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Abstract

This thesis consists of two contributions built on the foundation of higher category theory.

The first is a novel framework for rewriting in higher categories. Its theoretical foundation

is the theory of quasistrict higher categories and the practical realisation is a proof assistant

Globular. Building on this, we propose a new definition of a quasistrict 4-category, and prove

a result that in a quasistrict 4-category, an adjunction of 1-morphisms gives rise to a coherent

adjunction satisfying the butterfly equations. The second contribution is the application

of a higher categorical formalism to quantum theory to show equivalence between mutually

unbiased bases and satisfaction of quantum key distribution schemes, and to prove correctness

for construction of a particular set of solutions to the Mean King problem.
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Chapter 1

Introduction

Mathematics is the study of conceptual systems and processes that can be described with the rules of

logic. To achieve a more thorough understanding of an abstract idea, one may decide to study ideas that

are different but related, i.e. share certain similar properties. Focusing on the similarities between these

ideas may yield further insights and lead to a deeper appreciation of the original concept. The study of

relationships between mathematical structures is the domain of category theory, in the words of Eugenia

Cheng [16] described as the mathematics of mathematics.

Going further, given some mathematical concepts and relationships between them, it may be of

interest to study analogies between these relationships and going even further, to study analogies between

analogies and so on ad infinitum. All with the purpose of gaining a better understanding of the original

concept. The mathematical discipline that allows us to adapt this line of inquiry is called higher category

theory. The adjective ‘higher ’ denotes the higher degrees of analogies that we study. The discipline

has found a wide variety of applications, especially in homotopy theory, differential geometry and more

recently in quantum theory, where the compositional nature of the theory plays a pivotal role.

Concentrating on abstract concepts is not necessarily in contrast with the study of physical processes,

as mathematics provides an abstract model for what we observe in the real world. It depends on the

particular context what level of abstraction is most desirable. For example, let us take the set of axioms

for the real numbers. From the point of view of foundations of mathematics, it is of great interest to

delve deep and analyse different models for these axioms, such as constructions from rational numbers

using convergent Cauchy sequences or by Dedekind cuts. On the other hand, while performing everyday

arithmetic calculations one does not need such a deep level of detail. Especially, if one is just interested

in the result. In that case, keeping track of all the axioms used in the process would make the derivation

much too cumbersome.

Similarly in category theory, there are instances when a higher level of abstraction gives additional

insights. Various mathematical techniques may be applied to abstract away from the low-level details, and

one such tool is graphical languages. For example, a composite 3-cell in a 3-category may be graphically

presented as follows:

γ

φ

α

β

In this picture, each of the three ways in which two 3-cells can be composed together corresponds

to a different spatial dimension: y-axis for 2-composition, x-axis for 1-composition and finally z-axis,

perpendicular to the plane of the page, for 0-composition. Graphical languages for category theory work
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exceptionally well, precisely because they are easily readable for humans and play to the strengths of our

cognitive abilities. At the same time, while they can be used as an intuitive notational shorthand, in

some cases they can also be made entirely rigorous. In the literature, graphical calculi for n-categories

have been formally developed for n ≤ 3 [9, 29]. Completeness and correctness theorems for these calculi

have been proved for monoidal categories [29] and for bicategories [55,61]. Building on this, we conjecture

that similar results can be obtained for higher categories of dimension n ≥ 3.

The crucial advantage of the graphical approach, in the spirit of finding the right level of abstraction,

is the ability to absorb some of the axioms and make the category less burdensome to work with. Another

benefit is the possibility to make the inherent geometrical nature of some algebraic proofs more explicit.

A comprehensive survey of graphical theories for monoidal categories and weak 2-categories is due to

Selinger [50].

Graphical languages are however not the only technique that simplifies reasoning about higher

categories. The second method that we utilise in this thesis is the concept of simplifying some rules

governing the behaviour of the mathematical object, without disrupting its equivalence to the original

structure. An example of this is the notion of quasistrict n-categories, where one aims to strictify some of

the equalities in weak n-categories while still maintaining equivalence to them. However, as the dimension

and the complexity of categorical structures and their graphical representations increases, both methods

of simplifying the reasoning about higher categories quickly exhaust their suitability. This is where the

need for automated reasoning arises. In this thesis, we combine all three techniques to provide a framework

for automated reasoning about quasistrict n-categories and their graphical representations and apply it

to prove a result on coherent adjunctions in a quasistrict 4-category.

One discipline where category theory and graphical languages used to reason about it have found

a particularly successful application is quantum computing. In the research programme of categorical

quantum mechanics initiated by Abramsky and Coecke [1,2], a model of a quantum information processing

system in the language of category theory limits the need to directly refer to the underlying Hilbert space.

Instead, it allows us to concentrate on the topological flow of information within the system. Therefore,

letting us find a useful level of abstraction with the aid of graphical languages. This is in contrast with

reasoning about quantum computation in von Neumann’s language of Hilbert spaces and linear maps,

which has been likened by Abramsky and Coecke to trying to write a program on a classical computer

using an assembly language of 0’s and 1’s.

1.1 Key contributions and thesis outline

The main contributions of this thesis are summarised in the list below. We present the following:

(1) New theory of generic-position higher-dimensional diagrams, with a combinatorial description.

(2) Framework for the definition of quasistrict higher categories, requiring considerably fewer axioms

than traditional approaches.

(3) Application of this framework to propose a new definition of a quasistrict 4-category.

(4) Proof that an adjunction of 1-morphisms in a quasistrict 4-category gives rise to a coherent adjunction

satisfying the butterfly equations, utilising the definition of a quasistrict 4-category. It is the first

fully-detailed proof to our knowledge of a non-trivial result conducted explicitly in the setting of a

4-category.

(5) A completely syntactic proof within the higher categorical framework that a basis satisfies quantum

key distribution if and only if it is mutually unbiased.

(6) A logical correctness proof of Klappenecker and Roettler’s [33] construction of a solution to the Mean

King problem from a family of mutually unbiased bases.

2



This thesis is organised in seven chapters. In this introductory chapter we provide a short primer

on higher category theory, outlining its basic premises and giving intuition on the graphical calculi that

can be used to reason within it. We give motivation for using the concept of quasistrict n-categories and

introduce the notions of a signature and a diagram. These structures are used to develop a framework for

automated reasoning about quasistrict n-categories. We also give an example of a proof in the graphical

formalism by showing that in a strict 2-category every equivalence gives rise to an adjoint equivalence.

In Chapter 2, we introduce a new framework for automated reasoning and rewriting for quasistrict

higher categories. As its theoretical foundation, we define two mutually-recursive structures. The first

is a signature for a higher dimensional rewriting system, whose definition builds on the notion of an

n-polygraph. Intuitively, a signature can be thought of as the collection of generating cells for a quasistrict

n-category. The second structure is a generic-position higher-dimensional diagram which, in turn, is

intended to correspond to the notion of a composite cell in a quasistrict n-category. We then discuss

presentations of higher categories and how this notion could be leveraged to provide the definition of a

quasistrict n-category using the signature structure. To the best of our knowledge such a combinatorial

scheme for quasistrict higher categories has never previously been described. We define some basic

operations on diagrams, such as rewriting and composition and conclude the chapter by proving a series

of results on associativity and distributivity of diagram composition, which directly correspond to the

axioms imposed in the traditional definitions of higher categories. This material also serves as correctness

proofs for algorithms described in Chapter 4.

We further develop these structures in Chapter 3, where we endow signatures with the notion of a

non-trivial interchanger morphism. In doing so, we follow Gray’s approach [25] that involves strictifying

all associator and unitor morphisms in a weak n-category and only leaving the interchanger morphisms

non-trivial. We generalise the interchange law for 2-cells in a weak 2-category to the interchange of k-cells

in a weak n-category and explore the plethora of higher-level coherences that arise from it. This allows

us to give definitions of quasistrict 2- and 3-categories as signatures that support the interchange law and

the appropriate higher-level coherences. We then proceed to show that a certain 4-signature satisfies the

axioms of a switch 3-category [22], which is an alternative presentation of a Gray-category. As a result,

we propose a new definition of a quasistrict 4-category as a 5-signature based on the same premise. In

the final part of the chapter, we show how some standard categorical constructions could be retrieved in

this setting, culminating in the proof that a triply degenerate 5-signature supporting certain higher-level

coherences is a symmetric monoidal category.

In Chapter 4, we give a system description of the proof assistant Globular. The tool is based

on the framework for reasoning about quasistrict n-categories constructed in Chapters 2 and 3. We

discuss the technologies used and justify the design choices made. This is followed by an outline of

the algorithms implemented and comments on their relation to the operation of diagram composition

defined in Chapter 2. Finally, we give a short introduction to the user interface and discuss some possible

extensions of the tool.

We use the new definition of a quasistrict 4-category to establish a result on adjunctions in a quasistrict

4-category in Chapter 5. We extend the result on strengthening an equivalence in a 2-category shown in

Theorem 1.3.4 in this chapter, to prove that an adjunction of 1-morphisms in a quasistrict 4-category gives

rise to a coherent adjunction satisfying the butterfly equations. Adjunction is a notion slightly weaker

than an equivalence, where a 1-morphism is not invertible, but in some sense has a left inverse ‘from

below’ and a right inverse ‘from above’. Of special interest are coherent adjunctions, which carry even

more structure. It is generally expected that an adjunction of 1-morphisms in a weak n-category gives rise

to a more coherent adjunction. This has been proved for an arbitrary n by Verity and Riehl [47] assuming

the homotopy hypothesis, which our result for a quasistrict 4-category does not depend on. The proof

is conducted entirely in the graphical calculus and has been formalised with the aid of Globular giving

further evidence for the correctness of the definition of a quasistrict 4-category. The main derivation

consists of over 140 5-cell transformations and, if it was to be expressed as sequences of lower level cells,

would consist of several thousand diagrams. For that reason it would be infeasible to carry out the proof
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without the assistance of automated reasoning. To best of our knowledge this is the first substantial

proof of a non-trivial property conducted explicitly in the setting of a 4-category.

In Chapter 6, we discuss applications to quantum theory. We use symmetric monoidal 2-categories

to formalise the notion of complementarity and describe the quantum key distribution protocol. We also

prove correctness of construction of a particular set of solutions to the Mean King problem, building on

the approach first proposed by Vicary [60]. The higher categorical formalism has never previously been

used to describe quantum protocols of comparable complexity.

Finally, in Chapter 7, we discuss some areas of potential future investigation, including an extension

of the definition of a quasistrict 4-category to n ≥ 5 and a deeper analysis of the properties of the higher

dimensional rewriting system defined by n-polygraphs.

1.2 Background on higher categories

Higher category theory is the study of n-categories. In addition to objects and morphisms present in

ordinary category theory, an n-category is endowed with higher-level morphisms. In the same way as

morphisms allow us to talk not only about equality, but also about isomorphism of objects in traditional

category theory, a 2-morphism (or a 2-cell) allows us to talk about isomorphism of 1-morphisms (1-cells).

In this setting objects are referred to as 0-cells. In addition to 1-cells between objects, an n-category has

2-cells which are morphisms between 1-cells, and in general (k + 1)-cells between k-cells up to level n.

There are n distinct composition operations that let us combine these into composite cells.

In the graphical calculus, a k-cell in an n-category is represented as an (n−k)-dimensional geometrical

object. Due to this fact, the graphical representation of a k-cell is different depending on the n-category

that we work in. This leads to the notions of string diagrams for 1-categories and planar diagrams for

2- and 3-categories.

For example, in a 2-category the standard way of graphically expressing 0-cells is as surfaces, 1-cells

as wires and 2-cells as points. In the example below, we could see how a traditional pasting diagram

denoting a composite 2-cell could be translated into a graphical representation:

s

t

A

B

C

D
E

F

⇔
A

B

C

D
E

F

s

t

The location of corresponding cells is the same in both pictures. 2-cells have been transformed into

points, 1-cells into wires and 0-cells into regions. As stated earlier, vertical composition corresponds to

placing 2-cells on top of each other along the y-axis and horizontal composition to placing them next to

each other along the x-axis.

In a 3-category the dimensions of geometrical representations of cells increase by one, so that 0-cells

are now represented by volumes, 1-cells by surfaces, 2-cells by wires and 3-cells by points, which we draw

as little labelled circles to increase the clarity of presentation. Two 3-cells can now be composed in three

distinct ways, which corresponds to glueing the diagrams together along one of the three boundaries:

β
α βα

β

α

In the case of 0-composition, we place the sheet containing the 3-cell α in front of the sheet containing β.

This is realised by a quasi-3D picture and the effect of transparency of the front sheet. For 1-composition

we place the sheets next to each other and for 2-composition on top of one another. Alternatively, a
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3-cell can be represented by a pair of 2D pictures, which in this context can be thought of as a pair of

snapshots of the source and the target boundary of the 3D representation, where the former transitions

smoothly into the latter. Depending on the context we make use of either of these variants.

Remark on colour and transparency. The diagrams in this thesis make essential use of colour and

transparency. We therefore recommend reading this document on a screen, or as a colour printout. For

printing we recommend Adobe Reader, as some other PDF viewers do not correctly handle transparency.

1.2.1 Quasistrict n-categories

Higher category theory studies relationships between objects, one such relationship is the concept of two

objects (or at higher level relationships) being ‘the same’. The axioms governing cell composition could

either be more strict or more weak with regards to defining the notion of equality between cells. On one

end of the spectrum we have weak n-categories, where rules such as associativity or unit law hold only up

to higher-dimensional morphisms. This is in contrast to the other extreme of strict n-categories, where

these rules are simple equalities. For instance, given a composite cell α ◦ (β ◦ γ), in a strict category

associativity of composition is expressed by the equality: α ◦ (β ◦ γ) = (α ◦ β) ◦ γ. However, in a fully

weak category one would only make a statement about these two composite cells being related by a

higher-level associator morphism α ◦ (β ◦ γ) → (α ◦ β) ◦ γ, which is a member of an invertible natural

family of morphisms indexed by α, β, γ.

Weak n-categories are more prevalent in many disciplines of mathematics, however due to the presence

of these additional families of cells, they can be more difficult to work with. Each family of associator,

unitor or interchanger morphisms has to satisfy certain higher-level coherences, which themselves form

higher-level invertible morphisms subject to coherences. This process leads to a fast growth of the list

of axioms, so that simply stating all of them for n as low as 5 takes many pages and conducting any

meaningful calculation would be unmanageable.

Strict n-categories are far easier to define [37], however their expressive power is limited. To illustrate

this, let us consider the following interchange law for 2-cells in a weak 2-category expressed in the form

of a 3-cell:

α = (f ◦1 1D) ◦2 (1A ◦1 g) :=

f

g

C

DB

A

I−−−−→
f

g

C

DB

A

:= (1D ◦1 g) ◦2 (f ◦1 1C) = β

When we consider a 3D graphical representation of this 3-cell, we see that it retrieves the familiar notion

of a braiding:

This 3-cell behaves like a proper topological braiding and produces a cornucopia of higher-level coherences.

Throughout the reminder of this thesis, we interchangeably refer to these either as singularities, coherences
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or interchangers. Some example coherences for n = 4 include:

→

←

→
←

When we consider the interchange law in a strict setting the two morphisms, α and β defined above, are

instead strictly equal and there is no 3-cell between them, i.e. we have:

α = (f ◦1 1D) ◦2 (1A ◦1 g) = (1D ◦1 g) ◦2 (f ◦1 1C) = β

In terms of a diagrammatical calculus this corresponds to two distinct graphical representations of the

same morphism. This way, the braiding 3-cell and all the related higher-level morphisms do not arise.

As a consequence, starting from n = 3, the notion of a strict n-category is no longer equivalent to the

notion of a weak n-category [25]. It is then of limited use that strict n-categories have an elegant finite

presentation using n-polygraphs [14] or n-computads [54] which was used to develop and realise in practice

a higher-dimensional rewrite theory [42].

This presents a clear need for a notion that would maintain equivalence to a general weak n-category,

but at the same time would be easier to work with. In this context, easiness is directly related to the

length and the simplicity of proofs within the structure. One method to achieve that is to take a weak

n-category and strictify as many of its rules as possible without disrupting the equivalence to a weak

n-category. This is an informal description of what a semistrict n-category is. We take a slightly enhanced

approach in which we are willing to accept a larger set of non-strict rules, as long as it leads to simpler

proofs of optimal length. Semistrictness may, in general, be achieved in two distinct ways: one is to

follow Gray’s approach of turning the unitor and associator morphisms into identities and leaving the

interchange law non-trivial. An alternative method, due to Simpson [52], keeps unitors non-trivial while

making associators and interchangers strict. We follow the first of these paths and use the term quasistrict

to refer to any n-category that has strict associator and unitor morphisms, but is still equivalent to a

general weak n-category.

We compare this approach to other attempts to define semistrict n-categories. On the spectrum

between fully weak n-categories and strict n-categories, the signature structures have a similar degree of

strictness as the switch 3-category due to Douglas and Henriques [22], which is an alternative presentation

of a Gray-category. In some aspects they are however slightly less strict than the semistrict 4-category,

referred to as 4-teisi, proposed by Crans [20]. The essence of these differences is that we do include

some additional variants of higher-level coherences. This is however for a good reason, as it allows us to

construct proofs with less bookkeeping and ultimately higher clarity.

Semistrict and quasistrict n-categories for n > 3 are not, as of yet, well-understood. In fact even for

n = 4, there are no widely accepted definitions. This is why, in Chapter 3, we propose a new definition of a

quasistrict 4-category. In the reminder of this thesis we follow the practice of explicitly stating whether we

are dealing with a weak, quasistrict, semistrict or strict n-category, however if in later chapters instances

with no direct characterisation appear, assume that they are referring to a quasistrict n-category.

1.2.2 The need for automation

As mentioned before, with the rising values of n, higher n-categories become increasingly difficult to reason

about, even with the aid of graphical calculus and the concept of quasistrict n-categories, giving rise to

the need for automated reasoning. A proper framework for automation should have a firm mathematical

foundation. Additionally, it should allow us to formalise a categorical proof in the graphical language, to
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reason about diagrammatical structures and to prove their properties directly without the need to refer

to the underlying category. Kissinger created such a framework for symmetric monoidal categories [31].

As stated before, in this thesis we propose a framework for quasistrict n-categories.

We adapt an approach to higher category theory that emphasizes rewriting. For a k-cell α : f → f ′ in

a weak n-category, where f, f ′ are (k−1)-cells, we consider α to be a process that rewrites f into f ′. The

main benefit of this approach is that it provides a certain unity between the notions of composition and

proof. A composite k-cell β = βm ◦ βm−1 ◦ ... ◦ β1 such that bi : gi → gi+1 can be viewed as a proof that

a (k − 1)-cell g1 can be rewritten to gm+1. But in fact, every individual k-cell βi could also be thought

of as a lemma that gi rewrites into gi+1. Then, by composing all the separate k-cells βi, we produce

a multi-step proof of some more complex property of (k − 1)-cells. For example, given a 3-cell α that

witnesses an associativity rule of 2-cells:

α =
α→

We can prove the following theorem about associativity, the proof presented as a composition of 3-cells:

α→ α→ α→

A composite k-cell can be then defined as rewrite sequence between (k − 1)-cells. In the context of this

observation, for a quasistrict n-category, interchangers between n-cells may be realised as (n + 1)-cells.

Hence, in fact, the most convenient setting to work in is an (n + 1)-category where these interchangers

can be included as morphisms within the category instead of just being listed as standalone rules on top

of an n-category.

1.2.3 Periodic table of higher categories

A useful feature in higher category theory is that trivialising the lowest-level cells in an n-category

produces categories of lower dimensions that instead carry more structure for instance: braiding, syllepsis

or symmetry [4]. The following table, as given in [5], presents some basic relations between categories:

its columns are labelled by the dimension n of the category and its rows by the number m of levels where

elements are stabilised. For instance, for n = 4, m = 3, we have a 4-category with 0-, 1-, and 2-cells

trivialised which gives a symmetric monodial category.

2 3 4 5 6
0 2Cat 3Cat 4Cat 5Cat 6Cat
1 MonCat Mon2Cat Mon3Cat Mon4Cat Mon5Cat
2 CommMon BrMonCat BrMon2Cat BrMon3Cat BrMon4Cat
3 - CommMon SymMonCat SylMon2Cat SylMon3Cat
4 - - CommMon SymMonCat SymMon2Cat

This table only involves weak n-categories, however we can still make use of it in our theoretical

framework. There are three steps to this approach: Firstly, given a quasistrict n-category prove that

it is equivalent to a semistrict n-category. Secondly, show that a semistrict n-category is equivalent to a

weak n-category. Finally, use the periodic table of higher categories to transition into a weak category
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of a lower dimension that in exchange has more structure. At the moment, the highest dimension where

equivalence between a weak n-category and a semistrict n-category has been proved is n = 3 [25]. As

stated before, in Chapter 3 we propose a definition of a quasistrict 3-category, based on the signature

structure, which is equivalent to a Gray-category 3.5.2. Based on that, for n = 3 we have the following

process:

• Gray 3-category is equivalent to a weak 3-category

• Weak 3-category with one object is a weak monoidal 2-category

• Weak monoidal 2-category with one object is a braided monoidal category

Hence, by modelling a Gray 3-category, we are also able to model a braided monoidal category. For n = 4

this method would yield a symmetric monoidal category, however to make this claim completely rigorous,

a coherence theorem for quasistrict 4-categories would need to be proved.

An important disclaimer at this stage is that currently there are no coherence theorems for semistrict

or quasistrict n-categories for n ≥ 4. Moreover, as stated before, there are not even any widely accepted

definitions of semistrict or quasistrict n-categories for these values of n. It is therefore entirely possible,

that there may exist some weak n-categories which are not equivalent to any quasistrict n-category and,

as such, cannot be modeled in our approach. It also remains to be shown for n = 4 that the definition

of a quasistrict n-category based on the signature structure that we propose in Chapter 3 gives a weak

n-category.

1.3 Proofs in the graphical calculus

The notion of equivalence between two mathematical structures is often captured by an isomorphism

between them. In higher category theory this may however be not sufficient, since both invertible cells

witnessing the isomorphism are themselves subject to higher-level morphisms. For example, for an

isomorphism witnessed by A
f−→ B and its inverse, we have morphisms f ◦f−1 α−→ idA and idB

β−→ f−1 ◦f .

In a 2-category this is expressed formally as follows:

Definition 1.3.1. In a 2-category, an equivalence is a pair of objects A and B, a pair of 1-cells A
F−→ B

and B
G−→ A and invertible 2-cells F ◦G α−→ idA and idB

β−→ G ◦ F , denoted as follows:

α = β =

Invertibility of α and β is captured by the following 3-cells:

→
←

→
←

→
←

→
←

Note that equations between 2-cells may be expressed in the form of invertible 3-cells that act as rewrites

between both sides of the equality. Here, these 3-cells are depicted in the form of 2D snapshots of the

source and the target. A special case is where the 2-category is Cat, in which case this yields the usual

notion of equivalence of categories.
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In a weak n-category, for A and B to be equivalent, we also require α and β to be each other’s

inverses and similarly for all the higher-level equivalences up to n. If all these morphisms are invertible,

we say that A and B are equivalent in a maximally weak sense. This is a desirable property, as equivalent

objects can be replaced by one another in any investigation without affecting the outcome, therefore truly

allowing us to gain insight about a mathematical object by studying another related structure.

In practice however, there are instances where maximally weak equivalences do not arise. In those

cases, we may instead study less strong notions that nonetheless give us some insight about the related

objects. One such notion is adjunction, where a 1-morphism which is a part of it, may be regarded

as having a left inverse ‘from below’ and a right inverse ‘from above’. This is formally expressed in a

2-category by the following:

Definition 1.3.2. In a 2-category, an adjunction is a pair of objects A and B, a pair of 1-cells A
F−→ B

and B
G−→ A and a pair of 2-cells F ◦G α−→ idA and idA

β−→ G ◦ F , denoted as follows:

α = β =

That satisfy the following snake equations:

= =

Many interesting features of category theory, such as universal constructions or limits, arise from the

presence of adjunctions.

On the other hand, equivalence is not the most structured manner in which two objects could be

related. The notions of equivalence and adjunction are not incompatible and we may combine them to

produce a more coherent notion of equivalence:

Definition 1.3.3. In a 2-category, an equivalence is called an adjoint equivalence if it additionally satisfies

the snake equations, as described in Definition 1.3.2.

In 3- and 4-categories in a similar manner, more coherent notions of adjunctions could be obtained.

In Chapter 5, we show two results of this type. Firstly, that in a 3-category an adjunction of 1-morphisms

gives rise to a more coherent adjunction satisfying the swallowtail equations. Secondly, that in a

quasistrict 4-category an adjunction of 1-morphisms gives rise to a more coherent adjunction satisfying the

butterfly equations. In particular this second result is, to the best of our knowledge, the first substantial

proof in the setting of a 4-category given in the literature. As the result shown was generally expected in

the community, this constitutes even further evidence for the correctness of the definition of a quasistrict

4-category.

To give the reader a flavour of what proofs in the graphical calculus are like, we present an example

where a well-known fact that an equivalence in a 2-category gives rise to an adjoint equivalence [36] is

proved. Since we are operating in a 2-category, a 0-cell is graphically represented by a surface, a 1-cell

by a line and a 2-cell by a point.

Theorem 1.3.4. In a 2-category, every equivalence gives rise to an adjoint equivalence.

Proof. Given an equivalence witnessed by α, β, by Definition 1.3.3, we need to build an equivalence that

additionally satisfied the snake equations 1.3.3. Let α and β be invertible 2-cells that are graphically

represented follows:

α = β =
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Then, let us consider the following 2-cell α′ constructed from α−1, β and α :

α′ = :=

We want to show that α′ and β witness an adjoint equivalence, for that we need to satisfy two conditions:

• α′ and β are invertible, hence witness an equivalence

• α′ and β satisfy the snake equations

Now, in line with the rewriting perspective, to prove that an equation is satisfied means to show that the

left hand side could be rewritten into the right hand side by a series of (3-cell) rewrites. First, since α

and β are invertible, invertibility conditions outlined in Definition 1.3.1 hold.

Since both α and β are invertible, invertibility of α′ straightforwardly follows. To show the satisfaction

of the first snake equation, we perform the following sequence of rewrites:

→ → → → →

→ → → → →

→ → → →

The other snake equation follows in a similar manner, hence all conditions are satisfied and α′ and β

witness an adjoint equivalence, as required.

The sequence of rewrites showing that the first snake equation is satisfied forms a composite 3-cell.

We may gain some additional insight about the topological nature of the proof by viewing it in its entirety

as a single diagram:

The graphical representation of this 3-cell is expressed here in a 2-dimensional view with the lowest

dimension projected out, so we can look at this entire 3-cell ‘side-on’. The nodes represent applications

of rewrite rules, and the wires represent 2-cells. From this view, we can examine the proof and possibly

simplify it by eliminating redundant steps (e.g. a rewrite immediately followed by its inverse) or by

re-arranging rewrites that are applied to independent parts of the diagram. In Chapter 5, we use similar

techniques to show an extension of this result for 4-categories: that an adjunction of 1-morphisms gives
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rise to a coherent adjunction satisfying the butterfly equations. An example 5-cell step in that derivation

is expressed in the graphical calculus by the following two pictures:

→

To explain the meaning of these two pictures and of the composite 3-cell representing the proof of

Theorem 1.3.4, firstly we discuss the details of the graphical formalism in Section 3.1. Secondly, we

describe how non-trivial interchanger morphisms in quasistrict 3- and 4-categories can be illustrated in

this notation in Sections 3.2.2, 3.2.3. Finally, in Section 4.1 we demonstrate how to use projections

into R2 for graphical representations of 4- and 5-cells and, as a consequence, how to render them using

Globular. As stated earlier in the introduction, the main derivation consists of 140 steps of this kind, if we

were to express them all without the use of projections a couple thousand pictures would be needed. The

necessity to keep track of all this data clearly demonstrates the need to employ techniques of automated

reasoning to conduct proofs in n-categories for dimensions as low as n = 4.

1.3.1 Globular

On the basis of the theory presented in this thesis we created a proof assistant Globular. It is a practical

realisation of the techniques for automated reasoning about higher categories that we develop in Chapter 2

which implements the theory of quasistrict categories, as presented in Chapter 3. Globular is an online

tool for formalisation and verification of higher categorical proofs that allows users to hyperlink proofs

directly into their research papers. It produces graphical visualisations of higher-dimensional proofs

and type checks to prevent malformed cells from being constructed. It adapts the perspective of higher-

dimensional rewriting, i.e. proofs being viewed as sequences of rewrites between graphical representations

of lower level objects.

As explained earlier in this chapter, as the dimension of categorical structures increases, graphical

languages alone become no longer sufficient to make the arising complexity manageable. This creates the

need for a framework automated reasoning. The final step and the ultimate test of usefulness for such a

framework is practical implementation.

Globular is built on the foundation of two basic structures: signatures and diagrams, as defined

in Chapter 2. Due to their mutual dependence, the user may build both structures simultaneously.

Generators in the signature could be used to create increasingly complex diagrams, which in turn

could be designated as sources and targets of higher level cells added to the signature. Additionally,

Globular supports two methods of modifying diagrams. The first is composition, as abstractly defined in

Definition 2.4.6, which corresponds to the categorical notion of composition. The second is rewriting,

as abstractly defined in Definition 2.3.4, which, in accordance with the higher dimensional rewriting

perspective, allows us to create proofs.

The current capability of the tool is modelling quasistrict categories, as defined in Chapter 3, up to

and including dimension n = 4. Even though there exist other tools for automated reasoning about

symmetric monoidal categories [32] and opetopic higher categories [24], none of them have capabilities

comparable to Globular, which is the first tool of its kind.

The overarching goal with Globular is to create a proof assistant that would be intuitive to use and

genuinely useful for the category theory community. In the 9 months since deployment, the tool, which

is hosted on the web at http://globular.science, has been used over 8000 times by 1800 unique users,
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who uploaded 36 proof formalisations into the publicly available gallery on the Globular webpage. We

hope that as we further enhance the tool’s capabilities these numbers will increase even further.

1.4 Signatures and Diagrams

In Chapter 2 we introduce a pair of mutually-recursive diagram and signature structures that serve as

the basis of the theoretical model for automated reasoning in quasistrict n-categories. Here we give an

informal introduction to these structures and give an example that exhibits the essence of an approach

that emphasizes quasistrictness. Intuitively, a signature can be thought of as the set of generating cells for

an n-category and a diagram as a specific composite k-morphism built from the elements in the signature.

Producing a general scheme for automated reasoning in quasistrict n-categories poses significant

difficulties. Firstly, graph-like features of diagrams used in Kissinger’s formalism for symmetric monoidal

categories, as described in [31], are no longer present in higher dimensions. Secondly, an arbitrary

composite n-cell can be used as the source or target of an (n + 1)-cell, which is itself a building block

of a composite (n + 1)-cell, so a structure that allows that has to be employed. Finally, as dimensions

go up, for n ≥ 4 it quickly becomes difficult to visualise the structures that are being modeled. Because

of all these reasons, generic-position higher-dimensional diagrams for quasistrict n-categories have never

previously been defined and their definition is an original contribution of this thesis.

The key innovation is the total order structure imposed on n-cells in an n-dimensional diagram.

Recall that, in a weak n-category the same cells composed in different orders could give different

composite cells as the outcome. These in turn need to be related by higher level morphisms, which

for quasistrict n-categories are non-trivial interchangers. An example of this phenomenon is given for

horizontal composition in a 2-category in Subsection 1.2.1, where this gives rise to the interchange law.

Diagrams endowed with the order inducing data capture the substance of the quasistrict approach and

the implicit order that it induces on the elements of a composite n-cell. Without the order inducing data,

one would instead model the axioms of a strict n-category. To illustrate the importance of this concept,

we present examples of diagrams Di over the same signature σ that consist of the same generators but

differ in the order they are composed in. In a strict setting, all these diagrams would be equal, however in

a quasistrict approach we need to distinguish between them and subsequently relate them by higher-level

cells: interchangers. Labels in these diagrams are to be thought of as types of the individual components.

Here, we informally use the graphical notation for the diagram and signature structures for illustrative

purposes. The notation is formally specified in Definition 3.1.1, once correctness of the abstract definitions

of diagrams and signatures is proved in Chapter 2.

Let σ be as follows:

σ = {{r1, r2}, {e1, e2}, {v1, v2, v3, v4, v5}}

Then, the different individual diagrams and the combinatorial data representing them are as follows:

D1.g = [v1, v3, v2]

D1.e = [[0], [1], [1]]

D1.s = [(e1, [])]

r1 r2

e1

e1

e2

e2

v1

v2
v3

D2.g = [v1, v2, v3]

D2.e = [[0], [2], [1]]

D2.s = [(e1, [])]

r1 r2

e1

e1

e2

e2

v1

v2

v3
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D3.g = [v2, v1, v3]

D3.e = [[1], [0], [1]]

D3.s = [(e1, [])]

r1 r2

e1

e1

e2

e2

v1

v2

v3

D4.g = [v1, v2, v3]

D4.e = [[0], [1], [2]]

D4.s = [(e1, [])]

r1 r2

e1

e1

e2

e2

v1

v2

v3

These 2-diagrams consist of the same components and differ only in the order in which they have been

composed. This is reflected in the different numerical values within the lists that specify the position

of a node in a horizontal slice. A comprehensive description of the graphical notation for combinatorial

diagrams is given in Chapter 3.

This has a profound effect on the operations of diagram composition and rewriting, whose abstract

definitions we provide in Chapter 2. Here we give an intuitive overview on when these two procedures

are applicable and what are the effects of applying them to a diagram. We use the example diagram

structures defined above in order to further emphasise the impact of the order inducing data. In the

presentation below, whenever the types of individual cells within diagrams are unambiguous, we omit the

superficial type labels.

Intuitively, to ‘rewrite’ a diagram D means to replace some part of it S with another another diagram

T , such that the resulting structure is still a valid diagram. There are certain criteria we could impose on

S and T to ensure that. These are globularity conditions, whose name is inspired by the corresponding

notion in higher category theory, i.e. we require sources and targets of S and T to match. We define

this formally in Chapter 2, but informally this ensures that T could be inserted into the empty slot left

by the removal of S from D, so all cells on the boundaries match. Let us consider the following example

rewrite defined by S and T :

S =

v2

v3

e2

e2

T =

v5

v4

e2

e2

e2 e2

Let us then apply it to diagram D1 first. We can see that S appears as a subdiagram in D1, replacing

S with T results in the rewritten diagram, the location of both S and T is marked with blue dashed

rectangles, which are not a part of the graphical formalism:

D1 =
Rewrite(S,T )−−−−−−−−→

Now note the diagram S does not appear as a part of the remaining diagrams D2, D3 and D4. This is

for the following reasons:
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• In D2, the node v2 appears before v3 in the list of generators D.g. Additionally, a relation between

edges is introduced, so that the incoming edge of v3 is to the left of the outgoing edge of v2.

• In D3, the node v2 appears before both v1 and v3 in the list of generators D.g

• In D4, similarly as for D1, the node v2 appears before v3 in the list of generators D.g. Additionally,

a relation between edges is introduced, so that the incoming edge of v3 is to the right of the outgoing

edge of v2.

Note how in D3, because of the ordering of v3 and v2, neither of their edges is to the left or right to the

other. As S does not arise within D2, D3 and D4, then the rewrite cannot be applied. The only diagram

rewritable using S and T is D1.

The second diagram modifying operation is composition, which is formally defined in Chapter 2.

Intuitively, this procedure allows us to ‘glue’ together two diagrams that share a common boundary.

These do not necessarily have to be of the same dimension. In this context, a source boundary of an

n-diagram is to be understood as the (n−1)-diagram created by only considering the (n−1)-cells that are

not in the target of any of the n-cells in the diagram. The intuition for the target boundary is analogous.

We again illustrate this with the aid of the previously defined diagrams D1, D2, D3, D4.

Note that, even though the ordering of nodes within each of these diagrams is different, this does not

affect the cells in either the source or the target boundary. Hence for all four example diagrams we have

the same source boundary Bs and the same target boundary Bt, which are both 1-diagrams:

Bs =
e1

r2r1

Bt =
e1 e2

r2 r2r1

Note that the 1-cells in the graphical representations of the 1-diagrams above are expressed as

0-dimensional geometrical objects and 0-cells as 1-dimensional geometrical objects. Now, given an

example diagram C:

C =

e1 e2

e2 e2

e2

v5

v4

The vertical composites of all four diagrams D1, D2, D3, D4 with the example 2-diagram C exist, as

they share a common boundary. These are as follows:

D1 ◦ C = D2 ◦ C =
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D3 ◦ C = D4 ◦ C =

We can also compose each of the example diagrams with a 1-diagram C ′. This is because the target

boundaries of Bs and Bt, which have to be the same due to globularity conditions, match the source

boundary of C ′ (all are equal to r2):

C ′ =
e2

r2r2

Then, the composites of D1, D2, D3, D4 with C ′ are as follows:

D1 ◦ C
′ = D2 ◦ C

′ =

D3 ◦ C
′ = D4 ◦ C =

We conclude this section with an observation that an n-diagram D and an m-diagram S can be

composed in exactly one way, along their matching max(m,n) − min(m,n) + 1 boundary. For two

n-diagrams this corresponds to the categorical notion of vertical composition. All other methods of

composition present in higher categories are retrieved via the use of whiskering. This is exemplified by

horizontal composition of D1 with the following diagram C ′′:

C ′′ =
v5

v4

e2e2

e2e2

e2

Here, we compose the target boundary of D1 with C ′′ and D1 with the source boundary of C ′′:

t(D1) ◦ C ′′ = D1 ◦ s(C
′′) =
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Then, we vertically compose the resulting diagrams:

(D1 ◦ s(C
′′)) ◦ (t(D1) ◦ C ′′) =

An important note is that, equivalently, we could have chosen to compose D1 with the target boundary

of C ′′ and the source boundary of D1 with C ′′ to create the composite (C ′′ ◦ s(D1))◦ (t(C ′)′ ◦D1. This is

precisely the subject of the interchange law that gives rise to diagrams that need to be related by higher

level interchanger morphisms which we explore further in Chapter 3.
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Chapter 2

Automated rewriting for higher
categories

In this chapter, we introduce a new framework for automated reasoning and rewriting for quasistrict

higher categories. First we discuss the existing methods, which to the best of our knowledge are only

applicable to strict n-categories. We then define the notion of a signature for a higher dimensional

rewriting system, formalise the notion of a diagram over this signature and use it to solve the problems of

rewriting and composition. We prove correctness of both constructions in Sections 2.3 and 2.4. Finally,

we show some results on associativity and distributivity of diagram composition in Section 2.5. These

results are later used to concisely express the axioms on associativity and distributivity of cell composition

when we use the signature structure to define quasistrict 2-, 3- and 4-categories in Chapter 3. As all

the notions involved are mutually dependent, the proof technique used for all these results is to give

logical statements that depend on the dimension n of the structure and then inductively proving that the

conjunction of all the statements holds for all n ≥ 0.

An important question is in the motivation for developing all these new intricate structures to give a

definition of a quasistrict 4-category, while a more standard framework of listing all the axioms could be

used. The main advantage of the method used in this thesis is that, even though the proofs of correctness

of these constructions as well as distributivity and associativity of composition are complicated, the

actual definitions of quasistrict higher categories are vastly simpler than in traditional approaches. For

instance the definition of a switch 3-category due to Douglas and Henriques [22] consists of 34 axioms

plus additional variants for reflexions and rotations, while in the definition of a quasistrict 3-category

given in Chapter 3 all distributivity and associativity results are summarised by two Theorems about

structures that are specified in this chapter using only a few definitions.

The crucial advantage however, lies in the scalability of our approach. For n ≥ 4 we do not need to

say anything more on associativity and distributivity of composition, as the results proved in this chapter

hold for all n ≥ 0 with no additional complexity. At the same time, a definition in a traditional style

would need to list many additional axioms explicitly. With regards to singularities, we list them in a

systematic manner with complexity comparable to that in the traditional approach. An additional benefit

of a definition using the diagram and signature structures is its particular suitability for the purposes of

automation. We use this fact in Chapter 4 where we discuss a practical proof assistant Globular that was

built on the basis of this approach.

In introducing the background material in this chapter, we follow the exposition by Mimram [42]. In

particular we concentrate on the notions of n-computads [54] and n-polygraphs [14] that are built on the

foundation of globular sets. We describe their structure and strictness properties and contrast this with

our approach. We also discuss the double pushout rewriting (DPO) formalism for graph rewriting [31].

The key original insight in this chapter is the explicit order structure imposed on the list of cells within

a diagram. This lets us capture the implicit ordering of individual k-cells within a composite k-cell which

is a characteristic feature of a quasistrict n-category that has non-trivial interchangers. Throughout, we
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informally use the graphical notation for the diagram and signature structures for illustrative purposes.

This is to give graphical intuition as to the function of the auxiliary notions that we define. To formally

specify the graphical notation, which we do in the next chapter in Definition 3.1.1, we need to first prove

correctness of the operations of diagram rewriting and composition. This is shown further in this chapter,

by proving Theorems 2.3.27 and 2.4.19.

2.1 Rewriting systems and presentations of n-categories

Intuitively, a rewrite of a mathematical structure is the result of replacing some part of this structure with

new elements, under the requirement that after the replacement, the structure is still sound. Examples

in different areas of mathematics range from deductive rules in logic to graph rewriting. Once a rewriting

system has been defined, various properties such as confluence or termination of rewriting paths can

be investigated. There is a well-established notion of a (one-dimensional) rewriting system, as defined

in [38]:

Definition 2.1.1. A rewriting system is a pair of elements (A,R) such that A is a set and R ⊆ A × A
is a binary relation on the set A.

The relation R provides us with the information on the rules of term replacement in a formal expression

over A. Given our focus on higher category theory, we are however more interested in higher dimensional

rewriting systems. In such a system, relations (rewrites) between its elements can be combined to form

rewriting paths. These paths are then themselves subject to relations that rewrite one path into another.

Similarly as for higher categories, the number of times we repeat this process gives us the dimension of

the rewriting system.

The main difficulty with modelling such a system lies in the fact that, at each level, individual relations

can be combined to form composite relations. In particular, we have to not only systematically and

formally generate all the possible rewriting paths αi between elements Aj in the system, but also generate

relations Γk between the composites of these rewriting paths etc. An algebraic structure describing a

higher dimensional rewriting system needs to generate collections of all such elements for all dimensions

of relations up to n. This concept is formally captured by the notion of an n-polygraph. It was first

introduced by Burroni [14] and later independently investigated by Street and Power [54] under the

name of n-computads. Higher dimensional rewriting systems are also closely connected to the notion of

a presentation of a category.

In algebra, there is a well-known concept of a presentation of a group, where by giving a list of

generating elements and rules that the elements are required to satisfy we provide sufficient information

to uniquely define the group. Presentation of a category is the extension of this concept. For 1-categories,

we give a list of generating 0-cells and 1-cells, so that every object and morphism in the category can be

expressed as a composite of these generators. Additionally, we provide a list of rules that the generating

morphisms are supposed to satisfy, which can be expressed in the form of 2-cells. For n ≥ 2 listing

the generators and rules becomes more challenging, as a k-cell could have an arbitrary multidimensional

composite (k − 1)-cell as its source or target.

An n-polygraph is a structure that describes the generating cells for strict n-categories. The concept is

a generalisation of the manner in which a directed graph describes the generating objects and generating

morphisms of a 1-category, which together with a set of generating rules forms a presentation of a

category. Polygraphs can be thought of as the most general structure generating a free n-category. Since

the rules imposed on n-cells can be expressed as (n + 1)-cells, an (n + 1)-polygraph is a presentation of

an n-category.

Definition 2.1.2. Given an integer n ≥ 0 an n-dimensional rewriting system or an n-polygraph is defined

as follows:

• For n = 0, a 0-polygraph is a set E0.
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• For n > 0, given an (n− 1)-polygraph i.e. the following structure in Set:

E0

E∗0 E∗1

E1

s∗1

t∗1

s1

t1

i1

E∗2

E2

s∗2

t∗2

s2

t2

i2

. . .

. . .

E∗n−3 E∗n−2

En−2

s∗n−2

t∗n−2

sn−2

tn−2

in−2

sn−1

tn−1

En−1

Together with a structure of an (n− 2)-category on the (n− 2)-graph:

E∗0 E∗1
s∗1

t∗1
E∗2

s∗2

t∗2 . . . E∗n−3 E∗n−2

s∗n−2

t∗n−2

Such that, this (n − 1)-polygraph generates a free (n − 1)-category, which we denote as E∗, with

the above (n − 2)-category as the underlying (n − 2)-category and containing the elements of

En−1 as generators and the source and target given by functions sn−1, tn−1. Its set of composite

(n − 1)-cells, which are obtained by composing the generating elements in En−1, is denoted by

E∗n−1, the canonical injection by in−1 : En−1 → E∗n−1. Finally, the maps s∗n−1, t
∗
n−1 denote the

source and target maps for the composite (n−1)-cells in E∗n−1. The meaning of all maps with lower

indices is explained similarly using the recursive nature of this definition.

Given all that, an n-polygraph is defined as a structure of the following form in Set:

E0

E∗0 E∗1

E1

s∗1

t∗1

s1

t1

i1

E∗2

E2

s∗2

t∗2

s2

t2

i2

. . .

. . .

E∗n−3 E∗n−2

En−2

s∗n−2

t∗n−2

sn−2

tn−2

in−2

E∗n−1

En−1

s∗n−1

t∗n−1

sn−1

tn−1

in−1

sn

tn
En

Together with the structure of an (n− 1)-category on the graph at the bottom of the picture, such

that:

s∗n−2 ◦ sn−1 = s∗n−2 ◦ tn−1 t∗n−2 ◦ sn−1 = t∗n−2 ◦ tn−1

Note that E∗0 is the free 0-category on E0. Since E0 is a set, so is E∗0 and the two are isomorphic.

For an n-polygraph, we call the elements of each set Ek, k-generators. The n-category E presented by

an (n+ 1)-polygraph E is obtained by quotienting the underlying n-category E∗ by the relation relating

n-cells α, β whenever there is an (n+ 1)-cell Ψ : α→ β in E∗. We say that a category C is presented by

an (n+ 1)-polygraph E when C is isomorphic to E .

2.2 Basic structure

In rewriting theory, signatures are algebraic structures containing building blocks from which rewriting

terms can be built. We generalise from monoidal signatures to a setting similar to n-polygraphs, the

difference remaining in how we define diagrams. The notion of a diagram corresponds to the notion

of composite k-cells created from the set of generators Ek. Our choice of terminology is influenced by

the graphical calculus and the diagrammatical manner in which these composite k-cells are ultimately

expressed.
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2.2.1 Signatures and diagrams

In the following exposition, due to the mutually-recursive nature of diagrams and signatures, there are

many interdependent concepts and no clear-cut order of precedence in which they should be presented.

For that reason, whenever a need arises to refer to a notion that has not been defined yet, we flag

this explicitly, provide an intuition for the notion and refer the reader to the formal definition which is

provided further in the section.

We begin by defining the two basic structures that our theoretical model is built on: signatures

and diagrams. Their definitions are mutually dependent, however dimensions in the definitions decrease

with each successive reference. This is because an n-signature only refers to (n − 1)-diagrams, which

in turn only refers to an (n − 1)-signature. That way the ladder of mutual references terminates with

a 0-signature and both structures are well-defined. We also define the auxiliary notion of a diagram

embedding e : S ↪→ D to allow us to reason about one diagram being a subdiagram of another, this is

formally stated in Definition 2.2.7.

Given a diagram D, there are two important ways by which this diagram could be modified:

• A subdiagram S embedded in a diagram D by an embedding e could be replaced by another diagram

T to form a rewritten diagram D.Π[e, T ]

• Two diagrams can also be composed along a common boundary to form a composite diagram

Since diagrams are intended to model composite cells, they are endowed with a source and target structure,

such that the source of a diagram D, referred to as s(D) and the target, referred to as t(D) both are

(n− 1)-diagrams. We define both of these formally in Definition 2.2.5, once the definitions of a signature

and of a diagram are in place. In some instances when we want to put emphasis on the source structure

as an attribute of D, we use the notation D.s to refer to it.

Definition 2.2.1. An n-signature σ is a collection of sets of cells (G0, ..., Gn), such that for all g ∈ Gk
and all 0 < k ≤ n, there are (k − 1)-diagrams over (G0, ..., Gk−1) we call sk(g), tk(g), such that

s(sk(g)) = s(tk(g)) and t(sk(g)) = t(tk(g)).

