordered pair of objects;

• A sequential composition operation ◦, such that for an ordered triple of objects

(A,B,C) each f : A → B and g : B → C has a composite g ◦ f : A → C, and

this composition is associative: (h ◦ g) ◦ f = h ◦ (g ◦ f);

4

• A tensor functor ⊗ acting on objects by (A,B) 7→ A⊗B and on morphisms by

(f : A→ B, g : C → D) 7→ f ⊗ g : A⊗ C → B ⊗D that is bifunctorial:

(f ⊗ g) ◦ (h⊗ k) = (f ◦ h)⊗ (g ◦ k)

• A unit object I ∈ Ob(C);

• A natural isomorphism called an associator α satisfying for every triple of object

(A,B,C),

αA,B,C : A⊗ (B ⊗ C) ∼= (A⊗B)⊗ C

and natural isomorphisms called left and right unitors satisfying for each object

λA : I ⊗ A ∼= A ρA : A⊗ I ∼= A

and

λI = ρI : I ⊗ I ∼= I

The structural isomorphisms λ, ρ, and α are subject as well to certain coherence

conditions known as the triangle and pentagon equations. If all of these structural

isomorphisms are identities then the monoidal category is said to be strict. We will

assume from this point on that the categories in which we are working are strict,

relying on the coherence theorems of MacLane, in particular using the fact that every

monoidal category is categorically equivalent to a strict monoidal category [21].

Some examples of monoidal categories are:

• (F)Hilb: The category of (finite-dimensional) Hilbert spaces and bounded lin-

ear maps with the tensor product being the regular tensor product of Hilbert

spaces

• Set: The category of sets and functions with tensor product given by the Carte-

sian product

• Rel: The category of sets and relations with tensor product given by the Carte-

sian product

Monoidal categories allow a nice representation in graphical form. We can repre-

sent objects in our category as wires and morphisms as boxes with input and output

wires. Interpreting our diagrams from top to bottom we can depict for example a

morphism f : A→ B as:

5

f

A

B

Identity maps will be represented by straight wires, and the monoidal unit will

be drawn as an empty wire. Sequential composition ◦ and parallel composition ⊗
are represented in this graphical language by vertical and horizontal composition of

diagrams:

A

C

g ◦ f

A

f

B

g

C

=

A⊗B

h⊗ k

C ⊗D

=

A

h

C

B

k

D

One main feature of this graphical representation is that many of the underlying

structural equations in our categories become trivial. For example consider the bi-

functoriality equation, also called the interchange law: (f⊗g)◦(h⊗k) = (f◦h)⊗(g◦k).

Both sides of this equation are represented identically in the graphical language:

h k

f g

A D

B E

C F

Since we do not draw the monoidal unit I, we can represent states and effects

(maps of the form: a : I → A and b : A → I) as special boxes which we draw as

triangles:

6

a

A

A

b

We can combine together these basic building blocks to construct more complex

diagrams. Two diagrams are equivalent if they are equivalent up to planar isotopy.

Note however, that we are not yet allowed to cross wires.

Definition 2.1.2. (Entangled States) A joint state on a composite system is separable

if it is the tensor product of two distinct states.

ψ ψ1 ψ2

A B A B

=

A joint state is entangled if it is not separable.

Entanglement is a complex phenomenon in physics that fundamentally distin-

guishes classical and quantum mechanics. In models of classical physics there is no

notion of entanglement, or in other words every joint state is separable. The reason

for this is that classical physics lives in Set where the Cartesian product is the ten-

sor product and a categorical product. In quantum mechanics, which is modelled in

Hilb, this is not true. We will see later that entangled states are necessary to the

flow of information and meaning in natural language, which we will model in FHilb.

2.1.2 Compact Closed Categories

Definition 2.1.3. (Symmetric Monoidal Category)

A symmetric monoidal category is a monoidal category equipped with a swap map,

or symmetry, for every pair of objects σA,B : A⊗B ∼= B ⊗A such that σB,A ◦ σA,B =

idA⊗B.

We can extend our graphical calculus for monoidal categories by adding a braiding

represented by crossing wires. In a symmetric monoidal category we have:

A A A

B B B

= =

σA,B σ−1
B,A

σA,B

7

Definition 2.1.4. (Compact Closed Category)

A compact closed category is a symmetric monoidal category where every object

A ∈ Ob(C) has a corresponding left and right dual object Al, Ar ∈ Ob(C) and related

structural isomorphisms ηrA : I ∼= Ar ⊗ A, ηlA : I ∼= A ⊗ Al, εrA : A ⊗ Ar ∼= I, and

εlA : Al ⊗ A ∼= I. These structural isomorphisms satisfy the snake equations:

(1A ⊗ εlA) ◦ (ηlA ⊗ 1A) = 1A = (εrA ⊗ 1A) ◦ (1A ⊗ ηrA)

(εl ⊗ 1Al) ◦ (1Al ⊗ ηlA) = 1Al

(1Ar ⊗ εrA) ◦ (ηrA ⊗ 1Ar) = 1Ar

We can draw the structural isomorphism η and ε as cups and caps in the graphical

language. Additionally it will be helpful to orient our diagrams to avoid confusion.

There are four types of cups and caps:

A Al Ar A

ηlA ηrA

εrA εlA

A Ar Al A

And the snake equations look like yanking straight a snake in a wire:

A A A

Al Al Ar Ar

==

= =

Because the category is symmetric, there is in fact a unique dual A∗ for every

object A that is both its left and right dual object. The orientation of the arrows on

the object wires indicates whether the wire is referring to the object or its dual, and

the left and right cups and caps are related in the following way using the symmetry:

8

=

ηl ηr

FHilb is an example of a compact closed category. In FHilb every object V is its

own left and right dual. Say {|i〉}i is a basis for V then the cups and caps are given

by the maps η : R→ V ⊗V :: 1 7→
∑

i |i〉 ⊗ |i〉 and ε : V ⊗V → R :: |v〉⊗|w〉 7→ 〈v|w〉
We can also compose our morphisms with cups and caps to get the notion of a

dual morphism, also called a linear operator transpose because of its relation to the

matrix transpose in linear algebra.

Definition 2.1.5. (Dual Morphism) Given a morphism f : A → B its dual is the

morphism f ∗ : B∗ → A∗ defined graphically:

f ∗ f f= =

B∗

A∗

B∗

A∗

B∗

A∗

Definition 2.1.6. (Dagger Functor)

A dagger functor on a category, C is a functor † : C → C, that is contravariant

(f : A→ B 7→ f † : B → A), identity on objects (A† = A), and involutive ((f †)† = f).

A Dagger Category is a category equipped with a dagger functor.

Graphically we can represent daggers by a vertical flip:

=

†

f f

A B

B A

9

The dagger functor on a symmetric monoidal dagger category respects the monoidal

structure and the symmetry:

(g ◦ f)† = f † ◦ g† (f ⊗ g)† = f † ⊗ g† σ†A,B = σB,A

In a dagger compact closed category we also have ε†A = ηA∗ :

†
=

The dagger of a map in FHilb is given by its adjoint.

Combining the dagger and transpose we can obtain the notion of a conjugate.

Definition 2.1.7. Given a morphism f : A→ B its conjugate is a map f∗ = (f †)∗.

=f f

∗

A

B

A∗

B∗

2.2 Compositional Meaning through Pregroups

In language words have grammatical types that combine in specific ways to form

sentences according to the grammar of the language. For example a simple transitive

sentence such as, ”Mathematicians study math,” consists of a subject noun, a transi-

tive verb and an object noun, which together combine to form the sentence. Lambek

formalized these notions of grammar in natural language using Pregroups [17].

Definition 2.2.1. (Partially Ordered Monoid)

A Partially ordered monoid (P, ≤, ·, 1) is a partially ordered set together with a

monoid multiplication -·- and unit 1, such that if p, q, r ∈ P and p ≤ q the following

equalities hold: r · p ≤ r · q and p · r ≤ q · r.

