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Abstract

Over the last decade processes with quantum causal structures have been studied in

depth, they have been shown to give advantages in information processing, compu-

tational, and causal inference tasks. One process of particular interest has been the

quantum switch, a black box which takes as an argument a bipartite non signalling

process and outputs a process. In this report I first concretely explore the advantages

of causally non separable processes and consider some more elaborate protocols in-

volving superpositions of n-partide operators over arbitrary causal orderings. I then

discuss a failed attempt to find a more intuitive way to reason about separability of

outputs of switch operators. Then a discussion and definition for a resource theory

of causal order, followed by some discussion of the most general setting in which

one may speak sensibly about higher order processes. This report starts out treat-

ing resources practically, computationally, with the aim to gain intuition for how to

approach the resources more formally.
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Chapter 1

Literature Review

Here we review tools results and frameworks relevant to the study of causal structure

as a resource.

1.1 Indefinite Causal Structure
Given that the causal ordering of events in spacetime is dependent on the mass

distribution in spacetime, and in quantum mechanics mass distributions may exist

in superpositions, it seems conceivable that the causal orders of events in spacetime

might exist in superpositions. To capture these possibilities and even less intuitive

indefinite causal structures, the framework of process matrices has been developed

[3].

In the Process matrix formalism it is assumed that quantum mechanics holds

in local laboratories, no assumption is made about the causal relations between

different laboratories.

To compute probabilities of outcomes inside laboratories, consistency is re-

quired with the algebraic structure of quantum mechanics. Consistency with the

linear representation of probabilistic mixtures and coarse graining forces the process

operator to be multilinear on quantum instruments. Using the Choi-Jamilkovski rep-

resentation MA1A2
j ” rIbM jp|φyxφ |qs

T of the quantum operations tM ju, one may

write down the most general billinear map using a process matrix W .

PpMpAq
i ,MpBq

j q “ TrrW A1A2B1B2MA1,A2
i MB1,B2

j s
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We can infer from the form of the process matrix, the causal structures with

which our probability set is compatible. W “ IA1W A2,B1IB2 implies at most, cor-

relations between the output of lab A and input of lab B (A quantum Channel) .

W “ IA2W A1B1IB2 implies at most, correlations between inputs of labs A and B.The

most general process matrix for a quantum theory with definite causal order and

Aď B ought to be a combination of these two cases,

W AďB
“ IB2W A1A2B1 (1.1)

We may imagine that we have a probabilistic mixture of a process compatible with

A ď B and a process compatible with B ď A. We call any such process matrix

“Causally Seperable”

WCS “ pW AďB
`p1´ pqW BďA (1.2)

Any bipartite process matrix that cannot be decomposed in this way is referred to a

causally non-separable.

1.2 The Quantum Switch

An example of a causally non separable process is the quantum switch [4] which

takes as an input two quantum channels N1 and N2, and outputs a new channel.

According to a control qubit, the quantum switch in the state |0y applies channel

N1 before channel N2 and in the control state |1y applies channel N2 followed by

channel N1. The krauss operators for the output of the quantum switch are [5],

Wi j “ Kp2qi Kp1qj b|0yx0|`Kp1qj Kp2qi b|1yx1| (1.3)

The quantum switch of two unitaries N1, N2 is then,

SpN1,N2qp|ψy , |`yq “
1
?

2
p|0yN2N1 |ψy` |1yN1N2 |ψyq (1.4)
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1.2.1 Channel Discrimination

The quantum switch is a computational resource when compared to quantum cir-

cuits with open holes [6]. Given two unitaries known to either commute or anti-

commute, the quantum switch can be used to distinguish between the two cases,

rN1,N2s “ 0 or tN1,N2u “ 0 (1.5)

with only one use of each channel. The output of the quantum switch can be rewrit-

ten in the t|`y , |´yu basis.

SpN1,N2qp|ψy , |`yq “
1
?

2
p|0yN2N1 |ψy` |1yN1N2 |ψyq

“
1
?

2
p|`ytN2,N1u |ψy` |´yrN2,N1s |ψyq

(1.6)

Measuring the output in the t|`y , |´yu basis gives |´ywith certainty if tN2,N1u “ 0

and |`y with certainty if rN1,N2s “ 0.

1.2.2 Activation of Classical Capacity

The quantum switch of two completely depolarizing channels N1 and N2 has a non-

zero classical capacity [5].

SpN1,N2qpρb|φyxφ |q “
1
2
p|0yx0|` |1yx1|qb

I
d

`
1
2
p|0yx1|` |1yx0|qb

ρ

d2

(1.7)

So when the channel is applied to ρ some information about ρ remains in the output.

All this information is classical however, the quantum capacity of the channel is 0.

1.3 Category Theory
A category C consists of

• A collection of objects ObpCq

• Morphisms (arrows) between those objects f : AÑ B
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• An associative composition operation ˝, such that for any pair f1 : A Ñ B,

f2 : BÑC, of morphisms the composition is itself a morphism f2˝ f1 : AÑC.

• An Identity morphism IdA for each object A, such that @B,C, f : A Ñ B, g :

CÑ A, f ˝ IdA “ f and IdA ˝g“ g

Ignoring sizing issues we may refer to the set of objects ObpCq, and between any

two objects A,B POBpCq the set of morphisms between A and B, denoted hompA,Bq.

A morphism f : A Ñ B has a 2 sided inverse if D g such that f ˝ g “ IdB,

g˝ f “ IdA

1.3.1 Functor

A functor F : CÑD associates to each object A PObpCq an Object B PObpDq, and

associates to each morphism f : AÑ B a morphism Fp f q : FpAq Ñ FpBq such that,

• Fp f ˝gq “ Fp f q ˝Fpgq

• FpIdzq “ IdFpzq

A functor captures the idea that a pattern of morphisms in one category can

be represented or seen in another category. Although fullness and faithfulness [7]

more capture this intuition, since between any two categories there is always a trivial

functor sending all objects to an object in D, and all morphisms to ID.

1.3.2 Natural Transformation

We may ask when two functors are really the same embedding of one category

into another. A natural transformation α : F Ñ G between functors F and G, is a

collection of morphisms αZ : FpZq Ñ GpZq for each object Z P ObpCq, such that

Gp f q˝αA “ αB ˝Fp f q. Two functors are naturally isomorphic, writen F –G ðñ

D natural transformations α : F Ñ G and β : GÑ F .

