
Games as Mathematics of

Logic and Computation

Norihiro Yamada

Balliol College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2017

This thesis is dedicated to my parents

Muneyoshi and Yumiko

for their enduring love and support.

Acknowledgements

First and foremost, I am grateful to my supervisor Samson Abramsky.

It all began rather mysteriously with the accidental meeting with him

during my travel to Cambridge, without which I would not have come to

Oxford, let alone become who I am today. He profoundly understands

and supports my views and interests in mathematical and foundational

problems, and has given me a complete freedom to pursue them. Also, he

has been offering me accurate guidance with his extraordinary depth and

breath of knowledge as well as flexibility to embrace new ideas. I learnt

a lot from his insights, viewpoints and ways of thinking. It is largely his

supervision that led me to find topics, which I feel are mine, and become

an independent researcher with own passion and perspective.

I would like to express my heartfelt appreciation to my second supervisor

Bob Coecke. His care and support encouraged me numerous times, and

made the research group more than a working place to me.

I owe important debts to people in relevant academic fields, whom I met

directly or indirectly during my DPhil years. Special thanks to Thorsten

Altenkirch, Ulrich Berger, Valentin Blot, Pierre Clairambault, Martin Hy-

land, Alex Kavvos, Kobi Kremnitzer, John Longley, Yoshihiro Maruyama,

Luke Ong, Erik Palmgren, Thomas Streicher and Matthijs Vákár. Their

comments, feedbacks and encouragements were invaluable to this thesis.

I would like to thank Julie Sheppard, the graduate studies administrator

of the department. She has been greatly helpful and supportive so that I

could focus on my research as much as possible.

My deepest gratitude goes to Funai Overseas Scholarship, which has been

supporting my days in Oxford not only financially but also emotionally

through personal interactions. I am grateful to their decision to support

me who had not completed a master degree, just believing in my potential

and ambition, without which I could not study at Oxford in the first place.

I am also grateful to the financial supports from Balliol College.

Friends I met in Oxford enriched my life and developed me as a person,

without whom the thesis would not be the same. Special thanks to Kate

Brabon, Francesca Bianchi, Filippo Cervelli, Takeshi Chino, Aris Filos-

Ratsikas, Atsuyoshi Ishizumi, Jonghoon Kim, Johannes Kleiner, Philip

Lazos, Niccolo Lollini, Akira Marusaki, Aiko Morii, Kang Feng Ng, Vi-

viana Ponta, Atsushi Shimada, Mattia Sormani, Fumiko Takahashi, Kei

Takahashi and Coco Wing Nam Yiu. In addition, I would like to express

my special thanks to my office mate Robin Piedeleu, with whom I shared

a number of fun and exciting moments both in academic and private lives.

Finally, I would like to express my deepest appreciation to my family,

whose enduring love and support are most valuable and essential to me.

4

Abstract

Mathematical logic and theoretical computer science are the mathematical

studies of logic and computation, respectively, which largely correspond

to each other notably by the Curry-Howard isomorphism. However, logic

and computation have been captured mainly syntactically, which may be

criticized as conceptually unclear and mathematically cumbersome.

For this point, the field of semantics has been developed, i.e., its main

aim is to explain logic and computation by mathematical and in particular

syntax-independent concepts. However, logic and computation have not

yet been completely captured semantically, where a main obstacle lies

in the point that proofs and programs are central in these fields, and

they are dynamic, intensional concepts, but mainstream mathematics has

been concerned mainly with static, extensional objects such as sets and

functions, lacking in dynamic, intensional structures.

Motivated by this foundational problem, the present thesis is written for

the aim of establishing mathematically rigorous, syntax-independent, con-

ceptually natural semantics of some central aspects of logic and com-

putation, particularly their dynamics and intensionality, that have not

been captured very well from a conceptual or mathematical viewpoint,

for which our primary goal is to obtain a deeper understanding of logic

and computation. Specifically, the thesis is concerned with concepts such

as proof-normalization in logic (or reduction in computation), higher-order

computability, and predicates in logic (or dependent types in computation).

Our approach is based on mathematical structures developed in the field of

game semantics for they are mathematically rigorous, syntax-independent,

conceptually natural and flexible enough to model various kinds of logic

and computation in a systematic manner; also, they have a good potential

to capture dynamics and intensionality of logic and computation. More

concretely, we generalize, for each concept mentioned above, an existing

variant of games to capture the concept, where each case is confirmed by a

certain soundness or sometimes completeness theorem. Since each of the

generalizations is orthogonal to one another, we may combine them into

a single framework that provides a unified view on these developments.

As technical achievements of the thesis, many of the generalizations give

the first game-semantic interpretations of the corresponding concepts, for

which we have introduced a number of novel mathematical structures

and proved their properties. Also, conceptually, our games give dynamic,

intensional semantics that explains various concepts and phenomena in

a natural, intuitive yet mathematically precise manner, e.g., normaliza-

tion of reduction, Π-, Σ- and Id-types as well as universes in Martin-Löf

type theory, incompatibility of Σ-types and classical reasoning, and non-

constructivity of Univalence Axiom in homotopy type theory.

Last but not least, since our mathematical structures capture logic and

computation more completely, well beyond conventional game semantics,

one of their implications would be the semantics-first-view : Logic and

computation may be understood abstractly and syntax-independently as

mathematics, viz., games, rather than as syntactic entities to be analyzed

by various semantics, which is our intention behind the title of the thesis.

In particular, our game-semantic approach enables an analytic study of

logic and computation, as opposed to more standard synthetic ones such

as categorical semantics, in the sense that it reduces the two concepts

to the highly primitive notions of ‘(dialogical) arguments’ between prover

and refuter mathematicians, and ‘(computational) processes’ between a

computational agent and an environment, respectively, giving a deeper

understanding of the very notion of logic and computation. The former

can be seen particularly as a unity of proof theory and model theory : It

gives a syntax-independent formulation of proofs that is also a computa-

tional description of models (by which we mean what formal languages

refer to in a loose sense), namely strategies, where provability and validity

of a formula simply coincide as the existence of a winning strategy on the

corresponding game. By this unity, the central questions of soundness

and completeness in logic just disappear. Furthermore, consistency of the

logic which our games and strategies embody is immediate. These points

demonstrate certain technical advantages (in addition to the conceptual

naturality mentioned above) of our game-semantic approach to logic.

6

Contents

1 Introduction 1

1.1 Dynamics and Intensionality . 3

1.1.1 Dynamics of Logic and Computation 3

1.1.2 Intensionality of Logic and Computation 4

1.1.3 Denotational Semantics . 5

1.1.4 Towards Semantics of Dynamics and Intensionality 5

1.2 Mathematical Models of Computation 6

1.2.1 Turing Machines . 6

1.2.2 Beyond Classical Computation 7

1.2.3 High-Level vs. Low-Level Computational Processes 8

1.2.4 Towards Mathematics of Computational Processes 9

1.3 Meaning Explanation of MLTT . 9

1.3.1 Martin-Löf Type Theory . 10

1.3.2 Meaning Explanation . 11

1.3.3 Towards a Mathematical Foundation of Constructivism 12

1.4 Classical, Intuitionistic and Linear Logics 12

1.4.1 Classical, Intuitionistic and Linear Logics 12

1.4.2 Towards a Unified View on the Logics 13

1.5 Our Approach: Games and Strategies 13

1.6 Main Results of the Thesis . 14

1.7 Philosophical Implications . 16

1.7.1 Semantic, Analytic Study of Logic 16

1.7.2 Unity of Proof, Model and Recursion Theories 18

1.8 Thesis Outline . 19

i

2 Preliminary: Games and Strategies 21

2.1 Pre-Mathematical Introduction . 22

2.2 Games . 25

2.2.1 Arenas and Legal Positions 26

2.2.2 Games . 30

2.2.3 Constructions on Games . 32

2.3 Strategies . 37

2.3.1 Strategies . 38

2.3.2 Constructions on Strategies 40

2.4 Categories of Games and Strategies 48

2.4.1 Logic vs. Computation . 48

2.4.2 Cartesian Closure via New-Seely Categories 49

2.4.3 Computational CCCs of Games and Strategies 50

2.4.4 Logical CCCs of Games and Strategies 52

2.4.5 Coproducts . 52

2.4.6 Logic of Games and Strategies 54

2.4.7 Classical Linear and Classical Logics? 54

3 Dynamic Game Semantics 59

3.1 Introduction to the Chapter . 59

3.1.1 Existing Game Semantics Is Static 59

3.1.2 Dynamic Games and Strategies 63

3.1.3 Dynamic Game Semantics . 63

3.1.4 Related Work and Contribution of the Chapter 64

3.1.5 Chapter Outline . 65

3.2 Dynamic Bicategorical Semantics . 65

3.2.1 Beta-Categories of Computation 65

3.2.2 Finitary PCF . 69

3.2.3 Dynamic Semantics of Finitary PCF 77

3.3 Dynamic Games and Strategies . 80

3.3.1 Dynamic Arenas and Legal Positions 80

3.3.2 Dynamic Games . 87

3.3.3 Constructions on Dynamic Games 92

3.3.4 Dynamic Strategies . 102

3.3.5 Constructions on Dynamic Strategies 107

3.4 Dynamic Game Semantics of Finitary PCF 112

ii

3.4.1 Dynamic Game Semantics of Finitary PCF 112

3.4.2 Dynamic Correspondence Property for FPCF 117

3.5 Conclusion and Future Work of the Chapter 121

4 Game-Semantic Model of Higher-Order Computation 122

4.1 Introduction to the Chapter . 122

4.1.1 Towards Game-Semantic Model of Computation 122

4.1.2 Viable Strategies . 123

4.1.3 Related Work and Contribution of the Chapter 124

4.1.4 Chapter Outline . 127

4.2 Game-Semantic PCF-Computation 128

4.2.1 The Lazy Natural Number Game 128

4.2.2 Dynamic Games and Strategies for PCF-Computation 129

4.2.3 The Last-Three-Move Lemma 138

4.3 On ‘Tags’ for Disjoint Union of Sets 139

4.3.1 Constructions on Dynamic Games Revisited 143

4.3.2 Constructions on Dynamic Strategies Revisited 154

4.4 Viable Strategies . 161

4.4.1 Viable Strategies . 161

4.4.2 Examples of Viable Dynamic Strategies 178

4.4.3 PCF-Completeness of Viable Dynamic Strategies 190

4.5 Conclusion and Future Work of the Chapter 192

5 Game Semantics of MLTT 194

5.1 Introduction to the Chapter . 194

5.1.1 Why Difficult? . 194

5.1.2 Our Solution in a Nutshell . 195

5.1.3 Related Work and Contribution of the Chapter 195

5.1.4 Chapter Outline . 197

5.2 Martin-Löf Type Theory . 197

5.2.1 Judgements . 197

5.2.2 Contexts . 198

5.2.3 Structural Rules . 199

5.2.4 Unit Type . 200

5.2.5 Empty Type . 200

5.2.6 Natural Number Type . 201

5.2.7 Dependent Function Types . 202

iii

5.2.8 Dependent Pair Types . 202

5.2.9 Identity Types . 203

5.2.10 Universes . 204

5.2.11 Meaning Explanation . 206

5.3 Predicative Games . 206

5.3.1 Valid Strategies as Deterministic Games 207

5.3.2 Games via V-Strategies . 214

5.3.3 Predicative Games . 220

5.3.4 The CCC of Logical Predicative Games 226

5.3.5 Coproducts of Predicative Games 232

5.3.5.1 Initial Objects . 233

5.3.5.2 Binary Coproducts 234

5.4 Game Semantics of MLTT . 237

5.4.1 Dependent Logical Predicative Games 237

5.4.2 Dependent Function Spaces 238

5.4.3 Dependent Pair Spaces . 239

5.4.4 Identity Spaces . 239

5.4.5 Game-Semantic Category with Families 239

5.4.6 Game-Semantic Type Formers 244

5.4.6.1 Game-Semantic Dependent Function Types 244

5.4.6.2 Game-Semantic Dependent Pair Types 248

5.4.6.3 Game-Semantic Identity Types 252

5.4.6.4 Game-Semantic Natural Number Type 255

5.4.6.5 Game-Semantic Unit Type 258

5.4.6.6 Game-Semantic Empty Type 260

5.4.6.7 Game-Semantic Universes 262

5.5 Effectivity and Bijectivity . 264

5.5.1 Elementary P-Games and V-Strategies 265

5.5.2 Effective, Bijective Game Semantics of MLTT 266

5.6 Intensionality . 276

5.6.1 Equality Reflection . 276

5.6.2 Function Extensionality . 277

5.6.3 Uniqueness of Identity Proofs 277

5.6.4 Criteria of Intensionality . 278

5.6.5 Univalence Axiom . 278

5.7 Conclusion and Future Work of the Chapter 279

iv

6 Piecing Together 280

6.1 Dynamic Game Semantics of MLTT 280

6.2 Game-Semantic Realizability for MLTT 281

6.3 Classical, Intuitionistic and Linear Logics 281

7 Conclusion and Future Work 282

7.1 Conclusion of the Thesis . 282

7.2 Future Work of the Thesis . 283

Bibliography 284

v

Chapter 1

Introduction

On the one hand, logic is the study of reasoning, i.e., making a conclusion possibly

under premises in a sensible way, and it also refers to a method or a law of reasoning.

The origin of logic goes back to ancient Greece, China and India in the 5-6th century

BC, or even before in Egypt and Babylonia [30]. Its subfield, called mathematical logic,

is the mathematical study of reasoning in mathematics, whose modern, in particular

symbolic, treatment began in the late 19th century [61, 149, 50], providing rigorous

formalizations of logic and mathematics; the 20th century saw intrinsic powers and

limitations of logic with profound consequences [187, 88, 79, 80, 175, 64].

On the other hand, theoretical computer science is the mathematical study of

computation, i.e., mechanical procedures to process some ‘information’, which was

born as a by-product of foundational work in mathematical logic in 1930’s [183, 34].

Conceptually by the BHK-interpretation [181], which identifies proofs in intuitionistic

logic [180] with computation in an informal sense, as well as syntactically by the

Curry-Howard isomorphism [172], which establishes mutual translations for several

different pairs of a (formal) logical system (i.e., a syntactic formalization of logic) and

a programming language, logic and computation largely correspond to each other.1

As implied above, logic (in the sense of a method or a law of reasoning) and

computation have been captured mainly via syntactic concepts. However, although

syntactic approaches give convenient embodiments of and practical tools for logic and

computation, they are not very suitable for conceptual or mathematical clarification of

them, which the present thesis is primarily concerned with, for the following reasons:

• From the semantics-first-view, i.e., the view that semantic concepts must come

first, and syntax merely provides formal notations and symbolic calculi for them,

1The Curry-Howard isomorphism, also called the Curry-Howard correspondence, may be thought
of a posteriori as a particular (syntactic) formalization of the BHK-interpretation: The former takes
programs as a formal counterpart of computation in the sense of the latter.

1

which is our principle and also conventional in mathematics, syntax per se (i.e.,

without what it refers to) is rather mysterious and conceptually hard to capture;

• From our viewpoint on mathematics which is a rigorous study of abstract essence

of various concepts and phenomena, syntactic definitions often contain super-

fluous details, where non-canonical design choices are usually involved, and thus

they are not abstract enough for a mathematical study of logic and computation.

In other words, logic and computation have not yet been completely captured since

they have been formalized mainly syntactically, and it is in general difficult for a

syntactic formalization to provide a conceptual understanding or a mathematical

abstraction in a satisfactory fashion.2 In particular, their dynamics and intensionality

have been rarely formulated syntax-independently, though they are intrinsic parts of

logic and computation, mainly because traditionally mathematics has been concerned

mostly with static, extensional objects such as sets and functions.

Motivated by this point, the present thesis is written for the aim of capturing, in

a mathematically rigorous, syntax-independent, conceptually natural manner, some

central aspects of logic and computation that have not yet been completely clarified

in that way. Specifically, the thesis addresses the following four concepts:

1. Dynamics and intensionality of logic and computation;

2. Mathematical models of computation beyond classical computation;

3. The meaning explanation of Martin-Löf type theory ;

4. The relation between classical, intuitionistic and linear logics (only casually).

Remark. It is admittedly difficult to formalize the distinction between syntactic (or

syntax-dependent) and semantic (or syntax-independent) concepts; nevertheless, our

general guideline in this thesis, though informal, is as follows:

• The substance of syntactic concepts is symbols, which per se do not denote

anything, and operations and properties on them are defined in terms of symbol

manipulations, e.g., substitution, α-equivalence, confluence and consistency;

• Semantic concepts do not consist of symbols, where notation for them is just for

convenience for mathematicians and inessential for their ‘ontology’ (for instance,

natural numbers are invariant however they are written, e.g., binary or decimal).
2In fact, this perspective prohibited Kurt Gödel from accepting the λ-calculus as a foundation

of computability, and also led Dana Scott and Jean-Yves Girard to develop denotational semantics
and geometry of interaction, respectively, which we shall briefly explain in Sections 1.1 and 1.2.

2

1.1 Dynamics and Intensionality

Dynamics and intensionality are intrinsic parts of logic and computation, but they

have been rarely formalized syntax-independently. Thus, for a deeper understanding

of logic and computation, we need new mathematics of dynamics and intensionality.

1.1.1 Dynamics of Logic and Computation

Among programming languages, we focus on functional languages [24, 49] in this

thesis since they are defined solely in terms of syntax (as opposed to imperative

languages for which states of a computer are essential [188]), and thus conceptually

closer to formal logical systems and mathematically simpler. In a functional language

L , computation proceeds by evaluating a program (or a term) P to a value V:

P→ P1 → P2 → · · · → Pn = V

where→ represents the one-step evaluation or small-step operational semantics [152]

of the language L . For instance, assume that L has the numeral n for each natural

number n ∈ N, where N is the set of all natural numbers, as well as operations succ

and double that satisfy respectively succ(n)→ n + 1 and double(n)→ 2n for all n ∈ N.

Then, the computation of the program double(succ(5)) would be:

double(succ(5))→ double(6)→ 12.

This kind of process is called reduction or rewriting, which is a syntactic formalization

of what we call dynamics of computation. Note that such dynamics may be seen as

giving semantics of programs in the sense that it describes how each program is

executed in the language L ; in fact, there is such an approach to formal semantics

of programming languages, called operational semantics [188, 82]. There are two

variants of operational semantics: big-step and small-step ones; the former evaluates

each program to its value at a time, while the latter does in a step-by-step fashion

(as seen above). Although the former is often simpler, we focus on the latter in this

thesis as it gives a finer description of dynamics of computation.

Similarly, there is what should be called dynamics of logic as well. In a natural

deduction style logical system, proposed by Gerhard Gentzen in his PhD thesis [65,

66], if a proof of a formula contains a detour, then we may obtain a shorter proof

of the same formula by eliminating the detour; this meta-theoretic process is called

proof-normalization [180], embodying dynamics of logic. Moreover, a sequent calculus

style system, also proposed in the same PhD thesis, includes such detours ‘internally’

3

as a rule of inference, called cut, and thus dynamics corresponds to the meta-theoretic

process to eliminate cuts from a proof, called cut elimination [180]. However, note

that unlike programming languages dynamics of logic is not formalized inside a logical

system though they are rigorously defined as meta-theoretic algorithms.

1.1.2 Intensionality of Logic and Computation

Next, let us point out that computation is an intensional concept in the sense that

not only what its result (or extension) is but also how it computes, i.e., its algo-

rithm, matters in an informal sense. For instance, the programs double(succ(5)) and

succ(succ(double(5))) clearly have the same value, namely 12, but different algorithms:

The former first calculates the successor of 5 and then doubles the result, while the

latter first doubles 5, and then apply the successor operation twice to the result.

Thus, these two programs are extensionally equal but intensionally different. Let us

call informally the equality of algorithms intensional equality of computation.

One may wonder if α-equivalence [85] of programs (i.e., the equality of programs

up to renaming of bound variables) would be a syntactic counterpart of intensional

equality of computation. However, syntactic formalization of intensional equality is

rather difficult, and it has not been completely established. The point here is that

α-equivalence describes how each program is constructed, but two different programs

with respect to α-equivalence may describe the same algorithm, e.g., consider the two

programs (λx.0)1 and (λy.0)2, which are not α-equivalent, but their algorithms are

the same, namely to just output zero.3 Hence, intensional equality of computation

does not have an established counterpart in syntax; it is finer than βη-equivalence

[85] (i.e., the extensional equality in syntax) but coarser than α-equivalence.

Similarly, we may consider intensional equality of proofs again in an informal,

non-syntactic sense. However, in contrast to the case of computation, a proof should

be identified in a sense with how it derives its conclusion, i.e., how it is constructed.

Therefore, there is a syntactic counterpart of intensional equality of proofs, namely

the syntactic equality of proofs on the nose in a logical system. But if we identify

proofs with their algorithmic behavior in the spirit of the BHK-interpretation, then

there would be no established counterpart of the equality in syntax (though there

have been some approaches in the literature, e.g., proof-nets [70]) by the same reason

as in the case of computation.

3This point will be clearer when we give a formal semantics of this phenomenon in Chapter 3.

4

1.1.3 Denotational Semantics

For a ‘true “understanding” of a program’ [161], which is similar to our motivation,

Dana Scott and Christopher Strachey initiated in 1970’s the approach to semantics

of programming languages by mathematical objects, called denotational semantics

[164]. Based on Scott’s beautiful domain theory [162, 67, 11], this mathematical

approach has been highly successful, giving a deeper understanding of programs as

well as mathematical tools for language analysis, verification and design. Moreover,

via the Curry-Howard isomorphism, it has been applied to logical systems as well.

However, the conventional view of denotational semantics is static and extensional

in the following sense: A basic requirement of denotational semantics is soundness,

i.e., it identifies a program or a proof with its value, and thus it has an intrinsic

limitation in capturing dynamics and intensionality of logic and computation.

1.1.4 Towards Semantics of Dynamics and Intensionality

To sum up, on the one hand we have the operational side of logic and computation,

which captures their dynamics and intensionality (though not perfectly as we have

seen above) but not their conceptual underpinning or abstract essence, and on the

other hand we have their denotational side, which gives a deeper understanding of

logic and computation but limited to their static, extensional aspects. Therefore, what

we need for a more comprehensive understanding of logic and computation would be

a mathematical, in particular syntax-independent, semantics of their dynamics and

intensionality, which combines the operational and denotational approaches.

In fact, this perspective is nothing new. In [78], Jean-Yves Girard mentions the

dichotomy between the static and dynamic viewpoints in logic and computation; the

former identifies proofs and programs with their denotations (i.e., results of their com-

putations in an ideal sense), while the latter focuses on their senses (i.e., algorithms

or intensionality) and dynamics. He points out that a mathematical formulation of

the former has been relatively well-developed, but it is not the case for the latter;

the treatment of senses has been based on ad-hoc syntactic manipulations. He then

emphasizes the importance of a mathematical formulation of senses :

The establishment of a truly operational semantics of algorithms is per-

haps the most important problem in computer science [78].

The operational aspect of logic and computation is the first concept which the

present thesis captures mathematically and syntax-independently in Chapter 3. More

5

specifically, we shall establish an interpretation J KD of a programming language L

with a small-step operational semantics → and a syntax-independent operation I

that satisfy the following dynamic correspondence property (DCP): M1 → M2

only if JM1KD 6= JM2KD and JM1KD I JM2KD for any programs M1 and M2 of L .

Note that the ‘only if’ direction corresponds to a certain soundness property of the

interpretation I of→.4 Note also that the interpretation J KD is finer than the usual

(sound) denotational semantics because M1 → M2 implies JM1KD 6= JM2KD. Thus,

the interpretation J KD and the operation I capture intensionality and dynamics of

computation, respectively (n.b., we do not have soundness, let alone completeness,

for intensional equality as it has not been captured in syntax in the first place as

mentioned before though our semantic equality per se appears a reasonable one).

Although our framework in this thesis is intended to be a general approach, and it

should be applicable to a wide range of logics and computations, as the first step, we

shall focus on a finite fragment of the prototypical functional programming language

PCF [163, 151] customized for our purpose.

1.2 Mathematical Models of Computation

Various mathematical models of computation have been proposed in the literature;

however, there are only a few models of non-classical computation that investigate

the very notion of computation in an as primitive, intrinsic manner as Turing ma-

chines. Moreover, there has been no established theory of computation beyond sym-

bolic or low-level computation. We shall develop a more general, abstract model of

computation to solve these two problems.

1.2.1 Turing Machines

Turing machines (TMs) introduced in the classic work [183] by Alan Turing have been

widely accepted as giving a mathematical foundation of ‘(effective) computability’

or ‘effectivity’ of functions on (finite sequences of) natural numbers, which we call

classical computability, Church-Turing computability or recursiveness in

this thesis. This is because ‘computability’ of a function intuitively means the very

existence of an algorithm that implements the function’s input/output-behavior, and

TMs are none other than a mathematical formulation of this informal concept.

4On the other hand, the opposite, ‘completeness’ property does not hold, e.g., (λx.0)((λy.y)1)→
(λx.0)1 and (λx.0)((λy.y)1) 6→ (λx.0)2, but J(λx.0)1KD = J(λx.0)2KD in our interpretation J KD.

6

Note that other pioneering approaches to classical computability do not have

this foundational nature: The λ-calculus [34], combinatory logic [159, 45] and Post

canonical systems [153] are syntactic entities, and so they do not formalize how to

‘effectively’ achieve the specified symbol manipulations in an as primitive level as

TMs (e.g., β-reduction [85] in the λ-calculus does not describe how to execute itself,

which is in fact a motivation for explicit substitution [158]); partial recursive functions

[107] are axiomatic, i.e., without defining what algorithms are, they inductively define

‘computable functions’ directly by certain axioms, and so they are not as foundational

as TMs. For instance, Kurt Gödel found Alonzo Church’s proposal to take the λ-

calculus as a foundation for classical computability ‘thoroughly unsatisfactory’, but

he enthusiastically accepted TMs as such a foundation [171]; also Church stated:

Computability by a Turing machine . . . has the advantage of making the

identification with effectiveness in the ordinary (not explicitly defined)

sense evident immediately [35].

Later in the literature, various mathematical models of computation similar to

TMs such as register machines (RMs) [46] have been proposed. However, since their

ideas and features are similar to those of TMs, below we just mention TMs as a

representative of these similar models.

1.2.2 Beyond Classical Computation

Today, however, there are various kinds of computation in practice whose aim is

processes per se, rather than to implement functions, such as operating systems and

web browsers. They are often interactive and non-terminating, for which TMs do not

fit very well [26, 4, 2, 51]. Also in mathematics, there are various kinds of non-classical

computation, where by classical computation we mean what merely implements

a function on natural numbers, for which TMs again have some limitations.

As an example of non-classical computation, consider higher-order computation

[122], i.e., computation that may take (as an input) or produce (as an output) another

computation, which abounds in mathematics, e.g., quantification in mathematical

logic, differentiation in analysis or simply an application (f, a) 7→ f(a) of a function

f : A → B to an element a ∈ A. However, TMs cannot capture higher-order

computation in a natural or systematic manner. In fact, although TMs may compute

on symbols that encode other TMs, e.g., consider universal TMs [116], they cannot

compute on ‘external behavior’ of input computation, which in particular implies that

the input is limited to a recursive one; however it makes perfect sense to consider

7

computation on non-recursive objects such as non-recursive real numbers [122]. For

this point, one may wonder oracle TMs [115] may treat an input computation as an

oracle, a ‘black-box-like’ computation that does not have to be recursive, but it is like

a function (rather than a process) that computes in just a single step, which appears

conceptually mysterious and mathematically ad-hoc (another approach is to give an

input computation as a possibly infinite sequence of symbols on the input tape, but

it may be criticized in a similar manner).

On the other hand, most of the other existing models of higher-order computation

are either syntactic (such as programming languages and nested sequential procedures

[122]), axiomatic (such as Kleene’s schemata S1-S9 [108, 109]) or extrinsic (i.e.,

reduced to classical computation by numbering whose ‘effective computability’ is often

left imprecise [46, 122]); thus, they are not as primitive or foundational as TMs.

Moreover, unlike classical computability whose various definitions turn out to be

equivalent, such an equivalence result for higher-order computability has been rarely

established [122], i.e., we have not yet captured higher-order computability, let alone

higher-order computation, in a satisfactory fashion. For this reason, we believe that

it would be a key step towards a ‘correct’ notion of higher-order computation and

computability to establish a ‘TMs-like’ model of computation beyond classical one.

1.2.3 High-Level vs. Low-Level Computational Processes

Perhaps more crucially than the limitation for non-classical computation mentioned

above, one may argue that TMs are not appropriate as mathematics of high-level

computational processes5 for their computational steps are often too low-level to see

what they are supposed to compute. This point is relatively ignorable if one is only

concerned with classical computation as it suffices to read off inputs and outputs;

however, it is no longer the case for non-classical, e.g., higher-order, one. Thus, we

need mathematics of high-level computational processes that explain contents or pur-

poses of low-level computational processes such as TMs’6. Also, what TMs formulate

is symbol manipulations, but the content of computation on mathematical, semantic,

non-symbolic objects seems completely independent of its symbolic representation,

e.g., to add numbers or to take the union of sets (as a process not as a function).

5Throughout the present thesis, we informally use the terms computational processes almost as
synonyms of computation, but they put more emphasis on ‘processes’.

6This idea is similar to that of denotational semantics of programming languages, but there is an
important difference: Denotational semantics interprets programs usually by (extensional) functions
and identifies them with their values, but we are concerned with (intensional) processes.

8

Hence, it would be rather appropriate, at least from conceptual and mathematical

points of view, to formulate high-level computational processes in a more abstract, in

particular syntax-independent, manner, in order to explain low-level computational

processes, and regard the latter as executable symbolic implementations of the former

that witness its ‘effective computability’.

1.2.4 Towards Mathematics of Computational Processes

To summarize, it seems appropriate, fruitful and meaningful for both conceptual

and technical reasons to develop, in an intrinsic, syntax-independent, non-axiomatic,

non-inductive manner, mathematics of abstract, high-level computational processes

as well as symbolic, low-level ones beyond classical computation such that the for-

mer is defined to be ‘effectively computable’ if it is representable by the latter. In

fact, this (or similar) perspective is nothing new, and shared with various prominent

researchers; for instance, Robin Milner stated:

... we should have achieved a mathematical model of computation, per-

haps highly abstract in contrast with the concrete nature of paper and

register machines, but such that programming languages are merely exe-

cutable fragment of the theory ... [133]

We shall address this problem in Chapter 4. However, since there are so many

kinds of computation, e.g., parallel, concurrent, probabilistic, non-deterministic, quan-

tum, etc., as the first step, we shall focus on a certain kind of higher-order, sequential

(i.e., at most one computational step may be performed at a time) computation which

the programming language PCF embodies.

1.3 Meaning Explanation of MLTT

Martin-Löf type theory is one of the most prominent foundations of constructive

mathematics, which can be seen in a sense as a syntactic formalization of its meaning

explanation. Thus, a mathematical, syntax-independent semantics of MLTT that is

in accordance with the meaning explanation should be considered as its standard

model, which is essential for a deeper understanding of MLTT, and also it would give

a mathematical foundation of constructivism in the philosophy of mathematics.

9

1.3.1 Martin-Löf Type Theory

Martin-Löf type theory (MLTT) [125, 126, 127] is an extension of the simply-typed λ-

calculus [36] whose logical part, under the Curry-Howard isomorphism, corresponds to

intuitionistic predicate logic (whose predicates are higher-order but predicative [58]),

for which the extension is made mainly by dependent types, i.e., types depending

on terms [172]. It actually internalizes the isomorphism in the sense that its types

and programs may be read respectively as formulas and proofs; it is not only a

programming language but also a logical system.

For instance, to prove that each natural number n ∈ N has a unique pair of a

quotient q and a remainder r with respect to a given integer m > 0, i.e.,

∀n,m ∈ N.m > 0⇒∃q, r ∈ N. r < m ∧ n = q ·m+ r

∧ (∀q̃, r̃ ∈ N. r̃ < m ∧ n = q̃ ·m+ r̃ ⇒ q = q̃ ∧ r = r̃)

in MLTT is to write a program of type

Πn,m:N(Σl:Nm = l + 1)→Σq,r:NΣk:Nm = r + k + 1 ∧ IdN(n, q ·m + r)

∧(Πq̃,̃r:NΣk̃:Nm = r̃ + k̃ + 1 ∧ IdN(n, q̃ ·m + r̃)→ IdN(q̃, q) ∧ IdN(̃r, r))

that compute the quotient q and the remainder r, and demonstrate that they are in

fact a quotient and a remainder that are unique with respect to n and m, where Π,

Σ and IdN are the type-theoretic universal and existential quantifications and (inten-

sional) equality on natural numbers, respectively (see Section 5.2 for the details).

MLTT was proposed by Per Martin-Löf in 1970-1980’s through several revisions as

a foundation of constructive mathematics (in the sense that it plays a similar role for

constructive mathematics to the Zermelo-Fraenkel set theory with the Axiom of Choice

(ZFC) for classical mathematics [54]). For instance, MLTT is proof-theoretically

much stronger than Heyting Arithmetic (HA) (even than higher-order HA) [178]; it

is even possible to interpret the constructive Zermelo-Fraenkel set theory (CZF) in

MLTT equipped with well-founded tree types [16, 182]. Furthermore, based on the

novel homotopy-theoretic interpretation, an extension of MLTT, called homotopy type

theory (HoTT), has been proposed, connecting a priori different areas of mathematics

and having a potential to be a powerful, practical foundation of mathematics [184].

Strictly speaking, there are intensional and extensional variants of MLTT; the

latter is an extension of the former by the principle that identifies judgmental and

propositional equalities (see Section 5.2). We shall focus on the intensional variant in

this thesis because it is computationally more desirable than the extensional version,

10

e.g., type checking is decidable in the former but not in the latter, while retaining

proof-theoretic strength. Furthermore, the new development of HoTT is possible

only for the intensional one, i.e., the intensional version is not only a ‘computational

compromise’ of the extensional one but also a positive theory in its own right.

In addition, MLTT has been also a subject of active research in computer science

because it can be seen as a programming language, and one may extract programs

from its proofs in such a way that extracted programs are ‘correct by construction’

[38, 160]. In fact, MLTT and similar dependent type theories, i.e., type theories with

dependent types, have been implemented as proof assistants such as Nuprl [38], Coq

[177] and Agda [141]. They are used to formalize mathematical theorems and proofs

by programming as well as to give formal correctness of computer software.

1.3.2 Meaning Explanation

Importantly, MLTT is conceptually based on the meaning explanation [126] in the

sense that Martin-Löf himself explains and justifies its axioms and (inference) rules by

the meaning explanation though it is informal or pre-mathematical [54]. In fact, the

meaning explanation is usually considered to be an essential ingredient of MLTT (see,

e.g., [154]). Thus, we believe that a mathematical, syntax-independent semantics of

MLTT that is in accordance with the meaning explanation can be considered as its

standard model, which would be essential for a deeper understanding of MLTT.

Another point is that the meaning explanation per se (without MLTT) is a highly

reasonable, systematic approach to foundations of constructive mathematics in the

following sense. First, the meaning explanation is a fundamental conceptual under-

pinning of the very notion of constructive mathematics, whose argument is quite

convincing, though pre-mathematical, being a refinement as well as an extension of

the BHK-interpretation (see Section 5.2.11 for more on this point). Here, syntax is

inessential, and one may even say that MLTT is merely a syntactic embodiment of

the meaning explanation. Next, unlike other foundations of constructive mathemat-

ics such as constructive set theory [138] and explicit mathematics [57], the meaning

explanation does not separate logic from mathematics; rather, it provides a unifying

framework, in which logic becomes a particular part of mathematics; in this sense, it

gives a more systematic perspective than other approaches.

11

1.3.3 Towards a Mathematical Foundation of Constructivism

Thus, a mathematical, syntax-independent formalization of the meaning explanation,

if achieved, would be a fundamental underpinning of the very notion of constructive

mathematics or constructivism in the philosophy of mathematics [181, 20].

However, such a standard model of MLTT has not been completely established,

e.g., realizability models have been either syntactic or too low-level to capture type-

theoretic phenomena (see Section 5.1.3). We shall address this problem in Chapter 5.

1.4 Classical, Intuitionistic and Linear Logics

Classical, intuitionistic and linear logics7 are perhaps the three most established

logics. Syntactically, their definitions and relations are clear; however, for a deeper

understanding of these logics, it is desirable to have a syntax-independent framework

that systematically explains each of them as well as their relations.

1.4.1 Classical, Intuitionistic and Linear Logics

Classical logic [167] has been, as the name suggests, the most traditional, standard

logic for working mathematicians. As its standard Tarskian semantics [176] indicates,

it is the logic that regards validity or truth as independent of (especially constructive)

reasoning by mathematicians; it is in accordance with Platonism in the philosophy

of mathematics [121]. Therefore, it contains non-constructive laws such as the law of

excluded middle (LEM) and the double negation elimination (DNE). This point also

explains, though informally, why classical logic in sequent calculus ‘collapses’ in the

sense that any two classical proofs of a formula must be equal [118, 78].

On the other hand, intuitionistic logic [181] was motivated by intuitionism in the

philosophy of mathematics initiated by Luitzen Egbertus Jan Brouwer, and it was

later formalized as a logical system by Arend Heyting [87]. Opposing to Platonism,

intuitionism regards mathematics as an activity of ‘mental construction’, and a for-

mula as true iff its proof has been constructed; thus, it prohibits non-constructive

laws. Today, intuitionism is regarded as an approach to constructivism [181] along

with MLTT though it (at least what Brouwer considered) is an informal view rather

than a formal logical system. Syntactically, e.g., in Hilbert-style logical systems [185],

intuitionistic logic is obtained from classical logic by eliminating LEM or DNE [180].

7It is customary to say a logic to refer to an unspecified formal logical system that embodies the
logic, and we adopt this convention in this thesis too whenever it would not bring any confusion.

12

Finally, linear logic [70] proposed by Girard is often called a resource-conscious

logic in the sense that it requires each premise to be used exactly once to produce a

conclusion; in fact, it can be seen informally but very naturally as the logic of resource

consumption/production [74]. It has both classical and intuitionistic variants, which

are syntactically obtained respectively from the classical and intuitionistic sequent

calculi by eliminating the weakening and contraction rules. Also, linear logic can be

seen as a linear refinement of classical and intuitionistic logics in the sense that both

logics may be embedded into (or represented in) linear logic, which adds an explicit

control on the use of premises in classical and intuitionistic logics.

1.4.2 Towards a Unified View on the Logics

As explained above, their syntactic definitions and relations are clear; however, for

a deeper understanding of what classical (resp. intuitionistic, linear) reasoning is

as well as the relation between the three kinds of reasoning, we need a systematic

framework to interpret and relate the three in a syntax-independent manner.

In the literature, there have been some proof-theoretic approaches to this problem.

For instance, it is well-known that a classical proof can be translated into an intuition-

istic one by the negative translation [180]. Moreover, classical reasoning corresponds,

under the Curry-Howard isomorphism, to control operators in programming, and the

negative translation of proofs to the CPS-translation of programs [172].

However, although these results are significant achievements, they are something

like to mechanically translate a Japanese sentence into the corresponding French one

without clarifying the underlying ‘meaning’. That is, proof-theoretic approaches are

not very suitable for a ‘true understanding’ of the relation between the three logics.

More generally, conventional proof theory [180] in general does not give a syntax-

independent, non-inductive, non-axiomatic or intrinsic explanation of the logics.

Although our focus in the present thesis is mostly on intuitionistic logic, motivated

by this problem, we briefly sketch our idea on a syntax-independent framework that

systematically explains and relates the three logics in Sections 2.4.7 and 6.3, leaving

its thorough development as future work.

1.5 Our Approach: Games and Strategies

Our approach is based on mathematical structures developed in the field of game

semantics for they are dynamic and intensional (though not completely, which we will

fix) as well as conceptually natural, mathematically precise and syntax-independent.

13

Game semantics [5, 14, 101] refers to a particular kind of semantics of logic and

computation [188, 82] in which formulas (or types) and proofs (or programs) are

interpreted as games and strategies, respectively. Historically, having its roots in

‘games-based’ approaches in mathematical logic to capture validity [155, 59], higher-

order computability [110, 111, 112, 106, 113, 62] and proofs in linear logic [25, 7, 99],

combined with ideas from sequential algorithms [22], process calculi [134, 90] and

geometry of interaction [71, 72, 73, 75, 76, 77] in computer science, several variants of

game semantics in its modern form were developed in the early 1990’s to give the first

syntax-independent characterization of the programming language PCF [9, 100, 139];

since then a variety of games and strategies have been proposed to model various

programming features [14].

An advantage of game semantics is this flexibility: It models a wide range of logical

systems and programming languages by just varying constraints on strategies [14],

which enables one to systematically compare and relate different formalisms, ignoring

superficial syntactic details. Another strong point of game semantics is its conceptual

naturality: It interprets syntax as ‘dynamic interactions’ between the participants

of games, providing a dynamic, intensional (though not completely, which again we

shall resolve) explanation of syntax in a natural, intuitive (yet mathematically precise)

manner. Note that its dynamic and intensional natures stand in sharp contrast to the

traditional set-theoretic semantics [188, 82] which, e.g., cannot capture sequentiality

of PCF (but the game semantics [9, 100, 139] can).

Taking advantage of the flexibility and conceptual naturality of game semantics,

the present thesis aims to develop a single mathematical framework that clarifies,

both conceptually and mathematically, the concepts and phenomena described in

Sections 1.1, 1.2 and 1.3 (the problem of Section 1.4 is addressed only casually).

1.6 Main Results of the Thesis

The main results of the present thesis are summarized as follows, where comparison

with related work is left to the end of each main chapter.

Dynamics and Intensionality (Chapter 3). We define a certain class of bicate-

gories, called cartesian closed β-categories of computation (CCBoCs), such that there

is the ‘extensionally collapsing’ functor from a CCBoC to the corresponding carte-

sian closed category (CCC). We then refine the standard semantics of programming

14

languages in CCCs by CCBoCs to capture their dynamics and intensionality, and ax-

iomatize a sufficient condition for the resulting interpretation of our variant of finitary

PCF to satisfy the DCP. Finally, we define a dynamic variant of games and strategies,

and show that they give rise to a CCBoC that satisfies the axioms, providing the first

dynamic game semantics that captures dynamics and intensionality of computation.

Mathematical Models of Computation (Chapter 4). We define ‘effective com-

putability’, called viability, of strategies in an intrinsic, non-axiomatic, non-inductive

manner, and shows that viable dynamic strategies are Turing complete. As imme-

diate corollaries, some of the well-known theorems in computability theory such as

the smn-theorem and the first recursion theorem [46] are generalized. As a conse-

quence, we have given a mathematical foundation of computation in the same sense

as TMs but beyond classical computation in a more abstract fashion. Moreover, this

game-semantic framework distinguishes high-level computational processes that oper-

ate directly on mathematical objects such as natural numbers (not on their symbolic

representations) and their concrete symbolic implementations or low-level processes

that define their ‘effectivity’, which sheds new light on the very notion of computation.

Meaning Explanation of MLTT (Chapter 5). We propose a novel variant of

games and show that they induce an injective (for types built without N- and Id-types)

and surjective interpretation of the intensional variant of MLTT equipped with 1-, 0-,

N-, Π-, Σ- and Id-types as well as a cumulative hierarchy of universes. Moreover, by

incorporating the framework of dynamic games and strategies, we obtain a semantics

that can be seen as a mathematical formalization of the meaning explanation.

Classical, Intuitionistic and Linear Logics (Sections 2.4.7 and 6.3). We give

a new construction ? on games, which is based on why not in linear logic [70], and

prove that it forms a monad on the category of games. Conceptually, ?A is essentially

A except that Player can make ‘another try’ anytime and any number of times; thus,

we propose that a strategy on ?A is a classical proof of A. Moreover, based on ? and

exponential ! on games [9], we propose a systematic method to relate classical and

classical linear reasonings to intuitionistic and intuitionistic linear reasonings. Then,

in particular, the intuitionistic implication !A (B can be seen as an asymmetric

restriction of ?(A(B) since we have the equation ?(A(B) = !A(?B. Also, as a

corollary, we can see why Σ-types in MLTT are incompatible with classical reasoning.

15

Nevertheless, we shall not fully develop these ideas, leaving the full account as

future work, and therefore they are not a main contribution of the present thesis.

1.7 Philosophical Implications

As explained above, one of the main achievements of the thesis is a mathemati-

cal, syntax-independent formalization of the meaning explanation of MLTT, or more

broadly constructivism in the philosophy of mathematics. In particular, this can be

seen as a new approach to logic that unifies logical systems and models:

Games and strategies form a logical system (i.e., formulas, proofs and

operations on them) as well as a model (i.e., what formal languages refer

to in a loose sense) and a theory of computation (in the sense of TMs).

This point arguably has some philosophical implications.

1.7.1 Semantic, Analytic Study of Logic

The first point is the semantic, analytic study of logic.

We have already explained the importance of the semantic study of logic. By their

conceptual naturality and more complete formulation of logic than conventional games

and strategies, in particular its dynamics and intensionality, one may reasonably,

though arguably, regard our games and strategies developed in the present thesis as

a mathematical formalization of the very notion of logic, rather than a semantics of

logic as an a priori syntactic entity. In other words, we may regard the game-semantic

approach as a mathematical foundation of logic, i.e., logic is internal (in the sense of

internal logic [105, 123, 130]) to games.

On the other hand, a mathematical theory is analytic if its mathematical objects

are defined in terms of more primitive ones such as sets, and its theorems are derived

from axioms of a theory of such primitive objects such as ZFC via a logical system.

In fact, most of the mainstream mathematics has been analytic; it is commonly said

that in principle most part of mathematics can be reduced to ZFC and classical logic.

Importantly, this point implies that logic as well as theories of primitive objects

must be synthetic, i.e., their mathematical objects are defined not in terms of more

primitive ones but via what operations and properties they have, since otherwise the

process of reducing mathematics to more primitive objects and theories would never

stop. For this reason, logic in particular has been formulated synthetically.

16

Nevertheless, although a synthetic approach gives an abstract formalization of

mathematics, whose generality and convenience are often strong advantages, e.g.,

category theory is a good example, it is in general not suitable for a conceptual

underpinning of mathematics. In other words, a synthetic theory would be much

more convincing if it can be explained and justified by an analytic approach. For this

reason, we believe that an analytic study of logic would be fruitful and meaningful.

One may argue that category theory and topos theory [105, 104, 123, 130] formulate

logic elegantly in terms of categorical notions as internal logic. As already mentioned,

however, they are intrinsically synthetic because it is hard to say that categories are

more primitive than logic; also, internal logic formulates only provability, not proofs

themselves, let alone their dynamics or intensionality. Note that algebraic logic [19]

pioneered by George Bool may be seen a posteriori as a particular kind of categorical

semantics, in which again one may talk about only provability.

Also, one may point out that model theory [32, 91] can be seen as an analytic study

of logic, which is again certainly true. However, it basically studies logical systems

in comparison with their models; thus, it does not directly capture proof-theoretic

aspects of logic, lacking in frameworks to go beyond provability and capture proofs

themselves. On the other hand, main approaches in proof theory are syntactic, not

completely satisfactory from our standpoint as already explained.

Finally, denotational semantics may be regarded as an analytic study of logic. We

take this opinion without doubt since its aim is to capture formulas and proofs by

mathematical objects. However, let us emphasize again the point that conventional

(domain-theoretic) denotational semantics is intrinsically static and extensional.

In this context, the present thesis has given a stepping stone towards a more com-

prehensive analytic theory of logic (and constructive mathematics) than existing ap-

proaches (including conventional game semantics), especially of its dynamics and in-

tensionality, by reducing logic to the primitive notions of games and strategies, which

naturally embody ‘(dialogical) arguments’ of truths of formulas (see Section 2.1).

At this point, for clarity of our standpoint, let us quote, from [126], the following:

Mathematical logic and the relation between logic and mathematics have

been interpreted in at least three different ways:

1. Mathematical logic as symbolic logic, or logic using mathematical

symbolism;

2. Mathematical logic as foundations (or philosophy) of mathematics;

17

3. Mathematical logic as logic studied by mathematical methods, as a

branch of mathematics.

The traditional and major viewpoint in mathematical logic and theoretical computer

science is the first one as already pointed out, while our perspective in the present

thesis is definitely the third one. We are aiming at capturing logic (and computation)

by mathematics, viz., games and strategies.

1.7.2 Unity of Proof, Model and Recursion Theories

Another point is the unity of subfields of mathematical logic, specifically proof theory,

model theory and recursion theory, in the sense described below.8

In mathematical logic, one usually formalizes a mathematical theory by a logical

system, i.e., by giving a formal language of mathematics and postulating axioms and

rules to derive theorems, while models are possible interpretations of the language

[168, 56]. Hence, logical systems and models are traditionally a priori completely

separated, and thus soundness and completeness are central problems: Axioms and

rules ought to be sound so that theorems are all ‘correct’ as well as complete so that

every ‘true’ statement can be proved. Even a more elementary question is consistency :

One should not be able to prove both a statement A and its negation ¬A since

otherwise the logic would be completely unreliable and useless, proving any formula.

In our game-semantic approach, in contrast, logical systems and models are simply

unified via games and strategies; thus, the questions of soundness and completeness

just disappear: Validity and provability of a formula just coincide, namely as the

existence of a winning strategy on the underlying game, where winning roughly means

‘justice’ or ‘reasonability’ of the argument by the strategy. In other words, a winning

strategy on a game embodies a proof of the formula which the game models, and

also it defines validity of the formula (according to the meaning explanation) at

the same time. Moreover, consistency of the logic which our games and strategies

embody follows immediately from the composability of winning strategies: If there is

a winning strategy on a game A, then there is none on its negation ¬A = A ⇒ 0

since otherwise the composition of the two would be a winning strategy on the empty

game 0, a contradiction, and vice versa.

Note that the present work formalizes only a slight fragment of mathematics, and

thus it is unclear how large part of mathematics can be formalized in this manner;

8This point holds also for MLTT and the meaning explanation. However, as already pointed out,
the former is syntactic and the latter is pre-mathematical. Thus, the significance of the present work
is in the point that it formulates the unity by a semantic and mathematical method.

18

however, it has certain technical advantages over conventional approaches to logic as

explained above (in addition to the conceptual points described in Section 1.3.2), and

therefore we regard it as worth pursuing further as future work.

In addition, note also that mathematical foundations of computability such as

TMs have been extrinsic to proofs and models except that they have been applied to

decision problems in proof theory [183, 34] and employed as realizers. Nevertheless,

we shall formulate a mathematical model of computation based on our games and

strategies in Chapter 4, and therefore our approach incorporates recursion theory too.

1.8 Thesis Outline

The rest of the thesis is structured as follows. First, Chapter 2 recalls an existing

variant of games and strategies, on which our variants in the subsequent chapters

are all based. Specifically, giving an informal introduction to games and strategies in

Section 2.1, we review in detail Guy McCusker’s games in Section 2.2 and strategies

in Section 2.3. We then establish categories of games and strategies in Section 2.4.

Main contents of the thesis begin with Chapter 3, which gives a game semantics

of dynamics and intensionality of computation, specifically a variant of finitary PCF

(FPCF). We first explain the main idea and contributions of the chapter in Section 3.1,

and then define our FPCF and axiomatize our semantics of FPCF that satisfies the

DCP via certain bicategories in Section 3.2 so that it suffices to give its game-semantic

instance. Next, we define a dynamic variant of games and strategies in Section 3.3

and show that they induce our bicategorical interpretation of FPCF in Section 3.4.

We finally draw a conclusion of the chapter and propose future work in Section 3.5.

Next, based on Chapter 3, we develop a new mathematical model of higher-order

computation in Chapter 4. Explaining the main idea and contributions of the chapter

in Section 4.1, we first define our game-semantic ‘high-level’ computational processes

in Section 4.2. Then, we formalize ‘tags’ for disjoint union of sets in Section 4.3 in

order to define ‘effective computability’ of strategies in a rigorous manner. Next, as

the main contributions of the chapter, we define a novel notion of ‘computable’ or

viable strategies in an intrinsic, non-axiomatic, non-inductive fashion, and show that

viable dynamic strategies are in fact Turing complete in Section 4.4. Finally, we make

a conclusion of the chapter and propose further work in Section 4.5.

As the last main content of the thesis, we develop a game semantics of MLTT in

Section 5, which is rather orthogonal to the successive development of the previous two

chapters. We first explain the main obstacle in giving a game semantics of MLTT, our

19

solution in a nutshell and contributions of the chapter in Section 5.1. Next, we briefly

recall the syntax of MLTT in Section 5.2 and define our generalization of games, called

predicative games, in Section 5.3. We then give an interpretation of MLTT equipped

with various types mentioned before by predicative games in Section 5.4. However,

the model cannot interpret universes; we overcome this point in Section 5.5. We also

analyze the degree of intensionality of the game semantics in Section 5.6. Finally, we

draw a conclusion of the chapter and propose future work in Section 5.7.

As a climax, Chapter 6 pieces together the rather orthogonal developments of the

last three chapters. In Section 6.1, we combine the methods of Chapters 3 and 5 to

capture the meaning explanation of MLTT more thoroughly. We extend it further

in Section 6.2 by incorporating the framework of Chapter 4 so that we obtaine a

mathematical model of higher-order computation that embodies the computation

of MLTT. Finally, we briefly sketch some consequences of applying our method of

modeling classical reasoning to the game semantics of MLTT in Section 6.3.

At last, we draw a conclusion of the entire thesis and propose some further work

in Chapter 7.

20

Chapter 2

Preliminary: Games and Strategies

In this chapter, we recall an existing variant of games and strategies on which our

variants will be based; specifically, it is Guy McCusker’s one introduced in [14, 129].

Strictly speaking, the variants of [14] and [129] are slightly different; legal positions

must satisfy well-bracketing in [129] but not in [14]. We have chosen the variant of

[14] equipped with equivalence relations on (valid) positions introduced in [9] and

sketched in Section 3.6 of [129], which we call games and strategies in this thesis.

We have selected McCusker’s variant for it is relatively less restrictive, which

is important to interpret various constructions of MLTT (e.g., it interprets (weak)

sum types for the first time as games [129]) in Chapter 5. Also, the variant of [14]

gives a unifying view on various logics and computations because it models many

different calculi by simply varying constraints on strategies; in particular, under the

Curry-Howard isomorphism, the presence/absence of the well-bracketing condition

corresponds to intuitionistic/classical logic; see Section 2.4. Moreover, the equivalence

relations on positions enable us to employ the well-behaving exponential defined in

Section 3.6 of [129] (it is originally introduced in [9]), rather than the ad-hoc one

defined in [14], without distinguishing inessential details of ‘tags’ for disjoint union of

sets. This exponential is categorically well-behaving in the sense that it gives rise to

a comonad that turns in the standard manner a categorical semantics of (a fragment

of) linear logic into a categorical semantics of intuitionistic logic, while the ad-hoc one

does not; see Section 2.4. Thus, our choice of games and strategies is mathematically

well-behaving, and it gives a unifying view on classical, intuitionistic and linear logics.

The present chapter is structured as follows. Giving an informal introduction to

games and strategies in Section 2.1, we recall the basic definitions and properties

of games in Section 2.2 and of strategies in Section 2.3. Finally, we conclude the

chapter by defining various categories of games and strategies, some of which embody

computation, and the others do logic, in Section 2.4.

21

2.1 Pre-Mathematical Introduction

Before recalling the formal definitions, let us first give an informal or pre-mathematical

introduction to games and strategies without technical details for it may be useful

for a reader who is not very familiar with game semantics.