Note that G0 is the set of 0-cells that have no source and no target.

Definition 2.2.2. An n-diagram D over an n-signature (G0, ..., Gn) is a list of length |D| such that each

element D[i] consists of the following:

• Cell : D[i].g ∈ Gn

• Embedding into the i-th slice of D: D[i].e : s(D[i].g) ↪→ D[i].d, if this slice exists

and if n > 0, then the diagram also consists of:

• Source: D.s which is an (n− 1)-dimensional diagram over (G0, ..., Gn−1)

For an n-diagram D, its source D.s can be rewritten by generators D[i].g to obtain |D| diagrams of

dimension n− 1, which we refer to as slices.

Definition 2.2.3. In an n-diagram D, its i-th slice D[i].d is:

• For i = 0 we have: D[0].d = D.s

• For i > 0 we have: D[i+ 1].d = (D[i].d).Π[D[i].e, t(D[i].g)]

Note that, for n = 0, there is no source D.s, hence there are no slices, no embeddings and there is

just a single cell D[0].g. Given an n-signature σ, we denote the set of k-diagrams over this signature as

∆∗k(σ) or simply ∆∗k if there is no ambiguity with regards to σ. For any generator g ∈ Gk in σ there is

a corresponding k-diagram, this is summarised by the following inclusion maps:
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Definition 2.2.4. Given an n-signature σ = (G0, ..., Gn) there are inclusion maps ik : Gk → ∆∗k such

that for g ∈ Gk we have:

ik(g) = δ

Here δ is a k-diagram such that δ.s = sk(g), |δ| = 1, δ[0].g = g, δ[0].e = idsk(g).

Now we can formally define the maps that relate an n-diagram D to its source and target

(n− 1)-diagrams.

Definition 2.2.5. For an n-diagram D there are two maps sn
∗, tn

∗ : ∆∗k → ∆∗k−1, that send a

k-diagram D to its initial slice D[0].d (source) or its terminal slice D[|D|].d (target). If there is no

ambiguity with regards to n, we simply refer to the maps as s, t.

These maps satisfy the usual globularity conditions s(s(D)) = s(t(D)), t(s(D)) = t(t(D)). In total, a

diagram D has |D| + 1 slices, because there is one for the source of each of |D| cells and an additional

one for the target of the final cell.

We write sk(D) and tk(D) to denote taking the source or the target of the diagram k times, we also

call these diagrams k-boundaries of D. When we want to refer to the individual lists instead of the overall

diagram, we use D.g for the list of cells, D.e for the list of embeddings, and D.l for the list of slices. For

an n-diagram D, we say that it is of dimension n.

We formalise the concept of a diagram structure over a signature σ being sound or well-defined in

the following way:

Definition 2.2.6. We say that an n-diagram D is well-defined,

• If n = 0: no conditions

• If n > 0: the source diagram D.s is well-defined and for every 0 < i ≤ |D| the slice D[i].d exists

and is well-defined.

The main purpose of the subsequent sections in this chapter is to formally prove that both the

procedure of rewriting and the procedure of composition preserve the property of being well-defined and

thus could be used as the foundation for modelling the cell composition in higher categories.

The mutual dependencies between diagram and signature structures are summarised below. Given a

signature σ = (G0, ..., Gn) the mutual dependences between diagrams and signatures can be expressed

diagramatically:

G0

∆∗0 ∆∗1

G1

s∗1

t∗1

s1

t1

i1

∆∗2

G2

s∗2

t∗2

s2

t2

i2

. . .

. . .

∆∗n−2 ∆∗n−1

Gn−1

s∗n−1

t∗n−1

sn−1

tn−1

in−1

sn

tn
Gn

This picture is the same as for n-polygraphs, however, the structure is more sophisticated, with diagrams

containing information on the specific order in which cells in the diagram appear.

To consider some non-trivial modifications of diagrams, we first need to define the notions of:

• diagram embedding : e : S ↪→ D, Definition in Definition 2.2.7

• lifted embedding : e.Λ[T ] : T ↪→ A.Π[e, T ], described in Definition 2.3.1

• embedding composition: e ◦ f : S ↪→ D ↪→ A, described in Definition 2.3.2

Note that an n-diagram only makes reference to embeddings of (n − 1)-diagrams, so the dependencies

are strictly descending.
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Definition 2.2.7. Given two n-diagrams S and D, an n-diagram embedding e : S ↪→ D is given

recursively as follows:

• n = 0: No data

• n > 0:

? Height : e.h ∈ N

? Component embedding: e.e : S.s ↪→ D[e.h].d

Intuitively, a diagram embedding e : S ↪→ D allows us to specify where the n-diagram S appears

within the n-diagram D. This can be illustrated by the following example:

S :=
e
↪→ := D

Here the numerical values in e are as follows: e.h = 0, e.e.h = 2. This is indicated in the picture by the

presence of the dashed rectangle, which is superficial and not part of the graphical formalism. Note how

the location of S in D is zero vertices from the bottom and two edges from the left in the 0-th slice.

Similarly as for the diagram structure, we need a formal way of saying that the given map is a proper

embedding relating the corresponding cells and embeddings of both diagrams.

Definition 2.2.8. Given an n-diagram embedding e : S ↪→ D between well-defined diagrams S and D,

we say that it is well-defined if its data satisfies the following properties:

• If n = 0: we need S[0].g = D[0].g

• If n > 0:

? The component embedding e.e is well-defined

? For every 0 ≤ i < |S| :

S[i].g = D[i+ e.h].g (2.1)

? For every 0 ≤ i < |S|:

(e.e).Λ[S[i].d] ◦ S[i].e = D[i+ e.h].e (2.2)

An embedding of 0-diagrams is characterised by no data because 0-diagrams only consist of a single

cell. In the course of this chapter we use this definition to show that each embedding we define is

well-defined. These results are later used in proving that various diagram modifications are well-defined.

Given two n-diagrams S,D, if there exists a diagram embedding e : S ↪→ D, we say that S is a subdiagram

of D witnessed by the embedding e. Note that, in particular, there may be more than one embedding

e : S ↪→ D. In this case, there are multiple instances of S being a subdiagram of D. This is illustrated
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by the following example:

S :=

e1

↪→

e2

↪→

:= D

Even though e1 and e2 both have the same domain and codomain, they differ in the numerical data that

specifies the location of S within D: e1.h = 0 and e2.h = 2.

2.3 Rewriting

The intuition behind the procedure of rewriting is that we want to transform a diagram D, by removing

a part of the diagram S embedded in D by the embedding e : S ↪→ D and replace it with another

diagram T , somehow preserving connectivity between corresponding elements. For that reason we need

s(S) = s(T ), t(S) = t(T ) and we need to update the relevant embeddings T [i].e corresponding to the

generators T [i].g being added to D. To that end, we use the auxiliary notion of a lifted embedding f.Λ[T ],

which allows us to construct an embedding of T in the rewritten diagram.

Definition 2.3.1. Let S, T,A all be well-defined n-diagrams such that s(S) = s(T ), t(S) = t(T ), let

e : S ↪→ A be a well-defined embedding. Then, the lifted embedding e.Λ[T ] : T ↪→ A.Π[f, T ] is defined as

follows:

• e.Λ[T ].h = e.h

• e.Λ[T ].e = e.e

We illustrate this with the following example:

S =
e
↪→ = D

↓ ↓

T =
e.Λ[T ]
↪→ = D.Π[e, T ]

Given an embedding e : S ↪→ D, we ‘lift’ it to obtain an embedding of T in D.Π[e, T ]. Both embeddings

are indicated by the blue dashed rectangles.

The lifted embedding allows us to construct the embeddings in the rewritten diagram. We do this by

extracting the data of a component embedding e.e and use it to give an embedding of the i-th slice of T

into the (i+ e.h)-th slice of the rewrite of D.
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We also use the lifted embedding to define composition of two embeddings e : S ↪→ D and f : D ↪→ A.

This is necessary, since there is a mismatch between the source of f.e and the target of e.e, and

(f.e).Λ[D[e.h].d] is needed to make the transition between them.

Definition 2.3.2. Given two n-diagram embeddings e : S ↪→ D and f : D ↪→ A their composite

f ◦ e : S ↪→ A is also a diagram embedding defined as follows:

• For n = 0, we define f ◦ e to have no data

• For n > 0, we define:

(f ◦ e).h := e.h+ f.h

(f ◦ e).e := (f.e).Λ[D[e.h]] ◦ (e.e)

Intuitively this means that the relation of being a subdiagram of another diagram is transitive.

Consider the following example chain of embeddings:

S :=
e
↪→

f
↪→ := A

The diagram S is directly embedded in D by e, which is indicated by the orange rectangle. D in turn is

embedded in A by f , indicated by the blue rectangle. These two can be combined together to obtain the

composed embedding f ◦ e so that S is directly embedded in A, this is indicated in the picture by the

purple rectangle.

The final auxiliary concept that simplifies reasoning about diagram modifications is globularity of

diagrams:

Definition 2.3.3. Two n-diagrams S, T are globular with respect to each other if:

• For n = 0, no requirements

• For n > 0, we need s(S) = s(T ) and t(S) = t(T )

With all the auxiliary structures in place, we are now in the position to formally define the first

modification of a diagram: a rewrite. Notice how for an n-diagram such that n > 0, the length |D| of the

list of generators and embeddings changes to |D| − |S| + |T | as we remove |S| elements of the source of

the rewrite and replace them with |T | elements of the target. For this reason the lists in the rewritten

diagram consist of three segments: the initial and the final segment that remain unaltered and the middle

slice which gets replaced. Depending on the value of e.h and on |S| any of the three segments in the

rewritten diagram may be empty.

Definition 2.3.4 (Rewrite). Given an n-diagram D with a subdiagram e : S ↪→ D, and an n-diagram

T globular with respect to S, the rewrite D.Π[e, T ] of D is the following n-diagram:

• If n = 0, then:

|D.Π[e, T ]| = |D| − |S|+ |T | (2.3)

(D.Π[e, T ])[0].g = T [0].g (2.4)
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• If n > 0, then:

(D.Π[e, T ]).s = D.s (2.5)

|D.Π[e, T ]| = |D| − |S|+ |T | (2.6)

(D.Π[e, T ])[i].g =


D[i].g if 0 ≤ i ≤ e.h
T [i− e.h].g if e.h < i < e.h+ |T |
D[i− |T |+ |S|].g if e.h+ |T | ≤ i < |D| − |S|+ |T |

(2.7)

(D.Π[e, T ])[i].e

=


D[i].e if 0 ≤ i ≤ e.h
(e.e).Λ[T [i− e.h].d] ◦ T [i− e.h].e if e.h < i < e.h+ |T |
D[i− |T |+ |S|].e if e.h+ |T | ≤ i < |D| − |S|+ |T |

(2.8)

This definition can be illustrated with an example which is of the same style as those given in

Section 1.4. Consider the following diagrams S, T,D.

S = T =

Note that there is an embedding e : S ↪→ D denoted by the blue dashed rectangle. Additionally S, T are

globular with respect to each other as their respective sources and targets match.

D = −→ = D.Π[e, T ]

In the resulting diagram D.Π[e, T ], the generators of S have been removed, and generators of T insterted

instead. Their positions have been determined by the corresponding component embeddings. In this

particular example the final segment is empty, as e.h+ |S| = |D|.
Let us now compare this definition of a rewrite to the notion of double pushout rewriting (DPO),

which is a method of formalising graph rewriting [31]. In the category Graph, a rewrite rule is defined

by inclusions of boundaries of the source and the target of the rewrite into the graph being rewritten,

while matches are represented by injective graph homomorphisms. This allows us to detect a match

of the rewrite source, remove it and then glue the target of the rewrite in its place along the common

boundary to produce the rewritten graph. Even though the graphical representations of our diagrams do

have certain graph-like features for n = 1, 2, for larger n this is no longer the case. The most significant

obstacle to employing the DPO method is the fact that a diagram D from which the source of the rewrite

has been removed is no longer a well-defined diagram, as the rewrite rules for slices no longer hold. This

is in contrast to graphs, where a graph with some part of its interior removed is still a graph. On the

other hand, there are some DPO features exhibited by our structures, for example rewrite boundaries

are matched against the rewritten diagram, the interior of the source of the rewrite is removed and the

interior of the target of the rewrite is inserted, using boundaries to record the location of the match. But

altogether, the DPO paradigm for rewriting is not applicable to diagram structures.

Note that attempting to rewrite a diagram D using an identity rewrite, results in D remaining

unaltered. In this derivation, as well as in all those that follow in the reminder of this thesis, for each

equality we always refer explicitly to the statement that justifies it. If the reference is absent and we
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don’t specifically state upfront that all the equalities follow by a single result, then the particular equality

follows by arithmetic manipulations. The following argument also gives a flavour of the proof style that

is employed in the reminder of this chapter.

Lemma 2.3.5. Given an n-diagram D with a subdiagram S, witnessed by an embedding e : S ↪→ D, the

following equality holds:

D.Π[e, S] = D

Proof. By Definition 2.3.7, we need to check the following four conditions:

• Sources are equivalent diagrams: All equalities in this derivation follow by the source

clause Eq. (2.5) in the definition of a rewrite.

D.Π[e, S].s = D.s [Eq. (2.5)]

• Sizes of lists of generators are equal

|D.Π[e, S]|
= |D| − |S|+ |S| [Eq. (2.6)]

= |D|

• Corresponding generators are equal, for 0 ≤ j ≤ |D|. We consider this separately for three ranges:

? For 0 ≤ j ≤ e.h

D.Π[e, S][j].g = D[j].g [Eq. (2.7)]

? For e.h ≤ j ≤ e.h+ |S|

D.Π[e, S][j].g

= S[j − e.h].g [Eq. (2.7)]

= D[(j − e.h) + e.h].g [Eq. (2.1)]

= D[j].g

? For e.h+ |S| ≤ j ≤ |D|

D.Π[e, S][j].g

= D[j − |S|+ |S|].g [Eq. (2.7)]

= D[j].g

• Corresponding embeddings are equivalent, for 0 ≤ j ≤ |D|. We consider this separately for three

ranges:

? For 0 ≤ j ≤ e.h

D.Π[e, S][j].e = D[j].e [Eq. (2.8)]

? For e.h ≤ j ≤ e.h+ |S|

D.Π[e, S][j].e

= (e.e).Λ[S[j − e.h].d] ◦ S[j − e.h].e [Eq. (2.8)]

= D[(j − e.h) + e.h].e [Eq. (2.2)]

= D[j].e
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? For e.h+ |S| ≤ j ≤ |D|

D.Π[e, S][j].e

= D[j − |S|+ |S|].e [Eq. (2.8)]

= D[j].e

As all these four conditions are satisfied, the two diagrams D.Π[e, S] and D are indeed equivalent.

Before proceeding to prove correctness of the rewrite construction, we need to introduce the notions

of and diagram equivalence and embedding equivalence i.e. a formal way to express that two diagrams

and two embeddings are the same.

Definition 2.3.6. Two n-diagram embeddings e : A ↪→ B and f : C ↪→ D are equivalent, written e = f ,

if the following is satisfied:

• A = C and B = D

• If n > 0: additionally both e.h = f.h and e.e = f.e hold

For two 0-diagram embeddings there is no data, hence it is sufficient if they have the same source and

the same target to conclude that they are equivalent.

Definition 2.3.7. Two n-diagrams D and S are equivalent, written D = S, if the following is satisfied:

• |S| = |D|

• For 0 ≤ i < |D| we have S[i].g = D[i].g

• If n > 0, for 0 ≤ i < |D| we have S[i].e = D[i].e

• If n > 0, we also require D.s = S.s

Note that, for n = 0, there is just a single cell D[0].g and no source and no embeddings that could

be compared. Alternatively we could say that two diagrams S and D are equivalent if there exist two

embeddings e1 : S ↪→ D and e2 : D ↪→ S such that e1 ◦ e2 = idD and e2 ◦ e1 = idS . Then, the

equivalence S = D is witnessed by the pair of embeddings e1, e2. Throughout the reminder of this thesis,

whenever we place a “=” sign between diagrams or embeddings, it is always to be understood in terms

of Definitions 2.3.6 and 2.3.7.

2.3.1 Correctness of the rewriting construction

In the following subsection, we prove that the defined diagram modification - rewrite, forms a well-defined

diagram. We also show that the lifted embedding and embedding composition used to construct the

rewrite are well-defined. Due to the heavily recursive structure of our definitions, we introduce several

logical statements: P (n), R(n), S(n), T (n), Q(n), A(n), B(n), C(n) that are dependent on the diagram

dimension n. All these statements concern properties of n-diagrams and embeddings between n-diagrams.

Of particular importance is the statement R(n), which formalises the fact that a rewrite of a

well-defined n-diagram is also well-defined. B(n) and C(n) state respectively that a lifted embedding

between well-defined n-diagrams is well-defined and that a composite of two well-defined embeddings

between n-diagrams is also well-defined. The remaining statements P (n), S(n), T (n), Q(n), A(n) are

auxiliary statements that are necessary to carry out an inductive proof that R(n) holds for all n ≥ 0, i.e.

that the process of rewriting preserves the diagram property of being well-defined for any diagram.

The intuition behind the poof is that in order to say that a rewritten n-diagram D.Π[e, T ] is

well-defined (R(n)), we need all its slices, which are (n − 1)-diagrams, to be well-defined. To achieve

that, we express them as slices of D or as rewrites of a well-defined (n−1)-diagram D[e.h].d (S(n), T (n))

and use the inductive hypothesis R(n− 1). For the inductive hypothesis to be applicable, the component
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embeddings D.Π[e, T ][j].e : s(D.Π[e, T ][j].g) ↪→ D.Π[e, T ][j].d, which are embeddings of (n−1)-diagrams,

must be well-defined. In the segment of D.Π[e, T ] between e.h and e.h+ |T |, these embeddings are built

using lifted embeddings (well-defined by B(n−1)) and embedding composition (well-defined by C(n−1)),

as per Definition 2.3.4. However, for all these to be well-defined the main condition is well-definedness of

rewrites of (n− 1)-diagrams, so we are back to the original statement, but this time with the dimension

n reduced by one.

After n iterations, we only need well-definedness of rewriting for 0-diagrams which follows with no

further conditions and forms the base case of the proof. This way, we use the network of mutual

dependencies and the well-foundedness of these structures to show the main result that rewriting preserves

well-definedness of a diagram.

The remaining statements P (n), Q(n) express certain properties of lifted embeddings that are needed

in carrying out the derivations for the proofs of implications explained above. Finally, the statement

on associativity of embedding composition A(n) is used in a similar manner. All these statements are

defined formally later in this section. For ease of reference we again list these definitions together in

Appendix A.

The formal inductive proof that the conjunction of all these statements holds for all integers n > 0 is

achieved in three steps:

(1) Showing that base cases i.e. statements for n = 0 or n = 1 hold.

(2) Showing that a series of implications is true, i.e. for each implication a conjunction of a subset of

these statements for n− 1 implies that the statement for n holds.

(3) Combining all these implications together into an inductive proof.

The same proof technique is later used to show that a composite of two diagrams is well-defined in

Theorem 2.4.19, as well as to prove some results on associativity and distributivity of diagram composition

in Lemmas 2.5.7 and 2.5.13.

Firstly, let us introduce the auxiliary logical statements dependent on the diagram dimension n. The

main statement is on well-definedness of a rewritten n-diagram.

Definition 2.3.8 (R(n)). For n ≥ 0, let R(n) denote the statement that for any well-defined n-diagrams

D,S, T such that S, T are globular with respect to each other, and a well-defined embedding e : S ↪→ D,

the rewrite D.Π[e, T ] of D by e is a well-defined diagram.

The second statement is a result on globularity of individual slices in a well-defined diagram. This is

a necessary condition to be able to consider them as rewrites of a well-defined (n− 1)-diagram.

Definition 2.3.9 (T (n)). For n ≥ 2, let T (n) denote the statement that for any well-defined n-diagram

D, we have (D.s).s = (D[j].d).s and (D.s).t = (D[j].d).t for any 0 ≤ j < |D|.

The next statement allows us to express slices of a rewritten diagram in an explicit way instead of

depending on the recursive definition. This alternative expression plays the pivotal role in the recursive

proof of well-definedness of a rewritten diagram.

Definition 2.3.10 (S(n)). For n ≥ 1, let S(n) denote the statement that for any well-defined n-diagrams

D,S, T such that s(S) = s(T ), t(S) = t(T ) and a well-defined n-diagram embedding e : S ↪→ A the

following hold:

A.Π[e, T ][j].d =

=


A[j].d if 0 ≤ j ≤ e.h
A[e.h].d.Π[e.e, T [j − e.h].d] if e.h ≤ j ≤ e.h+ |T |
A[j + |S| − |T |].d if e.h+ |T | ≤ j < |A| − |S|+ |T |
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The first and the last slice of the middle segment remain unchanged because of the globularity

conditions imposed on S, T . For that reason the endpoints of the intervals in the definition can overlap,

an additional benefit is that it makes some of the technical proofs simpler.

An interesting question is why not to make the above statement the definition of rewriting. The

reasons are as follows: Note that our diagrams are given in terms of sources, generators and embeddings,

and a slice is a derived concept. Given a list of slices for the diagram, we can deduce the primitive data,

but it is not given explicitly. We could in principle say that the rewritten diagram is such, that its data is

derived from the given list of slices, but in fact, the data that we would have obtained is exactly the data

that we give in Definition 2.3.4. While, the formulation given by S(n) is a useful auxiliary tool, making

it the formal definition of rewriting would introduce unnecessary complexity into the theoretical setup.

The next two auxiliary statements let us respectively, decompose a lifted embedding into a composite

of two individual lifted embeddings and express a composite rewrite in two equivalent manners. These

are both indirectly used to establish the statement S(n) on expressing slices of a rewritten n-diagram as

rewrites of a well-defined (n− 1)-diagram.

Definition 2.3.11 (Q(n)). For n ≥ 0, let Q(n) denote the statement that for any well-defined n-diagrams

A,B,C, S, T such that pairs S, T and A,C are globular with respect to each other and for well-defined

embeddings e : S ↪→ A, f : C ↪→ B, the following holds:

(f.Λ[A] ◦ e).Λ[T ] = f.Λ[A.Π[e, T ]] ◦ e.Λ[T ]

Definition 2.3.12 (P (n)). For n ≥ 0, let P (n) denote the statement that for any well-defined n-diagrams

S, T,A,B,C such that pairs S, T and A,C are globular with respect to each other and for well-defined

embeddings e : S ↪→ A, f : C ↪→ B, the following holds for 0 ≤ j ≤ e.h:

B.Π[f,A.Π[e, T ]] = (B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]

The auxiliary concept of a lifted embedding is used in constructing the rewritten diagram and as such

has to itself be a well-defined embedding. Similarly for the composite of two well-defined embeddings.

Definition 2.3.13 (B(n)). For n ≥ 0, let B(n) denote the statement that for any well-defined n-diagrams

S, T,A such that S, T are globular with respect to each other and for a well-defined embedding e : S ↪→ A,

then the lifted embedding e.Λ[T ] : T ↪→ A.Π[e, T ] is well-defined.

Definition 2.3.14 (C(n)). For n ≥ 0, let C(n) denote the statement that given two n-diagram

embeddings e : S ↪→ D and f : D ↪→ M between well-defined n-diagrams S,D,M , their composite

f ◦ e : S ↪→M is well-defined.

Intuitively, given four diagrams S,D,M,N such that S is embedded in D, D embedded in M and

M embedded in N it should not matter in what order we compose these embeddings to obtain an

embedding of S in N , hence the final statement is the result on associativity of composition of well-defined

embeddings.

Definition 2.3.15 (A(n)). For n ≥ 0, let A(n) denote the statement that given three n-diagram

embeddings e : S ↪→ D, f : D ↪→ M , g : M ↪→ N between well-defined n-diagrams S,D,M,N the

following equality holds:

g ◦ (f ◦ e) = (g ◦ f) ◦ e

To make the following exposition easier to follow, we summarise the main results that are used in the

inductive step of the proof of Theorem 2.3.27, which states the conjunction of all the above statements

holds for all n ≥ 0. These implications are as follows:

• S(n) ∧ T (n) ∧R(n− 1) =⇒ R(n), proved in Lemma 2.3.19.
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• T (n) ∧ P (n− 1) ∧ C(n− 1) ∧B(n− 1) =⇒ S(n), proved in Lemma 2.3.20.

• S(n− 1) =⇒ T (n), proved in Lemma 2.3.21.

• S(n) ∧ P (n) ∧A(n− 1) =⇒ Q(n), proved in Lemma 2.3.22.

• S(n) ∧Q(n− 1) =⇒ P (n), proved in Lemma 2.3.23.

• R(n) =⇒ B(n), proved in Lemma 2.3.24.

• C(n− 1) ∧Q(n− 1) ∧A(n− 1) =⇒ C(n), proved in Lemma 2.3.25.

• S(n) ∧Q(n− 1) ∧A(n− 1) =⇒ A(n), proved in Lemma 2.3.26.

We now prove several lemmas establishing the base cases for the main inductive proof.

Lemma 2.3.16. C(0) holds.

Proof. We need to show that given two 0-diagram embeddings e : S ↪→ D and f : D ↪→ M between

well-defined 0-diagrams S,D,M , their composite f ◦ e : S ↪→M is well-defined.

The domain and codomain of f ◦ e are well-defined by assumption. Both f and e consist of no data,

so there is nothing to check and the result is vacuously true.

Lemma 2.3.17. R(0) holds.

Proof. We need to show that given well-defined 0-diagrams D,S, T such that S and T are globular with

respect to each other, and a well-defined embedding e : S ↪→ D, the rewrite D.Π[e, T ] of D by e is a

well-defined diagram.

The 0-diagram embedding e consists of no data. D.Π[e, T ] is a 0-diagram, its list of generators consists

of a single cell and there is no source and no slices, so the result is vacuously true.

Lemma 2.3.18. P(0) holds.

Proof. We need to show that:

B.Π[f,A.Π[e, T ]] = (B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]

Since all S, T,A,B,C are all 0-diagrams, their rewrites exist as R(0) holds by Lemma 2.3.17. Since

n = 0, for the equation to hold, by Definition 2.3.7, we need to check the following:

• Sizes are equal, all steps in this derivation follow by Eq. (2.3) :

|B.Π[f,A.Π[e, T ]]| =
= |B| − |C|+ |A.Π[e, T ]|
= |B| − |C|+ |A| − |S|+ |T |
= |B.Π[f,A]| − |S|+ |T |
= |(B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]|

Additionally, since S, T,A,B,C all are well-defined 0-diagrams, then each consists of just a single

generator and |A| = |B| = |C| = |S| = |T | = 1.

Then it follows that |B| − |C|+ |A| − |S|+ |T | = 1, and:

|(B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]| =
= |B.Π[f,A.Π[e, T ]]| = 1

Hence, we only need to check that the single element in the list of generators of each of these two

diagrams is the same.
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• Generators are equal, all steps in this derivation follow by Eq. (2.4) :

((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ])[0].g =

= T [0].g

= (A.Π[e, T ])[0].g

= (B.Π[f,A.Π[e, T ]])[0].g

By this argument the equality holds, hence so does P (0).

With these base cases established, we now proceed to prove a series of implications between the logical

statements defined earlier in this chapter. Each time we only take the minimal subset of expressions for

(n− 1) that implies the given statement for n.

Lemma 2.3.19. For n ≥ 1, the following holds: S(n) ∧ T (n) ∧ R(n − 1) =⇒ R(n). Additionally, if

n = 1, then S(n) ∧R(n− 1) =⇒ R(n)

Proof. Let us assume that S(n) and R(n − 1) hold, then we need to show D.Π[e, T ] is well-defined. By

Definition 2.2.6, this means that we require:

• (D.Π[e, T ]).s is well-defined

• (D.Π[e, T ])[j].d for 0 < j < |D.Π[e, T ]| exists and is well-defined

The first statement follows since:

(D.Π[e, T ]).s = D.s

D.s is well-defined as the source of a well-defined diagram D. We prove the second statement separately

for three ranges within 0 ≤ j ≤ |D.Π[e, T ]|

• For 0 < j ≤ e.h, by S(n) we obtain that:

D.Π[e, T ][j].d = D[j].d

Hence all slices in this section exist and are well-defined as D is well-defined.

• For e.h ≤ j < e.h+ |T |, by S(n) we obtain that:

D.Π[e, T ][j].d = (D[e.h].d).Π[e.e, T [j − e.h].d]

? D[e.h].d is well-defined as the slice of a well-defined diagram D

? The embedding e.e is well-defined as e is well-defined

? If n = 1, s(S) = S(T ) and T [j− e.h].d are 0-diagrams and globular with respect to each other

? If n > 1, we need s(s(S)) = s(T [j − e.h].d) and t(s(S)) = t(T [j − e.h].d). We note that

s(S) = S(T ) = T [0].d, then the result follows by T (n).

By applying R(n− 1) to the rewrite of the (n− 1)-diagram D[e.h].d, we get that the diagram

(D[e.h].d).Π[e.e, T [j − e.h].d] exists and is well-defined, hence so is D.Π[e, T ][j].d, as required.

• For e.h+ |T | ≤ j < |D| − |S|+ |T |, by S(n) we obtain that:

D.Π[e, T ][j].d = D[j − |T |+ |S|].d

It follows that all slices in this section exist and are well-defined, since all D[j].d are well-defined as

slices of the well-defined diagram D.

31



Hence, all the slices (D.Π[e, T ])[j].d exists and are also well-defined, hence this diagram is itself

well-defined. By this R(n) holds, hence the implication is true. Note that T (n) is only used for n > 1,

hence S(1) ∧R(0) =⇒ R(1) holds.

Lemma 2.3.20. For n > 1 the following holds: T (n) ∧ P (n − 1) ∧ C(n − 1) ∧ B(n − 1) =⇒ S(n).

Additionally, for n = 1: P (0) ∧ C(0) ∧B(0) =⇒ S(1)

Proof. Let us assume that all T (n), P (n− 1), C(n− 1), B(n− 1) hold. We show that S(n) holds in each

of the individual three ranges separately:

• For 0 ≤ j ≤ e.h:

In this range, we show this result by induction on j.

? Base case: For j = 0

A.Π[e, T ][0].d = A.Π[e, T ].s = A.s = A[0].s

? Inductive step: For 0 < j ≤ e.h assume by induction that:

A.Π[e, T ][j].d = A[j].d (IH )

Let us consider A.Π[e, T ][j + 1].d: Note that by Definition 2.3.4 for 0 < j ≤ e.h we have the

following:

∗ A.Π[e, T ][j].g = A[j].g

∗ A.Π[e, T ][j].e = A[j].e

Hence:

A.Π[e, T ][j + 1].d

= (A.Π[e, T ][j].d).Π[A.Π[e, T ][j].e,

t(A.Π[e, T ][j].g)] [Def. 2.2.3]

= (A.Π[e, T ][j].d).Π[A[j].e, t(A[j].g)] [Def. 2.3.4]

= (A[j].d).Π[A[j].e, t(A[j].g)] [IH ]

= A[j + 1].d [Def. 2.2.3]

As required.

By induction we have that: A.Π[e, T ][j].d = A[j].d holds for 0 ≤ j ≤ e.h.

• For e.h ≤ j ≤ e.h+ |T |:

First, for the rewrite (A[e.h].d).Π[e.e, T [j − e.h].d] to be well-defined, we need to show that the

source s(S) and the target T [j − e.h].d of the rewrite are globular with respect to each other.

? For n = 1, both s(S) and T [j − e.h].d are 0-diagrams for e.h ≤ j ≤ |e.h+ |T | so there are no

conditions to check.

? For n > 1, we need s(s(S)) = s(T [j − e.h].d) and t(s(S)) = t(T [j − e.h].d) for

e.h ≤ j ≤ |e.h+ |T |.
Note that since S and T are globular, we have:

s(S) = s(T ) = T [0].d = T.s

We then apply proposition T (n) to the diagram T , to obtain the necessary result.

We can now prove this result by induction on e.h ≤ j ≤ e.h+ |T |:
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? Base case: For j = e.h

(A[e.h].d).Π[e.e, T [j − e.h].d]

= (A[e.h].d).Π[e.e, T [e.h− e.h].d] [j = e.h]

= (A[e.h].d).Π[e.e, T [0].d]

= (A[e.h].d).Π[e.e, s(T )] [Def. 2.2.5]

= (A[e.h].d).Π[e.e, s(S)] [t(S) = t(T )]

= A[e.h].d [Lemma 2.3.5]

= A.Π[e, T ][e.h].d

The final transformation follows by this result for the initial range 0 ≤ j ≤ e.h.

? Inductive step: For e.h < j ≤ e.h+ |T | assume by induction that:

A.Π[e, T ][j].d = A[e.h].d.Π[e.e, T [j − e.h].d] (IH )

Let us consider A.Π[e, T ][j + 1].d:

A.Π[e, T ][j + 1].d

= (A.Π[e, T ][j].d).Π[A.Π[e, T ][j].e,

t(A.Π[e, T ][j].g)] [Def. 2.2.3]

= (A.Π[e, T ][j].d).Π[(e.e).Λ[T [j − e.h].d]

◦ T [j − e.h].e, t(T [j − e.h].g)] [Def. 2.3.4]

= ((A[e.h].d).Π[e.e, T [j − e.h].d]).Π[(e.e).Λ[T [j − e.h].d]

◦ T [j − e.h].e, t(T [j − e.h].g)] [IH ]

= (A[e.h].d).Π[e.e, (T [j − e.h].d).Π[T [j − e.h].e,

t(T [j − e.h].g)]] [P (n− 1)]

= (A[e.h].d).Π[e.e, T [(j + 1)− e.h].d] [Def. 2.2.3]

P (n− 1) may be applied here as all the embeddings involved in the rewrites are well-defined.

The lifted embedding between (n − 1)-diagrams is well-defined as B(n − 1) holds and the

composed embedding of (n− 1)-diagram embeddings is well-defined, as C(n− 1) holds.

• For e.h+ |T | ≤ j < |A| − |S|+ |T |:

We show the result in this range by induction on j.

? Base case: For j = e.h+ |T |, we have:

A.Π[e, T ][e.h+ |T |].d
= (A[e.h].d).Π[e.e, T [(e.h+ |T |)− e.h]]

= (A[e.h].d).Π[e.e, T [|T |]]
= (A[e.h].d).Π[e.e, t(T )]] [Def. 2.2.5]

= (A[e.h].d).Π[e.e, t(S)]] [t(S) = t(T )]

= (A[e.h].d).Π[e.e, S[|S|]] [Def. 2.2.5]

= A.Π[e, S][e.h+ |S|].d [Def. 2.2.3]

= A[e.h+ |S|].d [Lemma 2.3.5]

The penultimate transformation follows by the result for the range e.h ≤ j ≤ e.h+ |S| applied

to the identity rewrite of A e : S ↪→ A.
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? Inductive step: For e.h + |T | < j ≤ |A| + |T | − |S|, note that, similarly as in the range

0 ≤ j ≤ e.h, we have that by Definition 2.3.4:

∗ A.Π[e, T ][j].g = A[j + |S| − |T ].g

∗ A.Π[e, T ][j].e = A[j + |S| − |T ].e

The rest of the argument is the same as for the range 0 ≤ j ≤ e.h.

By induction we have proved that: A.Π[e, T ][j].d = A[j].d holds for e.h+ |T | ≤ j ≤ |A|+ |T | − |S|.

By this, S(n) holds for each of the three ranges, hence the implication is true. Note that the assumption

T (n) is only used to show globularity for n > 1, hence we also have P (0) ∧ C(0) ∧B(0) =⇒ S(1).

Lemma 2.3.21. For n ≤ 2 the following holds: S(n− 1) =⇒ T (n)

Proof. Let us assume that S(n − 1) holds. We need to show that for any well-defined n-diagram D, we

have (D.s).s = (D[j].d).s and (D.s).t = (D[j].d).t for any 0 ≤ j < |D|.
First, we prove this result by induction on i:

• Base case: For j = 0, by Definition 2.3.4, we have: D.s = D[0].d, so the result trivially holds.

• Inductive step: For j > 0, let us assume by induction that:

(D.s).s = (D[j].d).s (IH (a))

(D.s).t = (D[j].d).t (IH (b))

Firstly, let us consider (D[i+ 1].d).s:

(D[j + 1].d).s =

= ((D[j].d).Π[D[j].e, t(D[j].g)]).s [Def. 2.2.3]

= (D[j].d).s [Def. 2.3.4]

= (D.s).s [IH (a)]

Secondly, let us consider (D[i+ 1].d).t:

(D[i+ 1].d).t =

= ((D[j].d).Π[D[j].e), t(D[j].g)]).t [Def. 2.2.3]

= ((D[j].d).Π[D[j].e),

t(D[j].g)])[|D[j].d| − |s(D[j].g)|+ |t(D[j].g)|].d [Def. 2.2.5]

= (D[j].d)[(|D[j].d| − |s(D[j].g)|+ |t(D[j].g)|)
+ |s(D[j].g)| − |s(D[j].g)|] [S(n− 1)]

= (D[j].d)[|D[j].d|]
= (D[j].d).t [Def. 2.2.5]

= (D.s).t [IH(b)]

By this, the result holds for all 0 ≤ i ≤ |D|, hence T (n) holds and the implication is true.

Lemma 2.3.22. For n > 0 the following holds: S(n) ∧ P (n) ∧ A(n − 1) =⇒ Q(n). Additionally, for

n = 0: P (0) =⇒ Q(0)
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Proof. Let us assume that S(n), P (n) and A(n− 1) all hold. By Lemma 2.3.19 the statement R(n) also

holds and all the following n-diagram rewrites are well-defined. We need to show that the following two

n-diagram embeddings are equivalent:

(f.Λ[A] ◦ e).Λ[T ] = f.Λ[A.Π[e, T ]] ◦ e.Λ[T ]

For this, by Definition 2.3.6 domains and codomains must be equivalent diagrams. By Definition 2.3.1,

types of the individual embeddings are as follows:

f.Λ[A] ◦ e : S ↪→ B.Π[f,A]

(f.Λ[A] ◦ e).Λ[T ] : T ↪→ B.Π[f,A].Π[f.Λ[A] ◦ e, T ]

f.Λ[A.Π[e, T ]] : A.Π[e, T ] ↪→ B.Π[f,A.Π[e, T ]]

e.Λ[T ] : T ↪→ A.Π[e, T ]

As the domain of f.Λ[A.Π[e, T ]] matches the codomain of e.Λ[T ], we can conclude that the composite

f.Λ[A.Π[e, T ]] ◦ e.Λ[T ] exists. The domain of this composite matches the domain of (f.Λ[A] ◦ e).Λ[T ].

The codomain of f.Λ[A.Π[e, T ]] ◦ e.Λ[T ] is B.Π[f,A.Π[e, T ]], the codomain of (f.Λ[A] ◦ e).Λ[T ] is

B.Π[f,A].Π[f.Λ[A] ◦ e, T ]. These two diagrams are equivalent by P (n), hence the codomains of both

embeddings also match, as required.

If n > 0, then we need to check two additional conditions:

• Component embeddings are equivalent:

(f.Λ[A.Π[e, T ]] ◦ e.Λ[T ]).e

= (f.Λ[A.Π[e, T ]].e).Λ[A.Π[e, T ][e.Λ[T ].h].d]◦
e.Λ[T ].e [Eq. (2.8)]

= (f.Λ[A.Π[e, T ]].e).Λ[A.Π[e, T ][e.Λ[T ].h].d] ◦ e.e [Def. 2.3.1]

= (f.Λ[A.Π[e, T ]].e).Λ[A.Π[e, T ][e.h].d] ◦ e.e [Def. 2.3.1]

= (f.Λ[A.Π[e, T ]].e).Λ[A[e.h].d] ◦ e.e [S(n)]

= (f.e).Λ[A[e.h].d] ◦ e.e [Def. 2.3.1]

= (f.Λ[A].e).Λ[A[e.h].d] ◦ e.e [Def. 2.3.1]

= (f.Λ[A] ◦ e).e [Def. 2.3.2]

= ((f.Λ[A] ◦ e).Λ[T ]).e [Def. 2.3.1]

• Heights are equal:

(f.Λ[A.Π[e, T ]] ◦ e.Λ[T ]).h

(f.Λ[A.Π[e, T ]]).h+ (e.Λ[T ]).h [Def. 2.3.2]

= f.h+ e.h [Def. 2.3.1]

= (f.Λ[A]).h+ e.h [Def. 2.3.1]

= (f.Λ[A] ◦ e).h [Def. 2.3.2]

= ((f.Λ[A] ◦ e).Λ[T ]).h [Def. 2.3.1]

Both conditions are satisfied, hence these two embeddings are equivalent and Q(n) holds. By this, the

implication S(n)∧P (n) =⇒ Q(n) is true for n > 0. Note that the assumptions S(n), A(n− 1) are only

used when n > 0, hence P (0) =⇒ Q(0) also holds.

Lemma 2.3.23. For n ≥ 1 the following holds: S(n) ∧Q(n− 1) =⇒ P (n).
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Proof. Let us assume that both S(n) and Q(n−1) hold. By Lemma 2.3.19 the statement R(n) also holds

and all the following n-diagram rewrites are well-defined.

We need to show that for well-defined diagrams S, T,A,B,C such that s(S) = s(T ), t(S) = t(T ),

s(A) = s(C), t(A) = t(C) and well-defined embeddings e : S ↪→ A, f : C ↪→ B, the following holds:

B.Π[f,A.Π[e, T ]] = (B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]

By Definition 2.3.7, we need to check the following four conditions:

• Sources are equivalent diagrams: All equalities in this derivation follow by the source

clause Eq. (2.5) in the definition of a rewrite.

((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).s =

= (B.Π[f,A]).s

= B.s

= (B.Π[f,A.Π[e, T ]]).s

• Sizes of lists of generators are equal: All equalities in this derivation follow by the size

clause Eq. (2.6) in the definition of a rewrite.

|B.Π[f,A.Π[e, T ]]| =
= |B| − |C|+ |A.Π[e, T ]|
= |B| − |C|+ |A| − |S|+ |T |
= |B.Π[f,A]| − |S|+ |T |
= |(B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]|

• Generators are equal, for 0 ≤ i ≤ |B.Π[f,A.Π[e, T ]]|. All derivations in this section follow by the

generator clause Eq. (2.7) in the definition of a rewrite.

We consider i in five separate ranges:

? 0 ≤ i ≤ f.h

(B.Π[f,A.Π[e, T ]])[i].g =

= B[i].g

= (B.Π[f,A])[i].g

= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).g

? f.h ≤ i ≤ f.h+ e.h

(B.Π[f,A.Π[e, T ]])[i].g =

= (A.Π[e, T ])[i− f.h].g

= A[i− f.h].g

= (B.Π[f,A])[i].g

= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).g
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? f.h+ e.h ≤ i ≤ f.h+ e.h+ |T |

(B.Π[f,A.Π[e, T ]])[i].g =

= (A.Π[e, T ])[i− f.h].g

= T [(i− f.h)− e.h].g

= T [(i− (f.h+ e.h)].g

= T [i− (f.Λ[A].h+ e.h)].g

= T [i− (f.Λ[A] ◦ e).h].g

= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).g

? f.h+ e.h+ |T | ≤ i ≤ f.h+ |A| − |S|+ |T |

(B.Π[f,A.Π[e, T ]])[i].g =

= A.Π[e, T ])[i− f.h].g

= A[(i− f.h)− |T |+ |S|].g
= A[(i− |T |+ |S|)− f.h].g

= B.Π[f,A][i− |T |+ |S|].g
= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).g

? f.h+ |A| − |S|+ |T | ≤ i ≤ |B| − |C|+ |A| − |S|+ |T |

(B.Π[f,A.Π[e, T ]])[i].g

= B[i− |A.Π[e, T ]|+ |C|].g
= B[i− |A|+ |C| − |T |+ |S|].g
= (B.Π[f,A])[i− |T |+ |S|].g
= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).g

• Embeddings are equivalent, similarly as for generators, for 0 ≤ i ≤ |B.Π[f,A.Π[e, T ]]|. We consider

i in five separate ranges:

? 0 ≤ i ≤ f.h

(B.Π[f,A.Π[e, T ]])[i].e

= B[i].e [Eq. (2.8)]

= (B.Π[f,A])[i].e [Eq. (2.8)]

= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).e [Eq. (2.8)]

? f.h ≤ i ≤ f.h+ e.h

(B.Π[f,A.Π[e, T ]])[i].e

= (f.e).Λ[A.Π[e, T ][i− f.h].d] ◦A.Π[e, T ][i− f.h].e [Eq. (2.8)]

= (f.e).Λ[A.Π[e, T ][i− f.h].d] ◦A[i− f.h].e [Eq. (2.8)]

= (f.e).Λ[A[i− f.h].d] ◦A[i− f.h].e [S(n)]

= (B.Π[f,A])[i].e [Eq. (2.8)]

= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).e [Eq. (2.8)]
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? f.h+ e.h ≤ i ≤ f.h+ e.h+ |T |

(B.Π[f,A.Π[e, T ]])[i].e

= (f.e).Λ[A.Π[e, T ][i− f.h].d] ◦A.Π[e, T ][i− f.h].e [Eq. (2.8)]

= (f.e).Λ[A.Π[e, T ][i− f.h].d]

◦ ((e.e).Λ[T [(i− f.h)− e.h].d] ◦ T [(i− f.h)− e.h].e) [Eq. (2.8)]

= ((f.e).Λ[A.Π[e, T ][i− f.h].d]

◦ (e.e).Λ[T [(i− f.h)− e.h].d]) ◦ T [(i− f.h)− e.h].e [A(n− 1)]

= ((f.e).Λ[A[e.h].Π[e.e, T [i− f.h]]]

◦ (e.e).Λ[T [(i− f.h)− e.h].d]) ◦ T [(i− f.h)− e.h].e [S(n)]

= (((f.e).Λ[A[e.h].d] ◦ e.e).Λ[T [(i− f.h)− e.h]]

◦ T [(i− f.h)− e.h].e [Q(n− 1)]

= ((f.e).Λ[A[e.h].d] ◦ e.e).Λ[T [i− (f.h+ e.h)]]

◦ T [i− (f.h+ e.h)].e

= ((f.Λ[A].e).Λ[A[e.h].d] ◦ e.e).Λ[T [i− (f.h+ e.h)]]

◦ T [i− (f.h+ e.h)].e [Def. 2.3.1]

= ((f.Λ[A] ◦ e).e).Λ[T [i− (f.h+ e.h)]]

◦ T [i− (f.h+ e.h)].e [Def. 2.3.2]

= ((f.Λ[A] ◦ e).e).Λ[T [i− (f.Λ[A].h+ e.h)]]

◦ T [i− (f.Λ[A].h+ e.h)].e [Def. 2.3.1]

= ((f.Λ[A] ◦ e).e).Λ[T [i− (f.Λ[A] ◦ e).h]]

◦ T [i− (f.Λ[A] ◦ e).h].e [Def. 2.3.2]

= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).g [Eq. (2.8)]

? f.h+ e.h+ |T | ≤ i ≤ f.h+ |A| − |S|+ |T |

(B.Π[f,A.Π[e, T ]])[i].g

= (f.e).Λ[A.Π[e, T ][i− f.h].d]

◦A.Π[e, T ][i− f.h].e [Eq. (2.8)]

= (f.e).Λ[A.Π[e, T ][i− f.h].d]

◦A[(i− |T |+ |S|)− f.h].e [Eq. (2.8)]

= (f.e).Λ[A[(i− |T |+ |S|)− f.h].d]

◦A[(i− |T |+ |S|)− f.h].e [S(n)]

= B.Π[f,A][i− |T |+ |S|].e [Eq. (2.8)]

= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).e [Eq. (2.8)]

? f.h+ |A| − |S|+ |T | ≤ i ≤ |B| − |C|+ |A| − |S|+ |T |

(B.Π[f,A.Π[e, T ]])[i].e

= B[i− |A.Π[e, T ]|+ |C|].e [Eq. (2.8)]

= B[i− |A|+ |C| − |T |+ |S|].e [Def. 2.3.4]

= (B.Π[f,A])[i− |T |+ |S|].e [Eq. (2.8)]

= ((B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]).e [Eq. (2.8)]
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Lemma 2.3.24. For n ≥ 1 the following holds: R(n) =⇒ B(n).

Proof. Let us assume that R(n) holds. We need to show that e.Λ[T ] : T ↪→ A.Π[e, T ] is well-defined.

For that, the domain and codomain of e.Λ[T ] have to be well-defined. T is well-defined by assumption,

A.Π[e, T ] is well-defined by R(n).