1.3.3 Symmetric Monoidal Category

One way to introduce the notion that a joint system is itself a system, is to require

that there is a functor from the product category CˆC [7] into itself

b : CˆCÑC (1.8)
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f1

g1

f2

g2

Figure 1.1: This picture represents both sides of equation 1.9

For a category to be symmetric monoidal (an SMC), there must exist a functor b,

there must be natural isomorphisms between IbA, A, and Ab I, where I is a special

object called the unit object, and there are some additional conditions on this functor

and collection of morphisms called coherence conditions [8]. The conditions on an

SMC imply

p f1b f2q ˝ pg1bg2q “ p f1 ˝g1qbp f2 ˝g2q (1.9)

Diagrams with morphisms as boxes and wires as systems can be used to reason

in SMC’s. Sequential composition is represented by the joining of wires between

boxes, tensor composition is represented by placing the boxes next to each-other on

the page. Equation 1.9 and and associativity are manifest in these pictures (figure

??).

1.4 Categorical Quantum Mechanics

In categorical quantum mechanics b coincides with the standard tensor product

of Hilbert spaces. Finite dimensional Hilbert space quantum mechanics is a dagger

compact closed category [8], objects are Hilbert spaces, morphisms are linear maps.

For each object A there is a dual object A˚ which concides with the dual space in

quantum mechanics. There exist special morphisms for each object
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Which represent bell state and measurements, they satisfy,

“

which can be interpreted as post selected teleportation. When we write a morphism

inside a trapezium, we can represent it’s dagger by flipping the box in the horizontal

plane.

f f=

:

I typically models the behaviour of a singleton set in the category of Sets. Functions

from singleton sets to other sets uniquely pick out elements of the codomain set. As

such we may imagine that a morphism ρ : IÑA represents an instance of the Hilbert

space A, I.E a state. I is drawn as an invisible wire, and so states look reminiscent

of rotated bra-ket notation.

ρ

1.4.1 ZX Calculus

The ZX calculus is a graphical language for reasoning about qubit quantum me-

chanics [9], It consists of red dots blue dots and hadamard gates. The red dots

correspond to sums in the computational basis, the green dots to sums in the fourier

basis.
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= |00...0yx00...0|` eα |11...1yx11...1|

α = |`` ...`yx`` ...`|` eα |´´ ...´yx´´ ...´|

α

They satisfy the axioms in 1.2, from which the antipode rule 1.4.1 can be de-

rived

Figure 1.2: The rules of the ZX-calculus [1]

=

1.5 Causality in CQM
In quantum mechanics we take states with a particular normalization (Trrρs “ 1)

to be the actual physical states that a particular system can take [10]. The only

processes that can occur must be those which take as inputs, legitimate states, and

output legitimate states, this is in quantum mechanics the trace preserving condition
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for a quantum channel. In the graphical language for CQM, the trace, (from here

on referred to as the discard map), is given a particular symbol, and using it we may

impose the above constraints (understood to be causality constraints) on morphisms

[11]. Causal processes are those which satisfy,

Φ

B

A

“ A

1.5.1 Second Order Causal SOC

Second order causal processes send causal processes to causal processes, that is, a

process is SOC if @Φ causal,

Φ “w

1.5.2 CPM

In this project frequent use of Selingers CPM construction is made. Each quantum

degree of freedom, system, or object in CPM is represented by a pair of wires from

HILB, one representing the bra of a density matrix, the other representing a ket.

==
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Any completely positive map can be considered as a unitary acting on an envi-

ronment, followed by discarding that environment.

=

1.5.3 Classical Structure

We can represent the condition that a channel only lets classical information through

by taking a quantum spider and applying the discard map to two of its legs, this is

referred to as the decoherence map.

1.6 Categorical Semantics for Causal Structure
Without the linear algebraic interpretation of being the trace, one can sometimes

still define a discarding map in a particular compact closed category. A category

Caus(C) is defined in [12], which consists of

• Causal States

• Causal Processes (Proceses which take causal states to causal states)

• Causal Higher Order Processes (For example, operations which take causal

processes to causal processes, such as a quantum switch)

These processes may only be permitted to compose in ways which produce new

causal states, processes, or higher order processes.
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1.6.1 Precausal Category

The following definition is from [12]. A precausal category is a compact closed

category C such that:

• C has discarding processes for every system, compatible with the monoidal

structure

• For every (non-zero) system A, the dimension of A:

A

is an invertible scalar.

• C has enough causal states:

p@ρ causal , f ˝ρ “ g˝ρq ùñ f “ g (1.10)

• Second-order causal processes factorize: @w P SOC,DΦ1,Φ2 causal such that

“

Φ1

Φ2

w

The circuit decomposition axiom turns out to be powerful in the context of this

project. It also seems that Caus(C) can be defined without this assumption.
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1.6.2 State Sets

For any set of states cĎCpI,Aq, the dual set c˚ ĎCpI,A˚q is defined as follows:

c˚ :“
"

π : A˚
ˇ

ˇ

ˇ

ˇ

@ρ P c . π ˝ρ “ 1
*

cĎCpI,Aq is closed if c“ c˚˚

c is flat if there exist invertible scalars λ ,µ such that

λ P c µ P c˚

1.6.2.1 The Problem with Compact Closed Categories

Compact closed categories have process state duality, hompA,Bq – hompI,A˚bBq.

Everything can be treated as a state. A state which encodes a process from (a process

from A to B) to C is a state into the following object) [12].

pProcessq˚bState“ pA˚bBq˚bC

“ B˚bAbC “ ProcessbState

So the object, that a state is into is not enough to express what type of higher order

transformation it represents.

1.6.3 Caus(C)

Caus(C) is a *-autonomous category constructed from C for which the objects states

map into encode the type of causal higher order process they represent.

• Objects A” pA,cAq. Where cA is a closed flat set of states on A.

• Morphisms f : AÑ B are morphisms f : AÑ B such that @ρ P cA, f ˝ρ P cB

the morphisms generalize the notion of being a causal map on their type.