A game, roughly, is a certain kind of a rooted forest whose branches correspond

to possible developments or (valid) positions of the ‘game in the usual sense’ (such as

chess, poker, etc.) which it represents. These branches are finite sequences of moves

of the game, where some moves are distinguished and called initial ; only initial moves

can be the first element (or occurrence) of a position of the game. A play of a game is

an (finitely or infinitely) increasing sequence ε,m1,m1m2, . . . of positions of the game,

where ε is the empty sequence. For the aim of the present thesis, it suffices to focus

on rather standard sequential (as opposed to concurrent [15]) and unpolarized (as

opposed to polarized [119]) games played by two participants, Player, who represents

a ‘mathematician’ (or a ‘computational agent’), and Opponent, who represents a

‘rebutter’ (or an ‘environment’), in each of which Opponent always starts a play (i.e.,

unpolarized), and then they alternately (i.e., sequential) perform moves allowed by

the rules of the game. Strictly speaking, a position of each game is not just a sequence

of moves: Each occurrence m of Opponent’s or O- (resp. Player’s or P-) non-initial

move in a position points to a previous occurrence m′ of P- (resp. O-) move in the

position, representing that m is performed specifically as a response to m′. Thus, a

game is what specifies possible interactions between the participants, which may be

seen as a formula in logic defining possible ‘(dialogical) arguments’ on the truth of

the formula or as a type in computation defining possible ‘computational processes’

of the type; in fact, in game semantics, we interpret formulas and types as games. If

a game is to be regarded as a formula in logic, then it is natural to define that Player

(resp. Opponent) wins a play (or an ‘argument’) of the game if the next move is to be

performed by Opponent (resp. Player) but there is no possible one, and a participant

loses a play if the other wins it. We shall extend this definition later to determine

which participant wins even in the case where a play keeps growing infinitely, but for

the moment it suffices to focus on the case where a play always terminates.

On the other hand, a strategy on a game is, informally, what tells Player which

move (with a pointer) she should perform at each of her turns in the game, and thus

it interprets a proof of the formula (or a program of the type) which the game models.

If a game is to be regarded as a formula in logic, then we define the game to be true if

there is a strategy by which Player wins every play of the game and false otherwise.

22

Convention. Pointers of strategies are often obvious, and so we usually omit them.

In a game semantics J KG of a logical system (resp. a programming language) L,

a formula (resp. a type) A in L is interpreted as the game JAKG, and a proof (resp. a

program) M of A in L, as a strategy JMKG on JAKG1. Then, an ‘execution’ of the proof

(resp. the program) M is interpreted as a play of JAKG, where Player follows JMKG.
Let us consider some simple examples. The simplest game of a true (resp. false)

formula is the unit game 1 (resp. the empty game 0) in which the empty sequence

ε (resp. the singleton sequence q of any element q) is the only possible maximal

position. Clearly, there is the trivial strategy on 1 for Player to win but not on 0.

Next, let us consider simple games for computation. The game N of natural

numbers looks like the following tree (which is infinite in width):

q

. . .

0
�

1

�

2
?

3

-

. . .

in which a play starts with Opponent’s question q (‘What is your number?’) and ends

with Player’s answer n ∈ N (‘My number is n!’), where n points to q. A strategy 10

on N for 10 ∈ N, for instance, is represented by the map q 7→ 10, or diagrammatically:

10
q
10

where the arrow q ← 10 in the diagram represents the pointer, which is a notation

we shall employ throughout the present thesis.

As another example, consider the game N (N of linear functions [70] (also

written informallyN[0] (N[1]) on natural numbers, whose typical maximal position is

q[1]q[0]n[0]m[1], where n,m ∈ N, and ()[i] for i = 0, 1 are arbitrary, unspecified ‘tags’ to

distinguish the two copies of N (in the rest of the thesis, we employ a similar notation

for three or more copies of N in the obvious manner too), or diagrammatically2:

N[0] (N[1]

q[1]

q[0]

n[0]

m[1]

1Strictly speaking, a program in a (functional) programming language is usually of the form
Γ ` M : A, where Γ is a context, and the strategy JMKG is on the game JΓKG ⇒ JAKG of implication
from JΓKG to JAKG . However, here we focus on the case where contexts are empty for brevity.

2The diagram is depicted as above only to clarify which component game (i.e., the domain or the
codomain) each move belongs to; it should be read just as a finite sequence, namely, q[1]q[0]n[0]m[1],
equipped with pointers.

23

which can be read as follows:

1. Opponent’s question q[1] for an output (‘What is your output?’);

2. Player’s question q[0] for an input (‘Wait, what is your input?);

3. Opponent’s answer, say, n[0], to q[0] (‘OK, here is an input n.’);

4. Player’s answer, say, m[1], to q[1] (‘Alright, the output is then m.’).

A strategy succ on this game that corresponds to the (linear) successor function can

be represented by the map q[1] 7→ q[0], q[1]q[0]n[0] 7→ n+ 1[1], or diagrammatically:

N[0]

succ
(N[1]

q[1]

q[0]

n[0]

n+ 1[1]

As yet another example, consider the game (N (N) (N of higher-order (in

particular second-order) linear functions, whose typical maximal position is:

(N[0] (N[1]) (N[2]

q[2]

q[1]

q[0]

n[0]

m[1]

l[2]

where n,m, l ∈ N, which can be read as follows:

1. Opponent’s first question q[2] for an output (‘What is your output?’);

2. Player’s question q[1] for an input function (‘Wait, what is your input?’);

3. Opponent’s second question q[0] for an input (‘What is your input then?’);

4. Player’s answer, say, n[0], to q[0] (‘OK, here is an input n.’);

5. Opponent’s answer, say, m[1], to q[1] (‘Sure, then here is an input m.’);

6. Player’s answer, say, l[2], to q[2] (‘Alright, the output is then l.’).

A strategy AppToSeven on this game that applies an input linear function to 7 ∈ N
can be represented by the map q[2] 7→ q[1], q[2]q[1]q[0] 7→ 7[0], q[2]q[1]q[0]7[0]m[1] 7→ m[2]:

24

AppToSeven
(N[0] (N[1]) (N[2]

q[2]

q[1]

q[0]

7[0]

m[1]

m[2]

Even in these simple examples, we may see the dynamic and intensional natures of

games and strategies as well as their conceptual naturality; also, it is clear that they

are syntax-independent, i.e., notation for them is secondary and inessential. However,

as we shall see shortly, they are actually not fully dynamic or intensional, and thus

we shall define a more dynamic, intensional variant in Chapter 3.

Also, in some sense Opponent plays the role of an oracle [169], and it is a part

of the formalization, which is a distinguishing feature of games and strategies. Note

also that Player may compute on the ‘external behavior’ of Opponent, even when he

plays the role of a higher-order input, rather than some ‘encoding’ of the input. Thus,

unlike other mathematical models of computation such as TMs, games and strategies

may model higher-order computation in a general, systematic fashion.

Finally, we may see that computational processes in games and strategies are

clearly more ‘high-level’ than TMs, e.g., the participants of the game N handle a

natural number as a single move; we shall define in Chapter 4 the remaining game-

semantic ‘low-level’ computational processes as promised in the introduction.

2.2 Games

Let us review games in detail. Games are based on two preliminary concepts: arenas

and legal positions. An arena defines the basic components of a game, which in turn

induces its legal positions to specify the basic rules of the game in the sense that

(valid) positions of the game must be legal positions. We first recall these notions.

Notation. We use the following notation throughout the present thesis:

• We use bold letters s, t,u,v,w, etc. for sequences, in particular ε for the empty

sequence, and letters a, b, c, d,m, n, x, y, z, etc. for elements of sequences;

• We often abbreviate a finite sequence s = (x1, x2, . . . , x|s|) as x1x2 . . . x|s|, where

|s| denotes the length (i.e., the number of elements) of s, and write s(i), where

i ∈ {1, 2, . . . , |s|}, as another notation for xi;

25

• A concatenation of sequences is represented by the juxtaposition of them, but

we often write as, tb, ucv for (a)s, t(b), u(c)v, etc., and also s.t for st; we

define sn
df.
= ss · · · s︸ ︷︷ ︸

n

for any sequence s and natural number n ∈ N;

• We write Even(s) (resp. Odd(s)) iff s is of even-length (resp. odd-length), and

for any set S of sequences SP df.
= {s ∈ S | P(s)}, where P ∈ {Even,Odd};

• We write s � t iff s is a prefix of t, and given a set S of sequences, Pref(S) for

the set of all prefixes of sequences in S, i.e., Pref(S)
df.
= {s | ∃t ∈ S. s � t };

• Given a poset P and a subset S ⊆ P , Sup(S) denotes the supremum of S;

• X∗ df.
= {x1x2 . . . xn | n ∈ N,∀i ∈ {1, 2, . . . , n}. xi ∈ X } for each set X;

• Given a function f : A → B and a subset S ⊆ A, we define f � S : S →
B to be the restriction of f to S and f ∗ : A∗ → B∗ by f ∗(a1a2 . . . an)

df.
=

f(a1)f(a2) . . . f(an) ∈ B∗ for all a1a2 . . . an ∈ A∗;

• Given sets A and B, we write BA for the set of all functions from A to B;

• Given sets X1, X2, . . . , Xn, and i ∈ {1, 2, . . . , n}, we write π
(n)
i or πi for the ith-

projection function X1 ×X2 × · · · ×Xn → Xi that maps (x1, x2, . . . , xn) 7→ xi;

• We write x ↓ if an element x is defined, and x ↑ otherwise; ' denotes the Kleene

equality, i.e., x ' y
df.⇔ (x ↓ ∧ y ↓ ∧ x = y) ∨ (x ↑ ∧ y ↑);

• We use symbols⇒ (implication), ∧ (conjunction), ∨ (disjunction), ∀ (universal

quantification), ∃ (existential quantification) and ⇔ (if and only if) informally

in our meta-language, whose intended meanings are as written in the following

parentheses; ∀ and ∃ precedes any other symbols; ∧ and ∨ precede ⇒ and ⇔;

∧ and ∨ are left associative, while ⇒ and ⇔ are right associative;

• If P refers to a predicate, then P(x) means that an object x satisfies P.

2.2.1 Arenas and Legal Positions

Definition 2.2.1 (Arenas [14, 129]). An arena is a triple G = (MG, λG,`G), where:

• MG is a set whose elements are called moves ;

• λG is a function from MG to {O,P}×{Q,A}, called the labeling function, in

which O, P, Q and A are arbitrarily fixed symbols, called the labels ;

26

• `G is a subset of ({?}∪MG)×MG, where ? is an arbitrarily fixed element such

that ? 6∈MG, called the enabling relation, that satisfies:

– (E1) If ? `G m, then λG(m) = OQ and n `G m⇔ n = ?;

– (E2) If m `G n and λQA
G (n) = A, then λQA

G (m) = Q;

– (E3) If m `G n and m 6= ?, then λOP
G (m) 6= λOP

G (n)

in which λOP
G

df.
= π1 ◦ λG : MG → {O,P} and λQA

G
df.
= π2 ◦ λG : MG → {Q,A}.

Convention. A move m ∈MG of an arena G is called:

• initial if ? `G m;

• an O-move if λOP
G (m) = O, and a P-move if λOP

G (m) = P;

• a question if λQA
G (m) = Q, and an answer if λQA

G (m) = A.

Notation. Given an arena G, we define M Init
G

df.
= {m ∈MG | ? `G m } ⊆MG.

Thus, an arena G defines moves of a game, each of which is Opponent’s/Player’s

question/answer, and which move n can be performed for each movem by the enabling

relation m `G n, where ? `G m means that Opponent can initiate a play by m (for

this point, see Definitions 2.2.5, 2.2.9 and 2.2.10 below).

The axioms of arenas are to be read as follows:

• E1 sets the convention that an initial move must be Opponent’s question, and

an initial move cannot be performed for a previous move;

• E2 states that an answer must be performed for a question;

• E3 mentions that an O-move must be performed for a P-move, and vice versa.

Example 2.2.2. The terminal arena T is given by T
df.
= (∅, ∅, ∅).

Example 2.2.3. The flat arena flat(S) on a given set S is given by Mflat(S)
df.
=

{q} ∪ S, where q is any element with q 6∈ S; λflat(S) : q 7→ OQ, (m ∈ S) 7→ PA;

`flat(S)
df.
= {(?, q)} ∪ {(q,m) | m ∈ S }. For instance, N

df.
= flat(N) is the arena of

natural numbers, and 2
df.
= flat(B), where B df.

= {tt ,ff }, is the arena of booleans.

As already mentioned, interactions between Opponent and Player in a game are

represented by certain sequences of moves of the underlying arena, equipped with

pointers (Definition 2.2.5) that specify the occurrence of a move in the sequence which

each occurrence of a non-initial move (Definition 2.2.4) in the sequence is performed

for. Technically, pointers are to distinguish similar but different computations; see

[14, 43] for this point. In addition, they play an important role in Chapter 4.

27

Definition 2.2.4 (Occurrences of moves). Given a finite sequence s ∈M∗
G of moves

of an arena G, an occurrence (of a move) in s is a pair (s(i), i) such that i ∈
{1, 2, . . . , |s|}. More specifically, we call the pair (s(i), i) an initial occurrence

(resp. a non-initial occurrence) in s if ? `G s(i) (resp. otherwise).

Definition 2.2.5 (J-sequences [100, 14, 143]). A justified (j-) sequence of an arena

G is a pair s = (s,Js) of a finite sequence s ∈ M∗
G and a map Js : {1, 2, . . . , |s|} →

{0, 1, 2, . . . , |s| − 1} such that for all i ∈ {1, 2, . . . , |s|} Js(i) = 0 if ? `G s(i), and

0 < Js(i) < i ∧ s(Js(i)) `G s(i) otherwise. The occurrence (s(Js(i)),Js(i)) is called

the justifier of a non-initial occurrence (s(i), i) in s. We also say that (s(i), i) is

justified by (s(Js(i)),Js(i)), or there is a pointer from the former to the latter.

The idea is that each non-initial occurrence in a j-sequence must be performed for

a specific previous occurrence, viz., its justifier, in the j-sequence.

Convention. By abuse of notation, we usually keep the pointer structure Js of each

j-sequence s = (s,Js) implicit and often abbreviate occurrences (s(i), i) in s as

s(i). Moreover, we usually write Js(s(i)) = s(j) if Js(i) = j. This convention is

mathematically imprecise, but it does not bring any serious confusion in practice.

Notation. We write JG for the set of all j-sequences of an arena G.

Definition 2.2.6 (J-subsequences). Given an arena G and a j-sequence s ∈ JG, a

j-subsequence of s is a j-sequence t ∈JG that satisfies:

• t is a subsequence of s, for which we write t = (s(i1), s(i2), . . . , s(i|t|));

• Jt(s(ir)) = s(il) iff there are occurrences s(j1), s(j2), . . . , s(jk) in s eliminated

in t, where l, r, k ∈ N and 1 6 l < r 6 |t|, such that Js(s(ir)) = s(j1) ∧
Js(s(j1)) = s(j2) ∧ · · · ∧ Js(s(jk−1)) = s(jk) ∧ Js(s(jk)) = s(il).

For later developments of the thesis (specifically Chapter 5), we need to define

the following notion precisely though it is not conventional in the literature:

Definition 2.2.7 (Equality of j-sequences). Given arenas G and H, we define j-

sequences s ∈JG and t ∈JH to be equal, written s = t, if they are the same not

only as finite sequences but also their labels and justifiers are the same, i.e.,

∀i, j ∈ {1, 2, . . . , |s| }. λG(s(i)) = λH(t(i)) ∧ (Js(s(i)) = s(j)⇔ Jt(t(i)) = t(j)).

Convention. A j-sequence is identified by the equality defined in Definition 2.2.7, for

which it is rather appropriate to assume that OP- and QA-labels are attached to each

occurrence in a j-sequence.

28

Next, let us recall the notion of ‘relevant’ part of previous occurrences:

Definition 2.2.8 (Views [100, 14]). The Player (P-) view dseG and the Oppo-

nent (O-) view bscG of a j-sequence s ∈JG of an arena G are the j-subsequences

of s given by the following induction on |s|:

• dεeG
df.
= ε;

• dsmeG
df.
= dseG.m if m is a P-move;

• dsmeG
df.
= m if m is initial;

• dsmtneG
df.
= dseG.mn if n is an O-move such that m justifies n;

• bεcG
df.
= ε;

• bsmcG
df.
= bscG.m if m is an O-move;

• bsmtncG
df.
= bscG.mn if n is a P-move such that m justifies n

where the justifiers of occurrences in dseG (resp. bscG) are unchanged if they occur

in dseG (resp. bscG), and undefined otherwise. A P-view (resp. an O-view) of G

is the P-view (resp. the O-view) of a j-sequence of G. A view is a P- or O-view.

Notation. We often omit the subscripts G in d eG and b cG when they are obvious.

The idea behind the notion of views is as follows. Given a j-sequence sm of an

arena G such that m is a P-move (resp. an O-move), the P-view dse (resp. the O-view

bsc) is intended to be the currently ‘relevant’ part of previous occurrences for Player

(resp. Opponent). That is, Player (resp. Opponent) is concerned only with the last

occurrence of an O-move (resp. a P-move), its justifier and that justifier’s ‘concern’,

i.e., P-view (resp. O-view), which then recursively proceeds. See [100, 43, 42] for an

explanation of justifiers and views in terms of their correspondences with syntax.

Remark. A view may not be a j-sequence, motivating the visibility condition below.

We are now ready to introduce the notion of legal positions of an arena:

Definition 2.2.9 (Legal positions [14]). A legal position of an arena G is a j-

sequence s ∈JG that satisfies the following two conditions:

• (Alternation) If s = s1mns2, then λOP
G (m) 6= λOP

G (n);

• (Visibility) If s = tmu with m non-initial, then Js(m) occurs in dteG if m is

a P-move, and in btcG otherwise.

29

Notation. The set of all legal positions of an arena G is denoted by LG.

The visibility condition is technically to guarantee that the P-view and the O-view

of a j-sequence of an arena are both j-sequences of the arena [129], and conceptually

to ensure that the justifier of each non-initial occurrence belongs to the ‘relevant’ part

of previous occurrences. Legal positions are to specify the basic rules of a game in

the sense that every position of the game must be a legal position (Definition 2.2.10):

• During a play of the game, Opponent performs the first move by a question, and

then Player and Opponent alternately play (by alternation), where each non-

initial move is performed for a specific previous occurrence, viz., the justifier;

• The justifier of each non-initial occurrence belongs to the ‘relevant’ part, viz.,

the view, of previous occurrences (by visibility) in a position of the game.

2.2.2 Games

We are now ready to recall the central notion of games :

Definition 2.2.10 (Games [14, 129]). A game is a quintuple

G = (MG, λG,`G, PG,'G)

such that:

• The triple (MG, λG,`G) forms an arena (also denoted by G);

• PG is a subset of LG, whose elements are called (valid) positions of G, that

satisfies:

(P1) PG is non-empty and prefix-closed (i.e., ∀sm ∈ PG. s ∈ PG);

• 'G is an equivalence relation on PG, called the identification of (valid)

positions, that satisfies:

– (I1) s 'G t⇒ |s| = |t|;

– (I2) sm 'G tn ⇒ s 'G t ∧ λG(m) = λG(n) ∧ (m,n ∈ M Init
G ∨ (∃i ∈

{1, 2, . . . , |s|}.Jsm(m) = s(i) ∧ Jtn(n) = t(i)));

– (I3) s 'G t ∧ sm ∈ PG ⇒ ∃tn ∈ PG. sm 'G tn.

A play of G is a (finite or infinite) sequence ε,m1,m1m2, . . . of positions in G.

30

The axiom P1 corresponds to the natural phenomenon that a non-empty ‘moment’

(or position) of a game must have the previous ‘moment’. Identifications of positions

are originally introduced in [9] and also employed in Section 3.6 of [129]. They are to

identify positions up to inessential details of ‘tags’ for disjoint union, particularly for

exponential (Definition 2.2.25); each position s ∈ PG of a game G is a representative

of the equivalence class [s]
df.
= {t ∈ PG | t 'G s} ∈ PG/'G which we take as primary.

For this underlying idea, the three axioms I1, I2 and I3 should make sense.

Remark. In [14, 129], positions of a game G are required to be closed under taking

threads for their rather simple exponential; however, we do not need this axiom.

Example 2.2.11. The terminal game T
df.
= (∅, ∅, ∅, {ε}, {(ε, ε)}) is the simplest

game, which is actually the unit game 1 sketched in Section 2.1.

Example 2.2.12. The flat game flat(S) on a given set S is defined as follows. The

triple flat(S) = (Mflat(S), λflat(S),`flat(S)) is the flat arena in Example 2.2.3, Pflat(S)
df.
=

{ε, q}∪{qm | m ∈ S}, and 'flat(S)
df.
= {(s, s) | s ∈ Pflat(S)}. For instance, N

df.
= flat(N)

is the game of natural numbers sketched in the introduction, and 2
df.
= flat(B) is the

game of booleans. Also, 0
df.
= flat(∅) is the empty game.

Next, let us define a substructure relation between games:

Definition 2.2.13 (Subgames). A game H is a subgame of a game G, written

H P G, if MH ⊆MG, λH = λG �MH , `H ⊆ `G ∩ (({?}∪MH)×MH), PH ⊆ PG, and

'H = 'G ∩ (PH × PH).

Example 2.2.14. The terminal game T (Example 2.2.11) is clearly a subgame of

any game. As another example, consider the flat games 2N
df.
= flat({2n | n ∈ N })

and 2N + 1
df.
= flat({2n + 1 | n ∈ N }). Clearly, they are both subgames of N

(Definition 2.2.12), but neither is a subgame of the other.

Note that a game G may have a move m ∈MG that does not occur in any position

of G, or an enabling pair m `G n not used for a justification in a position of G. For

technical convenience (e.g., for Lemma 5.3.7), we prohibit such unused structures:

Definition 2.2.15 (Economical games). A game G is economical if every move

m ∈ MG occurs in a position of G, and every pair m `G n in the enabling relation

occurs as a non-initial occurrence n and its justifier m in a position of G.

Example 2.2.16. The terminal game, the unit game and flat games are economical.

31

Convention. Henceforth, games refer to economical games by default (n.b., all the

constructions on games defined in the present thesis preserve this property).

We shall later focus on well-opened, well-founded games. Roughly, a game is well-

opened if every initial occurrence of the game is the first element of a position, and

it is well-founded if so is the enabling relation. Formally, they are defined as follows:

Definition 2.2.17 (Well-opened games [9, 14, 129]). A game G is well-opened if:

(WO) sm ∈ PG with m initial implies s = ε.

Definition 2.2.18 (Well-founded games [37]). A game G is well-founded if:

(WF) The enabling relation `G is well-founded downwards, i.e., there

is no countably infinite sequence (mi)i∈N of moves mi ∈ MG such that

? `G m0 ∧ ∀i ∈ N.mi `G mi+1.

2.2.3 Constructions on Games

Next, let us review existing constructions on games. It is straightforward to show

that these constructions are well-defined, and so we leave the proofs to [14, 129].

Convention. For brevity, we usually omit ‘tags’ for disjoint union of sets. For instance,

we write x ∈ A + B iff x ∈ A or x ∈ B; also, given relations RA ⊆ A × A and

RB ⊆ B × B, we write RA + RB for the relation on the disjoint union A + B such

that (x, y) ∈ RA +RB
df.⇔ (x, y) ∈ RA ∨ (x, y) ∈ RB.

Let us begin with tensor (product) ⊗. Roughly, a position s of the tensor A⊗ B
of games A and B is an interleaving mixture of a position t of A and a position u of

B developed ‘in parallel without communication’. Formally:

Definition 2.2.19 (Tensor of games [7, 14]). Given games A and B, the tensor

(product) A⊗B of A and B is defined by:

• MA⊗B
df.
= MA +MB;

• λA⊗B
df.
= [λA, λB];

• `A⊗B
df.
= `A + `B;

• PA⊗B
df.
= {s ∈ LA⊗B | s � A ∈ PA, s � B ∈ PB };

• s 'A⊗B t
df.⇔ s � A 'A t � A∧ s � B 'B t � B ∧∀i ∈ N.s(i) ∈MA ⇔ t(i) ∈MA

32

where s � A (resp. s � B) denotes the j-subsequence of s that consists of occurrences

of moves of A (resp. B).

As explained in [5], it is easy to see that during a play of a tensor A ⊗ B only

Opponent can switch between the component games A and B (by alternation).

Example 2.2.20. Consider the tensor N ⊗ N of the natural number game N with

itself, whose maximal position is either of the following forms:

N[0] ⊗ N[1] N[0] ⊗ N[1]

q[0] q[1]

n[0] m[1]

q[1] q[0]

m[1] n[0]

where n,m ∈ N, and ()[i] (i = 0, 1) are again arbitrary, unspecified ‘tags’ such that

[0] 6= [1] to distinguish the two copies of N , and the arrows represent pointers.

Convention. We shall keep using the notation in Example 2.2.20 (also for more than

two copies of a game in the obvious manner), and often omit ‘tags’ ()[i].

Next, let us recall linear implication (. A linear implication A(B is the space

of linear functions from A to B in the sense of linear logic [70], i.e., they consume

exactly one input in A (strictly speaking at most once since it is possible for Player

not to play in A at all, i.e.,(is actually affine implication, but we shall stick to the

convention; it is linear if strategies are all strict [3]) to produce an output in B:

Definition 2.2.21 (Linear implication [7, 14]). The linear implication A (B

from a game A to a game B is defined by A(B
df.
= T if B = T , and otherwise by:

• MA(B
df.
= MA +MB;

• λA(B
df.
= [λA, λB], where λA

df.
= 〈λOP

A , λQA
A 〉 and λOP

A (m)
df.
=

{
P if λOP

A (m) = O

O otherwise
;

• ? `A(B m
df.⇔ ? `B m;

• m `A(B n (m 6= ?)
df.⇔ (m `A n) ∨ (m `B n) ∨ (? `B m ∧ ? `A n);

• PA(B
df.
= {s ∈ LA(B | s � A ∈ PA, s � B ∈ PB };

• s 'A(B t
df.⇔ s � A 'A t � A∧s � B 'B t � B∧∀i ∈ N.s(i) ∈MA ⇔ t(i) ∈MA

where pointers between initial occurrences from A and from B in s are deleted.

33

In the domain A of a linear implication A(B, the roles of Player and Opponent

are interchanged; it is only the difference between A (B and the tensor A ⊗ B.

Dually to A ⊗ B, it is easy to see that during a play of A (B only Player may

switch between A and B. Note that the case distinction on whether or not B = T

for A(B is just to preserve economy of games (Definition 2.2.15).

Example 2.2.22. A maximal position of the linear implication N (N is either of

the following forms:

N (N N (N
q q

q m
n

m

where n,m ∈ N. The left diagram represents a strict linear function as it asks an

input before producing an output, while the right diagram does a non-strict one.

Next, product & forms the categorical product in the categories of games given in

Section 2.4. A position of the product A&B is simply a position of A or B:

Definition 2.2.23 (Product [7, 14]). Given games A and B, the product A&B of

A and B is defined by:

• MA&B
df.
= MA +MB;

• λA&B
df.
= [λA, λB];

• `A&B
df.
= `A + `B;

• PA&B
df.
= {s ∈ LA&B | (s � A ∈ PA ∧ s � B = ε) ∨ (s � A = ε ∧ s � B ∈ PB) };

• s 'A&B t
df.⇔ s 'A t ∨ s 'B t.

Example 2.2.24. A maximal position of the product 2&N is either of the following

forms:

2 & N 2 & N
q q
b n

where b ∈ B and n ∈ N.

Now, let us recall exponential !, which is intuitively the countably infinite iteration

of tensor, i.e., !A ∼= A⊗ A⊗ . . . for any game A.

34

Definition 2.2.25 (Exponential [7, 9, 129]). Given a game A, the exponential !A

of A is defined by:

• M!A
df.
= MA × N;

• λ!A : (a, i) 7→ λA(a);

• ? `!A (a, i)
df.⇔ ? `A a;

• (a, i) `!A (a′, j)
df.⇔ i = j ∧ a `A a′;

• P!A
df.
= {s ∈ L!A | ∀i ∈ N. s � i ∈ PA };

• s '!A t
df.⇔ ∃ϕ ∈ P(N).∀i ∈ N. s � ϕ(i) 'A t � i ∧ π∗2(s) = (ϕ ◦ π2)∗(t)

where s � i is the j-subsequence of s that consists of occurrences of moves of the form

(a, i) but changed into a, and P(N) is the set of all permutations of natural numbers.

Now, it should be clear, from the definition of '!A, why we have equipped each

game with an identification of positions: A particular choice of ‘tags’ (, i) for an

exponential !A should not matter; since this identification may occur locally in games

in a nested form, e.g., !(!A ⊗ B), !A (B, etc., it gives a neat solution to define a

tailored identification 'G of positions as part of the structure of each game G.

Exponential enables us, via Girard’s translation [70] A⇒ B
df.
= !A(B, to model

the construction ⇒ of the usual implication (or the function space).

Example 2.2.26. In the linear implication 2&2(2, Player may play only in one

2 of the domain 2&2:

2 & 2 (2 2 & 2 (2
q q

q q
b(1) b(1)

b(2) b(2)

where b(1), b(2) ∈ B. On the other hand, positions of the implication 2&2 ⇒ 2 =

!!(2&2)(2 are of the expected forms; for instance:

!(2 & 2) (2 !(2 & 2) (2
q q

(q, 0) (q, 10)
(b(1), 0) (b(1), 10)

(q, 1) (q, 7)
(b(2), 1) (b(2), 7)

b(3) (q, 4)
(b(3), 4)

b(5)

35

where b(1), b(2), b(3), b(4), b(5) ∈ B. Hence, e.g., Player may play as conjunction ∧ : B→
B or disjunction ∨ : B→ B on the implication 2&2⇒ 2 in the obvious manner, but

not on the linear implication 2&2 (2. This example illustrates why the standard

notion of functions corresponds in game semantics to the construction ⇒, not (.

Note that on the game 2&2 ⇒ 2 it is possible for Player to ‘intentionally’ keep

playing in the domain !(2&2) infinitely, but it should be seen as a loss or a defeat of

Player since intuitively a ‘valid argument’ should not just prolong a play. We shall

formalize this idea precisely in Section 2.3 via the notion of winning strategies.

Finally, let us consider weak sum + of games. The first proposal of weak sum

of games is introduced by McCusker in [129], but it is defined only on well-opened

games. He has later overcome this point in [128] by the following solution:

Definition 2.2.27 (Weak sum [128]). Given games A and B, the weak sum A+B

of A and B is defined by:

• MA+B
df.
= {q+, l, r} + MA + MB, where q+, l and r are any pairwise distinct

elements;

• λA+B : q+ 7→ OQ, l 7→ PA, r 7→ PA, (a ∈MA) 7→ λA(a), (b ∈MB) 7→ λB(b);

• ? `A+B m
df.⇔ m = q+;

• m `A+B n (m 6= ?)
df.⇔ (m = q+ ∧ (n = l ∨ n = r))

∨ (m = l ∧ ? `A n) ∨ (m = r ∧ ? `B n) ∨m `A n ∨m `B n;

• PA+B
df.
= Pref({q+la1s1q+la2s2 . . . q+laksk ∈ LA+B | a1s1a2s2 . . . aksk ∈ PA,∀i ∈

{1, 2, . . . , k}. ? `A ai ∧ NonInitA(si) } ∪ {q+rb1t1q+rb2t2 . . . q+rbktk ∈ LA+B |
b1t1b2t2 . . . bktk ∈ PB,∀i ∈ {1, 2, . . . , k}. ? `B bi ∧ NonInitB(ti) }), where q+

justifies l and r, l (resp. r) justifies initial occurrences of A (resp. B), and

NonInitG(s)
df.⇔ there is no initial move of the arena G occurring in s;

• 'A+B
df.
= {(s, s′) ∈ PA+B × PA+B | s � A 'A s′ � A ∨ s � B 'B s′ � B }, where

s � A (resp. s � B) is the j-subsequence of s that consists of moves different

from q+ and l (resp. r).

Thus, a play of a weak sum A + B begins with Opponent’s question q+ (‘A or

B?’) followed by Player’s answer l (‘I select A!’) or r (‘I select B!’), and then a play

of A (resp. B) follows if the answer is l (resp. r), in which the initial protocol q+l

(resp. q+r) is inserted everytime Opponent performs an initial move in A (resp. B).

36

Note that this weak sum is almost the same as the one defined in [129] except that

an initial protocol occurs at most once in a play of the latter. Thus, the two notions

of weak sum coincide on well-opened games, but for the latter we cannot form an

innocent copairing of innocent strategies unless the codomain is well-opened, while

it is not the case for former. Another advantage of the weak sum in [128] over the

one in [129] is that the former gives a unifying treatment of weak coproducts in both

linear and intuitionistic settings, while the latter needs additional work to adapt it

for the intuitionistic case. For these reasons, we have adopted the weak sum in [128].

Nevertheless, as explained in [129], the weak sum + is weak in the sense that it

does not satisfy the universal property of coproduct; we shall explain it in Section 2.4.

Example 2.2.28. Consider the weak sum 2 + N . Its maximal position is either of

the following forms:

2 + N 2 + N
q+ q+

l r
q q
b n

where b ∈ B and n ∈ N.

Theorem 2.2.29 (Constructions on games). Games are closed under tensor ⊗, linear

implication (, product &, exponential ! and weak sum +; and these constructions

preserve the subgame relation P. Moreover, (, & and + preserve economy, well-

openness and well-foundedness, while ⊗ and ! preserve economy and well-foundedness.

Proof. See [14, 129] for the proof of the closure of games under the constructions.

The preservation of the subgame relation and the constraints under the constructions

is straightforward to verify, and thus we leave the details to the reader.

Notation. Exponential precedes any other constructions on games; tensor, product

and weak sum all precede linear implication. Tensor, product and weak sum are all

left associative, while linear implication is right associative. For instance, !A(B =

(!A)(B, A⊗ !B(!C&D = (A⊗ (!B))(((!C)&D), A&B&C = (A&B)&C and

A(B(C = A((B(C).

2.3 Strategies

In this section, let us recall another central notion of strategies.

37

2.3.1 Strategies

Strategies are usually formulated as follows:

Definition 2.3.1 (Strategies [7, 9, 100, 14]). A strategy on a game G is a subset

σ ⊆ P Even
G , written σ : G, that satisfies:

• (S1) Non-empty and even-prefix-closed (i.e., ∀smn ∈ σ.s ∈ σ);

• (S2) Deterministic, i.e., ∀smn, smn′ ∈ σ.smn = smn′.

Example 2.3.2. There is only the trivial strategy
df.
= {ε} on the terminal game T .

There is the strategy n
df.
= {ε, q.n} on the game N for each n ∈ N, and there are the

strategies b
df.
= {ε, q.b} on the game 2 for each b ∈ B.

As positions of a game G are identified up to the identification 'G, we must

identify strategies on G if they behave in the same manner up to 'G, leading to:

Definition 2.3.3 (Identification of strategies [9, 129]). The identification of strate-

gies on a game G, written 'G, is the relation between strategies on G given by:

∀σ, τ : G.σ 'G τ
df.⇔ ∀s ∈ σ, t ∈ τ. sm 'G tl⇒ ∀smn ∈ σ.∃tlr ∈ τ. smn 'G tlr

∧ ∀tlr ∈ τ.∃smn ∈ σ. tlr 'G smn.

It is not hard to see that the identification 'G of strategies on each game G forms

a partial equivalence relation (PER), i.e., a symmetric and transitive relation:

Lemma 2.3.4 (First PER lemma). Given a game G, let σ, τ : G such that σ 'G τ .

Then, (∀s ∈ σ. ∃t ∈ τ. s 'G t) ∧ (∀t ∈ τ. ∃s ∈ σ. t 'G s).

Proof. By symmetry, it suffices to show ∀s ∈ σ. ∃t ∈ τ. s 'G t. We prove it by

induction on |s|. The base case is trivial; for the inductive step, let smn ∈ σ. By the

induction hypothesis, there exists some t ∈ τ such that s 'G t. Then, by I3 on 'G,

there exists some tl ∈ τ such that sm 'G tl. Finally, since σ 'G τ , there exists some

tlr ∈ τ such that smn 'G tlr, completing the proof.

Corollary 2.3.5 (PERs on strategies). Given a game G, the identification 'G of

strategies on G is a PER.

Proof. We just show the transitivity as the symmetry is obvious. Let σ, τ, µ : G such

that σ 'G τ and τ 'G µ. Assume that smn ∈ σ, u ∈ µ and sm 'G up. By

Lemma 2.3.4, there exists some t ∈ τ such that s 'G t. By I3 on 'G, there exists

some tl ∈ PG such that sm 'G tl, whence tl 'G up. Also, since σ 'G τ , there exists

some tlr ∈ τ such that smn 'G tlr. Finally, since τ 'G µ, there exists some upq ∈ µ
such that tlr 'G upq, whence smn 'G upq, completing the proof.

38

We are particularly concerned with strategies identified with themselves :

Definition 2.3.6 (Validity of strategies [9, 129]). A strategy σ : G is valid if σ 'G σ.

Remark. This notion is introduced in [9, 129], but these papers do not call it validity.

More explicitly, a strategy σ : G is valid iff it satisfies:

(Val) ∀s, t ∈ σ, sm, tl ∈ PG. sm 'G tl⇒ ∀smn ∈ σ.∃tlr ∈ σ.smn 'G tlr.

Note that any strategy σ : G identified with a strategy τ : G is valid: σ 'G τ 'G σ.

Now, let us recall two constraints on strategies: innocence and well-bracketing.

One of the highlights of HO-games [100] is to establish a one-to-one correspondence

between terms of the programming language PCF in a certain η-long normal form,

known as PCF Böhm trees [18], and innocent, well-bracketed strategies (on games

modeling types of PCF). That is, the two conditions narrow down the hom-sets of

the codomain of the interpretation functor, i.e., the category of HO-games, so that

the interpretation becomes full. Roughly, a strategy is innocent if its computation

depends only on P-views, and well-bracketed if every ‘question-answering’ by the

strategy is achieved in the ‘last-question-first-answered’ fashion. Formally:

Definition 2.3.7 (Innocence of strategies [100, 14]). A strategy σ : G is innocent

if:

(Inn) ∀smn, t ∈ σ, tm ∈ PG. dtmeG = dsmeG ⇒ tmn ∈ σ.

Definition 2.3.8 (Well-bracketing of strategies [14, 129]). A strategy σ : G is well-

bracketed (wb) if:

(WB) Given sqta ∈ σ, where λQA
G (q) = Q, λQA

G (a) = A and Jsqta(a) = q,

each occurrence of a question in t′, defined by dsqteG = dsqeG.t′3, justifies

an occurrence of an answer in t′.

The bijective correspondence holds also for the game model of [14]. Moreover,

it corresponds respectively to modeling states and control operators in programming

languages to relax innocence and well-bracketing in the model; in this sense, the two

conditions characterize purely functional computation [14].

Next, recall that a programming language is total if its computation always ter-

minates in a finite period of time. This phenomenon is interpreted in game semantics

by totality of strategies in a sense similar to the totality of partial functions [5]:

3Note that dsqteG must be of the form dsqeG.t′ by visibility on sqta (Definition 2.2.9).

39

Definition 2.3.9 (Totality of strategies [5]). A strategy σ : G is total if it satisfies:

(Tot) ∀s ∈ σ, sm ∈ PG.∃smn ∈ σ.

Nevertheless, it is well-known that totality of strategies is not preserved under

composition (Definition 2.3.14) due to the problem of ‘infinite chattering’ [5, 37]. For

this point, one usually imposes a condition on strategies stronger than totality, e.g.,

winning [5], that is preserved under composition. We may certainly just apply the

winning condition of [5], but it requires an additional structure on games, which may

be criticized as extrinsic and/or ad-hoc; thus, we prefer another, simpler solution. A

natural idea is then to require that strategies should not contain any strictly increasing

(with respect to �) infinite sequence of positions. However, we have to relax this

constraint: The dereliction derA (Definition 2.3.26), the identity on a game A in the

categories of games and strategies given in Section 2.4, satisfies it iff so does the game

A, but we cannot impose it on games as the binary operation ⇒ = !() (() on

games, which is the exponential construction (in the sense of the function space) in

the categories, does not preserve it.

Instead, we apply the same idea to P-views, arriving at:

Definition 2.3.10 (Noetherianity of strategies [37]). A strategy σ : G is noetherian

if it satisfies:

(Noe) σ does not contain any strictly increasing (with respect to �)

infinite sequence of P-views of G.

2.3.2 Constructions on Strategies

Next, let us review existing constructions on strategies. Although it is straightforward

to prove that they are well-defined and preserve validity, innocence, well-bracketing,

totality and noetherianity of strategies, we present this fact explicitly as lemmata

since our games and strategies in Chapter 5 are based on this fact.

One of the most basic strategies is copy-cats, which, as the name suggests, simply

‘copy-cats’ the last O-moves:

Definition 2.3.11 (Copy-cats [7, 9, 100, 129]). The copy-cat (strategy) cpA on a

game A is defined by:

cpA
df.
= {s ∈ P Even

A[0](A[1]
| ∀t � s. Even(t)⇒ t � A[0] = t � A[1] }

where the subscripts [i] on A (i = 0, 1) are to distinguish the two copies of A.

40

Diagrammatically, the copy-cat cpA plays as follows:

A
cpA
(A

a(1)

a(1)

a(2)

a(2)

a(3)

a(3)

a(4)

a(4)

...

Lemma 2.3.12 (Well-defined copy-cats [7, 129]). Given a game A, cpA is a valid,

innocent, wb, total strategy on A(A. It is noetherian if A is well-founded.

Proof. We just show that cpA is noetherian if A is well-founded for the other points

are trivial, e.g., validity of cpA is immediate from the definition of 'A(A. Given

smm ∈ cpA, it is easy to see by induction on |s| that the P-view dsme is of the form

m1m1m2m2 . . .mkmkm, and thus there is a sequence ? `A m1 `A m2 · · · `A mk `A m
of enabling pairs. Therefore, if A is well-founded, then cpA must be noetherian.

Next, to formulate composition of strategies, it is convenient to first define the

following intermediate concept:

Definition 2.3.13 (Parallel composition of strategies [5]). Given games A, B and

C, and strategies φ : A(B and ψ : B (C, the parallel composition φ‖ψ of φ

and ψ is given by:

φ‖ψ df.
= {s ∈J((A(B[0])(B[1])(C | s � A,B[0] ∈ φ, s � B[1], C ∈ ψ, s � B[0], B[1] ∈ prB }

where the subscripts [i] on B (i = 0, 1) are to distinguish the two copies of B,

s � A,B[0] (resp. s � B[1], C, s � B[0], B[1]) is the j-subsequence of s that consists

of moves of A and B[0] (resp. B[1] and C, B[0] and B[1]) as in Definition 2.2.21, and

prB
df.
= {s ∈ PB[0](B[1]

| ∀t � s. Even(t)⇒ t � B[0] = t � B[1]}.

Remark. Parallel composition is just a preliminary for composition given below; it

does not preserve the structure of strategies.

Now, we are ready to recall composition of strategies.

41

Definition 2.3.14 (Composition of strategies [100, 9, 14]). Given games A, B and

C, and strategies φ : A (B and ψ : B (C, the composition φ;ψ of φ and ψ

(also written ψ ◦ φ) is defined by:

φ;ψ
df.
= {s � A,C | s ∈ φ‖ψ }.

That is, the composition φ;ψ : A(C of strategies φ : A(B and ψ : B (C

plays implicitly on ((A (B[0]) (B[1]) (C, employing φ if the last O-move is

of A or B[0], and ψ otherwise, while Opponent plays on A (C, where φ and ψ

communicate with each other via moves of B[0] or B[1], but the communication is

‘hidden’ from Opponent. This idea originally comes from parallel composition plus

hiding [5] in process calculi [90, 134].

Notation. Given a strategy σ : G, we write σT for the obvious strategy on T (G

that coincides with σ up to ‘tags’; we write ()�T for the inverse of ()T . We define

the composition φ ◦α : B of strategies φ : A(B and α : A by φ ◦α df.
= (φ ◦αT)�T .

Note that the exponential !T coincides with T on the nose, and therefore we define the

composition ϕ◦α̃ : A⇒ B of strategies ϕ : A⇒ B and α̃ : !A by φ◦α̃ df.
= (φ◦α̃T)�T .

Example 2.3.15. Consider the composition succ; double : N (N of strategies

succ : N (N and double : N (N (in linear form) that play as in the following

diagrams:

N
succ
(N N

double
(N

q q
q q
m n

m+ 1 2 · n

where m,n ∈ N. The parallel composition succ‖double then plays as follows:

N
succ†

(N N
double
(N

q
q

q

q
n

n+ 1

n+ 1
2 · n+ 1

where moves for internal communication are marked by square boxes just for clarity.

Then, the composition is computed from the parallel composition by deleting the

moves with the square boxes, resulting in the following diagram as expected:

42

N
succ;double
(N

q
q
n

2 · (n+ 1)

Lemma 2.3.16 (Well-defined composition of strategies [129, 37]). Given games A,

B and C, and strategies φ : A(B and ψ : B (C, φ;ψ is a strategy on A(C.

If φ and ψ are innocent, total and noetherian (resp. wb), then so is φ;ψ. Given

φ′ : A(B and ψ′ : B(C with φ 'A(B φ′ and ψ 'B(C ψ′, φ;ψ 'A(C φ′;ψ′.

Proof. It is well-known that strategies are closed under composition, and composition

preserves innocence and well-bracketing; see [14, 129]. Also, it is shown in [37] that the

conjunction of innocence, totality and noetherianity is preserved under composition.

Finally, it is easy to see that composition preserves identification of strategies.

Next, let us recall tensor ⊗ of strategies:

Definition 2.3.17 (Tensor of strategies [7, 129]). Given games A, B, C and D, and

strategies φ : A (C and ψ : B (D, the tensor (product) φ ⊗ ψ of φ and ψ is

given by:

φ⊗ ψ df.
= {s ∈ LA⊗B(C⊗D | s � A,C ∈ φ, s � B,D ∈ ψ }.

where s � A,C (resp. s � B,D) is the j-subsequence of s that consists of moves of A

and C (resp. B and D).

Intuitively the tensor φ ⊗ ψ : A ⊗ B (C ⊗ D of φ : A (C and ψ : B (D

plays by φ if the last O-move is of A or C, and by ψ otherwise.

Example 2.3.18. The tensor succ⊗double : N ⊗N (N ⊗N plays, e.g., as follows:

N ⊗ N
succ⊗double
(N ⊗ N N ⊗ N

succ⊗double
(N ⊗ N

q q
q q

q 5
q 10
2 q

4 q
2 7

3 8

43

Lemma 2.3.19 (Well-defined tensor of strategies [7, 129]). Given games A, B, C and

D, and strategies φ : A(C and ψ : B(D, φ⊗ψ is a strategy on A⊗B(C⊗D. If

φ and ψ are innocent (resp. wb, total, noetherian), then so is φ⊗ψ. Given φ′ : A(C

and ψ′ : B(D with φ 'A(C φ′ and ψ 'B(D ψ′, φ⊗ ψ 'A⊗B(C⊗D φ′ ⊗ ψ′.

Proof. Straightforward; see [7, 14, 129, 9].

We proceed to recall the construction of pairing of strategies:

Definition 2.3.20 (Pairing of strategies [9, 129]). Given games A, B and C, and

strategies φ : C (A and ψ : C (B, the pairing 〈φ, ψ〉 of φ and ψ is defined by:

〈φ, ψ〉 df.
= {s ∈ LC(A&B | (s � C,A ∈ φ ∧ s � B = ε) ∨ (s � C,B ∈ ψ ∧ s � A = ε) }.

That is, the pairing 〈φ, ψ〉 : C (A&B of φ : C (A and ψ : C (B plays by φ

if the play is of C (A, and by ψ otherwise.

Notation. The pairing 〈α, β〉 : A&B of strategies α : A and β : B is given by

〈α, β〉 df.
= 〈αT , βT 〉�T .

Example 2.3.21. The pairing 〈succ, double〉 : N (N&N plays as either of the

following forms:

N
〈succ,double〉
(N & N N

〈succ,double〉
(N & N

q q
q q
n n

n+ 1 2 · n

where n ∈ N, depending on Opponent’s behavior.

Lemma 2.3.22 (Well-defined pairing of strategies [129]). Given games A, B and C,

and strategies φ : C (A and ψ : C (B, 〈φ, ψ〉 is a strategy on C (A&B. If φ

and ψ are innocent (resp. wb, total, noetherian), then so is 〈φ, ψ〉. Given φ′ : C (A

and ψ′ : C (B with φ 'C(A φ′ and ψ 'C(B ψ′, 〈φ, ψ〉 'C(A&B 〈φ′, ψ′〉.

Proof. Straightforward; see [14, 129, 9].

Next, let us recall promotion of strategies:

Definition 2.3.23 (Promotion of strategies [9, 129]). Given games A and B, and a

strategy ϕ : !A(B, the promotion ϕ† of ϕ is defined by:

ϕ†
df.
= {s ∈ L!A(!B | ∀i ∈ N. s � i ∈ ϕ }

44

where s � i denotes the j-subsequence of s that consists of moves of the form (b, i)

with b ∈ MB or (a, 〈i, j〉) with a ∈ MA changed into b and (a, j), respectively, and

〈 , 〉 : N× N→ N is any bijection fixed throughout the present thesis.

That is, a promotion ϕ† : !A (!B plays during a play s of !A (!B as ϕ for

each j-subsequence s � i. We could have defined noetherianity of strategies in terms

of positions, but then it would not be preserved under promotion; this is why we have

defined it in terms of P-views.

Example 2.3.24. Let succ : !N (N be the successor strategy (n.b., it is on the

implication, not the linear implication), which specifically selects, say, the ‘tag’ (, 0)

in the domain !N . Then, its promotion succ† : !N (!N plays as follows:

!N
succ†

(!N
(q, i)

(q, 〈i, 0〉)
(n, 〈i, 0〉)

(n+ 1, i)
(q, j)

(q, 〈j, 0〉)
(m, 〈j, 0〉)

(m+ 1, j)
...

where i, j, n,m ∈ N. Note that succ† repeatedly and consistently plays as succ.

Lemma 2.3.25 (Well-defined promotion [129]). Given games A and B, and a strategy

ϕ : !A(B, its promotion ϕ† is a strategy on !A(!B. If ϕ is innocent (resp. wb,

total, noetherian), then so is ϕ†. Given ϕ̃ : !A(B with ϕ '!A(B ϕ̃, ϕ† '!A(!B ϕ̃
†.

Proof. Straightforward; see [129, 9].

Now, let us recall:

Definition 2.3.26 (Derelictions [9, 129]). The dereliction derA : !A (A on a

game A is defined by:

derA
df.
= {s ∈ P Even

!A(A | ∀t � s.Even(t)⇒ (t � !A) � 0 = t � A }.

Thus, derA plays essentially in the same manner as cpA. Note that any ‘tag’ (, i)

such that i ∈ N would work; our particular choice (, 0) does not matter.

Notation. Given a strategy σ : G, the promotion σ† : !G is given by σ†
df.
= ((σT)†)�T .

45

Lemma 2.3.27 (Well-defined derelictions [9, 129]). Given a game A, derA is a valid,

innocent, wb, total strategy on !A(A. It is noetherian if A is well-founded.

Proof. Essentially the same as the proof of Lemma 2.3.12.

At the end of the present section, let us recall copairing and injections :

Definition 2.3.28 (Copairing of strategies [128]). Given games A, B and C, and

strategies φ : A(C and ψ : B(C, the copairing [φ, ψ] of φ and ψ is defined by:

[φ, ψ]
df.
= Pref({c0q+ls0a1s1q+la2s2 . . . q+laksk ∈ LA+B(C | c0s0a1s1a2s2 . . . aksk ∈ φ,

∀i ∈ {1, 2, . . . , k}. ? `A ai ∧ NonInitA(C(si) }

∪ {c0q+rs0b1s1q+rb2s2 . . . q+rbksk ∈ LA+B(C | c0s0b1s1b2s2 . . . bksk ∈ ψ,

∀i ∈ {1, 2, . . . , k}. ? `B bi ∧ NonInitB(C(si) })Even.

That is, the copairing [φ, ψ] : A+ B (C of φ : A(C and ψ : B (C initially

asks Opponent about his choice on the domain, i.e., A or B, and then plays by φ if

the answer is A (via l), and by ψ otherwise, where it inserts an initial protocol q+l or

q+r whenever it performs an initial move of A or B.

Example 2.3.29. The copairing [succ, double] : N + N (N plays as either of the

following forms:

N + N
[succ,double]
(N N + N

[succ,double]
(N

q q
q+ q+

l r
q q
n m

n+ 1 2 ·m

where n,m ∈ N, depending on Opponent’s behavior.

Lemma 2.3.30 (Well-defined copairing of strategies [129]). Given games A, B and

C, and strategies φ : A(C and ψ : B(C, [φ, ψ] is a strategy on A+B(C. If φ

and ψ are innocent (resp. wb, total, noetherian), then so is [φ, ψ]. Given φ′ : A(C

and ψ′ : B(C with φ 'A(C φ′ and ψ 'A(B ψ′, [φ, ψ] 'A+B(C [φ′, ψ′].

Proof. Straightforward; see [129].

46

Definition 2.3.31 (Injections [129]). Given games A and B, the left injection ιA,Bl

and the right injection ιA,Br are defined by:

ιA,Bl

df.
= Pref({q+la1a1s1q+la2a2s2 . . . q+lakaksk | a1a1s1a2a2s2 . . . akaksk ∈ cpA,

∀i ∈ {1, 2, . . . , k}. ? `A ai ∧ NonInitA(A(si) })Even;

ιA,Br
df.
= Pref({q+rb1b1s1q+rb2b2s2 . . . q+rbkbksk | b1b1s1b2b2s2 . . . bkbksk ∈ cpB,

∀i ∈ {1, 2, . . . , k}. ? `B bi ∧ NonInitB(B(si) })Even.

Notation. We often omit the superscripts A,B on ιA,Bl and ιA,Br .

That is, the left injection ιl : A(A+B and the right injection ιr : B(A+B

are the copy-cats cpA and cpB up to the initial protocols q+l and q+r, respectively.

Example 2.3.32. Given games A and B, the injections ιA,Bl and ιA,Br play for instance

as follows:

A
ιl
(A + B B

ιr
(A + B

q+ q+

l r
a(1) b(1)

a(1) b(1)

a(2) b(2)

a(2) b(2)

a(3) q+

a(3) r

a(4) b̃(1)

a(4) b̃(1)

q+ b̃(2)

l b̃(2)

where a1 and a′1 (resp. b1 and b′1) are initial moves of A (resp. B).

Lemma 2.3.33 (Well-defined injections [129]). Given games A and B, the left (resp.

right) injection ιA,Bl (resp. ιA,Br) is a valid, innocent, wb, total strategy on A(A+B

(resp. B(A+B). It is noetherian if A (resp. B) is well-founded.

Proof. Essentially the same as the proof of Lemma 2.3.12.

Notation. Promotion precedes any other operation. Tensor and composition are left

associative. For instance, φ ◦ σ† = φ ◦ (σ†) and σ ⊗ τ ⊗ µ = (σ ⊗ τ)⊗ µ.

47

2.4 Categories of Games and Strategies

We conclude the chapter by establishing twelve categories of games and strategies,

eight for computation of simple type theories and the remaining four for intuitionistic

linear, classical linear, intuitionistic and classical propositional logics. It is a striking

and beautiful aspect of game semantics that the essentially combinatorial concepts of

games and strategies give rise to neat categorical structures; it makes game semantics

not only conceptually natural but also mathematically elegant and reasonable.