Definition 2.2.2. (Pregroup Algebra)

A pregroup algebra (P, ≤, ·, 1, (-)r, (-)l) is a partially ordered monoid for which

every element p ∈ P has left and right adjoints pl and pr satisfying: pl · p ≤ 1 ≤ p · pl

and p · pr ≤ 1 ≤ pr · p.

We can think of ≤ as a type reduction → as in the Lambek Calculus.

10

Definition 2.2.3. (Pregroup Grammar)

A Pregroup Grammar G is a pregroup algebra freely generated over a set of basic

types B with a designated end type and a type dictionary that assigns elements of a

pregroup to the vocabulary of a language.

For our linguistic models we will assign B = {n, s} where n represents a noun type

and s a well-formed sentence. We can interpret other types of words by combining

these atomic types. For example a transitive verb will have type: nr · s · nl. The

grammatical pregroup reduction for a transitive sentence will then look like:

n · (nr · s · nl) · n = (n · nr) · s · (nl · n) ≤ 1 · s · 1 ≤ s

.

A sentence is well typed if it reduces in this way to the atomic type s. We can

also consider noun phrases as grammatical if they reduce to the type n. For example

the noun phrase, ”People who study math,” has the pregroup reduction:

n · (nr · n · sl · n) · (nr · s · nl) · n ≤ n

2.2.1 Pregroups as Compact Categories

Definition 2.2.4. PregG is the compact category whose objects are the elements

of a pregroup grammar G and every pair of objects has either one or no morphisms

between them. A pair p, q has a morphism p → q if p ≤ q. The monoidal tensor is

the monoidal multiplication · of the pregroup. The compact closure maps are:

ηl = (1 ≤ p · pl) ηr = (1 ≤ pr · p) εl = (pl · p ≤ 1) εr = (p · pr ≤ 1)

It is easy to check that Preg satisfies the axioms for a compact closed category.

The map for a pregroup reduction for a positive transitive sentence is given diagram-

matically by:

n nr s nl n

s

11

2.3 Distributional Meaning

The goal in distributional semantics is to represent the meaning of a word as a vector

in a finite dimensional vector space. We will work in the category of FHilb, which

has the extra structure of an inner product space. A meaning vector for a word is

collected from a large corpus of text by choosing some suitable basis and counting

how many times a word appears near the basis words and then normalizing the

vectors. For example if your basis is the set of words machine, person, animal, sea,

land, air, you might obtain a vector [1/
√

2, 0, 0, 1/
√

2, 0, 0] = 1√
2
|machine〉 + 1√

2
|sea〉

corresponding to the word ship, which appeared half the time in the same sentence

as machine and half the time in the same sentence as sea, but never in the same

sentence as person, animal, land, or air. Meanings of words can then be compared

using the inner product to determine the angle between two words. For example,

let |sailor〉 = 1√
2
|person〉 + 1√

2
|sea〉 and |pilot〉 = 1√

2
|person〉 + 1√

2
|air〉, then we can

compare the meanings of pilot, sailor, and ship:

〈pilot|sailor〉 =
1

2
〈ship|sailor〉 =

1

2
〈pilot|ship〉 = 0

2.4 Combining Syntax and Semantics

We have shown how to model compositional structure of grammar in the category

Preg and distributional semantics in the category FHilb, which are both compact

closed categories. These two models are combined via a strongly monoidal functor

which maps Preg into FHilb as in [31].

Let F : Preg → Fhilb be the monoidal functor that assigns atomic types to

vector spaces: F (1) = I, F (n) = N and F (s) = S. Pregroup reductions are sent to

linear maps, and the cups and caps in Preg are sent to the cups and caps FHilb.

Strongly monoidal functors preserve the compact structure meaning F (nl) = F (n)∗,

and by monoidality complex types are mapped to tensor products of vector spaces,

for example F (nr · s · nl) = F (nr)⊗ F (s)⊗ F (nl) = N ⊗ S ⊗N .

Definition 2.4.1. Let wi be a word with meaning vector |wi〉 and α be the pregroup

reduction map for a sentence. The meaning of a sentence w1w2...wn is given by

|w1...wn〉 = F (α)(|w1〉...|wn〉)

For example consider the sentence, ”We study math,” which has pregroup reduc-

tion map εn ⊗ ids ⊗ εn. The sentence meaning vector is given by

F (εn⊗ ids⊗ εn)(|We〉 ⊗ |study〉 ⊗ |math〉) = (εn⊗ ids⊗ εn)(|We〉 ⊗ |study〉 ⊗ |math〉)

12

we study math

we

study

math

=

N N

S

The result is a vector in the sentence space S. These sentence vectors can be

compared just as the word vectors were before by taking the inner product in the

sentence space.

2.5 Frobenius Algebras

Frobenius Algebras are a type of extra structure we add on top of the categories

we have already discussed. In physics and mathematics Frobenius algebras capture

the intuition of copying bits of information or the inverse of copying, which acts

like matching. In linguistics, Frobenius Algebras have been used most successfully

to model relative pronouns such as whose, which, that [31, 32]. They can also be

used as in [26] to model some types of adjectives. In [14], a model for coordination

and conjunction is proposed using Frobenius algebras. In our categories copying

individual outputs of an entangled state is not the same as copying the whole state,

which causes some issues when we try to use these maps to model aspects of language

such as conjunction. In particular, Frobenius models of conjunction do not provide

a clear way to define or relate to disjunction. I will propose a different model of

”and” and ”or” in chapter 4 that captures the entailment relation between the two

words in natural language which we use similarly to conjunction and disjunction in

logical contexts. However, we will still need Frobenius algebras for the constructions

in chapter 4.

Definition 2.5.1. A Frobenius Algebra over a monoidal category is a tuple (A,∆, ι, µ, ζ)

representing for an object A, an internal monoid (A, µ, ζ) and an internal comonoid

(A,∆, ι):

13

A A

A A

A
A

A A

µ =

∆ =
ι =

ζ =

satisfying the Frobenius condition:

= =

Definition 2.5.2. A commutative Frobenius Algebra over a braided monoidal cate-

gory is a Frobenius Algebra (A,∆, ι, µ, ζ) whose monoid and co-monoid multiplica-

tion, µ and ∆, are commutative and co-commutative respectively:

=

=

A †-Frobenius Algebra over a †-monoidal category satisfies ∆ = (µ)† and ι = (ζ)†.

A special Frobenius Algebra satisfies:

=

Using the associativity, unitality, co-associativity, and co-unitality of monoids and

comonoids together with the Frobenius condition, we can rearrange any connected

morphism built from ∆, ι, µ, ζ, and id with ◦ and ⊗ into a normal form. A detailed

explanation of this processes can be found in [22]. These types of maps in their

normal form are given a special name.

14

Definition 2.5.3. (Spiders) Given a category with a Frobenius algebra a spider is

map A⊗m → A⊗n of the following form:

=

...

...

...

...

...

...

Theorem 2.5.1. (Spider Fusion) Spiders from a special commutative †-Frobenius

Algebra compose by fusing together:

... ...

... ...

...

...

... =

m1 m2

m1 +m2

n1 n2

n1 + n2

Proof. The proof follows directly from the ability to write spiders in a normal form

and from the axioms of a special commutative †- Frobenius Algebra.

We have actually already encountered some special spiders: the compact closure

maps of our compact closed categories

=

Our linguistic models live in the category FHilb. We can define a Frobenius

Algebra on FHilb in terms of operations on basis elements. Let V ∈ Ob(FHilb) be

a finite-dimensional Hilbert space with an orthonormal basis {|i〉}i. We define the

Frobenius units and multiplications by their actions on the basis elements:

∆ : |i〉 7→ |i〉 ⊗ |i〉 ι : |i〉 7→ 1 µ : |i〉 ⊗ |j〉 7→ δij|i〉 ζ : 1 7→
∑
i

|i〉

It is easy to check that these do satisfy the axioms of a special commutative † Frobe-

nius algebra. Spiders in FHilb become:

15

...

...

...

...