1.6.3.1 Properties of Caus(C)

cAbB is defined in [12]. cA˚ ” c˚A.
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• Caus(C) is symmetric monoidal with respect to AbB” pAbB,cAbBq

• Caus(C) is star autonomous, with p´q˚ : Cop ÑC defined on abjects by A˚ “

pA˚,cA˚q

• A`B” pA˚bB˚q˚ is a second choice of tensor product.

1.6.4 1st Order Systems

A first order system is defined so that morphisms between first order systems in

CauspCq are morphisms that are causal in C.

1.6.5 Lollipop Functor

One can confirm that for A ›B ” pAbB˚q˚. The causal morphisms f :

IÑ pA ›Bq are isomorphic (via the cup and cap) to the causal morphisms in C.

A ›B represents the morphism type, and so Morphisms w : pA ›A1q Ñ pB ›B1q
in Caus(C) are SOC morphisms in C.

1.6.5.1 Results concerning first order systems

For first order systems Ai,

• A1 `A2 – A1bA2

• pA1 ›A2q` pB1 ›B2q – pA1 `B1q ›pA2 `B2q.

• States ρ : I Ñ pA1 ›A2qbpB1 ›B2q are states representing non signallis-

ing processes, that is, the bipartite processes which are consistent with either

causal ordering between them

Rather than speaking about w : IÑ X, we may speak about the underlying mor-

phism w and declare its type I ›X.

1.6.5.2 SOC2

A process is SOC2 if it has type ppA ›A1qbpB ›B1qq ›pXbC ›C1q, I.e it takes

a non signalling bipartite process to a new process. SOC2 processes are typically

represented by I-shaped boxes as in figure 1.3. An example is the quantum switch,

which for the |0y state pluged into system X routes maps in one order, and for |1y,

the other.
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π

Figure 1.3: The quantum switch as a black box SOC2 process

1.7 A Mathematical Theory of Resources
Any SMC can be interpreted as a resource theory [2] with

• Objects as resources

• Morphisms as free operations

SMC’s can also be interpreted as process theories, with

• Systems as objects

• Morphisms as processes on systems

In [2] three recipes are given for turning a process theory C into a resource theory.

First Define an all objects including subcategory C f ree ãÑC of processes considered

to be free

1.7.0.1 Resource Theory of States

States of partitioned resource theory become the objects of ObpSpC,C f reeqq :“
Ť

AP|C| hompI,Aq. For morphisms η P Sps, tq ðñ t “ η ¨ s.
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ξ2

ξ1

f

Figure 1.4: [2] A 1 comb is a pair of morphisms, partially connected by ancillary channel,
with an open hole. The circuit decomposition assumption in a precausal cate-
gory says that SOC decompose in 1-combs where both morphisms are them-
selves causal

1.7.0.2 Resource Theories of Parallel combinable processes

Morphisms in C become the objects in the resource theory.

|PCpC,C f reeq| “
ď

A,BP|C|

hompA,Bq (1.11)

A transformation between two processes is performed by having the first process be

part of a quantum circuit which is equal to the second process. The transformation

itself is a circuit with a hole, and since free morphisms are closed under sequential

and tensor composition, any circuit with a hole can be written in 1-comb form

shown in figure 1.4

1.8 Quantum Superpositions of Causal Orders as an

Operational Resource
In [13] a resource theory is defined for bipartite causally non separable processes,

and some terminology is introduced. BpHq ” t Bounded Linear Operators on Hu.

• P = set of all legitimate process matrices PĂ BpHPbHA0bHB0bHFbHAIb

HBI bHCq

• CS = set of all probabillistic mixtures of causally ordered processes

• W \CS = set of causally non-seperable processes

The quantum switch is indefinite as a result of being the coherent control causal

order, this is not the only sense in which a processes might have indefinite order.
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1.8.1 Quantum Control of Causal Orders

Consider WABC P BpHC bHAI bHAO bHBI bHB0q. Then WABC does not present

coherent control of AB by C, if it can be expressed as a classical probabilistic distri-

bution of control states and process matrices.

WABC “
ÿ

i

qiρ
piq
C bW piq

AB (1.12)

Let S be the set of all processes which have no coherent control of AB by C when

any other systems are discarded.

NQC “ convpS
ď

CSq (1.13)

No quantum control of causal orders is the condition that either the control is in a

product state with the actions on A and B, or there is simply no indefinite causal

order. Two classes of transformations on process matrices are defined in 1001r13s,

both of which leave NQC invariant. A protocol is also given for distillation of

generalized quantum switches.



Chapter 2

Practical Graphical Methods for the

Quantum Switch

In this chapter graphical methods for generalized switches are explored, with an

eye towards understanding the differences in capabilities of generalized switches

for particular protocols.

2.1 Coherent Switch in the Computational Basis

The quantum switch can be split into four components

Spρ, |`yq “
1
2
|0yx0|b

d2
ÿ

a
. . .

d2
ÿ

f

Kp0qa . . .Kp0qf ρKp0q
:

f . . .Kp0q
:

a

`
1
2
|1yx1|b

d2
ÿ

a
. . .

d2
ÿ

f

Kp1qa . . .Kp1qf ρKp1q
:

f . . .Kp1q
:

a

`
1
2
|1yx0|b

d2
ÿ

a
. . .

d2
ÿ

f

Kp1qa . . .Kp0qf ρKp1q
:

f . . .Kp0q
:

a

`
1
2
|0yx1|b

d2
ÿ

a
. . .

d2
ÿ

f

Kp0qa . . .Kp1qf ρKp0q
:

f . . .Kp1q
:

a
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The same output can be written semi-graphically (semi since the expression still

includes sums).

g

f

g

f0 0

f

g

g

f1 0

g

f

f

g0 1

f

g

f

g1 1

+ + +

(2.1)

The bridges can be understood as implementing the sums over the Krauss Opera-

tors. The quantum switch of two completely depolarizing channels has a non zero

classical capacity, this surprising result can be made intuitive in the graphical pic-

ture, where a completely depolarizing channel is written

f = ùñ
f f = =

1
d1?

d

1
d

(2.2)

Which upon inserting into equation 2.1 gives

0 0 1 1+ 1 0 0 1++1
d

1
d2

(2.3)

Measurement in the |˘y basis will return a sum of two maps, up to normalization...