Note that morphisms in these categories are valid strategies up to identifications

induced by the underlying games (Definition 2.3.3), similarly to the categories in [9]

and Section 3.6 of [129]. It conceptually makes sense for concrete implementations

of ‘tags’ for disjoint union of sets of moves should not matter; also technically, this

level of identification of strategies matches the syntactic equality of programs as seen

in the literature and also in Chapter 5. Nevertheless, it is important to keep in mind

that it is valid strategies, not their equivalence classes, that guide Player on games.

2.4.1 Logic vs. Computation

We first describe the general difference between categories of games and strategies for

logic and those for computation. Since games (resp. strategies) are to model formulas

(resp. proofs) in logic and types (resp. programs) in computation (see Section 2.1),

following the standard categorical approach [102, 150, 41], in both of the categories,

objects are games and morphisms are (equivalence classes of valid) strategies.

As the first approximation, one may say that a category of games and strategies

is for logic or logical if every strategy is total, and for computation or computational

otherwise.4 This is because a proof or an ‘argument’ for the truth of a formula should

not get ‘stuck’, i.e., it must always have the next move, and in contrast, even such a

non-responding strategy may be seen as a reasonable computational process.

In addition, since logic is concerned with truths of formulas, which are invariant

with respect to passage of time, proofs should not depended on states. Hence, it

makes sense to impose innocence on strategies to model proofs. Also, recall that

totality per se is not preserved under composition of strategies, and our solution is

to add innocence and noetherianity (see Section 2.3). The conjunction of these three

conditions is conceptually reasonable too because if a play by an innocent, noetherian

strategy keeps growing infinitely, then it cannot be Player’s intention, and thus it

should result in win for Player. In fact, however, it is win even in a stronger sense:

4This distinction corresponds in syntax to if every term terminates in a finite period of time.

48

Every play by an innocent, noetherian strategy is finite [37]. For this reason, we

define a strategy to be winning if it is total, innocent and noetherian.

Definition 2.4.1 (Winning of strategies). A strategy is winning if it is total, inno-

cent and noetherian.

In summary, we regard a category of games and strategies as embodying some

logic if its morphisms are all winning, and as modeling some computation otherwise.

On the other hand, it corresponds in programming to modeling states and control

operators, respectively, to relax innocence and well-bracketing on morphisms in a

computational category of games and strategies, as already explained in Section 2.3.1.

2.4.2 Cartesian Closure via New-Seely Categories

The present thesis is primarily concerned with intuitionistic logic (in Chapter 5) and

functional computation (in Chapters 3 and 4), which mutually correspond to each

other by the Curry-Howard isormorphism [172]. Categorically, their basic structures

are cartesian closed categories (CCCs), where products (resp. exponentials) model

conjunction (resp. implication) in logic and pair-types (resp. function-types) in

computation [118, 102]. Therefore, we review, as the main focus of the present section,

both of the logical and computational CCCs of games and strategies.

We obtain these CCCs by following a general categorical recipe, namely as the

co-Kleisli categories C! of new-Seely categories (NSCs) [23]:

Definition 2.4.2 (NSCs [23]). A new-Seely category (NSC) is a symmetric

monoidal closed category (SMCC) C = (C,⊗, I,() with finite products (1,×) equipped

with a comonad ! = (!, ε, δ) on C and two natural isomorphisms η : !A⊗!B
∼→ !(A×B)

and ρ : I
∼→ !1 such that the canonical adjunction between C and C! is monoidal.

Theorem 2.4.3 (CCCs via NSCs [165, 23]). The co-Kleisli category C! of a NSC C
forms a CCC.

Proof (sketch). We actually do not need all the components of a given NSC C =

(C,⊗, I,(, 1,×, !, ε, δ, η, ρ); we only need that C is a Seely category (SC) [165]. Given

A,B ∈ C!, we define the exponential A⇒ B ∈ C! to be !A(B. Then, we have:

C!(A×B,C) = C(!(A×B), C)

∼= C(!A⊗ !B,C)

∼= C(!A, !B(C)

= C!(A,B ⇒ C)

49

leaving the required naturality condition to the reader.

Gavin Bierman [23] showed that SCs are not sound for intuitionistic multiplicative

exponential linear logic (IMELL) though they give rise to CCCs, and proposes NSCs

as a remedy; in fact, he proved that NSCs are a categorical model of IMELL in [23].

The charm of this construction is that it may be seen as the categorical counterpart

of Girard’s translation A ⇒ B = !A (B of intuitionistic logic into linear logic

[70]. Although linear logic is not a main focus of the present thesis, we employ this

construction of CCCs from NSCs since it shows that:

• The CCCs of games and strategies are mathematically reasonable (not ad-hoc);

• Games and strategies may give, to some degree, a unifying view on linear and

intuitionistic logics.

2.4.3 Computational CCCs of Games and Strategies

Now, let us construct the CCCs of games and strategies:

Definition 2.4.4 (CLMG). The NSC CLMG = (CLMG,⊗, T,(, T,&, !, η, ρ) of

computational linear McCusker games consists of:

• The category CLMG such that objects are games, morphisms A → B are the

equivalence classes [φ] of valid strategies φ : A(B with respect to 'A(B, the

composition [ψ] ◦ [φ] : A → C of morphisms [φ] : A → B and [ψ] : B → C is

[ψ ◦ φ] and the identity idA : A→ A on each object A is [cpA];

• The functor ⊗ : CLMG × CLMG → CLMG consists of tensors on games and

strategies;

• T is the terminal game;

• The natural isomorphisms η and ρ are the obvious ones;

• & is product on games, and ! is exponential on games.

Theorem 2.4.5 (The NSC CLMG). CLMG forms a NSC.

Proof. Straightforward; see [101] for the proof outline.

Corollary 2.4.6 (The CCC CLMG !). The co-Kleisli category CLMG ! forms a CCC.

Proof. By Theorems 2.4.3 and 2.4.5.

50

Definition 2.4.7 (CMG). We define CMG df.
= CLMG ! and call it the CCC of com-

putational McCusker games.

Explicitly, CMG is the CCC such that:

• Objects are games;

• Morphisms A→ B are the equivalence classes [φ] of valid strategies φ : !A(B

with respect to '!A(B;

• The composition [ψ] • [φ] : A → C of [φ] : A → B and [ψ] : B → C is

[ψ • φ]
df.
= [ψ ◦ φ†] : A→ C;

• The identity idA : A→ A on each object A is [derA];

• The terminal object is the terminal game T ;

• The unique morphism A→ T is the trivial strategy
df.
= {ε} for any object A;

• The product of A and B is the product A&B of games;

• The projections A
π1← A&B

π2→ B are [derA] and [derB] up to ‘tags’;

• The pairing 〈[α], [β]〉 : C → A&B of [α] : C → A and [β] : C → B is [〈α, β〉];

• The exponential A⇒ B is !A(B;

• The evaluation map evA,B : (A⇒ B)&A→ B is [derA⇒B] up to ‘tags’;

• The currying Λ([κ]) : A→ (B ⇒ C) of [κ] : A&B → C is [κ] up to ‘tags’.

By Lemmata 2.3.16, 2.3.22, 2.3.25 and 2.3.27, we may impose both or either of

innocence and well-bracketing on morphisms (strictly speaking, on the representatives

of morphisms) in CLMG and CMG, prohibiting the behavior of states and/or control

operators. Thus, we have defined eight different categories of games and strategies

for computation. Among these categories, the CCC CMG InnWB whose morphisms are

all innocent and wb is particularly central in the present thesis.

51

2.4.4 Logical CCCs of Games and Strategies

As explained in Section 2.4.1, we may obtain categories of games and strategies for

logic from those for computation by imposing winning on morphisms:

Definition 2.4.8 (LLMG). The NSC LLMG of logical linear McCusker games

is the subNSC of CLMG whose objects are all well-founded, and morphisms are

equivalence classes of winning strategies.

Definition 2.4.9 (LMG). The NSC LMG of logical McCusker games is the

subNSC of CMG whose objects are all well-founded, and morphisms are equivalence

classes of winning strategies.

We have required that games are all well-founded in both LLMG and LMG in

order to ensure that identities are all noetherian; see Lemmata 2.3.12 and 2.3.27.

Remark. Although well-bracketing, totality and noetherianity of strategies on a game

G are all preserved under 'G, it is not the case for innocence. Thus, we cannot define

winning on the equivalence classes of strategies on G.

Corollary 2.4.10 (The NSC LLMG and the CCC LMG). LLMG and LMG form

a NSC and a CCC, respectively.

Proof. By Theorem 2.4.5, Corollary 2.4.6 and Lemmata 2.3.16, 2.3.22, 2.3.25, 2.3.12

and 2.3.27.

Note that LMG = LLMG !. The explicit definitions of LLMG and LMG should

be now clear, and thus we do not describe them here.

Before arguing how these categories embody logics (in Section 2.4.6), let us briefly

consider the problem of modeling coproducts in the next section.

2.4.5 Coproducts

Naturally, one may wonder whether the categories of games and strategies introduced

so far have (strong) coproducts. However, the answer is negative: They have weak

coproducts but not strong ones, as we now explain below.

First of all, there is no initial object in CLMG, CMG, LLMG, LMG or their

subcategories for there is more than one morphism A→ B in any of the categories if

so is the codomain B, e.g., take B
df.
= 2. At best, the empty game 0 is a weak initial

object in each of these categories: There is the trivial (resp. two-move) morphism

0→ B if B = T (resp. if B 6= T), but it is in general not unique in the latter case.

52

Next, as shown in [98], if a CCC C has both fixed-points and binary coproducts,

then C must be a trivial category in the sense that each object of C is isomorphic to

a terminal object. This implies that CMG does not have binary coproducts unless it

is trivial since it has fixed-points by fixed-point strategies (see Chapter 4).

On the other hand, it seems still possible for the logical categories of games and

strategies to have binary coproducts for the winning, more specifically noetherianity,

condition on morphisms excludes fixed-point strategies. However, it is unfortunately

impossible as argued in [129, 128]; we illustrate this point by showing that our weak

sum (Definition 2.2.27) is, as the name suggests, in fact weak as follows. First, the

copairing [ιl, ιl] : T +T (T +T of the first injection ιl : T (T +T clearly satisfies:

ιl; [ιl, ιl] = ιl = ιr; [ιl, ιl]. (2.1)

However, there is a strategy l
df.
= Pref({q+l})Even : T + T (T + T that satisfies:

ιl; l = ιl = ιr; l

but l 6= [ιl, ιl]. Thus, the copairing [ιl, ιl] is not a unique morphism that satisfies the

equation (2.1), the universal property of (strong) coproduct.

By the same argument, we may show that if there is a non-trivial play of T ⊕T for

any variant of sum ⊕, then ⊕ is weak. Hence, we should define T ⊕ T df.
= T , but then

there cannot be a copairing [n1, n2] : T ⊕ T (N of n1
T , n2

T : T (N if n1 6= n2.

Also, it should be now clear how to adapt copairings and injections in SMCCs to

CCCs; see [128, 129] for the details. Nevertheless, by the same argument, we may see

that our sum + is weak in the CCCs setting too.

Therefore, we may conclude that it is impossible to give binary coproducts in any

of the categories of games and strategies defined so far. More generally, it has been an

open problem in the field of game semantics to give games and strategies that form a

category with (strong) coproducts. Note that although the Fam-construction in [13]

gives a CCC with coproducts or a bicartesian closed category (BCC), its objects and

morphisms are families of games and families of strategies, respectively i.e., it does

not provide constructions on games and strategies that form coproducts.

On the other hand, however, the BCC Fam(G) can be seen as equivalent to the

subcategory of the underlying CCC G of conventional games and strategies with weak

coproducts such as CMG and LMG whose objects are of the form
∑

i∈I Ai∈I and

morphisms are strict ones of the form φ :
∑

i∈I !Ai∈I →
∑

j∈J !Bj∈J , where (Ai)i∈I

and (Bj)j∈J are families of objects of G; see [13] for the details. Somewhat similarly

to this phenomenon (though independently discovered), we shall obtain a BCC of

games and strategies in Chapter 5.

53

2.4.6 Logic of Games and Strategies

Since a BCC is a categorical model of intuitionistic propositional logic (IPL) [118,

102], LMG models IPL except that it does not identify some proofs equated in syntax.

In fact, LMG not only embodies the structural and algebraic aspects of IPL but

also gives a fundamental underpinning of IPL in a mathematically precise, syntax-

independent, conceptually natural manner, which we now explain as follows. First,

the implication A ⇒ B may be read as a formula B under the premise A, where

the case A = T corresponds to ‘no premise’. Thus, we call each object A ∈ LMG a

formula and define it to be true if there is a morphism in LMG(A)
df.
= LMG(T,A),

called a proof of A, and false otherwise. As explained before, a morphism in LMG
can be regarded reasonably as a proof or an ‘argument’ for the truth of a formula

since it is total (i.e., it never gets ‘stuck’), innocent (i.e., it is not ‘concerned’ with

passage of time) and noetherian (i.e., it never ‘intentionally stalls’ an argument).

Following the standard formulation of intuitionistic logic, we define the negation

¬A of each object A ∈ LMG by ¬A df.
= A ⇒ 0. It is easy to see that ¬A is true iff

A is false. Notice that the logic of LMG is intuitionistic, not classical, since there is

no proof of ¬¬A ⇒ A in LMG for some A ∈ LMG (see Section 2.4.7). Moreover,

product & and weak sum + respectively capture conjunction ∧ and disjunction ∨ in

a conceptually natural manner, e.g., consider 2&2 and 2 + 2.

Now, the consistency of the logic of LMG immediately follows from Corollary 2.4.10:

If a formula A ∈ LMG and its negation ¬A are both true, witnessed by proofs

[α] : T → A and [β] : T → (A ⇒ 0), then 0 would be true, witnessed by the proof

[β�T] ◦ [α†] : T → 0, a contradiction.

Also, validity and provability of the logic simply coincide: A formula has been

defined to be true iff there is a proof of a formula, i.e., provable. Moreover, games

and strategies explain not only logical systems (as described above) but also what

formal languages refer to, i.e., models in a loose sense. Hence, one may say that the

CCC LMG unifies a logical system and a model of IPL.

What we have just explained is a more accurate description of the content of

Section 1.7, specialized in IPL. Nevertheless, LMG cannot formulate predicates in

logic or dependent types in computation. We shall address this point in Chapter 5.

2.4.7 Classical Linear and Classical Logics?

Now, let us emphasize again that the logics of the categories of games and strategies

given so far are intuitionistic: LLMG for IMELL and LMG for IPL. Accordingly,

54

we would like to extend our game-semantic approach to classical linear and classical

logics; however, the problem of giving semantics of these logics is highly non-trivial.

For instance, it is well-known that one must go beyond the usual sequential games,

i.e., games in which Opponent always starts a play, and then the two participants

alternately perform moves, to model classical linear logic, e.g., concurrent games [15]

and asynchronous games [131] have been proposed to model classical linear logic.

Also, semantics of classical logic is subtle even in the categorical level: A CCC

C with an initial object 0 such that A ∼= (A ⇒ 0) ⇒ 0 for all A ∈ C is a preorder

category, i.e., any two parallel morphisms in C are equal [118]. Fortunately, a category

of games and strategies usually has only a weak initial object to interpret falsity, and

thus it is not necessarily a preorder category. In the literature, e.g., there are game

models of classical logic [120, 27] based on HO-games [100].

Hence, we do not give a game semantics of classical linear or classical logic in

this thesis since it would require another thesis. Nevertheless, we have observed some

connections between intuitionistic linear, classical linear, intuitionistic and classical

logics by a method similar to the co-Kleisli construction in Section 2.4.2. We just

briefly introduce the idea, which will give some useful insights later in the thesis.

The following is the key construction motivated by why not ? in linear logic [70]:

Definition 2.4.11 (Why not). Given a game A, the why not ?A of A is defined by:

• M?A
df.
= {(a, 0) | a ∈M Init

A } ∪ {(a, i) | a ∈MA \M Init
A , i ∈ N };

• λ?A : (a, i) 7→ λA(a);

• ? `?A (a, i)
df.⇔ ? `A a;

• (a, i) `?A (a′, j) ((a, i) 6= ?)
df.⇔ (? `A a ∧ a `A a′) ∨ (? 6`A a ∧ i = j ∧ a `A a′);

• P?A
df.
= Pref({(a1, 0)s1(a2, 0)s2 . . . (ak, 0)sk ∈ L?A | (∀i ∈ {1, 2, . . . , k}. ? `A ai

∧ NonInit?A(si) ∧ ∀j ∈ N. a1(s1 � j)a2(s2 � j) . . . ak(sk � j) ∈ PA });

• '?A
df.
= {((a1, 0)s1(a2, 0)s2 . . . (ak, 0)sk, (a

′
1, 0)t1(a′2, 0)t2 . . . (a

′
k, 0)tk) | ∃ϕ ∈ P(N).

∀j ∈ N. a1(s1 � ϕ(j))a2(s2 � ϕ(j)) . . . ak(sk � ϕ(j)) 'A a′1(t1 � j)a′2(t2 � j) . . .

a′k(tk � j)∧∀i ∈ {1, 2, . . . , k}. π∗2(si) = (ϕ ◦ π2)∗(ti)}, where recall that P(N) is

the set of all permutations of natural numbers.

Lemma 2.4.12 (Well-defined why not). Games are closed under why not ?.

Proof. Straightforward.

55

Intuitively, a why not ?A is essentially the game A except that Player may restart

a play of A from the second occurrence as many times as she likes. In other words,

?A is a ‘Player-friendly’ version of A for Player may backtrack any number of times.

In the literature, there have been game-semantic approaches to classical logic by

allowing such backtracking, e.g., [40, 21]. In the same spirit, we now propose:

• (Intuitionistic Linear Implication from A to B) A(B;

• (Classical Linear Implication from A to B) ?A(?B;

• (Intuitionistic Implication from A to B) !A(B;

• (Classical Implication from A to B) !?A(?B.

Accordingly, we define a formula (i.e., a game) A is:

• intuitionistically true if there is a winning strategy on T (A;

• classically true if there is a winning strategy on T (?A

where the linear/non-linear distinction does not matter for !?T = T = ?T .

The intuitionistic linear and the intuitionistic implications are from linear logic.

Let us explain the two new implications: classical linear and classical ones. A classical

linear implication ?A (?B is linear for it allows Player to refer to the domain ?A

just once (again, strictly speaking, at most once), and it is classical for the domain ?A

and the codomain ?B allow backtracking. We then obtain the classical one !?A(?B

from ?A(?B by applying Girard’s translation, relaxing the resource sensitivity.

Nevertheless, we leave it as future work to develop this naive idea further to give

semantics of classical and classical linear logics in both game-semantic and categorical

levels. For now, we have just observed:

Lemma 2.4.13 (Why not monad). Why not ? is a monad on CLMG and on LLMG
such that ?(A(B) = !A(?B and !?A ∼= ?!A for any games A and B.

Proof. Very similar to the proof that exponential ! forms a comonad [101].

As expected, an intuitionistic proof of a formula A is a restricted type of a classical

proof of A, namely it never backtracks. To see its reasonability, let us consider some

examples. First, consider the double negation elimination (DNE) ¬¬A ⇒ A for any

given formula A. Note that the converse A ⇒ ¬¬A is intuitionistically true since

there is the dereliction preceded by the two canonical moves:

56

!!A (((!!A (!0) (0)
q

(q, 0)
((a(1), i), j)

(((a(1), i), j), 0)
(((a(2), i), j), 0)

(a(2), i), j)
((a(3), i), j)

(((a(3), i), j), 0)
(((a(4), i), j), 0)

(a(4), i), j)
...

However, as expected, there is no intuitionistic proof of DNE. Note that there

is only one possible strategy on ¬¬A ⇒ A for any given formula A, namely the

dereliction on A intervened by the two canonical moves. However, it is not total; for

instance, consider the following play of the tensor A
df.
= N ⊗ 2:

!(!(!(N ⊗ 2) (0) (0) (N ⊗ 2
q

(q, 0)
((q, 0), i)

(((q, 0), i), 0)
(((tt , 0), i), 0)

tt
q

(((q, 0), i), 0)
((q, 0), j)

(((q, 0), j), 0)
(((ff , 0), j), 0)

where i 6= j. The point is that when Opponent performs the move ((q, 0), j) with

underline just for clarity, initiating a new thread, the only conceivable general strategy

is to ‘copy-cat’ the first move q as the next move; however, Opponent can perform

the next move (((ff , 0), j), 0), which Player cannot ‘copy-cat’ to the codomain N ⊗2.

On the other hand, there is a classical proof of DNE because multiple threads

initiated by Opponent as in the above example may be ‘copy-catted’ to the codomain:

57

!?(!?(!?A (?0) (?0) (?A

a
(1)
0

q0,0,0

q0,0,i,j,0

a
(1)
0,0,0,i,j,0

a
(2)
k,0,0,i,j,0

a
(2)
k

a
(3)
k

a
(3)
k,0,0,i,j,0

q0,0,l,r,0

a
(1)
0,0,0,l,r,0

ã
(2)
p,0,0,l,r,0

ã
(2)
p

ã
(3)
p

ã
(3)
p,0,0,l,r,0

q0,0,x,y,0

a
(1)
0,0,0,x,y,0

â
(2)
z,0,0,x,y,0

â
(2)
z

...

where the pairs (i, j), (l, r) and (x, y) are pairwise distinct, and we abbreviate a finite

sequence (. . . ((a, x1), x2), . . . , xn) as ax1,x2,...,xn . Similarly, the law of excluded middle

(LEM) is not intuitionistically but classically true.

We leave a thorough development of these ideas as future work; however, they give

useful insights, e.g., why Σ-types is incompatible with classical reasoning in Chapter 6.

58

Chapter 3

Dynamic Game Semantics

3.1 Introduction to the Chapter

The main contents of the thesis begin with the present chapter, which aims to give

semantics of dynamics and intensionality of computation as explained in Section 1.1,

specifically by games and strategies.

3.1.1 Existing Game Semantics Is Static

Game semantics is often said to be a dynamic, intensional semantics for a category of

games is usually not well-pointed, and plays of a game may be regarded as ‘dynamic

interactions’ between the participants of the game [5, 101]. However, it has been

employed as denotational semantics (see Section 1.1.3), and thus it has been sound :

If two programs evaluate to the same value, then their denotations are identical. As

a consequence, existing game semantics J KG is actually static and extensional in the

sense that if there is a reduction M1 → M2 in syntax, then the equation JM1KG =

JM2KG holds in the semantics (i.e., it does not capture the dynamics M1 → M2 or

the intensional difference between M1 and M2). In other words, it is not dynamic or

intensional in the sense that it cannot satisfy a DCP (see Section 1.1.4).

Therefore, for achieving the research aim described in Section 1.1.4, we need to

introduce a more dynamic, intensional variant of games and strategies so that they

satisfy DCPs for logical systems and programming languages. To get some insights

to develop such games and strategies, let us see how existing game semantics fails to

be dynamic or intensional. The point in a word is that the ‘internal communication’

between strategies for their composition is a priori ‘hidden’, and thus, the resulting

strategy is always in normal form. For instance, as seen in Chapter 2, the composition

succ†; double : N ⇒ N of the two strategies succ : N ⇒ N and double : N ⇒ N

59

!N[0]

succ
(N[1] !N[2]

double
(N[3]

q[1] q[3]

(q, 0)[0] (q, 0)[2]

(m, 0)[0] (n, 0)[2]

m+ 1[1] 2 · n[3]

is calculated as follows. First, by ‘internal communication’, we mean that Player

plays the role of Opponent in the intermediate component games !N[1] and !N[2] just

by ‘copy-catting’ her last moves, resulting in the following play:

!N[0]

succ†

(!N[1] !N[2]

double
(N[3]

q[3]

(q, 0)[2]

(q, 0)[1]

(q, 〈0, 0〉)[0]

(n, 〈0, 0〉)[0]

(n+ 1, 0)[1]

(n+ 1, 0)[2]

2 · (n+ 1)[3]

where moves for ‘internal communication’ are marked by square boxes just for clarity,

and a pointer from (q, 0)[1] to (q, 0)[2] is added because the move (q, 0)[1] is no longer

initial. Importantly, it is assumed that Opponent plays on the game !N[0] (N[3],

‘seeing’ only moves of !N[0] or N[3]. The resulting play is to be read as follows:

1. Opponent’s question q[3] for an output in !N[2] (N[3] (‘What is your output?’);

2. Player’s question (q, 0)[2] by double for an input in !N[2] (N[3] (‘Wait, what

is an input?’);

3. (q, 0)[2] in turn triggers the question (q, 0)[1] for an output in !N[0] (!N[1]

(‘What is an output?’);

4. Player’s question (q, 〈0, 0〉)[0] by succ† for an input in !N[0] (!N[1] (‘Wait, what

is an input?’);

5. Opponent’s answer, say, (n, 〈0, 0〉)[1], to the question (q, 〈0, 0〉)[0] in !N[0] (!N[3]

(‘Here is an input n.’);

6. Player’s answer (n+ 1, 0)[1] to the question (q, 0)[1] by succ† in !N[0] (!N[1]

(‘The output is then n+ 1.’);

60

7. (n+ 1, 0)[1] in turn triggers the answer (n+ 1, 0)[2] to the question (q, 0)[2]

in !N[2] (N[3] (‘Here is the input n+ 1.’);

8. Player’s answer 2 · (n+ 1)[3] to the initial question q[3] by double in !N[2] (N[3]

(‘The output is then 2 · (n+ 1)!’).

Next, ‘hiding’ means to hide or delete every move with a square box from the

play, resulting in the strategy for the function n 7→ 2 · (n+ 1) as expected:

!N[0]

succ†;double
(N[3]

q[3]

(q, 〈0, 0〉)[0]

(n, 〈0, 0〉)[0]

2 · (n+ 1)[3]

Note that it is ‘hiding’ that makes the resulting play a valid one on the game N ⇒ N .

Now, let us plug in the strategy 5T : q 7→ 5 on the game T ⇒ N (n.b., recall that

T ⇒ N coincides with N up to ‘tags’). The composition (5T)†; succ†; double : T ⇒ N

of 5T , succ and double1 is computed again by ‘internal communication’:

!T[4]

(5T)†

(!N[5] !N[0]

succ†

(!N[1] !N[2]

double
(N[3]

q[3]

(q, 0)[2]

(q, 0)[1]

(q, 〈0, 0〉)[0]

(q, 〈0, 0〉)[5]

(5, 〈0, 0〉)[5]

(5, 〈0, 0〉)[0]

(6, 0)[1]

(6, 0)[2]

12[3]

plus ‘hiding’:

!T[4]

(5T)†;succ†;double
(N[3]

q[3]

12[3]

1Composition of strategies is associative; thus, the order of applying composition does not matter.

61

In syntax, on the other hand, assuming that there are a (ground) type ι of natural

numbers, a numeral n of type ι for each n ∈ N, and constants succ and double of

type ι for the successor and the doubling functions, respectively, equipped with the

operational semantics succn→ n + 1 and doublen→ 2 · n for all n ∈ N in an arbitrary

functional programming language, the program p1
df.≡ λx.(λy. double y)((λz. succ z) x)

represents the syntactic composition succ; double. When it is applied to the numeral

5, we have the following chain of reductions:

p1 5→∗ (λx. double (succ x)) 5

→∗ double (succ 5)

→∗ double 6

→∗ 12.

Therefore, it seems that reduction in syntax corresponds in game semantics to ‘hiding

internal communication’. As seen in the above example, however, this game-semantic

normalization is a priori executed and thus invisible in conventional game semantics

J KG. As a result, the two programs p1 5 and 12 are interpreted by J KG as the same

strategy. Moreover, observe that moves with a square box describe intensionality or

step-by-step processes to compute an output from an input, but they are invisible after

‘hiding’. Thus, e.g., a program p2
df.≡ λx.(λy. succ y)(λv.(λz. succ z)((λw. double w) v) x),

representing the same function as p1 yet a different algorithm double; succ; succ is

modeled as:

Jp2KG = Jdouble; succ; succKG = Jsucc; doubleKG = Jp1KG.

To sum up, we have observed the following:

1. (Reduction as hiding). Reduction in syntax corresponds in game semantics

to ‘hiding intermediate moves (i.e., moves with a square box)’;

2. (A priori normalization). However, the ‘hiding’ process is a priori executed

in conventional game semantics, and thus strategies are always in ‘normal form’;

3. (Intermediate moves as intensionality). ‘Intermediate moves’ consti-

tute intensionality of computation, but they are not captured in conventional

game semantics again due to the a priori execution of the ‘hiding’ operation.

62

3.1.2 Dynamic Games and Strategies

From these observations, we have obtained a promising solution: to define a variant of

games and strategies, in which ‘intermediate moves’ are not a priori ‘hidden’, repre-

senting intensionality of computation, and the hiding operations H on the games and

strategies ‘hide intermediate moves’ in a step-by-step fashion, interpreting dynamics

of computation. Let us call such a variant of games (resp. strategies) dynamic

games (resp. dynamic strategies).

In doing so, we have tried to develop new structures and axioms that are con-

ceptually natural and mathematically elegant. This is in order to inherit the natural,

intuitive nature of existing game semantics so that the resulting interpretation would

be insightful, convincing and useful. Also, mathematics often leads to a ‘correct’ for-

mulation: If a definition gives rise to neat mathematical structures, then it is likely to

succeed in capturing the essence of concepts and phenomena of concern, and subsume

various instances. In fact, dynamic games and strategies are a natural generalization

of existing games and strategies, and they satisfy beautiful algebraic laws: They form

a cartesian closed bicategory (CCB) in the sense of [145]2 LDG (Definition 3.4.1),

in which 0- (resp. 1-) cells are certain dynamic games (resp. dynamic strategies),

and 2-cells correspond to the extensional equivalence between 1-cells; and the hid-

ing operation H induces the functor Hω : LDG → CMG, where the CCC CMG
(Definition 2.4.7) can be seen as an ‘extensionally collapsed’ LDG.

3.1.3 Dynamic Game Semantics

We shall then give a game semantics J KDG of a logical calculus or a programming

language in LDG that together with the hiding operation H satisfies a DCP, which

we call dynamic game semantics as it captures dynamics and intensionality of

computation better than existing ones. Since a simple language would be appropriate

for the first work on dynamic game semantics, let us select finitary PCF (i.e., the

simply-typed λ-calculus equipped with the boolean type) as the target language.

Note that it does not make much sense to ask whether full abstraction [44] holds

for dynamic game semantics as its aim is to capture intensionality of computation.

Also, the model does not satisfy faithfulness : Our semantic equation is of course

finer than β-equivalence but also coarser than α-equivalence, e.g., non-α-equivalent

terms (λx. 0) 1 and (λx. 0) 2 are interpreted to be the same in our dynamic game

2N.b., for the present chapter, it suffices to know that a CCB is a generalized CCC in the sense
that the equational axioms of CCCs are required to hold only up to 2-cell isomorphisms.

63

semantics. It is because, as explained in Section 1.1.2, the semantic equation captures

algorithmic difference of programs, while α-equivalence distinguishes how programs

are constructed even if their algorithms are the same.

On the other hand, it makes sense to ask whether full completeness [7, 44] holds

for dynamic game semantics as well. In fact, we shall establish it in the present work.

3.1.4 Related Work and Contribution of the Chapter

To the best of our knowledge, the present work is the first syntax-independent char-

acterization of dynamics of computation in the sense that it satisfies DCPs.

The work closest in spirit is Girard’s geometry of interaction (GoI) [71, 72, 73,

75, 76, 77]. However, GoI appears mathematically ad-hoc for it does not conform to

the standard categorical semantics of type theories [118, 150, 41, 102]; also, it does

not capture the step-by-step process of reduction in the sense of DCPs. In contrast,

dynamic game semantics refines the standard semantics and satisfies DCPs.

Next, the idea of exhibiting ‘intermediate moves’ in the composition of strategies

is nothing new ; there are game-semantic approaches [52, 81, 29, 144] that give such

moves an official status. However, because their aims are rather to develop a tool for

program analysis and verification, they do not study in depth mathematical structures

thereof, give an intensional game semantics that follows the standard categorical

semantics of type theories or formulate a step-by-step ‘hiding’ process. Therefore, our

contribution for this point is to study algebraic structures of games and strategies

when we do not a priori ‘hide intermediate moves’ and refine the standard categorical

semantics of computation in such a way that satisfies DCPs.

Also, there are several different approaches to model dynamics of computation

by 2-categories [166, 89, 132]. In these papers, however, the horizontal composition

of 1-cells is the normalizing one, which is why the structure is 2-categories rather

than bicategories.3 Also, their 2-cells are rewriting, while the 2-cells of our bicategory

are external equivalences between 1-cells; note that 2-cells in a bicategory cannot

interpret rewriting unless the horizontal composition is normalizing since associativity

of non-normalizing composition with respect to such 2-cells does not hold.4 Thus,

although their motivations are similar to ours, our bicategorical approach seems novel,

interpreting an application of terms by a non-normalizing composition, extensional

equivalences of terms by 2-cells and rewriting by the hiding operation H on 1-cells.

3I.e., the unit law does not strictly hold if the composition is non-normalizing.
4I.e., there is no ‘rewriting’ between 1-cells (f ; g);h and f ; (g;h) if the composition is non-

normalizing.

64

Moreover, their frameworks are categorical, while we have instantiated our model by

game semantics. Furthermore, neither of the previous work establishes a DCP.

Finally, note that the present work has several implications from theoretical as

well as practical viewpoints. From the theoretical perspective, it enables us to study

dynamics and intensionality of computation as purely mathematical (or semantic)

concepts, just like any concepts in pure mathematics such as differentiation and inte-

gration in calculus, homotopy in topology, etc. Thus, we may rigorously analyze the

essence of these concepts ignoring superfluous syntactic details. From the practical

point of view, on the other hand, it can be a useful tool for language analysis and

design, e.g., our variant of finitary PCF would not exist without the present work.

3.1.5 Chapter Outline

The rest of the chapter proceeds as follows. First, Section 3.2 formulates our target

programming language and its bicategorical semantics that satisfies a DCP so that it

remains to establish its game-semantic instance. Next, Section 3.3 introduces dynamic

games and strategies, and Section 3.4 gives dynamic game semantics of the language.

Finally, Section 3.5 draws a conclusion and proposes future work.

3.2 Dynamic Bicategorical Semantics

This section gives a categorical description of how dynamic games and strategies

capture dynamics and intensionality of computation, respectively, and shows that it is

a refinement of the standard categorical semantics of type theories [118, 150, 41, 102].

3.2.1 Beta-Categories of Computation

The categorical structure that is essential for our interpretation is β-categories of

computation (BoCs), a certain kind of bicategories whose 2-cells are extensional equiv-

alences between 1-cells, equipped with an evaluation satisfying certain axioms.

Let us first introduce a more general notion of β-categories, which are categories

up to an equivalence relation on morphisms :

Definition 3.2.1 (β-categories). A β-category is a pair C = (C,') that consists of:

• A class ob(C) of objects, where we usually write A ∈ C for A ∈ ob(C);

• A class C(A,B) of β-morphisms from A to B for each pair A,B ∈ C, where

we often write f : A→ B for f ∈ C(A,B) if C is obvious from the context;

65

• A (class) function C(A,B)×C(B,C)
;A,B,C→ C(A,C), called the β-composition

on β-morphisms from A to B and from B to C, for each triple A,B,C ∈ C;

• A β-morphism idA ∈ C(A,A), called the β-identity on A, for each A ∈ C;

• An equivalence (class) relation 'A,B on C(A,B), called the equivalence on

β-morphisms from A to B, for each pair A,B ∈ C

where we also write C(B,C)×C(A,B)
◦A,B,C→ C(A,C) for the β-composition ;A,B,C and

often omit the subscripts on ;A,B,C , ◦A,B,C and 'A,B, such that it satisfies:

f ' f ′ ∧ g ' g′ ⇒ f ; g ' f ′; g′

(f ; g);h ' f ; (g;h)

f ; idB ' f

idA; f ' f

for any A,B,C,D ∈ C, f, f ′ : A→ B, g, g′ : B → C and h : C → D. Moreover, it is

cartesian closed iff:

• There is an object T ∈ C, called a β-terminal object, such that there is a

β-morphism !A : A→ T for each A ∈ C that satisfies:

!A ' t for any t : A→ T ;

• There is an object A × B ∈ C for each pair A,B ∈ C, called a β-(binary)

product of A and B, equipped with β-morphisms πA,B1 : A × B → A and

πA,B2 : A × B → B, called the first and the second β-projections of A × B,

respectively, such that given C ∈ C, a : C → A and b : C → B there is a

β-morphism 〈a, b〉CA,B : C → A × B, called the β-pairing of a and b (with

respect to A×B), that satisfies:

a ' a′ ∧ b ' b′ ⇒ 〈a, b〉 ' 〈a′, b′〉 for any a′ : C → A and b′ : C → B

〈a, b〉CA,B; πA,B1 ' a

〈a, b〉CA,B; πA,B2 ' b

〈h; πA,B1 , h; πA,B2 〉CA,B ' h for any h : C → A×B;

• There are an object CB ∈ C and a β-morphism evB,C : CB × B → C, called

the β-exponential and the β-evaluation of B and C, respectively, for each

pair B,C ∈ C such that given A ∈ C and k : A×B → C there is a β-morphism

66

ΛA,B,C(k) : A→ CB (or written ΛA(k) : A→ CB), called the β-currying of k

(with respect to CB), that satisfies:

k ' k′ ⇒ ΛA,B,C(k) ' ΛA,B,C(k′) for any k′ : A×B → C

〈πA,B1 ; ΛA,B,C(k), πA,B2 〉A×B
CB ,B

; evB,C ' k

ΛA,B,C(〈πA,B1 ; l, πA,B2 〉A×B
CB ,B

; evB,C) ' l for any l : A→ CB

where we often omit the sub/superscripts on πA,Bi , 〈 , 〉CA,B, evB,C and ΛA,B,C .

That is, a (resp. cartesian closed) β-category C = (C,') is a (resp. cartesian

closed) category up to ' (i.e., the equation = on morphisms is replaced with '),

where the prefix ‘β-’ represents the compromise ‘up to '’. Alternatively, regarding

objects and β-morphisms of C as 0-cells and 1-cells, respectively, and defining 2-cells

by C(A,B)(d, c)
df.
=

{
{'} if d ' c;

∅ otherwise
for any A,B ∈ C and d, c : A→ B, where {'}

is any singleton set, we may identify C with a (resp. cartesian closed [145]) bicategory

whose 2-cells are only the trivial one.

We are now ready to define β-categories of computation (BoCs):

Definition 3.2.2 (BoCs). A β-category of computation (BoC) is a β-category

C = (C,') equipped with a (class) function E on β-morphisms of C, called the eval-

uation (of computation), that satisfies:

• (Subject Reduction) E(f) : A→ B and f ↓ for all A,B ∈ C and f : A→ B;

• (β-Identities) E(idA) = idA for all A ∈ C;

• (Evaluation) f ' f ′ ⇔ ∃v ∈ VC(A,B). f ↓ v ∧ f ′ ↓ v for all A,B ∈ C and

f, f ′ : A→ B

where VC(A,B)
df.
= {v ∈ C(A,B) | E(v) = v }, whose elements are called values

from A to B, and we write f ↓, or specifically f ↓ En(f), if En(f) ∈ VC(A,B) for

some n ∈ N.5 It is cartesian closed, which we call a cartesian closed BoC

(CCBoC), iff so is C as a β-category, all the β-projections and the β-evaluations of

C are values, and all the β-pairing and the β-currying of C preserve values.

Convention. Since the equivalence ' of a BoC C may be completely recovered from

the evaluation E , we usually specify the BoC by a pair C = (C, E). If f ↓ En(f) for

some n ∈ N, then we call En(f) the value of f and also write Eω(f) for it.

5Note that if En1(f), En2(f) ∈ VC(A,B) for any n1, n2 ∈ N, then clearly En1(f) = En2(f), where
En denotes the n-times iteration of E for all n ∈ N.

67

Intuition behind Definition 3.2.2 is as follows. In a BoC C = (C, E), β-morphisms

are (possibly intensional but not necessarily ‘effective’) computations with the domain

and the codomain (objects) specified, and values are extensional computations such

as functions (as graphs). The β-composition is ‘non-normalizing composition’ or

concatenation of computations, and β-identities are unit computations (they are just

like identity functions). The execution of a computation f is achieved by evaluating it

into a unique value Eω(f), which corresponds to dynamics of computation.6 Also, the

equivalence ' witnesses extensional equivalences between β-morphisms. The three

axioms then should make sense from this perspective. In this way, a BoC provides a

‘universe’ of dynamic, intensional computations.

It is easy to see that a BoC C = (C, E) induces the category VC given by:

• Objects are those of C;

• Morphisms A→ B are values in VC(A,B);

• The composition of morphisms u : A→ B and v : B → C is Eω(u; v) : A→ C;

• Identities are β-identities in C.

Regarding the BoC C as the trivial bicategory as already specified above, and the

category VC as the trivial 2-category, the evaluation E induces the 2-functor Eω : C →
VC that maps A 7→ A for 0-cells A, f 7→ Eω(f) for 1-cells f and ' 7→ = for 2-cells '.

Then clearly, VC is cartesian closed if so is C, where projections, evaluations, pairing

and currying of VC are respectively the corresponding ‘β-ones’ in C.
The point here is that we may now decompose the standard interpretation J KS

of functional programming languages in a CCC VC [118, 150, 41, 102] as a more

intensional interpretation J KD in a CCBoC C = (C, E) and the full evaluation Eω : C →
VC, i.e., J KS = Eω(J KD), and talk about intensional difference between computations:

Terms M and M′ are interpreted to be intensionally equal if JMKD = JM′KD and

extensionally equal if JMKD ' JM′KD. Also, the one-step evaluation E is to capture

the small-step operational semantics of the target language, i.e., to satisfy a DCP

(see Definition 3.2.15 for the precise definition).

6In the present work, every dynamic strategy (or β-morphism), even a non-terminating one, e.g.,
a fixed-point strategy (Definition 4.2.7), becomes a value by a finite iteration of the evaluation due
to the axiom on labeling functions (Definition 3.3.11), and therefore the axiom Subject Reduction
(Definition 3.2.2) makes sense.

68

3.2.2 Finitary PCF

Next, let us introduce in the present section our target programming language for the

first instance of dynamic game semantics.

First, recall that there is a one-to-one correspondence between PCF Böhm trees

(i.e., terms of PCF in η-long normal form) [18] and innocent, well-bracketed strategies

[100, 14, 43]; this technical highlight in the literature of game semantics is called

strong definability. Naturally, we would like to exploit the strong definability result

to establish the first instance of dynamic game semantics as the task would be easier.

On the other hand, the programming language PCF [163, 151] has the natural

number type and the fixed-point combinators, which make PCF Böhm trees infinitary

in width and depth, respectively. However, we would like to select, as the first target

language for dynamic game semantics, the simplest one possible because then the

idea and the mechanism would be most visible. For this reason, let us choose finitary

PCF, i.e., the fragment of PCF that has only the boolean type as the ground type (or

equivalently, the simply-typed λ-calculus [36, 172] equipped with the boolean type).

We then define a simple small-step operational semantics (or reduction strategy)

of finitary PCF whose execution order is obvious from the types of terms and has an

immediate counterpart in dynamic game semantics.

Remark. Note that an execution of linear head reduction (LHR) [48]7 corresponds in

a step-by-step fashion to an ‘internal communication’ between strategies [47]. Hence,

one may wonder if it would be better to employ LHR here; however, note that:

• The correspondence is not between terms and strategies;

• LHR is executed by linear substitution, which makes the calculus very different

from the usual λ-calculus with β-reduction.

By these two points, we have conjectured that it would require significantly more

work than the present chapter to establish a game-semantic DCP with respect to

LHR, and therefore we leave it as future work.

In the following, we give the precise definition of the resulting target programming

language (viz., finitary PCF equipped with a small-step operational semantics).

Remark. It is possible to further simplify the target programming language by replac-

ing the underlying λ-calculus with the linear one [1]. However, we need implication

⇒, not linear implication(, in dynamic game semantics for Chapter 4, and therefore

we shall keep the underlying λ-calculus unchanged.
7It is rather called head linear reduction (HLR) in this paper.

69

Notation. Henceforth, we employ the following notation:

• Let V be a countably infinite set of variables, written x, y, z, etc., for which we

assume the variable convention (or Barendregt’s convention)8 [85];

• We use sans-serif letters such as Γ, A and a for syntactic objects and ≡ for

syntactic equality up to α-equivalence, i.e., up to renaming of bound variables.

Definition 3.2.3 (FPCF [163, 151, 100, 9, 18]). The finitary PCF (FPCF) is a

programming language defined as follows:

• (Types) A type A is an expression generated by the grammar:

A
df.≡ o | A1 ⇒ A2

where o is the boolean type and A1 ⇒ A2 is the function type from A1 to A2

(⇒ is right associative). We write A,B,C, etc. for types. Note that each type

A is uniquely written A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ o, where k ∈ N.

• (Raw-Terms) A raw-term M is an expression generated by the grammar:

M
df.≡ x | tt | ff | case(M)[M1; M2] | λxA.M | M1M2

where x ranges over variables, and A over types. We call tt, ff, λxA.M and M1M2

respectively the true constant, the false constant, an abstraction and an

application. We write M,P,Q,R, etc. for raw-terms and often omit A in an

abstraction λxA; an application is always left-associative, e.g., M1M2M3 may be

written informally (M1M2)M3. The set FV (M) ⊆ V of all free variables

occurring in a raw-term M is defined by the following induction on M:

FV (x)
df.
= {x}

FV (tt)
df.
= FV (ff)

df.
= ∅

FV (case(M)[M1; M2])
df.
= FV (M) ∪FV (M1) ∪FV (M2)

FV (λx.M)
df.
= FV (M) \ {x}

FV (M1M2)
df.
= FV (M1) ∪FV (M2).

• (Contexts) A context is a finite sequence x1 : A1, x2 : A2, . . . , xk : Ak of (vari-

able : type)-pairs such that xi 6= xj if i 6= j. We write Γ, ∆, Θ, etc. for contexts.

8I.e., we assume that in any term of concern every bound variable is chosen to be different from
any free variable occurring in that mathematical context.

70

• (Terms) A term is an expression of the form Γ ` M : B, where Γ is a context,

M is a raw-term, and B is a type, generated by the following typing rules :

(B)
b ∈ {tt,ff}

Γ ` b : o
(C1)

A ≡ A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ o Γ ≡ ∆,Θ

∀i ∈ {1, 2, . . . , k }. Γ ` Vi : Ai ∧](Vi) = 0 ∧ x 6∈ FV (Vi)

∀j ∈ {1, 2}. Γ ` Wj : o ∧](Wj) = 0 ∧ x 6∈ FV (Wj)

∆, x : A,Θ ` case(xV1V2 . . .Vk)[W1; W2] : o

(C2)
Γ ` M : o ∀j ∈ {1, 2}. Γ ` Pj : o

Γ ` case(M)[P1; P2] : o
(L)

Γ, x : A ` M : B

Γ ` λxA.M : A⇒ B

(A)
Γ ` M1 : A⇒ B Γ ` M2 : A

Γ ` M1M2 : B

where](Γ ` M : B) ∈ N, often abbreviated as](M), is the execution number

of each term Γ ` M : B defined by the following induction on Γ ` M : B:

–](b)
df.
= 0 if b ∈ {tt,ff};

–](case(xV1V2 . . .Vk)[W1; W2])
df.
= 0;

–](case(M)[P1; P2])
df.
= 0;

–](λxA.M)
df.
=](M);

–](M1M2)
df.
= max(](M1),](M1)) + 1.

We identify terms up to α-equivalence [85, 172]. We write Γ ` {M}e : B for the

term Γ ` M : B such that](M) = e. Also, we often omit the context and/or the

type of a term if it does not bring confusion. A program (resp. a value) is a

term generated by the rules B, C1, L and A (resp. B, C1 and L).9 A subterm

of a term Γ ` M : B is a term that occurs in the deduction of Γ ` M : B.10

• (βϑ-Reduction) The βϑ-reduction →βϑ on terms is the contextual closure11

[85] of the union of the following five rules:

(λx.M)P→β M[P/x]

case(tt)[M1; M2]→ϑ1 M1

case(ff)[M1; M2]→ϑ2 M2

case(case(xV)[W1; W2])[M1; M2]→ϑ3 case(xV)[case(W1)[M1; M2]; case(W2)[M1; M2]]

case(case(M)[P1; P2])[Q1; Q2]→ϑ4 case(M)[case(P1)[Q1; Q2]; case(P2)[Q1; Q2]]

9The rules C2 and ϑ4 are necessary for ‘intermediate terms’ during an execution of a program.
10Note that a deduction (tree) of each term of FPCF is unique.
11I.e., the closure with respect to the typing rules.

71

where M[P/x] denotes the capture-free substitution [85] of P for x in M, and xV

abbreviates xV1V2 . . .Vk of the rule C1. We write nf (M) for the normal form of

each term M with respect to→βϑ, i.e., nf (M) is a term such that M→∗βϑ nf (M)12

and nf (M) 6→βϑ M′ for any term M′, which uniquely exists by Theorems 3.2.10

and 3.2.11. The parallel βϑ-reduction ⇒βϑ on terms evaluates each term M

in a single-step to its normal form nf (M).

• (Operational Semantics) The (small-step) operational semantics →
on programs M is the simultaneous execution of⇒βϑ on all subterms of M with

the execution number 1, or more precisely, → is defined recursively by:

M→

V if M ≡ M1M2,](M1M2) = 1 and M1M2 ⇒βϑ V;

M′1M′2 if M ≡ M1M2,](M1M2) > 2 and Mi → M′i for i = 1, 2;

λxA. M̃′ if M ≡ λxA. M̃ and M̃→ M̃′.

Eq(FPCF) is the equational theory that consists of judgements Γ ` M = M′ : B,

where Γ ` M : B and Γ ` M′ : B are terms of FPCF such that nf (M) ≡ nf (M′).

Note that values of FPCF are PCF Böhm trees [100, 14, 43, 18] except that

the ‘bottom term’ ⊥ and the natural number type ι are both excluded, and the βϑ-

reduction →βϑ is taken from Section 6 of the book [18].

Remark. Let A ≡ A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ o be an arbitrary type of FPCF. Note that

an expression of the form ∆, x : A,Θ ` x : A is not an term of FPCF, but instead there

is another ∆, x : A,Θ ` xA : A, where xA df.≡ λxA1
1 xA2

2 . . . xAk
k . case(xx1

A1x2
A2 . . . xk

Ak)[tt; ff],

which is a term of FPCF. We often write x for xA if it does not bring confusion.

Thus, FPCF computes as follows. Given a program Γ ` {M}e : B, it produces a

finite chain of finitary rewriting

M→ M1 → M2 → · · · → Me (3.1)

where Me is a value. Note that the program M is constructed from values by a

finite number of applications, and the computation (3.1) is executed in the first-

applications-first-evaluated fashion, e.g., if M ≡ (V1V2)((V3V4)(V5V6)) and e = 3,

where V1,V2, . . . ,V6 are values, then the computation (3.1) would be of the form

(V1V2)((V3V4)(V5V6))→ V7(V8V9)→ V7V10 → V11

where V7 ≡ nf (V1V2), V8 ≡ nf (V3V4), V9 ≡ nf (V5V6), V10 ≡ nf (V8V9) and V11 ≡ nf (V7V10).

12→∗βϑ is the reflexive, transitive closure of →βϑ.

72

The rest of the present section is devoted to showing that the computation (3.1)

of FPCF in fact correctly works (Corollary 3.2.13).

First, by the following Proposition 3.2.4 and Theorem 3.2.8, it makes sense that

→βϑ is defined on terms (not on raw-terms):

Proposition 3.2.4 (Unique typing). If Γ ` {M}e : B and Γ ` {M}e′ : B′, then e = e′

and B ≡ B′.

Proof. By induction on the construction of Γ ` M : B.

Lemma 3.2.5 (Free variable lemma). If Γ ` M : B, and x ∈ V occurs free in M, then

x : A occurs in Γ for some type A.

Proof. By induction on the construction of Γ ` M : B.

Lemma 3.2.6 (EW-lemma). If x1 : A1, x2 : A2, . . . , xk : Ak ` {M}e : B, then:

1. xσ(1) : Aσ(1), xσ(2) : Aσ(2), . . . , xσ(k) : Aσ(k) ` {M}e : B for any permutation σ of

the set {1, 2, . . . , k };

2. x1 : A1, x2 : A2, . . . , xk : Ak, xk+1 : Ak+1 ` {M}e : B for any variable xk+1 ∈ V and

type Ak+1 such that xk+1 6≡ xi for i = 1, 2, . . . , k.

Proof. By induction on the construction of x1 : A1, x2 : A2, . . . , xk : Ak ` M : B.

Lemma 3.2.7 (Substitution lemma). If Γ, x : A ` {P}e : B and Γ ` Q : A, then

Γ ` {P[Q/x]}e : B.

Proof. By a simple induction on |P|:

• If Γ, x : A ` {b}0 : o, where b ∈ {tt,ff}, and Γ ` Q : A, then the claim trivially

holds as Γ ` {b}0 : o by the rule B.

• If Γ, x : A ` {λzC.P}d : C⇒ B and Γ ` Q : A, then Γ, x : A, z : C ` {P}d : B; thus,

Γ, z : C, x : A ` {P}d : B by Lemma 3.2.6. Then, Γ, z : C ` {P[Q/x]}d : B by the

induction hypothesis, whence Γ ` {λzC.(P[Q/x]) ≡ (λzC.P)[Q/x]}d : C⇒ B by

the rule L.

• If Γ, x : A ` {case(yV1V2 . . .Vk)[W1; W2]}0 : o and Γ ` Q : A such that y 6= x,

then y : C ∈ Γ for some type C ≡ C1 ⇒ C2 ⇒ · · · ⇒ Ck ⇒ o by Lemma 3.2.5,

Γ \ {y : C}, x : A ` {Vi}0 : Ci for i = 1, 2, . . . , k, and Γ \ {y : C}, x : A ` {Wj}0 : o

for j = 1, 2. By the induction hypothesis, Γ \ {y : C} ` {Vi[Q/x]}0 : Ci for

i = 1, 2, . . . , k, and Γ \ {y : C} ` {Wj[Q/x]}0 : o for j = 1, 2. By the rule C1, we

get Γ ` {case(y(V1[Q/x])(V2[Q/x]) . . . (Vk[Q/x]))[W1[Q/x]; W2[Q/x]]}0 : o, which

is Γ ` {case(yV1V2 . . .Vk)[W1; W2][Q/x]}0 : o.

73

• If Γ, x : A ` {case(xV1V2 . . .Vk)[W1; W2]}0 : o and Γ ` Q : A, where A ≡ A1 ⇒
A2 ⇒ · · · ⇒ Ak ⇒ o, then Γ ` {Vi}0 : Ai for i = 1, 2, . . . , k, and Γ ` {Wj}0 : o for

j = 1, 2. By Lemma 3.2.6, Γ, x : A ` {Vi}0 : Ai for i = 1, 2, . . . , k, and Γ, x : A `
{Wj}0 : o for j = 1, 2. By the induction hypothesis, Γ ` {Vi[Q/x]}0 : Ai for i =

1, 2, . . . , k, and Γ ` {Wj[Q/x]}0 : o for j = 1, 2. Now, by an iterated application

of the rule A, we obtain Γ ` Q(V1[Q/x])(V2[Q/x]) . . . (Vk[Q/x]) : o. By the rule

C2, Γ ` {case(Q(V1[Q/x])(V2[Q/x]) . . . (Vk[Q/x]))[W1[Q/x]; W2[Q/x]]}0 : o, i.e.,

Γ ` {case(xV1V2 . . .Vk)[W1; W2][Q/x]}0 : o.