• If n = 0, we need A.Π[e, T ][0].g = T [0].g, but this follows directly from the definition of a rewrite

for n = 0.

• If n > 0, by Definition 2.2.8 we need to show three separate conditions:

? e.Λ[T ].e is well-defined.

By Definition 2.3.1, we have e.Λ[T ].e = e.e. As e is well-defined, so is its component embedding

e.e. Hence, e.Λ[T ].e is equivalent to a well-defined embedding and itself is well-defined.

? For every 0 ≤ i < |T | we need to show that the generators of both diagrams satisfy the

following:

A.Π[e, T ][i+ e.Λ[T ].h].g

= A.Π[e, T ][i+ e.h].g [Def. 2.3.1]

= T [(i+ e.h)− e.h].g [Eq. (2.8)]

= T [i].g

? For every 0 ≤ i < |T | we need to show that the embeddings of both diagrams satisfy the

following:

A.Π[e, T ][i+ e.Λ[T ].h].e

= A.Π[e, T ][i+ e.h].e [Def. 2.3.1]

= (e.e).Λ[T [i].d] ◦ T [i].e [Def. 2.8]

= (e.Λ[T ].e).Λ[T [i].d] ◦ T [i].e [Def. 2.3.1]

As all three conditions are satisfied, e.Λ[T ] is a well-defined embedding and B(n) holds, hence the

implication is true.

Lemma 2.3.25. For n ≥ 1 the following holds: C(n− 1) ∧Q(n− 1) ∧A(n− 1) =⇒ C(n).

Proof. We assume that all C(n−1) , A(n−1) and S(n−1) hold. By combining Lemmas 2.3.24 and 2.3.19,

we have that since S(n− 1) holds, both R(n− 1) and B(n− 1) also hold.

We need to show that given two n-diagram embeddings e : S ↪→ D and f : D ↪→ M between

well-defined n-diagrams S,D,M , their composite f ◦ e : S ↪→M is well-defined.

The domain and codomain of f ◦ e are well-defined by assumption. To show that f ◦ e is well-defined,

by Definition 2.2.8 we need to show three separate conditions:

• (f ◦ e).e is well-defined.

(f ◦ e).e = (f.e).Λ[D[e.h].d] ◦ e.e

Both e.e and f.e are well-defined (n − 1)-embeddings, as they are component embeddings of

well-defined embeddings f, e. (f.e).Λ[D[e.h].d] is well-defined (n− 1)-embedding by B(n− 1).

We then apply the inductive hypothesis to conclude that (f ◦ e).e is well-defined.

• For 0 ≤ i < |S| we have:

S[i].g

= D[e.h+ i].g [Eq. (2.1) for S,D]

= M [e.h+ f.h+ i].g [Eq. (2.1) for D,M ]
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• For 0 ≤ i < |S| we have:

M [(f ◦ e).h+ i].e

= M [(f.h+ e.h) + i].e [Def. 2.3.2]

= (f.e).Λ[D[e.h+ i].d] ◦D[e.h+ i].e [Eq. (2.2) for D,M ]

= (f.e).Λ[D[e.h+ i]] ◦ ((e.e).Λ[S[i].d] ◦ S[i].e) [Eq. (2.2) for S,D]

= ((f.e).Λ[D[e.h+ i]] ◦ (e.e).Λ[S[i].d]◦)S[i].e [A(n− 1)]

= ((f.e).Λ[D[e.h]] ◦ e.e).Λ[S[i].d] ◦ S[i].e [Q(n− 1)]

= ((f ◦ e).e).Λ[S[i].d] ◦ S[i].e [Def. 2.3.2]

As all conditions of Definition 2.3.7 are satisfied, the two diagrams are equivalent and the result holds.

Lemma 2.3.26. For n ≥ 1 the following holds: S(n) ∧Q(n− 1) ∧A(n− 1) =⇒ A(n). Additionally, if

n = 0, then A(0) holds with no further assumptions.

Proof. We assume that all S(n), Q(n− 1) and A(n− 1) hold.

We need to show that the following two n-diagram embeddings are equivalent:

g ◦ (f ◦ e) = (g ◦ f) ◦ e

For that by Definition 2.3.6 domains and codomains must be equivalent diagrams. By Definition 2.3.2,

types of the individual embeddings are as follows:

f ◦ e : S ↪→M

g ◦ f : D ↪→ N

g ◦ (f ◦ e) : S ↪→ N

(g ◦ f) ◦ e : S ↪→ N

By this we can conclude that the domains and codomains of both embeddings match.

If n > 0, then we need to check two additional conditions:

• Heights are equal:

(g ◦ (f ◦ e)).h
= g.h+ (f ◦ e).h [Def. 2.3.2]

= g.h+ f.h+ e.h [Def. 2.3.2]

(g ◦ f).h+ e.h [Def. 2.3.2]

((g ◦ f) ◦ e).h [Def. 2.3.2]

• Component embeddings are equivalent:

(g ◦ (f ◦ e)).e
= (g.e).Λ[M [(f ◦ e).h].d] ◦ (f ◦ e).e [Def. 2.3.2]

= (g.e).Λ[M [(f ◦ e).h].d] ◦ ((f.e).Λ[D[e.h].d] ◦ e.e) [Def. 2.3.2]

= ((g.e).Λ[M [(f ◦ e).h].d] ◦ (f.e).Λ[D[e.h].d]) ◦ e.) [A(n− 1)]

= ((g.e).Λ[M [f.h+ e.h].d] ◦ (f.e).Λ[D[e.h].d]) ◦ e.) [Def. 2.3.2]

= ((g.e).Λ[M.Π[f,D][f.h+ e.h].d] ◦ (f.e).Λ[D[e.h].d]) ◦ e.) [Def. 2.3.5]

= ((g.e).Λ[M [f.h].d.Π[f.e,D[e.h].d]] ◦ (f.e).Λ[D[e.h].d]) ◦ e.) [S(n)]

= (g.e.Λ[M [f.h].d] ◦ f.e).Λ[D[e.h].d] ◦ e.e [Q(n− 1)]

= ((g ◦ f).e).Λ[D[e.h].d] ◦ e.e [Def. 2.3.2]

= ((g ◦ f) ◦ e).e [Def. 2.3.2]
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As all these conditions hold, both embeddings are equivalent, hence A(n) holds and the implication

is true. In addition, we only used the assumptions for n > 0, hence A(0) also holds with no further

requirements.

With all these implications proved we can now bring them together to prove that the conjunction of

selected logical statements holds for all n ≥ 0.

Theorem 2.3.27. The statement S(n) ∧R(n) ∧ P (n) ∧ C(n) ∧A(n) ∧Q(n) holds for all n ≥ 1.

Proof. We prove the result by induction on n.

• Base case: For n = 1:

? To establish S(1), by Lemma 2.3.20, we need P (0) to hold. P (0) holds with no further

conditions by Lemma 2.3.18.

? To establish R(1), by Lemma 2.3.19, we need S(1) and R(0) to hold. S(1) is given by the

statement above. R(0) holds with no further conditions by Lemma 2.3.17.

? To establish P (1), by Lemma 2.3.23, we need Q(0) and S(1) to hold. Q(0) holds, by

Lemma 2.3.22 since P (0) holds.

? To establish C(1), by Lemma 2.3.25, we need C(0), Q(0) and A(0) to hold. C(0) holds with

no further conditions by Lemma 2.3.16, similarly A(0) by Lemma 2.3.25. Q(0) holds by the

statement above.

? To establish A(1), by Lemma 2.3.26, we need S(1) and Q(0) and A(0) to hold. The first two

hold by the statements above, A(0) holds by Lemma 2.3.26.

? To establish Q(1), by Lemma 2.3.22, we need S(1) and P (1) and A(0) to hold. The first two

hold by the statements above, A(0) holds by Lemma 2.3.26.

• Inductive step: For n > 1, we assume that all S(n − 1), R(n − 1), P (n − 1), C(n − 1), A(n − 1),

Q(n− 1) hold.

? To establish S(n), by Lemma 2.3.20, we need P (n− 1), C(n− 1), B(n− 1) and T (n) to hold.

Since, S(n − 1) holds, by Lemma 2.3.21 we obtain that T (n) holds. Since R(n − 1) holds by

Lemma 2.3.24 we obtain that B(n − 1) holds. P (n − 1) and C(n − 1) hold by the inductive

hypothesis.

? To establish R(n), by Lemma 2.3.19, we need S(n), T (n) and R(n − 1). We have that S(n)

and T (n) hold by the statement above. R(n− 1) holds by the inductive hypothesis.

? To establish P (n), by Lemma 2.3.23, we need S(n) and Q(n − 1). S(n) holds by the earlier

part of this argument. Q(n− 1) holds by the inductive hypothesis.

? To establish Q(n − 1), by Lemma 2.3.22, we need S(n − 1) and P (n − 1) to hold, both hold

by the inductive hypothesis.

? To establish C(n), by Lemma 2.3.25, we need C(n − 1), A(n − 1) and Q(n − 1) to hold. All

hold by the inductive hypothesis.

? To establish A(n), by Lemma 2.3.26, we need S(n), Q(n−1) and A(n−1) to hold. S(n) holds

by the statements above. Q(n− 1) and A(n− 1) hold by the inductive hypothesis.

? To establish Q(n), by Lemma 2.3.22, we need S(n), P (n) and A(n − 1) to hold. S(n) and

P (n) hold by the statements above. A(n− 1) holds by the inductive hypothesis.

Hence, we obtain that S(n) ∧R(n) ∧ P (n) ∧ C(n) ∧A(n) ∧Q(n) holds, as required

By this inductive argument we established that the conjunction S(n)∧R(n)∧P (n)∧C(n)∧A(n)∧Q(n)

holds for all n ≥ 1.
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We now bring all the above results together to obtain the desired result that the rewriting procedure

produces well-defined n-diagrams for any n ≥ 0.

Theorem 2.3.28. For any well-defined n-diagrams D,S, T such that S and T are globular with respect

to each other, and a well-defined embedding e : S ↪→ D, the rewrite D.Π[e, T ] is a well-defined diagram.

Proof. Two separate cases follow by different results proved previously:

• For n = 0 follows by Lemma 2.3.17.

• For n > 0, by Theorem 2.3.27, we have that R(n) holds for any n ≥ 1

By this we established that the rewrite D.Π[e, T ] of a well-defined n-diagram D is also well-defined.

Theorem 2.3.29. Given well-defined n-diagrams such that S, T are globular with respect to each other

and for a well-defined embedding e : S ↪→ A, the lifted embedding e.Λ[T ] : T ↪→ A.Π[e, T ] is well-defined.

Proof. This result follows immediately by Lemma 2.3.24, since by Theorem 2.3.28, we have that R(n) is

true for all n ≥ 0.

The final observation about the process of rewriting is that we may express it using higher level cells.

The rewrite of an n-diagram D into D.Π[e, T ] gives rise to an (n+ 1)-diagram R of the following form:

R =


R.s = D

R[0].g = g such that s(g) = S, t(g) = T

R[0].e = e

This observation is crucial for our higher dimensional rewriting perspective and universal treatment of

(n + 1)-cells as rewrites between composite n-cells and gives us a wider expressivity to reason about

higher-level cells.

2.4 Composition

The next step towards a higher dimensional rewriting system and to modelling quasistrict n-categories

is the ability to express composite objects and relations, so that they can then be subject to higher-level

relations. In our scheme this is achieved through diagram composition. There are several requirements

that need to be fulfilled in order for two diagrams to be composable. Firstly, they need to be built over the

same signature σ, in this section we always assume that this is the case. Secondly, the target boundary

and the source boundary along which we are composing must match, this is so that the diagrams can

be ‘glued’ together. Crucially, the diagrams themselves do not need to by of the same dimension, but

their boundaries do. Allowing diagrams of different dimensions to be composed is consistent with the

whiskering approach to cell composition in higher categories.

In the initial part of this section we introduce some auxiliary notions that make defining the composite

of two diagrams more dependent on the results on embedding composition that have already been proved

in Section 2.3.

2.4.1 Identity embeddings

Definition 2.4.1. Given a well-defined n-diagram D, the identity embedding idD : D ↪→ D is defined as

follows:

• idD.h = 0

• If n > 0, then also: idD.e = idD.s

The intuition here is that every diagram is trivially embedded in itself.
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Lemma 2.4.2. Given a well-defined n-diagram S and the identity embedding idS : S ↪→ S and a

well-defined diagram T globular with respect to S, the following holds:

idS .Λ[T ] = idT

Proof. If n = 0, by Definition 2.3.6, to show that these embeddings are equivalent, we need to check that

the domains and codomains of these embeddings are equivalent diagrams. The types of these embeddings

are as follows:

idT : T ↪→ T [Def. 2.4.1]

idS .Λ[T ] : T ↪→ S.Π[idS , T ] [Def. 2.3.1]

By applying Definition 2.3.4 we obtain that S.Π[idS , T ] = T , hence the domains and codomains of both

embeddings match.

If n > 0, we additionally need to check that:

• Component embeddings are equivalent:

(idS .Λ[T ]).e = (idS).e [Def. 2.3.1]

• Heights are equal:

(idS .Λ[T ]).h = (idS).h [Def. 2.3.1]

By this argument both embeddings are equivalent, as required.

A desired property of an identity embedding is that composing it with any other diagram embedding

e, should have no effect on e.

Lemma 2.4.3. Given a well-defined n-diagram D, the identity embedding idD : D ↪→ D and a

well-defined embeddings e : A ↪→ D and f : D ↪→ B, the following holds:

idD ◦ e = e

f ◦ idD = f

Proof. Let us prove that idD ◦ e = e by induction on n.

• Base case: For n = 0, by Definition 2.3.6 domains and codomains of both embeddings must be

equal. The types are as follows:

e : A ↪→ D

idD ◦ e : A ↪→ D

Domains and codomains trivially are equivalent diagrams.

• Inductive step: For n > 0, we assume that the result holds for (n − 1)-diagram embeddings (IH).

Types are the same as in the base case, we additionally need to check that:

? Component embeddings are equivalent:

(idD ◦ e).e =

= (idD).e.Λ[D[e.h].d] ◦ e.e [Def. 2.3.2]

= (idD[0].d).Λ[D[e.h].d] ◦ e.e [Def. 2.4.1]

= idD[e.h].d ◦ e.e [Def. 2.4.2]

= e.e [IH ]
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? Heights are equal:

(idD ◦ e).h =

= (idD).h+ e.h [Def. 2.3.2]

= e.h [Def. 2.4.1]

By this inductive argument both embeddings are equivalent for n ≥ 0, as required. The proof of the

other equivalence follows similarly.

With the aid of these results we show that the identity embedding is well-defined.

Lemma 2.4.4. Given a well-defined n-diagram D, the identity embedding idD : D ↪→ D is well-defined.

Proof. idD is an endomorphism of a well-defined diagram D, hence trivially both its domain and codomain

are well-defined.

We prove well-definedness of this embedding by induction on n.

• Base case: For n = 0, by Definition 2.2.8 we just need the single cell in the domain being equal to

the single cell in the codomain i.e. D[0].g = D[0].g which holds.

• Inductive step: For n > 0, assume that all identity embeddings of (n−1)-diagrams are well-defined.

By Definition 2.2.8 we need to check three conditions:

? The component embedding is well-defined. By Definition 2.4.1, we have idD.e = idD.s =

idD[0].d. Since D[0].d is an (n− 1)-diagram, idD.e is well-defined by the inductive hypothesis.

? Corresponding generators are equal. For 0 ≤ i ≤ |D| we have:

D[i+ (idD).h].g = D[i].g [Def. 2.4.1]

? Corresponding embeddings satisfy the following for 0 ≤ i ≤ |D|:

((idD).e).Λ[D[i].d] ◦D[i].e

= (idD.s).Λ[D[i].d] ◦D[i].e [Def. 2.4.1]

= (idD[0].d).Λ[D[i].d] ◦D[i].e

= idD[i].d ◦D[i].e [Def. 2.4.2]

= D[i].e [Def. 2.4.3]

As required.

As all these conditions hold, idD is well-defined.

By this inductive argument we established that idD is well-defined for any n-diagram D for all n ≥ 0.

2.4.2 Defining composition

The next major operation modifying the diagram structure is diagram composition. Recall from

Section 1.4 that intuitively this corresponds to glueing two diagrams together along a common boundary.

For instance for the following diagrams S and D:

S = D =
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Their composite, which we denote by S ◦D is:

S ◦D =

Note that we can also compose diagrams that are of different dimension, for instance given a 1-diagram

M :

M =

The composite M ◦D is:

To be able to compose two diagrams D and S, we require means to alter embeddings e : X ↪→ D

to embed in the composite diagram instead, to that end we define two inclusion embeddings, the right

inclusion Incr(S,D) : D ↪→ S ◦D and the left inclusion Incl(S,D) : D ↪→ D ◦ S. Recall that we write

sk(D) and tk(D) to denote taking the source or the target of the diagram k times, as explained in the

discussion of Definition 2.2.5.

Definition 2.4.5. Given an n-diagram D and an m-diagram S:

• If n ≥ m and t(S) = sn−m+1(D) and the composite S ◦D exists, we define the inclusion embedding

Incr(S,D) : D ↪→ S ◦D in the following way:

? If n = m, then:

Incr(S,D).h = |S|
Incr(S,D).e = idD.e

? If n > m, then:

Incr(S,D).h = idD.h

Incr(S,D).e = Incr(S,D.s)

• If n < m and tm−n+1(S) = s(D) and the composite S ◦D exists, we define the inclusion embedding

Incl(S,D) : S ↪→ S ◦D in the following way:

Incl(S,D).h = idS .h

Incl(S,D).e = Incr(S.s,D)

Note that, in the latter case, the composition of D with S has no effect on the embedding data.

However we do need to change the embedding codomain, so that the types match.

The intuition behind the inclusion embeddings is that a diagram D is automatically a subdiagram of

the composite S ◦D, the inclusion embedding witnesses this relation. There is a need for two variations,

left and right inclusions, because D can be composed with another diagram either on the left to form
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D ◦S, or on the right to form S ◦D. Let us illustrate this with two examples, first consider the following

diagrams S and D that are of the same dimension:

D :=
Incr(S,D)
↪→ := S ◦D

In this picture, we indicate the inclusion embedding Incr(S,D) by placing a dashed rectangle over the

instance of D appearing in S ◦D.

Now, consider S and D such that the dimension of D is larger:

D :=
Incr(S,D)
↪→ := S ◦D

Here again, we indicate Incr(S,D) by the dashed rectangle.

In this setup, an n-diagram D and an m-diagram S can be composed in exactly one way, along their

common max(m,n)−min(m,n)+1 boundary. In particular, two n-diagrams can only be composed along

their matching target and source, this corresponds to vertical composition. We believe that this approach

is still fully general and permits construction of any arbitrary n-diagram, additionally it helps in easier

resolution of ambiguities that arise if other methods of composition are allowed. As stated before, this

perspective is consistent with the approach to cell composition through whiskering. An example how

horizontal composition of 2-cells in a 2-category may be retrieved is given in Section 1.4.

We present a recursive definition of composition of an n-diagram D and an m-diagram S. If n > m

we specify all the generators and embeddings of the composite and then we refer recursively to the

(n− 1)-dimensional source of D and to the m-diagram S. That way with each recursive call n decreases,

hence as does n − m. Eventually, we decrease n sufficiently, so that n = m and then the recursion

bottoms out with the base clause. The case for m > n is analogous. This ensures that the definition is

well-founded.

Definition 2.4.6. Given an n-diagram D and an m-diagram S such that t(S) = sn−m+1(D) if m ≤ n

or tm−n+1(S) = s(D) otherwise, then the composite diagram S ◦m,n D is defined as follows:

• If n = m, the individual components of S ◦m,n D are as follows:

(S ◦m,n D).s = S.s (2.9)

|S ◦m,n D| = |D|+ |S| (2.10)

(S ◦m,n D)[j].g =

{
S[j].g for 0 ≤ j < |S|
D[j − |S|].g for |S| ≤ j < |D|+ |S|

(2.11)

(S ◦m,n D)[j].e =

{
S[j].e for 0 ≤ j < |S|
D[j − |S|].e for |S| ≤ j < |D|+ |S|

(2.12)
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• If m < n, the individual components of S ◦m,n D are as follows:

(S ◦m,n D).s = S ◦m,n−1 D.s (2.13)

|S ◦m,n D)| = |D| (2.14)

(S ◦m,n D)[j].g =D[j].g for 0 ≤ j < |D| (2.15)

(S ◦m,n D)[j].e = Incr(S,D[j].d) ◦D[j].d for 0 ≤ j < |D| (2.16)

• If n < m, the individual components of S ◦m,n D are as follows:

(S ◦m,n D).s = S.s ◦m−1,n D (2.17)

|S ◦m,n D| = |S| (2.18)

(S ◦m,n D)[j].g =S[j].g for 0 ≤ j < |S| (2.19)

(S ◦m,n D)[j].e =Incl(S[j].d,D) ◦ S[i].e for 0 ≤ j < |S| (2.20)

As stated before, the type of composition is uniquely determined by the dimensions of the diagrams

being composed. As a shorthand for a composite of an n-diagram D and an m-diagram S, we label

S ◦m,n D by a = min(n,m) − 1 instead. That way the terminology more closely matches the naming

scheme for composition which is standard in category theory. This leads to a certain overloading of

notation since we use the same label for composites S ◦ aD and D ◦a S, however since these cases

behave analogously, this should not cause any confusion. Furthermore, if the dimensions are completely

unambiguous, we omit the subscripts entirely and simply say D ◦ S to refer to the composite diagram.

For composition of two n-diagrams S,D, intuitively we just concatenate their lists of generators and

embeddings. Due to that, the lists of slices also get concatenated. This is formalised by the following

lemma.

Lemma 2.4.7. Given well-defined n-diagrams S,D, such that t(S) = s(D), the following holds for slices

of the composed diagram for 0 ≤ j ≤ |S ◦D|:

(S ◦D)[j].d =

{
S[j].d 0 ≤ j ≤ |S|
D[j − |S|].d |S| ≤ j ≤ |S|+ |D|

Proof. Note that, by 2.10, we obtain that: |S ◦D| = |S|+ |D|, so let 0 ≤ j ≤ |S|+ |D| and consider two

ranges separately:

• For 0 ≤ j ≤ |S| we show the result by induction on j:

? Base case: For j = 0, we have the following:

(S ◦D)[0].d

= (S ◦D).s [Def. 2.2.5]

= S.s [Eq. (2.9)]

= S[0].d [Def. 2.2.5]

? Inductive step: For 0 < j ≤ |S|, we assume that (S ◦ D)[j].d = S[j].d. Let us consider

(S ◦D)[j + 1].d:

(S ◦D)[j + 1].d

= (S ◦D)[j].d.Π[(S ◦D)[j].e, t((S ◦D)[j].g)] [Def. 2.2.3]

= (S ◦D)[j].d.Π[(S ◦D)[j].e, t(S[j].g)] [Eq. (2.11)]

= (S ◦D)[j].d.Π[S[j].e, t(S[j].g)] [Eq. (2.12)]

= S[j].d.Π[S[j].e, t(S[j].g)] [IH ]

= S[j + 1].d [Def. 2.2.3]
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• For |S| ≤ j ≤ |S|+ |D|, note that by the argument for 0 ≤ j ≤ |S| we obtain:

(S ◦D)[|S|].d
= S[|S|].d
= t(S) [Def. 2.2.5]

= s(D) [assumption]

= D[0].d [Def. 2.2.5]

The result for |S| ≤ j ≤ |S|+ |D| is proved inductively in a similar way as the result for 0 ≤ j ≤ |S|
.

By these two inductive arguments the result is shown for 0 ≤ j ≤ |S ◦D|.

2.4.3 Correctness of the composition construction

We use the same proof technique as for rewriting. Again, due to the heavily recursive nature of the

diagram and signature structures and their mutual references, we introduce several logical statements

about properties of composite diagrams and inclusion embeddings. For two diagrams being composed:

an n-diagram D and an m-diagram S the statements depend on an integer k ≥ 0 such that k = |n−m|.
That way, the base case in our recursion covers the situation when the two diagrams composed are of

the same dimension. Again, there is the main inductive proof that the conjunction of logical statements

K(k), L(k),M(k), N(k) holds for all k ≥ 0. Since we make no other assumptions about m,n this ensures

that we show the results for any combination of dimensions. Again, the overall structure is that we first

present the statements, then we show that they hold for k = 0 to establish base cases. This is followed by

proofs of a series of implications and finally, in the conclusion of this section, all the lemmas are brought

together to establish the main result on the composite of two diagrams being well-defined.

Below, we define four logical statements on properties of diagram composition and inclusion

embeddings:

Definition 2.4.8 (L(k)). For k ≥ 0, let L(k) denote the statement that for any well-defined n-diagram

D and a well-defined m-diagram S such that |n − m| = k and t(S) = sn−m+1(D) if m ≤ n or

tm−n+1(S) = s(D) otherwise, then the composite diagram S ◦D is well-defined.

The inclusion embedding which is necessary to define a composite of two diagrams necessarily has to

be well-defined.

Definition 2.4.9 (N(k)). For k ≥ 0, let N(k) denote the statement that for any well-defined n-diagram

D and a well-defined diagram m-diagram S such that |n−m| = k:

• If n ≥ m and t(S) = sn−m+1(D) and the composite S ◦ D exists, the inclusion embedding

Incr(S,D) : D ↪→ S ◦D is well-defined.

• If n < m and tm−n+1(S) = s(D) and the composite S ◦ D exists, the inclusion embedding

Incl(S,D) : D ↪→ D ◦ S is well-defined.

A slice of the composite diagram can be written as a composite of the diagram of lower dimension

and the appropriate slice of the diagram of higher dimension.

Definition 2.4.10 (K(k)). For k ≥ 1, let K(k) denote the statement that for any n-diagram D and any

m-diagram S such that |n −m| = k and such that the composite S ◦ D exists, the following equalities

hold:

If n > m (S ◦D)[i].d = S ◦ (D[i].d) for any 0 ≤ i < |D|
If n < m (S ◦D)[i].d = (S[i].d) ◦D for any 0 ≤ i < |S|
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The inclusion embedding into a slice of the composite diagram, can instead be expressed using the

lifted embedding.

Definition 2.4.11 (M(k)). For k ≥ 1, let M(k) denote the statement that for any well-defined n-diagram

D and a well-defined diagram m-diagram S such that |n − m| = k for any 0 ≤ i < |D| the following

equality holds:

If n > m Incr(S,D[i].d) = (Incr(S,D).e).Λ[D[i].d] for any 0 ≤ i < |D|
If n < m Incl(S[i].d,D) = (Incl(S,D).e).Λ[S[i].d] for any 0 ≤ i < |S|

We now proceed to prove several lemmas that establish base cases for the main recursive proof:

Lemma 2.4.12. For k = 0 the following holds: L(0) =⇒ N(0)

Proof. We assume that L(0) holds, i.e. any two well-defined n-diagrams D,S such that t(S) = s(D), the

composite diagram S ◦D is well-defined.

As k = 0, implies n = m, we only need to show that the inclusion embedding Incr(S,D) : D ↪→ S ◦D
is well-defined for N(0) to hold.

The domain D of the embedding Incr(S,D) is well-defined by assumption. The codomain S ◦ D
is well-defined by L(0). Since n,m ≥ 1, by Definition 2.2.8 Incr(S,D) needs to satisfy three separate

conditions:

• The component embedding Incr(S,D).e is well-defined. As n = m, by Definition 2.4.5,

Incr(S,D).e = idD.e = idD.s, which is well-defined by lemma2.4.4.

• For every 0 ≤ j < |D| we have:

(S ◦D)[j + Incr(S,D).h].g

= (S ◦D)[j + |S|].g [Def. 2.4.5]

= D[(j + |S|)− |S|].g [Eq. (2.11)]

= D[j].g

As required.

• For every 0 ≤ j < |D| we have:

Incr(S,D).e.Λ[D[j].d] ◦D[j].e

= idD.e.Λ[D[j].d] ◦D[j].e [Def. 2.4.5]

= idD.s.Λ[D[j].d] ◦D[j].e [Def. 2.4.1]

= idD[0].d.Λ[D[j].d] ◦D[j].e [Def. 2.2.5]

= idD[j].d ◦D[j].e [Def. 2.4.2]

= D[j].e [Def. 2.4.3]

= D[(j + |S|)− |S|].e
= (S ◦D)[j + |S|].e [Eq. (2.11)]

= (S ◦D)[j + Incr(S,D).h].e [Def. 2.4.5]

As required.

As all three conditions are satisfied, we conclude that for any two well-defined n-diagrams D,S such that

t(S) = s(D), the inclusion embedding Incr(S,D) is well-defined.

Lemma 2.4.13. The statement L(0) holds without any further assumptions.
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Proof. For k = 0, we have n = m, so to establish L(0) we need to show that given two well-defined

n-diagrams S,D such that t(S) = s(D), the composite S ◦D is well-defined.

Since m,n ≥ 1, by Definition 2.2.6, the diagram S ◦D is well-defined if the following two conditions

are satisfied:

• The source (S ◦D).s = (S ◦D)[0].d is a well-defined diagram.

• For every 0 < j ≤ |S ◦D| the slice (S ◦D)[j].d exists and is well-defined.

As n = m, we apply Lemma 2.4.7 to obtain that:

(S ◦D)[j].d =

{
S[j].d 0 ≤ j ≤ |S|
D[j − |S|].d |S| ≤ j ≤ |S|+ |D|

As both S,D are well-defined diagrams, then all their slices are also well-defined. Since every slice of S◦D
is equal to either a slice of S or a slice of D, they are all well-defined, hence S ◦D is also well-defined.

Lemma 2.4.14. The statement K(1) holds without any further assumptions.

Proof. We need to show that for any n-diagram D and m-diagram S such that the composite S ◦D exists

and

If n > m (S ◦D)[i].d = S ◦ (D[i].d) for any 0 ≤ i < |D|
If n < m (S ◦D)[i].d = (S[i].d) ◦D for any 0 ≤ i < |S|

We consider both these cases separately, first let n > m. We prove the result by induction on 0 ≤ j ≤ |D|.

• Base case: For j = 0, the result follows immediately form the definitions:

(S ◦D)[0].d =

= (S ◦D).s [Def. 2.2.5]

= S ◦ (D.s) [Def. 2.4.6]

= S ◦ (D[0].d) [Def. 2.2.5]

• Inductive step: For j > 0, assume that:

(S ◦D)[j].d = S ◦ (D[j].d) (IH )

Let us consider (S ◦D)[j + 1].d and S ◦ (D[j + 1].d), to show that two diagrams are equivalent, by

Definition 2.3.7, we need to check the following:

? Sources are equivalent diagrams:

((S ◦D)[j + 1].d).s

= ((S ◦D)[j].d).Π[(S ◦D)[j].e, t((S ◦D)[j].g)]).s [Def. 2.2.3]

= ((S ◦D)[j].d).s [Eq. (2.5)]

= (S ◦ (D[j].d)).s [IH ]

= S.s [Eq. (2.9)]

= (S ◦ (D[j + 1].d)).s [Eq. (2.9)]

? Lengths of generator lists are equal:

Note that even though m = n−1, we still have m < n, hence the following is true for generators

of the composed diagram for 0 ≤ j < |D|:

(S ◦D)[j].g = D[j].g [Def. 2.15]
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The comparison of lengths for the two diagrams is as follows:

|(S ◦D)[j + 1].d|
= |(S ◦D)[j].d).Π[(S ◦D)[j].e, t((S ◦D)[j].g)]| [Def. 2.2.3]

= |S ◦D)[j].d| − |s((S ◦D)[j].g)|+ |t((S ◦D)[j].g)| [Eq. (2.6)]

= |S ◦ (D[j].d)| − |s((S ◦D)[j].g)|+ |t((S ◦D)[j].g)| [IH]

= |S ◦ (D[j].d)| − |s(D[j].g|+ |t(D[j].g| [Eq. (2.15)]

= |S|+ |D[j].d| − |s(D[j].g|+ |t(D[j].g| [Eq. (2.10)]

= |S|+ |D[j + 1].d| [Eq. (2.6)]

= |S ◦ (D[j + 1].d)| [Eq. (2.10)]

? For generators and embeddings we need to show that for 0 ≤ k < |(S ◦ D)[j + 1].d| =

|S ◦ (D[j + 1].d)|, the k-th generators in generator lists of both diagrams correspond and the

same for k-th embeddings.

Since m = n − 1, we can simplify the height of the j-th embedding in S ◦D in the following

way.

((S ◦D)[j].e).h =

= (Incr(S,D[j].d) ◦D[j].e).h [Eq. (2.12)]

= (Incr(S,D[j].d)).h+D[j].e.h [Def. 2.3.2]

= |S|+D[j].e.h [Def. 2.4.5]

Let us refer to this equality as [∗].
We show the necessary equivalences separately for four individual ranges:

∗ In the range: 0 ≤ k < |S|, we have:

Generators:

((S ◦D)[j + 1].d)[k].g

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)]).g [Def. 2.2.3]

= ((S ◦D)[j].d)[k].g [Eq. (2.7)]

= (S ◦ (D[j].d))[k].g [IH]

= S[k].g [Eq. (2.11), k < |S|]
= (S ◦ (D[j + 1].d))[k].g [Eq. (2.11), k < |S|]

Embeddings:

((S ◦D)[j + 1].d)[k].e

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)])[k].e [Def. 2.2.3]

= ((S ◦D)[j].d)[k].e [Eq. (2.8)]

= (S ◦ (D[j].d))[k].e [IH]

= S[k].e [Eq. (2.12), k < |S|]
= (S ◦ (D[j + 1].d))[k].e [Eq. (2.11), k < |S|]

∗ In the range: |S| ≤ k < (S ◦D)[j].e.h

We have: (S ◦D)[j].e = D[i− |S|].e, hence the range is equivalent to:

|S| ≤ k < D[i− |S|].e.h
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This means that when we apply Definition 2.3.4, we use generators and embeddings from

the original diagram, not from the target of the rewrite.

Generators:

((S ◦D)[j + 1].d)[k].g

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)]).g [Def. 2.2.3]

= ((S ◦D)[j].d)[k].g [Eq. (2.7)]

= (S ◦ (D[j].d))[k].g [IH]

= (D[j].d)[k − |S|].g [Eq. (2.11), |S| ≤ k]

= (D[j].d.Π[D[j].d, t(D[j].g)])[k − |S|].g [Eq. (2.7)]

= (D[j + 1])[(k − |S|].g [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].g [Eq. (2.11), |S| ≤ k]

Embeddings:

((S ◦D)[j + 1].d)[k].e

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)]).e [Def. 2.2.3]

= ((S ◦D)[j].d)[k].e [Eq. (2.8)]

= (S ◦ (D[j].d))[k].e [IH]

= (D[j].d)[k − |S|].e [Eq. (2.12), |S| ≤ k]

= (D[j].d.Π[D[j].d, t(D[j].g)])[k − |S|].e [Eq. (2.8)]

= (D[j + 1])[(k − |S|].e [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].e [Eq. (2.12), |S| ≤ k]

∗ In the range: (S ◦D)[j].e.h ≤ k < (S ◦D)[j].e.h+ |t((S ◦D)[j].g)|
We have: (S ◦D)[j].g = D[j].g, hence the range is equivalent to:

|S|+D[j].e.h ≤ k < |S|+D[j].e.h+ |t(D[j].g)|

Generators:

((S ◦D)[j + 1].d)[k].g

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)]).g [Def. 2.2.3]

= t((S ◦D)[j].g)[k − (S ◦D)[j].e.h] [Eq. (2.7)]

= t(D[j].g)[k − (S ◦D)[j].e.h].g [Eq. (2.15)]

= t(D[j].g)[(k − (D[j].e.h+ |S|)].g [∗]
= t(D[j].g)[(k − |S|)−D[j].e.h].g

= (D[j + 1].d)[(k − |S|].g [Eq. (2.7)]

= (S ◦ (D[j + 1].d))[k].g [Eq. (2.11), |S| ≤ k]
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Embeddings:

((S ◦D)[j + 1].d)[k].e

= ((S ◦D)[j].d).Π[(S ◦D)[j].e, t((S ◦D)[j].g)]).e [Def. 2.2.3]

= (((S ◦D)[j].e).e).Λ[t((S ◦D)[j].g)[k − (S ◦D)[j].e.h].d]

◦ t((S ◦D)[j].g)[k − (S ◦D)[j].e.h].e [Eq. (2.7)]

= ((Incr(S,D[j].d) ◦D[j].e).e).Λ[

t((S ◦D)[j].g)[k − (S ◦D)[j].e.h].d]

◦ t((S ◦D)[j].g)[k − (S ◦D)[j].e.h].e [Eq. (2.16)]

= ((Incr(S,D[j].d) ◦D[j].e).e).Λ[t(D[j].g)[k − (S ◦D)[j].e.h].d]

◦ t(D[j].g)[k − (S ◦D)[j].e.h].e [Eq. (2.15)]

= ((Incr(S,D[j].d) ◦D[j].e).e).Λ[t(D[j].g)[k − (|S|+D[j].e.h)]

◦ t(D[j].g)[k − (|S|+D[j].e.h)].e [∗]
= ((Incr(S,D[j].d).e).Λ[(D[j].d)[D[j].e.h].d]

◦D[j].e.e).Λ[t(D[j].g)[k − (|S|+D[j].e.h)]

◦ t(D[j].g)[k − (|S|+D[j].e.h)].e [Def. 2.3.2]

= (((idD[j].d).e).Λ[(D[j].d)[D[j].e.h].d]

◦D[j].e.e).Λ[t(D[j].g)[k − (|S|+D[j].e.h)]

◦ t(D[j].g)[k − (|S|+D[j].e.h)].e [Def. 2.4.5]

= ((id(D[j].d)[0].d).Λ[(D[j].d)[D[j].e.h].d]

◦D[j].e.e).Λ[t(D[j].g)[k − (|S|+D[j].e.h)]

◦ t(D[j].g)[k − (|S|+D[j].e.h)].e [Def. 2.4.1]

= (id(D[j].d)[D[j].e.h].d)

◦D[j].e.e).Λ[t(D[j].g)[k − (|S|+D[j].e.h)]

◦ t(D[j].g)[k − (|S|+D[j].e.h)].e [Def. 2.4.2]

= D[j].e.e).Λ[t(D[j].g)[k − (|S|+D[j].e.h)]

◦ t(D[j].g)[k − (|S|+D[j].e.h)].e [Def. 2.4.3]

= (D[j].e.e).Λ[t(D[j].g)[(k − |S|)−D[j].e.h].d]

◦ t(D[j].g)[(k − |S|)−D[j].e.h].e

= ((D[j].d).Π[D[j].e, t(D[j].g)])[k − |S|].e
= (D[j + 1].d)[k − |S|].e [Eq. (2.7)]

= (S ◦ (D[j + 1].d))[k].e [Eq. (2.11)]

∗ In the range:

(S ◦D)[j].e.h+ |t((S ◦D)[j].g)| ≤ k
< |(S ◦D)[j].d| − |s((S ◦D)[j].g)|+ |t((S ◦D)[j].g)|

We have: (S ◦D)[j].e = D[j − |S|].e, hence the range is equivalent to:

D[j − |S|].e.h+ |t(D[j − |S|].g)| ≤ k
< |S|+ |D[j − |S|]| − |s(D[j − |S|].g)|+ |t(D[−|S|j].g)|
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Generators:

((S ◦D)[j + 1].d)[k].g

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)]).g [Def. 2.2.3]

= ((S ◦D)[j].d)[k − |t((S ◦D)[j].g)|
+ |s((S ◦D)[j].g)|].g [Eq. (2.7)]

= (S ◦ (D[j].d))[k − |t((S ◦D)[j].g)|
+ |s((S ◦D)[j].g)|].g [IH]

= (S ◦ (D[j].d))[(k − |t(D[k].g)|+ |s(D[k].g)|)].g [Eq. (2.15), |S| ≤ k]

= (D[j].d)[(k − |t(D[k].g)|+ |s(D[k].g)|)− |S|].g [Eq. (2.11)]

= (D[j].d)[(k − |S|)− |t(D[k].g)|+ |s(D[k].g)|].g
= (D[j].d.Π[D[j].e, t(D[j].g)])[k − |S|].e [Eq. (2.7)]

= (D[j + 1].d)[(k − |S|].g [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].g [Eq. (2.15), |S| ≤ k]

Embeddings:

((S ◦D)[j + 1].d)[k].e

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)]).e [Def. 2.2.3]

= ((S ◦D)[j].d)[k − |t((S ◦D)[j].g)|
+ |s((S ◦D)[j].g)|].e Eq. (2.8)]

= (S ◦ (D[j].d))[k − |t((S ◦D)[j].g)|
+ |s((S ◦D)[j].g)|].e [IH]

= (S ◦ (D[j].d))[(k − |t(D[k].g)|+ |s(D[k].g)|)].e [Eq. (2.12), |S| ≤ k]

= (D[j].d)[(k − |t(D[k].g)|+ |s(D[k].g)|)− |S|].e [Eq. (2.12)]

= (D[j].d)[(k − |S|)− |t(D[k].g)|+ |s(D[k].g)|].e
= (D[j].d).Π[D[j].e, t(D[j].g)])[k − |S|].e [Eq. (2.8)]

= (D[j + 1].d)[(k − |S|].g [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].e [Eq. (2.12), |S| ≤ k]

All embeddings and generators in both diagrams correspond. Hence, as all these conditions are

satisfied, the two diagrams are equivalent by Definition 2.3.7. The argument for n < m is analogous. By

this we established that K(1) holds.

With all the base cases established, we prove a series of implications between the logical statements

defined earlier in this section. Again, for each implication we only take the minimal subset of expressions

that implies the given statement for n.

Lemma 2.4.15. For k ≥ 1 the following holds: N(k − 1) ∧ L(k − 1) =⇒ L(k).

Proof. We assume that N(k − 1) holds, i.e. that for any well-defined x-diagram B and a well-defined

y-diagram A, such that |x− y| = k− 1 and t(A) = sx−y+1(B), their composite A ◦B is well-defined. We

also assume that L(k − 1) holds.

Now consider two well-defined diagrams: an n-diagram D and an m-diagram S, such that t(S) =

sn−m+1(D) and |n−m| = k. We need to show that S ◦D is well-defined.

54



We consider two cases separately, first let m ≥ n. By Definition 2.2.6, S ◦ D is well-defined if for

0 ≤ j ≤ |S ◦D| all the slices (S ◦D)[j].d are well-defined.

We prove this result by induction on 0 ≤ j ≤ |S ◦D|:

• Base case: For j = 0, we need to show that the source (S ◦ D)[0].d = (S ◦ D).s is a well-defined

diagram. As m ≤ n, by the clause Eq. (2.13) in Definition 2.4.6 we obtain the following:

(S ◦D).s = S ◦ (D.s)

The dimension of D.s is n − 1, hence we get (n − 1) − m = k − 1 and since L(k − 1) holds we

obtain that (S ◦D).s is well-defined as the composite of two well-defined diagrams whose difference

in dimensions is k − 1.

• Inductive step: For 0 < j ≤ |S ◦D|, we assume that the slice (S ◦D)[j].d exists and is well-defined.

Let us consider the subsequent slice (S ◦D)[j + 1].d, then we have the following:

(S ◦D)[j + 1].d =

= ((S ◦D)[j].d).Π[(S ◦D)[j].e, t((S ◦D)[j].g)] [Def. 2.2.3]

= ((S ◦D)[j].d).Π[(S ◦D)[j].e, t(D[j].g)] [Eq. (2.15)]

= ((S ◦D)[j].d).Π[Incr(S,D[j].d) ◦D[j].e, t(D[j].g)] [Eq. (2.16)]

The following hold:

? (S ◦D)[j].d is well-defined by the inductive hypothesis.

? s(D[j].g) and t(D[j].g) are globular with respect to each other by Definition 2.2.1.

? D[j].e is well-defined, since D is well-defined.

? Incr(S,D[j].d) is well-defined, by application of N(k − 1), since the dimension of D[j].d is

n− 1.

? Incr(S,D[j].d) ◦ D[j].e is well-defined as the composite of two well-defined embeddings by

C(n) 2.3.14 which holds by Theorem 2.3.27.

Hence, we apply Theorem 2.3.28 to conclude that (S ◦D)[j + 1].d is a well-defined diagram as the

rewrite of a well-defined diagram (S ◦D)[j].d.

By this inductive argument all slices (S ◦ D)[j].d are well-defined for 0 ≤ j ≤ |S ◦ D|, hence S ◦ D is

well-defined.

The proof for m > n is analogous. This establishes that L(k) holds and the implication is true.

Lemma 2.4.16. For k ≥ 1 the following holds: L(k) ∧M(k) ∧N(k − 1) =⇒ N(k).

Proof. We make three assumptions:

• L(k) holds, i.e. that for any well-defined n-diagram D and a well-defined m-diagram S such that

|n −m| = k and t(S) = sn−m+1(D) if m ≤ n or tm−n+1(S) = s(D) otherwise, then the composite

diagram S ◦D is well-defined.

• M(k) holds, i.e. that for any well-defined n-diagram D and a well-defined diagram m-diagram S

such that |n−m| = k the following equalities hold:

If n > m Incr(S,D[i].d) = (Incr(S,D).e).Λ[D[i].d] for any 0 ≤ i < |D|
If n < m Incl(S[i].d,D) = (Incl(S,D).e).Λ[S[i].d] for any 0 ≤ i < |S|

• N(k − 1) holds.
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We need to show that given an n-diagram D and an m-diagram S, such that 1 ≤ m,n:

• If n > m and t(S) = sn−m+1(D) and the composite S ◦ D exists, the inclusion embedding

Incr(S,D) : D ↪→ S ◦D is well-defined.

• If n < m and tm−n+1(S) ≡ s(D) and the composite S ◦ D exists, the inclusion embedding

Incl(S,D) : D ↪→ D ◦ S is well-defined.

The case for n = m cannot happen as |n−m| = k ≥ 1. We consider the two above cases separately,

first let n > m and consider Incr(S,D):

The domain D of the embedding Incr(S,D) is well-defined by assumption. The codomain S ◦ D is

well-defined by L(k). By Definition 2.2.8 the inclusion embedding Incr(S,D) : D ↪→ S ◦D is well-defined

if the following three conditions are satisfied:

• The component embedding Incr(S,D).e is well-defined. As n > m, by Definition 2.4.5, we have

Incr(S,D).e = Incr(S,D.s)

The dimension of D.s is n − 1, hence we get (n − 1) − m = k − 1 and by N(k − 1) we obtain

that Incr(S,D.s) is well-defined as the inclusion for two well-defined diagrams whose difference in

dimensions is k − 1.

• For every 0 ≤ j < |D| we have:

(S ◦D)[j + Incr(S,D).h].g

= (S ◦D)[j + idD.h].g [Def. 2.4.5]

= (S ◦D)[j].g [Def. 2.4.1]

= D[j].g [Eq. (2.15)]

As required.

• For every 0 ≤ j < |D| we have:

(Incr(S,D).e).Λ[D[j].d] ◦D[j].e =

= Incr(S,D[j].d) ◦D[j].e [M(k)]

= (S ◦D)[j].e [Eq. (2.16)]

= (S ◦D)[j + Incr(S,D).h].e [Def. 2.4.5]

As required.

As all conditions are satisfied, we can conclude that, hence Incr(S,D) is well-defined.

The argument for n < m that Incl(S,D) is well-defined is analogous. This establishes that N(k) holds

and the implication is true.

Lemma 2.4.17. For n ≥ 1 the following holds K(k) =⇒ M(k)

Proof. We assume that K(n) holds i.e. that for any n-diagram D and any m-diagram S such that

|n−m| = k and such that the composite S ◦D exists, the following equalities hold:

If n > m (S ◦D)[j].d = S ◦ (D[j].d) for any 0 ≤ j < |D|
If n < m (S ◦D)[j].d = (S[j].d) ◦D for any 0 ≤ j < |S|

We need to show that for any well-defined n-diagram D and a well-defined diagram m-diagram S such

that |n−m| = k, the following equalities hold:

If n > m Incr(S,D[j].d) = (Incr(S,D).e).Λ[D[j].d] for any 0 ≤ j < |D|
If n < m Incl(S[j].d,D) = (Incl(S,D).e).Λ[S[j].d] for any 0 ≤ j < |S|

56



We consider both cases above separately, first let n > m. As n ≥ 1, to show that these two embeddings

are equivalent, by Definition 2.3.6, we need to check three conditions:

• Domains and codomains are equivalent diagrams:

? By Definitions 2.3.1, 2.4.5 the type of Incr(S,D[i].d) is as follows:

Incr(S,D[i].d) : D[i].d ↪→ S ◦ (D[i].d)

? By Definitions 2.3.1, 2.4.5 the type of (Incr(S,D).e).Λ[D[i].d] is as follows:

(Incr(S,D).e).Λ[D[i].d] :

D[i].d ↪→ ((S ◦D)[Incr(S,D).h]).Π[Incr(S,D).e,D[i].d]

We see that the domains of both are immediately equivalent. For codomains, we need to

simplify first. In this derivation we make use of statement S(n) defined in Definition 2.3.10,

which holds by Theorem 2.3.27.