=
∑

i

i i

i i

m

n

m

n

The main use of Frobenius algebras in categorical models of meaning is to model

relative pronouns. For example the noun phrase, ”men who stare at goats,” takes a

transitive sentence, ”men stare at goats” and turns it into a noun by matching the

dimensions of the vector for men that occur as subjects of stare at goats.

men

who

stare at goats

16

Chapter 3

Density Matrices: Modelling
Entailment, Ambiguity, and
Negation

Von Neumann introduced density operators to model uncertainty about the state of a

system in quantum mechanics [23]. Recall from linear algebra that positive operators

are self-adjoint, positive matrices. By positive, we mean that for a linear map ρ in a

Hilbert space V , ρ is positive if ∀v ∈ V , 0 ≤ 〈v|ρ|v〉. A density matrix is a positive

operator with trace 1. Positive operators and density matrices are subsumed in the

categorical language through the framework of completely positive maps. Selinger

formalized the categorical construction of completely positive maps called the CPM-

construction [34], which can be applied to any compact category.

Lexical entailment and ambiguity are two important features of language. These

features manifest in what are called hyponyms/hypernyms and homonyms. A word

is a hyponym if it is a more specific case of a general word. Salmon is a hyponym

of fish, and conversely fish is a hypernym of salmon. Homonyms are words that

have the same spelling but different meanings, such as bank, which means a financial

institution or the side of a river. In [4, 26], the authors show how to use density

matrices and positive maps to encode lexical entailment and ambiguity, respectively.

3.1 Doubling and the CPM Construction

Definition 3.1.1. (Doubling Construction) Given a dagger compact closed category

C the doubled category D(C) is defined as follows:

• The objects of D(C) are the same as the objects of C.

• The morphisms in D(C)(A,B) are morphisms in C(A∗ ⊗ A,B∗ ⊗B).

17

=fD(C) fC

A

B

AA∗

BB∗

• Sequential composition follows exactly from sequential composition of the mor-

phisms in C.

fD(C) fC

gD(C) gC

A A

B B

C C

=

• Parallel composition via the monoidal tensor ⊗D acts on objects by A⊗D B =

A ⊗ B and on morphisms f : A∗ ⊗ A → B∗ ⊗ B, g : C∗ ⊗ C → D∗ ⊗ D by

f ⊗D g : A∗ ⊗ C∗ ⊗ C ⊗ A
∼=−→ A∗ ⊗ A ⊗ C∗ ⊗ C

f⊗g−−→ B∗ ⊗ B ⊗ D∗ ⊗ D
∼=−→

B∗ ⊗D∗ ⊗D ⊗B.

f fg g

A C

B D

A∗ C∗ C A

B∗ D∗ D B

=

CD(C)

18

The doubling construction gets its name because of the way we can construct

maps in D(C) by ”doubling” maps in C. That is if f : A → B is a morphism of C,
then f∗ ⊗ f : A∗ ⊗ A → B∗ ⊗ B is a morphism in D(C). States constructed in this

way have a special name:

Definition 3.1.2. A state Ψ ∈ D(C)(I⊗I, A∗⊗A) is pure if it is of the form: ψ∗⊗ψ
for some ψ ∈ C(I, A).

Ψ ψ∗ ψ
=

A state is called a mixed state if it is not pure.

We can directly construct mixed states by taking weighted sums of pure states.

Pure states are a special example of completely positive maps.

Definition 3.1.3. (Complete Positivity) A morphism φ ∈ D(C)(A,B) is completely

positive if for some k ∈ C(C ⊗ A,B):

A∗
C

A

B∗ BB

A

φ k∗ k=

In the above definition we call the object C the ancillary system. Its clear from

the graphical representation that a completely positive state is pure if the ancillary

system is I. Additionally we can construct mixed states that are completely positive

if we take probability distributions over pure states.

Definition 3.1.4. (CPM(C))
Let C be a dagger compact closed category. Then, CPM(C) is the subcategory of

D(C) whose objects are the same as D(C) and whose morphisms are the completely

positive morphisms of D(C).

19

Proposition 3.1.1. If C is a dagger compact closed category, then CPM(C) is a

dagger compact closed category.

Proof. CPM(C) is a monoidal category with tensor functor given as defined previously

in the doubled category ⊗CPM = ⊗D. CPM(C) is a symmetric monoidal category with

braiding σCPM(A,B) : B∗ ⊗A∗ ⊗A⊗B → A∗ ⊗B∗ ⊗B ⊗A = σC(B∗,A∗) ⊗ σC(A,B). CPM(C)
similarly inherits a compact structure from C by εCPM = εC∗ ⊗ εC and ηCPM = ηC∗ ⊗ ηC

(A⊗B)∗ A⊗B B∗ A∗ A B

=

σCPM σ∗ σ

εCPM

ηCPM η∗ η

ε∗ ε

=

=

The symmetry and snake equations in CPM(C) follow easily from their related

equations in C and the definitions of the tensor product in CPM(C). The dagger

functor † in CPM(C) is also inherited from the dagger on C and acts in the obvious

way.

Note that because of the swaps induced in the tensor products of states and maps

in CPM(C), it will be convenient to write the compact closure maps instead in the

following equivalent manner:

=

The fact that the CPM construction returns again a dagger compact closed cat-

egory is crucial to the constructions in the next chapter where we will exploit the

ability to iterate the CPM construction to accommodate more features of natural

language in the same model.

20

3.2 Ambiguity

Since FHilb is a compact closed category we can apply the CPM construction to

encode our linguistic models in CPM(FHilb) instead of FHilb. All our states, which

were vectors before now become density matrices, and we retain the same expressive

power as before. The additional bonus of encoding states in this manner lies in the

ability to take probabilistic mixtures of pure states. One way we can use mixed

states is to encode ambiguity as in [26, 25]. Homonyms are words that have distinct

meanings. However, until we hear a homonym in a sentence it is ambiguous which

meaning of the word is being referred to.

Explicitly in braket notation, given an ambiguous W with unambiguous meanings

wi:

[W] =
∑
i

pi|wi〉〈wi| (
∑
i

pi = 1, pi ∈ [0, 1])

For example we can represent the ambiguous word bank by a sum over its unam-

biguous meanings: river-bank or financial-bank.

[bank] =
1

4
|river-bank〉〈river-bank|+ 3

4
|financial-bank〉〈financial-bank|

The coefficients in the sum represent how often the unambiguous meanings of the

word appeared in the corpora used to build the distributional model. Intuitively these

coefficients are how likely someone is to mean one meaning of the word versus another

when the word is heard outside of a sufficient context to disambiguate it. As in Quan-

tum Mechanics, mixed states in this sense are representing some lack of knowledge

about a system. We can then think of hearing the word in an unambiguous context

of a sentence as measuring the state and causing the ambiguous meaning to collapse

onto one of the unambiguous, pure meanings it could have. For example consider the

sentence, ”Bonnie and Clyde robbed banks,” with the following reduction:

Bonnie and Clyde robbed banks

21

=

Bon. Bon. and Clyde Clyde robbed Bank Bank

With:

= 1
4

+ 3
4Bank Bank riv. b. riv. b. fin. b. fin. b.

The piece of the sum including river bank will evaluate to 0 in the sentence

reduction and only the meaning financial bank will carry through the sentence.

If our sentence is composed of only pure states then we have the same reductions

as before only doubled. For example:

John likes Mary

=

John John likes likes Mary Mary

3.3 Entailment and k-Hyponymy

Instead of using mixed states to model ambiguity, we could use them to model lexical

entailment. Following as in [4], we represent a hypernym as a probabilistic sum over

22

its hyponyms. Lexical entailment has a natural logical interpretation as well. A

crucial feature of density matrices is that there is a partial order over them [20]. This

partial order can be used as an entailment relation between words, which will allow

us to make logical inferences about words and sentences. If a sentence is true for all

fish then it should be true for salmon because salmon entails fish. However hyponyms

in language have sometimes imprecise relations. For example dog is a type of pet, but

not all dogs are pets. We would still hope to capture these almost hyponyms though

since in most cases when people talk about dogs they talk about them as pets. [4]

introduces an approximate notion of entailment called k-hyponymy, which we outline

below.