• If Γ, x : A ` {MN}m+1 : B and Γ ` Q : A, then Γ, x : A ` {M}d : C⇒ B,

and Γ, x : A ` {N}e : C for some type C such that max(d, e) = m. By the

induction hypothesis, we have Γ ` {M[Q/x]}d : C⇒ B and Γ ` {N[Q/x]}e : C.

Thus, by the rule A, we may obtain Γ ` {M[Q/x]N[Q/x]}max(d,e)+1 : B, i.e.,

Γ ` {MN[Q/x]}m+1 : B.

• If Γ, x : A ` {case(M)[M1; M2]}0 : o and Γ ` Q : A, then Γ, x : A ` M : o, and

Γ, x : A ` Mj : o for j = 1, 2. By the induction hypothesis, Γ ` M[Q/x] : o, and

Γ ` Mj[Q/x] : o for j = 1, 2. Thus, Γ ` {case(M[Q/x])[M1[Q/x]; M2[Q/x]]}0 : o

by the rule C2, i.e., Γ ` {case(M)[M1; M2][Q/x]}0 : o

which completes the proof.

Theorem 3.2.8 (Subject reduction). If Γ ` M : B and M→βϑ R, then Γ ` R : B.

Proof. By a simple induction on the structure M→βϑ R. In the following, let us write

[P1; P2]; [Q1; Q2] for [case(P1)[Q1; Q2]; case(P2)[Q1; Q2]].

• If M ≡ (λxA.P)Q and R ≡ P[Q/x], then Γ ` Q : A and Γ, x : A ` P : B. Then, we

have, by Lemma 3.2.7, Γ ` P[Q/x] : B.

• If M ≡ case(tt)[M1; M2] and R ≡ M1, then B ≡ o. From Γ ` case(tt)[M1; M2] : o,

we may conclude that Γ ` M1 : o. The case where M ≡ case(ff)[M1; M2] and

R ≡ M2 is analogous.

• If M ≡ case(case(P)[P′1; P′2])[Q′1; Q′2] and R ≡ case(P)[P′1; P′2]; [Q′1; Q′2], then B ≡
o. Then, we clearly have Γ ` case(P)[P′1; P′2] : o, from which we deduce Γ ` P : o,

Γ ` P′j : o and Γ ` Q′j : o for j = 1, 2. Thus, Γ ` case(P′j)[Q
′
1; Q′2] : o for j = 1, 2

by the rule C2. Hence, Γ ` case(P)[P′1; P′2]; [Q′1; Q′2] : o by the rule C2.

• If M ≡ case(case(xV)[W1; W2])[U1; U2] and R ≡ case(xV)[W1; W2]; [U1; U2], then

it is handled in a similar manner to the above case.

74

• If M ≡ λxA.P, B ≡ A⇒ C, R ≡ λxA.Q and P→βϑ Q, then Γ, x : A ` P : C. By

the induction hypothesis, Γ, x : A ` Q : C. Hence, Γ ` λxA.Q : B by the rule L.

• If M ≡ case(P)[P′1; P′2] and R ≡ case(Q)[Q′1; Q′2] such that just one →βϑ holds

in the following conjunction (P→βϑ Q ∨ P ≡ Q) ∧ (P′1 →βϑ Q′1 ∨ P′1 ≡ Q′1) ∧
(P′2 →βϑ Q′2 ∨ P′2 ≡ Q′2), then B ≡ o. In either case, it follows from the in-

duction hypothesis and the rule C2 that Γ ` case(Q)[Q′1; Q′2] : o.

• If M ≡ case(xV1V2 . . .Vk)[V′1; V′2] and R ≡ case(xW1W2 . . .Wk)[W′1; W′2] such that

just one →βϑ holds in the following conjunction (V1 →βϑ W1 ∨ V1 ≡ W1) ∧
(V2 →βϑ W2 ∨ V2 ≡ W2)∧· · ·∧(Vk →βϑ Wk ∨ Vk ≡ Wk)∧(V′1 →βϑ W′1 ∨ V′1 ≡ W′1)∧
(V′2 →βϑ W′2 ∨ V′2 ≡ W′2), then B ≡ o. In either case, it immediately follows from

the induction hypothesis and the rule C1 that Γ ` case(xW1 . . .Wk)[W′1; W′2] : o.

• If M ≡ PQ, R ≡ TS and (P→βϑ T ∧ Q ≡ S) ∨ (Q→βϑ S ∧ P ≡ T) with just one

conjunct valid, then clearly Γ ` P : A⇒ B and Γ ` Q : A for some type A. By

the induction hypothesis, if P→βϑ T, then Γ ` T : A⇒ B and Γ ` S : A; thus,

Γ ` TS : B by the rule L. The other case is analogous.

We have considered all the cases for M→βϑ R, establishing the theorem.

Next, we show that ⇒βϑ is well-defined (Theorems 3.2.10 and 3.2.11).

Lemma 3.2.9 (Hidley-Rosen [85]). Let R1 and R2 be any binary relations on the

set T of terms, and let us write →Ri for the contextual closure of Ri for i = 1, 2.

If →R1 and →R2 are both Church-Rosser, and satisfy ∀M,P,Q ∈ T . M→∗R1
P ∧

M→∗R2
Q⇒ ∃R ∈ T .P→∗R2

R ∧ Q→∗R1
R, then →R1∪R2 is Church-Rosser.

Proof. By simple ‘diagram chases’; see [85] for the detail.

Theorem 3.2.10 (CR). The βϑ-reduction →βϑ is Church-Rosser.

Proof. We may just apply Mitschke’s theorem [135, 85], but it is insightful to follow

its proof here.

First, it is easy to see that the ϑ-reduction →ϑ
df.
=

⋃4
i=1→ϑi satisfies the diamond-

property, and thus it is Church-Rosser.

Also, we may show that:

M→β P ∧M→ϑ Q⇒ ∃R.P→∗ϑ R ∧ Q→β R (3.2)

for all terms M, P and Q, where note the asymmetry of→ϑ and→β, by a case analysis

on the relation between β- and ϑ-redexes in M:

75

• If the β-redex is inside the ϑ-redex, then it is easy to see that (3.2) holds;

• If the ϑ-redex is inside the body of the function subterm of the β-redex, then it

suffices to show that→ϑ commutes with substitution, but it is straightforward;

• If ϑ-redex is inside the argument of the β-redex, then it may be duplicated by

a finite number n, but whatever the number n is, (3.2) clearly holds;

• If the β- and ϑ-redexes are disjoint, then (3.2) trivially holds.

It then follows from (3.2) that:

M→β P ∧M→∗ϑ Q⇒ ∃R.P→∗ϑ R ∧ Q→β R (3.3)

which in turn implies that:

M→∗β P ∧M→∗ϑ Q⇒ ∃R.P→∗ϑ R ∧ Q→∗β R (3.4)

for all terms M, P and Q. Applying Lemma 3.2.9 to (3.4) (or equivalently by the

well-known ‘diagram chase’ argument on →∗β and →∗ϑ), we may conclude that the

βϑ-reduction →βϑ =→β ∪ →ϑ is Church-Rosser.

Finally, we establish SN of →βϑ, i.e., there is no infinite chain of →βϑ:

Theorem 3.2.11 (Strong normalization). The βϑ-reduction →βϑ is SN.

Proof. By a slight modification of the proof of strong normalization of the simply-

typed λ-calculus in [85].

Thus, together with Theorem 3.2.10, it follows that the normal form nf (M) of

each term M of FPCF (with respect to →βϑ) uniquely exists. Moreover, we have:

Theorem 3.2.12 (Normal forms are values). The normal form nf (M) of every pro-

gram M of FPCF is a value.

Proof. It has been shown in [18] during the proof to show that PCF Böhm trees are

closed under composition.

Therefore, we have shown that the operational semantics → is well-defined:

Corollary 3.2.13 (Correctness of the operational semantics). If Γ ` {M}e : B is a

program of FPCF, and e > 1 (resp. e = 1), then there exists a unique program (resp.

value) Γ ` {M′}e−1 : B that satisfies M→ M′.

Proof. Immediate from Theorems 3.2.8, 3.2.10, 3.2.11 and 3.2.12.

76

3.2.3 Dynamic Semantics of Finitary PCF

Next, we present a general recipe to give semantics of FPCF that satisfies the DCP.

Definition 3.2.14 (Structures for FPCF). A structure for FPCF in a CCBoC

C = (C, E) is a tuple S = (B, 1,×, π,⇒, ev , tt ,ff , ϑ) such that:

• B ∈ C;

• 1, (×, π1, π2) and (⇒, ev) are respectively a β-terminal object, a β-product

(with β-projections) and a β-exponential (with β-evaluations) in C;

• tt ,ff : 1→ B and ϑ : B × (B ×B)→ B are values in C.

The interpretation J KSC of FPCF induced by S in C assigns an object JAKSC ∈ C to

each type A, an object JΓKSC ∈ C to each context Γ, and a β-morphism JMKSC : JΓKSC →
JBKSC to each term Γ ` M : B as follows:

• (Types) JoKSC
df.
= B and JA⇒ BKSC

df.
= JAKSC ⇒ JBKSC ;

• (Contexts) JεKSC
df.
= 1 and JΓ, x : AKSC

df.
= JΓKSC × JAKSC ;

• (Terms)

JΓ ` tt : oKSC
df.
= Eω(!JΓKSC

; tt)

JΓ ` ff : oKSC
df.
= Eω(!JΓKSC

; ff)

JΓ ` λx.M : A⇒ BKSC
df.
= ΛJΓKSC ,JAKSC ,JBKSC

(JΓ, x : A ` M : BKSC)

JΓ ` MN : BKSC
df.
= 〈JΓ ` M : A⇒ BKSC , JΓ ` N : AKSC 〉

JΓKSC
JA⇒BKSC ,JAKSC

; ev JAKSC ,JBKSC

JΓ ` case(xV)[W1; W2] : oKSC
df.
= Eω(〈JΓ ` xV : oKSC , 〈JΓ ` W1 : oKSC , JΓ ` W2 : oKSC 〉〉;ϑ)

JΓ ` case(M)[P1; P2] : oKSC
df.
= Eω(〈JΓ ` M : oKSC , 〈JΓ ` P1 : oKSC , JΓ ` P2 : oKSC 〉〉;ϑ)

where JΓ ` x : AKSC : JΓKSC → JAKSC (n.b., Γ ` x : A is not a term of FPCF, but we

need it for the application xV) is the obvious (possibly iterated) β-projection.

Moreover, the structure S is standard iff it satisfies the following three axioms:

1. The maps ΛA,B,C and 〈 , 〉CA,B in C are bijections for each triple A,B,C ∈ C;

2. Each β-composition that occurs as the interpretation of a term of FPCF is not

a value of C;

77

3. If Γ ` L : A⇒ B and Γ ` R : A such that L → L′ ∧ R → R′, L ≡ L′ ∧ R → R′ or

L→ L′ ∧ R ≡ R′ in FPCF, then:

〈JLKSC , JRKSC 〉
JΓKSC
JA⇒BKSC ,JAKSC

; ev JAKSC ,JBKSC
6= 〈JL′KSC , JR′KSC 〉

JΓKSC
JA⇒BKSC ,JAKSC

; ev JAKSC ,JBKSC
. (3.5)

The interpretation J KSC followed by Eω, i.e., Eω(J KSC), clearly coincides with the

standard categorical interpretation of the theory Eq(FPCF) in the CCC VC [118, 150,

41, 102]. In this sense, we have refined the standard semantics of type theories.

At this point, let us recall the DCP (see Section 1.1.4) specifically for FPCF:

Definition 3.2.15 (DCP for FPCF). The interpretation J KSC of FPCF induced by

a structure S for FPCF in a CCBoC C = (C, E) satisfies the dynamic correspon-

dence property (DCP) iff for any programs M1 and M2 of FPCF we have:

M1 → M2 ⇒ JM1KSC 6= JM2KSC ∧ E(JM1KSC) = JM2KSC .

Now, we reduce the DCP for FPCF to the following:

Definition 3.2.16 (PDCP for FPCF). The interpretation J KSC of FPCF induced by

a structure S for FPCF in a CCBoC C = (C, E) satisfies the pointwise dynamic

correspondence property (PDCP) iff for each term Γ ` {M}e : B it satisfies:

E(JMKSC) =

Λ ◦ E(JPKSC) if M ≡ λx.P;

JWKSC such that JWKSC 6= JMKSC if M ≡ UV, e = 1 and UV→ W;

〈E(JLKSC), E(JRKSC)〉; ev if M ≡ LR and e > 1;

JMKSC otherwise.

Theorem 3.2.17 (Standard semantics of FPCF). The interpretation J KSC of FPCF

induced by a standard structure S for FPCF in a CCBoC C = (C, E) satisfies the

DCP if it satisfies the PDCP.

Proof. In the following, we abbreviate J KSC as J K. Assume that J K satisfies the PDCP.

We show M → M′ ⇒ JMK 6= JM′K ∧ E(JMK) = JM′K for any programs Γ ` {M}e : B

and Γ ` {M′}e′ : B of FPCF by induction on the construction of M:

• If M ≡ tt, M ≡ ff or M ≡ case(xV1V2 . . .Vk)[W1; W2], then there is no term M′

such that M→ M′.

78

• If Γ ` M ≡ λxA.P : A⇒ C, then we have:

M→ M′ ⇒ M′ ≡ λx.P′ ∧ P→ P′ for some program P′ and variable x

⇒ M′ ≡ λx.P′ ∧ JPK 6= JP′K ∧ E(JPK) = JP′K for some P′ and x

(by the induction hypothesis)

⇒ JPK 6= Λ−1(JM′K) ∧ E(JPK) = Λ−1(JM′K)

⇒ Λ−1(JMK) 6= Λ−1(JM′K) ∧ Λ−1 ◦ E(JMK) = E ◦ Λ−1(JMK) = Λ−1(JM′K)

⇒ JMK 6= JM′K ∧ E(JMK) = JM′K.

• If M ≡ LR,](L) > 1 and](R) > 1, then we have:

M→ M′ ⇒ M′ ≡ L′R′ ∧ L→ L′ ∧ R→ R′ for some programs L′ and R′

⇒ M′ ≡ L′R′ ∧ JLK 6= JL′K ∧ E(JLK) = JL′K ∧ JRK 6= JR′K ∧ E(JRK) = JR′K

for some L′ and R′ (by the induction hypothesis)

⇒ JM′K = 〈E(JLK), E(JRK)〉; ev ∧ JLK 6= E(JLK) ∧ JRK 6= E(JRK)

⇒ JM′K = E(JMK) ∧ E(JMK) = 〈E(JLK), E(JRK)〉; ev 6= 〈JLK, JRK〉; ev = JMK

⇒ JMK 6= JM′K ∧ E(JMK) = JM′K.

• If M ≡ LR,](L) = 0 and](R) > 1, then we have:

M→ M′ ⇒ M′ ≡ LR′ ∧ R→ R′ for some program R′

⇒ M′ ≡ LR′ ∧ JRK 6= JR′K ∧ E(JRK) = JR′K for some R′

(by the induction hypothesis)

⇒ JM′K = 〈JLK, E(JRK)〉; ev = E(JMK) ∧ JRK 6= E(JRK)

⇒ JM′K = E(JMK) ∧ E(JMK) = 〈JLK, E(JRK)〉; ev 6= 〈JLK, JRK〉; ev = JMK

⇒ JMK 6= JM′K ∧ E(JMK) = JM′K.

• If M ≡ LR,](L) > 1 and](R) = 0, then it is handled similarly to the above case.

• If M ≡ LR,](L) = 0 and](R) = 0, then, by the PDCP, we have:

M→ M′ ⇒ JMK 6= JM′K ∧ E(JMK) = JM′K

which completes the proof.

79

To summarize the present section, we have defined bicategorical ‘universes’ of

dynamic, intensional computations, viz., CCBoCs, presented the simple programming

language FPCF, and given an interpretation of the latter in the former as well as a

sufficient condition, namely, the PDCP, for the interpretation to satisfy the DCP.

Hence, our research problem of the present chapter has been reduced to giving a

standard structure for FPCF in a game-semantic CCBoC that satisfies the PDCP.

3.3 Dynamic Games and Strategies

The main idea of dynamic games and strategies is to introduce the distinction be-

tween internal and external moves to games and strategies (defined in Chapter 2);

internal moves constitute ‘internal communication’ between dynamic strategies, rep-

resenting intensionality of computation, and they are to be a posteriori ‘hidden’ by

the hiding operation, capturing dynamics of computation. Conceptually, external

moves are ‘official’ ones for the underlying game, while internal moves are supposed

to be ‘invisible’ to Opponent because they represent how Player ‘internally’ computes

the next external move.

The present section introduces dynamic games and strategies.

3.3.1 Dynamic Arenas and Legal Positions

Like games in Chapter 2, dynamic games are based on (the ‘dynamic generalizations’

of) arenas and legal positions. Let us first introduce these preliminary concepts.

Definition 3.3.1 (Dynamic arenas). A dynamic arena is a triple

G = (MG, λG,`G)

such that:

• MG is a set, whose elements are called moves ;

• λG is a function MG → {O,P} × {Q,A} × N, called the labeling function,

that satisfies µ(G)
df.
= Sup({λNG(m) | m ∈MG}) ∈ N;

• `G is a relation ⊆ ({?} ∪MG)×MG, where ? is an arbitrary element such that

? 6∈MG, called the enabling relation, that satisfies:

– (E1) If ? `G m, then λG(m) = OQ0 and n = ? whenever n `G m;

– (E2) If m `G n and λQA
G (n) = A, then λQA

G (m) = Q and λNG(m) = λNG(n);

80

– (E3) If m `G n and m 6= ?, then λOP
G (m) 6= λOP

G (n);

– (E4) If m `G n, m 6= ? and λNG(m) 6= λNG(n), then λOP
G (m) = O

in which λOP
G

df.
= π1 ◦ λG : MG → {O,P}, λQA

G
df.
= π2 ◦ λG : MG → {Q,A} and

λNG
df.
= π3 ◦ λG : MG → N. We adopt the convention and notation employed for

arenas (Definition 2.2.1) for dynamic arenas too. In addition, a move m ∈ MG is

called internal, or more specifically called λN
G(m)-internal, (resp. external) if

λNG(m) > 0 (resp. if λNG(m) = 0). A finite sequence s ∈ M∗
G of moves is called d-

complete (d ∈ N ∪ {ω}) if it ends with an external or d′-internal move with d′ > d,

where ω denotes the least transfinite ordinal number.

Thus, a dynamic arena is an arena equipped with the priority order λNG on moves

that satisfies certain axioms; it is called so because it determines the priority order of

moves to be ‘hidden’ by the hiding operations on dynamic games (Definition 3.3.13)

and on dynamic strategies (Definition 3.3.34). We need all natural numbers for λNG,

not only the internal/external (I/E) distinction, to define a step-by-step execution of

the hiding operation later. Conversely, dynamic arenas are generalized arenas: An

arena (Definition 2.2.1) is equivalent to a dynamic arena whose moves are all external.

The additional axioms for dynamic arenas G are intuitively natural ones:

• We require a finite upper bound µ(G) of the priority orders as it is conceptually

natural and technically necessary for concatenation (Definition 3.3.23) to be

well-defined as well as for the hiding operation (Definition 3.3.13) to terminate;

• The axiom E1 adds the equation λNG(m0) = 0 for all m0 ∈ M Init
G

df.
= {m ∈ MG |

? ` m } since Opponent cannot ‘see’ internal moves;

• The second requirement of the axiom E2 states that the priority orders between

a ‘QA-pair’ must be the same for it is intuitively reasonable;

• The additional axiom E4 states that only Player can make a move for a previous

move if they have different priority orders for internal moves are ‘invisible’ to

Opponent (as we shall see, if λNG(m1) = k1 < k2 = λNG(m2), then after the

k1-many iteration of the hiding operation, m1 and m2 become external and

internal, respectively, i.e., the I/E-parity of moves is relative, which is why E4

is not only concerned with I/E-parity but more fine-grained priority orders).

Let us define justifiers and j-sequences of a dynamic arena exactly in the same

manner as those of an arena (Definition 2.2.5), and adopt the same notation.

81

We now consider justifiers, j-sequences and dynamic arenas from the ‘external

point of view’:

Definition 3.3.2 (External justifiers). Let G be a dynamic arena, and assume s ∈
JG and d ∈ N ∪ {ω}. Each non-initial occurrence n in s has a unique sequence of

justifiers mm1m2 . . .mkn (k > 0), i.e., Js(n) = mk, Js(mk) = mk−1, . . . , Js(m2) =

m1 and Js(m1) = m, such that λNG(m) = 0 ∨ λNG(m) > d and 0 < λNG(mi) 6 d for

i = 1, 2, . . . , k. We call m the d-external justifier of n in s.

Notation. We write J �ds (n) for the d-external justifier of n in a j-sequence s.

Note that d-external justifiers are a simple generalization of justifiers: 0-external

justifiers coincide with justifiers (as there is no ‘0-internal’ move). More generally, d-

external justifiers are intended to be justifiers after the d-times iteration of the hiding

operation, as we shall see shortly.

Definition 3.3.3 (External j-subsequences). Let G be a dynamic arena, s ∈ JG

and d ∈ N ∪ {ω}. The d-external j-subsequence Hd
G(s) of s is obtained from s

by deleting occurrences of internal moves m such that 0 < λNG(m) 6 d and equipping

it with the pointers J �ds (more precisely, JHdG(s) is a restriction of J �ds).

Definition 3.3.4 (External dynamic arenas). Let G be a dynamic arena, and d ∈
N ∪ {ω}. The d-external dynamic arena Hd(G) of G is given by:

• MHd(G)
df.
= {m ∈MG | λNG(m) = 0 ∨ λNG(m) > d };

• λHd(G)
df.
= λ�dG � MHd(G), where λ�dG

df.
= 〈λOP

G , λQA
G , n 7→ λNG(n) � d〉, and n � d

df.
={

n− d if n > d;

0 otherwise
for all n ∈ N;

• m `Hd(G) n
df.⇔ ∃k ∈ N,m1,m2, . . . ,m2k−1,m2k ∈MG \MHd(G).m `G m1 ∧

m1 `G m2 ∧ · · · ∧m2k−1 `G m2k ∧m2k `G n (⇔ m `G n if k = 0).

Thus, Hd(G) is obtained from G by deleting internal moves m such that 0 <

λNG(m) 6 d, decreasing by d the priority orders of the remaining moves and ‘concate-

nating’ the enabling relation to form the ‘d-external’ one.

Convention. Given d ∈ N∪{ω}, we regard Hd as an operation on dynamic arenas G,

and Hd
G as an operation on j-sequences s ∈JG.

Now, let us establish:

82

Lemma 3.3.5 (External closure lemma). If G is a dynamic arena, then, for all

d ∈ N ∪ {ω}, so is Hd(G), and Hd
G(s) ∈JHd(G) for all s ∈JG.

Proof. The case d = 0 is trivial; thus, assume d > 0. Clearly, the set MHd(G) of moves

and the labeling function λHd(G) are well-defined. Now, let us verify the axioms for

the enabling relation `Hd(G):

• (E1) Note that ? `Hd(G) m ⇔ ? `G m (because ⇐ is immediate, and ⇒
holds by E4 on G as initial moves are all external). Thus, if ? `Hd(G) m, then

λHd(G)(m) = λ�dG (m) = OQ0, and n `Hd(G) m⇒ n = ?.

• (E2) Assume m `Hd(G) n and λQA
Hd(G)

(n) = A. If m `G n, then λQA
Hd(G)

(m) =

λQA
G (m) = Q and λNHd(G)

(m) = λNG(m)� d = λNG(n)� d = λNHd(G)
(n). Otherwise,

i.e., there are some k ∈ N+ and m1,m2, . . . ,m2k ∈ MG \ MHd(G) such that

m `G m1 ∧ m1 `G m2 ∧ · · · ∧ m2k−1 `G m2k ∧ m2k `G n, then in particular

m2k `G n with λQA
G (n) = A, but λNG(m2k) 6= λNG(n), a contradiction.

• (E3) Assume m `Hd(G) n and m 6= ?. If m `G n, then λOP
Hd(G)

(m) = λOP
G (m) 6=

λOP
G (n) = λOP

Hd(G)
(n). If m `G m1,m1 `G m2, . . . ,m2k−1 `G m2k,m2k `G n for

some k ∈ N+, m1,m2, . . . ,m2k ∈ MG \MHd(G), then λOP
Hd(G)

(m) = λOP
G (m) =

λOP
G (m2) = λOP

G (m4) = · · · = λOP
G (m2k) 6= λOP

G (n) = λOP
Hd(G)

(n).

• (E4) Assume m `Hd(G) n, m 6= ? and λNHd(G)
(m) 6= λNHd(G)

(n). Then, we have

λNG(m) 6= λNG(n). If m `G n, then it is trivial; otherwise, i.e., there are some

k ∈ N+, m1,m2, . . . ,m2k ∈MG\MHd(G) with the same property as in E3 above,

λOP
Hd(G)

(m) = λOP
G (m) = O by E3 on G since λNG(m) 6= λNG(m1).

Hence, we have shown that the structure Hd(G) forms a well-defined dynamic arena.

Next, let s ∈ JG; we have to show Hd
G(s) ∈ JHd(G). Assume that m is a non-

initial occurrence in Hd
G(s). By the definition, the justifier JHdG(s)(m) = m0 occurs in

Hd
G(s). If m is a P-move, then the sequence of justifiers m0 `G m1 `G · · · `G mk ` m

satisfies Even(k) by the axioms E3 and E4 on G, so that m0 `Hd(G) m by the definition.

If m is an O-move, then its justifier Js(m) = m′0 satisfies λNG(m′0) = λNG(m) by the

axiom E4 on G, and so m′0 `Hd(G) m by the definition. Since m is arbitrary, we have

shown that Hd
G(s) ∈JHd(G), completing the proof.

Next, let us introduce a useful lemma:

Lemma 3.3.6 (Stepwise hiding on dynamic arenas). Given a dynamic arena G,

H̃i(G) = Hi(G) for all i ∈ N, where H̃i denotes the i-times iteration of H1.

83

Proof. Let G be a dynamic arena. We establish H̃i(G) = Hi(G) for all i ∈ N by

induction on i. The base case i = 0 is trivial. For the inductive step i+ 1, note that

H̃i+1(G) = H1(H̃i(G)) = H1(Hi(G)) by the induction hypothesis; thus, it suffices to

show Hi+1(G) = H1(Hi(G)). For the sets of moves, we clearly have:

MHi+1(G) = {m ∈MG | λNG(m) = 0 ∨ λNG(m) > i+ 1 }

= {m ∈MHi(G) | λNG(m) = 0 ∨ λNG(m) > i+ 1 }

= {m ∈MHi(G) | λNHi(G)(m) = 0 ∨ λNHi(G)(m) > 1 }

= MH1(Hi(G)).

Next, the labeling functions clearly coincide:

λHi+1(G) = λ
�(i+1)
G �MHi+1(G)

= (λ�iG �MHi(G))
�1 �MH1(Hi(G))

= λ�1
Hi(G) �MH1(Hi(G))

= λH1(Hi(G)).

Finally, for the enabling relations between m and n, if m = ?, then it is trivial:

? `Hi+1(G) n⇔ ? `G n⇔ ? `Hi(G) n⇔ ? `H1(Hi(G)) n; thus, assume m 6= ?. Then,

m `Hi+1(G) n

⇔ ∃k ∈ N,m1,m2, . . . ,m2k ∈MG \MHi+1(G).m `G m1 ∧m1 `G m2 ∧ . . .

∧m2k−1 `G m2k ∧m2k `G n

⇔ (m `Hi(G) n) ∨ ∃k, l ∈ N+. l 6 k ∧ ∃m1,m2, . . . ,m2k ∈MG \MHi+1(G),

m2j1−1,m2j1 ,m2j2−1,m2j2 , . . . ,m2jl−1,m2jl ∈MHi(G) \MHi+1(G).m `G m1

∧m1 `G m2 ∧ · · · ∧m2k−1 `G m2k ∧m2k `G n

⇔ (m `Hi(G) n) ∨ ∃l ∈ N+,m′1,m
′
2, . . . ,m

′
2l ∈MHi(G) \MH1(Hi(G)).m `Hi(G) m

′
1

∧m′1 `Hi(G) m
′
2 ∧ · · · ∧m′2l−1 `Hi(G) m

′
2l ∧m′2l `Hi(G) n

⇔ m `H1(Hi(G)) n

where N+ df.
= {n ∈ N | n > 0 }, which completes the proof.

Thus, we may just focus on H1: Henceforth, we write H for H1 and call it the

hiding operation on arenas; Hi for each i ∈ N denotes the i-times iteration of H.

We may establish a similar inductive property for j-sequences:

Lemma 3.3.7 (Stepwise hiding on j-sequences). Given a j-sequence s ∈ JG of a

dynamic arena G, Hi+1
G (s) = H1

Hi(G)(Hi
G(s)) for all i ∈ N.

84

Proof. Note that Hi+1
G (s),H1

Hi(G)(Hi
G(s)) ∈ JHi+1(G) by Lemmata 3.3.5 and 3.3.6.

We show the equation by induction on i ∈ N. The base case i = 0 is trivial.

Consider the inductive step i + 1. Recall that Hi+1
G (s) is obtained from s by

deleting occurrences m with 1 6 λNG(m) 6 i+ 1, equipped with the pointers J �(i+1)
s .

On the other hand, H1
Hi(G)(Hi

G(s)) is obtained from Hi
G(s) by deleting occurrences m

with λNHi(G)(m) = 1, equipped with the pointers J �1
HiG(s)

= (J �is)�1 = J �(i+1)
s . Since

λNHi(G)(m) = 1⇔ λNG(m) = i+1 andHi
G(s) is obtained from s by deleting occurrences

m with 1 6 λNG(m) 6 i, they are in fact the same j-sequence of Hi+1(G).

Lemma 3.3.7 implies that the equation

Hi
G(s) = H1

Hi−1(G) ◦ H1
Hi−2(G) ◦ · · · ◦ H1

H1(G) ◦ H1
G(s) (3.6)

holds for any dynamic arena G, s ∈ JG and i ∈ N (n.b., the equation (3.6) means

s = s if i = 0). Thus, we may focus on the operation H1
G on j-sequences of G (n.b.,

we do not need Hω
G as j-sequences are finite). Henceforth, we write HG for H1

G and

call it the hiding operation on j-sequences of G; Hi
G for each i ∈ N denotes the

operation on the right-hand side of (3.6).

However, to deal with external j-subsequences in a rigorous manner, we need to

extend the hiding operation on j-sequences to j-subsequences (Definition 2.2.6):

Definition 3.3.8 (Point-wise hiding on j-sequences). Let s ∈JG be a j-sequence of

a dynamic arena G. The point-wise hiding operation Ĥs
G on each occurrence m

and pointers to m in s is defined by:

Ĥs
G(m)

df.
=

{
ε with pointers to m changed to pointing Js(m) if m is 1-internal;

m with pointers to m unchanged otherwise.

Given a j-subsequence t = m1m2 . . .mk of s, Ĥs
G(t) is defined to be the result of

applying Ĥs
G to mi for i = 1, 2, . . . , k.

Note that the point-wise hiding operation Ĥs
G makes sense only in the context of

s; it affects some part of s. The point here is that the hiding operation on j-sequences

can be executed in the ‘point-wise’ fashion (in any order):

Lemma 3.3.9 (Point-wise lemma for hiding on j-sequences). Given a j-sequence

s ∈JG of a dynamic arena G, HG(s) = Ĥs
G(s).

85

Proof. It suffices to establish, for each s = m1m2 . . .mk ∈JG, the equation

HG(s) = Ĥs
G(m1)Ĥs

G(m2) . . . Ĥs
G(mk).

First, it is clear by the definition thatHG(s) and Ĥs
G(m1)Ĥs

G(m2) . . . Ĥs
G(mk) are both

the subsequence of s obtained from s by deleting 1-internal moves. Thus, it suffices to

show that each move m in Ĥs
G(m1)Ĥs

G(m2) . . . Ĥs
G(mk) points to J �1

s (m). Now, let m

be any non-1-internal move in s. For the pointer fromm in Ĥs
G(m1)Ĥs

G(m2) . . . Ĥs
G(mk),

it suffices to consider the subsequence nn1n2 . . . nlm of s, where n1, n2, . . . , nl are 1-

internal but n is not, satisfying Js(m) = nl,Js(nl) = nl−1, . . . ,Js(n2) = n1,Js(n1) =

n since the operation on the other moves will not affect the pointer from m. Applying

Ĥs
G to n1, n2, . . . , nl in any order, the resulting pointer from m clearly points to n,

which is J �1
s (m).

By virtue of Lemma 3.3.9, we may identify the operations HG and Ĥs
G; thus,

from now on, we shall not notationally distinguish them, and use only the former.

As a result, what we have established is the ‘point-wise’ procedure to execute the

hiding operation on j-sequences, in which the order of moves to apply the ‘point-wise’

operation is irrelevant. In particular, Hd
G(st) = Hd

G(s)Hd
G(t) for any dynamic arena

G, d ∈ N ∪ {ω} and st ∈JG, which will be useful in the rest of the chapter.

We are now ready to introduce a ‘dynamic generalization’ of legal positions:

Definition 3.3.10 (Dynamic legal positions). Given a dynamic arena G, a dynamic

legal position of G is a j-sequence s ∈JG that satisfies:

• (Alternation) If s = s1mns2, then λOP
G (m) 6= λOP

G (n);

• (Generalized Visibility) If s = tmu with m non-initial, and d ∈ N ∪ {ω}
satisfy λNG(m) = 0 ∨ λNG(m) > d, then J �ds (m) occurs in dHd

G(t)eHd(G) if m is a

P-move, and it occurs in bHd
G(t)cHd(G) if m is an O-move;

• (IE-Switch) If s = s1mns2 with λNG(m) 6= λNG(n), then m is an O-move.

Notation. LG denotes the set of all dynamic legal positions of a dynamic arena G.

The additional axioms on dynamic legal positions are conceptually natural ones:

• Generalized visibility is a generalization of visibility; it requires that visibility

holds after any iteration of the hiding operation on j-sequences;

86

• IE-switch states that only Player can change a priority order during a play as

internal moves are ‘invisible’ to Opponent, where same remark as in the axiom

E4 is applied for the finer distinction of priority orders than the I/E-parity.

A dynamic legal position of an arena (Definition 2.2.1), seen as a dynamic arena

whose moves are all external, is clearly a legal position. Hence, dynamic legal positions

are a generalization of arenas.

3.3.2 Dynamic Games

We are now ready to define the central notion of dynamic games :

Definition 3.3.11 (Dynamic games). A dynamic game is a quintuple

G = (MG, λG,`G, PG,'G)

such that:

• The triple (MG, λG,`G) forms a dynamic arena (Definition 3.3.1);

• PG is a subset of LG, whose elements are called (valid) positions of G, that

satisfies:

– (P1) PG is non-empty and prefix-closed;

– (DP2) If smn ∈ P Even
G and λNG(n) > 0, then ∃r ∈MG. smnr ∈ PG;

– (DP3) Given tr, t′r′ ∈ POdd
G and i ∈ N such that i < λNG(r) = λNG(r′), if

Hi
G(t) = Hi

G(t′), then Hi
G(tr) = Hi

G(t′r′);

• 'G is an equivalence relation on PG, called the identification of (valid)

positions, that satisfies:

– (I1) s 'G t⇒ |s| = |t|;

– (I2) sm 'G tn ⇒ s 'G t ∧ λG(m) = λG(n) ∧ (m,n ∈ M Init
G ∨ (∃i ∈

{1, 2, . . . , |s|}.Jsm(m) = si ∧ Jtn(n) = ti));

– (DI3) ∀d ∈ N ∪ {ω}. s 'dG t ∧ sm ∈ PG ⇒ ∃tn ∈ PG. sm 'dG tn, where

u 'dG v
df.⇔ ∃u′,v′ ∈ PG.u′ 'G v′ ∧ Hd

G(u′) = Hd
G(u) ∧ Hd

G(v′) = Hd
G(v)

for all u,v ∈ PG.

A play of G is an finitely or infinitely increasing sequence of positions ε,m1,m1m2, . . .

of G. A dynamic game whose moves are all external is said to be normalized.

87

Thus, a dynamic game may be seen as a game (Definition 2.2.10) that satisfies

the additional axioms DP2, DP3 and DI3, where DI3 is clearly a generalization of

I3 (n.b., what should be thought of as P2 (resp. P3) is ‘vacant’, and thus it is not

required on games). Conversely, games are equivalent to normalized dynamic games.

The axioms DP2 and DP3 are in order to enable Player to ‘play alone’, i.e., Oppo-

nent does not have to choose odd-length positions, for the internal part of a play since

conceptually Opponent cannot ‘see’ internal moves; technically, the axiom DP2 is to

preserve totality of dynamic strategies under the hiding operation (Corollary 3.3.40),

and the axiom DP3 is for external consistency of dynamic strategies: A dynamic

strategy behaves always in the same manner from the viewpoint of Opponent, i.e.,

the external part of a play by a dynamic strategy does not depend on the internal

part (Theorem 3.3.33). Note that the axiom DP2 is slightly involved to be preserved

under the hiding operation (Theorem 3.3.14); it is necessary to generalize the axiom

I3 to the axiom DI3 for the same reason.

It is clear that we may just apply the definitions of economy, well-openness

and well-foundedness of games to dynamic games.

Convention. Henceforth, dynamic games refer to economical ones by default.

Also, it is natural to define:

Definition 3.3.12 (Dynamic subgames). Given dynamic games G and H, we say

that H is a dynamic subgame of G, written H P G, iff MH ⊆MG, λH = λG �MH ,

`H ⊆ `G ∩ (({?} ∪MH) ×MH), PH ⊆ PG, ∀d ∈ N ∪ {ω}. 'dH = 'dG ∩ (PH × PH)

and µ(H) = µ(G).

For H P G, the condition on the identifications of positions is required for all

d ∈ N ∪ {ω} so that the dynamic subgame relation P is preserved under the hiding

operation (Theorem 3.3.14); the last condition µ(H) = µ(G) is to preserve the relation

P under concatenation of dynamic games (Definition 3.3.23).

Now, let us define the hiding operation on dynamic games:

Definition 3.3.13 (Hiding operation on dynamic games). For each d ∈ N∪{ω}, the

d-hiding operation (on dynamic games) maps each dynamic game G to the

d-external dynamic game Hd(G) of G given by:

• The triple (MHd(G), λHd(G),`Hd(G)) is the d-external dynamic arena Hd(G) of G

(Definition 3.3.4);

• PHd(G)
df.
= {Hd

G(s) | s ∈ PG };

88

• Hd
G(s) 'Hd(G) Hd

G(t)
df.⇔ s 'dG t.

Now, we give the first main theorem of the present chapter:

Theorem 3.3.14 (External closure of dynamic games). Given d ∈ N∪{ω}, dynamic

games are closed under the operation Hd, and H P G implies Hd(H) P Hd(G).

Proof. Let G be a dynamic game, and assume d ∈ N ∪ {ω}; we have to show that

Hd(G) is a dynamic game. By Lemma 3.3.5, it suffices to show that j-sequences in

PHd(G) are dynamic legal positions of the arena Hd(G), the set PHd(G) satisfies the

axioms P1, DP2 and DP3, and the relation 'Hd(G) is an equivalence relation on PHd(G)

that satisfies the axioms I1, I2 and DI3. Since µ(G) ∈ N, we may assume d ∈ N.

For alternation, assume s1mns2 ∈ PHd(G); we have to show λOP
Hd(G)

(m) 6= λOP
Hd(G)

(n).

We have Hd
G(t1mm1m2 . . .mknt2) = s1mns2 for some t1mm1m2 . . .mknt2 ∈ PG,

where Hd
G(t1) = s1, Hd

G(t2) = s2 and Hd
G(m1m2 . . .mk) = ε. Note that (λNG(m) =

0 ∨ λNG(m) > d) ∧ (λNG(n) = 0 ∨ λNG(n) > d) and 0 < λNG(mi) 6 d for i = 1, 2, . . . , k.

By E3 and E4 on G, k must be an even number, and thus λOP
Hd(G)

(m) = λOP
G (m) =

λOP
G (m2) = λOP

G (m4) = · · · = λOP
G (mk) 6= λOP

G (n) = λOP
Hd(G)

(n).

For generalized visibility, let tmu ∈ PHd(G) with m non-initial. We have to show,

for each e ∈ N ∪ {ω}, that if tm is e-complete, then:

• if m is a P-move, then the justifier (J �ds)�e(m) occurs in dHe
Hd(G)

(t)eHe(Hd(G));

• if m is an O-move, then the justifier (J �ds)�e(m) occurs in bHe
Hd(G)

(t)cHe(Hd(G)).

Again, for µ(G) ∈ N, we may assume without loss of generality that e ∈ N. Note

that the condition is then equivalent to:

• if m is a P-move, then the justifier J �(d+e)
s (m) occurs in dHd+e

G (t′)eHd+e(G);

• if m is an O-move, then the justifier J �(d+e)
s (m) occurs in bHd+e

G (t′)cHd+e(G)

where t′m ∈ PG such that Hd
G(t′m) = tm. It holds by generalized visibility on G.

For IE-switch, let s1mns2 ∈ PHd(G) such that λNHd(G)
(m) 6= λNHd(G)

(n). Then, there

is some t1munt2 ∈ PG such that Hd
G(t1munt2) = s1mns2, where note that λNG(m) 6=

λNG(n). Therefore, if u = ε, then we clearly have λOP
Hd(G)

(m) = O by IE-switch on G;

otherwise, i.e., u = lu′, then we have the same conclusion as λNG(m) 6= λNG(l).

We have established PHd(G) ⊆ LHd(G). Next, we verify P1, DP2 and DP3:

• (P1) Because ε ∈ PG, we have ε = Hd
G(ε) ∈ PHd(G); thus, PHd(G) is non-empty.

For prefix-closure, let sm ∈ PHd(G); we have to show s ∈ PHd(G). There must be

some tm ∈ PG such that sm = Hd
G(tm) = Hd

G(t)m. Thus, s = Hd
G(t) ∈ PHd(G).

89

• (DP2) If smn ∈ P Even
Hd(G)

and λNHd(G)
(n) > 0, then there is some tmun ∈ P Even

G

such that Hd
G(tmun) = smn and λNG(n) > d > 0. Hence, by DP2 on G, there is

some tmunr ∈ PG such that λNG(r) = λNG(n) > d by IE-switch on G. Therefore,

we have found smnr = Hd(tmunr) ∈ PHd(G), establishing DP2 on Hd(G).

• (DP3) Assume tr, t′r′ ∈ POdd
Hd(G)

and i ∈ N such that i < λNHd(G)
(r) = λNHd(G)

(r′)

and Hi
Hd(G)

(t) = Hi
Hd(G)

(t′). We have some ur,u′r′ ∈ PG with Hd
G(u) = t and

Hd
G(u′) = t′. Then, Hd+i

G (u) = Hi
Hd(G)

(Hd
G(u)) = Hi

Hd(G)
(t) = Hi

Hd(G)
(t′) =

Hi
Hd(G)

(Hd
G(u′)) = Hd+i

G (u′). Hence, by DP3 on G, r = r′ and J �itr (r) =

J �(d+i)
ur (r) = J �(d+i)

u′r′ (r′) = J �it′r′(r
′), establishing DP3 on Hd(G).

Next, 'Hd(G) is a well-defined relation on PHd(G) since Hd
G(s) 'Hd(G) Hd

G(t) does

not depend on the choice of representatives s, t ∈ PG. Also, it is straightforward to see

that 'Hd(G) is an equivalence relation. Now, we show that 'Hd(G) satisfies I1, I2 and

DI3. Note that I1 and I2 on 'Hd(G) immediately follow from those on 'G. For DI3 on

'Hd(G), if Hd
G(s) 'eHd(G)

Hd
G(t), and Hd

G(s).m ∈ PHd(G), where we may assume e 6= ω,

then ∃s′m ∈ PG.Hd
G(s′m) = Hd

G(s).m, and so Hd+e
G (s′) = Hd+e

G (s) 'Hd+e(G) Hd+e
G (t).

By DI3 on 'G, we may conclude that ∃tn ∈ PG. s
′m 'd+e

G tn, whence we obtain

Hd
G(t).n ∈ PHd(G) such that Hd

G(s).m = Hd
G(s′m) 'eHd(G)

Hd
G(tn) = Hd

G(t).n.

Finally, the preservation of the dynamic subgame relation P under the operation

Hd is clear from the definition, completing the proof.

Corollary 3.3.15 (Stepwise hiding on dynamic games). For any dynamic game G,

H1(Hi(G)) = Hi+1(G) for all i ∈ N.

Proof. By Lemmata 3.3.6 and 3.3.7, it suffices to show 'H1(Hi(G)) = 'Hi+1(G). Then,

given s, t ∈ PG, we have:

⇔ H1
Hi(G)(Hi

G(s)) 'H1(Hi(G)) H1
Hi(G)(Hi

G(t))

⇔ ∃Hi(s′),Hi(t′) ∈ PHi(G).Hi(s′) 'Hi(G) Hi(t′) ∧H1
Hi(G)(Hi(s′)) = H1

Hi(G)(Hi(s))

∧H1
Hi(G)(Hi(t′)) = H1

Hi(G)(Hi(t))

⇔ ∃s′′, t′′ ∈ PG. s′′ 'G t′′ ∧Hi+1
G (s′′) = Hi+1

G (s) ∧Hi+1
G (t′′) = Hi+1

G (t)

⇔ Hi+1
G (s) 'Hi+1(G) Hi+1

G (t)

completing the proof.

By the corollary, we may just focus on H1:

Convention. We write H for H1 and call it the hiding operation (on dynamic

games); Hi denotes the i-times iteration of H for all i ∈ N.

90

Corollary 3.3.16 (Hiding operation on dynamic legal positions). Given a dynamic

arena G and a number d ∈ N ∪ {ω}, we have {Hd
G(s) | s ∈ LG } = LHd(G).

Proof. Since there is an upper bound µ(G) ∈ N, it suffices to consider the case d ∈ N.

Then, by Lemmata 3.3.6 and 3.3.7, we may just focus on the case d = 1.

The inclusion {HG(s) | s ∈ LG } ⊆ LH(G) is immediate by Theorem 3.3.14. For

the other inclusion, let t ∈ LH(G); we shall find some s ∈ LG such that

1. HG(s) = t;

2. 1-internal moves in s occur as even-length consecutive segments m1m2 . . .m2k,

where mi justifies mi+1 for i = 1, 2, . . . , 2k − 1;

3. s is 1-complete.

We proceed by induction on the length |t| of t. The base case t = ε is trivial. For the

inductive step, let tm ∈ LH(G). Then, t ∈ LH(G), and by the induction hypothesis

there is some s ∈ LG that satisfies the three conditions (n.b., the first one is for t).

If m is initial, then sm ∈ LG, and sm satisfies the three conditions. Thus, assume

that m is non-initial; we may write tm = t1nt2m, where m is justified by n.

We then need a case analysis:

• Assume n `G m. We take sm, where m points to n. Then, sm ∈ LG since:

– (Justification) It is immediate because n `G m.

– (Alternation) By the condition 3 on s, the last moves of s and t just

coincide. Thus, the alternation condition holds for sm.

– (Generalized Visibility) It suffices to establish the visibility on sm,

as the other cases are included as the generalized visibility on tm. It

is straightforward to see that, by the condition 2 on s, if the view of t

contains n, then so does the view of s. And since tm ∈ LH(G), the view

of t contains n. Hence, the view of s contains n as well.

– (IE-Switch) Again, the last moves of s and t coincide by the condition

3 on s; thus, IE-switch on tm can be directly applied.

Also, it is easy to see that sm satisfies the three conditions.

91

• Assume n 6= ? and ∃k ∈ N+,m1,m2, . . . ,m2k ∈MG \MH(G) such that

n `G m1 ∧m1 `G m2 ∧ · · · ∧m2k−1 `G m2k ∧m2k `G m.

We then take sm1m2 . . .m2km, in which m1 points to n, mi points to mi−1 for

i = 2, 3, . . . , 2k, and m points to m2k. Then, sm1m2 . . .m2km ∈ LG because:

– (Justification) Obvious.

– (Alternation) By the condition 3 on s, the last moves of s and t just

coincide. Thus, the alternation condition holds for sm1m2 . . .m2km.

– (Generalized Visibility) By the same argument as the above case.

– (IE-Switch) It clearly holds by the axiom E4.

Finally, it is easy to see that sm1m2 . . .m2km satisfies the three conditions,

which completes the proof.

3.3.3 Constructions on Dynamic Games

Next, let us prove that dynamic games accommodate all the constructions on games

in Chapter 2, i.e., they preserve the additional axioms on dynamic games, where note

that the constructions may be adopted for dynamic games without any problem. This

result implies that the definition of dynamic games is in some sense ‘correct’.

Let us begin with tensor (product) ⊗ (Definition 2.2.19):

Theorem 3.3.17 (Well-defined tensor on dynamic games). Dynamic games are

closed under tensor ⊗.

Proof. It suffices to show that tensor ⊗ preserves the condition on labeling function

and the axioms E1, E2, E4, DP2, DP3 and DI3. However, non-trivial ones are just

DP3 and DI3; thus, we just focus on these two. Let A and B be any dynamic games.

To verify DP3 on A ⊗ B, let slmn, s′l′m′n′ ∈ POdd
A⊗B and i ∈ N such that

Hi
A⊗B(slm) = Hi

A⊗B(s′l′m′) and i < λNA⊗B(n) = λNA⊗B(n′). Note that λNA⊗B(m) =

λNA⊗B(n) = λNA⊗B(n′) = λNA⊗B(m′) by IE-switch. At a first glance, it seems that

A ⊗ B does not satisfy DP3 as Opponent may choose to play in A or B at will. It

is, however, not the case for internal moves for slmn ∈ POdd
A⊗B with m internal implies

m,n ∈ MA or m,n ∈ MB. This property immediately follows from Table 3.1 which

shows the possible transitions of OP- and IE-parities for a play of A⊗B, where a state

92

(PI,OE) �
A

(OE,OE)
B

- (OE,PI)

(OI,OE)

A
?

6

A
- (PE,OE)

�

A
-

(OE,PE) �
B

�
B
-

(OE,OI)

B
?

6

Table 3.1: The double parity diagram

(XY , ZW) indicates that the next move of A (resp. B) has the OP-parity X (resp.

Z) and the IE-parity Y (resp. W). Note that m = m′ and J �islm(m) = J �is′l′m′(m
′) as

Hi
A⊗B(sl).m = Hi

A⊗B(slm) = Hi
A⊗B(s′l′m′) = Hi

A⊗B(s′l′).m′. Thus, m, n, m′ and n′

belong to the same component game. If m,n,m′, n′ ∈ MA, then (sl � A).mn, (s′l′ �

A).m′n′ ∈ POdd
A , Hi

A((sl � A).m) = Hi
A⊗B(slm) � Hi(A) = Hi

A⊗B(s′l′m′) � Hi(A) =

Hi
A((s′l′ � A).m′) and i < λNA(n) = λNA(n′); thus by DP3 on A, we conclude that

n = n′ and J �islmn(n) = J �i(sl�A).mn(n) = J �i(s′l′�A).m′n′(n
′) = J �is′l′m′n′(n

′). The other case

is completely similar, showing that A⊗B satisfies DP3.

Finally, to show that A⊗B satisfies DI3, assume that s 'dA⊗B t and sm ∈ PA⊗B
for some d ∈ N; we have to find some tn ∈ PA⊗B such that sm 'dA⊗B tn. Let us

assume m ∈MA for the other case is completely symmetric. Since s 'dA⊗B t, we have

some s′ 'A⊗B t′ such that Hd
A⊗B(s′) = Hd

A⊗B(s) and Hd
A⊗B(t′) = Hd

A⊗B(t). Thus,

s′ � A 'A t′ � A, Hd
A(s � A) = Hd

A⊗B(s) � Hd(A) = Hd
A⊗B(s′) � Hd(A) = Hd

A(s′ � A)

and Hd
A(t � A) = Hd

A⊗B(t) � Hd(A) = Hd
A⊗B(t′) � Hd(A) = Hd

A(t′ � A), whence

s � A 'dA t � A. Similarly, we have s � B 'dB t � B with s′ � B 'B t′ � B,

Hd
B(s � B) = Hd

B(s′ � B) and Hd
B(t � B) = Hd

B(t′ � B). Now, since (s � A).m =

sm � A ∈ PA, we have some (t � A).n ∈ PA such that (s � A).m 'dA (t � A).n, i.e.,

some u 'A v such that Hd
A(u) = Hd

A((s � A).m) and Hd
A(v) = Hd

A((t � A).n). By

Table 3.1, we may clearly obtain a unique s̃ ∈ PA⊗B from u and s′ � B as well as a

unique t̃ ∈ PA⊗B from v and t′ � B such that s̃ 'A⊗B t̃, Hd
A⊗B(s̃) = Hd

A⊗B(sm) and

Hd
A⊗B(t̃) = Hd

A⊗B(tn), establishing sm 'dA⊗B tn.

Next, let us verify closure of dynamic games under linear implication ((Defini-

tion 2.2.21), for which we need to apply the ω-hiding operation Hω on the domain:

Theorem 3.3.18 (Well-defined linear implication on dynamic games). The linear

implication Hω(A)(B is a dynamic game for any dynamic games A and B.

Proof. Again, it suffices to show the preservation property of the additional conditions

on the labeling function and the axioms E1, E2, E4, DP2, DP3 and DI3. For brevity,

93

assume that A is normalized and consider A(B. Again, non-trivial conditions are

just DP3 and DI3, but DI3 may be shown in a way similar to the case of tensor.

To verify DP3, let i ∈ N and slmn, s′l′m′n′ ∈ POdd
A(B such that Hi

A(B(slm) =

Hi
A(B(s′l′m′) and i < λNA(B(n) = λNA(B(n′). Again, m and m′ are both internal,

and so m, n, m′ and n′ all belong to B. Thus, (sl � B).mn, (s′l′ � B).m′n′ ∈ POdd
B such

that Hi
B((sl � B).m) = Hi

A(B(slm) � Hi(B) = Hi
A(B(s′l′m′) � Hi(B) = Hi

B((s′l′ �

B).m′) and i < λNB(n) = λNB(n′); thus, by DP2 on B, we may conclude that n = n′

and J �islmn(n) = J �i(sl�B).mn(n) = J �i(sl�B).mn(n′) = J �islmn(n′).

Remark. We need to apply the ω-hiding operation Hω on the domain A for a linear

implication Hω(A) (B since otherwise the linear implication may not satisfy the

axiom DP2 or DP3. It conceptually makes sense too for the roles of Player and

Opponent in the domain A are exchanged, and thus Player cannot ‘see’ internal

moves of A. Notationally, we shall usually omit the operation Hω if A is normalized.

Now, we make a straightforward generalization of product & (Definition 2.2.23):

Notation. Given a function f : X → Y and a subset Z ⊆ X, we write f � Z : X \Z →
Y for the restrictions of f to the subset X \ Z ⊆ X.