((S ◦D)[Incr(S,D).h]).Π[Incr(S,D).e,D[i].d] =

= ((S ◦D)[Incr(S,D).h]).Π[Incr(S,D).e,

D[i− Incr(S,D).h].d] [Def. 2.4.5]

= (S ◦D).Π[(Incr(S,D)), D][i].d [S(n)]

= (S ◦D)[i].d [Lemma 2.3.5]

Need S ◦D well-defined for this.

Since K(n) holds, we now obtain that the codomains are equivalent diagrams.

• Component embeddings are equivalent. In this derivation we make use of statement T (n) defined

in Definition 2.3.9, which holds by Theorem 2.3.27.

((Incr(S,D).e).Λ[D[i].d]).e =

= (Incr(S,D).e).e [Def. 2.3.1]

= (Incr(S,D.s)).e [Def. 2.4.5]

= Incr(S,D.s.s) [Def. 2.4.5]

= Incr(S, (D[i].d).s) [T (n)]

= (Incr(S,D[i].d)).e [Def. 2.4.5]

• Heights are equal:

((Incr(S,D).e).Λ[D[i].d]).h =

= (Incr(S,D).e).h [Def. 2.3.1]

= (Incr(S,D.s)).h [Def. 2.4.5]

= idD.s.h [Def. 2.4.5]

= 0

= idD[i].d.h [Def. 2.4.5]

= (Incr(S,D[i].d)).h [Def. 2.4.5]

As all these conditions are fulfilled, the two embeddings are equivalent. The argument for n < m is

analogous. This establishes that M(k) holds and the implication is true.
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Lemma 2.4.18. For n ≥ 1 the following holds: M(k − 1) =⇒ K(k)

Proof. Assume that M(k − 1) holds, i.e. for any well-defined n-diagram D and a well-defined diagram

m-diagram S such that |n−m| = k the following equalities hold:

If n > m Incr(S,D[j].d) = (Incr(S,D).e).Λ[D[j].d] for any 0 ≤ j < |D|
If n < m Incl(S[j].d,D) = (Incl(S,D).e).Λ[S[j].d] for any 0 ≤ j < |S|

We need to show that for any n-diagram D and m-diagram S such that the composite S ◦D exists and

|n−m| = k and such that the composite S ◦D exists, the following equalities hold:

If n > m (S ◦D)[j].d = S ◦ (D[j].d) for any 0 ≤ j < |D|
If n < m (S ◦D)[j].d = (S[j].d) ◦D for any 0 ≤ j < |S|

We consider both cases above separately, first let n > m. We prove this result by induction on 0 ≤ j ≤ |D|.

• Base case: For j = 0, the result follows immediately from the definitions:

(S ◦D)[0].d =

= (S ◦D).s [Def. 2.2.5]

= S ◦ (D.s) [Def. 2.4.6]

= S ◦ (D[0].d) [Def. 2.2.5]

• Inductive step: For j > 0, assume that:

(S ◦D)[j].d = S ◦ (D[j].d) (IH )

Let us consider (S ◦D)[j + 1].d and S ◦ (D[j + 1].d), to show that two diagrams are equivalent, by

Definition 2.3.7, we need to check the following:

? Sources are equivalent diagrams:

((S ◦D)[j + 1].d).s

= ((S ◦D)[j].d).Π[(S ◦D)[j].e, t((S ◦D)[j].g)]).s [Def. 2.2.3]

= ((S ◦D)[j].d).s [Eq. (2.5)]

= (S ◦ (D[j].d)).s [IH ]

= S ◦ (D[j].d).s [Eq. (2.13)]

= S ◦ ((D[j].d).Π[D[j].e, t(D[j].g)]).s [Eq. (2.5)]

= S ◦ (D[j + 1].d).s [Def. 2.2.3]

= (S ◦ (D[j + 1].d)).s [Eq. (2.13)]

? Lengths of generator lists are equal:

|(S ◦D)[j + 1].d|
= |(S ◦D)[j].d).Π[(S ◦D)[j].e, t((S ◦D)[j].g)]| [Def. 2.2.3]

= |S ◦D)[j].d| − |s((S ◦D)[j].g)|+ |t((S ◦D)[j].g)| [Eq. (2.6)]

= |S ◦ (D[j].d)| − |s((S ◦D)[j].g|+ |t((S ◦D)[j].g)| [IH]

= |S ◦ (D[j].d)| − |s(D[j].g|+ |t(D[j].g| [Eq. (2.15)]

= |D[j].d| − |s(D[j].g|+ |t(D[j].g| [Eq. (2.14)]

= |D[j + 1].d| [Eq. (2.6)]

= |S ◦ (D[j + 1].d)| [Eq. (2.14)]
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• For generators and embeddings we need to show that for 0 ≤ k < |(S◦D)[j+1].d| = |S◦(D[j+1].d)|,
the k-th generators in generator lists of both diagrams correspond and the same for k-th embeddings.

Firstly, we distinguish between cases for m = n− 1 and m < n− 1.

Since m = n− 1, we can simplify the height of the j-th embedding in S ◦D in the following way.

(S ◦D)[j].e.h

= (Incr(S,D[j].d) ◦D[j].e).h [Eq. (2.12)]

= (Incr(S,D[j].d)).h+D[j].e.h [Def. 2.3.2]

= idD.h+D[j].e.h [Def. 2.4.5]

= D[j].e.h [Def. 2.4.1]

Let us refer to this equality as [∗].

We consider these generators and embeddings in three separate ranges:

? Range:

0 ≤ k < (S ◦D)[j].e.h

By [∗] this is equivalent to:

0 ≤ k < D[j].e.h

Generators:

((S ◦D)[j + 1].d)[k].g

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)])[k].g [Def. 2.2.3]

= ((S ◦D)[j].d)[k].g [Eq. (2.7)]

= (S ◦ (D[j].d))[k].g [IH]

= (D[j].d)[k].g [Eq. (2.15)]

= (D[j].d).Π[D[j].d, t(D[j].g)])[k].g [Eq. (2.7)]

= (D[j + 1])[k].g [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].g [Eq. (2.15)]

Embeddings:

((S ◦D)[j + 1].d)[k].e

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)])[k].e [Def. 2.2.3]

= ((S ◦D)[j].d)[k].e [Eq. (2.8)]

= (S ◦ (D[j].d))[k].e [IH]

= Incr(S, (D[j].d)[k].d) ◦ (D[j].d)[k].e [Eq. (2.16)]

= Incr(S, (D[j].d.Π[D[j].e, t(D[j].g)])[k].d) ◦ (D[j].d)[k].e [S(n− 1)]

= Incr(S, (D[j].d.Π[D[j].e, t(D[j].g)])[k].d)

◦ ((D[j].d.Π[D[j].e, t(D[j].g)])[k].d)[k].e [Eq. (2.8)]

= Incr(S, (D[j + 1].d)[k].d) ◦ (D[j + 1].d)[k].e [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].e [Eq. (2.16)]
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? Range:

(S ◦D)[j].e.h ≤ k < (S ◦D)[j].e.h+ |t((S ◦D)[j].g)|

By [∗] this is equivalent to

D[j].e.h ≤ k < D[j].e.h+ |t(D[j].g)|

Generators:

((S ◦D)[j + 1].d)[k].g

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)])[k].g [Def. 2.2.3]

= t((S ◦D)[j].g)[k − (S ◦D)[j].e.h].g [Eq. (2.7)]

= t(D[j].g)[k − (S ◦D)[j].e.h].g [Eq. (2.15)]

= t(D[j].g)[(k −D[j].e.h].g [∗]
= (D[j].d).Π[D[j].d, t(D[j].g)])[k].g [Eq. (2.7)]

= (D[j + 1])[k].g [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].g [Eq. (2.15)]

Embeddings: In this derivation we make use of statement Q(n) described in Definition 2.3.11,

correctness of which is proved in Theorem 2.3.27.

(f.Λ[A] ◦ e).Λ[T ] = f.Λ[A.Π[e, T ]] ◦ e.Λ[T ] (Q(n))

Here we instantiate Q(n) for use in this particular application:

f = Incr(S,D[j].d).e e = D[j].e.e

A = (D[j].d)[D[j].e.h].d T = t(D[j].g)[k −D[j].e.h].d

Then, the following equality is given by [Q(n− 1)]:

((Incr(S,D[j].d).e).Λ[(D[j].d)[D[j].e.h].d] ◦D[j].e.e).Λ[

t(D[j].g)[k −D[j].e.h].d]

= (Incr(S,D[j].d).e).Λ[((D[j].d)[D[j].e.h].Π[D[j].e.e,

t(D[j].g)[k −D[j].e.h].d])] ◦ (D[j].e.e).Λ[t(D[j].g)[k −D[j].e.h].d]

We also make use of the statement S(n) defined in Definition 2.3.10 and which holds by

Theorem 2.3.27.

((S ◦D)[j + 1].d)[k].e

= ((S ◦D)[j].d).Π[(S ◦D)[j].e, t((S ◦D)[j].g)])[k].e [Def. 2.2.3]

= (((S ◦D)[j].e).e).Λ[t((S ◦D)[j].g)[k − (S ◦D)[j].e.h].d]◦
t((S ◦D)[j].g)[k − (S ◦D)[j].e.h].e [Eq. (2.8)]

= (((S ◦D)[j].e).e).Λ[t(D[j].g)[k − (S ◦D)[j].e.h].d]◦
t(D[j].g)[k − (S ◦D)[j].e.h].e [Eq. (2.15)]

= (((S ◦D)[j].e).e).Λ[t(D[j].g)[k −D[j].e.h].d]◦
t(D[j].g)[k −D[j].e.h].e [∗]

= ((Incr(S,D[j].d) ◦D[j].e).e).Λ[t(D[j].g)[k −D[j].e.h].d]◦
t(D[j].g)[k −D[j].e.h].e [Eq. (2.16)]

= ((Incr(S,D[j].d).e).Λ[(D[j].d)[D[j].e.h].d] ◦D[j].e.e).Λ[

t(D[j].g)[k −D[j].e.h].d] ◦ t(D[j].g)[k −D[j].e.h].e [Eq. (2.3.2)]]
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= (Incr(S,D[j].d).e).Λ[((D[j].d)[D[j].e.h].Π[D[j].e.e,

t(D[j].g)[k −D[j].e.h].d])] ◦ (D[j].e.e).Λ[t(D[j].g)[k −D[j].e.h].d]

◦ t(D[j].g)[k −D[j].e.h].e [Q(n− 1)]

= (Incr(S,D[j].d).e).Λ[((D[j].d).Π[D[j].e,

t(D[j].g)])[k].d] ◦ (D[j].e.e).Λ[t(D[j].g)[k −D[j].e.h].d]

◦ t(D[j].g)[k −D[j].e.h].e [S(n− 1)]

= (Incr(S, (D[j].d).s)).Λ[((D[j].d).Π[D[j].e,

t(D[j].g)])[k].d] ◦ (D[j].e.e).Λ[t(D[j].g)[k −D[j].e.h].d]

◦ t(D[j].g)[k −D[j].e.h].e [Def. 2.4.5]

= (Incr(S, ((D[j].d).Π[D[j].e, t(D[j].g)]).s)).Λ[((D[j].d).Π[D[j].e,

t(D[j].g)])[k].d] ◦ (D[j].e.e).Λ[t(D[j].g)[k −D[j].e.h].d]

◦ t(D[j].g)[k −D[j].e.h].e [Eq. (2.5)]

= (Incr(S, (D[j].d).Π[D[j].e, t(D[j].g)]).e).Λ[((D[j].d).Π[D[j].e,

t(D[j].g)])[k].d] ◦ (D[j].e.e).Λ[t(D[j].g)[k −D[j].e.h].d]

◦ t(D[j].g)[k −D[j].e.h].e [Def. 2.4.5]

= Incr(S, ((D[j].d).Π[D[j].e, t(D[j].g)])[k].d)

◦ (D[j].e.e).Λ[t(D[j].g)[k −D[j].e.h].d] ◦ t(D[j].g)[k −D[j].e.h].e [M(k − 1)]

= Incr(S, ((D[j].d).Π[D[j].e, t(D[j].g)])[k].d)

◦ (((D[j].d).Π[D[j].e, t(D[j].g)])[k].d)[k].e [Eq. (2.8)]

= Incr(S, (D[j + 1].d)[k].d) ◦ (D[j + 1].d)[k].e [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].e [Eq. (2.16)]

? Range:

(S ◦D)[j].e.h+ |t((S ◦D)[j].g)| ≤ k <
|(S ◦D)[j].d| − |s((S ◦D)[j].g)|+ |t((S ◦D)[j].g)|

By [∗] this is equivalent to:

D[j].e.h+ |t(D[j].g)| ≤ k < |D[j].d| − |s(D[j].g)|+ |t(D[j].g)|

Generators:

((S ◦D)[j + 1].d)[k].g

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)])[k].g [Def. 2.2.3]

= ((S ◦D)[j].d)[k − |t((S ◦D)[j].g)|+ |s((S ◦D)[j].g)|].g [Eq. (2.7)]

= (S ◦ (D[j].d))[k − |t((S ◦D)[j].g)|+ |s((S ◦D)[j].g)|].g [IH]

= (S ◦ (D[j].d))[(k − |t(D[k].g)|+ |s(D[k].g)|)].g [Eq. (2.15)]

= (D[j].d)[(k − |t(D[k].g)|+ |s(D[k].g)|)].g [Eq. (2.15)]

= (D[j].d)[k − |t(D[k].g)|+ |s(D[k].g)|].g
= (D[j].d.Π[D[j].d, t(D[j].g)])[k].g [Def. 2.7]

= (D[j + 1].d)[(k − |S|].g [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].g [Eq. (2.15)]

61



Embeddings:

((S ◦D)[j + 1].d)[k].e

= ((S ◦D)[j].d).Π[(S ◦D)[j].e,

t((S ◦D)[j].g)])[k].e [Def. 2.2.3]

= ((S ◦D)[j].d)[k − |t((S ◦D)[j].g)|+ |s((S ◦D)[j].g)|].e [Eq. (2.8)]

= (S ◦ (D[j].d))[k − |t((S ◦D)[j].g)|+ |s((S ◦D)[j].g)|].e [IH]

= (S ◦ (D[j].d))[(k − |t(D[k].g)|+ |s(D[k].g)|)].e [Eq. (2.15)]

= Incr(S, (D[j].d)[k + |s(D[j].g)| − |t(D[j].g)|])
◦ (D[j].d)[k − |t(D[k].g)|+ |s(D[k].g)|)].e [Eq. (2.16)]

= Incr(S, ((D[j].d).Π[D[j].e, t(D[j].g)])[k].d)

◦ (D[j].d)[k − |t(D[k].g)|+ |s(D[k].g)|].e [S(n− 1)]

= Incr(S, ((D[j].d).Π[D[j].e, t(D[j].g)])[k].d)

◦ (((D[j].d).Π[D[j].e, t(D[j].g)])[k].d)[k].e [Eq. (2.8)]

= Incr(S, (D[j + 1].d)[k].d) ◦ (D[j + 1].d)[k].e [Def. 2.2.3]

= (S ◦ (D[j + 1].d))[k].e [Eq. (2.16)]

All embeddings and generators in both diagrams correspond. Hence, as all these conditions are satisfied,

the two diagrams are equivalent by Definition 2.3.7. The argument for n < m is analogous.

By this, we established that K(k) holds, hence the implication is true.

Finally, we bring all these lemmas together to prove:

Theorem 2.4.19. For k ≥ 1 the following logical statement holds: K(k) ∧ L(k) ∧M(k) ∧N(k)

Proof. We prove this by induction on k

• Base case: For k = 1:

? K(1), holds with no further conditions by Lemma 2.4.14.

? To establish M(1), by Lemma 2.4.17, we need K(1). This holds by the argument above.

? To establish L(1), by Lemma 2.4.15, we need N(0) and L(0) to hold. L(0) holds by the

argument above. N(0) holds by Lemma 2.4.12, since L(0) holds.

? To establish N(1), by Lemma 2.4.16, we need all L(1), M(1), N(0) to hold. All hold by the

argument above.

• Inductive step: For k > 1, we assume that all K(k − 1), L(k − 1), M(k − 1), N(k − 1) hold.

? To establish K(k), by Lemma 2.4.18, we need M(k−1). This holds by the inductive hypothesis.

? To establish M(k), by Lemma 2.4.17, we need K(k). This holds by the argument above.

? To establish L(k), by Lemma 2.4.15, we need N(k − 1) and L(k-1) to hold. Both hold by the

inductive hypothesis.

? To establish N(k), by Lemma 2.4.16, we need all L(k), M(k), N(k − 1) to hold. The initial

two statements hold by the argument above. N(k − 1) holds by the inductive hypothesis.

As all statements K(k), L(k), M(k), N(k) hold, this establishes that their conjunction is true.

By this inductive argument the logical statement: K(k) ∧ L(k) ∧M(k) ∧N(k) holds for k ≥ 1.
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The two main results on the composite of two diagrams being well-defined and the inclusion embedding

being well-defined follow immediately:

Theorem 2.4.20. For any well-defined n-diagram D and a well-defined diagram m-diagram S such that

|n−m| = k:

• If n ≥ m and t(S) = sn−m+1(D) and the composite S ◦ D exists, the inclusion embedding

Incr(S,D) : D ↪→ S ◦D is well-defined.

• If n < m and tm−n+1(S) ≡ s(D) and the composite S ◦ D exists, the inclusion embedding

Incr(S,D) : D ↪→ D ◦ S is well-defined.

Proof. By Lemma 2.4.12 this holds for n = m and by Theorem 2.4.19 for n 6= m.

Theorem 2.4.21. For any well-defined n-diagram D and a well-defined m-diagram S such that |n−m| =
k and t(S) = sn−m+1(D) if m ≤ n or tm−n+1(S) = s(D) otherwise, then the composite diagram S ◦D
is well-defined

Proof. By Lemma 2.4.13 this holds for n = m and by Theorem 2.4.19 for n 6= m.

2.4.4 Identity diagrams

There are instances where it is desirable to reason about a composed sequence of rewrites of an n-diagram

D having no overall effect on D, because of that we define the notion of an identity operation on D. We

can use it to talk about equivalence between the identity on D and a sequence of (n + 1)-rewrites, i.e.

the sequence having no effect on D.

Definition 2.4.22. Given an n-diagram D the identity diagram Id(D) on D, is the following (n +

1)-diagram:

Id(D).s = D

|Id(D)| = 0

Lemma 2.4.23. Given a well-defined n-diagram D the identity Id(D) on the diagram D is well-defined.

Proof. Since Id(D).s = Id(D)[0].d it is the only and final slice, there is no signature element and no

embedding associated with it. Id(D).s = D is well-defined as D is well-defined, hence by Definition 2.2.6

Id(D) is also well-defined.

We also refer to this operation as boosting a diagram D. As expected, composing an n-diagram D with

an identity on an m-diagram S such that n > m leaves D unaltered. This is because of the requirements

on matches between sources and targets of the diagrams being composed.

Lemma 2.4.24. Given a well-defined n-diagram D and a well-defined m-diagram S such that m < n,

the following holds:

• If S = Id(S).t = sn−m+1(D):

Id(S) ◦D = D

• If tn−m+1(D) = Id(S).s = S:

D ◦ Id(S) = D

Proof. First let us assume that S = sn−m+1(D). We show that Id(S) ◦D and D are equivalent diagrams

by induction on k = (n− 1)−m.
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• Base case: For k = 0, we have n − 1 = m. By Definition 2.3.7, we need to show four separate

conditions:

? Sources are equivalent diagrams:

(Id(S) ◦D).s

= Id(S).s [Eq. (2.9)]

= S [Def. 2.4.22]

= Id(S).t [Def. 2.4.22]

= D.s [assumption]

? Sizes of generator lists are equal:

|Id(S) ◦D|
= |Id(S)|+ |D| [Eq. (2.10)]

= |D| [Def. 2.4.22]

? Corresponding generators are equal, for 0 ≤ j ≤ |D|:

(Id(S) ◦D)[j].g

= D[j].g [Eq. (2.11), |Id(S)| = 0]

? Corresponding embeddings are equivalent, for 0 ≤ j ≤ |D|:

(Id(S) ◦D)[j].e

= D[j].e [Eq. (2.12), |Id(S)| = 0]

• Inductive step: For k > 0, we assume that the result holds, i.e. for all x-diagrams M and y-diagrams

M such that k = (x− 1)− y, we have Id(N) ◦M = M (IH ).

Now consider an n-diagram D and an m-diagram S, such that k + 1 = (n − 1) − m, then for

Id(S) ◦D = D to hold, by Definition 2.3.7, we need to show four separate conditions:

? Sources are equivalent diagrams:

(Id(S) ◦D).s

= Id(S) ◦D.s [Eq. (2.13)]

= D.s [IH ]

? Sizes of generator lists are equal:

|Id(S) ◦D|
= |D| [Eq. (2.14)]

? Corresponding generators are equal, for 0 ≤ j ≤ |D|:

(Id(S) ◦D)[j].g

= D[j].g [Eq. (2.15)]

? Corresponding embeddings are equivalent, for 0 ≤ j ≤ |D|:

(Id(S) ◦D)[j].e

= Incr(Id(S), D[j].d) ◦D[j].e [Eq. (2.16)]

= D[j].e [IH ]
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By this inductive argument, we established that for any n-diagram D and any m-diagram S such that

m < n, such that S = sn−m+1(D) the following holds: Id(S) ◦D = D.

The argument for S = tn−m+1((D) is analogous, so the entire result holds.

However, if the diagram S that the identity operation acts on is of the same dimension n as D, we

get slightly different behaviour.

Lemma 2.4.25. Given a well-defined n-diagram D and a well-defined diagram S such that m,n > 0,

the following holds:

• If S = sn−m+1(D):

S ◦ Id(D) = Id(S ◦D)

• If tm−n+1(S) = D:

Id(S) ◦D = Id(S ◦D)

Proof. We prove the result for both cases separately. If S = sn−m+1(D), we have n ≥ m.

Since n,m > 0 to show that these two diagrams are equivalent, by Definition 2.3.7, we need to check

four separate conditions:

• Sources are quivalent diagrams:

(S ◦ Id(D) = Id(S ◦D)).s

= S ◦ Id(D).s [Eq. (2.17)]

= S ◦D [Def. 2.4.22]

= Id(S ◦D).s [Def. 2.4.22]

• Sizes of generator lists are equal:

|Id(S) ◦D|
= |Id(S)| [Eq. (2.18)]

= 0 [Def. 2.4.22]

= |Id(S ◦D)| [Def. 2.4.22]

• Since |Id(S) ◦D| = 0, we do not need to show anything further for generators and embeddings and

the remaining two conditions are vacuously true.

This establishes that the two diagrams are equivalent, as required. The argument for tn−m+1(D) = S is

analogous.

2.5 Associativity and distributivity of diagram composition

With the goal of modelling quasistrict n-categories in mind and taking into account that the only

non-trivial morphisms that we want to keep are the interchange law and coherences derived from it, we

do not want to include associator morphisms. For this reason, we need to show that certain associativity

and distributivity results are built-in properties of diagram composition.

Let us consider different possible ways in which three diagrams can be composed. For any three

well-defined diagrams: an n-diagram D, m-diagram S and an l-diagram M the form of the composite

depends on the order of binary compositions (bracketing) and the ordering of natural numbers m,n, l.

65



Certain combinations allow for associativity or distributivity rules, others do not yield any interesting

behaviour. Before we proceed to listing these formally, we give several examples to illustrate how

associativity or distributivity of diagram composition arises.

Firstly, consider the following 1-diagrams S, D, and a 2-diagram M , note that S and D are of the

same dimension:

S = D = M =

We could then form the following composites:

S ◦D = D ◦M =

Now note that the order (bracketing) in which we decided to perform the binary compositions does

not have any effect on the final result:

S ◦ (D ◦M) = (S ◦D) ◦M =

Secondly, let D and M have the same dimensions which are different than the dimension of S:

S = D = M =

This results in different behaviour, as composition with S distributes over composition of diagrams

D and M , i.e. we could first separately compose S with D and with M and then compose the resulting

diagrams vertically, or alternatively we could first vertically compose D with M and then compose the

result with S:

S ◦D = S ◦M =

S ◦ (D ◦M) = (S ◦D) ◦ (S ◦M) =
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At this point let us remind ourselves that each composite can either be denoted explicitly by the

dimensions of the diagrams involved, such as S ◦m,n D or using an overloaded notation S ◦min(m,n)−1 D.

Below we present a theorem that summarises all the interesting associativity and distributivity laws for

composition of three diagrams. The most interesting clauses are proved in the later part of this section,

through the familiar technique of making several logical statements depending on a natural number k

(in this instance, the difference between diagram dimensions) and then proving a conjunction of all these

statements by induction on k.

Theorem 2.5.1. Given three well-defined diagrams: an n-diagram D, m-diagram S and an l-diagram

M , let a = min(n, l) − 1, b = min(m,max(n, l)) − 1, c = min(m,n) − 1 and d = min(max(m,n), l) − 1,

then, provided that these composites exist, the following hold:

S ◦a (D ◦aM) = (S ◦a D) ◦aM if a = b (2.21)

S ◦b (D ◦aM) = (S ◦b D) ◦a (S ◦bM) if b < a (2.22)

(S ◦c D) ◦dM = (S ◦dM) ◦c (D ◦dM) if d < c (2.23)

Proof. We consider these three equalities separately:

• For equality Eq. (2.21), we have a = b, this implies min(n, l) = min(m,max(n, l)), which in turn

forces one of the following three options:

? n = m ≤ l

? n = l ≤ m

? m = l ≤ n

We prove the equality for the first of these cases in Lemma 2.5.7. The setup is prepared by

Definitions 2.5.2 and 2.5.3. The remaining two cases follow by an analogous argument.

• For equality Eq. (2.22), we have a > b, this implies min(n, l) > min(m,max(n, l)), which

in turn forces n, l > m. We prove this in Lemma 2.5.13, after preparing the setup by

Definitions 2.5.8, A.0.16.

• For equality Eq. (2.23), similarly we have c > d, this implies min(n,m) > min(l,max(n,m)), which

in turn forces n,m > l. The argument for this case is analogous to the proof for equality Eq. (2.22).

Instances for b > a or d > c are not included, as they do not give rise to any associativity or

distributivity laws. As an example, consider the composite S ◦b (D ◦a M) such that m > n > l, then

a = l − 1, b = n − 1 and we have b > a. Let us consider when such a composite exists. We need the

following:

• tn−l+1(D) = s(M)

• tm−n+1(S) = s(D ◦aM)

Since n > l, by equation 2.13, we obtain that: s(D ◦M) = D.s◦M . By this, we see that the composite of

the source of D with M must match the appropriate target boundary of S, so we cannot compose them

in any other order, as the relevant sources and targets would not match.

We now prove the results stated in Theorem 2.5.1. First, we make two logical statements which,

when established for all k ≥ 0, prove that equality Eq. (2.21) holds. Apart from the main result on

associativity of composition, we additionally need a statement on composition of inclusion embeddings.

Definition 2.5.2. [E(k)] For k ≥ 0, let E(k) denote the statement that for two well-defined n-diagrams

D,S, and a well-defined l-diagram M such that l > n > 0 and l − n = k, the following holds:

S ◦ (D ◦M) = (S ◦D) ◦M
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Definition 2.5.3. [F (k)] For k, n ≥ 0, let F (k) denote the statement that for two well-defined n-diagrams

D,S, and a well-defined l-diagram M such that l > n and l − n = k, the following holds:

Incr(S,D ◦M) ◦ Incr(D,M) = Incr(S ◦D,M)

First, in a separate lemma, we establish the base for the recursive proof for the Lemma 2.5.7, which

comes later in the section.

Lemma 2.5.4. The statement E(0) holds with no further assumptions

Proof. We need to show that given three well-defined diagrams: an n-diagram D, and m-diagram S and

an l-diagram M , the following holds:

S ◦ (D ◦M) = (S ◦D) ◦M

As k = 0, this gives us n = l. Since n > 1, by Definition 2.3.7, we need to check the following four

conditions:

• Sources are equivalent diagrams, the derivation follows by Eq. (2.9):

(S ◦ (D ◦M)).s

= S.s

= (S ◦D).s

= ((S ◦D) ◦M).s

• Sizes of generator lists are equal, the derivation follows by Eq. (2.10):

|S ◦ (D ◦M)|
= |S|+ |D ◦M |
= |S|+ |D|+ |M |
= |(S ◦D)|+ |M |
= |(S ◦D) ◦M |

• Generators are equal for 0 ≤ j < |S|+ |D|+ |M |, we show this for three separate ranges. First let

0 ≤ j < |S|, the derivation follows by Eq. (2.11):

(S ◦ (D ◦M))[j].g

= S[j].g

= (S ◦D)[j].g

= ((S ◦D) ◦M)[j].g

The argument is analogous for the remaining two ranges |S| ≤ j < |S| + |D| and |S| + |D| ≤ j <

|S|+ |D|+ |M |.

• Embeddings are equivalent for 0 ≤ j < |S| + |D| + |M |, we show this for three separate ranges.

First let us show this for |S| ≤ j < |S|+ |D| , the derivation follows by Eq. (2.12):

(S ◦ (D ◦M))[j].e

= (D ◦M)[j − |S|].e
= D[j − |S|].e
= ((S ◦D)[j].e

= ((S ◦D) ◦M)[j].e

The argument is analogous for the remaining two ranges 0 ≤ j < |S| and |S| + |D| ≤ j <

|S|+ |D|+ |M |.
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By this argument, the diagrams S ◦ (D ◦M) and (S ◦D) ◦M are equivalent and the statement E(0)

holds, as required.

The following two implications establish E(k) and F (k):

Lemma 2.5.5. For k ≥ 1 the following statement holds: F (k − 1) ∧ E(k − 1) =⇒ E(k)

Proof. Let us assume that both F (k−1) and E(k−1) hold. We need to show that given three well-defined

diagrams: an n-diagram D, and m-diagram S and an l-diagram M , the following holds:

S ◦ (D ◦M) = (S ◦D) ◦M

We need to show this result for all the possible orderings of n, m, l. First, assume m < n < l:

Since n > 1, by Definition 2.3.7, we need to check the following four conditions:

• Sources are equivalent diagrams, the derivation follows by Eq. (2.13):

(S ◦ (D ◦M)).s

= S ◦ (D ◦M).s

= S ◦ (D ◦M.s)

= (S ◦D) ◦M.s) [E(k − 1)]

= ((S ◦D) ◦M).s

• Sizes of generator lists are equal, the derivation follows by Eq. (2.14):

|S ◦ (D ◦M)|
= |D ◦M |
= |M |
= |(S ◦D) ◦M |

• Generators are equal for 0 ≤ j ≤ |S ◦ (D ◦M)|, the derivation follows by Eq. (2.15):

(S ◦ (D ◦M))[j].g

= (D ◦M)[j].g

= M [j].g

= ((S ◦D) ◦M)[j].g

• Embeddings are equivalent for 0 ≤ j ≤ |S ◦ (D ◦M)|, the derivation follows by Eq. (2.16):

(S ◦ (D ◦M))[j].e

= Incr(S, (D ◦M)[j].d) ◦ (D ◦M)[j].e

= Incr(S, (D ◦M)[j].d) ◦ (Incr(D,M [j].d) ◦M [j].e)

= (Incr(S, (D ◦M)[j].d) ◦ Incr(D,M [j].d)) ◦M [j].e [A(n),Def. 2.3.27]

= Incr(S ◦D,M [j].d) ◦M [j].e [F (n− 1)]

= ((S ◦D) ◦M)[j].e

We already showed that the statement A(n) holds for all n ≥ 1 in the proof of the Theorem 2.3.27,

so there is no need to include it separately in the conjunction of logical statements being proved

here.

As all these conditions are satisfied, we can conclude that both diagrams are equivalent, as required.

Arguments for other orderings of n, m and l are analogous. By this, we established that E(k) holds,

hence the implication is true.
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Lemma 2.5.6. For k ≥ 1 the following statement holds: F (k − 1) ∧ E(k) =⇒ F (k), additionally F(0)

holds with no further assumptions.

Proof. Let us assume that both F (k − 1) and E(k) hold. We need to show that given two well-defined

n-diagrams D,S, and a well-defined l-diagram M such that l > n > 0 and l−n = k, the following holds:

Incr(S,D ◦M) ◦ Incr(D,M) = Incr(S ◦D,M)

Since l > n > 0 by Lemma 2.3.6, we need to check the following conditions:

• Types are the same. By Definition 2.4.5, these types are as follows:

Incr(D,M) : M ↪→ D ◦M
Incr(S, (D ◦M)) : D ◦M ↪→ S ◦ (D ◦M)

Incr(S,D ◦M) ◦ Incr(D,M) : M ↪→ S ◦ (D ◦M)

Incr(S ◦D,M) : M ↪→ (S ◦D) ◦M

The domains are immediately equivalent, codomains are equivalent by E(n).

• Heights are equal. For this condition, we consider two scenarios:

? For k = 0:

(Incr(S,D ◦M) ◦ Incr(D,M)).h

= Incr(S,D ◦M).h+ Incr(D,M).h [Def. 2.3.2]

= |S|+ |D| [Def. 2.4.5]

= |S ◦D| [Eq. (2.10)]

= (Incr(S ◦D,M)).h [Def. 2.4.5]

? For k > 0:

(Incr(S,D ◦M) ◦ Incr(D,M)).h

= Incr(S,D ◦M).h+ Incr(D,M).h [Def. 2.3.2]

= idD◦M .h+ idM .h [Eq. (2.4.5)]

= 0

= idM .h [Def. 2.4.5]

= (Incr(S ◦D,M)).h [Def. 2.4.5]

• Component embeddings are equivalent. Here, again we consider two scenarios:

? For k = 0:

(Incr(S,D ◦M) ◦ Incr(D,M)).e

= (Incr(S,D ◦M).e).Λ[(D ◦M)[Incr(D,M).h].d] ◦ Incr(D,M).e [Def. 2.3.2]

= (Incr(S,D ◦M).e).Λ[(D ◦M)[Incr(D,M).h].d] ◦ idM .e [Def. 2.4.5]

= (idD◦M .e).Λ[(D ◦M)[Incr(D,M).h].d] ◦ idM .e [Def. 2.4.5]

= id(D◦M)[Incr(D,M).h].d ◦ idM .e [Def. 2.4.2]

= id(D◦M)[|D|].d ◦ idM .e [Def. 2.4.5]

= idM.s ◦ idM .e [Def. 2.3.2]

= idM.s ◦ idM.s [Def. 2.4.1]

= idM.s [Def. 2.4.3]

= idM .e [Def. 2.4.1]

= (Incr(S ◦D,M)).e [Def. 2.4.5]
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? For k > 0:

(Incr(S,D ◦M) ◦ Incr(D,M)).e

= (Incr(S,D ◦M).e).Λ[(D ◦M)[Incr(D,M).h].d] ◦ Incr(D,M).e [Def. 2.3.2]

= (Incr(S,D ◦M).e).Λ[(D ◦M)[0].d] ◦ Incr(D,M).e [Def. 2.4.5]

= Incr(S, (D ◦M)[0].d) ◦ Incr(D,M).e [M(n)]

= Incr(S, (D ◦M).s) ◦ Incr(D,M).e [Def. 2.3.2]

= Incr(S, (D ◦M).s) ◦ Incr(D,M.s) [Def. 2.3.2]

= Incr(S,D ◦M.s) ◦ Incr(D,M.s) [Eq. (2.13)]

= Incr(S ◦D,M.s) [F (n− 1)]

= (Incr(S ◦D,M)).e [Def. 2.4.5]

As with the proof of Lemma 2.5.5, we already proved that the statement M(n) holds for all

n ≥ 1 by Theorem 2.3.27, so there is no need to include it separately in the conjunction of

logical statements being proved here.

As all these conditions are satisfied both embeddings are equivalent. By this, we established that F (k)

holds, hence the implication is true. Additionally, since we used the assumptions E(k) and F (k− 1) only

for n > 0, F(0) holds with no further assumptions.

These three lemmas, allow us to prove that the conjunction of statements E and F holds for all k ≥ 0,

therefore proving that equality Eq. (2.21) holds.

Lemma 2.5.7. For k ≥ 0: the following holds: E(k) ∧ F (k)

Proof. We prove this by induction on k:

• Base case: For k = 0

? F (0) holds by Lemma 2.5.6.

? E(0) holds by LemmA 2.5.4.

• Inductive step: For k > 0 we assume that both F (k − 1) and E(k − 1) hold.

? To establish E(k), by Lemma 2.5.5 we need both E(k − 1) and F (k − 1) to hold. Both hold

by the inductive hypothesis.

? To establish F (k), by Lemma 2.5.6 we need both E(k) and F (k − 1) to hold. Both hold by

the statement above.

By this inductive argument the statement E(k) ∧ F (k) holds for k ≥ 0.

Below, in a similar way to Definitions 2.5.2, 2.5.3, we make two logical statements such that when

their conjunction is shown for all k ≥ 0, equality Eq. (2.22) is proved. Here k is the difference between

dimensions of the two diagrams in the bracket.

Definition 2.5.8. [G(k)] For k ≥ 0, let G(k) denote the statement that for three well-defined diagrams:

an n-diagrams D, an m-diagram S and an l-diagram M , such that l, n > m > 0 and |l − n| = k, the

following holds:

S ◦b (D ◦aM) = (S ◦b D) ◦a (S ◦bM) if b < a

Here, we have a = min(n, l)− 1, b = min(m,max(n, l))− 1.
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Definition 2.5.9. [H(k)] For k ≥ 0,let H(k) denote the statement that for three well-defined diagrams:

an n-diagrams D, an m-diagram S and an l-diagram M , such that l, n > m > 0 and |l − n| = k, then,

provided that these composites exist, the following holds:

Incr(S,D ◦M) ◦ Incr(D,M) = Incr(S ◦D,S ◦M) ◦ Incr(S,M)

Here, we have a = min(n, l), b = min(m,max(n, l))− 1.

Again, in a similar fashion to Lemma 2.5.4, we first establish the statement G for k = 0.

Lemma 2.5.10. The statement G(0) holds without any further assumptions.

Proof. For G(0) to hold, we need to show that for any three well-defined diagrams: an n-diagrams D, an

m-diagram S and an l-diagram M , such that l, n > m > 0 and |l − n| = k, the following holds:

S ◦b (D ◦aM) = (S ◦b D) ◦a (S ◦bM)

Since k = |l − n| = 0, we have l = n > m. Bearing that in mind we drop the composition indices. As

m > 0, by Definition 2.3.7, to show equivalence of these two diagrams, we need to check the following

four conditions:

• Sources are equivalent diagrams:

(S ◦ (D ◦M)).s

= S ◦ (D ◦M).s [Eq. (2.13)]

= S ◦D.s [Eq. (2.9)]

= (S ◦D).s [Eq. (2.13)]

= ((S ◦D) ◦ (S ◦M)).s [Eq. (2.9)]

• Sizes of generator and embedding lists for both diagrams are equal:

|S ◦ (D ◦M)|
= |D ◦M | [Eq. (2.14)]

= |D|+ |M | [Eq. (2.9)]

= |(S ◦D)|+ |(S ◦M)| [Eq. (2.14)]

= |(S ◦D) ◦ (S ◦M)| [Eq. (2.9)]

• Corresponding generators are equal for 0 ≤ j ≤ |M | + |D|, we show this for two separate ranges,

first assume |D| ≤ j < |D|+ |M |:

(S ◦ (D ◦M))[j].g

= (D ◦M)[j].g [Eq. (2.15)]

= M [j − |D|].g [Eq. (2.11)]

= (S ◦M)[j − |D|].g [Eq. (2.15)]

= (S ◦M)[j − |S ◦D|].g [Eq. (2.14)]

= ((S ◦D) ◦ (S ◦M))[j].g [Eq. (2.11)]

The argument for 0 ≤ j < |D| is analogous.
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• Corresponding embeddings are equivalent for 0 ≤ j ≤ |M | + |D|, we show this for two separate

ranges, first assume |D| ≤ j < |D|+ |M |:

(S ◦ (D ◦M))[j].e

= Incr(S, (D ◦M)[j].d) ◦ (D ◦M)[j].e [Eq. (2.16)]

= Incr(S, (D ◦M)[j].d) ◦M [j − |D|].e [Eq. (2.12)]

= Incr(S,M [j − |D|.d]) ◦M [j − |D|].e [Def. 2.4.7]

= (S ◦M)[j − |D|].e [Eq. (2.10)]

= (S ◦M)[j − |S ◦D|].e [Eq. (2.14)]

= ((S ◦D) ◦ (S ◦M))[j].e [Eq. (2.12)]

The argument for 0 ≤ j < |D| is analogous.

Since all these conditions are satisfied, we established that S ◦ (D ◦ M) = (S ◦ D) ◦ (S ◦ M) for an

m-diagram S and an l-diagram M , such that l = n > m > 0. Hence, the statement G(0) holds, as

required.

This is followed by implications establishing G(k) and H(k).

Lemma 2.5.11. For k ≥ 1 the following statement holds: G(k − 1) ∧H(k − 1) =⇒ G(k)

Proof. We assume that both G(k − 1) and H(k − 1) hold.

For G(k) to hold, we need to show that for any three well-defined diagrams: an n-diagrams D, an

m-diagram S and an l-diagram M , such that l, n > m > 0 and |l − n| = k, the following holds:

S ◦b (D ◦aM) = (S ◦b D) ◦a (S ◦bM)

Since k = |l − n| > 0, we have l > n > m or n > l > m. First, assume l > n > m, then bearing that in

mind we drop the composition indices. As m > 0, by Definition 2.3.7, to show equivalence of these two

diagrams, we need to check the following four conditions:

• Sources are equivalent diagrams:

(S ◦ (D ◦M)).s

= S ◦ (D ◦M).s [Eq. (2.13)]

= S ◦ (D ◦M.s) [Eq. (2.13)]

= (S ◦D) ◦ (S ◦M.s) [G(k − 1)]

= (S ◦D) ◦ (S ◦M).s [Eq. (2.13)]

= ((S ◦D) ◦ (S ◦M)).s [Eq. (2.13)]

• Sizes of generator and embedding lists for both diagrams are equal:

|S ◦ (D ◦M)|
= |D ◦M | [Eq. (2.14)]

= |M | [Eq. (2.14)]

= |(S ◦M)| [Eq. (2.14)]

= |(S ◦D) ◦ (S ◦M)| [Eq. (2.14)]
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• Corresponding generators are equal for 0 ≤ j ≤ |M |:

(S ◦ (D ◦M))[j].g

= M [j].g [Eq. (2.15)]

= (S ◦M)[j].g [Eq. (2.15)]

= ((S ◦D) ◦ (S ◦M))[j].g [Eq. (2.15)]

• Corresponding embeddings are equal for 0 ≤ j ≤ |M |:

(S ◦ (D ◦M))[j].e

= Incr(S, (D ◦M)[j].d) ◦ (D ◦M)[j].e [Eq. (2.16)]

= Incr(S, (D ◦M)[j].d) ◦ (Incr(D,M [j].d) ◦M [j].e) [Eq. (2.16)]

= (Incr(S, (D ◦M)[j].d) ◦ Incr(D,M [j].d)) ◦M [j].e [A(n)]

= (Incr(S ◦D, (S ◦M)[j].d) ◦ Incr(S,M [j].d)) ◦M [j].e [H(k − 1)]

= Incr(S ◦D, (S ◦M)[j].d) ◦ (Incr(S,M [j].d) ◦M [j].e) [A(n)]

= Incr(S ◦D, (S ◦M)[j].d) ◦ (S ◦M)[j].e [Eq. (2.16)]

= ((S ◦D) ◦ (S ◦M))[j].e [Eq. (2.16)]

Here A(n) is the statement on associativity of embedding composition proved in Theorem 2.3.27. Since

all these conditions are satisfied, we established that S ◦ (D ◦M) = (S ◦D) ◦ (S ◦M) for an m-diagram

S and an l-diagram M , such that l > n > m > 0.

The argument for n > l > m is analogous. Hence, the statement G(k) holds and the implication is

true.

Lemma 2.5.12. For k ≥ 1 the following statement holds: H(k−1)∧G(k) =⇒ H(k), additionally H(0)

holds with no further assumptions.

Proof. Let us assume that both H(k − 1) and G(k) hold.

For H(k) to hold, we need to show that for any three well-defined diagrams: an n-diagrams D, an

m-diagram S and an l-diagram M , such that l, n > m > 0 and |l − n| = k, the following holds:

Incr(S,D ◦M) ◦ Incr(D,M) = Incr(S ◦D,S ◦M) ◦ Incr(S,M)

• For k = 0, we have l = n > m

• For k = |l − n| > 0, we have l > n > m or n > l > m

First, assume l ≥ n > m, to consider the cases l = n > m and l > n > m simultaneously. Since l > n > 0,

to establish that these two embeddings are equivalent, by Lemma 2.3.6, we need to check the following

conditions:

• Types are the same. By Definition 2.4.5 these types are as follows:

Incr(D,M) : M ↪→ D ◦M
Incr(S,M) : M ↪→ S ◦M
Incr(S,D ◦M) : D ◦M ↪→ S ◦ (D ◦M)

Incr(S ◦D,S ◦M) : S ◦M ↪→ (S ◦D) ◦ (S ◦M)

We could see that the domains are immediately equivalent, the codomains are equivalent by G(k)

• Heights are equal. For this condition, we consider two scenarios:
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? For l = n > m:

(Incr(S,D ◦M) ◦ Incr(D,M)).h =

= (Incr(S,D ◦M)).h+ (Incr(D,M)).h [Def. 2.3.2]

= idD◦M .h+ |D| [Def. 2.4.5]

= |D| [Def. 2.4.1]

= |S ◦D| [Eq. (2.14)]

= (Incr(S ◦D,S ◦M)).h+ (Incr(S,M)).h [Def. 2.4.5]

= (Incr(S ◦D,S ◦M) ◦ Incr(S,M)).h [Def. 2.3.2]

? For l > n > m:

(Incr(S,D ◦M) ◦ Incr(D,M)).h =

= (Incr(S,D ◦M)).h+ (Incr(D,M)).h [Def. 2.3.2]

= idD◦M .h+ idM .h [Def. 2.4.5]

= idM .h [Def. 2.4.1]

= idS◦M .h+ idM .h [Def. 2.4.1]

= (Incr(S ◦D,S ◦M)).h+ (Incr(S,M)).h [Def. 2.4.5]

= (Incr(S ◦D,S ◦M) ◦ Incr(S,M)).h [Def. 2.3.2]

• Component embeddings are equivalent. Again, we consider two scenarios:

? For l = n > m:

(Incr(S,D ◦M) ◦ Incr(D,M)).e =

= (Incr(S,D ◦M)).e.Λ[(D ◦M)[Incr(D,M).h].d] ◦ Incr(D,M).e [Def. 2.3.2]

= (Incr(S,D ◦M)).e.Λ[(D ◦M)[|D|].d] ◦ Incr(D,M).e [Def. 2.4.5]

= Incr(S, (D ◦M)[|D|].d) ◦ Incr(D,M).e [M(k)]

= Incr(S,M [|D| − |D|].d) ◦ Incr(D,M).e [Def. 2.4.7]

= Incr(S,M [0].d) ◦ Incr(D,M).e [Def. 2.2.5]

= Incr(S,M.s) ◦ Incr(D,M).e [Def. 2.2.5]

= Incr(S,M.s) ◦ idM .e [Def. 2.4.5]

= Incr(S,M.s) ◦ idM.s [Def. 2.4.1]

= Incr(S,M.s) [Def. 2.4.3]

= idS◦M.s ◦ Incr(S,M.s) [Def. 2.4.3]

= idS◦M.s ◦ Incr(S,M).e [Def. 2.4.5]

= id(S◦M).s ◦ Incr(S,M).e [Eq. (2.13)]

= id(S◦M)[0].d ◦ Incr(S,M).e [Def. 2.2.5]

= (idS◦M .e).Λ[(S ◦M)[0].d] ◦ Incr(S,M).e [M(k)]

= ((Incr(S ◦D,S ◦M)).e).Λ[(S ◦M)[0].d] ◦ Incr(S,M).e [Def. 2.4.1]

= ((Incr(S ◦D,S ◦M)).e).Λ[(S ◦M)[Incr(S,M).h].d] ◦ Incr(S,M).e [Def. 2.4.5]

= (Incr(S ◦D,S ◦M) ◦ Incr(S,M)).e [Def. 2.3.2]

75



? For l > n > m:

(Incr(S,D ◦M) ◦ Incr(D,M)).e =

= (Incr(S,D ◦M)).e.Λ[(D ◦M)[Incr(D,M).h].d] ◦ Incr(D,M).e [Def. 2.3.2]

= (Incr(S,D ◦M)).e.Λ[(D ◦M)[0].d] ◦ Incr(D,M).e [Def. 2.4.5]

= Incr(S, (D ◦M)[0].d) ◦ Incr(D,M).e [M(k)]

= Incr(S, (D ◦M).s) ◦ Incr(D,M).e [Def. 2.2.5]

= Incr(S, (D ◦M.s)) ◦ Incr(D,M.s) [Eq. (2.13)]

= Incr(S ◦D,S ◦M.s) ◦ Incr(S,M.s) [IH]

= Incr(S ◦D, (S ◦M).s) ◦ Incr(S,M).e [Eq. (2.13)]

= Incr(S ◦D, (S ◦M)[0].d) ◦ Incr(S,M).e [Def. 2.2.5]

= (Incr(S ◦D,S ◦M)).e.Λ[(S ◦M)[0].d] ◦ Incr(S,M).e [M(k)]

= (Incr(S ◦D,S ◦M)).e.Λ[(S ◦M)[Incr(S,M).h].d] ◦ Incr(S,M).e [Def. 2.4.5]

= (Incr(S ◦D,S ◦M) ◦ Incr(S,M)).e [Def. 2.3.2]

As all these conditions are satisfied both embeddings are equivalent. The argument for n > l > m is

analogous. By this, we established that H(k) holds, hence the implication is true. Additionally, since we

used the assumptions G(k) and H(k − 1) only for k > 0, H(0) holds with no further assumptions.