3.3.1 k-Hyponymy

We begin by defining a partial order on positive operators due to Löwner [20].

Definition 3.3.1. (Löwner Order) Let A and B be positive operators.

A v B if B − A is positive.

Proposition 3.3.1. The Löwner order, v, is a partial order on positive operators.

Proof. Let A,B,C be positive operators.

• Reflexivity: A− A = 0, which is positive, so A v A.

• Anti-Symmetry: A v B ⇐⇒ 0 v B − A ⇐⇒ A − B v 0. If we also have

B v A then A−B v 0 v A−B ⇐⇒ 0 = A−B ⇐⇒ A = B.

• Transitivity: If A v B v C then C − A = C − B + B − A is a sum of two

positive operators. Therefore 0 v C − A ⇐⇒ A v C

Definition 3.3.2. (k-Hyponymy) For positive operators A and B, and k ∈ (0, 1],

A �k B if 0 v B − kA

In this case we say A is a k-hyponym of B or conversely B is a k-hypernym of A.

In the case that A is not a hyponym of B, we will sometimes use the notation

A �0 B. Note that the case k = 1 corresponds exactly to the Löwner order.

23

Proposition 3.3.2. If A �k B, then there is necessarily a maximal such value

kmax ∈ (0, 1] such that A �kmax B.

[4] gives an expression for calculating the k-max value given two positive self-

adjoint matrices.

Proposition 3.3.3. The following properties of k-hyponymy hold:

1. A �1 A for all positive operators A.

2. k-hyponymy is neither symmetric nor antisymmetric.

3. If A �p B and B �q C, then A �pq C. Note that pq is a lower bound on the

hymponymy strength between A and C, and not the maximal such value.

Proof. 1. A �1 A is exactly reflexivity of v.

2. Consider positive operators in R2 with basis {|0〉, |1〉}.

|1〉 �1 |0〉+ |1〉 but |0〉+ |1〉 �k |1〉

so k-hyponymy is not symmetric.

1

3
|0〉+

2

3
|1〉 �1/2

2

3
|0〉+

1

3
|1〉 and

2

3
|0〉+

1

3
|1〉 �1/2

1

3
|0〉+

2

3
|1〉

so k-hyponymy is not anti-symmetric.

3. By assumption pA v B, so 0 v C − qB v C − qpA =⇒ A �pq C.

As an example in our linguistic models say we represent pet by the density matrix:

[pet] =
2

5
|dog〉〈dog|+ 2

5
|cat〉〈cat|+ 1

5
|gold fish〉〈gold fish|

Then we have that dog and cat are 2/5-hyponyms of pet and gold fish is a 1/5-

hyponym of pet since dogs and cats are more prototypical examples of pets than

goldfish.

24

3.3.2 k-hyponymy for Positive Sentences

To see how entailment works in the logical sense, and in particular how it will interact

with negation as defined in the next section it is important to see how k-hyponymy

lifts to the level of sentences.

Theorem 3.3.1. Let A, B, C, and D represent nouns such that A �p C and B �q D,

and let φ(X verb Y) denote the meaning of a positive transitive sentence with subject

X and object Y. Then,

φ(A verb B) �pq φ(C verb D)

Proof. From the definition of k-hyponymy, we have: 0 v C − pA and 0 v D − qB.

Therefore, there exist positive operators ρ1 and ρ2 such that:

C = pA+ ρ1 D = qB + ρ2

Applying the sentence reduction maps on A⊗ [verb]⊗B and C⊗ [verb]⊗D, we have:

φ(A verb B) = (ε⊗ idS ⊗ ε) ◦ (A⊗ [verb]⊗B)

φ(C verb D) = (ε⊗ idS ⊗ ε)(C ⊗ [verb]⊗D)

= (ε⊗ idS ⊗ ε)
(

(pA+ ρ1)⊗ [verb]⊗ (qB + ρ2)

)
= (ε⊗ idS ⊗ ε)

(
(pA⊗ [verb]⊗ qB)

+

(
(pA⊗ [verb]⊗ ρ2) + (ρ1 ⊗ [verb]⊗ qB) + (ρ1 ⊗ [verb]⊗ ρ2)

))
= pq(ε⊗ idS ⊗ ε)(A⊗ [verb]⊗B)

+ (ε⊗ idS ⊗ ε)
(

(pA⊗ [verb]⊗ ρ2) + (ρ1 ⊗ [verb]⊗ qB) + (ρ1 ⊗ [verb]⊗ ρ2)

)
= pqφ(A⊗ [verb]⊗B) + ρ3

Where,

ρ3 = (ε⊗ idS ⊗ ε)
(

(pA⊗ [verb]⊗ ρ2) + (ρ1 ⊗ [verb]⊗ qB) + (ρ1 ⊗ [verb]⊗ ρ2)

)
A,B, ρ1, ρ2 are positive operators by assumption, the sentence meaning map is a

completely positive map since we are working in CPM(FHilb), and p, q are positive

scalars. Therefore ρ3 is a positive operator and we get:

25

φ(C verb D) = pqφ(A verb B) + ρ3 =⇒ 0 v φ(C verb D)− pqφ(A verb B)

Therefore, φ(A verb B) �pq φ(C verb D).

Note again that in the case of positive transitive sentences above pq is a lower

bound and not necessarily the maximum hyponymy strength. The above theorem

can also be generalized to any positive sentences with similar structure [4, 3].

3.4 Negation

In order to characterize and model logic within linguistic models of meaning, one must

have a working model of negation, in particular the word ”not.” It has been an open

question for many years how to model negation because, though this seems like an

easy task, there are many subtleties in the way we use language that make negation

an interesting and difficult thing to define. For example words that are opposites

generally have very similar meanings. You might also think that for example, ”not

tall” should evaluate to ”short” until you here someone say, ”Yao Ming is not tall,

he’s gigantic!”

It has been proposed that orthogonal projection operators, as in quantum logic,

could be a good model for negation in the distributional models. Widdows showed in

[35] how to use orthogonal projections to allow for search queries such as ”suit NOT

lawsuit.” However, words in natural language do not carry meanings in the sense

of logics. For example it does not make sense to say that ”red” has a truth value.

However, we can assign a truth value to a sentence such as ”Apples are red.” Since

we want to be able to use our compositional models, we would hope our model of

negation is also compositional. For this reason, our model of negation should also act

on the sentence level, not the word level.

Classification is an important NLP task, and the compositional distributional

models have outperformed all previous models in this field. We would hope that

our logical models would allow us to retain the classification aspects of our model.

This is also important in a full model of meaning because knowing the truth value

of a sentence is not necessarily helpful if you cannot say at all what the sentence is

referring to. It might be possible as well that a sentence has different truth values

based on the context. For example, ”Hillary Clinton is running in 2016,” is a true

26

sentence about the U.S. Presidential Elections, but it is not a true sentence about the

Olympic Track and Field competitions in Rio.

To deal with logic in our models we will need a sentence space with true and false

components. Let {T, F, 1, ..., n} be an orthonormal basis for S where T denotes true,

F denotes false, and i ∈ [1, n] denote the remaining basis vectors of the sentence

space, which would correspond to some means of classification, for example sports,

politics, etc. If one only cares about the logical aspects of the sentence space, one

could just work over the basis {T, F}.

Definition 3.4.1. We define negation graphically as follows:

not

not

=

where the not gate is given by:

= +not

F

FT

T

i

i

+
∑

i

This negation map acts by swapping the true and false basis elements of the

sentence space and keeping all other basis elements the same. This acts on a sentence

by projecting the truth value of sentence onto false and the falsity value of the sentence

onto true.

The sentence reduction map on a negated sentence acts as in the following exam-

ple:

John

does
not

like Mary

27

⇓

not

John likes Mary

To see how negation acts, let’s compare a sentence to its negation using k-

hyponymy.