Definition 3.3.19 (Pairing of dynamic games). The pairing 〈L,R〉 of dynamic

games L and R such thatHω(L) P C (A andHω(R) P C (B for some normalized

dynamic games A, B and C is defined by:

• M〈L,R〉
df.
= MC+(ML\MC)+(MR\MC), where ‘tags’ for the disjoint union is cho-

sen in such a way that 〈Hω(L),Hω(R)〉 P C (A&B holds (Theorem 3.3.20);

see Definition 4.3.18 for a possible concrete implementation of the ‘tags’;

• λ〈L,R〉
df.
= [λC , λL �MC , λR �MC];

• m `〈L,R〉 n
df.⇔ m `L n ∨m `R n;

• P〈L,R〉
df.
= {s ∈ LL&R | (s � L ∈ PL ∧ s � R = ε) ∨ (s � L = ε ∧ s � R ∈ PR) };

• s '〈L,R〉 t
df.⇔ (s � L = ε⇔ t � L = ε) ∧ s � L 'L t � L ∧ s � R 'R t � R.

Theorem 3.3.20 (Well-defined pairing on dynamic games). If dynamic games L and

R satisfy Hω(L) P C (A and Hω(R) P C (B for normalized dynamic games A,

B and C, then we have 〈Hω(L),Hω(R)〉 P C (A&B.

Proof. Similar to and simpler than the case of tensor ⊗.

94

Pairing 〈 , 〉 is certainly a generalization of product & since 〈T (A, T (B〉 =

T (A&B ∼= A&B for any normalized dynamic games A and B.

Next, we generalize exponential ! (Definition 2.2.25):

Definition 3.3.21 (Promotion of dynamic games). Given a dynamic game G such

that Hω(G) P !A(B for some normalized dynamic games A and B, its promotion

G† is defined by:

• MG†
df.
= ((MG \M!A) × N) + M!A, where ‘tags’ for the disjoint union is chosen

in such a way that Hω(G)† P !A (!B holds (Theorem 3.3.22); see Defini-

tion 4.3.22 for a possible concrete implementation of the ‘tags’;

• λG† : ((m, i) ∈ (MG \M!A)× N) 7→ λG(m), ((a, j) ∈M!A) 7→ λG(a, j);

• ? `G† (m, i)
df.⇔ ? `G m for all i ∈ N;

• (m, i) `G† (n, j)
df.⇔ (i = j ∧m,n ∈MG \M!A ∧m `G n)

∨(i = j∧m `A n)∨(m ∈MG\M!A∧(n, j) ∈M!A∧m `G (n, j)) for all i, j ∈ N;

• PG†
df.
= {s ∈ LG† | ∀i ∈ N. s � i ∈ PG }, where s � i is the j-subsequence of s

that consists of moves of the form (m, i) with m ∈ MG \M!A or (a, 〈i, j〉) with

a ∈MA and j ∈ N but changed into m or (a, j), respectively;

• s 'G† t
df.⇔ ∃ϕ ∈ P(N).∀i ∈ N. s � ϕ(i) 'G t � i ∧ π∗2(s) = (ϕ ◦ π2)∗(t).

Theorem 3.3.22 (Well-defined promotion on dynamic games). If a dynamic game

G satisfies Hω(G) P !A (B for some normalized dynamic games A and B, then

Hω(G)† P !A(!B.

Proof. Straightforward.

Again, promotion ()† is clearly a generalization of exponential ! for (!T (A)† =

!T (!A ∼= !A for any normalized dynamic game A.

Now, let us introduce a new construction on dynamic games:

Definition 3.3.23 (Concatenation of dynamic games). Given dynamic games J and

K such that Hω(J) P A(B and Hω(K) P B (C for some normalized dynamic

games A, B and C, the concatenation J ‡K of J and K is defined by:

• MJ‡K
df.
= MJ + MK , where ‘tags’ for the disjoint union is chosen in such a

way that Hω((A (B) ‡ (B (C)) = A (C holds (Lemma 3.3.30); see

Definition 4.3.23 for a possible concrete implementation of the ‘tags’;

95

• λJ‡K
df.
= [λJ � MB[1]

, λ+µ
J � MB[1]

, λ+µ
K � MB[2]

, λK � MB[2]
], where λ+µ

G
df.
=

〈λOP
G , λQA

G , n 7→ λNG(n) + µ〉 (G is J or K), and µ
df.
= max(µ(J), µ(K)) + 1,

where max(n1, n2)
df.
=

{
n1 if n1 > n2

n2 otherwise
for all n1, n2 ∈ N;

• ? `J‡K m
df.⇔ ? `K m;

• m `J‡K n (m 6= ?)
df.⇔ m `J n ∨m `K n ∨ (? `B[2]

m ∧ ? `B[1]
n);

• PJ‡K
df.
= {s ∈JJ‡K | s � J ∈ PJ , s � K ∈ PK , s � B[1], B[2] ∈ prB };

• s 'J‡K t
df.⇔ (∀i ∈ N. si ∈MJ ⇔ ti ∈MJ) ∧ s � J 'J t � J ∧ s � K 'K t � K.

We shall see later that the ‘non-hiding composition’ or concatenation of dynamic

strategies σ : J and τ : K forms a dynamic strategy on the concatenation J ‡K.

Definition 3.3.24 (Composition of dynamic games). Given the concatenation J ‡K
of dynamic games J and K, their composition J ;K (or K ◦ J) is given by:

J ;K
df.
= Hω(J ‡K).

Theorem 3.3.25 (Well-defined concatenation and composition on dynamic games).

Dynamic games are closed under concatenation and composition.

Proof. By Theorem 3.3.14, it suffices to focus on concatenation. We first show that

the dynamic arena J ‡ K is well-defined. The set MJ‡K and the function λJ‡K are

clearly well-defined, where the finite upper bounds µ(J) and µ(K) are crucial. For

the enabling relation, the axioms E1 and E3 clearly hold. For the axiom E2, if

m `J‡K n and λQA
J‡K(n) = A, then m,n ∈ MK \MB[2]

, m,n ∈ MB[2]
, m,n ∈ MB[1]

or

m,n ∈MJ \MB[1]
. In either case, λQA

J‡K(m) = Q and λNJ‡K(m) = λNJ‡K(n).

For the axiom E4, let m `J‡K n, m 6= ? and λNJ‡K(m) 6= λNJ‡K(n). We proceed

by a case analysis. If (m `K n) ∧ (m,n ∈ MK \MB[2]
∨m,n ∈ MB[2]

), then we may

just apply E4 on K. It is similar if (m `J n) ∧ (m,n ∈ MJ \MB[1]
∨m,n ∈ MB[1]

).

Note that the case ? `B[2]
m ∧ ? `B[1]

n cannot happen. Now, consider the case

m `K n ∧ m ∈ MK \ MB[2]
∧ n ∈ MB[2]

. If m is external, then m ∈ MC , and so

E4 on J ‡ K is satisfied by the definition of B (C; if m is internal, then we may

apply E4 on K. The case m `K n ∧ n ∈ MK \MB[2]
∧ m ∈ MB[2]

is simpler as m

must be internal. The remaining cases m `J n ∧ m ∈ MJ \MB[1]
∧ n ∈ MB[1]

and

m `J n∧n ∈MJ \MB[1]
∧m ∈MB[1]

are similar. Thus, the arena J ‡K is well-defined.

96

(OE,OE)
C
- (OE,PI)

(PI,OE) �................
B[1]B[2]

(OE,PE)

C
?
C
6

�
K

(OE,OI)

K
?
K
6

(OI,OE)

J
?
J
6

J
- (PE,OE)

B[2]

B[1] ?

........

B[2]

B[1]

6
........

................
B[1]B[2]

- (OE,PI)

K
?
K
6

(PI,OE)

J
?
J
6

�
A

(OE,OE)

A
?
A
6

Table 3.2: The concatenation double parity diagram

Next, we show that PJ‡K ⊆ LJ‡K . For justification, let sm ∈ PJ‡K with m non-

initial. The non-trivial case is when m is initial in J . But in this case m is initial

in B[1], and so it has a justifier in B[2]. For alternation and IE-switch, similarly to

Table 3.1 for tensor ⊗, we have Table 3.2 for J ‡K, in which the first (resp. second)

component of each state is about the OP- and IE-parities of the next move of J (resp.

K). For readability some states are written twice, and the dotted arrow indicates two

consecutive moves in B. Then, alternation and IE-switch on J‡K immediately follows

from this diagram and the corresponding conditions on J and K.

For generalized visibility, let sm ∈ PJ‡K with m non-initial and d ∈ N∪ {ω} such

that sm is d-complete. Without loss of generality, we may assume d ∈ N as s is finite.

It is not hard to see that Hd
J‡K(sm) ∈ PHd(J)‡Hd(K) if Hd(J ‡ K) is not normalized;

thus, this case is reduced to the (usual) visibility onHd(J)‡Hd(K). Otherwise, it is no

harm to select the least d ∈ N+ such that Hd(J ‡K) is normalized; then Hd−1
J‡K(sm) ∈

P(A(B[1])‡(B[2](C), and thus the visibility of Hd
J‡K(sm) = HHd−1(J‡K)(Hd−1

J‡K(sm)) can

be shown completely in the same way as the proof that shows the composition of

strategies is well-defined (in particular it satisfies visibility) [129, 14]. Consequently,

it suffices to consider the case d = 0, i.e., to show the (usual) visibility.

For this, we need the following:

Lemma 3.3.26 (Visibility lemma). Assume that t ∈ PJ‡K and t 6= ε. Then we have:

1. If the last move of t is in MJ \MB[1]
, then dt � JeJ � dteJ‡K � J and bt � JcJ �

btcJ‡K � J ;

97

2. If the last move of t is in MK \ MB[2]
, then dt � KeK � dteJ‡K � K and

bt � KcK � btcJ‡K � K;

3. If the last move of t is an O-move in MB[1]
∪MB[2]

, then dt � B[1], B[2]eB[1](B[2]
�

btcJ‡K � B[1], B[2] and bt � B[1], B[2]cB[1](B[2]
� dteJ‡K � B[1], B[2].

Proof of the lemma. By induction on |t| with case analysis on the last move of t.

Note that we may write sm = s1ns2m, where n justifies m. If s2 = ε, then it is

trivial; so assume s2 = s′2r. We then proceed by a case analysis on m:

• Assume m ∈ MJ \MB[1]
. Then we have n ∈ MJ and r ∈ MJ by Table 3.2.

By Lemma 3.3.26, ds � Je � dse � J and bs � Jc � bsc � J . Also, since

(s � J).m ∈ PJ , visibility on J implies:

n occurs in ds � Je if m is a P-move;

n occurs in bs � Jc if m is an O-move.

Hence we may conclude that n occurs in dse (resp. bsc) if m is a P-move (resp.

an O-move).

• Assume m ∈ MK \MB[2]
. This case can be handled in a completely analogous

way to the above case.

• Assume m ∈MB[1]
. If m is a P-move, then n, r ∈MJ and so it can be handled

in the same way as the case m ∈MJ \MB[1]
; thus, assume that m is an O-move.

Then, r ∈MB[2]
and it is a ‘copy’ of m. Since r is an O-move of B[1] (B[2], by

Lemma 3.3.26, ds � B[1], B[2]e � bsc � B[1], B[2]. Note that n is a move of B[1]

or an initial move of B[2]. In either case, we have (s � B[1], B[2]).m ∈ PB[1](B[2]
;

thus, n occurs in ds � B[1], B[2]e. Hence we may conclude that n occurs in bsc.

• Assume m ∈ MB[2]
. If m is a P-move, then n, r ∈ MK ; so it can be dealt with

in the same way as the case m ∈MK \MB[2]
. Thus assume m is an O-move. By

Table 3.2, r ∈MB[1]
and it is an O-move of B[1] (B[2]. Thus by Lemma 3.3.26,

ds � B[1], B[2]e � bsc � B[1], B[2]. Then again, (s � B[1], B[2]).m ∈ PB[1](B[2]
;

thus, n occurs in ds � B[1], B[2]e, and so n occurs in bsc.

Next, we verify the axioms P1, DP2 and DP3. For the axiom P1, it is clear

that ε ∈ PJ‡K . For the prefix-closure, let sm ∈ PJ‡K . If m ∈ MJ \ MB[1]
, then

(s � J).m = sm � J ∈ PJ ; thus s � J ∈ PJ , s � K = sm � K ∈ PK and

98

s � B[1], B[2] = sm � B[1], B[2] ∈ prB, whence s ∈ PJ‡K . The other cases may be

handled similarly. For the axiom DP2, assume that smn ∈ P Even
J‡K and λNJ‡K(n) > 0.

If n 6∈MB[1]
∪MB[2]

, then we may just apply DP2 on J or K; and the remaining case

is trivial by the definition of J ‡K.

For the axiom DP3, let i ∈ N and sm, s′m′ ∈ POdd
J‡K such that i < λNJ‡K(m) =

λNJ‡K(m′) and Hi
J‡K(s) = Hi

J‡K(s′). Without loss of generality, we may assume i = 0

and λNJ‡K(m) = 1 = λNJ‡K(m′) because if λNJ‡K(m) = λNJ‡K(m′) = j > 1, then we

may consider Hj−1
J‡K(sm),Hj−1

J‡K(s′m′) ∈ PHj−1(J)‡Hj−1(K) (n.b., the justifiers of m and

m′ have the same priority order). Thus, s = s′ and m,m′ ∈ MJ ∨ m,m′ ∈ MK .

If m,m′ ∈ MJ (resp. m,m′ ∈ MK), then (s � J).m, (s′ � J).m′ ∈ POdd
J (resp.

(s � K).m, (s′ � K).m′ ∈ POdd
K), and so we may just apply DP3 on J (resp. K).

Finally, the axioms I1, I2 and DI3 on 'J‡K can be verified similarly to the case

of tensor ⊗, completing the proof.

For completeness, let us explicitly define the rather trivial currying :

Definition 3.3.27 (Currying of dynamic games). Given a dynamic game G such

that Hω(G) P A ⊗ B (C for some normalized dynamic games A, B and C, the

currying Λ(G) of G is defined to be G up to ‘tags’ such that the ‘tags’ on moves

from A, B and C are adjusted in the way that satisfies Hω(Λ(G)) P A((B(C).

Proposition 3.3.28 (Well-defined currying on dynamic games). Dynamic games are

closed under currying.

Proof. Obvious.

Next, we show that these constructions as well as the hiding operation preserve

the dynamic subgame relation P (Definition 3.3.12):

Notation. We write ♣i∈I , where I is {1} or {1, 2}, for a construction on dynamic

games, i.e., ♣i∈I is either ⊗, (, 〈 , 〉, ()†, ‡ or Λ.

Lemma 3.3.29 (Preservation of dynamic subgames). Let ♣i∈I be a construction on

dynamic games, and assume Hi P Gi for all i ∈ I. Then, ♣i∈IHi P ♣i∈IGi.

Proof. Let us first consider tensor ⊗. It is trivial to check the conditions on the sets

99

of moves and the labeling functions, and so we omit them. For the enabling relations:

`H1⊗H2 = `H1 + `H2

⊆ (`G1∩ (({?} ∪MH1)×MH1)) + (`G2∩ (({?} ∪MH2)×MH2))

= (`G1∩ (({?} ∪MH1⊗H2)×MH1⊗H2)) + (`G2∩ (({?} ∪MH1⊗H2)×MH1⊗H2))

= (`G1 + `G2) ∩ (({?} ∪MH1⊗H2)×MH1⊗H2)

= `G1⊗G2∩ (({?} ∪MH1⊗H2)×MH1⊗H2).

For the positions, we have:

PH1⊗H2 = {s ∈ LH1⊗H2 | ∀i ∈ {1, 2}. s � Hi ∈ PHi}

⊆ {s ∈ LG1⊗G2 | ∀i ∈ {1, 2}. s � Gi ∈ PGi}

= PG1⊗G2 .

For the identifications of positions, given d ∈ N ∪ {ω}, we have:

s 'dH1⊗H2
t

⇔ ∃s′, t′ ∈ PH1⊗H2 . s
′ 'H1⊗H2 t

′ ∧Hd
H1⊗H2

(s′) = Hd
H1⊗H2

(s)

∧Hd
H1⊗H2

(t′) = Hd
H1⊗H2

(t)

⇔ ∀j ∈ {1, 2}.∃s′j , t′j ∈ PHj . s′j 'Hj t′j ∧Hd
Hj

(s′j) = Hd
Hj

(s � Hj)

∧Hd
Hj

(t′j) = Hd
Hj

(t � Hj) ∧ ∀k ∈ N. sk ∈MH1 ⇔ tk ∈MH1

⇔ ∀j ∈ {1, 2}. s � Hj 'dHj t � Hj ∧ ∀k ∈ N. sk ∈MH1 ⇔ tk ∈MH1

⇔ ∀j ∈ {1, 2}. s � Gj, t � Gj ∈ PHj ∧ s � Gj 'dGj t � Gj

∧ ∀k ∈ N. sk ∈MG1 ⇔ tk ∈MG1

⇔ s, t ∈ PH1⊗H2 ∧ s 'dG1⊗G2
t.

Finally, µ(H1 ⊗ H2) = max(µ(H1), µ(H2)) = max(µ(G1), µ(G2)) = µ(G1 ⊗ G2).

Therefore, we have shown that H1 ⊗H2 P G1 ⊗G2.

Linear implication and promotion are similar, and pairing is even simpler; thus

we omit them. Next, let us consider concatenation. Assume that Hω(H1) P A(B,

Hω(H2) P B (C, Hω(G1) P D (E, Hω(G2) P E (F for some normalized

dynamic games A, B, C, D, E and F ; without loss of generality, we assume that these

normalized dynamic games are the least ones with respect to the dynamic subgame

relation P. By Theorem 3.3.14, Hω(H1) P Hω(G1) P D (E and Hω(H2) P
Hω(G2) P E (F , which in turn implies A P D, B P E and C P F . First, we

clearly have MH1‡H2 ⊆ MG1‡G2 and λG1‡G2 � MH1‡H2 = λH1‡H2 , where µ(Hi) = µ(Gi)

for i = 1, 2 ensures that the priority orders of moves of B coincide.

100

Next, for the enabling relations, we have:

? `H1‡H2 m⇔ ? `H2 m⇔ ? `C m⇒ ? `F m⇔ ? `G1‡G2 m

as well as:

m `H1‡H2 n⇔ m `H1 n ∨m `H2 n ∨ (? `B[2]
m ∧ ? `B[1]

n)

⇒ m `G1 n ∨m `G2 n ∨ (? `E[2]
m ∧ ? `E[1]

n)

⇔ m `G1‡G2 n

for any m,n ∈MH1‡H2 . For the positions, we have:

PH1‡H2 = {s ∈JH1‡H2 | s � H1 ∈ PH1 , s � H2 ∈ PH2 , s � B[1], B[2] ∈ prB }

⊆ {s ∈JG1‡G2 | s � G1 ∈ PG1 , s � G2 ∈ PG2 , s � E[1], E[2] ∈ prE }

= PG1‡G2 .

Finally, we may show, in the same manner as in the case of tensor, the required

condition on the identifications of positions, completing the proof.

At the end of the present section, we establish the following useful lemma:

Lemma 3.3.30 (Hiding lemma on dynamic games). Let ♣i∈I be a construction on

dynamic games and Gi a dynamic game for all i ∈ I. For all d ∈ N ∪ {ω}, we have:

1. Hd(♣i∈IGi) P ♣i∈IHd(Gi) if ♣ 6= ‡, where P becomes = if ♣ is 〈 , 〉 or Λ;

2. Hd((G1) ‡ (G2)) P A(C if Hd(G1 ‡G2) is normalized, where A, B and C are

normalized dynamic games such that Hω(G1) P A(B and Hω(G2) P B(C,

and (A(B); (B(C) = A(C;

3. Hd(G1 ‡G2) = Hd(G1) ‡ Hd(G2) otherwise.

Proof. Since there is an upper bound of the priority orders of each dynamic game, it

suffices to consider d ∈ N. But then, as Hi+1 = H ◦ Hi for all i ∈ N, we may focus

on d = 1. We focus on tensor ⊗ as the other constructions may be handled similarly.

We have to show H(G1⊗G2) P H(G1)⊗H(G2). Their sets of moves and labeling

functions clearly coincide. For the enabling relations, we have:

? `H(G1⊗G2) m⇔ ? `G1⊗G2 m⇔ ? `G1 m ∨ ? `G2 m

⇔ ? `H(G1) m ∨ ? `H(G2) m

⇔ ? `H(G1)⊗H(G2) m

101

as well as:

m `H(G1⊗G2) n (m 6= ?)

⇔ (m `G1⊗G2 n) ∨ ∃k ∈ N+,m1,m2, . . . ,m2k ∈MG1⊗G2 \MH(G1⊗G2).m `G1⊗G2 m1

∧m1 `G1⊗G2 m2 ∧ · · · ∧ m2k−1 `G1⊗G2 m2k ∧m2k `G1⊗G2 n

⇔ (m `G1 n ∨m `G2 n) ∨ ∃i ∈ {1, 2}, k ∈ N+,m1,m2, . . . ,m2k ∈MGi \MH(Gi).

m `Gi m1 ∧ m1 `Gi m2 ∧ · · · ∧m2k−1 `Gi m2k ∧m2k `Gi n

⇔ ∃i ∈ {1, 2}.m `Gi n ∨ ∃k ∈ N+,m1,m2, . . . ,m2k ∈MGi \MH(Gi).m `Gi m1

∧m1 `Gi m2 ∧ · · · ∧m2k−1 `Gi m2k ∧m2k `Gi n

⇔ m `H(G1)⊗H(G2) n.

Thus, the dynamic arenasH(G1⊗G2) andH(G1)⊗H(G2) coincide. For the positions,

we have:

s ∈ PH(G1⊗G2) ⇒ ∃t ∈ LG1⊗G2 .HG1⊗G2(t) = s ∧ ∀i ∈ {1, 2}. t � Gi ∈ PGi
⇒ ∃t ∈ LG1⊗G2 .HG1⊗G2(t) = s ∧ ∀i ∈ {1, 2}.HGi(t � Gi) ∈ PH(Gi)

⇒ ∃t ∈ LG1⊗G2 .HG1⊗G2(t) = s ∧ ∀i ∈ {1, 2}.HG1⊗G2(t) � H(Gi) ∈ PH(Gi)

⇒ s ∈ LH(G1⊗G2) = LH(G1)⊗H(G2) ∧ ∀i ∈ {1, 2}. s � H(Gi) ∈ PH(Gi)

⇒ s ∈ PH(G1)⊗H(G2).

Finally, for the identifications of positions, given d ∈ N ∪ {ω}, we have:

HG1⊗G2(s) 'dH(G1⊗G2) HG1⊗G2(t)

⇔ ∃s′, t′ ∈ PG1⊗G2 .HG1⊗G2(s′) 'H(G1⊗G2) HG1⊗G2(t′) ∧Hd+1
G1⊗G2

(s′) = Hd+1
G1⊗G2

(s)

∧Hd+1
G1⊗G2

(t′) = Hd+1
G1⊗G2

(t)

⇔ ∀j ∈ {1, 2}.∃s′j , t′j ∈ PGj .HGj(s
′
j) 'H(Gj) HGj(t

′
j) ∧Hd+1

Gj
(s′j) = Hd+1

Gj
(s � Gj)

∧Hd+1
Gj

(t′j) = Hd+1
Gj

(t � Gj) ∧ ∀k ∈ N.Hd+1
G1⊗G2

(sk) ∈MHd+1(G1) ⇔ Hd+1
G1⊗G2

(tk) ∈MHd+1(G1)

⇔ ∀j ∈ {1, 2}. s � Gj 'd+1
Gj

t � Gj ∧ ∀k ∈ N.Hd+1
G1⊗G2

(sk) ∈MHd+1(G1) ⇔ Hd+1
G1⊗G2

(tk) ∈MHd+1(G1)

⇔ HG1⊗G2(s) 'dH(G1)⊗H(G2) HG1⊗G2(t) ∧HG1⊗G2(s),HG1⊗G2(t) ∈ PH(G1⊗G2)

which completes the proof.

3.3.4 Dynamic Strategies

To define the notion of dynamic strategies, we just apply the definition of strategies

(Definition 2.3.1) in the context of dynamic games:

102

Definition 3.3.31 (Dynamic strategies). A dynamic strategy on a dynamic game

G is a subset σ ⊆ P Even
G , written σ : G, that satisfies:

• (S1) It is non-empty and even-prefix-closed;

• (S2) It is deterministic (on even-length positions).

A dynamic strategy σ : G is said to be normalized if it contains external moves

only, i.e., ∀s ∈ σ,∀i ∈ {1, 2, . . . , |s|}. λNG(si) = 0.

Since internal moves are conceptually ‘invisible’ to Opponent, a dynamic strategy

σ : G must be externally consistent : If smn, s′m′n′ ∈ σ, λNG(n) = λNG(n′) = 0 and

Hω
G(sm) = Hω

G(s′m′), then n = n′ and J �ωsmn(n) = J �ωs′m′n′(n
′). In fact, a stronger

property holds (see Theorem 3.3.33 below).

Lemma 3.3.32 (O-determinacy). Let σ : G be a dynamic strategy, and assume

that s, s′ ∈ σ, d ∈ N ∪ {ω}, and sm, s′m′ ∈ PG are both d-complete. Then, if

Hd
G(sm) = Hd

G(s′m′), then sm = s′m′.

Proof. By induction on |s|. The base case s = ε is trivial: For any d ∈ N ∪ {ω}, if

Hd
G(sm) = Hd

G(s′m′), then Hd
G(s′m′) = Hd

G(sm) = m, and so s′m′ = m = sm.

For the induction step, let d ∈ N∪{ω} be fixed, and assume Hd
G(sm) = Hd

G(s′m′).

We may suppose that sm = tlrm, where l is the rightmost O-move in s such that

λNG(l) = 0 ∨ λNG(l) > d. Then Hd
G(s′m′) = Hd

G(sm) = Hd
G(t).l.Hd

G(rm), and so we

may write s′m′ = t′1.l.t
′
2.m

′. Now, t, t′1 ∈ σ, tl, t′1l ∈ PG, Hd
G(tl) = Hd

G(t′1l), and

tl and t′l′ are both d-complete; thus, by the induction hypothesis, tl = t′1l. Thus,

Hd
G(t).l.Hd

G(t′2m
′) = Hd

G(s′m′) = Hd
G(sm) = Hd

G(t).l.Hd
G(rm), whence t′2 is of the

form rt′′2 by the determinacy of σ. Hence, sm = tlrm and s′m′ = tlrt′′2m
′. Finally, if

r is external, then so is m by IE-switch, and so s′m′ = sm; if r is j-internal (j > d),

then so is m, and so we may apply the axiom DP2 for i = j−1 to s and s′, concluding

that sm = s′m′.

Theorem 3.3.33 (External consistency). Let σ be a dynamic strategy on a dynamic

game G, and assume that smn, s′m′n′ ∈ σ and d ∈ N∪ {ω}. If smn, s′m′n′ are both

d-complete and Hd
G(sm) = Hd

G(s′m′), then n = n′ and J �dsmn(n) = J �ds′m′n′(n
′).

Proof. Let σ : G be a dynamic strategy, smn, s′m′n′ ∈ σ and d ∈ N∪{ω}, and assume

that smn, s′m′n′ are both d-complete and Hd
G(sm) = Hd

G(s′m′). By Lemma 3.3.32,

we have sm = s′m′; thus, by the axiom S2 on σ, we have n = n′ and Jsmn(n) =

Js′m′n′(n
′), whence J �dsmn(n) = J �ds′m′n′(n

′).

103

Let us note that even-length positions are not necessarily preserved under the

hiding operation on j-sequences (Definition 3.3.3). For instance, let smnt be an even-

length position of a dynamic game G such that sm (resp. nt) consists of external

(resp. internal) moves only. By IE-switch on G, m is an O-move, and so Hω
G(smnt) =

sm is of odd-length.

Taking into account this fact, we define:

Definition 3.3.34 (Hiding operation on dynamic strategies). Let G be a dynamic

game and d ∈ N ∪ {ω}. Given s ∈ PG, we define:

s\Hd
G

df.
=

{
Hd
G(s) if s is d-complete (Definition 3.3.1);

t otherwise, where Hd
G(s) = tm.

The d-hiding operation Hd (on dynamic strategies) is then defined by:

Hd : (σ : G) 7→ {s\Hd
G | s ∈ σ }.

Next, we shall show a beautiful fact: σ : G⇒ Hd(σ) : Hd(G) for all d ∈ N ∪ {ω}.
For this task, we need the following lemma:

Lemma 3.3.35 (Asymmetry lemma). Let σ : G be a dynamic strategy, and d ∈
N∪{ω}. Assume that smn ∈ Hd(σ), where smn = tmunv\Hd

G with tmunv ∈ σ not

d-complete. Then, we have smn = Hd(tmun) = Hd(t)mn.

Proof. Since tmunv ∈ σ is not d-complete, we may write v = v1lv2r with λNG(l) =

0 ∨ λNG(l) > d, 0 < λNG(r) 6 d and 0 < λNG(x) 6 d for all moves x in v1 or v2. Then,

we have smn = tmunv1lv2r\Hd
G = Hd

G(t)mHd
G(u)n = Hd

G(t)mn.

We are now ready to establish:

Theorem 3.3.36 (Hiding theorem). If σ : G, then Hd(σ) : Hd(G) for all d ∈ N∪{ω}.

Proof. We first show Hd(σ) ⊆ P Even
Hd(G)

. Let s ∈ Hd(σ), i.e., s = t\Hd
G for some t ∈ σ.

Let us write t = t′m as the case t = ε is trivial.

• If t is d-complete, then s = t\Hd
G = Hd

G(t) ∈ PHd(G). Also, since s = Hd
G(t′)m

and m is a P-move, s must be of even-length by alternation on Hd(G).

• If t is not d-complete, then we may write t = t′′m0m1 . . .mk, where mk = m,

t′′m0 is d-complete, and 0 < λNG(mi) 6 d for i = 1, 2, . . . , k. By IE-switch, m0

is an O-move, and thus s = Hd
G(t′′) ∈ PHd(G) is of even-length.

104

It remains to verify the axioms S1 and S2. For the axiom S1, Hd(σ) is clearly non-

empty as ε ∈ Hd(σ). For the even-prefix-closure, let smn ∈ Hd(σ); we have to

show s ∈ Hd(σ). We have some tmunv ∈ σ such that tmunv\Hd
G = smn. By

Lemma 3.3.35, smn = Hd
G(t)mn, whence s = Hd

G(t). For tm is d-complete, so is t

by IE-switch. Therefore, s = Hd
G(t) = t\Hd

G ∈ Hd(σ).

Finally for the axiom S2, let smn, smn′ ∈ Hd(σ); we have to show n = n′ and

J �dsm(n) = J �dsm(n′). By the definition, smn = tmunv\Hd
G, smn′ = t′mu′n′v′\Hd

G

for some tmunv, t′mu′n′v′ ∈ σ. Then, by Lemma 3.3.35, smn = Hd
G(tmu)n and

smn′ = Hd
G(t′mu′)n′. Therefore, by Theorem 3.3.33, we may conclude that n = n′

and J �dsmn(n) = J �dsmn′(n
′), completing the proof.

Next, let us just apply the definitions of totality, innocence, well-bracketing,

noetherianity and winning on strategies in Chapter 2 to dynamic strategies. We

shall see shortly that these constraints except totality are preserved under the hiding

operation (Corollary 3.3.40). On the other hand, let us generalize validity of strategies

(Definition 2.3.9) in order to preserve it under the hiding operation:

Definition 3.3.37 (Validity of dynamic strategies). A dynamic strategy σ : G is

valid iff ∀d ∈ N ∪ {ω}, s, t ∈ σ, sm, tl ∈ PG. sm 'dG tl ⇒ ∀smn ∈ σ. ∃tlr ∈
σ.smn 'dG tlr.

Definition 3.3.37 suggests that we should identify ‘essentially the same’ dynamic

strategies as follows:

Definition 3.3.38 (Identification of dynamic strategies). The identification of

dynamic strategies on a dynamic game G, written 'G, is the relation between

dynamic strategies on G defined for any σ, τ : G by:

σ 'G τ
df.⇔ ∀d ∈ N ∪ {ω}, s ∈ σ, t ∈ τ. sm 'dG tl⇒ ∀smn ∈ σ.∃tlr ∈ τ. smn 'dG tlr

∧ ∀tlr ∈ τ.∃smn ∈ σ. tlr 'dG smn.

Clearly, a dynamic strategy σ : G is valid iff it is identified with itself, i.e., σ 'G σ.

Recall that normalized dynamic strategies are equivalent to strategies (in Chapter 2),

and validity and identification of normalized dynamic strategies coincide respectively

with validity and identification of strategies (Definitions 2.3.6 and 2.3.3); thus, we

have generalized the existing concepts on strategies in a conservative manner.

Moreover, as in the case of games and strategies (in Chapter 2), we may show

that the identification 'G of dynamic strategies on any dynamic game G is a PER:

105

Proposition 3.3.39 (PERs on dynamic strategies). Given a dynamic game G, the

identification 'G of dynamic strategies on G is a PER.

Proof. Similar to the proof of Corollary 2.3.5.

Now, let us establish:

Corollary 3.3.40 (Preservation of constraints on dynamic strategies under hiding).

If a dynamic strategy σ : G is valid, innocent, well-bracketed or noetherian, then so

is Hd(σ) : Hd(G) for all d ∈ N ∪ {ω}.

Proof. Theorem 3.3.36 implies that:

• Preservation of validity follows from Lemma 3.3.32 and the axiom DI3 on G;

• Preservation of innocence and noetherianity holds because dHd
G(sm)eHd(G) is a

j-subsequence of Hd
G(dsmeG) for any sm ∈ POdd

G ;

• Well-bracketing is preserved under Hd because both of the question and the

answer of each ‘QA-pair’ are either deleted or retained

which completes the proof.

Remark. Totality of dynamic strategies is not preserved under the hiding operation H
on dynamic strategies. For instance, consider any total dynamic strategy that always

performs a 1-internal P-move, which is no longer total when H is applied.

At the end of the present section, we establish an inductive property of the d-

hiding operation on dynamic strategies for each d ∈ N ∪ {ω}:

Notation. Given a dynamic strategy σ : G and a number d ∈ N ∪ {ω}, we define

σd↓
df.
= {s ∈ σ | s is d-complete } and σd↑

df.
= σ \ σd↓ .

Lemma 3.3.41 (Hiding and complete positions). Let σ : G be a dynamic strategy.

Given i, d ∈ N such that i > d, Hi(σ) = Hi(σd↓)
df.
= {s\Hi

G | s ∈ σd↓ }.

Proof. The inclusion Hi(σd↓) ⊆ Hi(σ) is obvious. For the opposite inclusion, let

s ∈ Hi(σ), i.e., s = t\Hi
G for some t ∈ σ; we have to show s ∈ Hi(σd↓). If t ∈ σd↓ ,

then we are done; so assume otherwise. Also, if there is no external or j-internal

move with j > i other than the first move m0 in t, then s = ε ∈ Hi(σd↓); so assume

otherwise. As a consequence, we may write t = m0t1mnt2r, where t2r consists of

only j-internal moves with 0 < j 6 i, and m and n are P- and O-moves, respectively,

such that λNG(m) = λNG(n) = 0 ∨ λNG(m) = λNG(n) > i. Now, we take m0t1m ∈ σd↓ that

satisfies m0t1m\Hi
G = m0Hi

G(t1)m = t\Hi
G = s, whence s ∈ Hi(σd↓).

106

We are now ready to show:

Lemma 3.3.42 (Stepwise hiding on dynamic strategies). Let σ : G be a dynamic

strategy. Then, Hi+1(σ) = H1(Hi(σ)) for all i ∈ N.

Proof. We first show the inclusion Hi+1(σ) ⊆ H1(Hi(σ)). By Lemma 3.3.41, we may

write any element of the set Hi+1(σ) as s\Hi+1
G for some s ∈ σi+1

↓ . Then observe that:

s\Hi+1
G = Hi+1

G (s) = HHi(G)(Hi
G(s)) = (s\Hi

G)\H1
Hi(G) ∈ H1(Hi(σ)).

For the opposite inclusion H1(Hi(σ)) ⊆ Hi+1(σ), again by Lemma 3.3.41, we may

write any element of H1(Hi(σ)) as (s\Hi
G)\H1

Hi(G) for some s ∈ σi↓. We have to show

that (s\Hi
G)\H1

Hi(G) ∈ Hi+1(σ). If s ∈ σi+1
↓ , then it is completely analogous to the

above argument; so assume otherwise. Also, if an external or j-internal move with

j > i + 1 in s is only the first move m0, then (s\Hi
G)\H1

Hi(G) = ε ∈ Hi+1(σ); thus

assume othewise. Now, we may write:

s = s′mnm1m2 . . .m2kr

where λNG(r) = i+ 1, m1,m2, . . . ,m2k are j-internal with 0 < j 6 i+ 1, and m and n

are external or j-internal P- and O-moves with j > i+ 1, respectively. Then,

(s\Hi
G)\H1

Hi(G) = Hi
G(s)\H1

Hi(G)

= HHi(G)(Hi
G(s′)).m

= Hi+1
G (s′).m (by Lemma 3.3.7)

= s\Hi+1
G ∈ Hi+1(σ)

which completes the proof.

Thus, as in the case of dynamic games, we may focus on the 1-hiding operation

H1 on dynamic strategies.

Convention. Henceforth, we write H for H1 and call it the hiding operation on

dynamic strategies; Hi (i ∈ N) denotes the i-times iteration of H.

3.3.5 Constructions on Dynamic Strategies

Next, let us consider constructions on dynamic strategies. However, since dynamic

strategies are just ‘strategies on dynamic games’, they are clearly closed under all the

constructions on strategies introduced in Chapter 2.

107

Nevertheless, to give a categorical structure, specifically a CCBoC, of dynamic

games and strategies in Section 3.4, we need to generalize pairing (Definition 2.3.20)

and promotion (Definition 2.3.23) of strategies; in fact, we have generalized product

(Definition 2.2.23) and exponential (Definition 2.2.25) of games respectively to pairing

(Definition 3.3.19) and promotion (Definition 3.3.21) of dynamic games for this aim.

Definition 3.3.43 (Pairing of dynamic strategies). Given dynamic strategies φ : L

and ψ : R such that Hω(L) P C (A and Hω(R) P C (B for some normalized

dynamic games A, B and C, their pairing 〈φ, ψ〉 is defined by:

〈φ, ψ〉 df.
= {s ∈ L〈L,R〉 | (s � L ∈ φ ∧ s � R = ε) ∨ (s � R ∈ ψ ∧ s � L = ε) }.

Theorem 3.3.44 (Well-defined pairing of dynamic strategies). Given dynamic strate-

gies φ : L and ψ : R with Hω(L) P C (A and Hω(R) P C (B for some normalized

dynamic games A, B and C, 〈φ, ψ〉 is a dynamic strategy on 〈L,R〉. If φ and ψ are

innocent (resp. wb, total, noetherian), then so is 〈φ, ψ〉. Given φ′ : L and ψ′ : R with

φ 'L φ′ and ψ 'R ψ′, we have 〈φ, ψ〉 '〈L,R〉 〈φ′, ψ′〉.

Proof. Straightforward.

Definition 3.3.45 (Promotion of dynamic strategies). Given a dynamic strategy

ϕ : G such that Hω(G) P !A(B for some normalized dynamic games A and B, its

promotion ϕ† is defined by:

ϕ†
df.
= {s ∈ LG† | ∀i ∈ N. s � i ∈ ϕ }.

Theorem 3.3.46 (Well-defined promotion on dynamic strategies). Given a dynamic

strategy ϕ : G such that Hω(G) P !A (B for some normalized dynamic games A

and B, ϕ† is a dynamic strategy on G†. If ϕ is innocent (resp. wb, total, noetherian),

then so is ϕ†. Given ϕ′ : G with ϕ 'G ϕ′, we have ϕ† 'G† ϕ′†.

Proof. Straightforward.

Next, let us introduce a new construction on dynamic strategies:

Definition 3.3.47 (Concatenation on dynamic strategies). Let σ : J and τ : K be

dynamic strategies such that Hω(J) P A (B and Hω(K) P B (C for some

normalized dynamic games A, B and C. Their concatenation σ ‡ τ is defined by:

σ ‡ τ df.
= {s ∈JJ‡K | s � J ∈ σ, s � K ∈ τ, s � B[1], B[2] ∈ prB }.

108

Theorem 3.3.48 (Well-defined concatenation on dynamic strategies). Let σ : J and

τ : K be dynamic strategies such that Hω(J) P A(B and Hω(K) P B(C, where

A, B and C are normalized dynamic games. Then, σ ‡τ : J ‡K and σ; τ = Hω(σ ‡τ) :

A (C. If σ and τ are innocent (resp. wb, noetherian, winning), then so is σ ‡ τ .

Given σ′ : J and τ ′ : K with σ 'J σ′ and τ 'K τ ′, we have σ ‡ τ 'J‡K σ′ ‡ τ ′.

Proof. We just show the first statement as the other ones are straightforward. It then

suffices to prove σ ‡ τ : J ‡K and Hω(σ ‡ τ) = σ; τ since it implies σ; τ = Hω(σ ‡ τ) :

Hω(J ‡K) P A (C by Lemmata 3.3.30 and 3.3.36. However, Hω(σ ‡ τ) = σ; τ is

immediate from the definition of concatenation; thus, we focus on σ ‡ τ : J ‡K.

First, we have σ ‡ τ ⊆ PJ‡K as any s ∈ σ ‡ τ satisfies s ∈JJ‡K , s � J ∈ σ ⊆ PJ ,

s � K ∈ τ ⊆ PK and s � B[1], B[2] ∈ prB. It is also immediate that such s is of

even-length. It remains to verify the axioms S1 and S2. For this, we need:

(♦) Each s ∈ σ ‡ τ consists of adjacent pairs mn such that m,n ∈MJ or m,n ∈MK .

Proof of the claim ♦. By induction on |s|. The base case is trivial. For the inductive

step, let smn ∈ σ ‡ τ . If m ∈ MJ , then (s � J).m.(n � J) ∈ σ, where s � J is of

even-length by the induction hypothesis. Thus, we must have n ∈ MJ . If m ∈ MK ,

then n ∈MK by the same argument.

• (S1) Clearly, ε ∈ σ ‡ τ , so σ ‡ τ is non-empty. For even-prefix-closure, assume

smn ∈ σ ‡ τ . Then, by the claim ♦, either m,n ∈MJ or m,n ∈MK . In either

case, it is straightforward to see that s ∈ PJ‡K , s � J ∈ σ, s � K ∈ τ and

s � B[1], B[2] ∈ prB, i.e., s ∈ σ ‡ τ .

• (S2) Assume smn, smn′ ∈ σ ‡ τ . By the claim ♦, either m,n, n′ ∈ MJ or

m,n, n′ ∈ MK . In the former case, (s � J).mn, (s � J).mn′ ∈ σ. Thus, n = n′

and Jsmn(n) = J(s�J).mn(n) = J(s�J).mn′(n
′) = Jsmn′(n

′) by S2 on σ, where note

that n and n′ are both P-moves and thus non-initial in J . The latter case may

be handled similarly.

Therefore, we have shown that σ ‡ τ : J ‡K.

Note that totality of (dynamic) strategies is not preserved under composition, but

it is preserved under concatenation. This phenomenon is essentially because totality

is not preserved under the hiding operation as already remarked above.

Now, for completeness, let us explicitly define the rather trivial currying :

109

Definition 3.3.49 (Currying of dynamic strategies). Given a dynamic strategy σ : G

such that Hω(G) P A ⊗ B (C for some normalized dynamic games A, B and C,

the currying Λ(σ) : Λ(G) of σ is defined to be σ up to ‘tags’.

Proposition 3.3.50 (Well-defined currying on dynamic strategies). Dynamic strate-

gies are closed under currying, and currying preserves innocence, well-bracketing,

noetherianity and identification of dynamic strategies.

Proof. Obvious.

At the end of the present section, as in the case of games, we establish the hiding

lemma on strategies. We first need the following:

Lemma 3.3.51 (Hiding on legal positions in the second form). For any dynamic

arena G and number d ∈ N ∪ {ω}, we have LHd(G) = {s\Hd
G | s ∈ LG }.

Proof. Observe that:

{s\Hd
G | s ∈ LG } = {s\Hd

G | s ∈ LG, s is d-complete }

= {Hd
G(s) | s ∈ LG, s is d-complete }

= {Hd
G(s) | s ∈ LG } (by the same argument as above)

= LHd(G) (by Corollary 3.3.16)

completing the proof.

Notation. We write ♠i∈I , where I is {1} or {1, 2}, for a construction on dynamic

strategies, i.e., ♠i∈I is either ⊗, ;, ()†, 〈 , 〉, ‡ or Λ.

Lemma 3.3.52 (Hiding lemma on dynamic strategies). Let ♠i∈I be a construction

on dynamic strategies, and σi : Gi for each i ∈ I. Then, for all d ∈ N∪{ω}, we have:

1. Hd(♠i∈Iσi) = ♠i∈IHd(σi) if ♠i∈I is ⊗, ;, ()†, 〈 , 〉 or Λ;

2. Hd(σ1 ‡ σ2) = Hd(σ1) ‡ Hd(σ2) if Hd(σ1 ‡ σ2) is not normalized;

3. Hd(σ1 ‡ σ2) = Hd(σ1);Hd(σ2) otherwise.

Proof. As in the case of dynamic games, it suffices to assume d = 1. Here, we just

focus on pairing since the other constructions may be handled analogously.

110

Let σi : Gi, i = 1, 2, be dynamic strategies such thatHω(G1) P C (A,Hω(G2) P
C (B for some normalized dynamic games A, B and C. For H(〈σ1, σ2〉) ⊆
〈H(σ1),H(σ2)〉, observe:

s ∈ H(〈σ1, σ2〉)

⇒ ∃t ∈ 〈σ1, σ2〉. t\H1
〈G1,G2〉 = s

⇒ ∃t ∈ L〈G1,G2〉. t\H1
〈G1,G2〉 = s ∧ ((t � G1 ∈ σ1 ∧ t � G2 = ε) ∨ (t � G2 ∈ σ2 ∧ t � G1 = ε))

⇒ s ∈ LH(〈G1,G2〉) ∧ (s � H(G1) ∈ H(σ1) ∧ s � H(G2) = ε)

∨ (s � H(G2) ∈ H(σ2) ∧ s � H(G1) = ε)) (by Lemma 3.3.51)

⇒ s ∈ 〈H(σ1),H(σ2)〉.

Next, we show the converse:

s ∈ 〈H(σ1),H(σ2)〉

⇒ s ∈ LH(〈G1,G2〉) ∧ (s � H(G1) ∈ H(σ1) ∧ s � H(G2) = ε)

∨ (s � H(G2) ∈ H(σ2) ∧ s � H(G1) = ε))

⇒ (∃u ∈ σ1.u\H1
G1

= s � H(G1) ∧ u � G2 = ε)

∨ (∃v ∈ σ2.v\H1
G2

= s � H(G2) ∧ v � H(G1) = ε)

⇒ ∃w ∈ 〈σ1, σ2〉.w\H1
〈G1,G2〉 = s

⇒ s ∈ H(〈σ1, σ2〉)

which completes the proof.

Finally, as a technical preparation for the next section, let us define:

Definition 3.3.53 (Dereliction games). The dereliction game on a dynamic game

G is the dynamic subgame ΞG P G ⇒ G given by MΞG
df.
= MG⇒G, λΞG

df.
= λG⇒G,

`ΞG
df.
=`G⇒G (n.b., we have to take the obvious subset of `G⇒G as `ΞG if we would like

to make ΞG economical), PΞG
df.
= {s ∈ PG⇒G | ∀t � s.Even(t)⇒ t � G[1] = t � G[2]},

and 'ΞG
df.
='G⇒G� PΞG×PΞG . Given normalized dynamic games A and B, we define:

• ΠA,B
1 P A&B ⇒ A to be ΞA up to ‘tags’, where we often abbreviate it as Π1;

• ΠA,B
2 P A&B ⇒ B to be ΞB up to ‘tags’, where we often abbreviate it as Π2;

• ΥA,B P BA&A⇒ B to be ΞA⇒B up to ‘tags’, where we often omit A,B.

That is, the dereliction game ΞG on a dynamic game G is the subgame of G⇒ G,

in which only the plays by the dereliction derG are possible.

111

Lemma 3.3.54 (D-lemma). Given normalized dynamic games A, B, C, L P C ⇒ A,

R P C ⇒ B, P P C ⇒ A&B, U P A&B ⇒ C and V P A⇒ CB, we have:

〈L,R〉†;ΠA,B
1 = L

〈L,R〉†;ΠA,B
2 = R

〈P †;ΠA,B
1 , P †;ΠA,B

2 〉 = P

〈(ΠA,B
1)†; Λ(U), ΠA,B

2 〉†;ΥB,C = U

Λ(〈(ΠA,B
1)†;V,ΠA,B

2 〉†;ΥB,C) = V.

Proof. Straightforward.

3.4 Dynamic Game Semantics of Finitary PCF

This section is the climax of the present chapter: It first establishes a game-semantic

instance of a CCBoC LDG (Definition 3.4.1) and a standard structure SG for FPCF

in LDG (Definition 3.4.3), and then shows that the induced interpretation J KSGLDG
satisfies the PDCP (Theorem 3.4.4), and thus the DCP by Theorem 3.2.17, giving

the first instance of dynamic game semantics.

3.4.1 Dynamic Game Semantics of Finitary PCF

Let us first give the CCBoC LDG of dynamic games and strategies:

Definition 3.4.1 (The CCBoC LDG). The CCBoC LDG = (LDG,H) is defined by:

• Objects are normalized dynamic games;

• A β-morphismsA→ B is a pair (J, [φ]) of a dynamic game J and the equivalence

class [φ]
df.
= {ψ : J | ψ is winning, ψ 'J φ} of a valid, winning dynamic strategy

φ : J with respect to the identification 'J of dynamic strategies on J such that

Hω(J) P A⇒ B and Hω(J†) = Hω(J)†;

• The β-composition A
(J,[φ])→ B

(K,[ψ])→ C is the pair (J† ‡K, [φ† ‡ ψ]);

• The β-identity idA : A→ A on each object A is the pair (A⇒ A, [derA]);

• The evaluationHmaps morphisms (J, [φ]) : A→ B toH(J, [φ])
df.
= (H(J), [H(φ)]);

• The β-terminal object is the terminal game T (Example 2.2.11) modified to a

normalized dynamic game in the obvious manner;

112

• β-product and β-exponential are respectively defined by A × B
df.
= A&B and

BA df.
= A⇒ B = !A(B for any objects A and B;

• β-pairing is defined by 〈(L, [α]), (R, [β])〉 df.
= (〈L,R〉, [〈α, β〉]) : C → A&B for

any objects A, B and C, and morphisms (L, [α]) : C → A and (R, [β]) : C → B;

• The β-projections π1 : A&B → A and π2 : A&B → B are respectively the pairs

(ΠA,B
1 , [$A,B

1]) and (ΠA,B
2 , [$A,B

2]) for any objects A and B, where $A,B
1 : ΠA,B

1

and $A,B
2 : ΠA,B

2 are respectively the derelictions derA and derB up to ‘tags’;

• β-currying is defined by Λ(G, [ϕ])
df.
= (Λ(G), [Λ(ϕ)]) : A → (B ⇒ C) for any

objects A, B and C, and morphism (G, [ϕ]) : A&B → C;

• The β-evaluation evB,C : CB&B → C for any objects B and C is the pair

(ΥB,C , [υB,C]), where υB,C : ΥB,C is the dereliction derB⇒C up to ‘tags’.

Theorem 3.4.2 (Well-defined LDG). The structure LDG forms a CCBoC.

Proof. First, it is obvious that the β-identity idA = (A ⇒ A, [derA]) on each object

A is a β-morphism A→ A in LDG.

Next, for β-composition, let A,B,C ∈ LDG, and (J, [φ]) : A → B and (K, [ψ]) :

B → C in LDG. Then, φ† : J† by Theorem 3.3.46, and Hω(J†) P Hω(J)† P !A(!B

by Lemma 3.3.30 and Theorem 3.3.22; thus, we may form φ† ‡ ψ : J† ‡K such that

Hω(J† ‡ K) P Hω(J)†;Hω(K) P A ⇒ C by Theorem 3.3.48 and Lemma 3.3.30,

and clearly Hω((J† ‡ K)†) = Hω(J† ‡ K†) = Hω(J†);Hω(K†) = Hω(J)†;Hω(K)† =

(Hω(J†);Hω(K))† = Hω(J† ‡K)†. Also, promotion and concatenation both preserve

validity and winning of dynamic strategies (by Theorems 3.3.46 and 3.3.48). Hence,

the pair (J† ‡K, [φ† ‡ψ]) is a β-morphism A→ C in LDG. Note that the composition

does not depend on the choice of representatives φ and ψ for [φ] and [ψ], respectively.

Then clearly, associativity of β-composition up to ' holds: Given D ∈ LDG, and

(G, [ϕ]) : C → D in LDG, by Lemma 3.3.30 we have:

Hω((J† ‡K)† ‡G) = (Hω(J†);Hω(K))†;Hω(G)

= (Hω(J)†;Hω(K)†);Hω(G)

= Hω(J)†; (Hω(K)†;Hω(G))

= Hω(J†); (Hω(K†);Hω(G))

= Hω(J† ‡ (K† ‡G))

113

as well as by Lemma 3.3.52:

Hω([(φ† ‡ ψ)† ‡ ϕ]) = [Hω((φ† ‡ ψ)† ‡ ϕ)]

= [(Hω(φ)†;Hω(ψ))†;Hω(ϕ)]

= [(Hω(φ)†;Hω(ψ)†);Hω(ϕ)]

= [(Hω(φ)†; (Hω(ψ)†;Hω(ϕ))]

= [Hω(φ† ‡ (ψ† ‡ ϕ))]

= Hω([φ† ‡ (ψ† ‡ ϕ)])

whence ((J, [φ]); (K, [ψ])); (G, [ϕ]) ' (J, [φ]); ((K, [ψ]); (G, [ϕ])).

Similarly, unit law up to ' holds: Given a β-morphism (J, [φ]) : A → B, by

Lemma 3.3.30 we have:

Hω((A⇒ A)† ‡ J) = (A⇒ A)†;Hω(J)

= Hω(J)

as well as:

Hω([der †A ‡ φ]) = Hω([φ]).

Similarly, Hω(J† ‡ (B ⇒ B)) = Hω(J) and Hω([φ† ‡ derB]) = Hω([φ]) hold, whence

(A⇒ A, [derA]); (J, [φ]) ' (J, [φ]) ' (J, [φ]); (B ⇒ B, [derB]).

Moreover, β-composition preserves ': For any A,B,C ∈ LDG, (J, [ι]), (J̃ , [ι̃]) :

A → B and (K, [κ]), (K̃, [κ̃]) : B → C in LDG, if Hω(J, [ι]) = Hω(J̃ , [ι̃]) and

Hω(K, [κ]) = Hω(K̃, [κ̃]), i.e., Hω(J) = Hω(J̃), Hω(K) = Hω(K̃), Hω(ι) 'A⇒B
Hω(ι̃) and Hω(κ) 'B⇒C Hω(κ̃), then we have Hω(J† ‡ K) = Hω(J†);Hω(K) =

Hω(J)†;Hω(K) = Hω(J̃)†;Hω(K̃) = Hω(J̃†);Hω(K̃) = Hω(J̃† ‡K̃) by Lemma 3.3.30,

and Hω(ι† ‡ κ) 'Hω(J†‡K) Hω(ι̃† ‡ κ̃) by Lemma 3.3.52, Theorems 3.3.46 and 3.3.48,

and Corollary 3.3.40, whence Hω(J† ‡K, [ι† ‡ κ]) = Hω(J̃† ‡ K̃, [ι̃† ‡ κ̃]).