˘

(2.4)

Measurement in the |˘y basis will always return one of two superpoperators. By

looking at these super-operators we can deduce for more general classes of maps,

whether classical capacities are activated or de-activated.
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2.1.1 Some Corollaries using Graphical Calculus

Corollary 1. The quantum switch of Decoherence maps in the same basis, is the

same decoherence map.

Proof.

0 0 1 0 0 11 1

+ + +

=
+ +

Corollary 2. The quantum switch of Decoherence maps in complementary bases,

0 0 1 0 0 11 1

+ + +

=

0 0 1 0 0 11 1

+ + +

=

0 0 1 1+ 1 0 1 0++

By repeated use of the Bi-algebra equation, whilst definite order of the complemen-

tary decoherence channels is seperable, their coherent switch is not.

Corollary 3. The off diagonal elements of the quantum switch of an arbitrary map
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with the completely depolarizing map

f
f

–

From which we immediately learn that the dimension of the space required for

purification, (The trace subspace, the bridge), upper bounds the amount of informa-

tion that can reach the bottom from the top.

2.2 N! Switches

Here we consider coherent control of multiple sequential orderings of multiple

channels. Each additional degree of freedom in a control qudit could be assigned to

a different causal order of input channels. For an N partite super-operator there are

N! possible causal orders between the input holes. The graphical picture seems to

simplify computations, and the search for useful protocols.

ρ
1
“ Sptiuqpρ,

1
?

N!

N!´1
ÿ

i“0

|iyq“
1

N!

ÿ

i j

|iyx j|b
d2
ÿ

a
. . .

d2
ÿ

f

Kpi1qa . . .KpiNqf ρKpiNq
:

f . . .Kpi1q
:

a

Formally each degree of freedom in the control corresponds to a particular permu-

tation π of the open slots of the super-operator. The term |iyx j| of the N!-Switch in

the computational basis will come with a diagram where on the left hand side the

boxes have been rearranged to permutation πi, and on the right hand side the order

of the boxes corresponds to permutation π j. The only thing which matters is the
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relative permutation between them, we denote this π .

1

πp2q

πp1q

2

πp3q3

πpN´1qN-1

πpNqN

πip1q

π jp2q

π jp1q

πip2q

π jp3qπip3q

π jpN´1qπipN´1q

π jpNqπipNq
i j

i j

–

(2.5)

Each term in the output take the form |iyx j| b Ô .By using permutations

ti1 . . . iN´1iNu and t j1 . . . jN´1 jNu, to write down two permutations in cycle

form p0 jN jN´1 . . . j1q,p0i1 . . . iN´1iNq. The cycle decomposition of their product

Cπi j “ p0 jN jN´1 . . . j1qp0i1 . . . iN´1iNq. The phrases “i,j are cds” are used here to

mean “either i is cds sortable to j or j is cds sortable to i” [14].

• Ô9 Depolarising Channel ðñ 0,N are not in the same cycle of Cπ ðñ i,j

are cds

• Ô9 (Information transmitting term)ðñ 0,N are in the same cycle of Cπ ðñ

i,j are not cds

• The normalization of a term is determined by the number of cycles cpπi jq in

the cycle decomposition of permutation Cpπi jq

• More precisely a term is multiplied by a factor 1
dN dpcpπq´2q if i,j are cds and a

factor 1
dN dpcpπq´1q if i,j are not cds

The normalisation condition comes from noticing that the normalisation is given by

counting closed loops in diagrams. Each bubble in a diagram gives a factor of d.

The number of cycles is related to the number of bubbles in the following way

• For a cds permutation π , number of Bubbles “ cpπq´2

• For a non cds (“ncds”) permutation π , number of Bubbles “ cpπq´1
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2.2.0.1 Proof

Define the following permutations in cycle notation.

X “ p0i1 . . . iN´1iNq

Yπ “ p0 jN jN´1 . . . j1q

We may without loss of generality take the left permutation to be the identity and

consider the right hand side to be some arbitrary permutation π . For the cycle

decomposition of their product

Cπi j “ p0πNπN´1 . . .π1qp01 . . .pN´1qNq

and so Cπpaq “ πpπ´1pa`1q´1q. With slight modifications interference diagrams

represent the operation of Cπ . We extend the interference diagram to have two extra

fake depolarizing channel terms, from 0´´0 and pN`1q´´pN`1q. Then Cπpaq

is computed by starting at slot a on the right hand side and then following the simply

connected path down once, across, up and back across.

If The path taken starting at node 0, (and so entering the unmodified interfer-

ence diagram from the top left) reaches node N (and so leaves the diagram through

the bottom left) the term is proportional to the identity channel. It follows that if

in the cycle decomposition of Cπ , 0 and N are in the same cycle, the channel is

proportional to the identity.

2.2.0.2 cds Permutations

cds permutations are posited to appear in nature. It can be proven that a permutation

π is cds i f f 0 and N are in the same cycle of Cπ .

2.2.0.3 Remarks

• The cds permutations are not currently enumerated for general N, a suggested

formula which fits untill N = 11 (The limit computed so far) is number of
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a

Cπpaq

a+1

a+1

Cπpaq

a

Cπpaqa+

a+1Cπpaq
–

(2.6)

Figure 2.1: Running a finger along an interference diagram is identical to computing Cπpaq

1

1

πp1q

πp1q

πpNq

πpNq

N

N

1 πp1q

πpNqN

–

0 0

N+1 N+1

0

0

0

0

N+1 N+1

N+1 N+1 (2.7)

Figure 2.2: Modification to interference diagram, channels introduced at 0 and N+1
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cds permutations (so number of depolarising terms) = N!
2 `

pN´1q!
2 for odd N.

Note that this means the ratio between the number of information transmitting

terms and the number of depolarising terms is less for odd N than it is for N=2

The general output of the quantum switch of N depolarising channels could be writ-

ten semi-explicitly by defining,

cdsi, j ” tPairs (i,j) of permutations which are related by cds permutationsu

and

ncdsi, j ” tPairs (i,j) of permutations which are not related by cds permutationsu

cds permutations give maximally mixed state, ncds permutations give information

transmitting terms. So we can write

ρ
1
“

1
N!

ÿ

cdsi j

1
dN dcpπi jq´2

|iyx j|b I`
1

N!