Theorem 3.4.1. Let A verb B be a sentence whose meaning φ(A verb B) = α[T] +

β[F], where α and β are not both 0. Let λ = min{α
β
, β
α
}. Then,

φ(A verb B) �λ φ(A not verb B) φ(A not verb B) �λ φ(A verb B)

Proof. The not gate on a sentence acts by swapping the coefficients of [T] and [F] on

the sentence meaning space. If φ(A verb B) = α[T] + β[F], then φ(A not verb B) =

β[T] + α[F].

Assume, without loss of generality, that α ≤ β. Then λ = α
β
. We have:

φ(A verb B)−λφ(A not verb B) = α[T]+β[F]−α
β

(β[T]+α[F]) = (0)[T]+(β−α
2

β
)[F]

Since α ≤ β ≤ 1, β − α
β
α ≥ β − α ≥ 0, so the above expression is a non-negative

sum of positive operators. Therefore

0 v φ(A verb B)− λφ(A not verb B)⇐⇒ φ(A not verb B) �λ φ(A verb B)

The fact that φ(A verb B) �λ φ(A not verb B) follows similarly.

Corollary 3.4.1. If α = 0 or β = 0 then φ(A verb B) �0 φ(A not verb B).

The above corollary represents the case that a sentence is completely true (or

false). In this case its negation will be completely false (or true), and the sen-

tences will entail each other to no extent as we would hope. For example if the

sentence John likes Mary is entirely true then its negation John does not like Mary

will be false. If we apply negation twice we retrieve the truth value of the original

sentence. If φ(John likes Mary) = [T] then φ(John does not like Mary) = [F] and

φ(John does not not like Mary) = [T] again.

28

Corollary 3.4.2. If α = β then φ(A verb B) = φ(A not verb B)

In this case a sentence is equally as true as it is false, so negation will not change

the meaning of the sentence. Say for example that Mary both loves and hates John,

then φ(Mary likes John) = 1
2
[T] + 1

2
[F] = φ(Mary does not like John).

3.4.1 Relative Pronouns Revisited

At the end of chapter two, we saw a relative pronoun modelled using Frobenius

algebras as in [31, 32], where the sentence space is modelled with just one truth

dimension and possibly some dimensions relating to classification. Since our sentence

space has both a true and false component to model negation now, we need to modify

our relative pronouns in a simple manner to account for this difference. Instead of

using the Frobenius unit ζ to delete the sentence space of the verb, we will use the

pure truth state [T] = |T 〉〈T |. For example the relative pronoun, who, becomes:

T

N N S N

As an example let [men] = 1
2
|Cane〉〈Cane| + 1

2
|Abel〉〈Abel|. Say Cane stares at

goats but Abel does not so that:

φ(Cane stares at goats) = [T] and φ(Abel stares at goats) = [F]

.

men T stare at goats

who

29

=

∑
Cane, Abel

1
2

This reduces to just 1
2
|Cane〉〈Cane|. By comparison, computing the density matrix

for φ(men who do not stare at goats) gives 1
2
|Abel〉〈Abel|. We can then re-normalize

the states to remove the lingering 1/2 coefficients.

30

Chapter 4

Dual Density Matrices: Combining
Entailment and Ambiguity to
Model Conjunction/Disjunction

Ambiguity and entailment are features of language that often do not appear inde-

pendently from each other. Some words are general and ambiguous, such as club,

which could refer to a stick or a group of people, with each meaning being general

cases of more specific words, such as golf-club and dance-club. We would like that

our models could support both aspects of language. Conjunction and disjunction in

natural language also require a level of lexical entailment and ambiguity. Intuitively

we can think of and as taking an entailment sum over two words or sentences and or

as creating an ambiguous sum.

In Chapter 3 we saw that Selinger’s CPM-construction can be applied to any

compact closed category and that the mixed states of CPM(FHilb) could be used

as a model for either ambiguity or lexical entailment. For any compact category

C, CPM(C) is a compact category, so we can iterate the CPM-construction to give

CPM2(C) = CPM(CPM(C)). We will see that states in CPM2 contain two levels of

mixing, and we can use one to model ambiguity and the other for entailment. In

[6], Coecke gives an axiomatic description of Selinger’s CPM-construction in terms of

environment structures and maximally mixed states. [1] generalizes this construction

to obtain an axiomatic description of CPMn.

Previously, CPM(FHilb) provided us with the categorical language to discuss

and apply density matrices and positive operators. States in CPM2 are called dual

or double density matrices. Dual density matrices and other structures arising in

the iterations of CPM have not yet been studied in much detail. Early work on

31

understanding of dual density matrices and their applications in natural language

appear in [2, 1], and much of their framework will be presented below.

4.1 Environment Structures

We begin with the mathematical framework of environment structures. In physics

and quantum mechanics these structures model maximally mixed states and discard-

ing of quantum systems [8]. In [6] environment structures provide the language to

axiomatize Selinger’s CPM-construction. Environment structures will be used in this

paper to understand CPM2 and to model conjunction and disjunction.

Definition 4.1.1. (Environment Structure) An environment structure, or > struc-

ture, on a dagger compact closed category C comprises:

1. A designated state >A, called the maximally mixed state, for each A ∈ Ob(C)
satisfying:

>I = idI >A⊗B = >A ⊗>B

Or graphically:

I A⊗B A B

==

2. An all-objects-including sub-dagger compact closed category CΣ of pure mor-

phisms satisfying:

f

f
f

g

g
g

=
=

⇐⇒

3. A purification operation assigning for each morphism f ∈ C(A,B), a pure mor-

phism g ∈ CΣ(A⊗ C,B) such that:

f g

A A

B B

c
=

32

Proposition 4.1.1. The preparation-state agreement axiom [5] is a special case of

axiom 2 in Definition 4.1.1.

Proof. The preparation-state agreement axiom is, graphically:

ψ

ψ

ψ
φ

φ

φ== =⇒

Setting dom(f)=dom(g)=I in axiom 2 gives

f ◦ f † = g ◦ g† =⇒ f ◦ >I = g ◦ >I =⇒ f = g

where the last implication follows from axiom 1.

Theorem 4.1.1. If C is a dagger-compact closed category, then CPM(C) has an

environment structure.

Proof. Define > = ηC:

A A∗ A

=

> satisfies the required properties:

I I I

= =

A ⊗ B
(A ⊗ B)∗ A ⊗ B

A∗B∗ B A A∗B∗ B A A∗ A B∗ B A

= = = = =⊗ ⊗
B

CPM CPM

The pure morphisms f ∈ CPM(C)Σ are exactly the pure morphisms f ∈ CPM(C)
given by doubling maps in C:

A∗ A

B∗ BB

A

f f∗ f=

33

We then have ∀f, g ∈ CPM(C)Σ:

f

f

f f

ff

g

g

g g

gg

= =⇒ =

By bending the inner wires down we get by process state duality into the following

equivalent form:

f f f f

f f

g g g g

g g=

=

=⇒

=f g

=⇒

It remains to show that every morphism in CPM(C) is purifiable, but this is direct

from the form of morphisms in CPM(C) and the definition of >:

f k k k==

34

4.2 CPM2

Recall that for a †-compact closed category, CPM(C) had the same objects as C and

its morphism were the completely positive maps of C. CPM2(C) will have the same

objects as C and its morphisms will be completely squared-positive maps.

Definition 4.2.1. Let C be a †-compact closed category. A morphism f : A∗ ⊗ A⊗
A∗⊗A→ B∗⊗B⊗B∗⊗B is completely squared-positive if there exists C1, C2 ∈ Ob(C)
and a morphism k : C1 ⊗ C2 ⊗ A→ B such that:

A∗ ⊗ A⊗ A∗ ⊗ A A∗ A A∗ A

B∗ ⊗B ⊗B∗ ⊗B B∗ B B∗ B

f k k k k

C1

C2

C1

C2

=

In the case A = I we get states of CPM2(C) of the form:

f f f f

C1 C1C2

C2

The two ancillary systems, C1 and C2, correlate to two different levels of mixing. In

our linguistic models this will enable us to represent ambiguity mixing and entailment

mixing together in one category. Because the morphisms in CPM2 have two ancillary

systems, we arrive at two notions of purity.