Also, H clearly satisfies the three axioms of BoC (Definition 3.2.2), having shown

that LDG is a BoC. It remains to verify its cartesian closed structure up to '.

The universal property of the β-terminal dynamic game T up to ' is obvious,

where we define !A
df.
= (A⇒ T, [{ε}]) : A→ T for each A ∈ LDG. The β-projections

are clearly well-defined values in LDG. Given β-morphisms (L, [α]) : C → A and

(R, [β]) : C → B in LDG, i.e., α : L, β : R, Hω(L) P C ⇒ A, Hω(L†) = Hω(L)†,

114

Hω(R) P C ⇒ B and Hω(R†) = Hω(R)†, we may obtain the valid, winning pairing

〈α, β〉 : 〈L,R〉 such that:

Hω(〈L,R〉) P 〈Hω(L),Hω(R)〉

P C ⇒ A&B

again by Lemmata 3.3.30 and 3.3.29, and Theorem 3.3.20, as well as:

Hω(〈L,R〉†) = Hω(〈L†, R†〉)

= 〈Hω(L†),Hω(R†)〉

= 〈Hω(L)†,Hω(R)†〉

= 〈Hω(L),Hω(R)〉†

= Hω(〈L,R〉)†.

Hence, the pair (〈L,R〉, [〈α, β〉]) is a β-morphism C → A&B in LDG, which does not

depend on the choice of the representatives α and β. Note also that the β-pairing

clearly preserves values in LDG.

Also, we have by Lemmata 3.3.30 and 3.3.54:

Hω(〈L,R〉† ‡ΠA,B
1) = 〈Hω(L),Hω(R)〉†;ΠA,B

1 = Hω(L)

as well as by Lemma 3.3.52:

Hω([〈α, β〉† ‡$A,B
1]) = [Hω(〈α†, β†〉 ‡$A,B

1)]

= [〈Hω(α)†,Hω(β)†〉;$A,B
1]

= [Hω(α)]

= Hω([α]).

Similarly, Hω(〈L,R〉† ‡ ΠA,B
2) = Hω(R) and Hω([〈α, β〉]; [$A,B

2]) = Hω([β]). Hence,

〈(L, [α]), (R, [β])〉; π1 ' (L, [α]) and 〈(L, [α]), (R, [β])〉; π2 = (R, [β]) hold in LDG.

Next, given any β-morphism (P, [ρ]) : C → A&B in LDG, we have:

Hω(〈P † ‡ΠA,B
1 , P † ‡ΠA,B

2 〉) = 〈Hω(P)†;ΠA,B
1 ,Hω(P)†;ΠA,B

2 〉

= Hω(P)

again by Lemmata 3.3.30 and 3.3.54, as well as by Lemma 3.3.52:

Hω([〈ρ† ‡$A,B
1 , ρ† ‡$A,B

2 〉]) = [Hω(〈ρ† ‡$A,B
1 , ρ† ‡$A,B

2 〉)]

= [〈Hω(ρ)†;$A,B
1 ,Hω(ρ)†;$A,B

2 〉]

= [Hω(ρ)]

= Hω([ρ]).

115

Hence, 〈(P, [ρ]);π1, (P, [ρ]);π2〉 ' (P, [ρ]) holds in LDG.

It is also straightforward to check that β-pairing in LDG preserves ': Given any

β-morphisms (L, [α]), (L̃, [α̃]) : C → A and (R, [β]), (R̃, [β̃]) : C → B in LDG such

that Hω(L, [α]) = Hω(L̃, [α̃]) and Hω(R, [β]) = Hω(R̃, [β̃]), we have:

Hω(〈(L, [α]), (R, [β])〉) = (Hω(〈L,R〉),Hω([〈α, β〉]))

= (〈Hω(L),Hω(R)〉, [〈Hω(α),Hω(β)〉])

= (〈Hω(L̃),Hω(R̃)〉, [〈Hω(α̃),Hω(β̃)〉])

= (Hω(〈L̃, R̃〉),Hω(〈[α̃], [β̃]〉))

= Hω(〈(L̃, [α̃]), (R̃, [β̃])〉).

The β-evaluation evB,C = (ΥB,C , [υB,C]) for any B,C ∈ LDG is clearly a value

evB,C : CB&B → C in LDG that satisfies by Lemmata 3.3.30 and 3.3.54:

Hω(〈(ΠA,B
1)† ‡ Λ(U), ΠA,B

2 〉† ‡ ΥB,C) = 〈(ΠA,B
1)†; Λ ◦ Hω(U), ΠA,B

2 〉†;ΥB,C
= Hω(U)

as well as by Lemma 3.3.52:

Hω([〈($A,B
1)† ‡ Λ(µ), ($A,B

2)† ‡ derB〉† ‡ υB,C]) = [〈($A,B
1)†; Λ ◦ Hω(µ), ($A,B

2)†; derB〉†; υB,C]

= [Hω(µ)]

= Hω([µ])

which establishes (Λ(U, [µ]) × idB); evB,C ' (U, [µ]) for any β-morphism (U, [µ]) :

A&B → C in LDG. Note also that β-currying in LDG does not depend on the choice

of representatives, and it preserves values in LDG.

Similarly, we have again by Lemmata 3.3.30 and 3.3.54:

Hω(Λ(〈(ΠA,B
1)† ‡ V,ΠA,B

2 〉† ‡ ΥB,C)) = Λ(〈(ΠA,B
1)†;Hω(V), ΠA,B

2 〉†;ΥB,C)

= Hω(V)

as well as by Lemma 3.3.52:

Hω[Λ(〈($A,B
1)† ‡ ν, ($A,B

2)† ‡ derB〉† ‡ υB,C)] = [Λ(〈($A,B
1)†;Hω(ν), ($A,B

2)†; derB〉†; υB,C)]

= [Hω(ν)]

= Hω([ν])

which establishes Λ(((V, [ν]) × idB); evB,C) ' (V, [ν]) for any β-morphism (V, [ν]) :

A→ (B ⇒ C) in LDG.

Finally, it is easy to see that β-currying in LDG preserves the equivalence relation

' by Lemma 3.3.52 and Proposition 3.3.50, completing the proof.

116

We proceed to give a standard structure (Definition 3.2.14) for FPCF in LDG:

Definition 3.4.3 (Standard structure in LDG). The standard structure

SG = (2, T,&, π,⇒, ev , tt ,ff , ϑ)

of dynamic games and strategies for FPCF in LDG is given by:

• 2 and T are the game of booleans (Example 2.2.12) and the terminal game

(Example 2.2.11), respectively, both modified to normalized dynamic games in

the obvious manner;

• & is product of dynamic games, πA,B1
df.
= (ΠA,B

1 , [$A,B
1]) and πA,B2

df.
= (ΠA,B

2 , [$A,B
2])

for any normalized dynamic games A and B (see Definition 3.4.1);

• ⇒ is function space (or implication) of dynamic games, and evA,B
df.
= (ΥA,B, [υA,B])

for any normalized dynamic games A and B (see Definition 3.4.1);

• tt
df.
= (T ⇒ 2, [Pref({q.tt})Even]),ff

df.
= (T ⇒ 2, [Pref({q.ff })Even]) : T → 2;

• ϑ df.
= (2&(2&2)⇒ 2, [case]) : 2&(2&2)→ 2, where case : 2&(2&2)⇒ 2, is the

standard interpretation of the case-construction in the language PCF [100, 14]

modified to a normalized dynamic strategy in the obvious manner.

It is clear that the structure SG is standard (Definition 3.2.14), where the inequality

(3.5) is satisfied by the underlying dynamic game of each morphism in LDG.

3.4.2 Dynamic Correspondence Property for FPCF

At last, we are now ready to prove that our game semantics satisfies a DCP:

Theorem 3.4.4 (PDCP-theorem). The interpretation J KSGLDG of FPCF (Definitions 3.2.14

and 3.4.1) satisfies the PDCP (Definition 3.2.16).

Proof. For proving that the interpretation satisfies the PDCP, the non-trivial case

is only to show for any (λxA.V)W→ U of FPCF, where V, W and U are values,

H(J(λxA.V)WKSGLDG) = JUKSGLDG (n.b., J(λxA.V)WKSGLDG 6= JUKSGLDG is immediate from the

first component of each β-morphism in LDG and the second axiom on standardness

of SG); the other conditions follow from Lemma 3.3.30. For this, we define the height

Ht(B) ∈ N of each type B by Ht(o)
df.
= 0 and Ht(B1 ⇒ B2)

df.
= max(Ht(B1)+1,Ht(B2)).

Then, the required equation is shown by induction on the height of the type A of W.

117

Below, given β-morphisms (H, [τ]) : C → (A⇒ B) and (G, [σ]) : C → A in LDG,

we define the β-morphism (H, [τ])b(G, [σ])c df.
= (〈G,H〉†‡ΥA,B, [〈τ, σ〉†‡υA,B]) : C → B

in LDG. If (H, [τ]) : C → (A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ B) and (Gi, [σi]) : C →
Ai for i = 1, 2, . . . , k, then we write (H, [τ])b(G1, [σ1]), (G2, [σ2]), . . . , (Gk, [σk])c for

(H, [τ])b(G1, [σ1])cb(G2, [σ2])c . . . b(Gk, [σk])c : C → B. We abbreviate in this proof

the interpretation J KSGLDG as J K. Let Γ be the context of (λxA.V)W (as well as U). In

the following, we abbreviate each β-morphism (G, [σ]) in LDG as [σ] for brevity, and

focus on the second components; the corresponding equations on the first components

may be obtained, thanks to Lemmata 3.3.30 and 3.3.54, similarly to or simpler than

the ways for the first components shown below.

For the base case, assume Ht(A) = 0, i.e., A ≡ o. By induction on |V|, we have:

• If V ≡ tt, then (λxA. tt)W→ tt, and clearlyH(J(λxA. tt)WK) = 〈Λ(JttK), JWK〉†; [υ] =

JttK. The case where V ≡ ff is analogous.

• If V ≡ λyC.V′, then (λxAyC.V′)W→ λyC.U′ such that (λxA.V′)W→ U′ (because

nf ((λxAyC.V′)W) ≡ nf (λyC.V′[W/x]) ≡ λyC.nf (V′[W/x]) ≡ λyC.nf ((λxA.V′)W)).

By the induction hypothesis, we have H(J(λxA.V′)WK) = JU′K. Hence,

H(JVWK) = H(〈ΛJAK(ΛJCK(JV′K)), JWK〉† ‡ [υ])

= 〈ΛJAK(ΛJCK(JV′K)), JWK〉†; [υ] (by Lemma 3.3.52)

= ΛJCK(〈ΛJAK(JV′K), JWK〉†; [υ])

= ΛJCK(H(〈ΛJAK(JV′K), JWK〉† ‡ [υ]))

= ΛJCK(H(J(λxA.V′)WK))

= ΛJCK(JU′K)

= JλyC.U′K.

• If V ≡ case(yV1 . . .Vk)[Ṽ1; Ṽ2] with x 6= y, then (λxA.V)W→ U, where

U ≡ case(ynf (V1[W/x]) . . . nf (Vk[W/x]))[nf (Ṽ1[W/x]); nf (Ṽ1[W/x])].

118

By the induction hypothesis and the interpretation of the variable y, we have:

J(λxA.V)WK

= Hω(ΛJAK(〈JyKbJV1K, . . . , JVkKc, 〈JṼ1K, JṼ2K〉〉† ‡ [case])bJWKc)

= Hω(〈ΛJAK(JyK)bJWKcbΛJAK(JV1K)bJWKc, . . . ,ΛJAK(JVkK)bJWKcc, 〈ΛJAK(JṼ1K)bJWKc,

ΛJAK(JṼ2K)bJWKc〉〉† ‡ [case])

= Hω(〈J(λx. y)WKbJ(λx.V1)WK, . . . , J(λx.Vk)WKc, 〈J(λx. Ṽ1)WK, J(λx. Ṽ2)WK〉〉† ‡ [case])

= Hω(〈JyKbJnf (V1[W/x])K, . . . , Jnf (Vk[W/x])Kc, 〈Jnf (Ṽ1[W/x])K, Jnf (Ṽ2[W/x])K〉〉† ‡ [case])

= JUK.

• If V ≡ case(x)[Ṽ1; Ṽ2], then (λxA.V)W→ U, where

U ≡ case(W)[nf (Ṽ1[W/x]); nf (Ṽ2[W/x])].

By the same reasoning as the above case, we have H(J(λxA.V)WK) = JUK.

Next, for the inductive step, assume Ht(A) = h+ 1. We may proceed in the same

way as the base case, i.e., by induction on |V|, except that the last case is generalized

to V ≡ case(xV1 . . .Vk)[Ṽ1; Ṽ2], where A ≡ A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ o (k > 0). We

have to consider the cases for k > 1; then we have (λxA.V)W→ U, where

U ≡ case(nf (W(V1[W/x]) . . . (Vk[W/x])))[nf (Ṽ1[W/x]); nf (Ṽ2[W/x])].

We then have the following chain of equations:

HJ(λx.V)WK

= H(Λ(Hω(〈JxKbJV1K, . . . , JVkKc, 〈JṼ1K, JṼ2K〉〉† ‡ [case]))bJWKc)

= Hω(〈Λ(JxK)bJWKcbΛ(JV1K)bJWKc, . . . ,Λ(JVkK)bJWKcc, 〈Λ(JṼ1K)bJWKc,Λ(JṼ2K)bJWKc〉〉† ‡ [case])

= Hω(〈J(λx. x)WKbJ(λx.V1)WK, . . . , J(λx.Vk)WKc, 〈J(λx. Ṽ1)WK, J(λx. Ṽ2)WK〉〉† ‡ [case])

= Hω(〈JWKbJnf (V1[W/x])K, . . . , Jnf (Vk[W/x])Kc, 〈Jnf (Ṽ1[W/x])K, Jnf (Ṽ2[W/x])K〉〉† ‡ [case])

(by the induction hypothesis with respect to |V|)

= Hω(〈Jnf (W(V1[W/x]) . . . (Vk[W/x]))K, 〈Jnf (Ṽ1[W/x])K, Jnf (Ṽ2[W/x])K〉〉† ‡ [case])

(by the induction hypothesis (applied k-times) with respect to the hight of types A)

= Jcase(nf (W(V1[W/x]) . . . (Vk[W/x])))[nf (Ṽ1[W/x]); nf (Ṽ2[W/x])]K

= JUK

which completes the proof.

119

Corollary 3.4.5 (Dynamic game semantics of FPCF). The interpretation J KSGLDG of

FPCF and the hiding operation H satisfy the DCP in the sense of Definition 3.2.15.

Proof. By Theorems 3.2.17 and 3.4.4.

The relation between the syntax and the semantics is in fact much tighter than

Corollary 3.4.5: Exploiting the strong definability result [18, 100], FPCF can be seen

as a formal calculus for the game-semantic computation in the CCBoC LDG.

Finally, let us establish a dynamic variant of full completeness [44]: Any dynamic

strategy on a dynamic game that interprets a type of FPCF is the denotation of some

term of FPCF:

Corollary 3.4.6 (Dynamic full completeness). Let G be a dynamic game such that

for some dynamic strategy σ : G the pair (G, [σ]) is the interpretation JΓ ` M : BKSGLDG
of a term Γ ` M : B of FPCF. Then, for any dynamic strategy σ̃ : G there is a term

Γ ` M̃ : B of FPCF such that JΓ ` M̃ : BKSGLDG = (G, [σ̃]).

Proof. Note that the dynamic game G is constructed along with the construction of

type B of FPCF. We proceed by induction on the construction of G (or B).

First, since values of FPCF are PCF Böhm trees except that the natural number

type ι is replaced with the boolean type o, and the bottom term ⊥ is deleted, the

conventional full completeness or the strong definability holds for values of FPCF

in the same way as that of the conventional game semantics of PCF, where totality

excludes the denotation of the bottom term ⊥; see [14, 43] for the detail.

It remains to consider the rule A for applications, i.e., the case where G is of

the form 〈U, V 〉† ‡ Υ . But then, note that only the canonical play is possible in Υ

(Definition 3.3.53), and therefore we may just apply the induction hypothesis.

Finally, let us make a brief remark on dynamics of computation. Note that we

have introduced internal moves and called them intensionality of computation, but

one may say that they also contain dynamics for dynamic strategies play along with

the passage of time, and internal moves represent step-by-step processes of the play.

This claim sounds reasonable, but dynamics of computation in the present thesis

refers only to what corresponds to dynamics of syntax, namely, reduction of programs.

Conceptually, reduction is the process of carving out the extensional input-output be-

haviors from algorithms, which makes sense because often such extensional behaviors

are not directly obtainable (e.g., functions on natural numbers), i.e., one first needs

to execute an algorithm, and then extract its input-output behavior. That is, we call

this very extraction process dynamics of computation in the present thesis.

120

Let us also remark that our result does not contradict the standard result [47], i.e.,

the correspondence between the execution of linear head reduction (LHR) and the

step-by-step ‘internal communication’ between conventional strategies. In fact, LHR

is a finer reduction strategy than the operational semantics of FPCF (Definition 3.2.3),

and the work implies that LHR corresponds in conventional game semantics what

should be called a ‘move-wise’ execution of the hiding operation. On the other hand,

our operational semantics is executed in a much coarser, ‘type-wise’ fashion, and thus

it may be seen as executing at a time a certain ‘chunk’ of LHR in a specific order.

Our dynamic game semantics captures such a coarser dynamics of computation, and

therefore it does not contradict the work [47]. Of course, it would be highly interesting

to refine the present work to capture LHR by dynamic game semantics, which we leave

as future work (see the next section too).

3.5 Conclusion and Future Work of the Chapter

We have presented a mathematical (and syntax-independent) formulation of dynamics

and intensionality of computation in terms of games and strategies in the present

chapter. From the opposite angle, we have developed a game-semantic framework for

dynamic, intensional computational processes with a convenient formal calculus.

The most immediate future work is to apply the framework of dynamic game

semantics to various logics and computations as in the case of static (usual) game

semantics. Moreover, since the hiding operation can be further refined into the ‘move-

wise’ fashion, the present work may be applicable for finer calculi such as explicit sub-

stitution [158] and the differential λ-calculus [55]. We conjecture that the well-known

correspondence between ‘internal communications’ between strategies and executions

of LHR [47] can be exploited for establishing such finer dynamic game semantics.

Also, it would be interesting to see how accurately our game-semantic approach can

measure the computational complexity of (higher-order) programming.

Finally, the notion of (CC)BoCs can be a concept of interest in its own right. For

instance, it might be fruitful to develop it further to accommodate various models

of computations in the same spirit of [122] but on computation, not computability.

Also, it might be interesting to consider their relation with computations as monads

in the sense introduced by Eugenio Moggi [136].

121

Chapter 4

Game-Semantic Model of
Higher-Order Computation

4.1 Introduction to the Chapter

In this second main chapter, we shall develop the mathematical structure defined in

the previous chapter further to address the problem described in Section 1.2.4.

4.1.1 Towards Game-Semantic Model of Computation

First, let us emphasize that conventional game semantics has never been formulated

as a mathematical model of computation in the sense of TMs; rather, a primary

focus of the field has been full completeness and full abstraction [44]. In other words,

game semantics has not been concerned that much with step-by-step processes in

computation or their ‘effective computability’, and it has been identifying programs

with the same value [18, 188, 82]. As seen in the previous chapter, this point is due

to hiding internal moves when composing strategies so that strategies are always in

normal form. For instance, strategies on the game N[0] (N[1] typically play by

q[1]q[0]n[0]m[1], where n,m ∈ N, as described in Section 2.1, and so they are essentially

(linear) functions n 7→ m; in particular, it is not formulated at all how they calculate

the fourth move m[1] from the third one n[0]. Consequently, ‘effective computability’

in game semantics has been extrinsic: A strategy has been defined to be ‘effective’ or

recursive if it is representable by a partial recursive function [9, 100, 60].

Thus, to achieve what should be called a game-semantic model of computation,

perhaps we first need to refine the category CMG (Definition 2.4.7) so that it may

accommodate step-by-step processes in computation, and then define their ‘effective

computability’ in terms of atomic steps of the processes like the framework of TMs so

that it would be intrinsic (in the sense explained in Section 1.2), non-inductive and

122

non-axiomatic. Fortunately, there is already the bicategory LDG of dynamic games

and strategies (Definition 3.4.1), which has addressed the first point.

Hence, the remaining problem is to define ‘effective’ dynamic strategies in terms

of their atomic steps (or by another method that is intrinsic, non-inductive and non-

axiomatic). To go beyond classical computation (see Section 1.2.2), such ‘effective’

dynamic strategies should be at least as powerful as the higher-order programming

language PCF [151, 163] or PCF-complete. This sets up, in addition to the con-

ceptual quest in Section 1.2.4, an intriguing mathematical question in its own right:

Is there any intrinsic, non-inductive, non-axiomatic notion of ‘effective

computability’ of dynamic strategies that is PCF-complete?

Our answer to this question is positive, providing a novel approach on low-level

computational processes (see Section 1.2.3) in this chapter solely in terms of games

and strategies. We explain the main idea of the solution in the next section.

4.1.2 Viable Strategies

Let us explain the idea of the purely game-semantic approach (n.b., the concepts

introduced below make sense for conventional (or static) games and strategies as well,

but they are not PCF-complete as composition of conventional strategies does not

preserve ‘effectivity’ or viability of strategies defined below). First, a key observation

is that every dynamic strategy modeling PCF only needs as an input the last three

moves of each P-view and the state (Definition 4.2.11) of the P-view (Lemma 4.2.12);

thus, it can be presented as a partial function (s,m3,m2,m1) 7→ m, where m1 is the

last move, m2 is the second last move, m3 is the third last move of the current P-view,

s is the state of the P-view, and m is the next P-move (n.b., m2 or m3 may be �,

representing ‘no move’, if it does not exist in the P-view). Hence, assuming that m1,

m2, m3 and s are all ‘effectively’ obtainable (which is reasonable as we shall see), it

suffices to achieve the computation (s,m3,m2,m1) 7→ m by a means that is clearly

‘effective’. For this point, we give a concrete formalization of ‘tags’ for disjoint union

of sets of moves in order to rigorously formalize ‘effectivity’ of dynamic strategies.

We then define a strategy to be finitary if its representation by a partial function

[129, 100] that assigns the next P-move to a partial history of previous moves (which

is ‘effectively’ obtainable from the entire history), called its table, is finite. Unfortu-

nately, however, finitary dynamic strategies are not PCF-complete for they cannot

handle unboundedly many ‘tags’ for exponential !, where such manipulations of ‘tags’

are particularly vital for promotion ()† and fixed-points [101, 100]. Our solution

123

is then to define a strategy to be viable if its table is ‘describable’ by another fini-

tary strategy (Definition 4.4.7). Viability gives a reasonable notion of ‘effectivity’ of

strategies as finitary strategies are clearly ‘computable’, and thus their ‘descriptions’

can be ‘effectively read off’ by ‘executing’ them. The main idea here is to achieve

the computation (s,m3,m2,m1) 7→ m by a method that is clearly ‘effective’ yet more

powerful than finite tables, viz., finitary strategies, arriving at viability of strategies.

As a main technical result, we show that dynamic strategies definable by PCF

are all viable (Theorem 4.4.18), establishing ‘effectivity’ of dynamic strategies that is

PCF-complete. Note that viability is defined solely in terms of games and strategies

without any axiom or induction. Also, as immediate corollaries, some of the well-

known theorems in recursion theory such as the smn-theorem and the first recursion

theorem (FRT) [46, 157] are generalized (Corollaries 4.4.20 and 4.4.21).

As a more conceptual point, the game-semantic approach solves the problem

raised in Section 1.2.4 in the following manner. On the one hand, dynamic games

and strategies capture high-level computational processes of PCF in a conceptually

natural, mathematically precise manner, where note that they are abstract, syntax-

independent concepts, e.g., the lazy natural number game N (Definition 4.2.1) defines

natural numbers (not their representation) as ‘counting processes’ in an abstract,

syntax-independent fashion.1 On the other hand, strategies that ‘describe’ viable

strategies (i.e., high-level computational processes) correspond to low-level compu-

tational processes of the viable strategies. In this way, we have developed a single

mathematical framework for both high-level and low-level computational processes

as well as ‘effectivity’ of the former in terms of the latter, achieving mathematics of

computational processes in the sense defined in Section 1.2.4.

4.1.3 Related Work and Contribution of the Chapter

The first achievement of the chapter is to define an intrinsic, non-inductive, non-

axiomatic notion of ‘effective computability’ solely in terms of games and strategies,

namely, viable dynamic strategies, and show that they are PCF-complete. As game

semantics was not employed for theory of computation before, the work is novel as a

mathematical model of computation; also, it raises further questions to explore; see

Section 4.5. From a more methodological viewpoint, it indicates a high potential of

the game-semantic approach in the context of theory of computation and recursion

1The game N itself can be defined as a static game, but we need the framework of dynamic game
semantics for compositions of static games and strategies with hiding cannot capture step-by-step
processes of computation as already pointed out.

124

theory. In addition, some of the well-known theorems in recursion theory such as

the smn-theorem and the first recursion theorem are also generalized to non-classical

computation.

Another, more conceptual contribution of the chapter is to establish a single math-

ematical framework for both high-level and low-level computational processes, where

the former defines what computation does, while the latter describes how to execute

the former. In comparison with existing models of computation, our game-semantic

approach has some novel features. First, as opposed to computation by TMs or

programming languages, plays of games are a more general, abstract concept; in par-

ticular they are not necessarily symbol manipulations, which is why they are suitable

for abstract, high-level computational processes. Second, computation in a game pro-

ceeds as an interaction between the participants of the game, which may be seen as

a generalization of computation by TMs (n.b., just one interaction occurs for a TM,

i.e., Opponent gives an input on the infinite tape, and then Player returns an output

on the tape); this means that Opponent’s computation is part of the formalization,

which is why a game-semantic approach in general captures higher-order computation

in a natural, systematic manner. The present work inherits the interactive nature of

game semantics. Last but not least, games are a semantic counterpart of types in

computation, for which note that types do not a priori exist in TMs, and types in

programming languages are a syntactic concept. Hence, our approach would provide

both conceptual and mathematical investigations of types, particularly in the context

of theory of computation and recursion theory.

Moreover, by exploiting the flexibility of game semantics, our approach would

be applicable to a wide range of computations beyond functional one though it is

left as future work. Also, game semantics has interpreted various logics as well [7,

101, 10, 189], and therefore it would be possible to employ our framework for a

realizability interpretation of constructive logic [179, 186]; note that viable dynamic

strategies would be more suitable for realizers than existing strategies, e.g., [28], since

the former contains more ‘computational contents’ and makes more sense as a model

of computation than the latter. The present work would serve as a technical basis

towards these extensions.

In the literature, there have been several attempts to provide a mathematical

foundation of computation beyond classical or symbolic one. We do not claim at all

our game-semantic approach is best or canonical in comparison with previous work;

however, our approach certainly has some advantages. For instance, Robin Gandy

proposed in the famous paper [63] a notion of ‘mechanical devices’, now known as

125

Gandy machines (GMs), which are more general than TMs, and showed that TMs

are actually as powerful as GMs. However, GMs are an axiomatic approach to define

a general class of ‘mechanical devices’ that are ‘effectively executable’, and they do

not give a distinction between high-level and low-level computational processes, where

GMs formulate the latter. More recent abstract state machines (ASMs) [83] developed

by Yuri Gurevich employ an idea similar to GMs for ‘effective computability’, namely,

by requiring an upper bound on the number of elements that may change in a single

step of computation, based on structures in the sense of mathematical logic [168].

Notably, ASMs define a very general notion of computation, namely, computation

as structure transition. However, it seems that this framework is in some sense too

general; for instance, it is possible that an ASM computes a real number in a single-

step, but then its ‘effectivity’ is questionable. In general, an appropriate notion of

‘effective computability’ of ASMs has been missing. Also, the way of computing a

function by an ASM is to update input/output-pairs in the element-wise fashion, but

it does not seem to be a common or natural computational processes in practice.

Yiannis Moschovakis also considered a mathematical foundation of algorithms [137]

in which, similarly to us, he proposed that algorithms and their ‘implementations’

should be distinguished, where by algorithms he refers to what we call high-level

computational processes. However, his framework, called recursors, is also based

on structures, and his notion of algorithms is relative to atomic operations given

in each structure; thus, it does not give a foundational analysis on the notion of

‘effective computability’. To summarize, although these previous attempts capture

broader notions of computation, our approach has advantages in achieving both of

the distinction between high-level and low-level computational processes, and the

primitive notion of ‘effective computability’. Also, the interactive and typed natures

of game semantics stand in sharp contrast to previous work.

At this point, let us mention computability logic [103] developed by Giorgi Japaridze

since his idea is similar to ours; he defines ‘effective computability’ via computing

machines playing in games. Nevertheless, there are notable differences between com-

putability logic and the present work. First, the computing machines of computability

logic are a variant of TMs, and so they are less novel than our approach as a model

of computation; in fact, the notion of ‘effectivity’ of computability logic can be seen

more or less as a consequence of just spelling out the standard notion of recursive

strategies [9, 100, 60]. Second, our framework inherits the categorical structure of

game semantics, providing a compositional formulation of logic and computation,

126

i.e., a compound proof or program is constructed from its components, while there

has been no known categorical structure of computability logic.

Finally, let us mention some of the precursors of game semantics. To clarify the

notion of higher-order computability, Stephen Cole Kleene considered a model of

higher-order computation based on ‘dialogues’ between computational oracles in a

series of papers [110, 111, 112], which can be seen as the first attempt to define a

mathematical notion of algorithms in a higher-order setting [122]. Moreover, Gandy

and his student Giovanni Pani refined the work by Kleene to obtain a model of PCF

that satisfies universality [44] (though this work was eventually not published). They

are direct ancestors of game semantics (in particular of HO-games [100] by Martin

Hyland and Luke Ong). As another line of research (motivated by the problem of full

abstraction for PCF [151]), Pierre-Louis Curien and Gerard Berry proposed sequential

algorithms [22], which was the first attempt to go beyond (extensional) functions to

capture sequentiality of PCF [18]. Again, sequential algorithms preceded and became

highly influential to the development of game semantics. In fact, sequential algorithms

are presented in the style of game semantics in [122], and it is shown in [31] that the

oracle computation given by Kleene can be represented by sequential algorithms (but

the converse does not hold). Nevertheless, the point here is that neither of previous

work defines ‘effectivity’ in a similar manner to the present work; our definition of

‘effectivity’ has an advantage in its intrinsic, non-inductive, non-axiomatic nature.

4.1.4 Chapter Outline

The rest of the present chapter is structured as follows. In Section 4.2, we present

dynamic strategies that model PCF (Definition 4.2.9) and establish a key lemma

(Lemma 4.2.12) which states that the dynamic strategies for PCF only need as an

input at most the last three moves of each P-view and the state (Definition 4.2.11) of

the P-view. Then, formalizing ‘tags’ for disjoint union of sets in Section 4.3, we give in

Section 4.4 a solely game-semantic formulation of ‘effectivity’ or viability of strategies

(Definition 4.4.7) by introducing game-semantic low-level computational processes

underlying the high-level ones (i.e., dynamic strategies), and prove as a main theorem

that viable dynamic strategies are PCF-complete (Theorem 4.4.18). This section also

generalizes the smn- and the first recursion theorems (Corollaries 4.4.20 and 4.4.21).

Finally, we draw a conclusion and propose future work of the chapter in Section 4.5.

127

4.2 Game-Semantic PCF-Computation

In this section, we formulate our game-semantic high-level computational processes for

PCF. This is achieved by simply applying the framework of dynamic game semantics

in Chapter 3 to PCF, where we replace the usual flat game N of natural numbers

with the lazy one N (Definition 4.2.1), which gives a unary representation of natural

numbers, for representing step-by-step processes in computation.

Then, we prove a key fact (Lemmma 4.2.12) for these high-level computational

processes, which states that each dynamic strategy modeling a term of PCF only needs

as an input the last three moves of each P-view and the state (Definition 4.2.11) of

the P-view. By this fact, the problem of game-semantic PCF-completeness is reduced

to formulating low-level computational processes underlying these dynamic strategies

that calculate the next P-move from such three moves and states.

4.2.1 The Lazy Natural Number Game

Let us first point out that the flat game N (Example 2.2.12) has almost the same

mathematical structure as that of the set N of all natural numbers. This point is

unsatisfactory for at least the following two reasons:

1. It is not clear how to define an intrinsic, non-inductive, non-axiomatic notion

of ‘effective computability’ of (dynamic) strategies on games generated from N

via ⇒ since there is no intensional or low-level structure in N ;

2. The game N contributes almost nothing to foundations of mathematics.

Motivated by these points, we adopt the following ‘lazy’ variant:

Definition 4.2.1 (The lazy natural number game). The lazy natural number

game is the dynamic game N defined by:

• MN
df.
= {q̂, q, yes , no};

• λN : q̂ 7→ OQ0, q 7→ OQ0, yes 7→ PA0, no 7→ PA0;

• `N
df.
= {(?, q̂), (q̂, no), (q̂, yes), (q, no), (q, yes), (yes , q)};

• PN
df.
= Pref({q̂.(yes .q)n.no | n ∈ N }), where each non-initial occurrence is

justified by the last occurrence;

• s 'N t
df.⇔ s = t.

128

We need both q̂ and q for the axiom E1 (Definition 3.3.1). A play of N proceeds

as an iteration of: Opponent asks by a question q̂ or q if Player would like to ‘count

one more’, and Player replies it by yes if she would like to, and by no otherwise.

Thus, for each n ∈ N, the position q̂.(yes .q)n.no ∈ PN represents the number n. Let

us define n
df.
= Pref({q̂.(yes .q)n.no})Even : N for each n ∈ N.

Note that N defines natural numbers in a primitive, natural way, viz., as ‘counting

processes’, where the notation for moves is inessential, i.e., N is syntax-independent.

Also, we may define it without recourse to the set N by specifying its maximal posi-

tions inductively: q̂.no ∈ PN ∧ (q̂.s.no ∈ PN ⇒ q̂.s.yes .q.no ∈ PN). Thus, we may

define (rather than represent) natural numbers to be the dynamic strategies n : N
though we shall not investigate its foundational consequences in the present thesis.

Also, this step-by-step process of natural numbers allows us to define ‘effectivity’

of strategies in an intrinsic, non-inductive, non-axiomatic manner in Section 4.4.1.

4.2.2 Dynamic Games and Strategies for PCF-Computation

Next, let us recall games and strategies that model PCF [14, 101], where we replace

the flat natural number game N with the lazy one N (Definition 4.2.1), and more

generally conventional or static games and strategies with dynamic ones (defined in

Chapter 3). Note that we do not recall PCF itself or its relation with the static game

semantics (e.g., full abstraction), leaving these points to [14, 100, 9], and just focus

on dynamic games and strategies modeling PCF (without referring to the syntax).

We shall see in particular that each of the dynamic strategies introduced below is

representable by a finite partial function that maps the last three moves of each P-view

to the next P-move. Note that states (Definition 4.2.11) of P-views are not necessary

until we form a pairing (Definition 3.3.43) of dynamic strategies; see Section 4.2.3.

Notation. We shall represent dynamic strategies given below as partial functions

(m3,m2,m1) 7→ m, where m1 is the last move, m2 is the second last move, and

m3 is the third last move of the P-view of a given odd-length position, and m is the

next P-move. If there is no such m2 or m3 in the P-view, then we replace it with �,

representing ‘no move’. For these dynamic strategies, the justifier of m is always m1,

m3 or the justifier of m2 as we shall see; we omit it in the partial map representation

as it is always clear. We henceforth write ()[i] as another notation for ()[i].

Let us first recall the simplest dynamic strategy that represents 0 ∈ N:

129

Definition 4.2.2 (Zero strategies [14, 101]). Given a normalized dynamic game A,

the zero strategy on A is the dynamic strategy zeroA : A[0] ⇒ N [1] given by:

zeroA
df.
= Pref(q̂[1].no [1])Even.

The canonical play by zeroA can be described as Figure 4.1 below. Clearly, zeroA

!A[0]
zeroA
(N [1]

q̂[1]

no [1]

Figure 4.1: The computation of the zero strategy zeroA : A⇒ N .

may be represented by the following constant function:

(�,�, q̂[1]) 7→ no [1].

Next, let us recall the successor strategy :

Definition 4.2.3 (Successor strategy [14, 101]). The succesor strategy is the dy-

namic strategy succ : N [0] ⇒ N [1] defined by:

succ
df.
= Pref({q̂[1].(q̂, 0)[0].((yes , 0)[0].yes [1].q[1].(q, 0)[0])i.(no, 0)[0].yes [1].q[1].no [1] | i ∈ N})Even

where pointers occurring in succ are as described in Figure 4.2.

Roughly, succ copies a given input on the domain !N [0] and repeats it as an output

on the codomain N [1] in the ‘move-wise’ manner, like the dereliction derN : N ⇒ N ,

except that succ adds one more yes [1] before no [1]; see Figure 4.2. Clearly, succ ◦n† =

n+ 1 for all n ∈ N, and thus succ indeed computes the successor function.

It is then easy to observe that succ only needs as an input at most the last three

moves of each P-view to compute the next P-move. More concretely, succ can be

represented by the following finite list of the input-output pairs:

(�,�, q̂[1]) 7→ (q̂, 0)[0] | ((no, 0)[0], yes [1], q[1]) 7→ no [1] |

(q[1], (q, 0)[0], (yes , 0)[0]) 7→ yes [1] | (q[1], (q, 0)[0], (no, 0)[0]) 7→ yes [1] |

(q̂[1], (q̂, 0)[0], (yes , 0)[0]) 7→ yes [1] | (q̂[1], (q̂, 0)[0], (no, 0)[0]) 7→ yes [1] |

((yes , 0)[0], yes [1], q[1]) 7→ (q, 0)[0]

Next, let us recall a left inverse of the successor strategy:

130

!N [0]
succ
(N [1] !N [0]

succ
(N [1]

q̂[1] q̂[1]

(q̂, 0)[0] (q̂, 0)[0]

(yes , 0)[0] (no, 0)[0]

yes [1] yes [1]

q[1] q[1]

(q, 0)[0] no [1]

(yes , 0)[0]

yes [1]

q[1]

(q, 0)[0]

...
(yes , 0)[0]

yes [1]

q[1]

(q, 0)[0]

(no, 0)[0]

yes [1]

q[1]

no [1]

Figure 4.2: The computation of the successor strategy succ : N ⇒ N .

Definition 4.2.4 (Predecessor strategy [14, 101]). The predecessor strategy is the

dynamic strategy pred : N [0] ⇒ N [1] defined by:

pred
df.
= Pref({q̂[1].(q̂, 0)[0].(yes , 0)[0].(q, 0)[0].((yes , 0)[0].yes [1].q[1].(q, 0)[0])i.(no, 0)[0].no [1] | i ∈ N }

∪ {q̂[1].(q̂, 0)[0].(no, 0)[0].no [1]})Even

where pointers occurring in pred are as described in Figure 4.3.

Somewhat similarly to succ, pred computes like derN except that if a given input

on the domain !N [0] is non-zero, then it does not copy the first yes . The computation

of pred is described in Figure 4.3. It is then easy to see that pred ◦ n+ 1† = n for all

n ∈ N, and pred ◦ 0† = 0; thus, pred in fact computes the predecessor function. We

also have pred ◦ succ† = derN as mentioned above.

Also, pred only needs at most the last three moves in each P-view to compute the

131

!N [0]
pred
(N [1] !N [0]

pred
(N [1]

q̂[1] q̂[1]

(q̂, 0)[0] (q̂, 0)[0]

(yes , 0)[0] (no, 0)[0]

(q, 0)[0] no [1]

(yes , 0)[0]

yes [1]

q[1]

(q, 0)[0]

(yes , 0)[0]

yes [1]

q[1]

(q, 0)[0]

...
(yes , 0)[0]

yes [1]

q[1]

(q, 0)[0]

(no, 0)[0]

no [1]

Figure 4.3: The computation of the predecessor strategy pred : N ⇒ N .

next P-move as it can be represented by:

(�,�, q̂[1]) 7→ (q̂, 0)[0] | (q̂[1], (q̂, 0)[0], (yes , 0)[0]) 7→ (q, 0)[0] |

((yes , 0)[0], (q, 0)[0], (yes , 0)[0]) 7→ yes [1] | ((yes , 0)[0], yes [1], q[1]) 7→ (q, 0)[0] |

(q[1], (q, 0)[0], (yes , 0)[0]) 7→ yes [1] | (q̂[1], (q̂, 0)[0], (no, 0)[0]) 7→ no [1] |

(q[1], (q, 0)[0], (no, 0)[0]) 7→ no [1]

Convention. In the present chapter, the boolean game refers to the corresponding

normalized dynamic game 2, where we replace the question q with q̂, by default.

Notation. We define dynamic strategies tt
df.
= {ε, q̂.tt} : 2 and ff

df.
= {ε, q̂.ff } : 2.

Then, let us recall a dynamic strategy for the conditional ‘if...then...else...’:

Definition 4.2.5 (Case strategies [14, 101]). The case strategy on a normalized

dynamic game A is the dynamic strategy caseA : A[0]&A[1]&2[2] ⇒ A[3] defined by:

caseA
df.
= Pref({a[3].(q̂, 0)[2].(tt , 0)[2].(a, 0)[0].s | a[1].(a, 0)[0].s[3 7→1] ∈ derA }

∪ {a[3].(q̂, 0)[2].(ff , 0)[2].(a, 0)[1].s | a[1].(a, 0)[0].s[17→0,37→1] ∈ derA })Even

132

where s[3 7→1] (resp. s[1 7→0,37→1]) is obtained from s by replacing the ‘tag’ ()[3] with

()[1] (resp. ()[1] with ()[0], and ()[3] with ()[1]), and pointers occurring in caseA are

as illustrated in Figure 4.4 (n.b., !(A&A&2) and !A⊗!A⊗!2 coincide up to ‘tags’).

!A[0] ⊗ !A[1] ⊗ !2[2]

caseA
(A[3]

a
(1)
[3]

(q̂, 0)[2]

(tt , 0)[2]

(a(1), 0)[0]

(a(2), 0)[0]

a
(2)
[3]

a
(3)
[3]

(a(3), 0)[0]

(a(4), 0)[0]

a
(4)
[3]

ã
(1)
[3]

(ã(1), 0)[0]

(ã(2), 0)[0]

ã
(2)
[3]

!A[0] ⊗ !A[1] ⊗ !2[2]

caseA
(A[3]

a
(1)
[3]

(q̂, 0)[2]

(ff , 0)[2]

(a(1), 0)[1]

(a(2), 0)[1]

a
(2)
[3]

a
(3)
[3]

(a(3), 0)[1]

(a(4), 0)[1]

a
(4)
[3]

Figure 4.4: A computation of the case strategy caseA : A&A&2⇒ A.

That is, caseA first investigates a given input on 2[2] and then plays as derA

between !A[0] and A[3] if the input is tt , and between !A[1] and A[3] otherwise. Typical

plays by caseA are illustrated in Figure 4.4. Clearly, given any α1, α2 : A, we have

caseA◦〈α1, α2, tt〉† = α1 and caseA◦〈α1, α2,ff 〉† = α2, and thus caseA indeed computes

the conditional ‘if...then...else...’. At this point, it should be clear how caseA may be

133

represented as a finite table, where it only needs at most the last three moves of each

P-view; thus, we leave it to the reader.

Next, let us recall a dynamic strategy that sees if a given input is zero:

Definition 4.2.6 (Ifzero strategy [14, 101]). The ifzero strategy is the dynamic

strategy zero? : N [0] ⇒ 2[1] defined by:

zero?
df.
= Pref({q̂[1].(q̂, 0)[0].(no, 0)[0].tt [1], q̂[1].(q̂, 0)[0].(yes , 0)[0].ff [1]})Even

where pointers occurring in zero? are described in Figure 4.5.

!N [0]
zero?
(2[1] !N [0]

zero?
(2[1]

q̂[1] q̂[1]

(q̂, 0)[0] (q̂, 0)[0]

(no, 0)[0] (yes , 0)[0]

tt [1] ff [1]

Figure 4.5: The computation of the ifzero strategy zero? : N ⇒ 2.

That is, zero? investigates an input on the domain !N [0] by seeing the first digit

and outputs an answer on the codomain 2[1] accordingly. The computation of zero? is

depicted in Figure 4.5. Clearly, zero? ◦ n+ 1† = tt for all n ∈ N, and zero? ◦ 0† = ff ;

thus, zero? correctly decides if an input is zero. Also, zero? only needs as an input

at most the last three moves of each P-view; again, we omit the detail.

Finally, let us recall dynamic strategies modeling fixed-point combinators [151, 18].

Since their formal definition is rather involved, we give an informal description:

Definition 4.2.7 (Fixed-point strategies [101]). Given a normalized dynamic game

A, the fixed-point strategy fixA : (A[0] ⇒ A[1])⇒ A[2] on A computes as follows:

• After an initial occurrence a[2], fixA copies it and performs the move (a, 0)[1]

with the pointer towards the initial occurrence a[2];

• If Opponent initiates a new thread2 in the inner implication by ((a′, i), j)[0], then

fixA copies it and launches a new thread in the outer implication by performing

the move (a′, 〈i, j〉)[1] with the pointer towards the justifier of the justifier of

((a′, i), j)[0], i.e., the justifier of the second last move of the current P-view

(n.b., recall that 〈 , 〉 is any fixed bijection N× N ∼→ N [46, 181]);

2A thread in a j-sequence s is a j-subsequence of s that consists of moves hereditarily justified by
the same initial occurrence in s; see [14, 129] for its precise definition.

134

• If Opponent performs a move ((a′′, i), j)[0] (resp. (a′′, 0)[1], (a′′, 〈i, j〉)[1], a
′′
[2]) in

an existing thread, then fixA copies it and performs the move (a′′, 〈i, j〉)[1] (resp.

a′′[2], ((a′′, i), j)[0], (a′′, 0)[1]) in the dual thread, i.e., the thread to which the third

last move of the P-view belongs, with the pointer towards the third last move.

A typical play by fixA can be depicted as in Figure 4.6. Note that we cannot give

(!!A[0] (!A[1])
fixA
(A[2]

a
(1)
[2]

(a(1), 0)[1]

(a(2), 0)[1]

a
(2)
[2]

a
(3)
[2]

(a(3), 0)[1]

((a(4), 0), j)[0]

(a(4), 〈0, j〉)[1]

(a(5), 〈0, j〉)[1]

((a(5), 0), j)[0]

((a(6), 0), j′)[0]

(a(6), 〈0, j′〉)[1]

((a(7), 〈0, j′〉), k)[0]

(a(7), 〈〈0, j′〉, k〉)[1]

(a(8), 〈〈0, j′〉, k〉)[1]

((a(8), 〈0, j′〉), k)[0]

Figure 4.6: A computation of the fixed-point strategy fixA : (A⇒ A)⇒ A.

a finite table for fixA, i.e., fixA is not finitary, because there are infinitely many ‘tags’

for exponential which fixA has to handle. Nevertheless, since fixA behaves essentially

in the same way as the dereliction derA (up to ‘tags’ and pointers), it is not hard to

see that fixA only needs to refer to as an input at most the last three moves of each

P-view. More concretely, fixA can be represented by the following infinite table:

(x, y, a[2]) 7→ (a, 0)[1] | (x, y, (a, 0)[1]) 7→ a[2] | (x, y, a[2]) 7→ (a, 0)[1] |

(x, y, (a, (i, j))[0]) 7→ (a, 〈i, j〉)[1] | (x, y, (a, 〈i, j〉)[1]) 7→ (a, (i, j))[0]

where i, j ∈ N, a ∈MA, and x and y denote any moves or �.

We have given all the ‘atomic’ dynamic strategies for PCF-computation. Hence,

we may now define an enumeration of all the dynamic strategies modeling PCF. For

clarity, however, let us first recall the corresponding normalized dynamic strategies,

135

where we regard normalized dynamic games and strategies as conventional (or static)

games and strategies, respectively (see Chapter 3 for the detail):

Definition 4.2.8 (Static strategies for PCF [100, 9, 101, 14]). Let PCF be the least

set of normalized dynamic strategies σ : Sσ that satisfies:

1. σ : Sσ ∈ PCF if σ : Sσ is PCF-atomic, i.e., derA : A ⇒ A, zeroA : A ⇒ N ,

succ : N ⇒ N , pred : N ⇒ N , zero? : N ⇒ 2, caseA : A&A&2 ⇒ A or

fixA : (A ⇒ A) ⇒ A, where A is generated from N , 2 and/or T , by & and/or

⇒ (n.b., the construction of A is ‘orthogonal’ to that of σ : Sσ);

2. Λ(σ) : A ⇒ (B ⇒ C) ∈ PCF if σ : A&B ⇒ C ∈ PCF for some normalized

dynamic games A, B and C;

3. 〈ϕ, ψ〉 : C ⇒ A&B ∈ PCF if ϕ : C ⇒ A,ψ : C ⇒ B ∈ PCF for some

normalized dynamic games A, B and C;

4. ι†;κ : A ⇒ C ∈ PCF if ι : A ⇒ B, κ : B ⇒ C ∈ PCF for some normalized

dynamic games A, B and C.

It is easy to see that PCF contains all the normalized dynamic strategies σ : Sσ

that model PCF [14, 101], where note that projections and evaluations are derelictions

up to ‘tags’, and thus we count them as PCF-atomic ones as well. Note that the

dynamic strategy nT : T ⇒ N , which models the nth-numeral, may be obtained by

zero†T ; succ†; succ† · · · ; succ︸ ︷︷ ︸
n

, and thus nT : T ⇒ N ∈ PCF , for each n ∈ N. Hence,

the set PCF contains all the conventional game semantics of terms of PCF [14, 101]

(except that the dynamic game N is replaced with N).

Now, by replacing composition ()†; () in the inductive construction of the set

PCF with concatenation ()† ‡ () (Definition 3.3.47), and accordingly static currying

and pairing with the generalized ones (Definitions 3.3.49 and 3.3.43), respectively, we

obtain an enumeration of all the dynamic game semantics of terms of PCF:

Definition 4.2.9 (Dynamic strategies for PCF). Let φσ : Dσ be the dynamic strategy

assigned to each element σ : Sσ ∈ PCF by the following induction:

1. φσ : Dσ
df.
= σ : Sσ if σ : Sσ ∈ PCF , and it is PCF-atomic (Definition 4.2.8),

where we call φσ PCF-atomic as well;

2. φΛ(σ)
df.
= Λ(φσ) and DΛ(σ)

df.
= Λ(Dσ) if Λ(σ) : A⇒ (B ⇒ C) ∈ PCF is obtained

from σ : A&B ⇒ C;

136

3. φ〈ϕ,ψ〉
df.
= 〈φϕ, φψ〉 and D〈ϕ,ψ〉

df.
= 〈Dϕ, Dψ〉 if 〈ϕ, ψ〉 : C ⇒ A&B ∈ PCF is

obtained from ϕ : C ⇒ A,ψ : C ⇒ B ∈ PCF ;

4. φι†;κ
df.
= φ†ι ‡ φκ and Dι†;κ

df.
= D†ι ‡ Dκ if ι†;κ : A ⇒ C ∈ PCF is obtained from

ι : A⇒ B, κ : B ⇒ C ∈ PCF .

The set DPCF is then defined by DPCF df.
= {φσ : Dσ | σ : Sσ ∈ PCF }.

In fact, the set DPCF contains all the dynamic strategies modeling PCF as the

following lemma implies:

Lemma 4.2.10 (DPCF-lemma). For each σ : Sσ ∈ PCF , φσ is a dynamic strategy

on a dynamic game Dσ that satisfies Hω(φσ) = σ and Hω(Dσ) P Sσ.

Proof. By induction on the construction of σ : Sσ ∈ PCF :

1. Assume that σ : Sσ ∈ PCF is PCF-atomic (Definition 4.2.8). Then, φσ = σ :

Sσ = Dσ, Hω(φσ) = Hω(σ) = σ and Hω(Dσ) = Hω(Sσ) = Sσ P Sσ.

2. Assume that Λ(σ) : A ⇒ (B ⇒ C) ∈ PCF is constructed from σ : A&B ⇒
C ∈ PCF . Since σ : A&B ⇒ C ∈ PCF , the induction hypothesis implies

that φσ : Dσ, Hω(φσ) = σ and Hω(Dσ) P Sσ = A&B ⇒ C. Thus, Λ(Dσ) is a

dynamic game such that Hω(Λ(Dσ)) P A ⇒ (B ⇒ C). By Lemmata 3.3.30,

3.3.52 and 3.3.29, φΛ(σ) = Λ(φσ) : Λ(Dσ) = DΛ(σ), Hω(φΛ(σ)) = Hω(Λ(φσ)) =

Λ(Hω(φσ)) = Λ(σ) and Hω(DΛ(σ)) = Hω(Λ(Dσ)) P Λ(Hω(Dσ)) P Λ(Sσ).

3. Assume that 〈ϕ, ψ〉 : C ⇒ A&B ∈ PCF is constructed from ϕ : C ⇒
A,ψ : C ⇒ B ∈ PCF . Since ϕ : C ⇒ A,ψ : C ⇒ B ∈ PCF , the in-

duction hypothesis implies that φϕ : Dϕ, Hω(φϕ) = ϕ, Hω(Dϕ) P Sϕ =

C ⇒ A, φψ : Dψ, Hω(φψ) = ψ and Hω(Dψ) P Sψ = C ⇒ B. Thus,

〈Dϕ, Dψ〉 is a dynamic game such that Hω(〈Dϕ, Dψ〉) P C ⇒ A&B. By

Lemmata 3.3.30, 3.3.52 and 3.3.29, φ〈ϕ,ψ〉 = 〈φϕ, φψ〉 : 〈Dϕ, Dψ〉 = D〈ϕ,ψ〉,

Hω(φ〈ϕ,ψ〉) = Hω(〈φϕ, φψ〉) = 〈Hω(φϕ),Hω(φψ)〉 = 〈ϕ, ψ〉 and Hω(D〈ϕ,ψ〉) =

Hω(〈Dϕ, Dψ〉) P 〈Hω(Dϕ),Hω(Dψ)〉 P 〈Sϕ, Sψ〉 = S〈ϕ,ψ〉.

4. Assume that ι†;κ : A⇒ C ∈ PCF is constructed from ι : A⇒ B, κ : B ⇒ C ∈
PCF . The induction hypothesis implies that φι : Dι, Hω(φι) = ι, Hω(Dι) P
Sι = A ⇒ B, φκ : Dκ, Hω(φκ) = κ and Hω(Dκ) P Sκ = B ⇒ C. Thus,

Hω(D†ι) P Hω(Dι)
† P S†ι P A ⇒ !B by Lemmata 3.3.30 and 3.3.29, and

therefore D†ι ‡ Dκ is a dynamic game such that Hω(D†ι ‡ Dκ) P A ⇒ C by

137

Lemma 3.3.30. Finally, by Lemmata 3.3.30, 3.3.52 and 3.3.29, φι†;κ = φ†ι ‡ φκ :

D†ι ‡ Dκ = Dι†;κ, Hω(φι†;κ) = Hω(φ†ι ‡ φκ) = Hω(φι)
†;Hω(φκ) = ι†;κ and

Hω(Dι†;κ) = Hω(D†ι ‡Dκ) P A⇒ C = Sι†;κ

which completes the proof.