ÿ

ncdsi j

1
dN dcpπi jq´1

|iyx j|bρ

Where cpπq is the number of cycles in Cπ .

2.2.1 Cyclic NC-Switch

Any term i, j for which, πi and π j are cyclic permutations (and hence cyclic permu-

tations of eachother), give a term proportional to the identity.

i j i j= 1
d2

(2.8)

Where the proportionality factor can be computed by counting loops in the

diagram, the more loops the less suppressed the term is.
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In this case we see that an interesting candidate for quantum N-Switch proto-

cols is the superposition of the N cyclic permutations terms, since any two cyclic

permutations of a list, are also cyclic permutations of each other. The general output

is

ρ
1
“
ÿ

i

|iyxi|b
I
d

Trpρq`
ÿ

i‰ j

|iy | jy
ρ

d2 (2.9)

2.2.2 Summary

The method has an intuitive graphical picture that allows one to guess good proto-

cols, however sums of diagrams are awkward and make it difficult to deduce more

generally under what conditions our super-operators produce channels with non

zero classical or quantum capacities.
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How Much Time Travel can we Buy?

3.1 Quantum Switch and Post Selected Time-like

Curves

Assuming a quantum 2! switch can be implemented by a quantum circuit leads to

the absrudity that the circuit can be composed with swap operations to produce a

(post-selected) closed timelike curve [4]. With a quantum circuit and a post selected

closed timelike curve, the quantum switch can be perfectly simulated. The quantum

switch is equivalent to quantum circuits with time travel. This section generalizes

these results to the N! Switch.

3.2 Switch of N! Causal Orders–N-1 Post Selections

The proof is a generalization of the proof for the 2 channel case in [4]. Rather than

using the superoperator formalism presented there, I use a description in terms of

compact closed categories. The proof requires the use of ancillary channels of maps

inserted into the quantum switch, so first I prove that it is legitimate to input part

part of each of two 2-way signalling processes into a quantum N-Switch (lemma 5).

Lemma 4. pA`BqbpC`Dq ãÑ B` pAbCq`D.
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Proof. Using the Canonical embedding pX`YqbZ ãÑ X` pYbZq

pA`BqbpC`DqãÑ B` pAbpC`Dqq

ãÑ B` ppAbCq`Dq

– B` pAbCq`D

Lemma 5. For the Quantum N-Switch w, the morphism in C underlying w` p`kIkq,

appears in Caus(C) as WI :
ÂN

j ppAj ›A1

jq` pBj ›B1jqq Ñ D ›D1

Where all Capi-

tal letters in the preceding expression represent first order systems.

Proof. A quantum N switch w by definition appears as a morphism w :
Â

ipAi ›A1

iq Ñ pC ›C1

q.

By functorality, w` p`kIkq : p
Â

ipAi ›A1

iqq` p`kpBk ›B1kqq Ñ pC ›C1

q` p`kBk ›B1kq.

• First to show, is that there is a canonical map from the proposed input of WI

to the input of w` p`kIkq. Let Xi ” pAi ›A1

iq and Yi ” pBi ›B1iq. Assume

an induction hypothesis for N

N
â

i
pXi `Yiq ãÑ p

N
â

j
pXjqq` p`N

k pYkqq

ùñ

N`1
â

i
pXi `YiqãÑ pp

N
â

j
pXjqq` p`N

k pYkqqqbpXN`1 `YN`1q

Then using Lemma 2

pp

N
â

j
pXjqq` p`N

k pYkqqqbpXN`1 `YN`1q

ãÑ ppp

N
â

j
pXjqqbXN`1q` pp`N

k pYkqq`YN`1q

Lemma 2 also proves the base case.
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• Finally, the output of w` p`kIkq is already of type pFirst Order ›First Orderq,

since pC ›C1q` p`kBk ›B1kq – pCbÂ

j Bkq ›pC1

b
Â

k B1kq.

Theorem 6. A circuit implementing the coherent superposition of the N! orders

between N quantum channels implies the possibility of travelling back in time N´1

times.

Proof. Identical to [4]. Any circuit containing 1 copy of each of t fiu can be written

as
fσpnqfσp2qfσp1q

Without loss of generality we may relabel and take the permutation σ to be the iden-

tity. If the circuit implements one of the N! permutations of the possible sequential

compositions of the fi for each of the N! qudit states, then there exists some qudit

state |qy for which the circuit must implement the map in figure().

εσpnqεσp2qεσp1q

The quantum switch as defined here acts in the same way independantly of whether

the input maps have ancillary systems, and we have already proved that inserting

ancillary maps is a legitimate causal operation. As in [4], choose each εi to be the

swap
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Then the quantum switch can be used to generate N time like loops.

b

Theorem 7. The Quantum N!-Switch can be Implemented by a quantum circuit with

ancillary channel dimpHq “N!, 2N2 Qudit controlled swaps, and N-1 Post selected

timelike curves

Proof. See string diagram in figure 3.1. Label each control degree of freedom by

the permutation it should implement |πmy. Controlled swap Sk
iα with i P t1 . . .Nu,

k P t1 . . .N´ 1u, α P t0,1u, is implemented for all α by control qubit |πmy if i “

πmpkq. For control qubit |πmy this circuit implements Aπmp1qAπmp2q . . .Aπmpnq.

The utility in this picture is at least 2-fold.

• A concrete way to write down the ZX diagram for an Arbitrary N!-Switch.

• It suggests that we count count the amount of indefinite causal order we have

by the number of post selections needed to simulate the process. As such

given a switch of (N-1)! orders, which is equivalent to N-2 post selected Bell

states, we cannot hope to produce a switch of N! orders, which would require

an additional post selection. Any formal resource theory of indefinite causal

order should capture this fact. We however note that in principle a circuit

with (N-2) post selected time-like curves might be able to produce a switch

of N!´ 1 or less causal orders. In fact, with one post selection and 4 qutrit

controlled swaps, 5 of the 6 permutations of 3 channels can be implemented.
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fNf1 f2

S1
1a

S2
1a

S3
1a S3

1b

S2
1b

S1
1b S1

2a

S2
2a

S3
2a S3

2b

S2
2b

S1
3a S1

na

S2
na

S1
nbS1

2b

S2
nb

S3
nbS3

na

+ + + + + + + + + + + + + + + + + + +

Figure 3.1: Quantum circuit with post selection which implements the coherent switch of
N! orders between channels

It may be worth noting that for N nested quantum switches one can implement 2N

orders of N Channels.