Definition 4.2.2. A completely squared-positive morphism is 1-pure if C1 = I and

2-pure if C2 = I.

35

1-pure 2-pure

We will see linguistically that these notions of purity correspond to an ambiguous

word where the homonyms have specific meanings and an unambiguous, general word

respectively. A 1,2-pure state will represent an unambiguous, specific word.

We could have identically characterized the maps of CPM2 using environment

structures. Because CPM(C) always has an environment structure, CPM2(C) has

in fact two distinct environment structures, the environment structure related to

CPM(C) and the environment structure of CPM(CPM(C)). Just as the caps in C
acted as environment structures in CPM(C), the caps of CPM(C), which are the

doubled versions of the caps in C, act as environment structures in CPM2(C).

Proposition 4.2.1. If C is a †-compact closed category, then CPM2(C) has two

environment structures.

Proof. Theorem 4.1.1 applied to CPM2(C) means the caps in CPM(C) are environ-

ment structures on CPM2(C). That is >2 = ηCPM(C) is an environment structure.

Graphically:

= =

CPM2(C) CPM(C) C

Let > = ηC as in theorem 4.1.1. Then >1 = >⊗> is an environment structure.

= =

CPM2(C) CPM(C) C

>1

It follows similarly to the proof of theorem 4.1.1 that >1 satisfies axioms of an

environment structure with the all objects including sub-†-compact closed category

CPM2(C)Σ1 referring to the 1-pure morphisms.

36

In fact, CPM2(C) satisfies a stronger condition of having a squared-environment

structure [1]. In particular, every morphism of CPM2(C) is 1,2-purifiable:

f k k k k k

>1

= =

4.2.1 Dual Density Matrices

Recall that density matrices are positive operators of the form:

[ρ] =
∑
i

pi|i〉〈i|

where {|i〉}i is a set of normalized vectors in a Hilbert space V and
∑

i pi = 1. By

process state duality we can turn a density matrix into a vector in V ∗ ⊗ V :

|ρ〉 =
∑
i

pi|i〉|i〉

We can then take a probabilistic sum over vector of this form to create a density

matrix, or by process state duality a vector in V ∗ ⊗ V ⊗ V ∗ ⊗ V :

[[Ψ]] =
∑
k

qk|ρ〉|ρ〉 =
∑
k

qk((
∑
j

pjk|jk〉|jk〉)⊗ (
∑
i

pik|ik〉|ik〉))

=
∑
ijk

qkpjkpik|jk〉|jk〉|ik〉|ik〉

What we have obtained is a dual density matrix. Note in this direct construction

of a dual density matrix that there are only three indexes in the sum. An arbitrary

state in CPM2(FHilb) has four indexes, two for each ancillary system.

Definition 4.2.3. A dual density matrix is a state of CPM2(FHilb) of the form:

f f f f

37

Proposition 4.2.2. The set of dual density matrices is a strict subset of the set of

states in CPM2(FHilb)

Proof. The proof of this proposition follows nicely from the graphical calculus and

spider fusion rule. The detailed proof, which comes from Maaike Zwart’s ongoing

doctoral research on dual density matrices, appears in the appendix.

By process state duality we can turn a state in CPM2(C) into a completely positive

map in CPM(C). In other words we turn a dual density matrix into a positive operator

or density matrix. There are two different ways to do this resulting in two different

density matrices, hence the name dual density matrices:

7→ 7→

7→ 7→

We will refer to the top form as density matrix-1 and the bottom as density

matrix-2.

4.3 Modeling Ambiguity and Entailment

Consider the word club, an ambiguous word meaning either a place/society or a stick

with a heavy end. These two unambiguous meanings entail more specific forms of

each kind of club. For example a club-place includes different types of clubs such

as sports clubs and dance clubs. A club-stick encompasses the meanings of golf-club

38

as well as a club used as a weapon like a cudgel. Say we take dance-club, sports-

club, golf-club, and cudgel as four basis words. We can represent the unambiguous

meanings of club (place vs. stick) by the two entailment sums:

[club− place] =
1

2
|dance-club〉〈dance-club|+ 1

2
|sports-club〉〈sports-club|

[club− stick] =
1

2
|golf-club〉〈golf-club|+ 1

2
|cudgel〉〈cudgel|

We can double these terms and sum again to get a full meaning representation for

the word club:

[[club]] =
1

2
(
1

2
D∗D +

1

2
S∗S)(

1

2
D∗D +

1

2
S∗S) +

1

2
(
1

2
G∗G+

1

2
C∗C)(

1

2
G∗G+

1

2
C∗C)

=
1

8
(D∗DD∗D +D∗DS∗S + S∗SD∗D + S∗SS∗S

+G∗GG∗G+G∗GC∗C + C∗CG∗G+ C∗CC∗C)

In the above notation each letter represents a vector and the asterisk represents

its conjugate. For example D∗DS∗S = |dance-club〉 ⊗ |dance-club〉 ⊗ |sports-club〉 ⊗
|sports-club〉.

The reason it is important to do entailment mixing before ambiguity mixing will

become apparent in the following section when we consider what the entailment re-

lation should be between conjunction and disjunction.

4.3.1 k-Hyponymy in CPM2

A completely squared-positive morphism can be turned into a positive operator in

two ways. If we use density matrix-1, obtained diagrammatically by bending the

right two wires up, to represent dual density matrices we can compare words using

k-hyponymy as it has already been defined in the previous chapter. From the above

example we would have: [[dance-club]] �1/8 [[club]].

It might cause concern that the coefficients for k-hyponymy are getting quite

small. For example we set up the example so that dance-club was a 1/2-hyponym

of club-place. Yet, if we compared the doubled versions in CPM2 we get that:

[[dance-club]] �1/4 [[club-place]]. However, this is just a side-effect of our exam-

ples being quite small. We chose dance-club and sports-club to be distinct basis

words, though in a large experiment we would expect the distributional meanings of

the words in an entailment sum to have a lot of overlap since they share the features

that make them the type of the more general word.

39

4.4 Conjunction and Disjunction

Conjunction and disjunction are two of the main building blocks of any logical theory.

In natural language we use the words and and or as logical connectives. However, as is

often the case with language, meaning can be imprecise. For example, or sometimes

is used as logical disjunction and other times as an exclusive or. If someone asks,

”Would you like some tea or coffee?” You could reply, ”no” without any confusion,

but if you say, ”yes”, then you would probably receive a confused look and a repeated

question, ”So... would you like tea or coffee?”

Intuitively we can think of and as taking an entailment sum over two inputs.

For example, if we say, ”Dogs and cats are common pets,” then we should infer

both ”dogs are common pets,” and ”cats are common pets.” Or on the other hand

creates some sense of ambiguity in a phrase/sentence. ”Adam or Eve ate the apple,”

means either ”Adam ate the apple,” ”Eve ate the apple,” or ”Adam and Eve ate the

apple,” but in any case we are not sure which. Luckily, we have show already how

to model entailment and ambiguity together in the category CPM2(FHilb). Using

this intuition we will define and and or in our compositional distributional models so

that they map two inputs onto either an entailment sum or an ambiguity sum. These

two distinct sums correspond to the two levels of mixing in CPM2(FHilb) as in the

previous sections.

Definition 4.4.1. Define Or diagrammatically by the following sum of states:

+1
2

= 1
2

+1
2

1
2

Define And diagrammatically by the following sum of states:

+1
4

+1
4

+1
4

1
4

=

+1
4

+1
4

+1
4

1
4

40

Let’s consider how the pregroup reduction acts on a phrase with one of these

connectives. Let a, b be nouns represented by pure states. Consider the reduction in

the third term of ”a and b”:

a a a a b b b b

=

a

a

a ab b b

b

Since words have representations as normalized vectors the two scalars 〈a|a〉 and

〈b|b〉 in the above diagram will reduce to 1. The other terms in the connective phrases

will reduce similarly giving:

φ(a and b) =
1

4
(a∗aa∗a+ a∗ab∗b+ b∗ba∗a+ b∗bb∗b)

φ(a or b) =
1

2
(a∗aa∗a+ b∗bb∗b)

which are both dual density matrices. Using the example from the previous section

we can see that

[[club]] = φ(φ(dance-club and sports club) or φ(golf-club and cudgel)).