Hence, the main problem of the present chapter (see Section 4.1.1) has been

reduced to defining an intrinsic, non-inductive, non-axiomatic notion of ‘effective

computability’ of dynamic strategies that holds for all the elements of the set DPCF .

4.2.3 The Last-Three-Move Lemma

We have seen in the previous section that every PCF-atomic dynamic strategy in

the set DPCF (Definition 4.2.9) refers to as an input at most the last three moves of

each P-view. Also, the second and fourth constructions of DPCF , i.e., currying Λ and

concatenation (and promotion) ()† ‡ (), clearly preserve this property, where note

that concatenation preserves the property because a P-view of a concatenation J ‡K is

either that of J or K, which lies at the heart of our approach to theory of computation,

n.b., it does not hold for composition ()†; () in the set PCF (Definition 4.2.8).

However, the third construction, i.e., pairing 〈 , 〉, does not preserve the property.

To see why it is the case, consider an arbitrary pairing 〈ϕ, ψ〉 : 〈L,R〉 ∈ DPCF , where

Hω(L) P C ⇒ A and Hω(R) P C ⇒ B for some normalized dynamic games A, B

and C. The point is that if the last three moves of a P-view of the dynamic game

〈L,R〉 all come from C, then the pairing 〈ϕ, ψ〉 cannot make a choice between ϕ and

ψ to employ for computing the next P-move.

To overcome this problem, it seems a reasonable idea to allow the pairing 〈ϕ, ψ〉
to refer to the first move of the P-view as well, which must come from A or B.

Note, however, that such a move becomes no longer the first move of a P-view as

soon as the pairing is post-concatenated, i.e., it is not the first move of a P-view

of the concatenation 〈ϕ, ψ〉† ‡ φ : 〈L,R〉 ‡ D with some φ : D ∈ DPCF such that

Hω(D) P A&B ⇒ E for some normalized dynamic game E; hence, it does not suffice

to trace the first move (in addition to the last three moves) of each P-view. For this

point, we distinguish the relevant moves of each P-view as the state of the P-view3:

Definition 4.2.11 (States of P-views). Let φσ : Dσ ∈ DPCF . The state ςDσ(dseDσ)

of each P-view dseDσ ∈ dPDσeDσ such that s 6= ε is the subsequence of dseDσ defined

by the following induction on the construction of σ : Sσ ∈ PCF :

3From Definition 4.2.11, it is clear that each state consists of initial or internal moves only.

138

1. ςDσ(dseDσ)
df.
= dseDσ(1), i.e., the first move of dseDσ , if σ : Sσ ∈ PCF is PCF-

atomic (Definition 4.2.8);

2. ςDΛ(σ)
(dseDΛ(σ)

)
df.
= ςDσ(dseDσ) (up to ‘tags’) if Λ(σ) : A ⇒ (B ⇒ C) ∈ PCF is

constructed from σ : A&B ⇒ C ∈ PCF ;

3. ςD〈ϕ,ψ〉(dseD〈ϕ,ψ〉)
df.
=

{
ςDϕ(ds � DϕeDϕ) if s � A 6= ε

ςDψ(ds � DψeDψ) otherwise
(up to ‘tags’) if 〈ϕ, ψ〉 :

C ⇒ A&B ∈ PCF is constructed from ϕ : C ⇒ A,ψ : C ⇒ B ∈ PCF ;

4. ςD
ι†;κ

(dseD
ι†;κ

)
df.
= ςDι(ds � Dι†eDι†).ςDκ(ds � DκeDκ) (up to ‘tags’) if ι†;κ : A ⇒

C ∈ PCF is constructed from ι : A⇒ B, κ : B ⇒ C ∈ PCF (n.b., ds � Dι†eDι†
forms a P-view of Dι up to ‘tags’).

The provision up to ‘tags’ will be made precise in Section 4.4, particularly in

Definition 4.4.4, but the informal treatment given above should be clear enough and

appropriate for now. Observe that states of P-views contain enough information for

the case analysis on pairing, and therefore they in fact solve the problem raised above.

We are now ready to prove the main result of the present section:

Lemma 4.2.12 (Last-three-move lemma). Each dynamic strategy φσ : Dσ ∈ DPCF
is representable by a partial function (s,m3,m2,m1) 7→ m that assigns the next P-

move m to the quadruple (s,m3,m2,m1) of the last three moves m1, m2 and m3 of

the P-view of a given odd-length position of Dσ and the state s of the P-view.

Proof. By induction on σ : Sσ ∈ PCF . The base case has been already handled in

Section 4.2, and the three induction steps are just straightforward.

4.3 On ‘Tags’ for Disjoint Union of Sets

In the previous section, we have given our game-semantic formulation of high-level

processes of PCF-computation (Definition 4.2.9) and proved that they all satisfy the

‘last-three-move property’ (Lemma 4.2.12). Based on the property, we shall define

low-level computational processes that define ‘effectivity’ of the high-level ones.

In the present section, we formalize, as a preparation, ‘tags’ for disjoint union of

sets of moves that can be manipulated ‘effectively’ (Definitions 4.3.5 and 4.3.6). We

also restrict each internal O-move occurring in a position of a game to a ‘dummy’ of the

previous occurrence of an internal P-move so that the calculation of next internal O-

moves trivial (Definition 4.3.9). This restriction is due to the computability-theoretic

139

motivation of the present chapter: We have to make the calculation of next internal

O-moves ‘effective’ for Player because they are conceptually ‘invisible’ to Opponent.

Let us first formalize ‘tags’ for exponential ! (Definition 2.2.25), which should be

‘effectively’ manipulable. Recall that they are usually natural numbers, where note

that exponential may be applied in an iterated manner, e.g., !!A. Hence, a natural

idea is to employ a binary representation of finite sequences of natural numbers:

Definition 4.3.1 (Effective tags). An effective tag is a finite sequence over the

two-element set Σ = {`, ~}, where ` and ~ are arbitrarily fixed, distinct elements.

Notation. We often abbreviate the sequence `` . . . `︸ ︷︷ ︸
i

by i for each i ∈ N; it would not

be confused with the dynamic strategies n : N (n ∈ N) in practice.

Definition 4.3.2 (Decoding and encoding). The decoding function de : Σ∗ → N∗

and the encoding function en : N∗ → Σ∗ are given by:

de(γ)
df.
= (i1, i2, . . . , ik)

en(j1, j2, . . . , jl)
df.
= j1~ j2~ . . . jl−1~ jl

for all γ ∈ Σ∗ and (j1, j2, . . . , jl) ∈ N∗, where γ = i1~ i2~ . . . ik−1~ ik.

Clearly, the functions de : Σ∗ � N∗ : en are mutually inverses (n.b., they both

map the empty sequence ε to itself). In fact, each effective tag γ ∈ Σ∗ is intended to

be a binary representation of the finite sequence de(γ) ∈ N∗ of natural numbers.

However, effective tags are not sufficient for our purpose: For iterated exponentials

occurring in promotions (Definition 3.3.45) or fixed-point strategies (Definition 4.2.7),

we need to ‘effectively’ associate a natural number to each pair of natural numbers

in an ‘effectively’ invertible manner. Of course it is possible as there is a recursive

bijection N × N ∼→ N whose inverse is recursive too, which is an elementary fact

in computability theory [46, 157], but we cannot rely on it for we are aiming at

developing an autonomous foundation of ‘effective computability’.

On the other hand, such a bijection is necessary only for manipulating effective

tags, and so we would like to avoid an involved mechanism to achieve it. Then, our

solution for this problem is to simply introduce elements to denote the bijection:

Definition 4.3.3 (2e-tags). An extended effective (2e-) tags is an expression

e ∈ (Σ ∪ {H, I})∗, where H and I are arbitrarily fixed elements such that H 6=I and

Σ ∩ {H, I} = ∅, generated by the grammar e
df.≡ γ |e1~e2 | HeI, where γ ∈ Σ∗.

140

Definition 4.3.4 (Extended decoding). The extended decoding function ede :

Σ? → N∗, where Σ? is the set of all 2e-tags, is recursively defined by:

ede(γ)
df.
= de(γ)

ede(e1~e2)
df.
= ede(e1).ede(e2)

ede(HeI)
df.
= (℘ ◦ ede(e))

where ℘ is any recursive bijection N∗ ∼→ N fixed throughout the present chapter such

that ℘(i1, i2, . . . , ik) 6= ℘(j1, j2, . . . , jl) whenever k 6= l (see, e.g., [46]).

Of course, we lose the bijectivity between Σ∗ and N∗ for 2e-tags (since if ede(HeI) =

(i), then ede(i) = (i) but HeI 6= i), but in return, we may ‘effectively execute’ the

bijection ℘ : N∗ ∼→ N by just inserting the elements H, I.4

Definition 4.3.5 (Outer tags). In each 2e-tag e, pairing each occurrence of I with

the most recent yet unpaired occurrence of H, one component of such a pair is called

the mate of the other. The depth of an occurrence of H in e is the number of

previous occurrences of H in e whose mate does not occur before that occurrence, and

the depth of an occurrence of I in e is the depth of its mate in e. An outer tag is

an expression O(e) that is obtained from a 2e-tag e by replacing each occurrence of H
(resp. I) with H.C .d.B (resp. I.C .d.B), where d ∈ N is the depth of the occurrence,

and C and B are arbitrarily fixed, distinct elements such that {C,B}∩{`, ~, H, I} = ∅.

Notation. We write T for the set of all outer tags. We regard the operation O as the

obvious bijection Σ? ∼→ T and define the extended decoding function on outer

tags to be the composition T O−1

→ Σ? ede→ N∗, which we also write ede : T → N∗.

Remark. We have replaced each occurrence of H (resp. I) in 2e-tags with H. C .d.B
(resp. I.C .d.B) only for the computation of m-views (Definition 4.4.3).

On the other hand, a finite number (specifically, just four) of elements suffice as

‘tags’ for constructions on dynamic games other than exponential:

Definition 4.3.6 (Inner tags). Let W , E , N and S be arbitrarily fixed, pairwise

distinct elements. A finite sequence s ∈ {W ,E ,N ,S }∗ is called an inner tag.

Convention. A tag refers to an outer or inner tag.

Using tags, let us focus on dynamic games whose moves are all tagged elements :

4We employ a bijection N∗ ∼→ N, not N× N ∼→ N, for a simple definition of 2e-tags (i.e., so that
the pair H, I may be inserted anywhere in a 2e-tag as long as it is in the ‘well-bracketing’ manner).

141

Definition 4.3.7 (Inner elements). An inner element is a finitely nested pair

(. . . ((m, t1), t2), . . . , tk), usually written mt1t2...tk , such that m is a distinguished ele-

ment, called the substance of mt1t2...tk , and t1t2 . . . tk is an inner tag.

Definition 4.3.8 (Tagged elements). A tagged element is any pair (mt1t2...tk , e),

usually written [m]e, of an inner element mt1t2...tk and an outer tag e.

Notation. We often abbreviate an inner element mt1t2...tk as m when the inner tag

t1t2 . . . tk is not very important.

Definition 4.3.9 (Dynamic games revisited). In the present chapter, a dynamic

game refers to a dynamic game G in the sense defined in Definition 3.3.11 such that:

• Its moves are all tagged elements ;

• The set π1(MG) of all the inner elements is finite;

• It is equipped with a bijection ∆G : MPI
G
∼→MOI

G , called the dummy function,

such that for some finite partial function δG on inner tags if [mt]e ∈ MPI
G ,

[nu]f ∈MOI
G and ∆G([mt]e) = [nu]f , then m = n, e = f , and u = δG(t);

• (D) If s ∈ PG, s = t.p.o′.u.p′.o (resp. s = t.o′.u.p′.o), o ∈MOI
G , o′ ∈MOI

G (resp.

o′ ∈MOE
G), and o′ = Js(p

′), then o = ∆G(p′) and Js(o) = p (resp. Js(o) = p′)

where MOI
G (resp. MPI

G , MOE
G , MPE

G) is the set of all internal O-moves (resp. internal

P-moves, external O-moves, external P-moves) of G.

The set π1(MG) is required to be finite so that each move is distinguishable (for

the computability-theoretic motivation). The dummy function ∆G is to define the

‘dummy’ ∆G([mt]e) ∈ MOI
G of each [mt]e ∈ MPI

G such that they differ only in inner

tags, and the inner tag of the former is obtainable from that of the latter by a finitary

computation δG (so that the computation [mt]e 7→ ∆G([mt]e) is trivial). Then, the

axiom D requires that each internal O-move occurring in a position of G must be

the ‘dummy’ of the last internal P-move, where the involved pointers capture the

phenomenon of concatenation of dynamic games.

Remark. It is straightforward to see that the axiom D is stronger than the axiom DP3

(Definition 3.3.11), and the content of Chapter 3 would not change in essence if we

replace the latter with the former in Definition 3.3.11. It conceptually makes sense

too: The internal part of a play of a dynamic game consists essentially of Player’s

calculations only. On the other hand, dynamic games as defined in Chapter 3 are

simpler and more general than those in the present chapter.

142

Accordingly, we need to adjust the dynamic games N , 2 and T as follows:

Definition 4.3.10 (Lazy natural number game revisited). In the rest of the chapter,

the lazy natural number game refers to the dynamic game N given by:

• MN
df.
= {[q̂], [q], [yes], [no]};

• λN : [q̂] 7→ OQ0, [q] 7→ OQ0, [yes] 7→ PA0, [no] 7→ PA0;

• `N
df.
= {(?, [q̂]), ([q̂], [no]), ([q̂], [yes]), ([q], [no]), ([q], [yes]), ([yes], [q])};

• PN
df.
= Pref({[q̂].([yes].[q])n.[no] | n ∈ N }), where each non-initial occurrence is

justified by the previous occurrence;

• s 'N t
df.⇔ s = t;

• ∆N
df.
= ∅.

Definition 4.3.11 (Boolean game revisited). In the rest of the chapter, the boolean

game refers to the dynamic game 2 given by:

• M2
df.
= {[q̂], [tt], [ff]};

• λ2 : [q̂] 7→ OQ0, [tt] 7→ PA0, [ff] 7→ PA0;

• `2
df.
= {(?, [q̂]), ([q̂], [tt]), ([q̂], [ff])};

• P2
df.
= Pref({[q̂].[tt], [q̂].[ff]}), where [q̂] justifies each non-initial occurrence;

• s '2 t
df.⇔ s = t;

• ∆2
df.
= ∅.

Definition 4.3.12 (Terminal game revisited). In the rest of the chapter, the termi-

nal game refers to the dynamic game T
df.
= (∅, ∅, ∅, {ε}, {(ε, ε)}, ∅).

4.3.1 Constructions on Dynamic Games Revisited

Now, let us implement ‘tags’ for disjoint union of sets of moves for constructions

on dynamic games defined in Section 3.3.3. It is straightforward to see that the

additional axioms on dynamic games imposed in Definition 4.3.9 are all preserved

under the constructions, and therefore we leave the proof to the reader.

Let us begin with tensor ⊗ (Definition 2.2.19):

143

Definition 4.3.13 (Tensor of dynamic games revisited). In the rest of the chapter,

the tensor (product) A⊗B of dynamic games A and B is given by:

• MA⊗B
df.
= {[(a,W)]e | [a]e ∈MA} ∪ {[(b,E)]f | [b]f ∈MB};

• λA⊗B([(m,X)]e)
df.
=

{
λA([m]e) if X = W ;

λB([m]e) if X = E ;

• ? `A⊗B [(m,X)]e
df.⇔ (X = W ∧ ? `A [m]e) ∨ (X = E ∧ ? `B [m]e);

• [(m,X)]e `A⊗B [(n, Y)]f
df.⇔ (X = W = Y ∧ [m]e `A [n]f) ∨ (X = E =

Y ∧ [m]e `B [n]f);

• PA⊗B
df.
= {s ∈ LA⊗B | s � W ∈ PA, s � E ∈ PB }, where s � X (with

X ∈ {W ,E }) is the j-subsequence of s that consists of moves of the form

[(m,X)]e changed into [m]e;

• s 'A⊗B t
df.⇔ (π2 ◦ π1)∗(s) = (π2 ◦ π1)∗(t) ∧ s � W 'A t � W ∧ s � E 'B t � E ;

• ∆A⊗B([(m,X)]e)
df.
=

{
[(m′,W)]e if X = W , where ∆A([m]e) = [m′]e;

[(m′′,E)]e if X = E , where ∆B([m]e) = [m′′]e.

It is easy to see that this is just a possible formalization of Definition 2.2.19 (n.b.,

the same remark holds for other constructions given below, which we shall omit).

Example 4.3.14. Typical plays of the tensor N ⊗N are described in Figure 4.7.

N ⊗ N N ⊗ N
[(q̂,W)] [(q̂,E)]

[(yes ,W)] [(yes ,E)]
[(q̂,E)] [(q,E)]

[(no,E)] [(no,E)]
[(q,W)] [(q̂,W)]
[(no,W)] [(no,W)]

Figure 4.7: Typical plays of the tensor N ⊗N .

We proceed to implement ‘tags’ for linear implication ((Definition 2.2.21):

Definition 4.3.15 (Linear implication between dynamic games revisited). In the rest

of the chapter, the linear implication A(B from a dynamic game A to another

B is given by:

144

• MA(B
df.
= {[(a,W)]e | [a]e ∈MHω(A)} ∪ {[(b,E)]f | [b]f ∈MB};

• λA(B([(m,X)]e)
df.
=

{
λHω(A)([m]e) if X = W ;

λB([m]e) if X = E ;

• ? `A(B [(m,X)]e
df.⇔ X = E ∧ ? `B [m]e;

• [(m,X)]e `A(B [(n, Y)]f
df.⇔

(X = W = Y ∧ [m]e `Hω(A) [n]f)

∨(X = E = Y ∧ [m]e `B [n]f)

∨(X = E ∧ Y = W ∧ ? `B [m]e ∧ ? `Hω(A) [n]f);

• PA(B
df.
= {s ∈ LHω(A)(B | s � W ∈ PHω(A), s � E ∈ PB };

• s 'A(B t
df.⇔ (π2◦π1)∗(s) = (π2◦π1)∗(t)∧s � W 'Hω(A) t � W ∧s � E 'B t � E ;

• ∆A(B([(b,E)]f)
df.
= [(b′,E)]f , where ∆B([b]f) = [b′]f .

Example 4.3.16. Some typical plays of the linear implication 2(2 are described

in Figure 4.8.

2 (2 2 (2
[(q̂,E)] [(q̂,E)]

[(q̂,W)] [(ff ,E)]
[(ff ,W)]

[(tt ,E)]

Figure 4.8: Typical plays of the linear implication 2(2.

Similarly, let us formalize ‘tags’ for product & (Definition 2.2.23):

Definition 4.3.17 (Product of dynamic games revisited). In the rest of the chapter,

the product A&B of dynamic games A and B is given by:

• MA&B
df.
= {[(a,W)]e | [a]e ∈MA } ∪ {[(b,E)]f | [b]f ∈MB};

• λA&B([(m,X)]e)
df.
=

{
λA([m]e) if X = W ;

λB([m]e) if X = E ;

• ? `A&B [(m,X)]e
df.⇔ (X = W ∧ ? `A [m]e) ∨ (X = E ∧ ? `B [m]e);

• [(m,X)]e `A&B [(n, Y)]f
df.⇔ (X = W = Y ∧ [m]e `A [n]f) ∨ (X = E =

Y ∧ [m]e `B [n]f);

145

• PA&B
df.
= {s ∈ LA&B | (s � W ∈ PA ∧ s � E = ε) ∨ (s � W = ε ∧ s � E ∈ PB) };

• s 'A&B t
df.⇔ (π2 ◦ π1)∗(s) = (π2 ◦ π1)∗(t) ∧ s � W 'A t � W ∧ s � E 'B t � E ;

• ∆A&B([(m,X)]e)
df.
=

{
[(m′,W)]e if X = W , where ∆A([m]e) = [m′]e;

[(m′′,E)]e if X = E , where ∆B([m]e) = [m′′]e.

In contrast to product, our formalization of pairing (Definition 3.3.19) is slightly

involved. Therefore, let us first sketch how we implement ‘tags’ for pairing. For a

pairing 〈L,R〉 of dynamic games L and R such that Hω(L) P C (A and Hω(R) P
C (B for some normalized dynamic games A, B and C, we implement ‘tags’ for

the disjoint union M〈L,R〉
df.
= MC + (ML \MC) + (MR \MC) (Definition 3.3.19) by:

• Adding no tags for external moves of the form [(c,W)]e of L or R, where [c]e

must be a move of C by the definition of tags for ((Definition 4.3.15);

• Changing external moves of the form [(a,E)]f of L, where [a]f must be a move

of A, into [((a,W),E)]f ;

• Changing external moves of the form [(b,E)]g of R, where [b]g must be a move

of B, into [((b,E),E)]g;

• Changing internal moves [l]h of L into [(l,S)]h;

• Changing internal moves [r]k of R into [(r,N)]k

where note that we have distinguished the cases by pattern matching on the last digit

of the inner tag and the internal/external (I/E-) parity of each move. These tags are

of course not canonical at all, but they would certainly achieve the required subgame

relation Hω(〈L,R〉) P C (A&B (see Definition 3.3.19 below).

Then, we formalize the labeling function, the enabling relation and the dummy

function of 〈L,R〉 by the obvious pattern matching on inner tags; positions of 〈L,R〉
and the identification of them are formalized in the obvious manner.

However, the enabling relation of 〈L,R〉 is rather involved; thus, for convenience,

we define the peeling peel 〈L,R〉(m) ∈ ML ∪MR of each move m ∈ M〈L,R〉 such that

changing the inner tag of peel 〈L,R〉(m) as defined above produces m, and also the

attribute att 〈L,R〉(m) ∈ {L,R,C} of m by:

att 〈L,R〉(m)
df.
=

L if peel 〈L,R〉(m) ∈ML \MC ;

R if peel 〈L,R〉(m) ∈MR \MC ;

C otherwise (i.e., if peel 〈L,R〉(m) ∈MC).

The enabling relation m `〈L,R〉 n is then easily defined as the conjunction of:

146

• att 〈L,R〉(m) = att 〈L,R〉(n) ∨ att 〈L,R〉(m) = C ∨ att 〈L,R〉(n) = C;

• peel 〈L,R〉(m) `L peel 〈L,R〉(n) ∨ peel 〈L,R〉(m) `R peel 〈L,R〉(n).

Formally, we implement ‘tags’ for pairing of dynamic games as follows:

Notation. Given a dynamic game G, we write MExt
G (resp. M Int

G , M Init
G) for the set of

all external (resp. internal, initial) moves of G.

Definition 4.3.18 (Pairing of dynamic games revisited). In the rest of the chapter,

the pairing 〈L,R〉 of dynamic games L and R such that Hω(L) P C (A and

Hω(R) P C (B for some normalized dynamic games A, B and C is given by:

• M〈L,R〉
df.
= {[(c,W)]e | [(c,W)]e ∈MExt

L ∪MExt
R , [c]e ∈MC}

∪ {[((a,W),E)]f | [(a,E)]f ∈MExt
L , [a]f ∈MA}

∪ {[((b,E),E)]g | [(b,E)]g ∈MExt
R , [b]g ∈MB}

∪ {[(l,S)]h | [l]h ∈M Int
L } ∪ {[(r,N)]k | [r]k ∈M Int

R };

• λ〈L,R〉([(m,X)]e)
df.
=

λC([m]e) if X = W ;

λA([a]e) if X = E and m is of the form (a,W);

λB([b]e) if X = E and m is of the form (b,E);

λL([m]e) if X = S ;

λR([m]e) if X = N ;

• ? `〈L,R〉 [(m,X)]e
df.⇔ X = E ∧ (∃[a]e ∈ M Init

A . m = (a,W) ∨ ∃[b]e ∈ M Init
B . m =

(b,E));

• [(m,X)]e `〈L,R〉 [(n, Y)]f
df.⇔ (att 〈L,R〉([(m,X)]e) = att 〈L,R〉([(n, Y)]f)

∨ att 〈L,R〉([(m,X)]e) = C ∨ att 〈L,R〉([(n, Y)]f) = C) ∧ (peel 〈L,R〉([(m,X)]e) `L
peel 〈L,R〉([(n, Y)]f)∨peel 〈L,R〉([(m,X)]e) `R peel 〈L,R〉([(n, Y)]f)), where the map

att 〈L,R〉 : M〈L,R〉 → {L,R,C} is defined by [(c,W)]e 7→ C, [((a,W),E)]f 7→ L,

[((b,E),E)]g 7→ R, [(l,S)]h 7→ L, [(r,N)]k 7→ R, and the map peel 〈L,R〉 :

M〈L,R〉 → ML ∪ MR by [(c,W)]e 7→ [(c,W)]e, [((a,W),E)]f 7→ [(a,E)]f ,

[((b,E),E)]g 7→ [(b,E)]g, [(l,S)]h 7→ [l]h, [(r,N)]k 7→ [r]k;

• P〈L,R〉
df.
= {s ∈ L〈L,R〉 | (s � L ∈ PL, s � B = ε) ∨ (s � R ∈ PR, s � A = ε) },

where s � L (resp. s � R) is the j-subsequence of s that consists of moves x such

that peel 〈L,R〉(x) ∈ML (resp. peel 〈L,R〉(x) ∈MR) changed into peel 〈L,R〉(x), and

s � B (resp. s � A) is the j-subsequence of s that consists of moves of the form

[((b,E),E)]g with [b]g ∈MB (resp. [((a,W),E)]f with [a]f ∈MA);

147

• s 'L&CR t
df.⇔ (s � A = ε⇔ t � A = ε) ∧ s � L 'L t � L ∨ s � R 'R t � R;

• ∆〈L,R〉([(m,X)]e)
df.
=

{
[(l′,S)]e if X = S , where ∆L([l]e) = [l′]e;

[(r′,N)]e if X = N , where ∆R([r]e) = [r′]e.

It is easy to see that Hω(〈L,R〉) P C (A&B if Hω(L) P C (A and Hω(R) P
C (B, and in particular 〈C (A,C (B〉 = C (A&B, for any normalized

dynamic games A, B and C.

Example 4.3.19. Some typical plays of the pairing 〈2 (2,2 (2〉 are described

in Figure 4.9.

〈2 (2, 2 (2〉
[((q̂,E),E)]

[(q̂,W)]
[(ff ,W)]

[((tt ,E),E)]

〈2 (2, 2 (2〉
[((q̂,W),E)]
[((tt ,W),E)]

Figure 4.9: Typical plays of the pairing 〈2(2,2(2〉.

Next, we implement ‘tags’ for exponential ! (Definition 2.2.25), for which we have

introduced outer tags (Definition 4.3.8):

Notation. We often abbreviate expressions H. C .d.B and I. C .d.B, where d ∈ N, as

Hd and Id, respectively. Given e ∈ T , we write e+ for the expression obtained from e

by replacing each occurrence of Hd (resp. Id) with that of Hd+1 (resp. Id+1).

Definition 4.3.20 (Exponential of dynamic games revisited). In the rest of the

chapter, the exponential !A of a dynamic game A is given by:

• M!A
df.
= {[m]H0f+I0~e | [m]e ∈MA,f ∈ T };

• λ!A([m]H0f+I0~e)
df.
= λA([m]e);

• ? `!A [m]H0f+I0~e
df.⇔ ? `A [m]e;

• [m]H0f+I0~e `!A [m′]H0f ′+I0~e′
df.⇔ f = f ′ ∧ [m]e `A [m′]e′ ;

148

• P!A
df.
= {s ∈ L!A | ∀f ∈ T . s � f ∈ PA ∧ (s � f 6= ε ⇒ ∀g ∈ T . s � g 6= ε ⇒

ede(f) 6= ede(g))}, where s � f is the j-subsequence of s that consists of moves

of the form [m]H0f+I0~e changed into [m]e;

• s '!A t
df.⇔ ∃ϕ ∈ P(N). (π1 ◦ ede ◦ π2)∗(s) = (ϕ ◦ π1 ◦ ede ◦ π2)∗(t) ∧ ∀i ∈ N. s �

ϕ(i) 'A t � i, where s � j denotes s � f such that ede(f) = (j) for each j ∈ N;

• ∆!A([m]H0f+I0~e)
df.
= [m′]H0f+I0~e, where ∆A([m]e) = [m′]e.

Thus, this is a slight modification of Definition 2.2.25 which generalizes moves

[m]i~e to [m]H0f+I0~e, where [m]e ∈ MA, i ∈ N and f ∈ T . Note that an outer tag f

that represents each i ∈ N, i.e., ede(f) = (i), is unique in each position s ∈ P!A.

Example 4.3.21. Typical plays of the exponential !2 are depicted in Figure 4.10.

!2 !2
[q̂]H010I0~ [q̂]H02~3~5I0~
[tt]H010I0~ [tt]H02~3~5I0~
[q̂]H0100I0~ [q̂]H0H12~3I1~5I0~
[ff]H0100I0~ [tt]H0H12~3I1~5I0~

Figure 4.10: Typical plays of the exponential !2.

Next, we formalize promotion ()† on dynamic games (Definition 3.3.21). Given

a dynamic game G such that Hω(G) P !A(B for some normalized dynamic games

A and B, our idea is to formalize ‘tags’ on moves of G† as follows:

• We duplicate moves of G coming from !A, i.e., ones of the form [(a,W)]H0f+I0~e,

as [(a,W)]H0H1g++I1~H1f++I1I0~e for each g ∈ T ;

• We duplicate moves of G coming from B, i.e., ones of the form [(b,E)]e, as

[(b,E)]H0g+I0~e for each g ∈ T ;

• We duplicate internal moves [m]e of G as [(m,S)]H0g+I0~e for each g ∈ T .

where note again that this way of formalizing ‘tags’ is far from canonical, but it

achieves the required subgame relation Hω(G†) P !A(!B (see Definition 4.3.22).

Then, the labeling function, the enabling relation and the dummy function of G†

are again defined by pattern matching on inner tags in the obvious manner. Also,

positions of G† and the identification of them are given by a straightforward general-

ization of those of exponential defined in Definition 4.3.20.

149

Formally, employing peeling and attributes just for convenience (similarly to the

case of pairing), we redefine promotion as follows:

Definition 4.3.22 (Promotion of dynamic games revisited). In the rest of the chap-

ter, given a dynamic game G such that Hω(G) P !A (B for some normalized

dynamic games A and B, the promotion G† of G is given by:

• MG†
df.
= {[(a,W)]H0H1g++I1~H1f++I1I0~e | [(a,W)]H0f+I0~e ∈MExt

G , g ∈ T }
∪ {[(b,E)]H0g+I0~e | [(b,E)]e ∈MExt

G , g ∈ T }
∪ {[(m,S)]H0g+I0~e | [m]e ∈M Int

G , g ∈ T };

• λG†
df.
= λG ◦ peelG† , where peelG† is the function MG† →MG that maps:

[(a,W)]H0H1g++I1~H1f++I1I0~e 7→ [(a,W)]H0f+I0~e

[(b,E)]H0g+I0~e 7→ [(b,E)]e

[(m,S)]H0g+I0~e 7→ [m]e

• ? `G† [(m,X)]f
df.⇔ X = E ∧ ∃g, e ∈ T .f = H0g+I0~e ∧ ? `B [m]e;

• x `G† y
df.⇔ attG†(x) = attG†(y)∧peelG†(x) `G peelG†(y), where attG† is the func-

tion MG† → T that maps [(a,W)]H0H1g++I1~H1f++I1I0~e 7→ g, [(b,E)]H0g+I0~e 7→ g,

[(m,S)]H0g+I0~e 7→ g;

• PG†
df.
= {s ∈ LG† | ∀g ∈ T . s � g ∈ PG ∧ (s � g 6= ε ⇒ ∀h ∈ T . s � h 6= ε ⇒

ede(g) 6= ede(h))}, where s � g is the j-subsequence of s that consists of moves

x such that attG†(x) = g changed into peelG†(x);

• s 'G† t
df.⇔ ∃ϕ ∈ P(N). (℘ ◦ ede ◦ peelG†)

∗(s) = (ϕ ◦ ℘ ◦ ede ◦ peelG†)
∗(t) ∧ ∀i ∈

N. s � ϕ(i) 'G t � i, where s � j for each j ∈ N denotes s � f such that

℘ ◦ ede(f) = j;

• ∆G† : [(m,S)]H0g+I0~e
df.
= [(m′,S)]H0g+I0~e, where ∆G([m]e) = [m′]e.

It is not hard to see that Hω(G†) P !A(!B if Hω(G) P !A(B, in particular

(!A(B)† P !A(!B, for any normalized dynamic games A and B.

Next, we formalize ‘tags’ for concatenation ‡ of dynamic games (Definition 3.3.23).

Again, since our formalization of concatenation is slightly more involved than other

constructions, let us first sketch the idea. Given dynamic games J and K such that

Hω(J) P A(B and Hω(K) P B (C for some normalized dynamic games A, B

and C, we formalize ‘tags’ for the concatenation J ‡K as follows:

150

• We do not change moves of A or C, i.e., ones of the form [(a,W)]e ∈ MExt
J or

[(c,E)]f ∈MExt
K ;

• We change moves of B in J , i.e., external ones of the form [(b,E)]g, into

[((b,E),S)]g;

• We change moves of B in K, i.e., external ones of the form [(b,W)]g, into

[((b,W),N)]g;

• We change internal moves [m]l of J into [(m,S)]l;

• We change internal moves [n]r of K into [(n,N)]r

where we distinguish the cases by the inner tag and the I/E-parity of each move.

Note again that this formalization of ‘tags’ is not canonical at all, but it certainly

achieves the required subgame relation Hω(J ‡K) P A(C (see Definition 4.3.23).

Then again, the labeling function, the enabling relation and the dummy function

of J ‡K are defined by the obvious pattern matching on inner tags, and positions of

J ‡K and the identification of them are defined as usual.

Formally, the concatenation J ‡K of J and K is defined as follows, where it should

be now clear how the peeling peelJ‡K and the attributes attJ‡K given below work:

Definition 4.3.23 (Concatenation of dynamic games revisited). In the rest of the

chapter, given dynamic games J and K such that Hω(J) P A (B and Hω(K) P
B(C for some normalized dynamic games A, B and C, the concatenation J ‡K
of J and K is given by:

• MJ‡K
df.
= {[(a,W)]e | [(a,W)]e ∈MExt

J , [a]e ∈MA}
∪ {[(c,E)]f | [(c,E)]f ∈MExt

K , [c]f ∈MC}
∪ {[((b,E),S)]g | [(b,E)]g ∈MExt

J , [b]g ∈MB}
∪ {[((b,W),N)]g | [(b,W)]g ∈MExt

K , [b]g ∈MB}
∪ {[(m,S)]l | [m]l ∈M Int

J } ∪ {[(n,N)]r | [n]r ∈M Int
K };

• λJ‡K([(m,X)]e)
df.
=

λ+µ
J ([m]e) if X = S ∧ ∃[b]e ∈MB. [m]e = [(b,E)]e ∈MExt

J ;

λJ([m]e) if X = W ∨ (X = S ∧ [m]e ∈M Int
J);

λ+µ
K ([m]e) if X = N ∧ ∃[b]e ∈MB. [m]e = [(b,W)]e ∈MExt

K ;

λK([m]e) if X = E ∨ (X = N ∧ [m]e ∈M Int
K)

where µ
df.
= Sup({µ(J), µ(K)}) + 1 ∈ N;

• ? `J‡K [(m,X)]e
df.⇔ X = E ∧ ? `C [m]e;

151

• [(m,X)]e `J‡K [(n, Y)]f
df.⇔ (attJ‡K([(m,X)]e) = J = attJ‡K([(n, Y)]f)

∧ peelJ‡K([(m,X)]e) `J peelJ‡K([(n, Y)]f)) ∨ (attJ‡K([(m,X)]e) = K

= attJ‡K([(n, Y)]f)∧peelJ‡K([(m,X)]e) `K peelJ‡K([(n, Y)]f))∨(X = N ∧Y =

S ∧ ∃[b]e, [b′]f ∈ M Init
B . m = (b,W) ∧ n = (b,E)), where the map attJ‡K :

MJ‡K → {J,K} is defined by [(a,W)]e 7→ J , [(m,S)]l 7→ J , [((b,E),S)]g 7→ J ,

[(c,E)]f 7→ K, [(n,N)]r 7→ K, [((b,W),N)]g 7→ K, and the map peelJ‡K :

MJ‡K →MJ∪MK by [(a,W)]e 7→ [(a,W)]e, [(c,E)]f 7→ [(c,E)]f , [((b,E),S)]g 7→
[(b,E)]g, [((b,W),N)]g 7→ [(b,W)]g, [(m,S)]l 7→ [m]l, [(n,N)]r 7→ [n]r;

• PJ‡K
df.
= {s ∈ JJ‡K | s � J ∈ PJ , s � K ∈ PK , s � B[1], B[2] ∈ prB }, where

s � J (resp. s � K) is the subsequence of s that consists of moves m such

that attJ‡K(m) = J (resp. attJ‡K(m) = K) but changed into peelJ‡K(m), and

s � B[1], B[2] is the j-subsequence of s that consists of moves in B[1] and B[2],

i.e., moves [((b,X), Y)]e such that [b]e ∈ MB ∧ ((X = E ∧ Y = S) ∨ (X =

W ∧ Y = N)) but changed into [(b,X)]e, for which E
df.
= W and W

df.
= E ;

• s 'J‡K t
df.⇔ (π2 ◦ π1)∗(s) = (π2 ◦ π1)∗(t) ∧ s � J 'J t � J ∧ s � K 'K t � K;

• ∆J‡K([(m,X)]e)
df.
=

[(m′,S)]e if X = S and ∆J([m]e) = [m′]e;

[(m′′,N)]e if X = N and ∆K([m]e) = [m′′]e;

[((b,W),N)]e if X = S , ∆J([m]e) ↑ and m = (b,E);

[((b,E),S)]e if X = N , ∆K([m]e) ↑ and m = (b,W).

It is straightforward to see that Hω(J ‡ K) P A (C if Hω(J) P A (B and

Hω(K) P B (C, in particular (A(B) ‡ (B (C) P A(C, for any normalized

dynamic games A, B and C. Note also that the additional dummy functions of

dynamic games (Definition 4.3.9) are motivated by the phenomenon of moves of B in

the concatenation J ‡K.

Example 4.3.24. Some typical plays of the concatenation (N (N) ‡ (N (N)

are described in Figure 4.11.

Finally, we make the trivial currying Λ (as they just adjust inner tags [14]) precise:

Definition 4.3.25 (Currying of dynamic games revisited). In the rest of the chapter,

if a dynamic game G satisfies Hω(G) P A ⊗ B (C for some normalized dynamic

games A, B and C, then the currying Λ(G) of G is given by:

• MΛ(G)
df.
= {[(a,W)]e | [((a,W),W)]e ∈MExt

G , [a]e ∈MA}
∪ {[((b,W),E)]f | [((b,E),W)]f ∈MExt

G , [b]f ∈MB}
∪ {[((c,E),E)]g | [(c,E)]g ∈MExt

G , [c]g ∈MC} ∪ {[(m,N)]h | [m]h ∈M Int
G };

152

(N (N) ‡ (N (N)
[(q̂,E)]

[((q̂,W),N)]
[((q̂,E),S)]

[(q̂,W)]
[(no,W)]

[((yes ,E),S)]
[((yes ,W),N)]
[((q,W),N)]

[((q,E),S)]
[((no,E),S)]

[((no,W),N)]
[(yes ,E)]
[(q,E)]

[(no,E)]

Figure 4.11: A typical play of the concatenation (N (N) ‡ (N (N).

• λΛ(G) : [(a,W)]e 7→ λG([((a,W),W)]e), [((b,W),E)]f 7→ λG([((b,E),W)]f),

[((c,E),E)]g 7→ λG([(c,E)]g), [(m,N)]h 7→ λG([m]h);

• ? `Λ(G) [m]e
df.⇔ ∃[c]e ∈M Init

C .m = ((c,E),E);

• [m]e `Λ(G) [n]f
df.⇔ peelΛ(G)([m]e) `G peelΛ(G)([n]f), where the function peelΛ(G) :

MΛ(G) →MG maps [(a,W)]e 7→ [((a,W),W)]e, [((b,W),E)]f 7→ [((b,E),W)]f ,

[((c,E),E)]g 7→ [(c,E)]g, [(m,N)]h 7→ [m]h;

• PΛ(G)
df.
= {s ∈ LΛ(G) | peel∗Λ(G)(s) ∈ PG}, where the structure of justifiers in

peel∗Λ(G)(s) is the same as s;

• s 'Λ(G) t
df.⇔ peel∗Λ(G)(s) 'G peel∗Λ(G)(t);

• ∆Λ(G) : [(m,N)]e 7→ [(m′,N)]e, where ∆G : [m]e 7→ [m′]e.

It is easy to see that Hω(Λ(G)) P A((B(C) holds if Hω(G) P A⊗B(C,

which is a generalization of the equation Λ(A⊗B(C) = A((B(C).

Similarly, the uncurrying Λ� of dynamic games is formalized as follows:

Definition 4.3.26 (Uncurrying of dynamic games revisited). In the rest of the chap-

ter, if a dynamic game H satisfies Hω(H) P A ((B (C) for some normalized

dynamic games A, B and C, then its uncurrying Λ�(H) is given by:

153

• MΛ�(H)
df.
= {[((a,W),W)]e | [(a,W)]e ∈MExt

H , [a]e ∈MA}
∪ {[((b,E),W)]f | [((b,W),E)]f ∈MExt

H , [b]f ∈MB}
∪ {[(c,E)]g | [((c,E),E)]g ∈MExt

H , [c]g ∈MC} ∪ {[(m,S)]h | [m]h ∈M Int
H };

• λΛ�(H) : [((a,W),W)]e 7→ λH([(a,W)]e), [((b,E),W)]f 7→ λH([((b,W),E)]f),

[(c,E)]g 7→ λH([((c,E),E)]g), [(m,S)]h 7→ λH([m]h);

• ? `Λ�(H) [m]e
df.⇔ ∃[c]e ∈M Init

C .m = (c,E);

• [m]e `Λ�(H) [n]f
df.⇔ peelΛ�(H)([m]e) `H peelΛ�(H)([n]f), where the function

peelΛ�(H) : MΛ�(H) → MH maps [((a,W),W)]e 7→ [(a,W)]e, [((b,E),W)]f 7→
[((b,W),E)]f , [(c,E)]g 7→ [((c,E),E)]g, [(m,S)]h 7→ [m]h;

• PΛ�(H)
df.
= {s ∈ LΛ�(H) | peel∗Λ�(H)(s) ∈ PH }, where the structure of justifiers

in peel∗Λ�(H)(s) is the same as s;

• s 'Λ�(H) t
df.⇔ peel∗Λ�(H)(s) 'H peel∗Λ�(H)(t).

Dually to currying, Hω(Λ�(H)) P A⊗B(C holds if Hω(H) P A((B(C),

which is a generalization of the equation Λ�(A ((B (C)) = A ⊗ B (C.

Moreover, Λ and Λ� are inverses to each other for normalized dynamic games, i.e.,

Λ ◦ Λ�(A((B (C)) = A((B (C) and Λ� ◦ Λ(A ⊗ B (C) = A ⊗ B (C

for any normalized dynamic games A, B and C.

4.3.2 Constructions on Dynamic Strategies Revisited

Having formalized ‘tags’ for constructions on dynamic games, it is automatically

determined for most cases how to adjust dynamic strategies accordingly. Nevertheless,

for the aim of clarity of our formalization, let us present explicitly such formalized

dynamic strategies and constructions on them (in Section 3.3.5) in this section.

Notation. Henceforth, we often indicate the form of tags of moves [mX1X2...Xk]e of a

dynamic game G informally by [GX1X2...Xk]e, especially when the tags are complex.

Let us first see how PCF-atomic ones (Definition 4.2.9) are formalized:

Example 4.3.27. In the rest of the chapter, the zero strategy zeroA : [!AW]H0e+I0~(

[NE] on a normalized dynamic game A (Definition 4.2.2) is given by:

zeroA
df.
= {ε, [q̂E][noE]}.

The canonical play by zeroA is as in Figure 4.12, which corresponds to Figure 4.1.

154

[!AW]H0e+I0~
zeroA
([NE]

[q̂E]
[noE]

Figure 4.12: The computation of the zero strategy zeroA : A⇒ N revisited.

Example 4.3.28. In the rest of the chapter, the successor strategy succ : [!NW]H0e+I0~(

[NE] (Definition 4.2.3) is given by:

succ
df.
= Pref({[q̂E][q̂W]H0I0~([yesW]H0I0~[yesE][qE][qW]H0I0~)

i[noW]H0I0~[yesE][qE][noE] | i ∈ N})Even.

The computation of succ is described in Figure 4.13, corresponding to Figure 4.2.

[!NW]H0e+I0~
succ
([NE] [!NW]H0e+I0~

succ
([NE]

[q̂E] [q̂E]
[q̂W]H0I0~ [q̂W]H0I0~

[yesW]H0I0~ [noW]H0I0~
[yesE] [yesE]
[qE] [qE]

[qW]H0I0~ [noE]
[yesW]H0I0~

[yesE]
[qE]

[qW]H0I0~
...

[yesW]H0I0~
[yesE]
[qE]

[qW]H0I0~
[noW]H0I0~

[yesE]
[qE]

[noE]

Figure 4.13: The computation of the successor strategy succ : N ⇒ N revisited.

Example 4.3.29. In the rest of the chapter, the predecessor strategy pred : [!NW]H0e+I0~(

[NE] (Definition 4.2.4) is given by:

pred
df.
= Pref({[q̂E][q̂W]H0I0~[yesW]H0I0~[qW]H0I0~([yesW]H0I0~[yesE][qE][qW]H0I0~)

i[noW]H0I0~[noE] |

i ∈ N } ∪ {[q̂E][q̂W]H0I0~[noW]H0I0~[noE]})Even.

The computation of pred is described in Figure 4.14, corresponding to Figure 4.3.

155

[!NW]H0e+I0~
pred
([NE] [!NW]H0e+I0~

pred
([NE]

[q̂E] [q̂E]
[q̂W]H0I0~ [q̂W]H0I0~

[yesW]H0I0~ [noW]H0I0~
[qW]H0I0~ [noE]

[yesW]H0I0~
[yesE]
[qE]

[qW]H0I0~
[yesW]H0I0~

[yesE]
[qE]

[qW]H0I0~
...

[yesW]H0I0~
[yesE]
[qE]

[qW]H
0I0~

[noW]H0I0~
[noE]

Figure 4.14: The computation of the predecessor strategy pred : N ⇒ N revisited.

Example 4.3.30. In the rest of the chapter, the dereliction derA : [!AW]H0f+I0~e (

[AE]e′ on a normalized dynamic game A (Definition 2.3.26) is given by:

derA
df.
= {s ∈ P Even

A⇒A | ∀t � s. Even(t)⇒ t � (W)H0I0~ = t � (E) }

where t � (W)H0I0~ (resp. t � (E)) is the j-subsequence of t that consists of moves

of the form [(a,W)]H0I0~e (resp. [(a′,E)]e′) changed into [a]e (resp. [a′]e′). The

computation of derA may be described as in Figure 4.15.

Now, it should be clear how the following two dynamic strategies are formalized,

and therefore let us skip depicting diagrams of their computations:

Example 4.3.31. The case strategy caseA : [AW W W]H0f+I0~e&[AE W W]H0f ′+I0~e′&[2E W]H0f ′′+I0~ ⇒
[AE]e′′ on a normalized dynamic game A (Definition 4.2.5) in the rest of the chapter

is given by:

caseA
df.
= Pref({[aE]e[q̂E W]H0e+I0~[ttE W]H0e+I0~[aW W W]H0I0~e.s | [aE]e[aW W W]H0I0~e.s ∈ derW

A }

∪ {[aE]f [q̂E W]H0f+I0~[ff E W]H0f+I0~[aE W W]H0I0~f .t | [aE]f [aE W W]H0I0~f .t ∈ derE
A})Even

156

[!AW]H0f+I0~e ([AE]e′

[a
(1)
E]e(1)

[a
(1)
W]H0I0~e(1)

[a
(2)
W]H0I0~e(2)

[a
(2)
E]e(2)

[a
(3)
E]e(3)

[a
(3)
W]H0I0~e(3)

[a
(4)
W]H0I0~e(4)

[a
(4)
E]e(4)

...

Figure 4.15: The computation of the dereliction derA : A⇒ A revisited.

where derW
A : [AW W W]H0f+I0~e ⇒ [AE]g and derE

A : [AE W W]H0f ′+I0~e′ ⇒ [AE]g are the

same as the dereliction derA : [AW]H0f+I0~e ⇒ [AE]g up to inner tags.

Example 4.3.32. In the rest of the chapter, the ifzero strategy zero? : [!NW]H0f+I0~e(

[2E]e′ (Definition 4.2.6) is given by:

zero?
df.
= Pref({[q̂E][q̂W]H0I0~[noW]H0I0~[ttE], [q̂E][q̂W]H0I0~[yesW]H0I0~[ff E]})Even.

Now, let us see how fixed-point strategies are formalized:

Example 4.3.33. The fixed-point strategy fixA : ([AW W]H0g+I0~H0f+I0~e ⇒ [AE W]H0g′+I0~e′)⇒
[AE]e′′ on a normalized dynamic game A (Definition 4.2.7) in the rest of the chapter

plays as follows:

• After an initial occurrence [aE]e, fixA copies it and performs the move [aE W]H0I0~e

with the pointer towards the initial occurrence [aE]e;

• If Opponent initiates a new thread in the inner implication by [a′W W]H0g+I0~H0f+I0~e,

then fixA copies it and launches a new thread in the outer implication by per-

forming the move [a′E W]H0H1g++I1~H1f++I1I0~e with the pointer towards the justifier

of the second last move of the current P-view;

• If Opponent makes a move [a′′W W]H0g+I0~H0f+I0~e (resp. [a′′E W]H0I0~e, [a′′E W]H0H1g++I1~H1f++I1I0~e,

[a′′E]e) in an existing thread, then fixA copies it and performs the next move

[a′′E W]H0H1g++I1~H1f++I1I0~e (resp. [a′′E]e, [a′′W W]H0g+I0~H0f+I0~e, [a′′E W]H0I0~e) in the

dual thread with the pointer towards the third last move of the P-view.

A typical play by fixA is depicted in Figure 4.16, which corresponds to Figure 4.6.

157

([!!AW W]H0g+I0~H0f+I0~e ([!AE W]H0f ′+I0~e′)
fixA
([AE]e′′

[a
(1)
E]e(1)

[a
(1)
E W]H0I0~e(1)

[a
(2)
E W]H0I0~e(2)

[a
(2)
E]e(2)

[a
(3)
E]e(3)

[a
(3)
E W]H0I0~e(3)

[a
(4)
W W]H0I0~H0f+I0~e(4)

[a
(4)
E W]H0H1I1~H1f++I1I0~e(4)

[a
(5)
E W]H0H1I1~H1f++I1I0~e(5)

[a
(5)
W W]H0I0~H0f+I0~e(5)

[a
(6)
W W]H0I0~H0f ′+I0~e(6)

[a
(6)
E W]H0H1I1~H1f ′++I1I0~e(6)

[a
(7)
W W]H0H1I1~H1f ′++I1I0~H0f ′′+I0~e(7)

[a
(7)
E W]H0H1H2I2~H2f ′+++I2I1~H1f ′′++I1I0~e(7)

[a
(8)
E W]H0H1H2I2~H2f ′+++I2I1~H1f ′′++I1I0~e(8)

[a
(8)
W W]H0H1I1~H1f ′++I1I0~H0f ′′+I0~e(8)

Figure 4.16: A play by fixA : (A⇒ A)⇒ A revisited.

Next, let us see by simple examples how the constructions on dynamic strategies

in Section 3.3.5 are formalized.

Example 4.3.34. Consider the tensor succ⊗pred : [!NW W]H0e+I0~⊗ [!NE W]H0e′+I0~(

[NW E]⊗ [NE E]. A typical play by succ ⊗ pred is depicted in Figure 4.17.

Similarly, consider the pairing 〈succ, pred〉 : [!NW]H0e+I0~ ([NW E]&[NE E]. Some

typical plays by 〈succ, pred〉 are described in Figure 4.18.

158

[!NW W]H0e+I0~ ⊗ [!NE W]H0e′+I0~
succ⊗pred
([NW E] ⊗ [NE E]

[q̂E E]
[q̂E W]H0I0~

[yesE W]H0I0~
[qE W]H0I0~

[q̂W E]
[q̂W W]H0I0~
[noW W]H0I0~

[yesW E]
[noE W]H0I0~

[noE E]
[qW E]

[noW E]

Figure 4.17: A typical play by the tensor succ ⊗ pred : N ⊗N (N ⊗N revisited.

[!NW]H0e+I0~
〈succ,pred〉
([NW E] & [NE E]

[q̂W E]
[q̂W]H0I0~
[noW]H0I0~

[yesW E]
[qW E]

[noW E]

[!NW]H0e+I0~
〈succ,pred〉
([NW E] & [NE E]

[q̂E E]
[q̂W]H0I0~

[yesW]H0I0~
[qW]H0I0~
[noW]H0I0~

[noE E]

Figure 4.18: Typical plays by the pairing 〈succ, pred〉 : !N (N&N revisited.

Example 4.3.35. Given a dynamic strategy φ : G such that Hω(G) P !A(!B for

some normalized dynamic games A and B, the promotion φ† : G† of φ is given by:

φ†
df.
= {s ∈ LG† | ∀g ∈ T . s � g ∈ φ }

where s � g is the j-subsequence of s that consists of moves of the form [(b,E)]H0g+I0~e

with [b]e ∈ MB, [(a,W)]H0H1g++I1~H1f++I1I0~e with [a]e ∈ MA, or [(m,S)]H0g+I0~e with

[m]e ∈M Int
G , which are respectively changed into [(b,E)]e, [(a,W)]H0f+I0~e and [m]e.

159

For instance, consider the promotion succ† : [!NW]H0e+I0~ ([!NE]H0e′+I0~. A

typical play by succ† is depicted in Figure 4.19, in which there are two threads, and

succ† behaves as succ in both of the threads.

[!NW]H0eI0~
succ†

([!NE]H0e′I0~
[q̂E]H0e′I0~

[q̂W]H0H1e′I1~H1I1I0~
[yesW]H0H1e′I1~H1I1I0~

[yesE]H0e′I0~
[q̂E]H0e′′I0~

[q̂W]H0H1e′′I1~H1I1I0~
[noW]H0H1e′′I1~H1I1I0~

[yesE]H0e′′I0~
[qE]H0e′I0~

[qW]H0H1e′I1~H1I1I0~
[yesW]H0H1e′I1~H1I1I0~

[yesE]H0e′I0~
[qE]H0e′′I0~

[noE]H0e′′I0~
[qE]H0e′I0~

[qW]H0H1e′I1~H1I1I0~
[noW]H0H1e′I1~H1I1I0~

[yesE]H0e′I0~
[qE]H0e′I0~

[noE]H0e′I0~

Figure 4.19: A typical play by the promotion succ† : !N (!N revisited.

Example 4.3.36. Consider the concatenation succ†‡pred : ([!NW]H0f+I0~([!NE S]H0e+I0~)‡
([!NW N]H0e+I0~([NE]). A typical play by succ† ‡ pred is described in Figure 4.20.