Finally, we can put all the pieces together to establish that the conjunction of G and H holds for all

k ≥ 0:

Lemma 2.5.13. For k ≥ 0: the following holds: G(k) ∧H(k)

Proof. We prove this by induction on k:

• Base case: For k = 0

? G(0) holds by Lemma 2.5.10.

? H(0) holds by Lemma 2.5.12.

• Inductive step: For k > 0 we assume that both F (k − 1) and E(k − 1) hold.

? To establish G(k), by Lemma 2.5.11 we need both G(k − 1) and H(k − 1) to hold. Both hold

by the inductive hypothesis.

? To establish H(k), by Lemma 2.5.12 we need both G(k) and H(k − 1) to hold. Both hold by

the statement above.

By this inductive argument the statement G(k) ∧H(k) holds for k ≥ 0.
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Chapter 3

Application to quasistrict
n-categories

In this chapter we formally introduce the graphical formalism for higher-dimensional diagrams. As stated

before, it is a convenient notational shorthand, which in low dimensions can be made entirely rigorous by

showing soundness and completeness results [?, 29, 55]. Introduction of this notation is consistent with

the idea of finding the right level of abstraction when reasoning about mathematical structures. Here, we

are able to absorb into the notation the details of individual generators and embeddings and how they

fit together.

Later in Section 3.2, we utilise the graphical method of expression to explore the richness of higher-level

coherences resulting from introduction of the interchange law. We analyse the interactions between

different types of coherences and ordinary n-cells for n = 2, 3, 4. This lets us form definitions of quasistrict

2-, 3- and 4-categories expressed in the language of the diagram and signature structures defined in

Chapter 2.

In the last part of the chapter in Sections 3.4 and 3.5, we discuss other attempts to define semistrict

higher categories present in the literature: the 4-tas definition proposed by Crans [20] and the switch

3-category definition proposed by Douglas and Henriques [22]. We thoroughly compare these approaches

with the definitions in this chapter and we contrast their treatment of strictness with ours. Finally, we

show that a quasistrict 3-category defined according to Definition 3.2.2 satisfies the axioms of a switch

3-category and as a result also of a Gray-category. This allows us to retrieve some familiar categorical

constructions in Section 3.6 and gives further evidence for correctness of this approach and the proposed

new definition of a quasistrict 4-category.

3.1 Graphical formalism

In this section we introduce the graphical notation for diagram structures and work through an example

where a graphical representation of a particular diagram is created. Subsequently, we discuss different

types of composition in a quasistrict 3-category and present the graphical representations that accompany

them. Finally, we provide intuition on how the graphical notation may be used for n = 4, 5, 6 when we

run out of spatial dimensions in which different cells could be embedded.

Working with an n-dimensional structure required to satisfy multiple globularity conditions may be

cumbersome for small n and quickly becomes unmanageable as n increases. One of the convenient tools

that can be used in these instances is a graphical notation. The totality of equations governing such a

structure is inherently difficult to comprehend, as multiple dimensions of the structure get squashed into

a 1-dimensional line of an equation. A graphical calculus that makes use of geometrical structures can

make this transition less drastic. This is especially the case for dimensions up to n = 4 where we have

three spatial dimensions and one temporal dimension to utilise.

However, usefulness of the graphical notation also has its limits. This is the case, since for dimensions
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higher than four, human cognitive abilities make it difficult to visualise the geometrical structures that

arise. The method that still allows us to gain some insight, even for dimensions n > 4, involves projecting

out the lowest dimensions of the graphical representation, which are less likely to exhibit the properties

that are of interest. That way, the images created are more easily comprehensible to humans.

An important remark to be made at this point is that throughout the reminder of this thesis we often

use this graphical notation to reason about higher categories. Each time we do that however, we are not

merely making intuitive, informal illustrations, we are in fact making fully formal statements about the

underlying combinatorial representation depending on the signature and diagram structures.

First we provide a method of translating a diagram structure into its graphical representation.

Intuitively, in an n-diagram D, each of its k-generators is depicted by an n− k dimensional geometrical

object. In particular, its n-generators are expressed as points, the generators in the source s(D) as

lines, generators in s(s(D)) as surfaces and so on. More formally, we propose a recursive definition of a

graphical representation of a diagram.

Definition 3.1.1. For an n-diagram D, its graphical representation GD ⊂ Rn is a labelled partitioned

subspace, defined:

• For n = 0, to be GD = R0

• For n > 0:

? at height i, to agree with GD.[i].d ⊂ Rn−1 ⊂ Rn;

? between heights, as a glued double cone modulo identifications.

This is not yet an entirely rigorous treatment of the matter, but we believe that it is sufficient for

the purposes of depicting higher level cells in this chapter. We hope that a fully formal definition can be

obtained by building on this concept. To illustrate the idea behind the definition, let us work through

the following example step by step:

0-cells A,B,C

1-cells F : A→ B

G : B → C

H : C → C

2-cells µ : H ⇒ G ◦H
ν : F ◦G⇒ F

φ : H ⇒ idC

The colouring is used to make the relation between the elements and their graphical representation more

apparent. Then consider the following 2-diagram:

(s(s(D)))[0].g = A

(s(D))[0].g = F (s(D))[0].e = []

(s(D))[1].g = F (s(D))[1].e = []

D[0].g = µ D[0].e = [1]

D[1].g = ν D[1].e = [0]

D[2].g = φ D[2].e = [1]

Note that according to Definition 2.2.7, embeddings between 0-diagrams consist of no data. For this

reason the lists (s(D))[0].e an(s(D))[1].e are empty.
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Given a 0-diagram S, we depict its sole 0-cell as a 0-dimensional object - a point. Given an n-diagram

D, we first create |S| pictures of its slices. Since they are themselves (n−1)-diagrams, this step is achieved

recursively. For the given example, we first draw points for each 0-cell in the 0-diagram s(s(D)):

A B C

Then given an n-cell S[i].g and slices S[i].d, S[i + 1].d that it connects, we do the following: first, for

each geometric object representing a cell in either S[i].d or S[i + 1].d we take its product with the unit

interval [0, 1]. This increases the dimension of the representation and turns points into lines, lines into

regions etc. Then, we connect both by creating a point corresponding to the n-cell S[i].g, we examine

s(S[i].g) and t(D[i].g) as subdiagrams of S[i].d and S[i+ 1].d respectively and connect each (n− 1)-cell

involved in S[i].g to this new point.

Any cell in S[i].d which is not a part of s(S[i].g) remains unaltered by the n-cell, hence is connected

with its counterpart in S[i + 1].d. The connection between the new point and the (n − 1)-dimensional

structures forms a quasi cone, since representations of (n− 2)-cells must be extended to the boundaries

of the picture as they are subject to globularity conditions.

We illustrate this by first turning the 0-cells in s(s(D)) into lines and then adding 1-cells in s(D) to

create the graphical representation of s(D). We repeat this for all the other 1-slices of D:

µ

ν

σ

F G

F

F G H

HF

A B C

Then finally, we apply the recipe for combining (n − 1)-slices into an n-diagram again, to obtain the

following:

µ

ν

σ

F G

F G H

F H

F

F G

F

F G H

HF

→

µ

ν

σ

By discarding lowest-level coordinates we can project Rn → Rm for m < n. Additionally, given an

n-diagram D, we could alternatively omit the final merge and represent D as a series of separate pictures

of its slices: from Gs(D) to Gt(D). This corresponds to the idea of representing an n-dimensional structure

by a series of (n−1)-dimensional snapshots. We use this feature often, especially for diagrams that consist

of a single generator.

A direct consequence of this construction is the graphical interpretation of the procedures of taking

an identity of a diagram and composing two diagrams, which are described in Definitions 2.4.6,2.4.22.

Given a graphical representation Gd of the diagram D, the graphical representation of Id(D) is simply

the product of Gd with the interval. For an n-diagram D and an m-diagram S that share a common

boundary, the graphical representation of the composite S ◦D is realised by pasting GS and GD along

their shared boundary. If m < n, we need to apply the identity operation n−m times on S first, so that

the product of GS with the interval is taken n −m times. Then we paste the resulting representation

and GD along their shared boundary. The procedure is analogous for n < m.
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Let us consider the example of two 3-diagrams S,D each consisting of a single generator. Their

graphical representations are as follows:

S = α D = β

These are both 3D pictures, the 0-cells represented by spaces at the front and the back of the picture are

not labelled. By Definition 2.4.6, there is only one way in which they could be directly composed. This

is realised by diagram composition directly, so we consider the composite S ◦D. We take the graphical

representations GS and GD and paste them together by placing GD on top of GS :

α

β

However, due to the whiskering perspective that we adapted, there are also two indirect methods of

composition which correspond to horizontal and spatial composition. Given that there is a degree of choice

on the order in which we compose the morphisms, we have multiple variants for each type of composition.

These are as follows, assuming that appropriate sources and targets match and the composites exist:

• Horizontal composition:

? (S ◦ s(D)) ◦ (t(S) ◦D): This corresponds to 1-composition of 3-cells in a 3-category. As the

dimensions of S and s(D) do not match, we create the graphical representation of Id(s(D))

first before pasting with GS , similarly for t(S) and D. We obtain the following:

S ◦ s(D) = α t(S) ◦D = β

Then since both (S ◦ s(D)) and (t(S) ◦ D) are 3-diagrams, we can paste their graphical

representations together to obtain:

α

β

? (s(S) ◦D) ◦ (S ◦ T (D)): This is obtained analogously to the case above.

α

β

• Spatial composition:
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? [(S ◦ s(s(D))) ◦ (t(s(S)) ◦ s(D))] ◦ [(t(S) ◦ s(s(D))) ◦ (t(t(S)) ◦ D)]: This corresponds to

0-composition of 3-cells in a 3-category. Similarly as with horizontal composition, we need

to build up the graphical representations gradually:

S ◦ t(t(D)) = α t(s(S)) ◦ s(D) =

t(S) ◦ s(s(D)) = t(t(S)) ◦D = β

These could be combined to give:

(t(S) ◦ s(s(D))) ◦ (t(t(S)) ◦D) = β

(S ◦ t(t(D))) ◦ (t(s(S)) ◦ s(D)) = α

Then since both diagrams are of the same dimension, we finally paste these two together to

obtain:

α

β

? [(s(S)◦ s(s(D)))◦ (t(t(S))◦D)]◦ [(S ◦ s(t(D)))◦ (t(t(S))◦ t(D))]: This is obtained analogously

to the case above.

α

β

? [(s(s(S))◦D)◦ (s(S)◦ t(t(D)))]◦ [(s(s(S))◦ t(D))◦ (S ◦ t(t(D)))]: This is obtained analogously

to the first case.

α

β
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? [(s(s(S))◦ s(D))◦ (S ◦ s(t(D)))]◦ [(t(s(S))◦D)◦ (t(S)◦ t(t(D)))]: This is obtained analogously

to the first case.

α

β

For n = 3, we create 3D graphical representations and depict them on a 2D sheet of paper by creating

the effect of transparency and a quasi 3D perspective of placing geometrical objects more in front or more

at the back of the sheet. For n = 4 we run out of spatial dimensions, so it appears that this method does

not give a significant expressive advantage over the purely algebraical representation. Even though we

avoid having to squash multidimensional structures into an inherently one-dimensional equation. There

is however a method of extending the operational usefulness of this approach, for n = 4, 5, 6.

Here we provide the intuition of how higher dimensional categorical structures could be expressed in

the graphical formalism:

• For n = 4 imagine a 4-cell as a smooth transition between two 3D geometrical objects. A composite

of multiple cells is then a “movie” of 3D snapshots, which could be thought of as a history of how

the first image (scene) in the series got turned into the final one.

• For n = 5, a 5-cell can be thought of as a method of rewriting one movie (a 4D object) into another

movie. There is however a requirement imposed by the globularity conditions that both movies

must have the same first scene and the same final scene. A composite 5-cell is then a multi-step

method of rewriting one movie into another with many intermediate movies in between.

• For n = 6, a 6-cell can be thought of as modifying one method of rewriting a movie, into another

method. Imagine for instance that one method first rewrites some scenes in the initial part of the

movie and then some non-overlapping scenes in the final part, then imagine that the second method

does the opposite. Then these two methods of rewriting one movie of 3D objects into another, are

related by a 6-cell.

For n ≥ 7 it becomes increasingly difficult to picture in one’s head what the representation of a cell

in the graphical formalism is. This is however not an insurmountable obstacle to applicability of the

diagram and signature formalism. This is for two reasons: Firstly, we could still in theory examine the

underlying algebraic structures and gain some insight about their properties. Secondly, we could project

out the lowest level dimensions that are of less interest and still explicitly depict up to six top dimensions

using the graphical methods described above.

We conjecture that there are correctness and completeness results for the graphical calculus for the

diagram and signature structures.

Conjecture 3.1.2. Graphical representationsGD, GS for two k-diagramsD,S over a signature modelling

a quasistrict n-category are the same if and only if the underlying diagram structures are equivalent.

We do not provide a rigorous proof here, however the outline is as follows:

• “⇒”: Should follow by the procedure of producing pictures outlined in Definition 3.1.1.

• “⇐”: An inductive argument on the diagram dimension n.

The graphical formalism can be used to prove various properties of the diagram and signature

structures. Results such as associativity or distributivity of diagram composition (equations Eq. (2.21),

Eq. (2.23), Eq. (2.22)) could now alternatively be proved in a graphical fashion. This method would
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require translating diagrams on both sides of the algebraic equality into their graphical representations

and then comparing whether these representations are the same. This is what we mean by saying that

certain low-level details get absorbed into the notation. For instance, associativity of diagram composition

is implicit in the graphical notation.

3.2 Quasistrict 2-, 3- and 4-categories

In this section we explore the richness of higher level coherences that arise in quasistrict categories from

the introduction of the interchange law. We present six types of interchanger morphisms and define what

it means for a signature to support an interchanger of the given type. Throughout we use the graphical

formalism described in the previous section.

In the quest to construct presentations of 2-, 3- and 4-categories using the diagram and signature

formalism described in Chapter 2, we follow Gray’s approach to semistrictness. The only non-trivial

weakness that we allow is the interchange law and higher-level coherences that arise from it. We do not

include any non-trivial associator or unitor morphisms. As shown in Section 2.5 these are already built-in

within the diagram structure as strict equalities.

The final step towards the new definitions of quasistrict n-categories for n = 2, 3, 4 is to endow the

signature structure with the notion of a non-trivial interchanger. In this section, we use the graphical

formalism for diagrams to define six types of interchanger morphisms, which we denote using Roman

numerals with a lower index k that indicates to what cell dimension the type is referring to. For example,

I2 denotes the interchanger of type I acting on 2-cells. Where appropriate, we additionally use informal

names that correspond to the visual effect that the interchanger type has on the graphical representation

of the diagram it acts on. We also discuss application of interchanger morphisms to composite cells and

justify why we do not include explicit expansion morphisms between composite and atomic interchangers.

As discussed in Section 2.1, defining a category by providing its presentation is an entirely valid and

complete approach. Here, we structure the definitions in the form of a presentation by the n-polygraph-

like signature structure that is additionally endowed with the appropriate interchanger morphisms. We

list these definitions immediately and define the different interchanger types in the later part of the

chapter.

Definition 3.2.1. A quasistrict 2-category is a 3-signature that supports interchangers of type:

• 3-cell interchangers: I2

Definition 3.2.2. A quasistrict 3-category is a 4-signature that supports interchangers of types:

• 3-cell interchangers: I2

• 4-cell interchangers: I3, II3

Definition 3.2.3. A quasistrict 4-category is a 5-signature that supports interchangers of types:

• 3-cell interchangers: I2

• 4-cell interchangers: I3, II3

• 5-cell interchangers: I4, II4, III4, IV4, V4 and VI4.

These definitions are much different than the standard approach to defining higher categories. The

most significant divergence is the lack of conditions that the individual maps are required to satisfy. It is

however the case that, because of the underlying diagram and signature structures, many properties

are built-in and instead hold implicitly. This includes associativity, unitality and distributivity of

composition, as well as different conditions normally imposed on the behaviour of interchanger morphisms.

The intricacies of all these rules are still captured, but are now hidden behind the simple notions of

diagram and signature structures.
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In our setup, given an (n+1)-signature σ = {G0, ..., Gn+1}, for each 0 ≤ k ≤ n, we have the following.

Firstly, the elements of each set Gk are the generating k-cells for the category. Secondly, the sets ∆∗k
of all k-diagrams over σ are the sets of all composite k-cells in the category. Finally, the elements in the

set Gn+1 are relations between n-cells, or in other words, conditions that the n-cells in the n-category

satisfy. For these reasons, in the reminder of this thesis we use the notions of k-diagrams and composite

k-cells interchangeably.

In a weak n-category for 2 ≤ k ≤ n, every pair of k-morphisms f, g that is (k−2)-composed, gives rise

to an interchanger morphism, which in turn gives rise to higher-level coherences for k < n. Even though

for the purpose of defining a quasistrict 4-category, we only need specific interchanger k-morphisms up

to k = 5, in the following exposition we define different interchanger types in their full generality for any

k ≤ n. The main benefit is that this allows us to discuss some higher-level coherences that quasistrict

n-categories need to satisfy for n ≥ 5. This is by no means sufficient to define them, but it is a step in

the right direction. In Definitions 3.2.1, 3.2.2 and 3.2.3, we instantiate these general interchanger types

to the particular dimensions that play a role in the given quasistrict n-category.

3.2.1 Interchange law

We begin the exposition by discussing the interchange law which is the source of all higher level coherences

that arise in quasistrict n-categories. Informally, in a weak 2-category, the interchange law (also referred

to in the literature as the ‘exchange law’) for 2-cells states that there is an equivalence between the

two different orders of horizontal composition for consecutive n-cells. Formally this is expressed as the

following, provided that these composites exist:

Definition 3.2.4. In a weak 2-category the interchange law states that for two 2-cells α and β there is

the following equivalence:

(α ◦ s(β)) ◦ (t(α) ◦ β) ' (s(α) ◦ β) ◦ (α ◦ t(β))

It is graphically represented by the following 3-cells:

α

β →

←

α

β

We could see that composition via whiskering gives us two alternative methods of horizontally

composing two 2-cells, which are related by a 3-cell. More generally, the presence of interchanger

morphisms means that the diagrams resulting from these alternative methods of composition are related

by higher level morphisms, i.e there exists a series of rewrites turning one representation into the other

and vice versa.

Recall that in an n-signature σ = (G0, ..., Gn), for 0 ≤ k ≤ n, each of the sets Gk consists of the

generating (i.e. non-composite) cells. That way, cells f, g ∈ Gk in are generators, not composite cells.

We then formalise the generalised interchange law for k-cells in an (n+ 1)-signature as interchangers of

type I in the following way:

Definition 3.2.5. An (n + 1)-signature σ = (G0, ..., Gn+1) supports interchangers of type Ik such that

2 ≤ k ≤ n, if for any k-cells f, g ∈ Gk, and for any (k − 1)-cells w1, ..., wm, the following invertible cells
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are elements of the set Gk+1:

f

g

. . .

. . .

. . .

. . .

. . .

. . .

Ik→

Ik←

g

f

. . .

. . .

. . .

. . .

. . .

. . .

Interchangers of type Ik are (k + 1)-cells that act on k-cells. In this graphical representation, the

lowest k − 2 dimensions have been projected out. This results in two 2D snapshots of the source and

of the target of each interchanger. Each snapshot preserves all the features that are of interest in this

context. The source and target of both k-cells f, g in the picture could be composed of multiple individual

(k − 1)-cells. There could also be an arbitrary number of (k − 1)-cells in between the two k-cells. These

two eventualities are accounted for by the presence of triple dots, which are superficial and not a part of

the graphical formalism.

Note that the graphical representation of the interchange law gives us an intuitive condition on when

two cells can be interchanged. If they are directly linked by a shared source to target connection, the

interchange is not possible. Since the effect of this interchanger on the graphical representation is that

the heights of the two cells involved are swapped, we also refer to this type of interchanger as a ‘swap’

morphism.

In accordance with the convention for creating pictures of diagrams in the graphical calculus outlined

in Section 3.1, there is an alternative graphical expression for these morphisms. Instead of two 2D

snapshots for the source and the target of the morphism separately, we express the entire 3-cell as a

single 3D picture. In this view the braiding that arises is more visible:

..
.

g

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

..
.

f

In principle, interchangers of type I, and of all the other types introduced later, could be described in

purely algebraic terms, without making any reference to the graphical formalism. However, that would

make us lose all the potential benefits with regards to the clarity of presentation and absorption of

low-level details into the formalism.

In the following exposition, we strive to make the graphical representations as general as possible,

but at the same time to put emphasis on the most crucial features and not to obscure them with too

much irrelevant detail. For this reason, from now on, for the sake of clarity of presentation, we omit the

multiple (k−2)-cells in the sources and targets of (k−1)-cells, which are represented by additional sheets

in the picture above. They do not contribute towards the general behaviour of higher-level coherences

and, at the same time, they do obscure the more important features of the interchanger.

Up to this point, we only discussed the interchange law for two non-composite k-cells. For

interchangers of type I and all the other types defined in this chapter, we distinguish between interchangers

that act on composite k-cells and those that act on simple (non-composite) k-cells. We refer to the

former as composite interchangers and to the latter as atomic interchangers. The key observation is that

composite interchangers can always be realised as composites of atomic interchangers and, as such, do

not have to be explicitly added to the signature.
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The motivation for formalising composite interchanger is that, in the analysis of higher level coherences

interchangers cells are themselves subject to higher-level relations. Hence, composite interchangers are

necessary to define these higher level singularities in full generality.

In the graphical formalism each individual k-cell αi that constitutes a part of the composite k-cell α

is clearly distinguishable as a separate geometrical object. As a result, there is an intuitive concept of

defining an interchanger morphism of type I acting on composite cells, in terms of a series of applications

of the same (atomic) interchanger to individual non-composite cells.

Definition 3.2.6. In an (n + 1)-signature that supports interchangers of type Ik for 1 < k ≤ n, a

composite interchanger Ĩk consists of a sequence of individual applications of the atomic interchanger of

type Ik, with values defined recursively as follows:

f

g1

gs

. . .

. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

Ĩk→

f

g1

gs

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

:=

f

g1

gs

. . .

. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

Ik→

f

g1

g2

gs

. . .

. . .

. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

Ĩk→

f

g1

gs

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

fr

f1

g1

gs

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Ĩk→
fr

f1

g1

gs

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

:=

fr

f1

g1

gs

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Ĩk→

fr

f2

f1

g1

gs

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

Ĩk→
fr

f1

g1

gs

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

The intuitive interpretation is that when faced with interchanging composite cells, we interchange

them one generator at the time. First interchanging the cell f1 with all cells gi, then repeating the

procedure for each consecutive fj .

This notion does not add any new structure to the signature supporting Ik, since Ĩk is a composite

of interchangers that are already present there. In this sense, Ĩk is merely a notational shorthand that

makes reasoning about interchanging composite k-cells more simple.

An important point to be discussed is why not to include composite interchangers as native cells

and then introduce explicit expansion morphisms that would relate them to applications of atomic

interchangers, as described above. This would certainly be in direct correspondence to axioms included

in other approaches to defining semistrict categories (see axiom S2-17 in 3.5.1). However both inclusion

and exclusion of explicit composite interchangers and expansion morphisms are valid approaches and

both would result in functioning definitions.

We acknowledge that the inclusion of these cells would result in a more weak definition of a

category, however this increased weakness would not bring any additional expressivity. This is because

any composite interchanger is already expressible as a composite of atomic interchanger applications.

Moreover, not keeping this additional weakness is consistent with the spirit of the semistrict approach,

which aims to obtain definitions of categories which are ‘as strict as possible’, while retaining equivalence

to general weak n-categories.
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There is also a more practical reason justifying our approach. Explicit expansion morphisms would

give rise to a large amount of extra structure, again not bringing any additional expressivity. For instance,

there is more than one possible way of applying n-cell expansion morphisms to unpack a contracted bundle

of interchangers:

f

g

h
I2←

f

g

h

I2→ f

g

h

↓ I2

η⇐
⇒η ↓ Ĩk

η⇐
⇒η ↓ I2

f

g

h

I2→

f

g

h

I2←

f

g

h

Both methods of expansion η would have to be related by a coherence of a new type: an ‘expansionator’,

which for this example would be a 5-cell. Additionally, an expansion morphism could come into interaction

with other singularities, leading to a further growth of the number of higher-level coherences. This would

also impact on the length of the proofs conducted within the formalism. One of the primary reasons for

following the quasistrict approach is to make proofs more manageable and the constant need to expand

and contract composite interchangers could interfere with this goal.

Before we proceed to defining the general interchanger types for higher categories, we need to first

formally define what it means for a cell in a signature to be invertible. Since we are aiming to model

quasistrict n-categories that are designed to retain equivalence to a general weak n-category, we interpret

invertibility in the maximally weak sense.

Definition 3.2.7. Given a signature σ = (G0, ..., Gn), for 0 ≤ k ≤ n a k-cell A
f−→ B ∈ Gk is invertible

if there exists a k-cell B
g−→ A ∈ Gk such that:

• For k = n, f ◦ g = idB and g ◦ f = idA.

• For k < n, there exists two invertible (k+1)-cells f ′1 and f ′2 such that f ◦g f
′
1−→ idB and idA

f
′
2−→ g ◦f

We then say that g is the inverse of f and also refer to it as f−1.

In the reminder of this thesis, whenever we refer to a cell being invertible, we always mean it in the

sense of this definition. We also use the convention of denoting the higher level invertibility morphisms for

interchangers by a prime. Then, for an interchanger of Ik, which is a (k+1)-cell, invertibility (k+2)-cells

are denoted by I′k, invertibility (k + 3)-cells by I′′k etc. These cells can also be expressed graphically, an

example is:

I
′
k→

I
′
k←

We informally refer to these morphisms as ‘tangles’ due to the geometrical effect they have on the wires

in the graphical representation.

Similarly as for interchangers of type Ik, these invertibility cells could also act on composite cells. This

is captured by the following definition:
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Definition 3.2.8. In an (n + 1)-signature that supports interchangers of type Ik for 1 < k < n, a

composite invertibility cell Ĩ′k consists of a sequence of individual applications of an individual cell of type

I′k, with values defined recursively as follows:

. . .

. . .

..
.

..
.

..
.

..
.

f1 frg

Ĩ
′
k→

. . .

..
.

..
.

..
.

..
.

f1 frg

:=

. . .

. . .

..
.

..
.

..
.

..
.

f1 frg

I
′
k→

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

f2 frg1 f1

Ĩ
′
k→

. . .

..
.

..
.

..
.

..
.

f1 frg

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

f1 frgs g1

Ĩ
′
k→

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

f1 frgs g1

:=

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

f1 frgs g1

Ĩ
′
k→

. . .

..
.. . .

. . ...
.

..
.

..
.

f1 frg2gs g1

Ĩ
′
k→

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

f1 frgs g1

Similarly as with composite interchangers of type Ĩk, the intuitive interpretation is that we introduce or

delete pairs of inverse interchangers of type Ik one pair at the time. First tangling the cell g1 with all

cells fi, then repeating the procedure for each consecutive gj . Again, for the same reasons as Ĩk, this

notion does not add any new structure to the signature supporting Ik.

3.2.2 Higher-level coherences for n = 3

A crucial observation is that interchangers of type Ik give rise to higher-level coherences. This occurs

when they are considered as (k + 1)-morphisms in a quasistrict n-category for k + 1 ≤ n. In exploring

the various higher-level coherences for each dimension, it is important to be certain that one has already

found all that arise. One framework within which one may approach this is to exhaustively consider all

the interactions between the interchanger cells and all the other types of k-cells in the category. For

example, for k = n− 1, we have the following:

- n-cell In−1

n-cell In IIn
In−1 - I′n−1)

In particular, for n = 3 this gives us:

• I2 interpreted graphically as crossings of wires on different sheets.

• I3 to be thought of as the exchange of heights of two 3-cells in a 3D picture.

• I′2, which are invertibility morphisms for type I2, as defined in 3.2.7. These morphisms introduce

or delete adjacent pairs of inverse interchangers of type I2.
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• An interchanger of new type II that arises when a 3-cell could be ‘pulled-through’ a crossing created

by an interchanger of type I2.

Cells of types I2, I3 and I′2 have already been discussed in detail in the previous Section, here we

concentrate on the higher-level coherence formalised as an interchanger of type II.

Interchangers of type II express the requirement that an interchanger of type I is natural in one

variable. Interchangers of type II arise first one dimension above those of type I. This is because, in

order to arise, IIk needs an instance of Ik−1 to share its input with a k-cell. This is easiest understood

through the example of a 3-cell α interacting with an instance of an interchanger of type I2, which here

is graphically expressed as a crossing of wires:

α

II3→

II3←

α

Because of the apparent motion of α that is being pulled through the crossing, we informally refer to

interchangers of type IIk as ‘pull-throughs’. Again, the integer k indicates the dimension of the cells that

are being acted upon by this interchanger. Below, we provide intuition for the graphical representation

of the most basic instance of II4. For a 4-cell µ : α→ α′ and a 3-cell β, the graphical representation of µ

is by two 3D snapshots of its source and its target. This could be thought of as evolution of a 3D picture

in time. The graphical interpretation of II4 is as follows:

β

α

I3→

β

α

↓ µ

II4

⇐
⇒II4

↓ µ

β

α
′

I3→

β

α
′

Here, we have a 4-cell µ that gets pulled through a crossing created in four dimensions by the swap of

heights of two 3-cells α and β, i.e. the operation µ gets executed either before or after the heights of α

and β are swapped.

In full generality singularity of type IIk is defined in the following way:

Definition 3.2.9. An (n+ 1)-signature σ = (G0, ..., Gn+1) supports interchangers of type IIk such that

3 ≤ k ≤ n, if for any k-cell α ∈ Gk and any (k − 1)-cellsf , the following invertible cells are elements of
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the set Gk+1:

..
.

α

. . .

. . .

. . .

..
.

..
.

..
.

f

II3→

II3←

..
.

α

. . .

. . .

..
.

..
.

..
.

. . .

f
..
.

..
.

..
.

..
.

α

. . .

. . .

. . .

f

II3→

II3←

..
.

..
.

..
.

..
.

α

. . .

. . .

. . .

f

α

. . .

. . .

. . ...
.

..
.

..
.

..
.

f

II3→

II3← α

. . .

. . .

..
.

..
.

..
.

..
.

. . .

f

α

. . .

. . .

. . .

..
.

..
.

..
.

..
.

f

II3→

II3← α

. . .

. . .

. . .

..
.

..
.

..
.

..
.

f

Similarly as other singularity types discussed, interchangers of type II could also be applied to

composite cells. According to the definition, we require a 3-cell α and a 2-cell f for the interchanger

of type II to arise. This gives rise two variants of the composite interchanger, as either α or f could be

a composite cell. We overload the notation and refer to both as ĨIk, in the reminder of this thesis the

specific variant will always be clear from context.

Definition 3.2.10. In an (n + 1)-signature that supports interchangers of type IIk for 1 < k ≤ n, a

composite interchanger ĨI′k consists of a sequence of individual applications of an individual cell of type

IIk, with values defined recursively as follows:

..
.

αm

α1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

ĨIk→

..
.

αm

α1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

:=

..
.

αm

α1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

IIk→

..
.

αm

α1

. . .. . . . . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

ĨIk→

..
.

αm

α1

α1

. . .. . . . . .

. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

ĨIk→

..
.

αm

α2

α1

. . .. . . . . .

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

ĨIk→

..
.

αm

α1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.
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. . .

. . .

..
.

α

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

ĨIk→

. . .

. . .

..
.

α

. . .

. . .

. . .

..
.

..
.

..
.

f1 fm

:=

. . .

. . .

..
.

α

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

IIk→

. . .

. . .

..
.

α

. . .

. . .

. . .

..
.

..
.

..
.

. . .

f1 f2 fm

ĨIk→

. . .

. . .

..
.

α

. . .

. . .

. . .

..
.

..
.

..
.

f1 fm

Similarly as for other composite interchangers, the intuitive interpretation for ĨIk is that we could pull

a composite cell α through a single Ik−1 crossing by pulling-through each non-composite cell αi separately.

Also, for pulling through multiple crossings, we could pull-through one crossing at a time. Again, for

the same reasons as for Ĩk, the composite interchangers of type ĨIk do not add any new structure to the

signature supporting IIk.

3.2.3 Higher-level coherences for n = 4

We proceed to exploring coherences that the interchange law for k-cells gives rise to at level n = k + 2.

All singularities defined in the previous subsection are now subject to higher-level coherences themselves.

Following the approach of investigating the interactions between different types of cells, we have the

following table for n = k + 2 in a quasistrict n-category:

- n-cell In−1 I′n−2 IIn−2

n-cell In IIn IVn IIIn
In−1 - I′n−1 - Vn

I′n−2 - - I′′n−2 -

IIn−1 - - - II′n−2

The higher-dimensional instances of interchangers of types I and II are covered by the general definitions

presented in previous sections. The behaviour of new invertibility cells I′, II′ and II′n−2 is determined by

Definition 3.2.7. Below, we discuss the three new types III-V arising, as well as a new type VI, which

does not result from the interactions described in this table. We conclude this section with definitions

for all these interchanger types in their most general forms.

Interchangers of type III express the requirement that an interchanger of type II is natural in one

variable. Type III arises first when a 4-cell interacts with a crossing created by an interchanger of type

I2. Similarly as for II4, the cell α could be turned into α′ either before it is pulled-through the crossing

or after.

α

II3→
α

↓ µ IIIk ⇐⇒IIIk ↓ µ

α
′

II3→
α
′
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The intuitive interpretation here is that a 4-cell is being pulled through a crossing of 2-cells. An additional

comment to be made is that for n > 4, at every level n, there is an analogous coherence where an n-cell

gets pulled through a crossing of 2-cells.

Interchangers of type IV express the requirement that invertibility cells I′ for interchangers of type I

are natural in one variable. They arise first when an interchanger of type I3 interacts with the invertibility

4-cell for interchangers of type I2.The simplest instance is:

α

II3→ α

↓ I2
′ IVk ⇐⇒IVk ↓ II3

α
I2
′

→

α

Intuitively, given tangled wires and a 3-cell, we could either pull the 3-cell through all the crossings or

alternatively untangle all the wires and the tangle them again, this time above the 3-cell.

Interchangers of type V express the requirement that an interchanger of type I is natural in both

of its variables simultaneously. They arise first when interchangers of types I3 and II3 interact with each

other. Graphically, the interpretation is that, given a pair of adjacent 3-cells that do not share inputs or

outputs, but whose inputs and outputs fully cross, there are different ways in which such a pair of 3-cells

could be pulled through the crossing. The simplest instance is:

α

β
II3→

α

β

II3→
α

β

↓ I3
Vk ⇐⇒Vk ↓ I3

α

β

II3→

α

β

II3→

α

β

In these sequences of 4-cells, we swap the heights of 3-cells α and β using an instance of an interchanger

of type I3 either before or after they are pulled-through the crossing. Note that, the instances of I3 used

in both sequences are inverses.
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In the most general form, both 3-cells could have composite 2-cells as its inputs and outputs, leading

to multiple wires crossing. In that case, the additional difficulty is that after one 3-cell is pulled through,

the crossings have to be readjusted, so that they are in the right order for the second 3-cell to be pulled

through. In the picture below, β could be pulled up, but α cannot be pulled down because the crossings

on the top wire below α are not adjacent:

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

To counteract this, we need to account for reorganisation of crossings. This could be achieved by

combining instances of the composite interchangers of type I, as defined in 3.2.6. Given a net of crossings

resulting from interchanging two composite cells, we need to put them in the correct position, so that the

interchanger of type II could be applied. We use
˜̃
Ik to denote the composite interchanger that achieves

this.

Definition 3.2.11. In an (n + 1)-signature σ that supports interchangers of type Ik, a composite

interchanger
˜̃
Ik consists of individual applications of the composite interchanger of type Ĩk, with values

defined recursively as follows:

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

˜̃
Ik→

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

:=

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

Ĩk→

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

Ĩk→

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

˜̃
Ik→

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

The intuitive interpretation of this operation is that the first row of crossings gets put in their correct

position first, then the procedure is recursively repeated with one fewer row of crossings to be organised.

Again, as is the case with ĨIk, the cell
˜̃
Ik is just a convenient notational shorthand for multiple applications

of the atomic interchanger of type Ik and, as such, does not add any additional new structure to the

signature σ. Since σ supports interchangers of type Ik, all cells ĨIk, which are composites of atomic

interchangers of type Ik, are already present. This extends to
˜̃
Ik as a composite of cells of type ĨIk.
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Interchanger of type VI is the final higher-level coherence that arises at this level. It is a morphism

between two applications of an interchanger of type II, when the subject is an interchanger of type I. For

II3 this is visualised as follows:

II3→⇒
⇒VI4VI4

II3→

This special case of the interchanger of type II is exactly the third Reidemeister move. Looking at the

left hand side first, the bottom left crossing gets pulled up through the two intermediate crossings and

ends up at the top right corner. However, an equivalent interpretation is that the top left crossings gets

pulled down to the bottom right. These two interpretations correspond to two different variants of the

type II3 interchanger applied at different heights, which therefore have to be related by a higher-level

morphism. This observation was first made by Breen [12] and the cell is referred to in the literature as

the ‘Breenator’.

We conclude this section by providing definitions for interchangers of types III-VI in their most general

form:

Definition 3.2.12. An (n + 1)-signature σ = (G0, ..., Gn+1) supports interchangers of type IIIk such

that 4 ≤ k ≤ n, if for any k-cell µ ∈ Gk such that µ : α→ α′ and any (k− 2)-cell f ∈ Gk−2, the following

invertible cells are elements of the set Gk+1:

..
.

αr

α1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

f

ĨIk−1→

..
.

αr

α1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

f

↓ µ IIIk ⇐⇒IIIk ↓ µ

..
.

α
′
s

α
′
1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

f

ĨIk−1→

..
.

α
′
s

α
′
1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

f

..
.

α1

αr

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

f

ĨIk−1→

..
.

α1

αr

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

f

↓ µ IIIk ⇐⇒IIIk ↓ µ

..
.

α
′
1

α
′
s

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

f

ĨIk−1→

..
.

α
′
1

α
′
s

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

f
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..
.

αr

α1

. . . . . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

f

ĨIk−1→

..
.

αr

α1

. . .. . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

f

↓ µ IIIk ⇐⇒IIIk ↓ µ

..
.

α
′
s

α
′
1

. . . . . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

f

ĨIk−1→

..
.

α
′
s

α1

. . .. . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

f

..
.

α1

αr

. . .. . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

f

ĨIk−1→

..
.

α1

αr

. . . . . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

f

↓ µ IIIk ⇐⇒IIIk ↓ µ

..
.

α
′
s

α
′
1

. . .. . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

f

ĨIk−1→

..
.

α
′
s

α
′
1

. . . . . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

f

αr

α1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

..
.

f

ĨIk−1→
αr

α1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

..
.

f

↓ µ IIIk ⇐⇒IIIk ↓ µ

α
′
s

α
′
1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

..
.

f

ĨIk−1→
α
′
s

α
′
1

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

..
.

f

α1

αr

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

..
.

f

ĨIk−1→

α1

αr

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

..
.

f

↓ µ IIIk ⇐⇒IIIk ↓ µ

α
′
1

α
′
s

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

..
.

f

ĨIk−1→

α
′
1

α
′
s

. . .. . . . . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

..
.

f

95



αr

α1

. . . . . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

..
.

f

ĨIk−1→
αr

α1

. . .. . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

..
.

f

↓ µ IIIk ⇐⇒IIIk ↓ µ

α
′
s

α
′
1

. . . . . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

..
.

f

ĨIk−1→
α
′
s

α
′
1

. . .. . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

..
.

f

α1

αr

. . .. . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

..
.

f

ĨIk−1→

α1

αr

. . . . . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

..
.

f

↓ µ IIIk ⇐⇒IIIk ↓ µ

α
′
1

α
′
s

. . .. . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . .

..
.

..
.

..
.

..
.

f

ĨIk−1→

α
′
1

α
′
s

. . . . . .. . .

. . .

. . .

. . .. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . . . ...
.

..
.

..
.

..
.

f

Definition 3.2.13. An (n + 1)-signature σ = (G0, ..., Gn+1) supports interchangers of type IVk such

that 4 ≤ k ≤ n, if for any (k − 1)-cell α ∈ Gk−1 and any (k − 2)-cells f1, ..., fm ∈ Gk−2, the following

invertible cells are elements of the set Gk+1:

. . .

. . .

..
.

α

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

ĨIk−1→

. . .

. . .

..
.

α

. . .

. . .

. . .

. . .

..
.

..
.

..
.

f1 fm

↓ Ĩ′k−1
IVk ⇐⇒IVk ↓ ĨIk−1

. . .

. . .

..
.

α

. . .

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

Ĩ
′
k−1→

. . .

. . .

..
.

α

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

. . .

. . .

..
.

α

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

ĨIk−1→

. . .

. . .

..
.

α

. . .

. . .

. . .

. . .

..
.

..
.

..
.

f1 fm

↓ Ĩ′k−1
IVk ⇐⇒IVk ↓ ĨIk−1

. . .

. . .

..
.

α

. . .

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

Ĩ
′
k−1→

. . .

. . .

..
.

α

. . .

. . .

. . ...
.

..
.

..
.

f1 fm
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α

. . .

. . .

. . ...
.

..
.

..
.

. . .

. . .

..
.

f1 fm

ĨIk−1→ α

. . .

. . .

. . .

. . .

..
.

..
.

..
.

. . .

. . .

..
.

f1 fm

↓ Ĩ′k−1
IVk ⇐⇒IVk ↓ ĨIk−1

α

. . .

. . .

. . .

. . ...
.

..
.

..
.

. . .

. . .

..
.

f1 fm

Ĩ
′
k−1→

α

. . .

. . .

. . ...
.

..
.

..
.

. . .

. . .

..
.

f1 fm

α

. . .

. . .

. . ...
.

..
.

..
.

. . .

. . .

..
.

f1 fm

ĨIk−1→ α

. . .

. . .

. . .

. . .

..
.

..
.

..
.

. . .

. . .

..
.

f1 fm

↓ Ĩ′k−1
IVk ⇐⇒IVk ↓ ĨIk−1

α

. . .

. . .

. . .

. . ...
.

..
.

..
.

. . .

. . .

..
.

f1 fm

Ĩ
′
k−1→

α

. . .

. . .

. . ...
.

..
.

..
.

. . .

. . .

..
.

f1 fm

. . .

. . ...
.

..
.

..
.

α

. . .

. . .

. . .

..
.

f1 fm

ĨIk−1→

. . .

. . ...
.

..
.

..
.

α

. . .

. . .

. . .

. . .

..
.

f1 fm

↓ Ĩ′k−1
IVk ⇐⇒IVk ↓ ĨIk−1

. . .

. . .

..
.

α

. . .

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

Ĩ
′
k−1→

. . .

. . ...
.

..
.

..
.

α

. . .

. . .

. . . ..
.

f1 fm

. . .

. . ...
.

..
.

..
.

α

. . .

. . .

. . . ..
.

f1 fm

ĨIk−1→

. . .

. . ...
.

..
.

..
.

α

. . .

. . .

. . .

. . .

..
.

f1 fm

↓ Ĩ′k−1
IVk ⇐⇒IVk ↓ ĨIk−1

. . .

. . .

..
.

α

. . .

. . .

. . .

. . ...
.

..
.

..
.

f1 fm

Ĩ
′
k−1→

. . .

. . ...
.

..
.

..
.

α

. . .

. . .

. . .

..
.

f1 fm
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α

. . .

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

f1 fm

ĨIk−1→

α

. . .

. . .

. . .
..
.. . .

. . ...
.

..
.

..
.

f1 fm

↓ Ĩ′k−1
IVk ⇐⇒IVk ↓ ĨIk−1

α

. . .

. . .

. . .

. . ...
.

..
.

..
.

. . .

. . .

..
.

f1 fm

Ĩ
′
k−1→

α

. . .

. . .

. . .
..
.. . .

. . ...
.

..
.

..
.

f1 fm

α

. . .

. . .

. . .
..
.. . .

. . ...
.

..
.

..
.

f1 fm

ĨIk−1→

α

. . .

. . .

. . .
..
.. . .

. . ...
.

..
.

..
.

f1 fm

↓ Ĩ′k−1
IVk ⇐⇒IVk ↓ ĨIk−1

α

. . .

. . .

. . .

. . ...
.

..
.

..
.

. . .

. . .

..
.

f1 fm

Ĩ
′
k−1→

α

. . .

. . .

. . .

..
.. . .

. . ...
.

..
.

..
.

f1 fm

Definition 3.2.14. An (n+ 1)-signature σ = (G0, ..., Gn+1) supports interchangers of type Vk such that

4 ≤ k ≤ n, if for any (k − 1)-cells α, β ∈ Gk−1, the following invertible cells are elements of the set

Gk+1:

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

˜̃
Ik→

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

IIk−1→
α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

↓ Ik−1

Vk ⇐
⇒Vk

↓ Ik−1

α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . ...
.

..
.

..
.
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α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . .

..
.

..
.

..
.

↓ Ik−1

Vk ⇐
⇒Vk

↓ Ik−1

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

. . . ˜̃
Ik−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

IIk−1→
α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→
α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

↓ Ik−1

Vk ⇐
⇒Vk

↓ Ik−1

α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . ...
.

..
.

..
.

α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

. . . ..
.

β

. . .

. . .

..
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

. . .

↓ Ik−1

Vk ⇐
⇒Vk

↓ Ik−1

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . .

..
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

˜̃
Ik−1→

α

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.

IIk−1→
α

. . .

. . .

. . .

. . .

..
.

β

. . .

. . .

. . ...
.

..
.

..
.
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α

. . .

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

..
.

IIk−1→

α

. . .

. . .

..
.

..
.

..
.

. . .

β

. . .

. . .

. . .

..
.

˜̃
Ik−1→

α

. . .

. . .

..
.

..
.

..
.

. . .

β

. . .

. . .

. . .

..
.

IIk−1→

α

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

. . .

..
.

˜̃
Ik−1→

α

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

. . .

..
.

↓ Ik−1

Vk ⇐
⇒Vk

↓ Ik−1

α

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

. . .

..
.

˜̃
Ik−1→

α

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

. . .

..
.

IIk−1→

α

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

..
.

˜̃
Ik−1→

α

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

..
.

IIk−1→
α

. . .

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

..
.

α

. . .

. . .