4.4.1 Interaction with Entailment Structure

We can ask what the entailment relation between two noun phrases ”a and b” and

”a or b” formed from the conjunction and disjunction of two nouns should be. We

would hope that ”a or b” is a hyponym of ”a and b,” because if a sentence with ”a

and b” is true then the sentence with ”a or b” will also be true.

Theorem 4.4.1. If a,b are words/phrases of the same type represented by 1,2-pure

dual density matrices [[a]] = a∗aa∗a, [[b]] = b∗bb∗b in CPM2(FHilb). Then, we have:

φ(a or b) � 1
2
φ(a and b).

41

Proof. Applying the sentence reduction maps to the phrase ”a and b” gives:

φ(a and b) =
1

4
(a∗aa∗a+ a∗ab∗b+ b∗ba∗a+ b∗bb∗b) =

1

2
φ(a or b) +

1

4
(a∗ab∗b+ b∗ba∗a)

a∗ab∗b+ b∗ba∗a is positive, so 0 v φ(a and b)− 1
2
φ(a or b).

4.4.2 ”Respectively”

A common occurrence in natural language is a sentence of the form, ”a and b are

c and d, respectively.” We can treat conjunctions of this form in a special way by

adjoining an indexing state to the different elements of the sum in the word ”and.”

Connecting the relevant indexing states in the sentence reduction will retain the

parts of the sentence corresponding to ”a is b” and ”c is d” but will send ”a is c”

and ”b is d” to zero. Below is an example of two of the terms in the reduction for

φ(a and b are c and d respectively). The first corresponds to ”b is d” and will remain

in the final sum because the indices match. The second corresponds to ”b is c” and

will go to zero because the indices do not match.

1 1

1 2

4.5 Example

Consider the noun space with basis given by four names John, Bob, Mary, and Al-

ice. Let the three verbs likes, dislikes, and is ambivalent towards be defined by the

following matrices, where the rows represent who the subject likes and the columns

represent who likes the object.

42

Likes =


John T F T F

Bob T T T T

Mary T T T F

Alice F F F F



Is ambivalent towards =


John F T F F

Bob F F F F

Mary F F F F

Alice F F T F



dislikes =


John F F F T

Bob F F F F

Mary F F F T

Alice T T F T


We define general terms men and women by the entailment sums:

[[men]] =
1

4
(J∗JJ∗J + J∗JB∗B +B∗BJ∗J +B∗BB∗B) = φ([[John]]⊗ and⊗ [[Bob]])

[[women]] =
1

4
(M∗MM∗M +M∗MA∗A+ A∗AM∗M + A∗AA∗A)

Let’s take a look at some example sentences. We start with the simple cases of a

sentence that is completely true or false:

φ(John likes Mary) = TTTT

φ(John dislikes Mary) = FFFF

φ(John does not like Mary) = FFFF

φ(John likes Mary) �0 φ(John dislikes Mary)

φ(John dislikes Mary) �1 φ(John does not like Mary)

We can see from these sentences the relation between a negation and a negative

verb in a simple case. Here we have that John likes Mary does not entail at all John

dislikes Mary or John does not like Mary. However, John dislikes Mary completely

entails John does not like Mary. We can also compare connected sentences using our

43

conjunctions and disjunctions. Again in the simple case of sentences whose truth

value is completely true or false:

φ(John is ambivalent towards Bob) = TTTT

φ(John does not like Bob, and John does not dislike Bob) = TTTT

φ(John likes Bob, or John is ambivalent towards Bob) =
1

2
(TTTT + FFFF)

φ(John likes Bob, and John is ambivalent towards Bob) =

1

4
(TTTT + TTFF + FFTT + FFFF)

φ(John is ambivalent towards Bob) �1/2

φ(John likes Bob, or John is ambivalent towards Bob)

φ(John is ambivalent towards Bob) �1/4

φ(John likes Bob, and John is ambivalent towards Bob)

Notice the difference in the mixing of truth values in the conjunction of sentences

versus the disjunction. In the disjunctive sentence we end up with a higher pure truth

value because one of the statements is true. The pure truth value is diminished in

the conjunctive sentence, because both are statements are not simultaneously true.

However, we still retain some sense in the conjunctive sentence that the statement is

equally true as it is false, due to one half being completely true and one half being

completely false.

Now let’s look at some cases where the words in the sentences have some entail-

ment structure:

φ(Men like Mary) = TTTT

φ(Men like Alice) =
1

4
(TTTT + TTFF + FFTT + FFFF)

φ(Men like Women) =
5

8
TTTT +

1

8
(TTFF + FFTT + FFFF)

φ(Men like Mary) �5/8 φ(Men like women)

φ(Men like Alice) �1/2 φ(Men like women)

We can also consider some subsets of the sentence men like women by using

”respectively”:

44

φ(John and Bob like Mary and Alice, respectively) = TTTT

φ(John and Bob like Mary and Alice, respectively) �5/8 φ(Men like women)

We can also compare the conjunction of two nouns in the sentence to the disjunc-

tion of two nouns in a sentence:

φ(Mary and Alice like men) =
1

4
(TTTT + TTFF + FFTT + FFFF)

φ(Mary or Alice like men) =
1

2
(TTTT + FFFF)

φ(Mary or Alice like men) �1/2 φ(Mary and Alice like men)

A better example of how conjunctions and disjunctions operate between nouns is

to consider them inside noun phrases using relative pronouns:

φ(Men who like Mary) = [[men]]

φ(Men who like Alice) = [[Bob]]

φ(Men who like Mary or Alice) =
1

5
(J∗JJ∗J + J∗JB∗B +B∗BJ∗J + 2B∗BB∗B)

φ(Men who like women) =
1

9
(J∗JJ∗J + 2J∗JB∗B + 2B∗BJ∗J + 4B∗BB∗B)

[[Bob]] �1/4 [[men]]

[[Bob]] �2/5 φ(Men who like Mary or Alice)

[[Bob]] �4/9 φ(Men who like Mary and Alice)

We already had that Bob was a hyponym of men, which was an equal mixture of

John and Bob. However, Bob becomes a stronger hyponym of the phrase Men who

like Mary or Alice because John only likes Mary, where as Bob likes Mary and Alice.

The hyponymy strength increases again between Bob and men who like Mary and

Alice because Bob likes Mary and Alice is completely true where as John likes Mary

and Alice is not.

45

Chapter 5

Conclusions

In this dissertation I have addressed the main elements for logic within composi-

tional distributional models of meaning. Building on the models of [10], we applied

Selinger’s CPM construction to model lexical entailment and ambiguity as in [4, 26].

In CPM(FHilb) we could model words with ambiguous or general meanings by pass-

ing from the vector representations of FHilb to density matrices and positive op-

erators. We defined a negation operation to model not at the sentence level, and

compared sentences to their negations using k-hypnoymy as an entailment relation.

Iterating the CPM-construction brought us to the category CPM2(FHilb) and we

transitioned from representing word meanings as density matrices to using dual den-

sity matrices. Dual density matrices have two levels of mixing, so we could model

words with both ambiguous and general meanings in one dual density matrix. We saw

that CPM(C) has an environment structure and that CPM2(C) has two environment

structures. Using these two different environment structures we were able to build

maps that took two different kinds of sums over two dual density matrices of the

same type. These two kinds of sums correlated to the two levels of mixing, one for

ambiguity and one for entailment. We used these two distinct sums to model and and

or within the compositional distributional models. Additionally, we found a relation

between these models for conjunction and disjunction with or being a hyponym of

and. Finally, we presented some examples that combined conjunction, disjunction,

and negation and compared the entailment relation on sentences and phrases of vari-

ous constructions. We saw that these constructions behaved in a way we would expect

for logical sentences in natural language with an approximate entailment relation.