3.3 N to N-1
Simply by inserting an identity channel into the N-Switch one may produce an N-1

switch, where the control qubit is now guaranteed to be in an pN´1q! dimensional

subspace. Such insertions of identity maps should also always come for free in any

resource theory.



Chapter 4

Fully Connected Picture

4.1 Problems
So far graphical methods have been used to aid computation and intuition, however

the properties of sums of diagrams are not always intuitive combinations of prop-

erties of the summands. A particular example is the semi-graphical computation

verifying [15], which I have not presented here, the output of the quantum switch

on an entanglement breaking channel can produce a channel with perfect quantum

capacity, but it is very unclear that the sum of diagrams in the output of the quantum

switch, even has any quantum capacity at all.

I wondered if we could deduce more generally some conditions for which our

super-operators produce channels with non zero classical or quantum capacities.

4.2 Motivation - Controlled Unitaries
Given a black box controlled unitary in the computational basis, knowledge of each

particular unitary does not necessarily give great intuition for the behaviour of the

black box when given a control state that is in superposition of computational basis

states (The same is not as true for probability distributions over computational basis

states). To reason graphically with controlled unitaries in coherent control states, it

seems that write the sum or look under the hood (write explicitly the contents) of

the black box.

Similarly to reason graphically with (computational basis) controlled super-

operators in coherent control states, without resorting to sums of diagrams, it seems
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we should look under the hood.

I found that the ZX calculus gave a way to reason about separability of con-

trolled unitaries, even when supplied with a control in superposition. I hoped that

this tool would transfer over to reasoning with coherent super-operators.

4.2.1 Toy Toy Unitary

We can easily write down graphically a controlled σx or CNOT gate. For sure

inserting the 0 state gives I and the 1 state gives σx.

: =

π

π= σx=

Controlled σx |0y Gives I

|1y Give σx

|`y Is seperable
=

(4.1)

Given this one fully connected graphical equation we may now reason about the

effect of the plus state control, and we can immediately learn that the effect of the

plus state is to turn the black box into a channel with 0 capacity, since it can be

written as a separable map.

We can also reason about the equal probability distribution of the 0 and 1 states.

= = =

(4.2)
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Here we see we get an entanglement breaking channel, one that has classical capac-

ity but not quantum capacity.

This gives us some intuition for quantifying capacities graphically too, given

our qubit controlled unitary, the less evenly weighted the probability distribution

the higher the quanum capcity, and the probabillity distribution can be read off the

diagram.

=

(4.3)

4.2.1.1 Open Ends

The standard definition of a CNOT has an open wire at the top which declares the

value of the control qubit in the computational basis (Easily done since green copies

red), we find that it is much harder to prove results about coherent controls when

this open end is included.

= = =

Standard Representation of CNOT

??

(4.4)

4.3 Toy Unitary
In a slightly less simple example the ZX calculus stil allows us to reason outside of

basis control states. The Bi-Algebra rule becomes useful here.

We can write a coherent control of 4 Pauli channels as follows.

H
(4.5)
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It is easy to check that for...

• Input state |0y |0y the output is σIσI (Perfect quantum and classical capacity)

• Input state |0y |1y the output is σIσy (Perfect quantum and classical capacity)

• Input state |1y |0y the output is σxσI (Perfect quantum and classical capacity)

• Input state |0y |0y the output is σxσy9σz (Perfect quantum and classical ca-

pacity)

Again we may now consider coherent control

• Input state |`y |`y the output is separable (0 quantum and 0 classical capac-

ity)

H
= =

(4.6)

• Input state |`y |0y the output is separable (0 quantum and 0 classical capac-

ity), diagram omitted.

The ZX calculus also allows for reasoning with probabilistic control of Pauli chan-

nels,

Cpρq “ p0ρ` pxσxρσx` pyσyρσy` pzσzρσz (4.7)

It is again easy to check that for,

• Both Input states having ppoq “ 1
2 , pp1q “ 1

2 (Corresponding to pI “ px “

py “ pz “
1
4 ) the output is separable (0 quantum and 0 classical capacity)

H
= = =

(4.8)
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T32 T23T23 T32 T23T23 T32 T23T23f1 f2

Figure 4.1: Post Selected quantum circuit implementing the quantum switch. T23 stands
for a toffoli, when interpreted as a Controlled CNOT, is controlled by 1, and
implements a CNOT with control on 2, target on 3

• Input states pp0q “ 1
2 , pp1q “ 1

2 on the left and pp0q “ 1 on the right (Corre-

sponding to pI “ py “
1
2 ), produce entanglement breaking channel

H
= = =

(4.9)

4.4 Fully Connected Quantum Switch in the ZX Cal-

culus

By using the quantum circuit with post selection implementation of the quantum

switch, one can look under the hood of the quantum switch, and write it down

explicitly in a single ZX diagram (figure 4.1).

Using triangle nodes [16], a controlled CNOT (A Toffolli) can be written

Toffoli =

(4.10)
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Figure 4.2: ”Simplification” of the quantum switch of two same-basis decoherence maps,
little does quantum matic know, but this diagram is equal to a single node spi-
der.

A controlled swap can be implemented with three controlled CNOTs.

So the following is a ZX diagram for the quantum switch.

π

π
π

π
π π

π

π

π

π
π π

π

π

π

π
π π

f1 f2

We have one diagram, by doubling the diagram we can look at its result on any

CPM, as one fully connected diagram. We can input the coherent control plus state,

and see if the resulting ZX diagram is in any way illuminating.

4.4.1 Quantomatic

In a fit of laziness, I decied to ask quantomatic [17] to simplify the ZX diagram for

me, the outcome was not illuminating. Chances are, this is because the automatic

simplification procedures in Quantomatic explicitly deal only with circular nodes,

so I had to expand out the triangle nodes explicitly in terms of red and green nodes.