. . ...
.

..
.

..
.

β

. . .

. . .

. . .

. . .
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Definition 3.2.15. An (n + 1)-signature σ = (G0, ..., Gn+1) supports interchangers of type VIk such

that 4 ≤ k ≤ n, if for any (k− 2)-cells f, g, h ∈ Gk−2, the following invertible cells are elements of the set

Gk+1:

fgh

II3→⇒

⇒VI4VI4

II3→

fgh hgf

II3→⇒

⇒VI4VI4

II3→

hgf

fgh

II3→⇒

⇒VI4VI4

II3→

fgh hgf

II3→⇒

⇒VI4VI4

II3→

hgf

3.2.4 Quasistrict n-categories for n ≥ 5

The approach described here could in principle make it possible to define quasistrict categories of

dimensions higher than n = 5. Following the pattern of the definitions above, for a quasistrict n-category

we would need to take an (n+1)-signature and then list all the necessary singularities that it should

support. All the associativity and distributivity axioms are already built into the signature structure

and do not have to be listed separately. The challenging part is to enumerate all the n-singularities in

an exhaustive fashion and appropriately develop their composite variants. One possible way of doing

that is exploring the interactions that different pairs of interchangers have with each other. However this

method cannot be considered complete, as exemplified by the Breenator, which cannot be described in

this fashion.

Here, we list all the singularities that a quasistrict n-category definitely must contain. We conjecture

that, given a quasistrict (n− 1)-category defined by an n-signature σ, a quasistrict n-category defined by

an (n+ 1) signature σ′ must support:

• All singularity types supported by σ.
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• All singularity types supported by σ raised by one dimension.

• A singularity type analogous to types II and III where an n-cell is pulled through a 2-cell crossing.

Additionally, there will be higher-level coherences resulting from interactions between interchangers of

type III, IV and V which are an interesting topic of further research. The presence of interchangers of type

VI in Definition 3.2.3 is evidence that just considering the mutual interactions between (n−1)-singularities

is insufficient for purposes of an exhaustive approach. Because of this, and all the other reasons outlined

above, a general definition for a quasistrict n-category remains elusive.

3.3 A stricter version of quasistrict 3- and 4-categories

Some variants of the interchanger types presented in the previous section are not indispensable to retaining

full expressivity, maintaining equivalence to a general weak n-category and keeping the definitions of

quasistrict 2-, 3-, 4-categories valid. An instance is presented below:

α
II3→

α

↓ I′2 ⇐ ⇒ ↑ I′2

α

II3→

α

Here, an application of a variant of type II interchanger is replaced by a combination of applications of

another variant of the same interchanger and two applications of the interchanger of type I ′. Intuitively,

instead of α being pulled down, a tangle in the top part of the diagram is introduced, then α is pulled

up and the tangle at the bottom is deleted. However, instead of applying just a single morphism we had

to apply multiple morphisms in different sections of the diagram.

A valid approach would be to treat the invertible 5-cells above as the definition for this variant

of an interchanger of type II3. In a similar way as for definitions 3.2.6, 3.2.8 and 3.2.10 of composite

interchangers, one could then argue that this cell is already present in the signature as a composite of

other cells already included there.

Using this method, we could eliminate the need to explicitly add to the signature 4 out of 8 variants

of an interchanger of type IIk. All moves that pull a cell through a crossing corresponding to the inverse

interchanger of type I2, as in the example, could be defined in terms of moves that pull the cell through

a crossing corresponding to the interchanger of type I2 and tangling morphisms of type I′2. This, in turn,

would eliminate the need to include different versions of higher level coherences that these 4 variants give

rise to. What would remain is 8 out of 16 variants of each of interchanger types IIIk and Vk. This would

also entirely eliminate the need for an interchanger of type IV. Each of the reduntant variants could be

derived only using the axioms for interchangers of type II3 that involve pulling a cell through the crossing

corresponding to an instance of an ordinary interchanger of type I2 and not the inverse interchanger.

This approach would result in a definition of a semistrict 4-category based on the signature structure.
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It is true that inclusion of these additional variants introduces more weakness in the definitions. To

be entirely consistent with the approach of keeping the definitions as strict as possible, we should refrain

from adding these additional variants. However, there is a balance to be kept here. Our overall goal is to

maintain equivalence to a general weak n-category and simplify working with the structure being defined

by making proofs as short as possible. Strictness of the definitions is just means towards an end, not

the overarching aim. For that reason, we introduce the additional variants as, while they introduce some

additional weakness, at the same time they make proofs significantly shorter.

The inclusion of these additional interchanger variants is the essence of the difference between the

more traditional semistrict approach and quasistrict categories that we propose in this thesis.

3.4 Comparison with 4-teisi

To the best of our knowledge, there has only been one attempt in the literature to define a semistrict

4-category, this is due to Crans [20]. In this section, we discuss this approach and outline how it differs

from Definition 3.2.3. We also comment on different treatments of strictness by the two approaches.

In the effort to define a semistrict 4-category, Crans first introduces a tensor product for

Gray-categories [21], then enriches with respect to the monoidal category built on this tensor product

to obtain 4-dimensional categorical structures. As far as terminology is concerned, Crans uses the notion

of a tas (plural teisi), which is Welsh for ‘stack’ to refer to these. In the same way how a Gray-category

with identity 3-morphisms is a 2-category, a 4-dimensional tas with only the identity 4-morphisms is a

Gray-category. In line with this concept, Crans defines a 2-dimensional tas (or a 2D tas for short) to be

a 2-category and a 3D tas to be a Gray-category.

The key observations are as follows:

• The definition of a 4-tas includes explicit axioms for associativity and distributivity of composition,

and for composition with identities. In total, there are 22 variants summarised in 5 clauses. In the

approach based on the 5-signature structure, there is no need to explicitly list any of these, as they

are built into the structure, as proved for an arbitrary n in Chapter 2.

• Crans only includes 4 variants of interchangers of type II3, which results in a reducent count for

interchangers of types III4 and V4 and the omission of IV4. This treatment of interchangers is

equivalent to the more strict approach described in Section 3.3 and results in axiomatic complexity

similar to a semistrict 4-category based on the signature structure as discussed in that section.

• Employing the graphical notation allows us to list singularities in a much more systematic fashion,

therefore increasing the clarity of the definition, without the need to implicitly refer to reflections

and rotations for each axiom.

• The definition of a 4-tas does not account for the Breenator, i.e. interchangers of type VI4, rendering

the definition not complete.

The most efficient way of comparing the two approaches is to analyse point by point the individual

structures and axioms that Crans proposes and comment on how they relate to the signature structure

and interchangers it may support. We cite Crans’ 4-tas definition in its entirety and segment it into

separate clauses that are directly compared with Definition 3.2.3.

A 4-dimensional tas consists of collections C0 of objects, C1 of arrows, C2 of 2-arrows, C3 of 3-arrows

and C4 of 4-arrows, together with:

(S1) Functions sn, tn : Ci → Cn for all 0 ≤ n < i ≤ 4 also denoted dn and dn
+ and called n-source and

n-target.

The collection of sets of arrows (cells) and the source and target functions correspond exactly to

those in Definition 2.2.1.
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(S2) Functions #n : Cn+1 ×sn,tn Cn+1 → Cn+1 for all 0 ≤ n < 4 called vertical composition.

This is realised by (vertical) composition of two n-diagrams S,D, as described in Definition 2.4.6.

(S3) Functions #n : Ci×sn,tnCn+1 → Ci and #m : Cn+1×sn,tnCi → Ci for all 0 ≤ n ≤ 2, n+1 < i < 4,

called whiskering.

This is realised by composition of an n-diagram D and an m-diagram S such that m 6= n, as

described in Definition 2.4.6.

(S4) Functions #n : Cq ×sn,tn Cp → Cp+q for all 0 ≤ n ≤ 1, p, q > n + 1, p + q − n − 1 ≤ 4 called

horizontal composition.

In our approach this is not a built-in operation, horizontal n-cell composition is instead achieved by

first whiskering and then vertical composition.

(S5) Functions id : Ci → Ci+1 for all 0 ≤ n ≤ 3 called identity.

This is realised by the identity operation Id(D) on an n-diagram D, as described in Definition 2.4.22.

Crans also postulates eleven axioms for these structures:

(R1) C is a 4-truncated globular set.

We understand that C = {C0, C1, C2, C3, C4}. The corresponding requirement is realised by the

equalities imposed on the source and target maps in Definition 2.2.1.

(R2) For every C,C ′ ∈ C0 the collection of elements of C with 0-source C and 0-target C ′ forms a 3D

tas C(C,C ′), with n-composition in C(C,C ′) given by #n+1 and identities given by id.

Crans requires that for every C,C ′ ∈ C0, the collection of elements of C whose lowest lever source is

C and lowest level target C ′ is a 3D tas correspond to the requirement that σ supports higher-level

instances of all singularities supported by a signature presenting a quasistrict 3-category. The

difference here is that we list the interchangers explicitly, whereas for Crans they are built into the

definition of the lower level structure.

(R3) For every g : C ′ → C ′′ in C1 and every C and C ′′′ ∈ C0, −#0g is a functor C(C ′′, C ′′′)→ C(C ′, C ′′′)

and g#0− is a functor C(C ′′, C ′′′)→ C(C ′, C ′′).

This is a statement about composition of 1-cells with 0-cells, Crans requires this operation to give

rise to functors. In our approach to compose a 0-cell A with 1-cell g, the identity 1-cell on A needs to

be produced first. Then, these two are composed by the ordinary composition operation according

to Definition 2.4.6. We also explicitly prove that this gives rise to functors in Theorem 2.5.1.

(R4) For every C ∈ C0 we have: s0(idC) = C = t0(idc).

This requirement means that sources and targets of a cell that has undergone a transformation

by the identity map are equal to the cell itself. In our approach this is a direct consequence of

Definition 2.4.1.

(R5) For every C ′ ∈ C0 and every C and C ′′ ∈ C0, −#0idC′ is equal to the identity functor

C(C ′, C ′′)→ C(C ′, C ′′) and idC′#0− is equal to the identity functor C(C,C ′)→ C(C,C ′).

This is a statement about the relation between the identity operation and 0-composition of 1-cells

and that it gives rise to certain functors. In our approach, this is built into the definition of a

signature and is captured by Lemma 2.4.24, where we prove that this construction gives rise to

functors.

(R6) (a) For every γ : f → f ′, δ : g → g′ ∈ C2

s2(δ#0γ) = (g′#0γ)#1(δ#0f)

t2(δ#0γ) = (δ#0f
′)#1(g#0γ)
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And δ#0γ is an iso-3-arrow.

This interchanger is a 3-cell that corresponds to type I2, as described in Definition 3.2.5.

(b) For every φ : γ → γ′ ∈ C3 such that γ, γ′ : f → f ′ and δ : g → g′ ∈ C2

s3(δ#0φ) = ((δ#0f
′)#1(g#0φ))#2(δ#0γ)

t3(δ#0φ) = (δ#0γ
′)#2((g′#0φ)#1(δ#0f))

And δ#0γ is an iso-3-arrow.

This interchanger is a 4-cell that corresponds to type II3, as described in Definition 3.2.9.

(c) For every γ : f → f ′ ∈ C2 and ψ : δ → δ′ ∈ C3 such that δ, δ′ : g → g′

s3(ψ#0γ) = (δ#0γ
′)#2((g′#0γ)#1(ψ#0f))

t3(ψ#0γ) = ((ψ#0f
′)#1(g#0γ))#2(δ#0γ)

And δ#0γ is an iso-3-arrow.

This interchanger is a 4-cell that corresponds to type II3, as described in Definition 3.2.9. It is

a different variant than in the clause above.

(R7) (a) For every Γ : φ→ φ′ ∈ C4 such that φ, φ′ : γ → γ′ and γ, γ′ : f → f ′ and δ : g → g′ ∈ C2:

(((g′#0Γ)#1(δ#0f))#2(δ#0γ
′))#3(δ#0φ)

= (δ#0φ
′)#3((δ#0γ)#2((δ#0f

′)#1(g#0Γ)))

This interchanger is a 5-cell that corresponds to type III4, as described in Definition 3.2.12.

(b) For every γ : f → f ′ ∈ C2 and ∆ : ψ → ψ′ ∈ C4 such that ψ,ψ′ : δ → δ′ and δ, δ′ : g → g′

(ψ′#0γ)#3((δ′#0γ)#2((g′#0γ)#1(∆#0f)))

= (((∆#0f
′)#1(g#0γ))#2(δ#0γ))#3(ψ#0γ)

This interchanger is a 5-cell that corresponds to type III4, as described in Definition 3.2.12. It

is a different variant than in the clause above.

(c) For every φ : γ → γ′ ∈ C3 such that γ, γ′ : f → f ′ and ψ : δ → δ′ ∈ C3 such that δ, δ′ : g → g′

(((ψ#0f
′)#1(g#0γ))#2(δ#0φ))#3

(((ψ#0f
′)#1(g#0φ))#2(δ#0γ))#3

(((δ′#0f
′)#1(g#0φ))#2(ψ#0γ))#3

=

(ψ#0γ
′)#2((g′#0φ)#1(δ#0f)))#3

((δ′#0γ
′)#2((g′#0φ)#1(ψ#0f))

−1
)#3

((δ′#0φ)#2((g′#0γ)#1(ψ#0f)))

This interchanger is a 5-cell that corresponds to type V4, as described in Definition 3.2.14.

Depending on the inclusion or exclusion of expansion morphisms in Crans’ definition, if the

intention was not to include them, but have them to hold as equalities, then reorganisation of

crossings, as defined in 3.2.11, is not accounted for here.

There are multiple variants of singularities of types II3, V4 that are not present. For type II in

Definition 3.2.9 we list eight different variants and for type V in Definition 3.2.14 we list sixteen,

which is a direct consequence of the fact that we chose not to make Definition 3.2.3 as strict as

possible. In the chosen quasistrict approach, we prioritise simplicity and length of proofs over

strictness and, as explained in Section 3.3, we include the additional variants.
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(R8) In this clause, Crans discusses expansion morphisms for different singularities. It is not entirely

clear whether the intention is to make them actual equalities or higher level morphisms. If the

former, then some details pertaining reorganisation of crossings for interchangers of type V4 are

missing from the definition. If the latter, then this would introduce unnecessary weakness into the

definition and in violation of the goal of a semistrict definition. As argued before in Section 3.2.1,

we do not include explicit expansion morphisms.

(a) For every γ : f → f ′, γ′ : f ′ → f ′′ and δ : g → g′ in C:

δ#0(γ′#1γ) =

((δ#0γ
′)#1(g#0γ))#2((g′#0γ

′)#1(δ#0γ))

This corresponds to a 4-cell decomposing an application of composite interchanger of type

I2 into applications of atomic interchangers. This is not a native structure in our approach.

However we could still efficiently reason about decompositions of this type, due to the presence

of a shorthand Ĩ2 as described in Definition 3.2.6. Additionally, this clause corresponds to axiom

S2-17 for a switch 3-category as stated in Definition 3.5.1.

(b) For every γ : f → f ′ and δ : g → g′, δ′ : g′ → g′′ in C:

(δ′#1δ)#0γ = ((δ′#0f
′)#1(δ#0γ))#2((δ′#0γ)#1(δ#0f))

Similar as above, but for the other variant of the interchanger of type I2.

(c) For every φ : γ → γ′, φ′ : γ′ → γ′′ such that γ, γ′, γ′′ : f → f ′ and δ : g → g′ in C:

δ#0(γ′′#2φ) =

((δ#0φ
′)#2((g′#0φ)#1(δ#0f)))

#3

(((δ#0f)#1(g#0φ
′))#2(δ#0φ))

This is an expansion axiom for interchangers of type II3. Intuitively, this says that we can

pull-through individual subsequent 3-cells through a crossing or pull them through all at once

in one move. This is not a built-in structure in our approach, however this does not result in

reduced expressivity. Analogously to Ĩ2 for interchangers of type I, this cell is realised by ĨI3 as

a composite of applications of atomic interchangers of type II3, as defined in 3.2.10.

(d) For every φ : γ → γ′ such that γ, γ′ : f → f ′, for every γ′′ : f ′ → f ′′ and δ : g → g′ in C:

δ#0(γ′′′#2φ)

= (((δ#0γ
′′)#1(g#0γ

′))#2((g′#0γ
′′)#1(δ#0φ)))

#3(((δ#0γ
′′)#1(g#0φ))#2((g′#0γ

′′)#1(δ#0γ)))

This corresponds to an application of a composite interchanger of type II3, where some

additional crossings have to be interchanged out of the way first using interchangers of type

I3. This is not a native cell in our definition, but similarly as above, we could express it as a

sequence of atomic interchangers using the shorthand ĨI3.

(e) For every φ′ : γ′ → γ′′ such that γ′, γ′′ : f ′ → f ′′, for every γ : f → f ′ and δ : g → g′ in C:

δ#0(φ′#2γ)

= (((δ#0γ
′′)#1(g#0γ))#2((g#0φ

′)#1(δ#0γ)))

#3(((δ#0φ
′)#1(g#0γ))#2((g′#0γ

′)#1(δ#0γ)))

Similarly as above, but for another variant of the interchanger of type II3.
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(f) For every γ, γ′ : f → f ′, for every δ : g → g; and δ′ : g′ → g′′ in C:

(δ′#1δ)#0φ

= (((δ′#0f
′)#1(δ′#0γ

′))#2((δ′#0φ)#1(δ#0f)))

#3(((δ′#0f
′)#1(δ′#0φ))#2((δ′#0γ

′)#1(δ#0f)))

This is another expansion axiom for interchangers of type II3. By this, we could either pull

a single 3-cell through multiple crossings individually one by one, or we could do this all at

once. The same as other expansions above, this is not a native cell in our approach. Again,

this does not result in reduced expressivity, as this cell can be realised as a composite of atomic

interchangers of type II3, as defined in 3.2.10.

(g) Crans remarks that there should be additional clauses analogous to the last four, most likely

this is to deal with the inverses of the interchanger variants discussed above.

(R9) For every γ : f → f ′, γ′ : f ′ → f ′′ and for every δ : g → g;, δ′ : g′ → g′′ in C:

(δ′#1δ)#0(γ′#1γ)

= ((δ′#0f
′′)#1(δ#0γ

′)#1(g#0γ))

#2((δ′#0γ
′)#1(δ#0γ))

#2((g′′#0γ
′)#1(δ′#0γ)#1(δ#0f))

This is a higher-level coherence which is the result of the expansion axiom for an interchanger of

type I2. There are two different, equivalent methods of decomposition for swapping heights of four

adjacent cells and they have to be related to each other by a higher-level morphism. This is a direct

evidence for how explicit expansion morphisms give rise to further singularities. The presence of

an explicit expansion cell for I2 suggests that perhaps the intention in the definition was to include

higher-level expansion cells explicitly as well.

(R10) For every c ∈ C(C,C ′)p, c
′ ∈ C(C ′, C ′′)q, c

′′ ∈ C(C ′′, C ′′′)r with p + q + r ≤ 3 we have:

(c′′#0c
′)#0c = c′′#0(c′#0c).

This axiom is on associativity of cell composition. The corresponding result is summarised by

equality Eq. (2.21).

(R11) For every c ∈ C(C,C ′)p, c
′ ∈ C(C ′, C ′′)q such that p, q > 0 and p + q ≤ 3 if q ≤ 2 we have:

c′#0idc = idc′#0c
and if p ≤ 2 we have: c′#0idc = idc′#0c

.

This axiom defines how to compose a cell with an identity of a cell of a lower dimension. The

corresponding result is proved in Lemma 2.4.25.

Each clause in Crans’ definition is concluded with comments that each of these cells should also be an

isomorphism, as this ensures that their inverses are also included as cells and decreases the scope of

singularities that are not included. This corresponds to inclusion of four variants of singularities of type

II3, as described in Definition 3.2.13.

To summarise, the definition proposed by Crans has a different approach to strictness than the

definition of a quasistrict 4-category. There are two singularity types that are not present in this definition,

namely: IV4 and VI4. The omission of the former is the intended consequence of adapting an approach

stricter than in Definition 3.2.3. Singularity of type VI4 should have been included for the definition to

be correct.

3.5 Satisfaction of switch 3-category axioms

In this section, we discuss the definition of a switch 3-category given by Douglas and Henriques [22],

which is an alternative presentation of a Gray-category. We concentrate on showing how it corresponds
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to Definition 3.2.2 of a quasistrict 3-category as a 4-signature. Since our definition of a quasistrict

4-category is a natural extension of the quasistrict 3-category definition, we consider satisfaction of

switch 3-category axioms as strong evidence for correctness of this new, proposed definition.

Definition 3.5.1. Switch 3-category : See Appendix B.

The summary of the definition is as follows:

• The definition lists:

? Four sets of data: 0-cells, 1-cells, 2-cells and 3-cells all satisfying globularity conditions.

? Thirteen maps between these sets of cells: identities, composition and whiskering maps.

? Thirty four axioms that these maps are supposed to satisfy.

• Maps have the following properties:

? The identity map applied to a k-cell f produces a (k + 1)-cell whose both source and target

are f .

? Composition of two k-cells is the usual categorical notion of (k − 1)-composition or vertical

composition.

? Whiskering allows us to avoid ambiguity when composing two k-cells. Two k-cells α and β

can only be composed vertically, but whiskering using cells of lower dimensions stil enables

construction of any arbitrary k-cell.

Thirty four axioms regulate how these maps interact with each other, the list consist of various

associativity and distributivity results.

There are four axioms for singularities of type I2 (S2-16 - S2-19) plus one axiom each for singularities

of types I3 (S2-25) and II3 (S2-30). The ‘switch’ map, which lends the name to the entire category,

corresponds to interchangers of type I2. The most significant difference between our approach and the

definition by Douglas and Henriques is the inclusion of the expansion axiom for for the ‘switch’ map (S2-

17). As argued in Section 3.2.1, an expansion morphism for I2 is not a native structure in Definition 3.2.2,

however this does not prevent us from retaining full expressivity. This is because, a composite interchanger

of type I2 can be expressed as a series of atomic interchangers of the same type using the shorthand Ĩ2,

as described in Definition 3.2.6. The final remark is that, Douglas and Henriques ascertain existence of

inverses for the switch morphism, which corresponds to inclusion of higher invertibility cells of type Ĩ2.

Overall, the bulk of axioms listed in the definition of a switch 3-category pertains associativity and

distributivity of composition, as well as composition with identity. In Definition 3.2.2 of a quasistrict

3-category based on the 4-signature structure, these do not have to be listed explicitly, as they are already

implicitly built into the structure, as proved for an arbitrary n in Chapter 2. This results in a much lower

axiomatic count of the quasistrict 3-category definition. The results on associativity and distributivity

of composition proved in Chapter 2 are of non-trivial complexity which for n = 3 perhaps does not

outweight manually listng all the axioms in the definition. However, the main advantage of the approach

based on the signature structure is that these results are proved for an arbitrary n and therefore could be

used for n > 3 with no additional effort. This is exemplified by the comparison with the 4-tas definition

in Section 3.4.

Theorem 3.5.2. Definition 3.2.2 satisfies the axioms for a switch 3-category listed by Definition 3.5.1.

Proof. Given a switch 3-category defined in accordance with Definition 3.5.1, consider a 4-signature

σ = {T0, T1, T2, T3, T4} that supports interchangers of types I2, I3 and II3. Since σ is a signature, there

are maps sk, tk : Tk → Tk−1 for k = {1, 2, 3} such that sk ◦ tk = sk ◦ sk and tk ◦ tk = tk ◦ sk, as required.

Now let us consider individual maps using the naming scheme that Douglas and Henriques use:

1-data
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• S1-1 For a 0-diagram D, the map ix is realised by: ix(D) := Id(D)

• S1-2 For two 1-diagrams S, D the map mx is realised by mx(S,D) := S ◦D

• S1-3 For a 1-diagram D, the map ix is realised by: ix(D) := Id(D)

• S1-4 For two 2-diagrams S, D the map my is realised by my(S,D) := S ◦D

• S1-5 For a 1-diagram D and a 2-diagram S, the map wr is realised by wr(S,D) := S ◦D

• S1-6 For a 2-diagram D and a 1-diagram S, the map wl is realised by wl(S,D) := S ◦D

• S1-7 This is realised by interchangers of type I2 supported by σ.

• S1-8 For a 2-diagram D, the map iz is realised by: iz(D) := Id(D)

• S1-9 For two 3-diagrams S, D the map mz is realised by mz(S,D) := S ◦D

• S1-10 For a 3-diagram D and a 2-diagram S, the map fb is realised by fb(S,D) := S ◦D

• S1-11 For a 2-diagram D and a 3-diagram S, the map ft is realised by ft(S,D) := S ◦D

• S1-12 For a 3-diagram D and a 1-diagram S, the map hr is realised by hr(S,D) := S ◦D

• S1-13 For a 1-diagram D and a 3-diagram S, the map hl is realised by hl(S,D) := S ◦D

1-morphism axioms

• S2-1 Given that map mx is realised by diagram composition and map ix by the identity operation,

we need to show that Id(S)◦D = D for any 1- diagram D and any 0-diagram S such that Id(S)◦D
exists. This follows by Lemma 2.4.24.

• S2-2 The argument is analogous to S2-1.

• S2-3 Given that map mx is realised by diagram composition, we need to show that S◦(D◦M) = (S◦
D) ◦M for any three 1-diagrams S,D,M that are composable. This follows by equality Eq. (2.21).

• S2-4 Given that map my is realised by diagram composition and map iy by the identity operation,

we need to show that Id(S)◦D = D for any 2- diagram D and any 1-diagram S such that Id(S)◦D
exists. This follows by Lemma 2.4.24.

• S2-5 The argument is analogous to S2-4.

• S2-6 Given that my is realised by diagram composition, we need to show that S ◦ (D ◦M) = (S ◦
D) ◦M for any three 2-diagrams S,D,M that are composable. This follows by equality Eq. (2.21).

• S2-7 Given that map wr is realised by diagram composition, we need to show that for any two

1-diagrams S, D that are composable, we have: Id(S)◦D = Id(S◦D). This follows by Lemma 2.4.25.

• S2-8 The argument is analogous to S2-7.

• S2-9 Given that maps my and wr are realised by diagram composition, we need to show that

(S ◦ D) ◦ M = (S ◦ M) ◦ (D ◦ M) for any two 2-diagrams S,D and a 1-diagram M that are

composable. This follows by equality Eq. (2.23).

• S2-10 The argument is analogous to S2-9 and the result follows by equality Eq. (2.22).

• S2-11 Given that maps mx and wl are realised by diagram composition, we need to show that

(S ◦D) ◦M = S ◦ (D ◦M) for any two 1-diagrams D,M and a 2-diagram S that are composable.

This follows by Theorem 2.21.
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• S2-12 The argument is analogous to S2-11.

• S2-13 Given that maps wl and wr are realised by diagram composition, we need to show that

(S ◦D) ◦M = S ◦ (D ◦M) for any two 1-diagrams S,M and a 2-diagram D that are composable.

This follows by Theorem 2.21.

• S2-14 Given that map my is realised by diagram composition and map ix by the identity operation,

we need to show that Id(S)◦D = D for any 2- diagram D and any 0-diagram S such that Id(S)◦D
exists. This follows by Lemma 2.4.24.

• S2-15 The argument is analogous to S2-14.

• S2-16 Given that the ‘switch’ map corresponds to interchangers of type I2, this holds by

Definition 3.2.5. As application of an interchanger of type I at height h = 1 for |D| = 1 has

no effect on D.

• S2-17 This is an expansion axiom for the ‘switch’ morphism, it is not present in Definition 3.2.2. For

reasons outlined earlier in this section, an explicit expansion morphism for composite interchangers

does not add any additional expressivity. In σ, a composite interchanger of type I2 can be expressed

as a sequence of atomic interchangers of the same type using the construction Ĩ2 described in

Definition 3.2.6.

• S2-18 This follows by the result on associativity of composition 2.21 and by the fact that σ supports

interchangers of type I2. Since we only interpret the interchanger in the context of the digram D

at the particular height h, the order in which any additional 1-cells on either side are composed in

does not alter the overall interchange, as required.

• S2-19 The argument is analogous to S2-18, but for 1-cells that are in between the 2-cells being

interchnaged. By Definition 3.2.5, there may be an arbitrary number of them and the order in

which they are composed with 2-cells has no effect on the interchange, as required.

• S2-20 Given that map mz is realised by diagram composition and map iz by the identity operation,

we need to show that S ◦ Id(D) = S for any 3- diagram S and any 2-diagram D such that S ◦ Id(D)

exists. This follows by Lemma 2.4.24.

• S2-21 Given that map mz is realised by diagram composition, we need to show that S ◦ (D ◦
M) = (S ◦ D) ◦ M for any three 3-diagrams S,D,M that are composable. This follows by

equality Eq. (2.21).

• S2-22 Given that map ft is realised by diagram composition, we need to show that for any two

2-diagrams S, D that are composable, we have: Id(S)◦D = Id(S◦D). This follows by Lemma 2.4.25.

• S2-23 Given that map ft is realised by diagram composition and map iy by the identity operation,

we need to show that S ◦ Id(D) = S for any 3- diagram S and any 1-diagram D such that S ◦ Id(D)

exists. This follows by Lemma 2.4.24.

• S2-24 Given that maps mz and ft are realised by diagram composition, we need to show that

(S ◦ D) ◦ M = (S ◦ M) ◦ (D ◦ M) for any two 3-diagrams S,D and a 2-diagram M that are

composable. This follows by equality Eq. (2.23).

• S2-25 This is an instance of two 3-cells being subject to the interchange law, similarly as S1-7 for

2-cells. This axiom holds, since σ supports interchangers of type I3.

• S2-26 Given that maps my and ft are realised by diagram composition, we need to show that

S ◦ (D ◦M) = (S ◦D) ◦M for any two 2-diagrams D,M and a 3-diagram S that are composable.

This follows by equality Eq. (2.21).
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• S2-27 Given that maps ft and fb are realised by diagram composition, we need to show that

(S ◦D) ◦M = S ◦ (D ◦M) for any two 2-diagrams S,M and a 3-diagram D that are composable.

This follows by equality Eq. (2.21).

• S2-28 Given that map hr is realised by diagram composition, we need to show that for a 2-diagram

S, and a 1-diagram D that are composable, we have: Id(S) ◦ D = Id(S ◦ D). This follows by

Lemma 2.4.25.

• S2-29 Given that map hr is realised by diagram composition and map ix by the identity operation,

we need to show that S ◦ Id(D) = S for any 3- diagram S and any 0-diagram D such that S ◦ Id(D)

exists. This follows by Lemma 2.4.24.

• S2-30 This is an instance of naturality of the switch morphism (S1-7) in one of its inputs and

corresponds to interchangers of type II. This axiom holds, since σ supports interchangers of type

II3.

• S2-31 Given that maps mz and hr are realised by diagram composition, we need to show that

(S ◦ D) ◦ M = (S ◦ M) ◦ (D ◦ M) for any two 3-diagrams S,D and a 1-diagram M that are

composable. This follows by equality Eq. (2.23).

• S2-32 Given that maps ft and hr are realised by diagram composition, we need to show that

(S ◦D) ◦M = (S ◦M) ◦ (D ◦M) for a 3-diagrams S, a 2-diagram D and a 1-diagram M that are

composable. This follows by equality Eq. (2.23).

• S2-33 Given that maps mx and hr are realised by diagram composition, we need to show that

S ◦ (D ◦M) = (S ◦D) ◦M for any two 1-diagrams D,M and a 3-diagram S that are composable.

This follows by Theorem 2.21.

• S2-34 Given that maps hl and hr are realised by diagram composition, we need to show that

(S ◦D) ◦M = S ◦ (D ◦M) for any two 1-diagrams S,M and a 3-diagram D that are composable.

This follows by Theorem 2.21.

All additional axis flips required by Definition [22] follow in an analogous way.

3.6 Further results

To conclude this chapter, we discuss how signatures supporting the appropriate types of interchangers

reproduce certain standard categorical structures. Recall a segment of the periodic table for weak higher

categories presented in Section 1.2.3:

2 3 4
0 2Cat 3Cat 4Cat
1 MonCat Mon2Cat Mon3Cat
2 CommMon BrMonCat BrMon2Cat
3 - CommMon SymMonCat

We build up to prove that a degenerate quasistrict 4-category with the bottom three levels trivialised is

a symmetric monoidal category, as predicted by the table above. First we show how to recreate a strict

2-category using the signature structure:

Theorem 3.6.1. A 3-signature σ supporting interchangers of type I2 is the same as a strict 2-category.

Proof. Interchangers of type I2 act on 2-cells and they are 3-cells themselves. But in a 3-signature, all

3-cells are identities, so by this, we obtain strict interchange laws and hence a strict 2-category.

As a direct consequence of the results in the previous sections, we also obtain a Gray-category:
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Theorem 3.6.2. A 4-signature σ supporting interchangers of types I2, I3 and II3 is the same as a

Gray-category.

Proof. This follows, since by Theorem 3.5.2 σ satisfies axioms of a switch 3-category 3.5.1, which is a an

alternative presentation of a Gray-category.

As a result, we argue that a degenerate instance of a 5-signature is a symmetric monoidal category.

Theorem 3.6.3. A 5-signature σ supporting interchangers of types I2, I3, II3, I4, II4, III4, IV4, V4 and

VI4 that has one 0-cell, one 1-cell and one 2-cell is the same as a symmetric monoidal category

Proof. Using a standard coherence result, a Gray-category is equivalent a weak 3-category. Then, by

the periodic table for higher categories we obtain that a Gray-category with one 0-cell and one 1-cell is a

braided monoidal category. Hence, since σ supports interchangers of types I3, I4 and II4, by Theorem 3.6.2

we get that σ is at least a braided monoidal category.

What remains to be shown is that the braiding, which is given by interchangers of type I3, is also a

symmetry. This is achieved by interchangers of type V4. Since the bottom three levels of σ are trivialised,

in the graphical representation we could draw them as empty spaces, empty sheets and empty lines. That

way in each variant of V4, both involved morphisms α and β are scalars moving through the empty space

and exchanging heights. The graphical illustration is as follows:

α

β
II3→

α

β

II3→
α

β

↓ I3

V4

⇐
⇒

V4

↓ I3

α

β

II3→

α

β

II3→

α

β

The dotted and dashed lines are not a part of the graphical representation, they are included to give

a sense of where the trivialised cells are. Note that V4 switches between the two different variants of the

interchanger of type I3 acting on α and β . In one method α passes β on the right in the other, on the

left. This way we obtain an isomorphism between the two braidings and hence, a symmetric monoidal

category, as required.
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Chapter 4

Automated rewriting for quasistrict
higher categories: Globular

Globular is a proof assistant for formalisation and verification of higher categorical proofs based on the

theory of higher dimensional quasistrict categories presented in Chapters 2 and 3. In this chapter, we

first discuss the technologies used to implement the system and describe its key functionalities. We

then proceed to present the main algorithms and explain their relationships with the diagram modifying

operations of rewriting and composition. We conclude the chapter by illustrating the functionalities of

Globular with a fully-worked example, where a signature used for the proof of Theorem 1.3.4 is built from

scratch. Finally, we present a list of other results that have been formalised in Globular by its community

of users. This is accompanied by direct links to the gallery of public projects on the Globular webpage.

An example project looks as follows:

As hinted at in Chapter 1, Globular adapts the perspective of higher dimensional rewriting, wherein

a multi-step proof is viewed as a sequence of individual k-cell rewrites between lower level objects.

Additionally, the notion of equality between k-cells f, g is captured by an invertible (k + 1)-cell f
α−→ g.

Here, α witnesses that f can be rewritten into g and α−1 witnesses the converse rewrite. In particular, if

f is a part of some composite C[f ], the invertible cell α also witnesses the equality C[f ] = C[g]. This is

in accordance with the basic premise of homotopy type theory, where proofs can themselves be subject

to higher-level relations.

Globular produces graphical visualisations of higher-dimensional proofs based on the graphical

formalism for diagram structures as described in Definition 3.1.1. As discussed in Chapter 2, the set

of all k-diagrams over a signature σ can be thought of as the set of all composite k-cells generated using

the cells in σ. Since in the perspective of higher dimensional rewriting every higher categorical proof is

also a cell, it can be visualised as a diagram as described in Definition 2.2.2.

The two primitive structures that Globular operates on are signatures and diagrams, as defined in

Chapter 2. Their mutually-recursive nature allows the user to build a signature, which can be thought

of as the set of generating elements for a category, in parallel with building increasingly sophisticated

diagram structures. The tool makes it possible to rewrite and compose diagrams, and then make them
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sources or targets of higher-level cells to be added to the signature. When both the source and the target

n-diagram of a potential (n + 1)-cell are designated, Globular conducts a type check for satisfaction of

globularity conditions and automatically prevents improper cells from being formed.

The tool has been designed with user experience in mind, so that it could be a proof assistant

that is broadly used in the category theory community. For this reason, Globular is hosted on the web

at http://globular.science and can be used directly in the browser, without requiring the user to

download and install a piece of software on their machine. We believe that the intuitive user interface,

the low barrier to entry and the ability to hyperlink proofs directly into research papers will make Globular

a popular tool among the higher category theory community.

At present, Globular is capable of modelling quasistrict n-categories, as defined in Chapter 3, for n ≤ 4.

Additionally, it supports singularities of types I−VI for an arbitrary n ≥ 5. As new types of singularities

for higher levels are explored and formally classified, they can be added to the catalogue in Globular and

enhance the capabilities of the tool. There is no other tool available in the community that would have

similar abilities.

The closest comparable attempts at automated reasoning for category theory are: Quantomatic [32],

Opetopic [24], and a tool that could be built basing on Mimram’s work on n-polygraphs [42] as

presentations of strict n-categories. All these tools are quite different in nature than Globular.

Quantomatic is a set of tools for automated rewriting of string graphs and implements the theory of

symmetric monoidal categories. In that, it models only a subset of categories that could be modelled

in Globular. On the other hand, its capabilities with regards to automatically finding rewrite paths and

synthesising theories are far superior. Opetopic is based on the concept of modelling weak n-categories

with opetopic shapes, which are best described as higher dimensional analogues of the tree structure. This

approach offers greater expressivity, in fact going as high as an arbitrary n, however it disturbs the crucial

topological aspect of the proofs. Therefore, despite being a graphical notation, it is very different from

ours and offers limited insight into the inner structure of cells being modelled. Additionally, Opetopic

is less well-developed with regards to user interface features, for instance lacking the capability to save

and retrieve proofs. Finally, higher dimensional rewriting systems based directly on the definition of an

n-polygraph only model strict n-categories, and are therefore less expressive than the approach taken in

Globular.

The contents of this Chapter are based on a joint paper with Vicary and Kissinger [7], included is

only the material that this author contributed significantly towards.

4.1 System description

Globular is implemented in Javascript and runs client-side embedded in the web browser, with all the

computation taking place on the user’s machine, therefore limiting the need for data transfer. The back-

end is a Node.js server responding to user’s requests and hosting an account system for users that allows

them to register and privately save working versions of proofs and then continue the work on different

machines. However, to lower the barrier to entry, there is no requirement to register for an account to

be able to use the tool. The functionalities of exporting and importing a project can be used to directly

generate JavaScript Object Notation (JSON) files that can be saved on the user’s machine. When the

user is satisfied with the finished proof they can make it public and share it with the rest of community,

the proof is then added to Globular gallery and a unique URL linking to the proof generated. We give

examples of this functionality at the end of this chapter. The entire project is open-source, and the code

is available at globular.science/source.

While the weak formal structure of Javascript is a disadvantage, formal verification of the code

is not a priority for us. We acknowledge that implementing a fully typed structure would make the

implementation less susceptible to errors, but it would not remove the need to give rigorous proofs of

the correctness of implementation. This has however never been the focus and we instead concentrate

on proving correctness of the theoretical model. At present, the main priority for Globular is to be an

114

http://globular.science
globular.science/source


intuitive proof assistant that is widely used by the community. But, perhaps in the future, it would

be interesting to formalise the approach to typing, as the theoretical foundation for that is sound and

already available.

The interface has been designed to be friendly and intuitive. Diagrams can be created, rewritten and

composed by clicking elements in the signature and selecting an attachment point from the list of options.

Given an n-diagram D in the workspace, the operation triggered depends on the dimension k of the cell

g ∈ Gk that we select from the signature σ. If k = n + 1, then D gets rewritten; if k < n + 1, D is

subject to composition. For the latter, first implicitly a diagram S = i(g) of the generator g is created,

this corresponds to the embedding i : Gk → ∆∗k, as described in Definition 2.2.4. Diagrams S and D

then get composed in accordance with Definition 2.4.6 and the algorithm described in the next section.

If k > n+ 1 there is no effect on D and the tool asks the user to select another cell.

However, selecting elements from the signature is not the only method of modifying the diagram in

the signature. Interchanger morphisms of types I-VI can be applied directly by clicking and dragging the

appropriate cells within the diagram.

The graphical visualisations of cells are generated using SVG, however this limits the rendering to a

maximum of two dimensions. This may be regarded as a serious difficulty, especially when dealing with

higher dimensional structures. For that reason, in the future, we intend to implement a 3D graphics

engine using Three.js. However, even these enhanced graphical capabilities will not be sufficient to work

efficiently with structures of dimension n = 4 and higher. To work around that, we implemented a

system of toggles, that allows to suppress the lowest dimensions and view slices that are of interest. Even

though, at times, this may prove cumbersome, it is certainly worthwhile as this solution provides us with

a systematic method for viewing morphisms in any n-dimensional structure. For an n-diagram D such

that n ≥ 3, for which the number of dimensions projected out is k, there are n− k − 2 slice toggles that

allow us to view a multidimensional structure as a sequence of 2D slices.

• For interchangers of type Ik, as described in Definition 3.2.5, the vertex to be interchanged needs

to be clicked and dragged into the direction of the intended swap to obtain the following graphical

effect:

Ik→

Ik←

In the view, where the bottom dimension has been projected out, the two variants of the interchanger

of type Ik look as follows:

Note that the familiar image of the braiding is retrieved. This image is similar to the custom-drawn

graphics in Chapter 3, the difference is that the view of the rear sheets via transparency is missing.

Here, it is really as if we were looking at the 3D graphical representation of a 3-cell ‘side on’.

• Inverses for all interchanger types are handled in a uniform fashion, recall the notation f ′ to indicate

a higher level invertibility cell, as described in Definition 3.2.7. For type Ik, to introduce an instance

of an interchanger followed by its inverse, one of the wires needs to be clicked and dragged left or
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right to tangle the wires:

I
′
k→

I
′
k←

To cancel an interchanger and its adjacent inverse, simply drag one of them into the direction of the

other. Both of these can be depicted in the projected view with the bottom dimension projected

out:

• For interchangers of type IIk, as described in Definition 3.2.9, consider the following k-cell µ:

µ→

In the view, with the bottom two dimensions projected out, the cell looks as follows:

µ :=

To trigger an interchanger of type IIk, a vertex representing a k-cell needs to be clicked and pulled

through an adjacent crossing:

IIk→

IIk←

Unprojecting one dimension, we can view a sequence of slices for both the source and the target of

this interchanger:

Ik−1→

↓ µ
IIk ⇐
⇒IIk

↓ µ

Ik−1→
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While in a view with the three bottom dimensions projected out, an interchanger of type IIk is

represented in a single picture:

II3 =

Notice how the path traced out by µ (coloured yellow) crosses to the other side of the path

representing the interchanger cell Ik−1.

For interchangers of types IIIk, IVk and Vk, we need to project out two dimensions to view their

source and target as a sequence of slices. To view each interchanger as a single cell, we need to

project out the three bottom dimensions.

• For type IIIk, as described in Definition 3.2.12, consider the following k-cell Φ:

Φ→

In the projected view it looks as follows:

Φ :=

Now, a vertex representing a k-cell Φ needs to be clicked and pulled through an adjacent vertex

representing an interchanger of type IIk−1:

IIIk→

IIIk←

In the unprojected view, where only two bottom dimensions have been suppressed:

IIk−1→

↓ µ
IIIk ⇐
⇒IIIk

↓ µ

IIk−1→

• For type IVk, as described in Definition 3.2.13, a cell representing an interchanger of type IIk−1

needs to be clicked and dragged in the direction of a collection of adjacent vertices representing a
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(k−1)-cell of type I′ that introduces two consecutive inverse applications of an interchanger of type

Ik−2:

IVk→

IVk←

In the unprojected view, with the bottom two dimensions suppressed:

IIk−1→

↓ I ′k−2

IV

⇐
⇒IV

↓ IIk−1

I
′
k−2→

• For type Vk, as described in Definition 3.2.14, a cell representing an interchanger of type Ik−1 and

depicted as a crossing of red and green wires needs to be clicked and pulled through an adjacent

collection of vertices representing interchangers of type IIk−1 and crossing reorganisations Θ, as

defined i in Definition 3.2.11:

Vk→

Vk←

In the unprojected view, with the bottom two dimensions suppressed:

I→ Θ→ II→ II→ Θ→ II→

↓ IIk−1

V

⇐
⇒
V

↓ IIk−1

II→ Θ→ II→ II→ Θ→ I→

118



• For type VIk, as described in Definition 3.2.15, a 4-cell representing an interchanger of type IIk−1

applied to an instance of an interchnager of type Ik−2 needs to be clicked to transform it into a

different interchanger of the same type. Graphically this does not have any effect when viewed in

the projected perspective:

VI→

Similarly in the unprojected view, the graphical representations look the same. However in the

first instance, the interchanger of type IIk−1 is applied at height 0 and the bottom right crossing is

pulled up, in the second instance IIk−1 is applied at height 2 and the top right crossing is pulled

down.

II3→⇒

VI4

II3→

For interchangers of types IIk, IIIk, IVk and Vk a pattern starts to emerge, in which application of an

interchanger is graphically visualised as pulling one cell through another. This is not surprising, since all

these interchangers can be interpreted to capture some naturality condition. An important note to be

made is that all these interchangers get executed only if they indeed are valid moves for that segment of

the diagram, which is checked by the Globular engine.

There are several additional features in Globular that are intended to make navigation of multi-

dimensional diagrams more intuitive:

• A name and colour can be chosen for every cell. Once a colour gets changed for a cell g in the

signature, then it is updated for all higher-level cells that g is a component of.

• For a diagram in the workspace, the names of its individual cells D[i].g get displayed in the form of

pop-up labels, when a cell is hovered over. For interchangers, pre-assigned names for their different

variants get displayed.

• In addition to the name of a cell D[i].g, a list of its coordinates within the diagram gets displayed.

This corresponds to the data contained in the embedding D[i].e, which embeds the source of g in

the appropriate slice of the diagram.

• Invertibility of cells in the signature. To avoid clutter in the list of cells in the signature, instead of

inputting higher-level cells indicating invertibility of a cell g, a check box could be ticked and these

are implicitly added.

4.2 Algorithms

In this section we discuss the type system used to model the signature and diagram structures, as well as

the algorithms that implement the operations on them. The data carried by the datatypes corresponding

to signatures, diagrams and embeddings is the same as defined in Chapter 2. The sole difference is that

for each embedding we omitted the information about its domain and codomain, instead leaving us with

just an array of natural numbers, which in this section we refer to as coordinates.

First, we establish the datatypes, let:

• Sig(n) be the datatype that implements the signature structure as described in Definition 2.2.1.

• Diag(n, σ) be the datatype that implements the diagram structure as described in Definition 2.2.2.
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• Emb(S,D) be the datatype that implements the embedding structure as described in Defini-

tion 2.2.7.

Globular encodes all of these as combinatorial data in accordance with the respective definition of each

structure. In this presentation, we distinguish between two categories of algorithms that implement

the theoretical setup. The first category is algorithms that directly correspond to the operations of

composition and rewriting of diagram structures. The other category is auxiliary algorithms that are

related to the user interface. In the following exposition we provide a thorough discussion of the former

and an intuitive description of the latter.

4.2.1 Core algorithms

Description of each procedure consists of specifying the input and output types, as well as the individual

steps transforming the former into the latter. Correctness for all core operations has already been proved

in Chapter 2. For the purpose of analysing computational complexity, let us first define the following as

the size of the diagram structure:

Definition 4.2.1. Given an n-diagram D, the size of the structure, which we denote by Σ(D), is:

• If, n = 0, then: Σ(D) = 1

• If, n > 0, then: Σ(D) = n ∗ |D|+ Σ(D.s)

Intuitively, this corresponds to the number of cells in D and all of its sources multiplied by the maximum

length of the component embedding for each cell. For each n-diagram, there are |D| generator cells and

|D| embeddings, each embedding consists of a list of (n − 1) numbers. The size of the diagram is the

sum of products, for D and all of its sources, of the total length of the list of generators multiplied by

the number of numerical entries in the lists of numbers modelling the embeddings. In most procedures,

we need to process each item in these lists at most once.