46

5.1 Future Work

Defining the main elements for logic is only the beginning steps towards fully under-

standing and formalizing logic in linguistic models. The examples presented in this

paper were limited and primarily for proof of concept. Now that we have a model for

these logical elements a full scale experiment needs to be done with data taken from

corpora. Large scale experiments must prove successful and efficient enough before

applying these models to natural language processing tasks. Dual density matrices

provide a lot of extra structure but they will also be more computationally expensive,

so it will be important to see in an experiment whether the extra linguistic power is

worth the extra computational resources. CPM can also be iterated as many times

as we like, CPMn. This could allow for modelling increasingly many features of lan-

guage. CPM(C) was clearly richer than C and CPM2 was clearly richer than CPM.

It is not clear though, and is an area of ongoing research, whether this increase in

expressive power continues indefinitely or not. Another main area of linguistic mod-

elling uses convex regions in conceptual spaces to model words. It will be interesting

to see if the elements of logic defined in this paper will carry over to these other types

of categories.

47

Chapter 6

Appendix

6.1 Proof of Proposition 4.2.2

The set of dual density matrices is a strict subset of the set of states in CPM2(FHilb):

First we show that every dual density matrix is a state in CPM2(FHilb).

A dual density matrix is of the form:

f f f f

C2

C1 C1

Using the reverse of the spider fusion rule and topological manipulations allowed

in the graphical calculus we can redraw our density matrices as:

7→f f f f f f f f

C1 C1 C1 C1

C2

C2

C2

C2

C2 C2

Letting C ′1 = C1 ⊗ C2 and g : C ′1 ⊗ C2 → B be:

48

g

C ′1 C2 C1C2C2

f:=

we have:

C2

C1 C1 C ′1
C2

C2

C ′1

f f f f g g g g=

The fact that the set of dual density matrices is a strict subset is because there

are states in CPM2(FHilb) that are not dual density matrices as we have defined

them. The following map is completely squared-positive, but is cannot be written in

the form of a dual density matrix:

AB∗BA∗AB∗BA∗

49

Bibliography

[1] Daniela Ashoush. Categorical models of meaning: Accommodating for lexical

ambiuity and entailment. Master’s thesis, University of Oxford, St. Hugh’s Col-

lege, Oxford, 2015.

[2] Daniela Ashoush and Bob Coecke. Dual density operators and natural language

meaning. EPTCS, 221, 2016.

[3] Desislava Bankova. Comparing meaning in language and cognition: P-hyponymy,

concept combination, asymmetric similarity. Master’s thesis, University of Ox-

ford, Oxford, 2015.

[4] Desislava Bankova, Bob Coecke, Martha Lewis, and Daniel Marsden. Graded

entailment for compositional distributional semantics. CoRR, abs/1601.04908,

2016.

[5] Bob Coecke. De-linearizing linearity: Projective quantum axiomatics from strong

compact closure. Electronic Notes in Theoretical Computer Science, 170:49–72,

2007.

[6] Bob Coecke. Axiomatic description of mixed states from selinger’s cpm-

construction. Electronic Notes in Theoretical Computer Science, 210:3–13, 2008.

[7] Bob Coecke and Matty J. Hoban, editors. Proceedings of the 10th International

Workshop on Quantum Physics and Logic, QPL 2013, Castelldefels (Barcelona),

Spain, July 17-19, 2013, volume 171 of EPTCS, 2014.

[8] Bob Coecke and Aleks Kissinger. Picturing quantum processes. 2016.

[9] Bob Coecke and Simon Perdrix. Environment and Classical Channels in Cate-

gorical Quantum Mechanincs, pages 230–244. Volume 6247 of Dawar and Veith

[11], 2010.

50

[10] Bob Coecke, Mehrnoosh Sadrzadeh, and Stephen Clark. Mathematical founda-

tions for a compositional distributional model of meaning. CoRR, abs/1003.4394,

2010.

[11] Anuj Dawar and Helmut Veith, editors. Computer Science Logic: 24th Inter-

national Workshop, CSL 2010, 19th Annual Conference of the EACSL, Brno,

Czech Republic, August 23-27, 2010. Proceedings, volume 6247. Springer Berlin

Heidelberg, 2010.

[12] Ellie D’Hondt and Prakash Panangaden. Quantum weakest preconditions. Math-

ematical Structures in Computer Science, 16(3):429–451, 2006.

[13] Edward Grefenstette and Mehrnoosh Sadrzadeh. Experimental support for a cat-

egorical compositional distributional model of meaning. CoRR, abs/1106.4058,

2011.

[14] Dimitri Kartsaklis. Coordination in categorical compositional distributional se-

mantics. In Kartsaklis et al. [16], pages 29–38.

[15] Dimitri Kartsaklis, Mehrnoosh Sadrzadeh, and Stephen Pulman. A unified sen-

tence space for categorical distributional-compositional semantics: Theory and

experiments. In Proceedings of the 24th International Conference on Computa-

tional Linguistics (COLING): Posters, pages 549–558, Mumbai, India, December

2012.

[16] Dimitrios Kartsaklis, Martha Lewis, and Laura Rimell, editors. Proceedings of

the 2016 Workshop on Semantic Spaces at the Intersection of NLP, Physics and

Cognitive Science, volume 221 of EPTCS, 2016.

[17] J. Lambek. Type Grammar Revisited, pages 1–27. Volume 1582 of Lecomte et al.

[19], 1999.

[18] Joachim Lambek. The mathematics of sentence structure. The American Math-

ematical Monthly, 65(3):154–170, 1958.

[19] Alain Lecomte, Francois Lamarche, and Guy Perrier, editors. Logical Aspects of

Computational Linguistics, volume 1582 of Lecture Notes in Computer Science.

Springer Berlin Heidelberg, 1999.

[20] K. T. Löwner. Über monotone matrixfunktionen. Mathematische Zeitschrift,

38:177–216, 1934.

51

[21] Saunders MacLane. Categories for the Working Mathematician, volume 5 of

Graduate Texts in Mathematics. Springer-Verlag, New York, 1978.

[22] Daniel Marsden and Jamie Vicary. Categorical quantum mechanics: An intro-

duction, 2016.

[23] J. Von Neumann. Mathematische Grundlagen Der Quantenmechanik. Springer-

Verlag, 1932. Translation :[24].

[24] J. Von Neumann. Mathematical Foundations of Quantum Mechanics. Princeton

University Press, 1955.

[25] Robin Piedeleu. Ambiguity in categorical models of meaning. Master’s thesis,

University of Oxford, Balliol College, Oxford, 2014.

[26] Robin Piedeleu, Dimitri Kartsaklis, Bob Coecke, and Mehrnoosh Sadrzadeh.

Open system categorical quantum semantics in natural language processing.

CoRR, abs/1502.00831, 2015.

[27] Tamara Polajnar. Collaborative training of tensors for compositional distribu-

tional semantics. CoRR, abs/1607.02310, 2016.

[28] Anne Preller. From logical to distributional models. In Coecke and Hoban [7],

pages 113–131.

[29] Anne Preller and Joachim Lambek. Free compact 2-categories. Mathematical

Structures in Computer Science, 17(02):309–340, 2007.

[30] Anne Preller and Mehrnoosh Sadrzadeh. Bell states and negative sentences in

the distributed models of meaning. Electronic Notes in Theoretical Computer

Science, 270(2):141–153, 2011.

[31] Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. The frobenius anatomy

of word meanings I: subject and object relative pronouns. CoRR, abs/1404.5278,

2014.

[32] Mehrnoosh Sadrzadeh, Stephen Clark, and Bob Coecke. The frobenius anatomy

of word meanings II: possessive relative pronouns. CoRR, abs/1406.4690, 2014.

[33] Hinrich Schütze. Automatic word sense discrimination. Computational Linguis-

tics, 24(1):97–123, 1998.

52

[34] Peter Selinger. Dagger compact closed categories and completely positive maps.

Electronic Notes in Theoretical Computer Science, 170:139–163, 2007.

[35] Dominic Widdows and Stanley Peters. Word vectors and quantum logic: Ex-

periments with negation and disjunction. Mathematics of Language, 8:141–154,

2003.

53