The next natural step then was to try to teach Quantomatic triangle rules, however

these had to be given in terms of the ZX dot diagram for the triangle node too,

since the current version of Quantomatic does not allow for theories with directional
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nodes.



Chapter 5

Causal Resource Theories

5.1 Motivation

In the resource theory of entanglement [18], everything which does not generate

entanglement is considered free, and all of those processes which are not composed

of free processes are considered resources. With respect to the resource theory

of entanglement, we are using the word process very generally, and including as

processes, state preparation among things we consider to be processes.

5.2 Causal Non-Separability as a Resource Theory

From a useful conversation with Aleks Kissinger we found a fully connected way to

write the most general probabilistic combination of two oppositely linearly ordered
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bipartite combs.

α0

γ0

δ0

β0

–

γ1

δ1

α1

β1

p0 + p1

ρ

α γ

δβ

σ

σ σ

In terms of resource theories, if the following class of operations are considered free

ρ

α γ

δβ



5.2. Causal Non-Separability as a Resource Theory 48

Then the quantum switch can be used to reach any such causally separable process.

We should also expect

α γ

δβ

To be free.

We see that this process combined with our generally separable order switch,

gives a new separably ordered switch

α γ

δβ

α 1 γ 1

δ 1
β 1

=

α2 γ2

δ 2β 2

This picture is nearly useful, in future work it would be beneficial to look into

purification’s of process matrices, so that we can write all causally non seperable

processes in this form.
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5.3 Non Directed Order as a Resource
As a step towards a formal resource theory of indefinite causal order, we consid-

ered if we could use the types defined in a [12] to make a resource theory of non

linear causal order. When the precausal category is CPM, we note that probabilistic

mixtures of Linearly ordered super-operators would be included among-st the re-

sourceful operations. I imagine that eventually one might be able to discuss at least

four distinct flavours of causal structure in one framework.

• Linear Causal Orders

• Probabilistic Mixtures of Causal Orders

• Coherent Superpositions of Causal order

• (Causal) Inequality-Breaking Causal Orders

We have already shown we can write down quite general n-partide causally

separable process as a single ZX diagram. It may then make sense to work directly

with these pictures, that aside it seems interesting to ask what can be said by only

referencing the type structure of Caus(C) directly.

5.4 Direct Definition of Resource Theory
We could try to go ahead immediately and define the SMC that is the resource

theory, rather than starting with a raw materials SMC and using it to build a resource

theory SMC. We take any Higher order process in CauspCq which takes a process

compatible with a linear order to another process compatible with a linear order to

be free. In words it seems to follow immediately that one cannot produce a non dag

ordered process from these free processes. We now make this formal.

The definitions I make, typically take the morphism w P C to be the physical

thing we may own, and so whenever we claim to have access to w we should also

claim to have access to all of those morphisms w1 such that w1 “ w.
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5.4.1 Resource Theory of Perfect Linear Structure

By perfect I mean not even probabillistic.

C f ree “Closptf : Df1 P CauspCqpX,Zq with f 1 “ f and pX,Zq “
č

k

Yp f qk,
č

k

Yp f qkqu

f and f 1 really have to be the same morphism in C, not just isomorphic morphisms.

Now we expect that any non direct resource theory of linear causal order we

construct (See next section) should be a sub category of the close of the above.

5.5 Linear Order Type as a resource
Rather than jumping the gun and taking all of those Linear order preserving opera-

tions as resources, one could imagine a game where a participant may or may not

be allowed some higher order operations, loosely call them nth order. In particular

they are not allowed the resource operations, the Non Linearly ordered operations,

and so for free they are allowed any operation compatible with a linear causal order.

Given 1 copy of a resourceful operation the player is tasked with constructing

some other resourceful operation. With the tools currently available to them, they

must use their free nth order processes to make an even higher order transformation

that takes the nth order processes to nth order processes. A base case example is

the resource theory of parallel combinable processes, where morphisms are used to

construct circuits of morphisms with open holes.

In the case of first order morphisms, there are only two ways to compose any

two morphisms, in sequence and in parallel. We note that for a multi system mor-

phism, plugging in some but not all wires really means to completely compose their

b by identity extensions. By functorality it is immediate that for f1 : A1 Ñ A11,

f2 : A2 Ñ A12,

• f1b f2 : A1bA2 Ñ A11bA12

• f1 ` f2 : A1 `A2 Ñ A11 `A12

However, whilst it seems intuitive that when two tensor separable morphisms act on

types, they should take linear orders between those types to linear orders between
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their output types, my current proof relies on a seemingly conceptually unrelated

axiom, circuit decomposition.

Theorem 8. w1 : pA1 ›A11q Ñ pB1 ›B11q, w2 : pA2 ›A12q Ñ pB2 ›B12q ùñ Dw112

such that w12“w1bw2 and w12 : pA1 ›pA11 ›A2q ›A12qÑ pB1 ›pB11 ›B2q ›B12q.

Proof.

w1 w2Φ1Φ ùñ= Φ

=

η1 η2

Φ Φ=

µ1 µ2

Φ1=

(5.1)

From the above theorem it follows immediately that tensor extensions with the

identity take linear orders to linear orders. More alarming is the following

Theorem 9. SOC2 operations can be slotted inside each other to make legitimate

SOC2 operations.
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Proof.

=

SOC2

SOC2

SOC2

C

C

C

= C

ùñ
C

C

Since it is hard to understand physically how to implement such a composi-

tion of higher order maps, we may find that in a resource theory of higher order

maps, with circuit decomposition, that we make physical laboratory restrictions on

methods of composition as well as placing restrictions on the processes themselves.

5.5.1 Definition of Resource Theory Of Linear Causal Structure

We could take any SOCn morphism of the form w PCauspCqp
Â

ipAi Ñ A1iq,
Â

kpCk Ñ C1kqq

such that w : A1 Ñ pA11 Ñ pA2...q Ñ Anq Ñ pAnq
1ÑC1 Ñ pC11 Ñ pC2...q Ñ Cnq Ñ pCnq

1.

To be free. I would expect this class to be closed, but am unable to prove it. We

can say that the free operations are the closure of this class, but it would be good to

know explicitly what those morphisms are.