Matching

Match
(
D : Diag(n, σ), D′ : Diag(n, σ)

)
: {true, false}

This procedure is used to determine whether two combinatorial encodings represent the same diagram,

it is the implementation of the notion of diagram equivalence, as described in Definition 2.3.7. For two

n-diagrams D,D′ we first recursively compare whether their sources D.s and D′.s match. If not, there

is no need to compare their lists of n-cells and the procedure returns false. Otherwise, we compare the

lists of generators and embeddings. If they are of different lengths, i.e. |D| 6= |D′|, return false. If

|D| = |D′|, then if there is an integer 0 ≤ k ≤ |D| such that either types D[k].g 6= D′[k].g or embeddings

D[k].e 6= D′[k].e do not match, then return false, otherwise return true.

In a single recursive call, we process every entry in the list of generators and embeddings of D at most

once. As the entire recursive procedure processes D and all its iterated sources, we obtain running time

linear in the size of the diagram.

Identity

Identity
(
D : Diag(n, σ)

)
: Diag(n+ 1, σ)

Given an n-diagram D, this operation transforms it into an identity (n + 1)-diagram D′(n + 1, σ). It is

the implementation of the notion of the identity of a diagram Id(D), as described in Definition 2.4.22.

The list of generators of Id(D) is empty, while the field Id(D).s is set to D. That way, all the diagram

data is constructed and the procedure terminates. We perform a fixed number of assignment, so the

procedure works in constant time.
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Rewriting

Rewrite
(
D : Diag(n, σ), S : Diag(n, σ), T : Diag(n, σ), e : Emb(S,D)

)
: Diag(n, σ)

D is the diagram that is being rewritten, S is the source of the rewrite and T its target. The embedding

e indicates where in D the rewrite is to be applied. To execute the procedure, |S| consecutive cells in

D starting from position e.h are removed, instead cells in T are inserted, with the coordinate in their

embeddings T [i].e offset by the numerical values in e.

In the procedure of removing generators of S from D and inserting generators of T instead, every cell

is processed at most once. Numerical values in each embedding in T get augmented at most once, hence

the procedure is linear in the size of diagrams S and T .

Let us consider a specific example. S is the source of the rewrite and T its target, D is the diagram

being rewritten and the location of the rewrite source within D is denoted by the blue dashed rectangle.

S = T = D =

Then the rewritten diagram is as follows, where the rewritten section of the diagram is denoted by the

blue dashed rectangle.

Rewrite(D,S, T, e) =

Attachment

Attach(D : Diag(n, σ), S : Diag(k, σ), b : {s, t}, e : Emb(s(S), tn−k+1(D)) : Diag(n, σ)

This procedure is the implementation of the operation of diagram composition, as described in

Definition 2.4.6. The term ‘attachment’ is used to indicate the effect the procedure has on the diagram

in the workspace, where a visual effect of attaching a diagram is created. We attach the diagram S to

the diagram D, b is the boolean value indicating whether we are attaching to the source or the target

boundary. e is the embedding of the source or target of S in the appropriate source or target of D, with

the combination being determined by the value of the boolean b.

The procedure is executed as follows:

• If n− k = 0, depending on the value of b, we either append the elements in the lists of generators

and embeddings of S at the end (b = t) or the beginning (b = s) of D’s corresponding lists. We use

the numerical data in e to offset the coordinates in each S[i].e. Additionally, if b = s, the source

boundary needs to be modified, so it is rewritten using elements S[i].g as rewriting cells.

• If n − k > 0, the procedure is called recursively for D.s, with S, b and e as parameters. After the

recursive call concludes, for 0 ≤ i ≤ |D| we augment D[i].e by the offset created by adding new

(n− 1)-cells to D.s.

Note that, this procedure corresponds to first implicitly whiskering S, so that its appropriate source or

target matches that of D, and then composing S with D in the usual way.
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In the procedure, we need to process every element in S at most once, this happens at the moment

when the element gets added to the appropriate part of D. In the scenario where S is attached to the

source boundary of D, additionally the rewriting procedure needs to be performed |S| times on the source

of D. It is this second step which is more costly, hence overall, the number of operations is bounded by

the time complexity of performing the additional rewrites, i.e. |S| times the size of the diagram D.s.

In the example below, S is the diagram being attached, D is the diagram we are attaching to, the

boundary and the specific coordinates of the attachment point are illustrated by the blue dashed rectangle.

S = D =

The resulting diagram is as follows, where S is denoted by the blue dashed rectangle.

Attach(D,S, t, e) =

Slicing

Slice(D : Diag(n, σ), k : N) : Diag(n− 1, σ.σ)

Given an n-diagram D, we can rewrite the source boundary D.s using the initial k entries in its list of

generators in accordance with Definition 2.2.3. This gives us the k-th slice of D. To execute the procedure

we rewrite D.s, using elements in D’s lists of generators and embeddings, k times.

Correctness of this procedure is the direct consequence of correctness of the rewriting procedure. As

we perform the procedure of rewriting on an (n− 1)-diagrams, the procedure takes at most k times the

size of the diagram D.s. An important note is that the resulting (n− 1)-diagram may be given as input

to another instance of the procedure. This way, we may obtain a slice of D of an arbitrary dimension

and location.

Verification

Verify
(
D : Diag(n, σ)

)
: {true, false}

Given a piece of data D of the type Diag(n, σ), this procedure allows us to verify whether D is in fact a

valid diagram, i.e. is well-defined in the sense of Definition 2.2.6.

First, the procedure is called recursively for D.s, if the call returns false, the entire procedure returns

false. Otherwise, we attempt to rewrite D.s using the generators D[i].g in the list. For each i, first we

need to perform a globularity check on diagrams s(D[i].g) and t(D[i].g), which we do using the procedure

Match on their sources and targets. Then we compare the top coordinate D[i].e.h and check whether it

is in range for the size of the slice D[i].d. If any of these checks fails, return false. Otherwise, rewrite

D[i].d into D[i+ 1].d and repeat the step |D| times.

If all these checks succeeded, D is a well-defined diagram and the procedure returns true. The

procedure rewrites and matches (n−1)-diagrams at most |D| times starting with the diagram D.s, hence

overall it takes |D| times the size of diagram D.s.
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Construct Interchanger

Interchanger
(
D : Diag(n, σ),Ψn, h

)
: (Diag(n, σ),Diag(n, σ))

The procedure takes a diagram D, an interchanger type Ψ and coordinates e as input and returns the

source diagram and the target diagram of the instance of Ψ in D at location h, which allows to use

interchangers in rewriting in a systematic way.

The source and the target for each variant of every interchanger type is constructed manually in

accordance with definitions listed in Chapter 3. S and T constructed in such a way describe how the

combinatorial description of the diagram D changes when an interchanger of type Ψ gets applied at

location h.

An important point is that for an application of a non composite interchanger of types I-VI, it is

sufficient to provide a single integer h within a diagram. This is interpreted as the height which the

highest-level cell involved in the move is located at. Given an n-diagram, an interchanger of type Ψn acts

on n-cells within D. Since these n-cells are organised in the list D.g we have the following:

• For interchangers of type I, we adapt a convention and specify the location of the cell that appears

earlier in the list D.g, this is sufficient as the cells being interchanged have to be adjacent.

• For interchangers of types II, III, IV that capture naturality in one variable for some lower-level

interchanger cell, it is sufficient to specify the location of the individual cell that is subject to

naturality.

• For interchangers of type V that capture naturality of I2 in two of its variables, we adapt a

convention and specify the location of the cell that appears earlier in the list D.g, this is sufficient

as both cells have to be adjacent.

4.2.2 User interface algorithms

The second category of algorithms are those that are not directly related to the properties of diagram

structures proved in Chapter 2. They are non-essential with regards to the correctness of the approach,

however they do make the tool significantly easier to use.

Enumeration

Enumerate
(
S : Diag(n, σ), D : Diag(n, σ)) : List(Emb(S,D))

Given two n-diagrams S,D, this procedure lists all the individual instances of S being a subdiagram of

D, or in other words, lists all the embeddings of S in D.

First we want to find a platform for the match, i.e. an index h such that S[0].d is a subdiagram of

D[h].d. For this we call the procedure recursively for S[0].d and D[h].d. Given a list of embeddings of

S[0].d in D[h].d there are two possibilities.

• If the list S.g is non-empty, we select the unique embedding consistent with the source of the

generator D[h].g, let us refer to it as e′. We then proceed to comparing elements S[j].g and S[j].e

with D[h+j].g and D[h+j].e. If any of these checks return a mismatch, the embedding is discarded.

Otherwise, an embedding of S in D has been found and we append h to the list of numerical values

of e′ to obtain the embedding e. Since, we are interested in finding all embeddings of S in D, the

procedure is repeated for all 0 ≤ h ≤ |D| − |S|.

• If the list S.g is empty, then we promote all the embeddings of S[0].d in D[h].d to embeddings of S

in D by appending h to the list of numerical values for each embedding.
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For every recursive call, for n-diagrams S,D the procedure conducts at most |D| − |S| matching

operations on diagrams and calls itself recursively |D| − |S| times on an (n − 1)-diagram. In the worst

case scenario, when an n-diagram S consists of a single 0-cell, that results in the running time exponential

in the size of D and S. However, for an n-diagram S whose list of generators is non-empty, after each

recursive call, we only select one match consistent with the structure of D. This ensures that the running

time is polynomial in the size of D and S.

We illustrate enumeration with the following example. Let us consider two diagrams: D and S:

S = D = Enumerate(D,S) =

If the returned list is non-empty, we can infer that S is a subdiagram of D. The procedure of enumeration

is used as pre-processing step for rewriting and attachment to obtain the embedding that needs to be

supplied as the input for each of these procedures. If more than one option is available for the given pair

of selected diagrams, enumeration enables the user to select the attachment point or the section of the

diagram to be rewritten,

As discussed above for rewriting, for a diagram D and a rewrite defined by S and T , enumeration

looks for embeddings of S in D. For attachment, for a diagram S being attached to D, enumeration

looks for embeddings of s(S) in the appropriate target of D and embeddings of t(S) in the appropriate

source of D. Selection of an embedding of one of these types additionally supplies the boolean indicating

whether S is being attached to the source or to the target of D, which is a required input for attachment.

Layout

This is the procedure that given an n-diagram D, transforms it into the graphical representation GD
in accordance with Definition 3.1.1. For n = 1 this representation is a string of dots on a line and

for n = 2, it is a string diagram. As at the moment, Globular does not support graphics for n = 3

i.e. surface diagrams embedded in R3, instead projections of Rn to R2 are used for higher dimensions.

These projections can then by manipulated from the user’s interface by a set of toggles, as discussed in

Section 4.1.

Before the graphical representation is rendered on the screen there is an intermediate step of pre-

processing the combinatorial representation of the n-diagram D to obtain:

• Planar x, y coordinates of each vertex representing an n-cell

• Planar x, y coordinates of both endpoints for each straight line representing an (n− 1)-cell

• Planar coordinates of the bottom left and top right corner for each rectangle representing an

(n− 2)-cell

Coordinates for graphical representations of all (n− 1)-slices of D are produced recursively, which is

possible given that the bottom (n− 2) dimensions are projected out. The coordinates for the combined

2D graphical representation of D are then obtained as described in the example presented in Section 3.1.

4.3 Using Globular

Constructing a theory and proving theorems in Globular is an inductive process, whereby lower-

dimensional objects are used to construct higher-dimensional objects. Since the diagram and signature

structures are mutually dependent, this is achieved by building up the signature in parallel with
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increasingly higher-dimensional diagrams. When the webpage hosting the tool is loaded the starting

screen is as follows:

The signature menu is on the left hand side of the screen, the action menu on the right. The central

area is the main workspace. Note that the pre-loaded signature consists of a single 0-cell. The user has

a choice of either loading one of their pre-saved projects, opening one of the publicly available projects

from the gallery, or building a signature from scratch.

Here, we choose the final option and we recreate the signature used to prove Theorem 1.3.4 on

promoting an equivalence to an adjoint equivalence in a 2-category. To build a new project from an

empty 0-signature, the first step is to add new 0-cells:

The newly added 0-cells can now become the sources and targets of a new 1-cell. This is achieved by

first selecting them from the signature menu to appear as diagrams in the main workspace and then

designating them as the source or target by clicking the corresponding button in the action menu.

Here, we create 1-cells A
F−→ B and B

G−→ A that are going to witness the equivalence that is being

constructed. As per Definition 2.4.6, diagrams corresponding to 1-cells can be composed with other

diagrams. This allows us to form composite sources and targets for 2-cells.
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In this step, 2-cells F ◦ G α−→ idA and idA
β−→ G ◦ F are created. For k-cells with k ≥ 2, when both

the potential source and target are selected, Globular conducts a type check whether the cells satisfy the

globularity conditions and can indeed be made into a (k + 1)-cell.

Finally, to complete the description of the equivalence, we need to add equations that capture that α

and β are invertible. There are two methods in which this could be obtained. The first is to check the

invertibility boxes for both cells:

This automatically adds all higher level cells that are needed to make the given cell invertible in the sense

of Definition 3.2.7. This is done implicitly, without listing these cells in the signature menu, as to avoid

clutter. An alternative method is to input them explicitly, which is the path we follow here. When the

workspace is empty and an element of the signature is selected, its identity diagram is created in the

workspace. This makes use of the inclusion function Gk → ∆∗k as described in Definition 2.2.4.

If the workspace is non-empty, selecting an element of the signature triggers a launch of the

enumeration procedure, that looks for all the positions where the new element can be attached. All

matches are then listed in the signature menu and highlighted when hovered over.

Once one of the matches is selected, the procedure of composition attaches the new element to the

diagram in the workspace.
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By this process, a signature capturing the concept of equivalence in a 2-category is built:

If one wants to construct a signature to work in a quasistrict 3- or 4-category, the procedure of building

elements of the signature could continue by adding higher-level cells up to n = 5 (equations for a

quasistrict 4-category).

We now define a new 2-cell α′, that together with β will witness an adjoint equivalence. This is

achieved using the ‘Theorem’ functionality. After a desired new 2-cell has been created in the workspace

from the existing generators, we click the ‘Theorem’ button in the action menu. This results in first, a

fresh 2-cell being added to the signature and second, adding a 3-cell that has the new generator as its

source and our desired new composite cell as its target. That way, this new cell serves as the definition

of the new composite cell being added to the signature.

We can now prove that this new 2-cell satisfies the snake equations. As discussed in Chapter 1, proofs in

Globular are viewed as sequences of rewrites, hence to prove that an equation is satisfied means to show

that the left hand side of an equation could be rewritten into the right hand side by a series of (3-cell)

rewrites.

Note that rewriting a 2-diagram D by a 3-cell α could be viewed as the same as first creating the

identity diagram on D and then composing it with α. That way, the source of Id(D) ◦ α is D and its

target is the rewrite of D. In this perspective a 3-cell proof is a history of rewriting one 2-cell into another,

while recording all intermediate stages.

To show that the first snake equation is satisfied, we build the 2-diagram that corresponds to its left
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hand side and create an identity 3-diagram, by selecting the appropriate button in the action menu.

The project and slice controls can be used to navigate the proof, they are both placed at the top-right of

the workspace. Since currently Globular only supports 2D graphics we need to make use of the projection

property of graphical representations, as described in Definition 3.1.1. Now we could create the same

derivation as used in the proof of Theorem 1.3.4

For an identity 3-cell, the view is automatically set to its final slice, so that a sequence of rewrites can

be easily started. The proof can be then constructed by either attaching single step rewrite 3-cells from

the signature, or attaching one of the special interchanger cells, as discussed in Section 4.1. Finally, the

entire proof can be viewed as a single 4-cell in the projected view:

4.4 Other examples

Since its launch in December 2015 Globular has attracted a community of scholars to regularly use it as

a proof assistant. Overall, in 9 months, the webpage has been visited over 8000 times by 1800 unique

users, with 800 visits by 200 unique users coming in the month of August 2016.

These users created 36 publicly available proofs and worked on many more in their private accounts. To

conclude this chapter, we give several examples of proofs from algebra and topology formalised by the

128



community. For each of them, we briefly describe the mathematical context of the proof, and give some

details of its formalisation. We use the hyperlinking feature provided by Globular and link directly to the

formalised proofs on the website. To the best of our knowledge, none of these results have previously

been formalised by any existing tool.

Example 4.4.1 (Frobenius implies associative, globular.science/1512.004, length 12 steps). In a

monoidal category, if multiplication and comultiplication morphisms are unital, counital and Frobenius,

then they are associative and coassociative. We formalise this in Globular using a 2-category with a single

0-cell, since, as discussed in Section 1.2.3, this is algebraically equivalent to a monoidal category. Such a

proof would be traditionally written out as a series of pictures; for example, see the textbook [34]. Globular

produces these pictures automatically.

Example 4.4.2 (Strengthening an equivalence, globular.science/1512.007, length 14 steps). In a

2-category, an equivalence gives rise to an adjoint equivalence. This is a classic result in category

theory [6, 48]. It can be considered as one of the first non-trivial theorems of 2-category theory. We

presented a graphical proof based on the formalisation in Globular in Section 1.3.

Example 4.4.3 (Swallowtail comes for free, globular.science/1512.006, length 12 steps). In a monoidal

2-category, a weakly-dual pair of objects gives rise to a strongly-dual pair, satisfying the swallowtail

equations. This theorem plays an important role in the singularity theory of 3-manifolds [45]. In

the formalisation, we again make use of the periodic table of higher categories and model a monoidal

2-category as a 3-category with one 0-cell.

Example 4.4.4 (Pentagon and triangle implies ρI = λI , globular.science/1512.002, length 62 steps). In

a monoidal 2-category, a pseudomonoid object satisfies ρI = λI . A pseudomonoid is a higher algebraic

structure categorifying the concept of monoid; it has the property that a pseudomonoid in Cat is the same

as a monoidal category. Such a structure is known to be coherent [35], in the sense that all equations

commute, and here we give an explicit proof of the equation ρI = λI , which played an important role in

the early study of coherence for monoidal categories.

Example 4.4.5 (The antipode is an algebra homomorphism, globular.science/1512.011, length 68 steps).

For a Hopf algebra structure in a braided monoidal category, the antipode is an algebra homomorphism.

Hopf algebras are algebraic structures which play an important role in representation theory and

physics [39, 56]. Proofs involving these structures are usually presented in Sweedler notation, a linear

syntax which represents coalgebraic structures using strings of formal variables with subscripts; we do not

know of any existing approaches to formal verification for Sweedler proofs. This formalisation in Globular

is translated from a Sweedler proof given in [43]. For the formalisation, we model a braided monoidal

category as a 3-category with one 0-cell and one 1-cell.

Example 4.4.6 (The Perko knots are isotopic, globular.science/1512.012, length 251 steps). The Perko

knots are isotopic. The Perko knots are a pair of 10-crossing knots stated by Little in 1899 to be distinct,

but proven by Perko in 1974 to be isotopic [44]. Here we give the isotopy proof, adapted from [40]. A

feature worth noting is that the second and third Reidemeister moves do not have to be entered explicitly,

since they are already implied by the 3-category axioms (as instances of interchangers of types I′2) and II3)

respectively. The proof consists of a series of 251 atomic deformations, which rewrite the first Perko knot

into the second. By stepping through the proof one rewrite at a time, the isotopy itself can be visualised

as a movie, in accordance with visualisation rules described in Chapter 3.
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Chapter 5

Adjunctions in higher categories

In a weak n-category, two objects are considered ‘the same’ or equivalent if there exists a morphism

between them which is invertible in a maximally weak sense, i.e. up to all higher-level equivalences,

as described in Definiion 3.2.7. If equivalence between objects does not arise, the weaker notion of

adjunction could be used to reason about related cells. Of particular interest are adjunctions which in

some sense carry more structure, i.e. are more coherent. It is generally expected that an adjunction of

1-morphisms in a weak higher category gives rise to a more coherent adjunction. This was shown by

Verity and Riehl [47] for an adjunction in an arbitrary weak n-category, however assuming the homotopy

hypothesis [5, 46] and without providing an explicit construction.

In this chapter, we prove two results on promoting adjunctions in a 3-category and in a quasistrict

4-category. The first is Theorem 5.0.2 on an adjunction in a 3-category giving rise to a coherent adjunction

satisfying the swallowtail equations, which was first proved by Verity [59] and later discussed in depth by

Gurski [26,27]. The second is Theorem 5.0.3 on an adjunction in a quasistrict 4-category giving rise to a

coherent adjunction satisfying the butterfly equations. This is a result that, to the best of our knowledge,

is the first substantial proof of a non-trivial property conducted explicitly in the setting of a 4-category.

Both proofs have been formalised with the aid of Globular. This has been of particular assistance for the

proof of Theorem 5.0.3, as the entire derivation for just one of the two butterfly equations consists of 140

5-cell rewrites. Recall the intuition for visualising higher-level cells described in Section 3.1, according

to the observations made there, an individual 5-cell is a method of rewriting a ‘movie’ of 3D geometrical

objects into another movie. Hence, the entire derivation, as a sequence of 5-cells, is a movie of movies of

3D objects. If one was to carry out a more traditional derivation and only use 2D structures, then we

have one more level of complexity and obtain a movie of movies of movies of 2D geometrical objects. An

entire derivation would then consist of several thousand 2D geometrical objects appropriately organised

to form higher-level cells. We believe that developing such a large structure would be challenging without

software assistance.

While a more general result on promoting adjunctions in weak n-categories has been proved by Verity

and Riehl [47], there are several reasons why our result is still significant. Firstly, the approach by Verity

and Rieh uses (∞, 1)-categories built on simplices. Due to this, the result is dependent on the homotopy

hypothesis and the association between∞-groupoids and topological spaces. This is a strong assumption

which is expected to be difficult to prove. Secondly, it may be argued that for the purposes of giving

further evidence for correctness of the definition of a quasistrict 4-category, it is actually more suitable to

prove a result that is expected to be true. If unsuccessful, we perhaps would have been able to identify

weaknesses in the chosen approach. Finally, there is still a substantial value in providing explicit proofs

of categorical facts, especially if the proof is carried out in a 4-categorical setting in which no other

comparable proof has been given in the literature.

Recall Definition 1.3.2 of an adjunction in a 2-category. It generalises to weak n-categories for n ≥ 3.

The main difference is that for n ≥ 3, equality between 3-cells becomes equivalence in the maximally

weak sense, so we get more higher-level structure. Also, recall Definition 3.2.7 of what it means for a
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k-cell in an n-signature to be invertible.

Definition 5.0.1. In a weak n-category, an adjunction is a pair of objects A and B, a pair of 1-cells

A
F−→ B and B

G−→ A, a pair of 2-cells F ◦G α−→ idA and idA
β−→ G◦F , and a pair of invertible 3-morphisms

Φ,Ψ such that Φ,Ψ are defined as follows:

Φ→ Ψ→

The colourfully-named swallowtail and butterfly equations derive their names from the geometrical

shapes that their graphical representations resemble. Additionally, they are connected to the swallowtail

and butterfly singularities in the classification of catastrophes in the theory due to Thom [58]. These

are part of a deeper and not, as of yet, well-understood connection between n-categories admitting

adjunctions and singularity theory. The theory, which is concerned with non-linear systems in which

small variations in input variables cause equilibria to emerge or disappear, is itself deeply fascinating,

to the extent that it attracted admirers from outside of the community of mathematicians and inspired

Salvador Dali’s final painting.

In this investigation, we concentrate on adjunctions in a weak 3-category and in a quasistrict

4-category. An important note is that if Conjecture 3.1.2 holds, then Theorem 5.0.3 immediately holds

in any weak 4-category. Recall that in Chapter 4, we illustrated what higher-level coherences of types

III4, IV4 and V4 look like graphically in a projected 2D notation. In the derivations below, we make

extensive use of these interchangers, including slices of lower level projections where appropriate.

Before we proceed to proving the main result of this chapter, we first show an auxiliary result which,

as mentioned above, was first proved by Verity [59]. Recall from Chapter 1 that equations are given here

by invertible higher-level cells, hence a proof of equality is given by a sequence of rewrites relating one

cell to the other.

Theorem 5.0.2. An adjunction of 1-morphisms in a 3-category gives rise to a coherent adjunction

satisfying the swallowtail equations.

Proof. By Theorem 3.6.2, it is sufficient to show this in the setting of a quasistrict 3-category as described

in Definition 3.2.2. Let objects A,B, 1-morphisms A
f−→ B, B

G−→ A, 2-morphisms f◦g α−→ idA, idA
β−→ f◦g

and invertible 3-morphisms Φ,Ψ witness an adjunction in a quasistrict 3-category. Let α, β be as follows:

α = β =

Let Φ,Ψ be defined as follows:

Φ→ Ψ→

Equivalently, they could be expressed as a single image in the projected view:

Φ = Ψ =

Their inverses are obtained by flipping both diagrams about the x-axis. We denote inverses by colouring

the vertices in a slightly darker shade of the colour of the original cell. First let us define an alternative

formulation for the first snake equation. This is as follows:

Ψ
−1

→ I2→ Φ→ Ψ→
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In a projected graphical representation this is expressed as:

Ξ := =

The new 3-cell is clearly invertible, as it is built from invertible morphisms Φ and Ψ. Then the swallowtail

equations for Ξ and Ψ take the following form:

= =

The first equation looks as follows in the unprojected view, its source is:

Ψ
−1

→ I2→ Φ→

Its target is:

→

Below, we present a series of rewrites which proves that the first swallowtail equation is satisfied, we

begin by showing the first three moves:

Ξ def.→ I3→ II3→

Let us express the last 4-cell in this sequence in the unprojected view. The source is as follows:

Ψ
−1

→ Φ
−1

→ I2→ I2→ Ψ→

Φ→

The target is:

Ψ
−1

→ Φ
−1

→ I2→ I2→ Ψ→

Φ→ Φ→ Φ→
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Note that after the interchanger of type II is performed, the cusp gets introduced below the middle purple

cell β. Due to this fact more interchangers of type I2 have to be applied to swap the heights of vertices.

We pick up the main derivation again:

I3→ I3→ II3→ I3→

I3→ I3→ Ψ
′

→ I
′
2→

Φ
′

→

In the final three steps invertibility of both cusps and of the interchanger of type I2 is used. By this

derivation, the first swallowtail equation is satisfied. The other equation follows in a similar manner, hence

the adjunction witnessed by objects A,B, 1-morphisms A
f−→ B, B

G−→ A, 2-morphisms f ◦ g α−→ idA,

idA
α−→ f ◦ g and invertible 3-morphisms Φ′,Ψ satisfied the swallowtail equations, as required.

This can now be used to show the main result in this chapter, the theorem on promotion of adjunctions

in a quasistrict 4-category. The entire derivation consists of 140 steps, which we break up into manageable

parts. In the instances where a composite interchanger is applied, a single cell is used to illustrate multiple

steps.

Theorem 5.0.3. An adjunction of 1-morphisms in a quasistrict 4-category gives rise to a coherent

adjunction satisfying the butterfly equations.

Proof. We are given an adjunction of 1-morphisms in a quasistrict 4-category witnessed by objects A,B,

1-morphisms A
f−→ B, B

G−→ A, 2-morphisms f ◦ g α−→ idA, idA
α−→ f ◦ g and invertible 3-morphisms Φ,Ψ

witness an adjunction in a quasistrict 3-category. Let α, β be as follows:

α = β =

Let Φ,Ψ be defined as follows:

Φ→ Ψ→

Equivalently, they could be expressed as a single image in the projected view:

Φ = Ψ =
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Their inverses are obtained by flipping both diagrams about the x-axis. We denote inverses by colouring

the vertices in a slightly darker shade of the colour of the original cell.

By Theorem 5.0.2 we obtain a coherent adjunction of 1-morphisms satisfying the swallowtail equations

witnessed by the same morphisms with Φ substituted by Ξ, defined as follows:

Ξ := =

The new 3-cell is clearly invertible, as it is built from invertible morphisms Φ and Ψ. Then the swallowtail

equations for Ξ and Ψ take the following form:

ζ→

ζ
−1

←

κ→

κ
−1

←

Note that, since we now work in a 4-category, these 4-cells no longer play the role of equations, instead

we refer to them as swallowtailator 4-cells. Alternatively, they could be presented as single pictures in

the projected graphical representation:

ζ = κ−1 =

First let us define an alternative formulation for κ−1, which is the inverse of second 4-cell swallowtailator.

This is as follows:

ζ
−1

→ II3→ I3→ I3→

II3→ κ→ κ→

In a projected graphical representation this is expressed as:

ξ := =

As all morphisms used to build this 4-cell are invertible, so is this cell. The butterfly equations for the

first swallowtailator cell and the newly defined cell are expressed by the following 5-cells:

= =
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Below, we present a series of rewrites which proves that the first butterfly equation is satisfied:

ξ .def→ I4→ II4→ II4→

I4→ II4→ II
′
3→ II4→

I
′
3→ I4→ I4→ I4→

II4→ I4→ I4→ III4→

To visualise the next step, we illustrate the last slice rendered above in unprojected form, in the

neighbourhood of the highlight box indicating the source of the next rewrite::

II3→ I3→ II3→
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This gets turned into:

II3→ I3→ I3→ II3→

II3→ I3→ II3→

This is an instance of an interchanger of type III, as described in Definition 3.2.12. Note how the 4-cell

of type II3 gets executed right away in the first sequence and then, in the second sequence, gets executed

at the end after being pulled-through the purple wire.

We resume the derivation starting with the target of the cell above in the projected view:

I4→ I4→ I4→ I4→

I4→ I4→ I4→ I4→

I4→ I4→ I4→ I4→
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I
′
3→ I

′
3→ I

′
3→ VI4→

II4→ I4→ I4→ I4→

I4→ I
′
3→ I4→ I4→

I4→ I4→ II4→ I4→

I4→ I
′
3→ I4→ I4→
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I4→ VI4→ II4→ I4→

I4→ I4→ VI4→ III4→

To visualise the next step, we illustrate the last slice rendered above in unprojected form, in the

neighbourhood of the highlight box indicating the source of the next rewrite:

II3→ I3→ II3→ II3→

I3→ I3→ II3→

This gets turned into:

II3→ I3→ II3→

This is an instance of an interchanger of type III, as described in Definition 3.2.12. Note how the 4-cell of

type II3, where the red node is pulled-through the blue wire, gets executed right away in the first sequence

and then, in the second sequence, gets executed at the end after being pulled-through the purple wire.
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We resume the derivation starting with the target of the cell above in the projected view:

I4→ I4→ I4→ I4→

I4→ VI4→ I4→ I2→

To visualise the next step, we illustrate the last slice rendered above in unprojected form, in the

neighbourhood of the highlight box indicating the source of the next rewrite:

ζ
−1

→ I3→ II3→ II3→

I3→ I3→ II3→

This gets turned into:

ζ
−1

→

This is an instance of an interchanger of type III, as described in Definition 3.2.12. Note how the 4-cell

ζ−1 gets executed right away in the first sequence and then, in the second sequence gets executed after

being pulled-through the purple wire.
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We resume the derivation starting with the target of the cell above in the projected view:

I4→ I4→ I4→ II4→

I4→ I4→ II4→ I4→

I4→ II4→ I4→ I4→

I4→ II4→ I4→ I4→

I4→ I4→ I4→ I4→
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I2→ I2→ I2→

By this derivation, the first butterfly equation is satisfied. The other equation follows in a similar manner,

hence the adjunction witnessed by objects A,B, 1-morphisms A
f−→ B, B

G−→ A, 2-morphisms f ◦g α−→ idA,

idA
α−→ f ◦ g and invertible 3-morphisms Φ′,Ψ satisfied the butterfly equations, as required.
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Chapter 6

Complementarity in Higher
Quantum Theory

Categorical quantum mechanics is the study of quantum phenomena using methods of category theory

that emphasise compositionality. This research program was initiated by Samson Abramsky and Bob

Coecke in 2004 [2]. Ever since the program’s inception, increasingly sophisticated categorical structures

have been employed to express ever broader segments of quantum theory.

The key milestones achieved are:

• Association of quantum information processing with morphisms in Hilb, the category of finitie

dimensional Hilbert spaces [2].

• Axiomatisation of observables via special commutative †-Frobenius algebras (classical structures)

and their correspondence to bases of the underlying object in Hilb [17].

• Usage of classical structures on an object in Hilb to define complementarity and to show equivalence

with complementarity of orthonormal bases of the same object in Hilb [18].

The theoretical foundations of all these advancements are neatly summarised in the set of lecture notes

for the Categorical Quantum Mechanics graduate course given at the Department of Computer Science,

University of Oxford [61].

One phenomenon that poses significant difficulties in terms of categorical formalisation is quantum

measurement, which is a process that turns quantum information into classical information [63]. The

most challenging aspect is the ability to capture all possible results of the measurement within one

structure. Early axiomatisation attempts involved classical structures and reasoning using post-selection

to choose the measurement outcome that is of interest. In that scenario, a story of a particular experiment

with a particular measurement result would be told, instead of reasoning about the entire process of

measurement. Eventually, the problem was approached using higher categorical structures employed by

Vicary [60].

Higher quantum theory is a 2-categorical formalism for reasoning about the flow of quantum and

classical information in quantum systems. The crucial fact utilised by the formalism is that classical

information can be encoded in correlations between quantum systems. The key advantage of this setup

is that many important structures, such as teleportation, dense coding and complementary observables,

can be defined by single equations in a symmetric monoidal 2-category. An example of such an equation

describing quantum teleportation is given by:

=
1√
n
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These equations typically have direct physical interpretations, with the defining equation for a

structure following immediately from a careful physical description of its required properties. In

this chapter, we show that the formalism can be applied successfully to more sophisticated quantum

procedures: measurements in a complementary family of bases, quantum key distribution (QKD), and

the Mean King problem. For each scenario, we write down a 2-categorical equation that defines the entire

procedure in a precise way.

The fundamental 2-cell operations of the higher quantum theory formalism can be combined to form

abstract specifications of various quantum information processing protocols. These specifications are

independent of implementation details. A 2-categorical specification can subsequently be interpreted in a

particular 2-category, assigning a well-typed choice of 0-cells, 1-cells and 2-cells to the appropriate parts

of the specification diagram. This amounts to choosing the model, i.e. the physical theory in which the

specification is to be implemented. Here, we are interested in quantum theory and the correct symmetric

monoidal 2-category in which to interpret our specifications is 2Hilb.

There is a standard diagrammatic notation for reasoning about symmetric monoidal 2-categories

presented further in this section, which is closely related to the graphical calculus for semistrict higher

categories discussed in Chapter 3. In fact, there is a tentative connection between semistrict n-categories

and the contents of this chapter. As predicted by the periodic table of higher categories, a degenerate

weak 6-category with the bottom four levels trivialised is a symmetric monoidal 2-category. Hence, if

the appropriate coherence results could be obtained, a semistrict 6-category defined as a 7-signature

supporting certain interchanger types could model the structures discussed in this chapter.

The main contributions of this chapter can be summarised as follows:

• In Definitions 6.3.1, 6.4.2, 6.4.3 and 6.5.1, we give 2-categorical equations whose solutions in 2Hilb

correspond exactly to implementations of a family of complementary observables, BB84 QKD, E91

QKD, and solutions of the Mean King problem respectively.

• In Theorem 6.4.9, we show that the 2-categorical definition for a family of complementary

measurements is equivalent to that for QKD. While an equivalence between these notions seems

generally expected in the community, we are not able to find an existing proof in the literature.

• In Theorem 6.5.9, we give a graphical proof of correctness of Klappenecker and Rottleer’s

solution [33] to the Mean King problem. This is of similar complexity as the original proof,

but quite different in nature. The graphical proof puts special emphasis on the role played by

complementarity.

A significant result on the categorical basis of quantum key distribution was given by Coecke

and Perdrix in [19, Proposition 7.4], which demonstrates the correctness of QKD based on a pair of

complementary observables. The results presented here go beyond this, as we work with arbitrary families

of complementary observables rather than a single pair, and we further show that every implementation

of QKD gives rise to a family of complementary observables. The contents of this Chapter are based on

a joint paper with Vicary [8], though only the material which this author has contributed significantly

towards is included here.

6.1 Basics of higher quantum theory

2Hilb is a symmetric monoidal 2-category of finite dimensional 2-Hilbert spaces that was first defined by

Baez [4]. The necessity of employing such a sophisticated categorical structure is justified by the need to

rigorously reason about the process of quantum measurement. Since the 1930s and the introduction of

the Hilbert spaces formalism by John von Neumann [62], it is known that certain quantum systems can be

mathematically described by a finite dimensional Hilbert space. In the categorical context this is an object

in the category of finite dimensional Hilbert spaces - Hilb. A measurement performed on this system

can produce n different outcomes. If we concentrate only on one of the possible results, we are effectively
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post-selecting the most convenient measurement outcome and limit ourselves in the understanding of the

entire system. Instead we could look at the post-measurement situation as n independent copies of the

state space, which is interpreted categorically as an object in the category Hilbn - the n-fold Cartesian

product of n copies of Hilb. Therefore the broader categorical structure that describes the entire system

prior to and after the measurement must contain both Hilb and Hilbn. This is satisfied by the 2-category

2Hilb that up to equivalence consists of the categories of the type Hilbn.

Definition 6.1.1. The symmetric monoidal 2-category 2Hilb has objects given by natural numbers,

1-morphisms given by matrices of finite-dimensional Hilbert spaces, and 2-morphisms given by matrices

of linear maps. Details of the compositional structure of 2Hilb are available in the references given [4,60].

This gives the formal categorical semantics that forms the primary model of our abstract syntax,

introduced in the next section.

6.1.1 The topological formalism

The basic 2-categorical structures on which the theory is built have simple graphical representations [60],

thanks to the graphical notation for monoidal 2-categories. Its use is again consistent with the overarching

aim of this thesis, which is to seek the right level of abstraction to reason about category theory. This

graphical formalism involves surfaces, lines and vertices. Their basic interpretation is as follows:

Category theory Geometry Interpretation
Objects Surfaces Classical information
1-Morphisms Lines Quantum systems
2-Morphisms Vertices Physical operations

Composite diagrams involving many vertices are interpreted as a series of actions that take place over

time, with time flowing from bottom to top of the picture. In the graphical calculus, as expected,

composition of 1-morphisms is given by horizontal juxtaposition, and composition of 2-morphisms

by vertical juxtaposition. The tensor product is given by overlaying regions one above the other,

perpendicular to the plane of the page and the tensor unit is expressed by an unlabelled, empty region.

This is reminiscent of the graphical notation for 3-categories and the consequence of the fact that a

monoidal 2-category is a weak 3-category with one object, which here plays the role of the tensor unit.

As the intended application is description of quantum mechanical phenomena, we require the ability

to take the formal adjoint of 2-cells, represented graphically by flipping a diagram about the horizontal

axis.

Definition 6.1.2. A dagger 2-category is a 2-category equipped with an involutive operation † on 2-cells,

such that for all µ : F ⇒ G we have µ† : G⇒ F , which is functorial and compatible with the rest of the

monoidal 2-category structure.

Definition 6.1.3. A 2-cell µ is unitary when µ ◦ µ† = id and µ† ◦ µ = id.

The theory is built on the foundation of a small number of graphical components. They give the

formal syntax for our theory for which, as stated before, the semantics is given by the symmetric monoidal

2-category 2Hilb. We list these components here, and provide their physical interpretations, which are

motivated in detail in [60].

Quantum system Classical system (6.1)

Right-hand boundary
of classical system

Left-hand boundary
of classical system

(6.2)
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Copy classical
information

Compare classical
information

(6.3)

Create uniform
classical information

Delete classical
information

(6.4)

These basic building blocks are required to satisfy a set of axioms, which are captured by saying that the

boundary of a region could be smoothly deformed, and that holes in the surfaces can be eliminated:

= = = = (6.5)

= = (6.6)

Any rotation or variants resulting from flipping these equations along the x- or y-axis also hold. The net

effect of these axioms is that any two connected networks of copying, comparison, creation and deletion

operations, with the same number of inputs and the same number of outputs, will be equal. It follows

that every such region carries the structure of a commutative dagger-Frobenius algebra in a canonical

way, which is a justification for the association of surfaces with classical information. Note that the

symmetric monoidal 2-category structure is used crucially in the last equation here, allowing one region

jump into a higher dimension and to pass through another region. We summarise all of the above in the

following formal statement:

Definition 6.1.4. In a symmetric monoidal 2-category, an object has a topological boundary if it is

equipped with the data (6.2)–(6.4) satisfying equations (6.5)–(6.6).

In the reminder of this chapter, we assume that we are working with dagger 2-categories whose objects

are equipped with topological boundaries.

In this formalism, an importance is given to correlations between quantum and classical systems, as

present in the boundaries of classical systems defined above. In principle, the action of creating these

correlations can always be reversed. If we treat quantum measurement as the process of development

of correlations between the quantum system being measured and the environment, then this allows us

to reverse the measurement procedure. In practice, that would be incredibly difficult to do. Consider,

for instance, a correlation established with a randomly passing particle travelling with velocity close to

the speed of light. But here, in the theoretical setting, we assume this is possible. For a more in depth

explanation of this concept, see [60].

6.1.2 Controlled operations

A pivotal role in the formalism is played by the concept of a controlled family of measurements which we

define here in a new way. This has the following definition in the graphical language:

Definition 6.1.5. A controlled family of measurements is a unitary 2-cell of the following type:

(6.7)
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The left-hand pool of classical information represents classical data that determines the basis of the

measurement. Throughout this chapter, we always indicate this by colouring the region blue. The line at

the bottom-right of the diagram represents the quantum system to be measured. The upper-right pool

of classical information represents the classical result of the measurement, which we always draw in red.

We interpret these measurements to be non-degenerate and projective. The motivation for the

definition above is made clear by analysing its models in 2Hilb.

Lemma 6.1.6. In 2Hilb, a controlled family of measurements corresponds precisely to a Hilbert space

equipped with a list of orthonormal bases.

Proof. Let ζ be a 2-cell of type (6.7) in 2Hilb, additionally let n be the dimension of the blue object,

and m the dimension of the red object. Then, ζ constitutes a list of length n, whose entries are m-by-m

matrices [60]. For ζ to be unitary means exactly that each m-by-m matrix is unitary, hence we have

a list of n unitary operators. However, the red region comes equipped with a canonical commutative

dagger-Frobenius algebra structure, and hence a canonical orthonormal basis. Writing the unitaries in

terms of this basis, we obtain that the data of ζ is canonically equivalent to a list of n orthonormal bases

for the incoming m-dimensional Hilbert space.

The unitarity property of (6.7) takes the following graphical form:

= = (6.8)

This gives the impression that the process of quantum measurement can be reversed. This is naturally

not the case, as in practice, the red pool of classical information would enter into uncontrolled interaction

with the environment and get copied arbitrarily many times. Then, even if one copy of classical

information is used to prepare a quantum state, all the other copies remain.

Definition 6.1.7 (Conjugate measurement bases). Following the standard conventions, a controlled

measurement with respect to the conjugate set of bases is represented by mirroring the diagram about

the vertical axis:

:=



∗

≡ (6.9)

Here we decompose the conjugation operation into a composition of adjoint and transpose operations.

The blue classical data controlling the choice of basis is now naturally on the right-hand side.

However, we may want to change the side of the classical data controlling the choice of basis without

passing to the conjugate set of bases. To do this, we use the symmetric monoidal 2-category structure to

directly move the blue classical region to the other side. In order to distinguish this from the conjugate

controlled measurement (6.9), we represent it as a black vertex.

Definition 6.1.8 (Control from the other side). We use a black vertex to indicate control of the

measurement and encoding vertices from the other side:

:= := (6.10)

From this point, arrows indicating dual objects are omitted to increase readability of the pictures.
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6.1.3 Projectors

In the course of performing a quantum protocol, we often need to refer to specific values of classical data,

such as a the choice of a specific basis in which qubits are prepared in quantum teleportation. For that

reason, we need to be able to constrain the value held by a pool of classical data, which we achieve by

introducing the notion of a projector.

Definition 6.1.9. Given an object C ≡ Hilbn in 2Hilb, a classical data projector is an element of the

canonical n-element basis for the vector space Hom2Hilb(idC, idC).

These projectors act to constrain the classical data stored in a region to a particular value. We write

them as floating labels that decorate our regions. The following lemma establishes some of their key

properties.

Lemma 6.1.10 (Properties of classical data projectors). For diagrams in 2Hilb, we can use classical

data projectors to decompose the identity, and two adjacent projectors annihilate unless they are identical:

=

n∑
a=1

a a b = δa,b a (6.11)

The projectors can move freely around within regions, much like scalars in the theory of monoidal

categories. Furthermore, labelled regions can be connected and disconnected arbitrarily:

a = aa a =

a

a

(6.12)

Proof. Straightforward, but omitted for reasons of space.

We can also define a different type of projector, which constrains the values of two separate regions

of classical data to be the same, or to be different. Since we only want to restrict the values of classical

information, these projectors are only applied to regions that are coloured blue in our notation. There will

always be exactly 2 blue regions in every diagram where we use the projectors, so it will be unambiguous

to which regions they ‘attach’.

Definition 6.1.11 (Same-value and different-value projectors). In a symmetric monoidal 2-category

whose hom-categories are Ab-enriched, for an object with topological boundary, the same-value projector

Ps and different-value projector Pd are defined as follows:

Ps := (6.13)

Pd := − (6.14)

The 2-categorical equations for quantum theory are interpreted in 2Hilb, in which hom-categories

are indeed Ab-enriched. There are several properties that we would expect projectors to have, they are

summarised as follows:

Lemma 6.1.12. The projectors Ps and Pd satisfy Ps
2 = Ps, Pd

2 = Pd, Ps ◦ Pd = Pd ◦ Ps = 0 and

Ps + Pd = id.

Proof. Straightforward graphical proof, omitted for reasons of space.
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In the reminder of this chapter, we assume that we are working in an Ab-enriched 2-category, and so these

projectors are well-defined. The tensor product, vertical and horizontal composition in the 2-category all

distribute over the additive structure introduced by these projectors. Distributivity of 2-cell composition

with respect to addition is illustrated by the following. Note, that we can apply the projectors Ps , Pd

whenever the appropriate regions have any open boundary:

Pd =

 −

 ◦ = − (6.15)

6.1.4 Attaching controlled phases

Definition 6.1.13. A controlled phase φ is an unitary endomorphism of a family of boundaries:

φ (6.16)

The white nodes decorating the 2-cell φ indicate the attachment points to the respective boundaries.

In 2Hilb, such a structure gives a controlled phase, i.e. a family of unit complex numbers, indexed by

the values of the classical information of the regions to which the phase is connected. The result of such

a controlled phase is to render the overall wavefunction of the system entangled, without introducing any

classical statistical correlation between local measurement results [60].

6.2 Complementarity

The concept of complementarity first earned prominence in the 1920s in the aftermath of the great

advances in building the mathematical formalism underpinning quantum theory. After Werner Heisenberg

published his matrix mechanics and devised the famous uncertainty principle, Niels Bohr’s Copenhagen

interpretation of quantum theory fully took shape. According to Bohr, quantum states are not states

of physical reality, but a probabilistic mixture of all possible measurement outcomes. Inherently tied to

this interpretation is the concept of complementarity. For Bohr it served as the philosophical principle

explaining the bizarre nature of quantum states. Different classical properties could be joined into

complementary pairings: position and momentum, energy and time, particle and wave nature of light,

such that no experiment could ever simultaneously reveal the precise value of both with arbitrary

precision. In fact, Heisenberg’s uncertainty principle puts a bound on the degree of measurement precision

in this situation. If we measure one of the complementary properties with perfect accuracy, this implies

that we have no knowledge whatsoever about the value of the other property. In this way, the principle of

complementarity governs how classical properties interact and combine to produce quantum behaviours.

As is often the case in using quantum theory for the purposes of performing computation, even though

at first glance the inability to measure two complementary properties (observables) at the same time may

seem to be a limitation, it could be utilised to our advantage and treated instead as a feature. In the

Hilbert spaces formalism, measuring two observables means that we measure the system with respect

to two different bases for the same Hilbert space H which correspond to these observables. A single

pair of non-degenerate measurements is complementary if a standard condition in quantum information,

sometimes also known as unbiasedness holds.

Definition 6.2.1. Two bases {|ai〉}, {|bj〉} of a finite-dimensional Hilbert space H are complementary,

or unbiased, when for all i, j we have:

|〈ai|bj〉|
2

=
1

dim(H)
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The physical interpretation is that if we prepare a quantum state as the eigenstate of one of the two

complementary bases and measure it in the other basis, all possible outcomes are equally likely, i.e. the

uncertainty about the measurement outcome is maximal. The first characterisation of this property in

terms of monoidal categories was given by Coecke and Duncan [18], and a 2-categorical definition was

given in [60]. Here we provide a short exposition of treatment of complementarity in both formalisms.

For monoidal categories, we use the standard graphical notation [50].

Another way of looking at observables in Hilb is through a copying-deleting pair of morphisms:

Definition 6.2.2. In Hilb, a classical structure on an object A is a copying-deleting pair of morphisms:

A
δ→ A⊗A and A

ε→ I defining a commutative †-Frobenius Algebra on A. Graphically this is presented

as:

δ := Copy ε := Delete

These pairs also exactly correspond to orthonormal bases of the underlying Hilbert space [17].We use

different colours to indicate different classical structures.

Definition 6.2.3. A state I
x→ A of a classical structure (A, δ, ε) is copyable when (x⊗x) ◦ ρI

−1 = δ ◦x,

where ρI
−1 is the right unitor isomorphism:

x
=

x x

Definition 6.2.4. In a dagger symmetric monoidal category two classical structures (A, δx, εx) (indicated

by green), (A, δx, εx) (indicated by red) are complementary if the following condition holds:

dim(A) = (6.17)

This is the co-called Coecke-Duncan condition for complementarity [18].

Let H be a Hilbert space seen as an object in Hilb. Then, we say that two orthonormal bases of H

are complementary if classical structures on the object H associated with them are complementary in

Hilb in the sense of the definition above.

Lemma 6.2.5. A pair of classical structures in Hilb satisfies the Coecke-Duncan condition if and only

if the bases that they correspond to are complementary in the sense of Definition 6.2.1.

Proof. Assume that the Coecke-Duncan condition holds, then the following is equation is true for all

copyable states |a〉 and |b〉 of the respective bases:

dim(H)

a

b

=

b

a

(6.18)
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After simplification, using the fact that |a〉 and |b〉 are copyable for their bases, the equation takes

the following shape:

dim(H)

b

a

a

b

=

b

a

(6.19)

This is equivalent to saying that:

dim(H)|〈a|b〉|2 = 1 (6.20)

Since this has to hold for any pair a, b of elements in the respective bases, we obtain equivalence to the

complementarity condition outlined in Definition 6.2.1, as required.

In the 2-categorical framework we may characterise complementarity through usage of classical

information. Following Vicary’s presentation [60], successive measurements of the same system in

complementary bases produce results that are uncorrelated. This could be expressed by the following

diagram where green and red are used to indicate different bases:

Definition 6.2.6. Two measurement bases are complementary if there exists some unitary 2-cell φ

satisfying the following equation:

=
1√
n

φ
(6.21)

The global phase φ depends on each measurement outcome (this is signified by white dots denoting

points of attachment) and up to its application the resulting quantum state factorises. Uniform creation

of classical data is an isometry, so a normalisation constant is included for this to hold.

As in the monoidal category formalism, here we could also use classical structures to describe

complementarity:

Lemma 6.2.7. A pair of complementary bases give rise to a pair of commutative †-Frobenius algebras

(classical structures) on the symmetric monoidal category of scalars of the symmetric monoidal 2-category

Hilb.

Proof. The copying-deleting pairs are given by the following:

:= := := := (6.22)

:= := := := (6.23)

There are also two alternative, equivalent formulations of the complementarity condition that

concentrate on different aspects of the phenomenon. These are as follows:
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Definition 6.2.8. Two measurement bases are complementary if the pair of classical structures that

they give rise to satisfied the Coecke-Duncan condition as defined in 6.2.4

Definition 6.2.9. Two measurement bases are complementary if the following equation is satisfied:

n = (6.24)

Equivalently, this is captured by saying that the following 2-cell is horizontally unitary [60]:

√
n (6.25)

The equivalence of all these conditions for complementarity is shown by simple topology preserving

diagram manipulations and 2-cell composition on both sides of the equality [60].

6.3 Complementary families of measurements

In Definition 6.1.5 we introduced a 2-categorical axiomatisation of a controlled family of measurements.

In this section, we add the extra requirement that any two distinct measurements in the family are

complementary. In this case, we say that we have a complementary family of measurements. These play

an essential role in quantum key distribution and the Mean King problem, which we study in Sections 6.4

and 6.5.

6.3.1 Basic definition

Definition 6.3.1 (Complementary family). A complementary family of measurements, or simply a

complementary family, is an ordinary family of measurements as given in Definition 6.1.5, such that

there exists some unitary 2-cell φ satisfying the following equation:

Pd

Measure in left basis

Copy result

Encode in left basis

Measure in right basis

=
Pd

n

φ

Create random data

Measure in left basis

Controlled phase

(6.26)

The black measurement vertex is as defined in 6.1.8. The pool of classical information controlling the

measurement choice gets attenuated, so that the key features of the diagram are not obstructed. The

definition has an immediate physical motivation. On the left-hand side, a quantum system is first

measured in some particular basis depending on the value of classical information, then the result is

copied. One of the copies subsequently gets re-encoded back into a quantum state using the same choice

of basis. This quantum state then undergoes another measurement procedure (represented in the picture

by the black vertex). The measurement is performed in another basis guaranteed to be different from the

first by the presence of the projector Pd. The interpretation of the right-hand side of the equation is that

this entire procedure must be equivalent to doing the original measurement with respect to the original

basis, but then choosing the second measurement result uniformly at random, up to the application

of some overall phase that allows the wavefunctions to be entangled without introducing any classical

correlation, this is signified by the presence of φ.

Correctness of this definition for ordinary quantum theory follows from previous results on the

2-categorical characterisation of complementary measurements.
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Lemma 6.3.2. In 2Hilb, the complementary families are exactly Hilbert spaces equipped with a collection

of pairwise-complementary orthonormal bases.

Proof. First we label the left- and right-hand blue regions on each side of equation (6.26) with distinct

projectors a and b respectively. By this, on the right-hand side, we force the controlled measurements

to become ordinary measurements in different bases. On the left-hand side, additionally, the left and

rightmost attachment points for the phase φ disappear. Hence, we obtain the ordinary 2-categorical

condition for a complementary pair of orthonormal bases [60]. Conversely, suppose we have a family of

orthonormal bases; then by writing the identity as a sum of projectors using Lemma 6.1.10, equation (6.26)

follows.

6.3.2 Alternative characterisations

Here we examine alternative characterisations of the complementary family definition.

Lemma 6.3.3 (Complementarity through unitarity). A controlled family of measurements is comple-

mentary if and only if the following 2-cell is unitary on the support of the projector Pd:

α := (6.27)

Proof. We consider the following chain of equivalences:Pd =
Pd√
n

φ



⇔

Pd =
Pd√
n

φ



⇔

Pd =
Pd√
n

φ


For the first equivalence we compose at the bottom with the inverse of the controlled measurement vertex;

for the second we perform a topological manipulation. Since φ is an arbitrary unitary 2-cell, it is clear

that the last condition is exactly that given in the statement of the lemma.

The following alternative formulations of complementarity are used in the analysis of the quantum

key distribution protocol and the Mean King problem.

Lemma 6.3.4 (Complementarity condition under horizontal reflection). A family of controlled

measurement operations is complementary if and only if the following equation is satisfied:

Pd =
Pd√
n

φ†

(6.28)
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Proof. By Lemma 6.3.3, both α and α† are unitary on the support of the projector Pd. The condition 6.28

can be obtained by elementary 2-cell operations from the unitarity of α†.

Lemma 6.3.5 (Alternative formulation of complementarity). A controlled family of measurement

operations is complementary if and only if the following condition is satisfied:

Pd =
Pd

n
(6.29)

Proof. The result is proved using Lemma 6.3.3 and by performing topological manipulations.

6.4 Quantum key distribution

In the final two sections of this chapter, we present how the concept of complementarity could be utilised

to realise computational tasks unachievable with classical computation. We consider two applications:

quantum key distribution (QKD) and a perhaps slightly less well-known, Mean King problem (MKP).

In both problems, complementary bases play a crucial role in the success of the protocol. The abstract

framework used to describe complementarity in the previous section will now be applied to graphically

illustrate these protocols and prove their correctness.

First, in this section we give 2-categorical equations defining two different variants of quantum key

distribution. The variants are referred to in the literature as BB84 [11] and E91 [23] with both names

deriving from the first letters of their discoverers’ surnames and the year when the protocols were first

proposed. In Theorem 6.4.4 we show that these two forms are topologically equivalent. The main result

of this section is Theorem 6.4.9, in which we demonstrate that these quantum key distribution equations

are equivalent to Definition 6.3.1 of a complementary family of measurements.

A quantum protocol consists of two parts, the set of instructions and the desired behaviour. The

set of instructions is an ordered list of operations to perform in order to achieve the desired behaviour,

otherwise referred to as the goal of the protocol. Throughout the remaining part of this chapter we

implicitly use the following definition to reason about correctness of quantum protocols [28]:

Definition 6.4.1. We say that a quantum protocol is correct (or valid) if its set of instructions implies

the desired behaviour.

In our 2-categorical diagrammatic specifications, the set of instructions is expressed on the left-hand side

of the equation and the desired behaviour on the right-hand side.

6.4.1 Quantum key distribution

A major development in the theory of cryptography is due to Shannon [51], who showed that a secret

message may be transmitted with perfect secrecy if both parties share identical one-time pads that are

used to encode and decode the message. Using this observation, the problem of secure transmission of a

secret message is reduced to the problem of sharing a one-time pad, or a key between the parties. This

is the main motivation for developing various key distribution schemes. The task of sharing a key is less

challenging than the task of sharing a secret message because the one-time pad is allowed to be random.

Additionally, if we were able to detect the presence of eavesdroppers in the process of transmitting the

key, the communication could be terminated immediately without divuldging any section of the secret

message to third parties. This is where we could utilise quantum complementarity as a resource.

In the following presentation we concentrate on distributing one bit of the secret key. To obtain keys

of arbitrary length, the same procedure needs to be performed repeatedly until the desired number of

key bits has been shared.
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The two most well-known protocols realising quantum key distributions are BB84 [11] and E91 [23]..

Here, we provide a short outline of both protocols. The set of instructions for distributing one key bit

via BB84 is as follows:

(1) Alice randomly chooses either 0 or 1. Then, she randomly picks one of the two pre-agreed

complementary bases and prepares a qubit in that basis, this encodes her classical information.

Finally, she sends the qubit to Bob.

(2) After receiving the qubit from Alice, Bob also randomly picks one of the two complementary bases

and measures the qubit in that basis.

(3) Both Alice and Bob share their basis information over a classical channel. If they chose different

bases, they discard the bit. If the basis information matches, they establish Alice’s random bit as

the key bit.

One observation to be made is that should Bob choose the correct basis (the same as Alice), his

measurement reveals Alice’s random bit. If however he chooses wrongly, his measurement result is going

to be completely random due to complementarity of the bases used.

E91 employs a pair of entangled particles as a resource that allows both Alice and Bob to randomly

choose a basis in which to measure their qubits in. The set of instructions is as follows:

(1) Alice and Bob prepare an entangled Bell state 1√
2
(|00〉+ |11〉) and each take one of its qubits.

(2) Alice and Bob each randomly pick one of the two pre-agreed complementary bases and each measures

their qubit in their chosen basis.

(3) They share their basis information through a classical channel. Should they pick different bases, they

discard the measurement results and start from scratch. Otherwise, they successfully shared one bit

of the secret key.

In the presence of a malicious eavesdropper Eve we assume that she has access to all quantum and

classical channels of communication between Alice and Bob, as well as that she has knowledge about all

the prearrangements made by the parties, such as the set of bases to be used.

Eve’s objective is to extract information about Alice’s basis with the additional requirement that she

disrupts the channel between Bob and Alice as little as possible. If Alice uses a random basis to encode

her random bit, the best Eve can do is to take a guess herself and pick the right basis 1/2 of the time. In

this scenario she does not disturb the channel and is not detected. However in the long run, she will pick

the wrong basis 1/2 of the time. If Alice uses complementary bases, Eve’s incorrect choice of basis results

in her obtaining a random result and to make matters worse, there is a 1/2 chance (1/4 of all cases)

that she disturbs the quantum state in a detectable way. Eve’s interference is detected when Bob obtains

a measurement result different that Alice’s bit, despite the fact that they used the same measurement

bases.

The scenario that interests us is when Alice and Bob use complementarity to prevent Eve from

obtaining information about their communication. This happens when both Alice and Bob pick the same

basis and Eve randomly picks a different basis.
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6.4.2 Abstract definitions

Definition 6.4.2 (BB84 QKD). A controlled family of measurements satisfies BB84 quantum key

distribution if there exists a unitary 2-cell ψ satisfying the following equation:

alice bob evealice: choose random bit

alice: copy the bit

alice: choose a random basis

alice: controlled preparation

eve: choose a random basis

eve: intercept system

eve: controlled measurement

eve: copy measurement result

eve: prepare counterfeit system

bob: choose a random basis

bob: controlled measurement

alice, bob: compare bases

=

Pd ψ

+ Ps

Each of the diagrams on the right-hand side corresponds to the desired behaviour depending on whether

Eve guessed the basis correctly. If Eve guesses incorrectly, then the Pd term says that both basis choices

and all 3 measurement results are classically uncorrelated. If Eve guesses correctly, then the Ps term says

that Eve shares Alice and Bob’s basis, and that all three share the same classical data.

A different equation can be obtained from consideration of the E91 QKD protocol.

Definition 6.4.3 (E91 QKD). A controlled family of measurements satisfies E91 quantum key

distribution if there exists a unitary 2-cell ψ satisfying the following equation:

alice bob eveCreation of entangled state

eve: choose a random basis

alice: choose a random basis

alice: controlled measurement

eve: intercept and measure

eve: copy measurement result

eve: prepare fake system

bob: choose a random basis

bob: controlled measurement

alice, bob: compare bases

=

Pd ψ

+ Ps

Theorem 6.4.4. The equations for BB84 and E91 QKD are equivalent.

Proof. Elementary topological manipulation.

For that reason, in the reminder of this section we only consider the BB84 protocol.

Lemma 6.4.5 (Eve’s successful interference). On the support of projector Ps, the quantum key

distribution specification is satisfied for any controlled family of measurements.

Proof. We investigate this scenario by applying the projector Ps on both sides of the specification. In

this case the right-hand side only retains the Ps component, and the left-hand side simplifies as follows:

= =

Vertex colour changes are justified by changing the side from which the operations are controlled in

accordance with Definition 6.1.8. By this, we can conclude that after application of Ps the QKD

specification becomes a tautology.
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6.4.3 Quantum key distribution from a complementary family

Lemma 6.4.6. If a controlled family of measurements is complementary, then it satisfies the quantum

key distribution specification with:

Pd ψ = Pd

φ

φ†
(6.30)

Proof. Suppose the controlled complementarity condition 6.3.1 is satisfied. Then we make the following

argument:

Pd
(6.28)

= Pd

φ

(6.8)
= Pd

φ

(6.2)
= Pd

φ

(6.26)
= Pd

φ

φ†
(6.8)
= Pd

φ

φ†

⇔ Pd = Pd

φ

φ†

The final equality follows from the first chain of equalities by topological deformation. This final equality

is equivalent to the statement of BB84 quantum key distribution as given in Definition 6.4.2, since by

Lemma 6.4.5 the Ps component is trivially satisfied.

6.4.4 A complementary family from quantum key distribution

Lemma 6.4.7. If a controlled family of measurements allows quantum key distribution with a phase ψ,

then:

α† ◦ α = Pd = Pd ψ = Pd (6.31)
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Here α is as defined in the proof of Lemma 6.3.3.

Proof. If Eve picks the wrong basis but does not influence the communication between Alice and Bob,

their key information is still the same. We post-select on this scenario by applying a projector Pd to pools

of classical information corresponding to Alice’s, Bob’s and Eve’s basis information and by applying the

comparison operation to pools corresponding to Bob’s and Alice’s key information:

Pd = Pd

ψ
(6.32)

Using topology preserving elementary 2-cell operations, the first equality in 6.31 is obtained. For the

second equality, up to application of Pd on the outer pools of classical information, the middle 2-cell in

equation 6.31 is a unitary, since ψ is a unitary. Also, α† ◦ α is a positive map. The only positive unitary

is the identity, hence the result is established.

Lemma 6.4.8 (Quantum key distribution implies complementarity). If a controlled family of

measurements allows quantum key distribution, then the family is complementary.

Proof. By Lemma 6.4.7 the following map is unitary:

Pd

By Lemma 6.3.3, we can conclude that the controlled family of measurements is complementary.

Theorem 6.4.9. A controlled family of measurements satisfies quantum key distribution if and only if

it is complementary.

Proof. Immediate by Lemmas 6.4.6 and 6.4.8.

Lemma 6.4.10. If a controlled family of measurements allows quantum key distribution with phase ψ,

then we can decompose ψ in the following way:

Pd ψ = Pd

φ

φ†
(6.33)

Proof. Immediate by Lemmas 6.4.6 and 6.4.8.

6.5 The Mean King problem

The original formulation and solution of the Mean King problem for three complementary observables is

due to Vaidman, Aharonov and Albert [3]. However it is often presented in the literature in the amusing

form of a fairy tale [33]. It tells the story of an evil king who hates physics and imprisons an innocent

quantum physicist Alice, who has to succeed in a quantum theoretical challenge to regain ger freedom.

More formally, the Mean King protocol is defined as follows [3, 33]. There are two agents, Alice and the

King, who take part in the following procedure.
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1. Alice prepares a quantum state of her choice and hands it to the King.

2. The King measures the state in one of n mutually unbiased bases, keeping his choice of basis and

the outcome secret, and returns the state to Alice.

3. Alice performs any quantum measurement she wishes.

4. The King reveals his measurement basis to Alice.

5. Using only classical processes, Alice must calculate the King’s earlier measurement outcome.

Let us consider what is entailed by the condition that Alice must determine king’s measurement result

immediately after he reveals his basis. This essentially means that Alice must be ready to reply straight

away, regardless of what the king tells her. Hence, even if the King is deceitful and informs Alice that

he measured his state in a different basis than he actually did, she still has to have an answer ready.

Moreover, this answer must be such that it would have been correct had the king really measured in

the basis he told Alice. This implies that the measurement that Alice performs must provide her with a

lookup table for the King’s measurement result.

From this introduction it might seem like we require Alice to predict the result of measurement of

complementary observables. A requirement that would clearly contradict the rules of quantum mechanics

and what we know about uncertainty of determining values of complementary properties. But a more

careful investigation shows that, since the king is only physically measuring in one of the complementary

bases and other measurements do not happen, Alice is only retrodicting the result - inferring it from one

particular post-selected scenario. As noticed by Metzger, other scenarios have no physical meaning [41].

This is in contrast to being able to predict the result of complementary measurements. The possibility of

assigning unit probabilities to results of a set of hypothetical measurements in complementary bases has

been shown by Aharonov et al. [3].

Now, we consider specific protocols solving the Mean King problem for n mutually unbiased bases the

King uses for n = 2 and n = 3. For n = 1, the solution is trivial and by preparation of an eigenstate of

the king’s basis, Alice is able to predict the measurement outcome.

For n = 2, Alice prepares an eigenstate of one of the two complementary bases that the King may

use. Once she receives the qubit back, she measures it in the other basis, one she did not use to prepare

the qubit. That way, she knows the result of the possible measurement in one basis even before the king’s

measurement is peeformed. She is able to retrodict the result of the other possible measurement without

any further action, as it is exactly the same as the result of her measurement. This is because the King

altered the prepared state by his measurement operation.

Alternatively, Alice could use entanglement to complete the King’s challenge. Let Alice prepare the

Bell state ϕ = 1√
2
(|00〉+ |11〉), send the second qubit to the King and hold on to the first. After the qubit

is returned, Alice randomly chooses one of the two basis to measure the first qubit and then measures the

second qubit in the other basis. By this, she is certain that at least one of the qubits is measured in the

basis used by the King. It is worth noting that these two solutions are in fact topologically equivalent,

and by examining the 2-categorical diagrams it is easy to derive one of them from the other. This is

similar in nature to the equivalence between different variants of quantum key distribution protocols.

The solution utilising entanglement can be used to perform quantum key distribution as exemplified

by Bub and Yoshida [13, 64]. Alice and the King share one bit of the secret key through successful

completion of the procedure above - the King’s measurement result serving as the key bit. In fact,

Yoshida uses exactly the solution presented above, Bub’s approach is more complicated and uses the

measurement that also solves the problem for n = 3.

If the King uses three mutually unbiased bases, we must use entanglement. As previously, Alice

prepares the Bell state 1√
2
(|00〉 + |11〉) and sends the second qubit to the King. He measures the qubit

in one of three mutually unbiased bases and returns the qubit to Alice, maintaining information about

the result. Alice performs a special bi-partite measurement that we will describe in detail below. After
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learning the King’s basis, Alice applies a classical function (predetermined from the beginning) to find

the result in her look up table.

In other words, she should perform some non-degenerate PVM µ on both systems, and prepare a

lookup table f that tells her, depending on the King’s measurement basis choice and her own measurement

result, what King’s result was. The key results of this section is a graphical definition of a solution of the

Mean King problem, and a graphical proof of the correctness of Klappenecker and Rötteler’s solution [33]

to the Mean King problem.

6.5.1 Abstract definition

We begin with an abstract definition of the Mean King problem. In categorical quantum mechanics,

a classical function is defined as a morphism between classical data which satisfies the comonoid

homomorphism property, and that regions with topological boundary carry a canonical comonoid

structure.

Definition 6.5.1 (Mean King scheme). Given a complementary family of measurements , a bipartite

measurement µ, and a classical function f , a Mean King scheme MK ,µ,f is defined as the following

composite:

MK ,µ,f
:=

µ

f

alice king

(6.34)

The black dot denotes measurement in a set of mutually unbiased bases.

Definition 6.5.2 (Mean King solution). A Mean King scheme MK ,µ,f solves the Mean King problem

if the following equation holds:

MK ,µ,f

=
MK ,µ,f

(6.35)

This says exactly that, after carrying out the procedure, Alice and the King carry the same measurement

result information, which is indicated by the presence of the projector on the right-hand side of the

equation. This requirement is satisfied precisely if the Mean King scheme MK ,µ,f is correct.

6.5.2 Solving the Mean King problem

Our solution to the Mean King problem is presented entirely graphically. It is based on a solution due to

Klappenecker and Rötteler [33]. Giving this solution graphically is an interesting exercise in the graphical

formalism for symmetric monoidal 2-categories, and demonstrates that it is capable of reasoning about

sophisticated schemes. Our presentation is comparable in complexity to Klappenecker and Rötteler’s.

One advantage of our presentation is that it is perhaps clearer in expressing how complementarity is

being used. We begin by giving a scheme to construct a bipartite state from a classical function.

Definition 6.5.3. Given a classical function fi : n→ m, and an n-fold controlled family of measurements

on Cn, the associated bipartite state |µf 〉 ∈ Cn ⊗ Cn is defined as follows:

µf :=
1√
n fi

−
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Definition 6.5.4 (Collisions). Given classical functions f, g : n → m, let f � g := |{a|f(a) = g(a)}| be

the number of collisions between them.

Lemma 6.5.5. Let f, g : [n+ 1]→ [n] be functions. Then n〈µf |µg〉+ 1 = f � g.

Proof. A straightforward graphical proof is possible, which we omit.

Lemma 6.5.6. Given a family of n2 classical functions fi : [n+ 1]→ [n] with i 6= j ⇒ fi � fj = 1, the

states |µfi〉 form an orthonormal basis.

Proof. Rearranging the result of Lemma 6.5.5, we see that 〈µf |µg〉 = ((f � g) − 1)/n, by this argument

the conclusion follows.

Lemma 6.5.7. For any prime power n = pk, the following structures exist:

1. a family of n2 functions fi : [n+ 1]→ [n], such that for i 6= j we have fi � fj = 1;

2. a family of n+ 1 mutually complementary bases.

Proof. See [33, Section 2].

Lemma 6.5.8. For a complementary family of controlled measurements and a classical function g, the

following holds:

g

a
b

= g

a

b

+ 1 (6.36)

Proof. We use the fact that these controlled measurements form a family of complementary controlled

operations. Hence equation (6.29) holds, and we combine this with the classical function g to obtain the

left-hand side given below:

Pd


g

=
Pd

n

g


⇔


g

−

g

=
1

n


g

−

g




The right-hand side is obtained by expanding out the action of the projectors Pd. We next assign specific

values a, b to pools of classical information and perform elementary 2-cell operations. We can replace

black vertices with white, as long as we switch the side from which the vertex is controlled. Since pools

of classical information exhibit topological behaviour, we can reposition them freely.

 g

ab

−

g

a
b

=
1

n

 g

ab

−

g

a

b




⇔

 g

a

b

−

g

a
b

=
1

n

 g

ab

−

g

a

b




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After we cancel out measurement and encoding operations controlled by the same pools of classical

information, the equation is simplified to:

g

a

b

= g

a

b

+
1

n

 g a b − g

a

b

 (6.37)

= g

a

b

+
1

n
(n+ 1) − 1

n
= g

a

b

+ 1

Theorem 6.5.9 (Solution to the Mean King problem). For a family of functions fi : [n+ 1]→ [n] such

that |µfi〉 form a basis, and a family of n + 1 complementary bases of Cn, the following assignments

give a Mean King solution:

µ :=

i

µfi

f

:=
∑
i

i

fi

Proof. By Lemma 6.5.7 a suitable family of n2 functions fi : [n + 1] → [n] and a complementary family

of controlled measurements in n + 1 bases exist. The latter by defining a controlled operation to pick

one of the n + 1 complementary bases to measure in. For each fi we define a state µfi in accordance

with Lemma 6.5.3. By Lemma 6.5.6 states |µfi〉 form an orthonormal basis µ that we use to solve the

problem. The scheme MK ,µ,f then simplifies to:

MK ,µ,f

=
∑
i,a,b



i

a

b
fi
†

f

−

i

a

b

f



=
∑
i,a,b


fi

a

b

fi

a

ab

− fi

a

ab

ab


By Lemma 6.5.8, this simplifies as follows:

∑
i,a,b


 fi

a

b

+ 1


 fi

a

ab

 − f

a

ab

 =
∑
i,a,b

 fifi

a a

ab
b


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=
∑
i,a,b

 fi fi

a a

b a

 =
∑
i,a,b

fi fi

a

b

=
∑
i

fi fi

=
∑
i

fi

=
∑
i

f

i
=

f

The final diagram clearly remains unchanged under application of the projector as per Definition 6.5.2,

hence the result is established.
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Chapter 7

Conclusion

The main original contributions of this thesis can be summarised as follows:

(1) In Chapter 2, we presented a new theory of generic-position higher-dimensional diagrams, together

with their combinatorial description. The theory is based on two mutually-recursive structures:

diagrams and signatures, which build on the notion of an n-polygraph endowed with an order

structure on n-cells in a diagram. We gave definitions of rewriting and composition of diagrams,

and proved correctness properties for these definitions. We also showed results on associativity

and distributivity of the latter, allowing signatures to become a foundation for definitions of higher

quasistrict n-categories.

(2) In Chapter 3, we used the signature structure to provide a new framework for the definition of

quasistrict higher categories requiring considerably fewer axioms than traditional approaches. This

is achieved as all associativity and distributivity results are already built-in within the signature

structure. It also allowed us to put emphasis on the higher-level coherences which arise from the

introduction of the interchange law. We explored these coherences using a graphical formalism that

absorbs many low-level details into the notation. As a result, we recovered standard definitions of

quasistrict 2- and 3-categories and a new definition of a quasistrict 4-category. We contrasted this

approach with attempts due to Crans [20] and Douglas and Henriques [22] and highlighted how our

less-strict definition results in simpler, shorter proofs and equivalent expressivity.

(3) In Chapter 4, we discussed how the theoretical framework developed in Chapters 2 and 3 was

adapted into a practical proof assistant Globular, which is the tool of its kind. We commented

on the design choices made and outlined the main algorithms implemented. We also presented a

short demonstration of the tool’s capabilities. The chapter is concluded with the list of example

proofs formalised with the aid of the tool by members of the community.

(4) In Chapter 5, we proved that an adjunction of 1-morphisms in a quasistrict 4-category gives rise

to a coherent adjunction satisfying the butterfly equations, utilising the new definition provided in

Chapter 3. As far as we are aware, this is the first time when, an explicit proof carried out in a

4-categorical setting is given in the literature.

(5) Finally, in Chapter 6, we presented an application of the higher categorical formalism to quantum

theory. In this framework, we provided a description of a family of complementary bases and gave a

completely syntactic proof that a basis satisfies quantum key distribution if and only if it is mutually

unbiased. We also gave a logical correctness proof of Klappenecker and Roettler’s [33] construction of

a solution to the Mean King problem from a family of mutually unbiased bases. All these results were

achieved within the framework of symmetric monoidal 2-categories that allows us to fully capture

the notion of quantum measurement in an abstract way. A graphical notation is used throughout to

explicitly illustrate the flow of both classical and quantum information within the systems considered.
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Overall, we showed that finding the right level of abstraction when reasoning about higher categories

may give additional insight and put special emphasis on the aspects that are of highest interest in the

particular scenario being investigated. We hope that the combination of the three methods—graphical

languages, quasistrictness and automated reasoning—will ultimately bring about a deeper understanding

of the theory of weak n-categories and its applications to an ever growing family of mathematical

disciplines.

7.1 Future work

We conclude with a brief discussion of some possible future directions of research.

7.1.1 Quasistrict categories for n ≥ 5

The most natural extension of the results of this thesis is further exploration of higher-level singularities

that arise from the introduction of the interchange law. The first step towards that, is to investigate

all coherences that arise first for a quasistrict 5-category. In most general terms, any two different

combinations of interchangers of types I − VI that that have the same effect on a 5-cell α need to be

related by a higher-level coherence. As discussed in Chapter 3, many of them are just going to be higher

dimensional incarnations of the types already covered. However, new types are also bound to arise.

The most significant difficulty in the exploration of higher-level interchangers is the inability of

the human mind to perform visualisations of 5-dimensional geometrical structures. Even though, the

techniques described in Chapter 3 and projected images in Globular offer substantial insight, much effort

is still required.

There are two other remaining difficulties with regards to describing higher-level singularities for

n ≥ 5. The first is the problem of reliably generating all the possible coherences for the given dimension.

Despite the fact that coherences for n = 5, 6 could perhaps be classified using trial and error, a more

general set of rules is needed if a definition of a quasistrict n-category for an arbitrary n is to be achieved.

One approach discussed is to analyse interactions between different pairs of interchanger types,

however this is already not complete for n = 4, where type VI4 does not get generated. Another

possibility is to analyse naturality properties for each interchanger, however, again interchangers of type

VI cannot be classified using this approach. Additionally, an open question that remains is whether there

is an interchanger type whose source and target consists of three or more other interchanger types. All

types discussed so far have sources and targets consisting of at most two other interchanger types.

The second problem is to be able to prove that all coherences for the given dimension have indeed

been generated. One method to achieve that is to prove equivalence of the created quasistrict n-category

to a general weak n-category. However this is yet to be achieved even for n = 4.

We hope that the visualisation capabilities of Globular will turn out to be of major assistance in the

efforts to further explore the space of higher-level coherences in quasistrict n-categories.

7.1.2 Coherence theorem for quasistrict 4-categories

Even though we conjecture that a quasistrict 4-category, as described in Definition 3.2.3, is equivalent to

a general weak 4-category, the result has not been proved formally. In comparison with the equivalence

result shown for a quasistrict 3-category, a new proof technique would have to be used. In Theorem 3.6.2,

we show that a quasistrict 3-category is a Gray-category, hence equivalence to a general weak 3-category

is obtained due to earlier coherence results for Gray-categories. There are no existing coherence results

for semistrict and quasistrict 4-categories and no accepted definitions, so a similar shortcut does not exist.

7.1.3 Formalisation of proofs

Methods described in Chapters 2 and 3 are applicable to a wide range of problems in category theory. A

straightforward, ‘proof of concept’ application is to formalise and type check well-established results. In
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addition to the results already formalised by the community, as discussed in Chapter 4, other examples

of results that would be interesting to prove in Globular include for instance:

• Higher-dimensional generalisations of the results on strengthening an adjunction, as shown for

n = 3, 4 in Theorems 5.0.2 and 5.0.3.

• Results on knotted surfaces embed in R4 and on knotted 3-manifolds embeded in R5 [30, 49].

• Algebraic arguments for topological quantum field theories [10].

7.1.4 Sphere eversion

One of the motivating examples for embarking on this research project is formalisation of sphere eversion.

Informally, a sphere eversion is performed by turning a sphere ‘inside-out’ in a three dimensional space.

It is perhaps counterintuitive at first, how this feat could be achieved using only smooth and continuous

transformations, however it is possible and the first proof of existence of such a transformation was

provided by Smale [53]. A smooth and continuous transformation is exactly what we expect from a

topological point of view, i.e.:

• Allowed moves: Bending and contracting surfaces, surfaces crossing each other by ‘leaping’ into the

fourth dimension.

• Disallowed moves: tearing, puncturing, pinching surfaces, creating creases.

The formal definition of the problem is as follows:

Definition 7.1.1 (Sphere eversion). For an embedding of a sphere f : S2 ↪→ R3 there exists a regular

homotopy of immersions such that f0 = f and f1 = −f .

The existing constructions of sphere eversions such as those due to Smale [53], Sullivan [57] or

Carter [15] consist of hundreds of pictures of 2-dimensional cross-sections of 3-dimensional self-crossing

structures. Needless to say, type checking and keeping track of consecutive transformations may get

extremely cumbersome in this setting. A model in Globular would allow automatic type-checking and

greatly simplify following the individual steps of the proof.

The correct categorical setting in which to model sphere eversion is a symmetric monodial 2-category.

We justify intuitively why do we need such a structure which, using the periodic table of higher categories,

is a weak 6-category with trivial 0-, 1-, 2- and 3-cells. A monoidal 2-category is necessary to model a

3-dimensional structure. We need braidings to be able to reason about surfaces ‘passing through each

other’, we need syllepsis because we want to regard the two possible orders for such a crossing to be the

same. Finally, we need symmetry because we want the two possible ways, in which one crossing can be

rewritten into the other, to be the same.

Hence, the necessary condition is to first expand the theory of higher-level singularities in a quasistrict

n-category to n = 5, 6. An alternative, more crude approach is to model a braided monoidal 2-category as

a degenerate quasistrict 4-category with the bottom two levels trivialised, which we can already achieve

at this stage, and manual addition of syllepsis and symmetry cells. This is in fact the approach taken

by Henriques in the formalisation of sphere eversion that he obtained in Globular. However, a model in

a degenerate quasistrict 6-category would offer a higher degree of robustness.

7.1.5 Stochastic processes

Another potential application of Globular is for modelling stochastic processes. In such a process each of

the possible events can happen at a time interval with a certain probability. If we let an n-diagram D

model the initial state of the process, then every (n+1)-cell that rewrites the diagram could be interpreted

as an event that the system is subject to. Then, the composite (n+1)-cell, i.e. a sequence of rewrites, can

be treated as a ‘history’ of events that occurred. If additionally, we assign to each event a rate with which
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it can happen, we obtain a stochastic process. This feature allows us to abstractly model, for instance,

situations arising in nature. There are many biological processes that can be abstractly modelled in this

manner, examples include: interactions between populations of wolfs and rabbits, and invasion, infection

and spread of viruses throughout a population of cells in a human body.

7.1.6 Properties of higher dimensional rewriting systems

A desirable property of a rewriting system is to be able to decide whether two terms s, t in the system

are equal, i.e. whether there exists a rewriting path between s and t. In rewriting theory, this is often

referred to as the ‘word problem’ for the rewriting system. There are two properties of a rewriting system

that make it simpler to determine existence of rewriting paths between terms. The first is confluence,

which means that given a term t any two rewriting paths originating at t meet eventually. This property

ascertains that any order the rewriting rules are applied in eventually yields the same result. The second

is termination of all rewriting paths, which ensures that there are no infinite sequences of rewrites. In

any terminating rewriting system equality is easy to decide, because the normal forms exists for every

term t.

As the theory of higher dimensional rewriting is still in early stages of development, these two concepts

are not yet well-understood for higher dimensional rewriting paths. It would be interesting to explore

them in the context of signatures. Due to the existence of invertible cells, the system is clearly non-

terminating. For that reason, the main focus should be the analysis of confluence.

A pair of elements s, r, such that t is rewritable to both, but s and r do not have a common reduct, is

called a critical pair. Given a non-confluent system in which critical pairs are present, the first step towards

creating an equivalent confluent system is to identify all such pairs. Most computational techniques in

standard rewriting theory that automatically check for confluence of a rewriting system or perform a

Knuth-Bendix completion operate in this manner. Therefore, an analysis of the set of critical pairs in

a signature would be the right starting point to get a better understanding of the system. The biggest

challenge is that, even though the system might be generated from a finite presentation, the number of

critical pairs may be infinite.

Mimram gives a framework in which a finitely generated 3-dimensional rewriting system, based on

the notion of an n-polygraph, admits a finite number of critical pairs [42]. It would be of interest to

investigate whether a similar framework, which generalises the notion of a critical pair, could be applied

to rewriting systems that are finitely presented by the signature structure for n = 3 and beyond.

7.1.7 Complementarity

A primary avenue of future work arising from the results in Chapter 6 is investigating the existence of

nonstandard models. It has been shown that a category of groupoids, profunctors and spans admits

combinatorial ‘toy models’ of teleportation, as solutions to a 2-categorical equation, from which ordinary

quantum teleportation can be recovered by applying a 2-functor into 2Hilb [8]. It would be interesting to

explore whether combinatorial toy models of quantum key distribution can also be built in that setting.

There is also an important open question suggested by Vicary [60]. Recall that in the 2-categorical

formalism, we are free to compose the primitive elements in any way that we wish to create

abstract specifications of quantum information processing tasks. However, not all those specifications

are physically realisable within quantum theory and 2Hilb. Since specifications remain unchanged

by topological manipulation of classical information, realisability is a topological invariant of the

specification. The question is, whether this can be deduced by using only topological means.

To conclude, we are certain that studying quantum information processing systems using higher

categorical methods will provide a new, abstract point of view at quantum computation. This may lead

to being able to show that, in fact, origins of various quantum phenomena lay in the properties of the

underlying categorical structure.
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Appendix A

Logical statements for proofs of
correctness of rewriting and
composition

Preservation of well-definedness by the process of rewriting a diagram:

Definition A.0.1 (R(n)). For n ≥ 0, let R(n) denote the statement that for any well-defined n-diagrams

D,S, T such that S, T are globular with respect to each other, and a well-defined embedding e : S ↪→ D,

the rewrite D.Π[e, T ] of D by e is a well-defined diagram.

Definition A.0.2 (T (n)). For n ≥ 2, let T (n) denote the statement that for any well-defined n-diagram

D, we have (D.s).s = (D[i].d).s and (D.s).t = (D[i].d).t for any 0 ≤ i < |D|.

Definition A.0.3 (S(n)). For n ≥ 1, let S(n) denote the statement that for any well-defined n-diagrams

D,S, T such that s(S) = s(T ), t(S) = t(T ) and a well-defined n-diagram embedding e : S ↪→ A the

following hold:

A.Π[e, T ][j].d =

=


A[j].d if 0 ≤ j ≤ e.h
A[e.h].d.Π[e.e, T [j − e.h].d] if e.h ≤ j ≤ e.h+ |T |
A[j + |S| − |T |].d if e.h+ |T | ≤ j < |A| − |S|+ |T |

Definition A.0.4 (Q(n)). For n ≥ 0, let Q(n) denote the statement that for any well-defined n-diagrams

A,B,C, S, T such that pairs S, T and A,C are globular with respect to each other and for well-defined

embeddings e : S ↪→ A, f : C ↪→ B, the following holds:

(f.Λ[A] ◦ e).Λ[T ] = f.Λ[A.Π[e, T ]] ◦ e.Λ[T ]

Definition A.0.5 (P (n)). For n ≥ 0, let P (n) denote the statement that for any well-defined n-diagrams

S, T,A,B,C such that pairs S, T and A,C are globular with respect to each other and for well-defined

embeddings e : S ↪→ A, f : C ↪→ B, the following holds for 0 ≤ j ≤ e.h:

B.Π[f,A.Π[e, T ]] = (B.Π[f,A]).Π[f.Λ[A] ◦ e, T ]

Definition A.0.6 (B(n)). For n ≥ 0, let B(n) denote the statement that for any well-defined n-diagrams

S, T,A such that S, T are globular with respect to each other and for a well-defined embedding e : S ↪→ A,

then the lifted embedding e.Λ[T ] : T ↪→ A.Π[e, T ] is well-defined.

Definition A.0.7 (C(n)). For n ≥ 0, let C(n) denote the statement that given two n-diagram

embeddings e : S ↪→ D and f : D ↪→ M between well-defined n-diagrams S,D,M , their composite

f ◦ e : S ↪→M is well-defined.
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Definition A.0.8 (A(n)). For n ≥ 0, let A(n) denote the statement that given three n-diagram

embeddings e : S ↪→ D, f : D ↪→ M , g : M ↪→ N between well-defined n-diagrams S,D,M,N the

following equality holds:

g ◦ (f ◦ e) = (g ◦ f) ◦ e

Preservation of well-definedness by the process of composition of two diagrams:

Definition A.0.9 (L(k)). For k ≥ 0, let L(k) denote the statement that for any well-defined n-diagram

D and a well-defined m-diagram S such that |n − m| = k and t(S) = sn−m+1(D) if m ≤ n or

tm−n+1(S) = s(D) otherwise, then the composite diagram S ◦D is well-defined.

Definition A.0.10 (N(k)). For k ≥ 0, let N(k) denote the statement that for any well-defined n-diagram

D and a well-defined diagram m-diagram S such that |n−m| = k:

• If n ≥ m and t(S) = sn−m+1(D) and the composite S ◦ D exists, the inclusion embedding

Incr(S,D) : D ↪→ S ◦D is well-defined.

• If n < m and tm−n+1(S) = s(D) and the composite S ◦ D exists, the inclusion embedding

Incl(S,D) : D ↪→ D ◦ S is well-defined.

Definition A.0.11 (K(k)). For k ≥ 1, let K(k) denote the statement that for any n-diagram D and

any m-diagram S such that |n−m| = k and such that the composite S ◦D exists, the following equalities

hold:

If n > m (S ◦D)[i].d = S ◦ (D[i].d) for any 0 ≤ i < |D|
If n < m (S ◦D)[i].d = (S[i].d) ◦D for any 0 ≤ i < |S|

Definition A.0.12 (M(k)). For k ≥ 1, let M(k) denote the statement that for any well-defined

n-diagram D and a well-defined diagram m-diagram S such that |n − m| = k for any 0 ≤ i < |D|
the following equality holds:

If n > m Incr(S,D[i].d) = (Incr(S,D).e).Λ[D[i].d] for any 0 ≤ i < |D|
If n < m Incl(S[i].d,D) = (Incl(S,D).e).Λ[S[i].d] for any 0 ≤ i < |S|

Associativity of diagram composition:

Definition A.0.13 (E(k)). For k ≥ 0, let E(k) denote the statement that for two well-defined n-diagrams

D,S, and a well-defined l-diagram M such that l > n > 0 and l − n = k, the following holds:

S ◦ (D ◦M) = (S ◦D) ◦M

Definition A.0.14 (F (k)). For k, n ≥ 0, let F (k) denote the statement that for two well-defined

n-diagrams D,S, and a well-defined l-diagram M such that l > n and l − n = k, the following holds:

Incr(S,D ◦M) ◦ Incr(D,M) = Incr(S ◦D,M)

Distributivity of diagram composition:

Definition A.0.15 (G(k)). For k ≥ 0, let G(k) denote the statement that for three well-defined diagrams:

an n-diagrams D, an m-diagram S and an l-diagram M , such that l, n > m > 0 and |l − n| = k, the

following holds:

S ◦b (D ◦aM) = (S ◦b D) ◦a (S ◦bM) if b < a

Here, we have a = min(n, l)− 1, b = min(m,max(n, l))− 1.
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Definition A.0.16. [H(k)] For k ≥ 0,let H(k) denote the statement that for three well-defined diagrams:

an n-diagrams D, an m-diagram S and an l-diagram M , such that l, n > m > 0 and |l − n| = k, then,

provided that these composites exist, the following holds:

Incr(S,D ◦M) ◦ Incr(D,M) = Incr(S ◦D,S ◦M) ◦ Incr(S,M)

Here, we have a = min(n, l), b = min(m,max(n, l))− 1.
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Appendix B

Definition of a switch 3-category

Definition B.0.1 (As given in [22]). A switch 3-category T consists of the following two collections of

data, subject to axioms as follows:

0-data There are four sets:

— the set T0 of objects.

— the set T1 of 1-morphisms.

— the set T2 of 2-morphisms.

— the set T3 of 3-morphisms.

Moreover there are source and target maps s, t : T1 → T0, s, t : T2 → T1, and s, t : T3 → T2, such

that st = ss and tt = ts.

1-data There are thirteen maps of sets in three collections:

1-morphism target There are two maps with target T1:

S1-1 : — ix : T0 → T1 — horizontal identity.

S1-2 : — mx : T1 ×T0
T1 → T1 — horizontal composition.

2-morphism target There are four maps with target T2:

S1-3 : — iy : T1 → T2 — vertical identity.

S1-4 : — my : T2 ×T1
T2 → T2 — vertical composition.

S1-5 : — wr : T2 ×T0
T1 → T2 — right whisker.

S1-6 : — wl : T1 ×T0
T2 → T2 — left whisker.

3-morphism target There are seven maps with target T3. The first of these is a map sw :

T2×T0
T2 → T3 indicated by depicting the source and target of the 3-morphism sw(a) in terms

of the element a ∈ T2 ×T0
T2. The remaining six maps we indicate directly by drawing a

picture of the resulting 3-morphism.

S1-7 : — sw : T2 ×T0
T2 → T3 — switch.

S1-8 : — iz : T2 → T3 — spatial identity.

S1-9 : — mz : T3 ×T2
T3 → T3 — spatial composition.

S1-10 : — fb : T3 ×T1
T2 → T3 — bottom fin.
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S1-11 : — ft : T2 ×T1
T3 → T3 — top fin.

S1-12 : — hr : T3 ×T0
T1 → T3 — right 3-cell whisker.

S1-13 : — hl : T1 ×T0
T3 → T3 — left 3-cell whisker.

Inverses A 3-morphism c ∈ T3 is called invertible if there exists a 3-morphism c−1 ∈ T3 such that

mz(c × c
−1) = iz(s(c)) and mz(c

−1 × c) = iz(t(c)). The 1-datum [S1-7] is required to take

values in invertible 3-morphisms.

2-axioms The above data are subject to the following thirty-four axioms, together with variant axioms

abbreviated in parentheses. In the first fifteen axioms, the condition is that the indicated 1-

morphisms or 2-morphisms are equal. In the next four axioms, the conditions is that the 3-morphism

obtained by composing all the edges of the diagram is the spatial identity. In the last fifteen axioms,

the indicated equation of 3-morphisms is satisfied. There, composition of 3-morphisms denotes

spatial composition; also, the variant axioms are indicated as axial reflections of the drawn axioms.

1-morphism axioms

S2-1 :

S2-2 :

S2-3 :

2-morphism axioms

S2-4 :

S2-5 :

S2-6 :

S2-7 :

S2-8 :

S2-9 :

S2-10 :

S2-11 :

S2-12 :

S2-13 :

S2-14 :

S2-15 :

3-morphism axioms

S2-16 :

=

=

[ ]

S2-17 :

=

=

[ ]
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S2-18 :

= =

[ ]

S2-19 :

= =

S2-20 : ==

S2-21 : ==

S2-22 : == id
( )

S2-23 : ==

S2-24 : ==

S2-25 : ==

S2-26 : ==

S2-27 : ==

S2-28 : == id ( )

S2-29 : ==

S2-30 :
( )

◦ (sw) == (sw) ◦
( )

S2-31 : == S2-32 : ==

S2-33 : ==

S2-34 : ==

Reflections : z-flip of [S2-20]; y-flip of [S2-22], [S2-23], [S2-24], and [S2-26]; x-flip of [S2-28], [S2-29],

[S2-30], [S2-31], and [S2-33]; and x-flip, y-flip, and xy-flip of [S2-32].

In axiom [S2-30], “sw” refers to the switch 3-morphism [S1-7].
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