Chapter 6

General Higher Order Resource

Theories

6.1 General Higher Order Resource Theories
For objects which we can imagine as representing Hilbert spaces we ask what is the

most general way to include obects which represent maps between Hilbert spaces.

If we imagine the morphism to represent a function we imagine that given a function

and an element of the input we have all the data required to produce the output of

the function [7]. That is there should exist some morphism called evaluation from

pX ›Y qbX Ñ Y . We see that to consider an object a morphism we should make

sure that there category allows one to take products. We can define the function

object by universal property, amongst all of those objects with evaluations maps.

6.1.1 Closed Symmetric Monoidal Category

Closure we enforces the existence of morphism objects, closure can be expressed

as the requirement that the functors ´ ›b and ´b b are Left and Right adjoint

functors of eachother.

6.1.2 Our Approach

One question that could be asked is whether morphism objects can exist under

looser conditions, in an attempt to set the scene for the most general theory of higher

order processes. We assume that we are in the setting of a symmetric monoidal cat-
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egory, we assume that we have some objects with labels such as A ›B, and we ask

under what conditions we may consider these objects to really represent morphism

types. Since states ought to represent instances of the object, they are an indirect

way of speaking of the imagined elements of the object. We ask that states on A ›B
should correspond to morphisms in HompA,Bq. As such there should be some no-

tion of composition of two morphism states, which returns a new morphism state,

corresponding to their morphism sequential composition. To make any progress

we must assume a bijection HompA,Bq – HompI,AÑ Bq. But we do not assume

any naturality of the Bijection. Given any bijection we could in principle define

sequential composition of morphism states.

∆abc : rb,csb ra,bs Ñ ra,cs (6.1)

We can view this as asking for there to exist a particular SOC2 morphism! Any

such morphism compatible with a particular bijection can be written down.

∆123 ˝ pFbGq “ α
´1
13 pα23pGq ˝α12pFqq (6.2)

Our suspicion is that for ∆ to be physically reasonable it should be the case that

αp1q2 is a natural isomorphism between the Hom functors HompI,A1 Ñ A2q and

HompA1,A2q on A2 where we are considering A1 to be fixed.

For the family of ∆ morphisms to be compatible with braiding structure we

should ask that

∆111221331ppFbF 1qpGbG1qq “ ∆123b∆112131pIbσ b IqppFbF 1qpGbG1qq (6.3)

Which in turn places a condition on the Bijection

α
´1
13 pα23pGq ˝α12pFqqbα

´1
1131pα2131pG

1
q ˝α1121pF

1
qq (6.4)

“ α
´1
111331pα221331pGbG1q ˝α111221pFbF 1qq (6.5)
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Which in turn implies for αpFIq “ I, αpF 1I1q “ I1.

αpFIbF 1I1q “ αpFIqbαpF 1I1q (6.6)

Consistency with sequential composition is derivable from the bijection and so

imposes no further conditions

∆pH,∆pG,Fqq “ α34pHqα23pGqα12pFq “ ∆p∆pH,Gq,Fq (6.7)

ùñ ∆pH,∆pG,Fqq “ ∆p∆pH,Gq,Fq (6.8)

No more progress was made due to time constraints, in future work I hope to find

the requirements on ∆ which force α to be natural.



Chapter 7

General Conclusions

I have used mainly graphical methods to determine the properties of generalizations

of the quantum switch. The purpose of exploring N! switches, was two fold, first

to look for more specific protocols in which causal structure could be levied as a

computational or information processing resource, and secondly to related higher

and lower order switches, for the purpose of counting causal structure as a resource.

Partial graphical methods with sums of diagrams were both computable and intu-

itive to a degree. Fully connected graphical approaches were less successful, al-

though also less explored. We found via simple generalization of proofs in 1001r4s

that to implement the superposition of N! order requires N post selected time trav-

els, as such, given N time travels, one could get more causal bang for their buck

with an N! switch than they would by naively making N quantum switches. After

some intuition for larger scale indefinite causal structures, some more formal work

was attempted, first a general way of writing any probabillistic mixing of any two

Combs ordered in opposite directions. That fact that these could be written entirely

in terms of the switch, local unitaries, and decoherence channels, is a source of op-

timism that in many resource theories of indefinite causal order one could pin down

important sections of resource theory pre-orders between resources with little work.

A formal attempt to define a toy resource theory of linear order was made with ref-

erence to types in CauspCq, the author found this to be frustratingly difficult and

suspects that one should work directly with explicit expressions in C, although can-

not articulate why other than to say that it has been difficult so far. Finally, having
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noticed that facts about preservation of causal structure in terms of type, were often

easier to prove, or made possible to prove, using the circuit decomposition axiom,

which the author again found supring. So in the most formal line of work the author

considered working from the ground up, by defining an SMC, and trying to find the

minimal condition under which one could regard



Chapter 8

Outlook and Future Directions

Just as with states and channels, some higher order processes are more resource-full

than others, this has become apparent in the field of quantum Causal Structures. As

such, the resources required to generate higher order resources, and the higher order

resources needed to make lower order resources are questions of practical impor-

tance, independently of whether the more specific framework of indefinite causal

structure can be implemented in near or far term laboratories. Future work and de-

velopments should involve a development of general higher order resource theories,

in the spirit of [2]. In the specific context of indefinite causal structures, a hierarchy

of non inequality breaking indefinite causal structures will be a contribution that al-

lows researches to deduce what can and cant be achieved in specific situations. This

may be particularly interesting in the context of resource conversion between higher

and order lower resources, it has been recently shown that the quantum nature of

gravity being tested in table top entanglement generation protocols [19] is the super-

position of spacetime geometries [20]. Further explorations of resources generated

by indefinite causal structures may provide us with further ways of extracting pre-

dictions from fundamental theories and further practical motivations to implement

them, alongside related definite order protocols with similar properties, such as su-

perpositions of trajectories [21]. The black box description of switches makes them

more difficult to reason with, so further work should be done in understanding them

with respect to explicit basis independent descriptions. Additionally it would be in-

teresting to understand under what conditions inequality breaking indefinite causal
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structures [22] can be turned into non-inequality breaking ones.
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