160

[!NW]H0H1I1~H1I1I0~
succ†

([!NE S]H0I0~ ‡ [!NW N]H0I0~
pred
([NE]

[q̂E]
[q̂W N]H0I0~

[q̂E S]H0I0~
[q̂W]H0H1I1~H1I1I0~
[noW]H0H1I1~H1I1I0~

[yesE S]H0I0~
[yesW N]H0I0~
[qW N]H0I0~

[qE S]H0I0~
[noE S]H0I0~

[noW N]H0I0~
[noE]

Figure 4.20: A typical play by the concatenation succ† ‡ pred revisited.

Let us skip currying of dynamic strategies is formalized as it is rather trivial. Note

that we have described how the inductive constructions of elements of the set DPCF
(Definition 4.2.9) are formalized. In other words, we have implemented ‘tags’ for all

the dynamic strategies that model PCF.

4.4 Viable Strategies

Having formalized ‘tags’ for dynamic games and strategies in the previous sections,

we are now ready to introduce a novel notion of ‘effective computability’ or viability

of strategies, and show that viable dynamic strategies subsume all the elements of

the set DPCF (Definition 4.2.9), and therefore they are PCF-complete.

Remark. Most of the concepts introduced below make sense not only for dynamic

games and strategies but also for conventional ones, and thus we often refer to the

latter, rather than the former, indicating that the concepts are defined for both.

Nevertheless, the main theorem (Theorem 4.4.18) holds only for the dynamic variant.

4.4.1 Viable Strategies

The idea of viable strategies is as follows. First, it seems necessary for strategies to

refer only to a bounded number of previous moves in each odd-length position of the

ambient game (to calculate the next P-move) since the set of all odd-length positions

of the game can be infinite, e.g., consider the dynamic game N (Definition 4.3.10).5

5This is analogous to TMs which look at only one cell of an infinite tape at a time.

161

Here, we assume by the axiom D (Definition 4.3.9) that it is ‘effective’ for Player to

compute internal O-moves6, and therefore we shall not consider such computation

for brevity. We then focus on innocent strategies (Definition 2.3.7) as a means to

narrow down previous moves to be concerned with.7 In fact, as already shown by

Lemma 4.2.12, every dynamic strategy that models a term of PCF (Definition 4.2.9)

only needs to read off at most the last three moves of each P-view and the state

(Definition 4.2.11) of the P-view, which are ‘effectively obtainable’ in an informal

sense. Thus, it remains to formulate how these dynamic strategies may ‘effectively’

compute the next P-move from the last three moves and the state.

Then, since the set π1(MG) is finite for any dynamic game G (Definition 4.3.9),

innocent strategies that are finitary in the sense that their partial function repre-

sentations or view functions [100, 14] are finite seem sufficient. However, fixed-point

strategies (Example 4.3.33) in the set DPCF (Definition 4.2.9) need to initiate new

threads unboundedly many times ; also, we need promotion (Example 4.3.35) for the

construction (ι : J, κ : K) 7→ ι† ‡ κ : J† ‡ K of DPCF , in which unboundedly many

outer tags occur. Thus, finitary dynamic strategies are not strong enough.

Then, how can we define a stronger notion of ‘effectivity’ of the next P-move

from (a finite number of) previous moves solely in terms of games and strategies?

Our solution is to define a strategy σ : G to be ‘effective’ or viable if it is ‘describ-

able’ by a finitary strategy, called an instruction strategy. To state it more precisely,

we define for each move m = [m′]e of a game G, where e = e1.e2 . . . ek, the strat-

egy m on a suitable game G(MG), called the instruction game of G, that plays as

q̂.m′.q.e1.q.e2 . . . q.ek.q.X, where each non-initial occurrence in the position is justified

by the previous occurrence (n.b., we omit this trivial justification below). Note that

the font difference between the moves is just for clarity. In this manner, the strat-

egy m : G(MG) encodes the move m. Then, viability of strategies is defined more

precisely as follows: A strategy σ : G is defined to be viable iff 1. it is representable

by a partial function (s,m3,m2,m1) 7→ m, where m1, m2 and m3 are the last move,

the second last move and the third last move of the current P-view, respectively,

and s is the state of the P-view; and 2. it is ‘implementable’ by a finitary strategy

A(σ)ss : G(MG)&G(MG)&G(MG) ⇒ G(MG), called an instruction strategy for σ, in

the sense thatA(σ)ss ◦〈m3
T ,m2

T ,m1
T 〉† = mT : T ⇒ G(MG) for all input-output pairs

6Recall that we need to consider such computation as internal moves are ‘invisible’ to Opponent.
7Of course, there might be another means to ‘effectively’ eliminate irrelevant moves from the

history of previous moves; in fact, we need more than P-views in order to model languages with
states [14] (n.b., they are different from states of P-views), which is left as future work.

162

(s,m3,m2,m1) 7→ m of σ, where 〈m3
T ,m2

T ,m1
T 〉 : T ⇒ G(MG)&G(MG)&G(MG) is

the ternary pairing of the strategies mi
T : T ⇒ G(MG) (i = 1, 2, 3).8

For instance, consider the dynamic strategy min : N ⇒ N that implements the

minimization (N ⇀ N) ⇀ N that maps a given partial function f : N ⇀ N to the

least n ∈ N such that f(n) = 0 if it exists. For simplicity, the domain of min is !N ,

not N ⇒ N ; min informs an input computation of an input number n ∈ N by the

outer tag []H0`nI0~. As described in Figure 4.21 below, min simply investigates if the

input computation gives back zero just by checking the first digit (yes or no) and

adds yes to the output if the input computation gives back non-zero (i.e., if the first

digit is yes). Note that min only needs to refer to at most the last three moves of each

odd-length position (n.b., in this case, they are the last three moves of the P-view of

the position as well). The point here is that the number of outer tags that min has

to manipulate is unbounded (though the manipulation is very simple), and therefore

the strategy is not finitary; however, it is easy to show that the strategy is viable

as follows. First, its partial function representation can be given by the following

infinitary table (n.b., n for []H0`nI0~ given below ranges over all natural numbers):

(�,�, [q̂E]) 7→ [q̂W]H0I0~ | ([q̂E], [q̂W]H0I0~, [yesW]H0I0~) 7→ [yesE] |

([qE], [qW]H0`nI0~, [yesW]H0`nI0~) 7→ [yesE] | ([yesW]H0`nI0~, [yesE], [qE]) 7→ [qW]H0`n+1I0~ |

([qE], [qW]H0`nI0~, [noW]H0`nI0~) 7→ [noE] | ([q̂E], [q̂W]H0I0~, [noW]H0I0~) 7→ [noE]

This high-level computational process is ‘implementable’ by an instruction strat-

egy A(min)s : G(MN⇒N)&G(MN⇒N)&G(MN⇒N) ⇒ G(MN⇒N), which computes

as in Figure 4.22, where the rather trivial pointers and ‘tags’ ()[i] for the game

G(MN⇒N)[0]&G(MN⇒N)[1]&G(MN⇒N)[2] ⇒ G(MN⇒N)[3] are omitted. Clearly, there

is a finite table for A(min)s that maps the last k-moves in the P-view of each odd-

length position to the next P-move for some fixed k ∈ N, proving viability of min.

Observe in particular how the infinitary manipulation of outer tags by min is reduced

to a finitary computation by A(min)s.

This example illustrates why we need viable (not only finitary) dynamic strategies

for Turing completeness, where recall that minimization (in the general form) or an

equivalent construction is vital to construct all partial recursive functions [46]. Also, it

should be clear now why we have to employ composition of strategies without hiding,

i.e., concatenation: An instruction strategy for the concatenation φ† ‡ φ : J† ‡ K of

strategies φ : J and ψ : K can be obtained simply as the disjoint union of instruction

8Recall that given a strategy α : A we define another αT : T ⇒ A that is α up to tags.

163

[!NW]H0eI0~
min
([NE] [!NW]H0eI0~

min
([NE]

[q̂E] [q̂E]
[q̂W]H0I0~ [q̂W]H0I0~

[noW]H0I0~ [yesW]H0I0~
[noE] [yesE]

[qE]
[qW]H0`I0~

[yesW]H0`I0~
[yesE]
[qE]

[qW]H0``I0~
[yesW]H0``I0~

[yesE]
...

[qE]
[qW]H0`nI0~

[yesW]H0`nI0~
[yesE]
[qE]

[qW]H0`n+1I0~
[noW]H0`n+1I0~

[noE]

Figure 4.21: The minimization strategy min : N ⇒ N .

164

G(MN⇒N) & G(MN⇒N) & G(MN⇒N)
A(min)s⇒ G(MN⇒N)

q̂
q̂

q̂E

q̂W

q
X

G(MN⇒N) & G(MN⇒N) & G(MN⇒N)
A(min)s⇒ G(MN⇒N)

q̂
q̂

yesW(noW)
yesE(noE)

q
X

G(MN⇒N) & G(MN⇒N) & G(MN⇒N)
A(min)s⇒ G(MN⇒N)

q̂
q̂

qE

qW
q

q̂
yesW

q
`

`
q

q
`

`
...

q
q
`

`
q

q
X

`
q
X

Figure 4.22: An instruction strategy A(min)s for min : N ⇒ N .

165

strategies for φ† and ψ (see the proof of Theorem 4.4.13 for the detail), but it is not

possible for composition with hiding (in fact, there is no obvious way to construct an

instruction strategy for the composition of φ† and ψ with hiding).

Having explained the idea of viability of strategies, let us proceed to make it

mathematically precise. Let us first formalize instruction games (Definition 4.4.1):

Notation. We assign a symbol m to each element m ∈ π1(MG) for a game G, where

we assume that these symbols are pairwise distinct since the set π1(MG) is finite, and

define Sym(π1(MG))
df.
= {m | m ∈ π1(MG) }. Also, we assign symbols to elements

of outer tags by the map C : ` 7→ ′, ~ 7→], H 7→ 〈, I 7→ 〉 C 7→ �, B 7→ �; let

T
df.
= {′,], 〈, 〉,�,�}. Technically, such a symbolic representation is not necessary at

all; it is rather for conceptual clarity and readability.

Definition 4.4.1 (Instruction games). The instruction game on a game G is the

dynamic game G(MG) given by:

• MG(MG)
df.
= {[q̂], [q], [�], [X]} ∪ {[m] | m ∈ Sym(π1(MG)) } ∪ {[e] | e ∈ T }, where

the elements of MG(MG) are assumed to be pairwise distinct;

• λG(MG) : [q̂] 7→ OQ0, [q] 7→ OQ0, [�] 7→ PA0, [X] 7→ PA0, [m] 7→ PA0, [e] 7→ PA0;

• `G(MG)
df.
= {(?, [q̂]), ([q̂], [�])} ∪ {([q̂], [m]) | m ∈ Sym(π1(MG))} ∪ {([m], [q]) | m ∈

Sym(π1(MG)) } ∪ {([q], [e]) | e ∈ T } ∪ {([e], [q]) | e ∈ T } ∪ {([q], [X])};

• PG(MG)
df.
= Pref({[q̂][�]} ∪ {[q̂][m][q][C (e1)][q][C (e2)] . . . [q][C (ek)][q][X] | m ∈

Sym(π1(MG)), e1e2 . . . ek ∈ T }), where each non-initial occurrence is justified

by the previous occurrence;

• s 'G(MG) t
df.⇔ s = t;

• ∆G(MG)
df.
= ∅.

Convention. We loosely call the dynamic games of the form G(MG)3 ⇒ G(MG), where

G is some game, instruction games as well.

The positions [q̂][m][q][C (e1)][q][C (e2)] . . . [q][C (ek)][q][X] and [q̂].[�] of G(MG) are

to represent the move [m]e1e2...ek ∈ MG and ‘no element’, respectively. Note that

pointers in these positions are trivial, and thus we usually omit them.

Notation. Let G be a game, and [m]e ∈ MG with e = e1e2 . . . ek. We write [m]e for

the strategy on G(MG) given by:

[m]e
df.
= Pref([q̂][m][q][C (e1)][q][C (e2)] . . . [q][C (ek)][q][X])Even

166

and similarly, we define [�]
df.
= Pref({[q̂][�]})Even : G(MG). Given a finite sequence

s = [ml]e(l) [ml−1]e(l−1) . . . [m1]e(1) ∈M∗
G and a natural number n > l, we define sn

df.
=

〈[�], . . . , [�]︸ ︷︷ ︸
n−l

, [ml]e(l) , [ml−1]e(l−1) , . . . , [m1]e(1)〉 : G(MG)n
df.
= G(MG)&G(MG) . . .&G(MG)︸ ︷︷ ︸

n

,

where the n-ary pairing and product abbreviate the (n−1)-times iteration of the usual

(binary) ones from the left. Given any strategy σ : G(MG), we defineM(σ) to be the

unique move in MG such that M(σ) = σ if it exists, and undefined otherwise.

Next, let us introduce a new concept, called m-views (Definition 4.4.3), for the

calculation of ‘relevant’ (and finite) part of outer tags represented by moves occurring

in a position of an instruction game, which is necessary because the number of all

outer tags is infinite.

Definition 4.4.2 (Depths in instruction games). Let G be a game, and [m]e ∈
MG, where e = e1e2 . . . ek. The depth of an occurrence of 〈 or 〉 in a position

[q̂][m][q][C (e1)][q][C (e2)] . . . [q][C (ek)][q][X] of the instruction game G(MG) is the depth

of the corresponding occurrence of H or I in e (Definition 4.3.5).

Definition 4.4.3 (M-views). Let G be a game, s ∈ PG(MG)3⇒G(MG) and d ∈ N. The

matching view (m-view) JsKdG of s up to depth d is the subsequence of s that

consists of occurrences of 〈 or 〉 of depth 6 d.

Note that it is clearly ‘effective’ to calculate the m-view of a given position s of an

instruction game PG(MG)3⇒G(MG) with the help of the explicit representation of depths

of occurrences of 〈 or 〉 in s, which is inherited from Definition 4.3.5.

Let us now formalize finitary strategies G(MG)3 ⇒ G(MG), called instruction

strategies (Definition 4.4.5), that ‘describe’ the low-level computational process of a

given strategy σ : G, whose finite tables are called st-algorithms (Definition 4.4.4).

Notation. Given a finite sequence s = xkxk−1 . . . x1 and a natural number l ∈ N, we

define s � l
df.
=

{
s if l > k;

xlxl−1 . . . x1 otherwise.
A function f : π1(MG)→ {>,⊥}, whereG is

a game, and > and ⊥ are arbitrarily fixed, distinct symbols, induces another function

f ? : M∗
G → π1(MG)∗ defined by f ?([mk]e(k) [mk−1]e(k−1) . . . [m1]e(1))

df.
= milmil−1

. . .mi1 ,

where l 6 k and milmil−1
. . .mi1 is the subsequence of mkmk−1 . . .m1 that consists of

mij such that f(mij) = > for j = 1, 2, . . . , l.

Definition 4.4.4 (St-algorithms). An st-algorithm A on a game G, written A :: G,

is a family A = (Am, |Am|, ‖Am‖)m∈SA of triples of a finite partial function Am :

∂m(POdd
G(MG)3⇒G(MG)&2) ⇀ MG(MG)3⇒G(MG)&2 and natural numbers |Am|, ‖Am‖ ∈ N,

called the view-scope and the mate-scope of Am, respectively, where:

167

• SA ⊆ π1(MG)∗ is a finite set, whose elements are called states ;

• ∂m(tx)
df.
= (tx� |Am|, JtxK‖Am‖

G) for all tx ∈ POdd
G(MG)3⇒G(MG)&2

equipped with the query (function) QA : π1(MG)→ {>,⊥} that satisfies:

• (Q) [m]e ∈M Init
G ⇒ QA(m) = >.

We will see that states of st-algorithms assigned to dynamic strategies for PCF

formalize states of P-views (Definition 4.2.11), and so the axiom Q makes sense.

Remark. Note that it does not make difference if each st-algorithm A :: G focuses on

the P-views of each tx ∈ POdd
G(MG)3⇒G(MG)&2 for dtxe = tx by the trivial pointers.

Definition 4.4.5 (Instruction strategies). Given a game G, an st-algorithm A :: G

and a state m ∈ SA, the instruction strategy Asm of A at m is the strategy on

the game G(MG)3 ⇒ G(MG)&2 defined by:

Asm
df.
= {ε} ∪ {txy ∈ P Even

G(MG)3⇒G(MG)&2 | t ∈ Asm,Am ◦ ∂m(tx) ↓, y = Am ◦ ∂m(tx) }.

where the justifier of y in txy is the obvious, canonical one.

Convention. Given an st-algorithm A :: G and a state m ∈ SA, the instruction

strategy Asm has to specify pointers in PG, which in the present work are always either

the last or the third last occurrence, or the justifier of the second occurrence of the

P-view of each odd-length position of G (as we shall see); it is why Asm is on the game

G(MG)3 ⇒ G(MG)&2, not the instruction game G(MG)3 ⇒ G(MG), so that it may

specify the ternary choice on the justifiers in the component game 2 (by tt , ff or ‘no

answer’). However, since justifiers in PG occurring in this paper are all obvious ones,

we henceforth regard Am and Asm as Am : ∂m(POdd
G(MG)3⇒G(MG)) ⇀ MG(MG)3⇒G(MG)

and Asm : G(MG)3 ⇒ G(MG), respectively, keeping the justifiers implicit.

Remark. Since an st-algorithm A :: G refers to m-views only occasionally, we regard

each Am as a partial function {tx � |Am| | tx ∈ POdd
G(MG)3⇒G(MG)} ⇀ MG(MG)3⇒G(MG)

in most cases. Accordingly, Asm is mostly a strategy on the game G(MG)3 ⇒ G(MG)

whose partial function representation Am is finite.

Thus, an instruction strategy is a strategy on the game G(MG)3 ⇒ G(MG), where

G is a game, that is finitary in the sense that it is representable by a finite partial

function, and therefore it is clearly ‘effective’ in an informal sense. Note that the

number 3 on G(MG)3 comes from Lemma 4.2.12. As already mentioned, our idea is

to utilize such an instruction strategy as a ‘description’ of a strategy on G, which

may be ‘effectively’ read-off by Player:

168

Definition 4.4.6 (Realizability). The strategy st(A) : G realized by an st-algorithm

A :: G is defined by:

st(A)
df.
= {ε} ∪ {sab ∈ P Even

G | s ∈ st(A),As(dsae� 3) ↓, b = As(dsae� 3) }

where As(dsae � 3)
df.' M(AsQ?A(dsae) ◦ (dsae� 3

3
)†), As(dsae � 3) ↓ presupposes

Q?A(dsae) ∈ SA, and the justifier of b in sab is the occurrence specified by AsQ?A(dsae)

(see the convention below Definition 4.4.5).

Clearly, A :: G⇒ st(A) : G holds. We are now ready to define the central notion

of the present work, namely, ‘effective computability’ of strategies:

Definition 4.4.7 (Viability of strategies). A strategy σ : G is viable if there exists

an st-algorithm A :: G that realizes σ, i.e., st(A) = σ.

That is, a strategy σ : G is viable if there is a finitary strategy on G(MG)3 ⇒
G(MG) that ‘describes’ the computation of σ. The terms realize and realizability come

from mathematical logic, in which a realizer refers to some computational information

that ‘realizes’ the constructive truth of a mathematical statement [179].

Given an st-algorithm A :: G that realizes a strategy σ : G, P may ‘effectively’

execute A to compute σ roughly as follows:

1. Given sa ∈ POdd
G , P calculates the current statem

df.
= Q?A(dsae) and the last (up

to) three moves dsae� 3 in the P-view by the query function QA and pointers;9

if m 6∈ SA, then she stops, i.e., the next move is undefined;

2. Otherwise, she composes (dsae� 3
3
)† with Asm, calculating Asm ◦ (dsae� 3

3
)†;

3. Finally, she reads off the next moveM(Asm ◦ (dsae� 3
3
)†) (and its justifier) and

performes that move.

For conceptual clarity, here we assume that P may write down moves [m]e in P-

views as [m]C ∗(e) and execute strategies on instruction games symbolically on her

‘scratch pad’, and also she may read off strategies σ : G(MG) on the ‘scratch pad’

and reproduce them as movesM(σ) ∈MG. This procedure is clearly ‘effective’ in an

informal sense, which is our justification of the notion of viable strategies.

Note that there are two kinds of processes in viable strategies σ : G. The first

one is the process of σ per se whose atomic steps are (sa ∈ POdd
G) 7→ sa.σ(dsae),

9Here, we assume that pointers are represented by directed edges between moves occurring in
positions, and Player may ‘effectively’ calculate P-views by tracing the edges. Note also that the set
SA and the map QA are both finite, and therefore Step 1 is certainly ‘effective’.

169

and the second one is the process of its st-algorithm A whose atomic steps are tx ∈
POdd
G(MG)3⇒G(MG) 7→ tx.Am ◦ ∂m(tx), where m is the current state. The former is

abstract and high-level, while the latter is symbolic and low-level. In this manner, we

have achieved a mathematical formulation of high-level and low-level computational

processes and ‘effective computability’ of the former in terms of the latter.

Henceforth, in order to establish Theorem 4.4.13 later, we shall focus on the

following st-algorithms:

Definition 4.4.8 (Standard st-algorithms). An st-algorithm A :: G is standard iff:

1. The symbol � does not occur in Am for any m ∈ SA;

2. It does not refer to any input outer tag when it computes an inner element, i.e.,

if q̂[3].s.n[3] ∈ Asm : G(MG)[0]&G(MG)[1]&G(MG)[2] ⇒ G(MG)[3], where m ∈ SA
and n ∈ π1(MG), then q[0], q[1] and q[2] do not occur in s;

3. If it refers to an input outer tag, then it must belongs to the last move of the

current P-view of G, i.e., if q occurs as a P-move in some s ∈ Asm, where

m ∈ SA, then the ‘tag’ on the move is ()[2].

Convention. Henceforth, st-algorithms refer to standard ones by default. Of course,

standardness is closed under all constructions on st-algorithms (see the proof of The-

orem 4.4.13), and st-algorithms given below are all standard.

Notation. We write tags for G(MG)3 ⇒ G(MG) informally : We omit outer tags and

write only inner tags informally by numbers, e.g., G(MG)[0]&G(MG)[1]&G(MG)[2] ⇒
G(MG)[3], q̂[0], m[1],][2], etc. For an outer tag e = e1.e2 . . . ek ∈ T , we write e[i] for

the sequence e
[i]
1 .q

[i].e2.q
[i] . . . ek−1.q

[i].e
[i]
k . We write 〈@d and 〉@d, where d ∈ N, for

the expressions 〈� ′d � and 〉 � ′d �, respectively.

Example 4.4.9. The zero strategy zeroA : [AW]H0e+I0~ ⇒ [NE] on any normal-

ized dynamic game A (Example 4.3.27) is viable as we may give an st-algorithm

A(zeroA) that realizes zeroA: QA(zeroA)(m)
df.
=

{
> if m = q̂E ;

⊥ otherwise
, SA(zeroA)

df.
= {q̂E },

|A(zeroA)q̂E |
df.
= 3, ‖A(zeroA)q̂E ‖

df.
= 0 and A(zeroA)q̂E : q̂[3] 7→ noE

[3] | q̂[3]noE
[3]q[3] 7→

X[3]. Then, the instruction strategy A(zeroA)sq̂E plays as:

G(MA⇒N)[0] & G(MA⇒N)[1] & G(MA⇒N)[2]
A(zeroA)sq̂E⇒ G(MA⇒N)[3]

q̂[3]

noE
[3]

q[3]

X[3]

170

Clearly, st(A(zeroA)) = zeroA, proving viability of zeroA, and A(zeroA) is standard.

Example 4.4.10. Let us give an st-algorithm A(succ) that realizes the successor

strategy succ : [NW]H0e+I0~ ⇒ [NE] (Example 4.3.28) by defining QA(succ) similarly to

QA(zero), SA(succ)
df.
= {q̂E }, |A(succ)q̂E |

df.
= 17, ‖A(succ)q̂E ‖

df.
= 0, and A(succ)q̂E as:

q̂[3] 7→ q̂[2] | q̂[3]q̂[2]q̂
[2]
E 7→ q̂

[3]
E | q̂

[3]q̂[2]q̂
[2]
E q̂

[3]
Wq

[3] 7→ 〈[3]| q̂[3]q̂[2]q̂
[2]
E q̂

[3]
Wq

[3]〈[3]q[3] 7→ �[3]|

q̂[3]q̂[2]q̂
[2]
E q̂

[3]
Wq

[3]〈[3]q[3] �[3] q[3] 7→ �[3]| q̂[3]q̂[2]q̂
[2]
E q̂

[3]
Wq

[3]〈[3]q[3] �[3] q[3] �[3] q[3] 7→ 〉[3] |

q̂[3]q̂[2]q̂
[2]
E q̂

[3]
Wq

[3]〈[3]q[3] �[3] q[3] �[3] q[3]〉[3]q[3] 7→ �[3]|

q̂[3]q̂[2]q̂
[2]
E q̂

[3]
Wq

[3]〈[3]q[3] �[3] q[3] �[3] q[3]〉[3]q[3] �[3] q[3] 7→ �[3]|

q̂[3]q̂[2]q̂
[2]
E q̂

[3]
Wq

[3]〈[3]q[3] �[3] q[3] �[3] q[3]〉[3]q[3] �[3] q[3] �[3] q[3] 7→][3] |

q̂[3]q̂[2]q̂
[2]
E q̂

[3]
Wq

[3]〈[3]q[3] �[3] q[3] �[3] q[3]〉[3]q[3] �[3] q[3] �[3] q[3]][3]q[3] 7→ X[3] |

q̂[3]q̂[2]qE
[2] 7→ q̂[0] | q̂[3]q̂[2]qE

[2]q̂[0]noW
[0] 7→ noE

[3] | q̂[3]q̂[2]qE
[2]q̂[0]noW

[0]noE
[3]q[3] 7→ X[3] |

q̂[3]q̂[2]qE
[2]q̂[0]yesW

[0] 7→ qW
[3] | q̂[3]q̂[2]qE

[2]q̂[0]yesW
[0]qW

[3]q[3] 7→ 〈[3]|

q̂[3]q̂[2]qE
[2]q̂[0]yesW

[0]qW
[3]q[3]〈[3]q[3] 7→ �[3]| q̂[3]q̂[2]qE

[2]q̂[0]yesW
[0]qW

[3]q[3]〈[3]q[3] �[3] q[3] 7→ �[3]|

q̂[3]q̂[2]qE
[2]q̂[0]yesW

[0]qW
[3]q[3]〈[3]q[3] �[3] q[3] �[3] q[3] 7→ 〉[3] |

q̂[3]q̂[2]qE
[2]q̂[0]yesW

[0]qW
[3]q[3]〈[3]q[3] �[3] q[3] �[3] q[3]〉[3]q[3] 7→ �[3]|

q̂[3]q̂[2]qE
[2]q̂[0]yesW

[0]qW
[3]q[3]〈[3]q[3] �[3] q[3] �[3] q[3]〉[3]q[3] �[3] q[3] 7→ �[3]|

q̂[3]q̂[2]qE
[2]q̂[0]yesW

[0]qW
[3]q[3]〈[3]q[3] �[3] q[3] �[3] q[3]〉[3]q[3] �[3] q[3] �[3] q[3] 7→][3] |

q̂[3]q̂[2]qE
[2]q̂[0]yesW

[0]qW
[3]q[3]〈[3]q[3] �[3] q[3] �[3] q[3]〉[3]q[3] �[3] q[3] �[3] q[3]][3]q[3] 7→ X[3] |

q̂[3]q̂[2]yesW
[2] 7→ yesE

[3] | q̂[3]q̂[2]yesW
[2]yesE

[3]q[3] 7→ X[3] |

q̂[3]q̂[2]noW
[2] 7→ yesE

[3] | q̂[3]q̂[2]noW
[2]yesE

[3]q[3] 7→ X[3]

Consequently, A(succ)sq̂E plays as:

G(MN⇒N)[0] & G(MN⇒N)[1] & G(MN⇒N)[2]
A(succ)sq̂E⇒ G(MN⇒N)[3]

q̂[3]

q̂[2]

q̂
[2]
E

q̂
[3]
W

q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

X[3]

171

G(MN⇒N)[0] & G(MN⇒N)[1] & G(MN⇒N)[2]
A(succ)sq̂W⇒ G(MN⇒N)[3]

q̂[3]

q̂[2]

qE
[2]

q̂[0]

noW
[0]

noE
[3]

q[3]

X[3]

G(MN⇒N)[0] & G(MN⇒N)[1] & G(MN⇒N)[2]
A(succ)sq̂W⇒ G(MN⇒N)[3]

q̂[3]

q̂[2]

qE
[2]

q̂[0]

yesW
[0]

qW
[3]

q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

X[3]

G(MN⇒N)[0] & G(MN⇒N)[1] & G(MN⇒N)[2]
A(succ)sq̂W⇒ G(MN⇒N)[3]

q̂[3]

q̂[2]

xW
[2]

yesE
[3]

q[3]

X[3]

where x is either yes or no. Clearly, st(A(succ)) = succ, and therefore we have

establishes viability of succ. Also, it is straightforward to see thatA(succ) is standard.

Example 4.4.11. Similarly to zero and succ, we may give an st-algorithm A(pred)

that realizes the predecessor strategy pred : [!NW]H0e+I0~([NE] (Example 4.3.29) as

follows. We define the states, the view- and the mate-scopes, and the query function

of A(pred) to be the same as those of A(succ). At this point, it should suffice to

depict diagrams for A(pred)sq̂E since it is now clear that there is a finite table for the

partial function A(pred)q̂E :

172

G(MN⇒N)[0] & G(MN⇒N)[1] & G(MN⇒N)[2]
A(pred)sq̂E⇒ G(MN⇒N)[3]

q̂[3]

q̂[2]

q̂
[2]
E (qE

[2])

q̂
[3]
W (qW

[3])
q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

X[3]

G(MN⇒N)[0] & G(MN⇒N)[1] & G(MN⇒N)[2]
A(pred)sq̂E⇒ G(MN⇒N)[3]

q̂[3]

q̂[2]

noW
[2]

noE
[3]

q[3]

X[3]

G(MN⇒N)[0] & G(MN⇒N)[1] & G(MN⇒N)[2]
A(pred)sq̂E⇒ G(MN⇒N)[3]

q̂[3]

q̂[2]

yesW
[2]

q̂[1]

q̂
[1]
W

qW
[3]

q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

X[3]

173

G(MN⇒N)[0] & G(MN⇒N)[1] & G(MN⇒N)[2]
A(pred)sq̂E⇒ G(MN⇒N)[3]

q̂[3]

q̂[2]

yesW
[2]

q̂[1]

qW
[1]

yesE
[3]

q[3]

X[3]

Clearly st(A(pred)) = pred , establishing viability of pred . Also, it is easy to see

that A(pred) is standard.

Example 4.4.12. Consider the fixed-point strategy fixA : ([AW W]H0g+I0~H0f+I0~e ⇒
[AE W]H0g′+I0~e′) ⇒ [AE]e′′ on any normalized game A (Example 4.3.33). Clearly,

fixA is not finitary for the calculation of outer tags (as already pointed out before).

It is, however, viable (for any A), which is perhaps surprising to many readers.

Here, let us just informally describe an st-algorithm A(fixA) that realizes fixA as

a preparation for Section 4.4.2. Let QA(fixA)(m) = > df.⇔ m ∈ π1(M Init
(A⇒A)⇒A) and

SA(fixA)
df.
= π1(M Init

(A⇒A)⇒A). Since A(fixA)m does not depend on m, fix an arbitrary

state m ∈ SA(fixA). The instruction strategy A(fixA)sm computes by a case analysis on

the rightmost component of input strategies on G(M(A⇒A)⇒A)3 for A(fixA)sm (which

corresponds to the last occurrence of the current P-view of (A⇒ A)⇒ A):

• If the rightmost component is of the form ([aE]f)†, then A(fixA)sm recognizes

it by the inner tag E , and calculates the next move [aE W]H0I0~f once and for

all for the inner element aE W and ‘digit-by-digit’ for the outer tag H0I0~f (by

producing H0I0~ and then copying f);

• If the rightmost component is of the form ([aE W]H0I0~f)†, then the leftmost com-

ponent (which corresponds to the third last occurrence of the current P-view of

(A ⇒ A) ⇒ A) is of the form ([a′E]f)†, and thus A(fixA)sm recognizes this case

by the inner tags E W and E , and calculates the next move [aE]f once and for

all for the inner element aE and ‘digit-by-digit’ for the outer tag f (by ignoring

H0I0~ and copying f);

• If the rightmost component is of the form ([aE W]H0H1e′++I1~H1e++I1I0~f)†, then

A(fixA)sm calculates the next move [aW W]H0e′+I0~H0e+I0~f similarly to the above

case yet with the help of m-views for the calculation of the outer tag (see

Example 4.4.17 for the detail);

174

• If the rightmost component is of the form ([aW W]H0e′+I0~H0e+I0~f)†, then A(fixA)sm

calculates the next move [aE W]H0H1e′++I1~H1eI1I0~f in a similar manner to the above

case again with the help of m-views (see Example 4.4.17 for the detail).

We now turn to a key theorem, which states that viability of dynamic strategies

are preserved under constructions in Section 3.3.5:

Theorem 4.4.13 (Preservation of viability). Viable dynamic strategies are closed

under tensor ⊗, pairing 〈 , 〉, promotion ()†, concatenation ‡, currying Λ and un-

currying Λ� if the underlying st-algorithms are standard, where the standardness of

the st-algorithms is also preserved.

Proof. Let us first show that tensor ⊗ preserves viability of dynamic strategies. Let

σ : [AW]e ([CE]e′ and τ : [BW]f ([DE]f ′ be viable strategies with st-algorithms

A(σ) and A(τ) realizing σ and τ , respectively. We have to construct an st-algorithm

A(σ ⊗ τ) such that st(A(σ ⊗ τ)) = σ ⊗ τ : [AW W]e ⊗ [BE W]f ([CW E]e′ ⊗ [DE E]f ′ .

Let us define the finite set SA(σ⊗τ) of states and the query QA(σ⊗τ) by:

SA(σ⊗τ)
df.
= {m(k)

W Xk
m

(k−1)
W Xk−1

. . .m
(1)
W X1
|m(k)

Xk
m

(k−1)
Xk−1

. . .m
(1)
X1
∈ SA(σ)}

∪ {n(l)
E Yl
n

(l−1)
E Yl−1

. . . n
(1)
E Y1
|n(l)

Yl
n

(l−1)
Yl−1

. . . n
(1)
Y1
∈ SA(τ)}

QA(σ⊗τ) : aW W 7→ QA(σ)(aW), bE W 7→ QA(τ)(bW), cW E 7→ QA(σ)(cE),

dE E 7→ QA(τ)(dE)

where Xk, Xk−1, . . . , X1, Yl, Yl−1, . . . , Y1 ∈ {W ,E }. Clearly, QA(σ⊗τ) satisfies the ax-

iom Q (Definition 4.4.4). For each m
(k)
Xk
m

(k−1)
Xk−1

. . .m
(1)
X1
∈ SA(σ) and n

(l)
Yl
n

(l−1)
Yl−1

. . . n
(1)
Y1
∈

SA(τ), we construct the finite partial functions A(σ⊗τ)
m

(k)
WXk

m
(k−1)
WXk−1

...m
(1)
WX1

and A(σ⊗
τ)
n

(l)
EYl

n
(l−1)
EYl−1

...n
(1)
EY1

from A(σ)
m

(k)
Xk
m

(k−1)
Xk−1

...m
(1)
X1

and A(τ)
n

(l)
Yl
n

(l−1)
Yl−1

...n
(1)
Y1

simply by changing

symbols mX ∈ Sym(π1(MA(C)) and nY ∈ Sym(π1(MB(D)) into mWX and nEY respec-

tively in their finite tables, where the view-scopes are defined by:

|A(σ ⊗ τ)
m

(k)
WXk

m
(k−1)
WXk−1

...m
(1)
WX1

| df.
= |A(σ)

m
(k)
Xk
m

(k−1)
Xk−1

...m
(1)
X1

|

|A(σ ⊗ τ)
n

(l)
E ln

(l−1)
EYl−1

...n
(1)
EY1

| df.
= |A(τ)

n
(l)
Yl
n

(l−1)
Yl−1

...n
(1)
Y1

|

and the mate-scopes are defined similarly. Then, because a P-view in σ ⊗ τ is either

a P-view in σ or τ (which is shown by induction on the length of positions of σ⊗ τ),

it is easy to see that st(A(σ ⊗ τ)) = σ ⊗ τ holds. Also, it is clear that A(σ ⊗ τ) is

standard since so are A(σ) and A(τ). Intuitively, A(σ ⊗ τ) sees the new digit (W or

175

E) of the current state s ∈ SA(σ⊗τ) and decides A(σ) or A(τ) to apply (n.b. since

QA(σ⊗τ) tracks every initial move by Q, a state must be non-empty).

It is then clear that pairing of dynamic strategies may be handled in a completely

similar manner; currying and uncurrying are even simpler. Hence, let us skip the

proof for these constructions.

Now, consider the concatenation ι ‡ κ : J ‡ K of viable dynamic strategies ι : J

and κ : K such that Hω(J) P A (B and Hω(K) P B (C for some normalized

dynamic games A, B and C. Let A(ι) and A(κ) be standard st-algorithms such that

st(A(ι)) = ι and st(A(κ)) = κ. We define the set SA(ι‡κ) and the map QA(ι‡κ) by:

SA(ι‡κ)
df.
= {n(k)

G(Yk)n
(k−1)
G(Yk−1) . . . n

(1)
G(Y1)m

(l)
F (Xl)

m
(l−1)
F (Xl−1) . . .m

(1)
F (X1) |

m
(l)
Xl
m

(l−1)
Xl−1

. . .m
(1)
X1
∈ SA(ι), n

(k)
Yk
n

(k−1)
Yk−1

. . . n
(1)
Y1
∈ SA(κ)}

QA(ι‡κ) : m
(i)
F (Xi)

7→ QA(ι)(m
(i)
Xi

), n
(j)
G(Yj)

7→ QA(κ)(n
(j)
Yj

)

where F (Xi)
df.
=

{
Xi if m

(i)
Xi
∈MExt

J ∧Xi = W ;

XiS otherwise
for i = 1, 2, . . . , l and G(Yj)

df.
={

Yj if n
(j)
Yj
∈MExt

K ∧ Yj = E ;

YjN otherwise
for j = 1, 2, . . . , k. We construct the finite partial

function A(ι ‡ κ)
n

(k)
G(Yk)

n
(k−1)
G(Yk−1)

...n
(1)
G(Y1)

m
(l)
F (Xl)

m
(l−1)
F (Xl−1)

...m
(1)
F (X1)

(as well as the view- and the

mate-scopes) from A(κ)
n

(k)
Yk
n

(k−1)
Yk−1

...n
(1)
Y1

if l = 0, and from A(ι)
m

(l)
Xl
m

(l−1)
Xl−1

...m
(1)
X1

otherwise,

by modifying the symbols in the table similarly to the case of tensor (where the view-

and the mate-scopes are just inherited). Again, QA(ι‡κ) clearly satisfies the axiom Q.

Because a P-view of ι ‡ κ is a one of κ or a one of ι followed by a one of κ (n.b., it is

crucial here that QA(ι) tracks initial moves by the axiom Q, and � does not occue in

A(ι) for it is standard), we may conclude that st(A(ι ‡κ)) = ι ‡κ. Moreover, A(ι ‡κ)

is clearly standard as so are A(ι) and A(κ).

Finally, assume that ϕ† : [!AW]H0e+I0~f ([!BE]H0e′+I0~f ′ is the promotion of a

viable strategy ϕ : [!AW]H0e+I0~f ([BE]f ′ with an st-algorithm A(ϕ) that realizes ϕ.

As the more general case ϕ : G, where Hω(G) P A⇒ B, is similar (as internal moves

of G† retain new digits of outer tags on moves of !B; see Definition 4.3.22), we focus

on the case ϕ : A⇒ B for simplicity. We define SA(ϕ†)
df.
= SA(ϕ) and QA(ϕ†)

df.
= QA(ϕ).

Then, roughly, the idea is that if ϕmakes the next P-move [aW]H0e+I0~f (resp. [bE]f ′) at

an odd-length position tx of [!AW]H0e+I0~f ([BE]f ′ , then ϕ† at an odd-length position

t′x′ of [!AW]H0e+I0~f ([!BE]H0e′+I0~f ′ that begins with an initial move [b̂E]H0ê+I0~f̂ and

satisfies t′x′ � ê = tx (see Definition 4.3.22 for the definition of t′x′ � ê) makes the

corresponding next P-move [aW]H0H1ê++I1~H1e++I1I0~f (resp. [bE]H0ê+I0~f ′). As opposed

176

to the other constructions, however, the formal definition of the finite table of each

A(ϕ†)m, where m ∈ SA(ϕ†), is rather involved; thus, we just informally describe how

to obtain the table of A(ϕ†)m from that of A(ϕ)m, which should suffice for the reader

to see how to construct the tables if he or she wishes. Fix any s ∈ SA(ϕ†) = SA(ϕ).

1. Let t[m]ẽ[n]e ∈ ϕ and t′[m]ẽ′ [n]e′ ∈ ϕ† such that Q?A(ϕ†)(dt
′[m]ẽe) = s and

t′[m]ẽ′ [n]e′ � ê = t[m]ẽ[n]e, where the first move of the current thread of ϕ† is

of the form [b̂]HêI~f̂ . Let us describe how A(ϕ†)s calculates the representation

n.C ∗(e′) of the next move [n]e′ by a case analysis on m and n:

• If m and n both belong to A, which A(ϕ†)s may recognize by the method

described below, then ẽ, e, ẽ′ and e′ are respectively of the form H0g̃+I0~h̃,

H0g+I0~h, H0H1ê++I1~H1g̃++I1I0~h̃ and H0H1ê++I1~H1g++I1I0~h.10 Then,

with the help of m-views, A(ϕ†)s first calculates n.〈@0〈@1C ∗(ê++)〉@1]

by simulating the computation of n by A(ϕ)s and referring to C ∗(ẽ′),

and computes the remaining 〈@1C ∗(g++)〉@1〉@0]C ∗(h) by simulating the

computation of C ∗(e) by A(ϕ)s (where adding symbols to adjust depths

of 〈 and 〉, and inserting 〉@0 before]). Clearly, A(ϕ†)s is standard.

• If m and n belong to A and B, respectively, then ẽ, e, ẽ′ and e′ are of

the form H0g̃+I0~h̃, h, H0H1ê++I1~H1g̃++I1I0~h̃ and H0êI0~h, respectively.

Again, with the help of m-views, A(ϕ†)s first calculates n.〈@0C ∗(ê+)〉@0]

by simulating the computation of n by A(ϕ)s and referring to C ∗(ẽ′), and

then computes C ∗(h) by simulating the computation of C ∗(e) by A(ϕ)s.

Again, A(ϕ†)s is clearly standard.

• The remaining two cases are completely analogous.

2. It remains to stipulate how A(ϕ†)s distinguishes the above four cases. Assume

q̂[3]vn[3] ∈ A(ϕ)s when A(ϕ)s has computed the inner element n. Note that v

has enough information to identify n, and moves occurring in v all have ‘tags’

()[0], ()[1] or ()[2] (but not ()[3]). Thus, by simulating this computation of n

by A(ϕ)s but replacing n[3] with q̂[2] to learn about m, A(ϕ†)s may recognize

the current case out of the four described above. Specifically, if q̂[3]vn[3]q[3] 7→ x

is the first step for A(ϕ)s to compute e, then correspondingly A(ϕ†)s com-

putes as q̂[3]vn[3]q[3] 7→ v1, q̂[3]vn[3]q[3]v1v2 7→ v3, . . . , q̂[3]vn[3]q[3]v 7→ q[2],

10Note that the outer tags which A(ϕ)s refers to for computing e are only ẽ as A(ϕ) is standard,
and therefore it is clearly possible to adjust the computation of C ∗(e) by A(ϕ) to the computation
of the latter half 〈@1C ∗(g++)〉@1〉@0]C ∗(h) of C ∗(e′) by A(ϕ†) given below.

177

q̂[3]vn[3]q[3]vq[2]m[2] 7→ x′, where x′ is the first step for A(ϕ†)s to compute e′;

and if A(ϕ)s next computes q̂[3]vn[3]q[3]xy 7→ z, then correspondingly A(ϕ†)s

computes as q̂[3]vn[3]q[3]vq[2]m[2]x′y′ 7→ v1, q̂[3]vn[3]q[3]vq[2]m[2]x′y′v1v2 7→ v3, . . . ,

q̂[3]vn[3]q[3]vq[2]m[2]x′y′v 7→ q[2], q̂[3]vn[3]q[3]vq[2]m[2]x′y′vq[2]m[2] 7→ z′, where y′, z′

are the second and the third steps for A(ϕ†)s to compute e′, and so on. That

is, A(ϕ†)s remembers the current case by inserting the sequence vq[2]m[2] (of

length 6 8 without loss of generality) between each computational step. Note

that A(ϕ†) remains to be standard.

It should be clear from the above description how to construct A(ϕ†) from A(ϕ),

completing the proof.

Remark. It is straightforward to see that states of st-algorithms which we have given

for dynamic strategies modeling PCF (Definition 4.2.9) are a precise formalization of

states of P-views (Definition 4.2.11) applied to the dynamic strategies.

4.4.2 Examples of Viable Dynamic Strategies

This section presents various examples of viable dynamic strategies (realized by stan-

dard st-algorithms). These dynamic strategies except fixed-point strategies fixA are

actually finitary; thus, we need viability only for promotion ()† and fixA, both of

which are necessary for the main theorem (Theorem 4.4.18) in Section 4.4.3.

Example 4.4.14. Given a normalized dynamic game A, we define an st-algorithm

A(derA) that realizes the dereliction derA : [!AW]H0I0~e ([AE]e′ (Example 4.3.30)

by QderA(m)
df.
=

{
> if m ∈ π1(M Init

A⇒A)

⊥ otherwise
, SderA

df.
= π1(M Init

A⇒A), |A(derA)m|
df.
= 3 and

‖A(derA)m‖
df.
= 0 for all m ∈ SderA ; given m ∈ SderA , A(derA)sm computes as in the

following diagrams (n.b., we skip defining the table of A(derA)m):

178

G(MA⇒A)[0] & G(MA⇒A)[1] & G(MA⇒A)[2] A(derA)sm⇒ G(MA⇒A)[3]

q̂[3]

q̂[2]

aE
[2]

aW
[3]

q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

q[2]

C (e1)[2]

C (e1)[3]

q[3]

q[2]

C (e2)[2]

C (e2)[3]

...
q[3]

q[2]

C (ek)
[2]

C (ek)
[3]

q[3]

q[2]

X[2]

X[3]

179

G(MA⇒A)[0] & G(MA⇒A)[1] & G(MA⇒A)[2] A(derA)sm⇒ G(MA⇒A)[3]

q̂[3]

q̂[2]

aW
[2]

aE
[3]

q[3]

q[2]

〈@0[2]

q[2]

〉@0[2]

q[2]

][2]

q[2]

C (e1)[2]

C (e1)[3]

q[3]

q[2]

C (e2)[2]

C (e2)[3]

...
q[3]

q[2]

C (ek)
[2]

C (ek)
[3]

q[3]

q[2]

X[2]

X[3]

It is straightforward to see that st(A(derA)) = derA holds, showing viability of

derA. Also, A(derA) is clearly standard.

Example 4.4.15. Given any normalized dynamic game A, we define an st-algorithm

A(caseA) that realizes the case strategy caseA (Example 4.3.31) as follows.

Notation. Given e ∈ T, let us define e+ df.
=

{
� ′ if e = �;

e otherwise.

States and the query function of A(caseA) are similar to those of A(derA), and

the instruction strategy A(caseA)sm for each m ∈ SA(caseA) plays as follows (again, we

skip writing down the table of A(caseA)m), where we write AA
2&2 for A&A&2⇒ A:

180

G(MAA2&2)[0] & G(MAA2&2)[1] & G(MAA2&2)[2] A(caseA)sm⇒ G(MAA2&2)[3]

q̂[3]

q̂[2]

â
[2]
E

q̂
[3]
EW

q[3]

〈@0[3]

q[3]

q[2]

C (e1)[2]

(C (e1)+)[3]

q[3]

q̂[2]

â
[2]
E

q[2]

C (e2)[2]

(C (e2)+)[3]

...
q[3]

q̂[2]

â
[2]
E

q[2]

C (ek)
[2]

(C (ek)
+)[3]

q[3]

q̂[2]

â
[2]
E

q[2]

X[2]

〉@0[3]

q[3]

][3]

q[3]

X[3]

where âE ∈ π1(M Init
AA2&2

), which can be recognized as the set π1(MAA2&2) is finite. The

iteration of q̂[2].â
[2]
E is to distinguish the case from other cases. This remark is applied

to the diagrams in the rest of the chapter.

181

G(MAA2&2)[0] & G(MAA2&2)[1] & G(MAA2&2)[2] A(caseA)sm⇒ G(MAA2&2)[3]

q̂[3]

q̂[2]

ttEW
[2] (ffEW

[2])
q̂[0]

aE
[0]

aWWW
[3] (aEWW

[3])
q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

q[2]

〈@0[2]

q[2]

C (e1)[2]

C (e1)[3]

q[3]

q̂[2]

ttEW
[2] (ffEW

[2])
q[2]

C (e2)[2]

C (e2)[3]

...
q[3]

q̂[2]

ttEW
[2] (ffEW

[2])
q[2]

C (ek)
[2]

C (ek)
[3]

q[3]

q̂[2]

ttEW
[2] (ffEW

[2])
q[2]

〉@0[2]

q̂[2]

ttEW
[2] (ffEW

[2])
q[2]

][2]

q̂[2]

ttEW
[2] (ffEW

[2])
q[2]

X[2]

X[3]
182

G(MAA2&2)[0] & G(MAA2&2)[1] & G(MAA2&2)[2] A(caseA)sm⇒ G(MAA2&2)[3]

q̂[3]

q̂[2]

aWWW
[2] (aEWW

[2])
aE

[3]

q[3]

q̂[2]

aWWW
[2] (aEWW

[2])
q[2]

〈@0[2]

q[2]

〉@0[2]

q[2]

][2]

q[2]

C (e1)[2]

C (e1)[3]

q[3]

q̂[2]

aWWW
[2] (aEWW

[2])
q[2]

C (e2)[2]

C (e2)[3]

...
q[3]

q̂[2]

aWWW
[2] (aEWW

[2])
q[2]

C (ek)
[2]

C (ek)
[3]

q[3]

q̂[2]

aWWW
[2] (aEWW

[2])
q[2]

X[2]

X[3]

183

G(MAA2&2)[0] & G(MAA2&2)[1] & G(MAA2&2)[2] A(caseA)sm⇒ G(MAA2&2)[3]

q̂[3]

q̂[2]

a
[2]
E

q̂[0]

ã
[0]
WWW (ã

[0]
EWW)

aWWW
[3] (aEWW

[3])
q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

q̂[2]

a
[2]
E

q[2]

C (e1)[2]

C (e1)[3]

q[3]

q̂[2]

a
[2]
E

q[2]

C (e2)[2]

C (e2)[3]

...
q[3]

q̂[2]

a
[2]
E

q[2]

C (ek)
[2]

C (ek)
[3]

q[3]

q̂[2]

a
[2]
E

q[2]

X[2]

X[3]

where aE 6∈ π1(M Init
AA2&2

). Clearly, st(A(caseA)) = caseA, and therefore caseA is viable.

Also, it is easy to see that A(caseA) is standard.

Example 4.4.16. Let us next give an st-algorithm A(zero?) that realizes the ifzero

184

strategy zero? (Example 4.3.32): Let QA(zero?)(m)
df.
=

{
> if m = q̂E ;

⊥ otherwise
, SA(zero?)

df.
=

{q̂E }, |A(zero?)q̂E |
df.
= 13, ‖A(zero?)q̂E ‖

df.
= 0, and A(zero?)sq̂E plays as in the following

diagrams (again, we omit the table of A(zero?)q̂E as it should be clear at this point):

G(MN⇒2)[0] & G(MN⇒2)[1] & G(MN⇒2)[2]
A(zero?)sq̂E⇒ G(MN⇒2)[3]

q̂[3]

q̂[2]

q̂
[2]
E

q̂
[3]
W

q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

X[3]

G(MN⇒2)[0] & G(MN⇒2)[1] & G(MN⇒2)[2]
A(zero?)sq̂E⇒ G(MN⇒2)[3]

q̂[3]

q̂[2]

noW
[2] (yesW

[2])

ttE
[3] (ffE

[3])
q[3]

X[3]

We clearly have st(A(zero?)) = zero?, and A(zero?) is standard.

Example 4.4.17. Finally, let us give an st-algorithm A(fixA) that realizes the fixed-

point strategy fixA : ([AW W]H0g+I0~H0f+I0~e ⇒ [AE W]H0g′I0~e′) ⇒ [AE]e′′ on a given

normalized dynamic game A. Note that we have already described fixA informally in

Example 4.3.33; here let us give a more detailed account, but again, it should suffice

to just give diagrams for A(fixA)sm (where m ∈ SfixA is arbitrary).

Notation. Vertical double dots in the middle of ()[i] and ()[i+1] moves in the following

diagram represent ‘copy-cats’ between ()[i] and ()[i+1] moves.

185

G(M(A⇒A)⇒A)[0] & G(M(A⇒A)⇒A)[1] & G(M(A⇒A)⇒A)[2] A(fixA)sm⇒ G(M(A⇒A)⇒A)[3]

q̂[3]

q̂[2]

aE
[2]

aEW
[3]

q[3]

〈@0[3]

q[3]

〉@0[3]

q[3]

][3]

q[3]

q̂[2]

aE
[2]

q[2]

C (e1)[2]

C (e1)[3]

q[3]

q̂[2]

aE
[2]

q[2]

C (e2)[2]

C (e2)[3]

...
q[3]

q̂[2]

aE
[2]

q[2]

C (ek)
[2]

C (ek)
[3]

q[3]

q̂[2]

aE
[2]

q[2]

X[2]

X[3]

186

G(M(A⇒A)⇒A)[0] & G(M(A⇒A)⇒A)[1] & G(M(A⇒A)⇒A)[2] A(fixA)sm⇒ G(M(A⇒A)⇒A)[3]

q̂[3]

q̂[2]

aWW
[2]

aEW
[3]

q[3]

〈@0[3]

q[3]

q[2]

〈@0[2]

〈@1[3]

...
...

q[3]

q[2]

〉@0[2]

〉@1[3]

q[3]

q[2]

][2]

][3]

q[3]

q[2]

〈@0[2]

〈@1[3]

...
...

q[3]

q[2]

〉@0[2]

〉@1[3]

q[3]

〉@0[3]

q[3]

q[2]

][2]

][3]

...
...

q[3]

q[2]

X[2]

X[3]

where we have omitted the iteration of q̂[2].aWW
[2] for the lack of space.

187

G(M(A⇒A)⇒A)[0] & G(M(A⇒A)⇒A)[1] & G(M(A⇒A)⇒A)[2] A(fixA)sm⇒ G(M(A⇒A)⇒A)[3]

q̂[3]

q̂[2]

aEW
[2]

q̂[0]

a′E
[0]

aE
[3]

q[3]

q[2]

〈@0[2]

q[2]

〉@0[2]

q[2]

][2]

q[2]

C (e1)[2]

C (e1)[3]

q[3]

q̂[2]

aEW
[2]

q[2]

C (e2)[2]

C (e2)[3]

...
q[3]

q̂[2]

aEW
[2]

q[2]

C (ek)
[2]

C (ek)
[3]

q[3]

q̂[2]

aEW
[2]

q[2]

X[2]

X[3]

where we have omitted the iteration of q̂[2].aEW
[2].q̂[0].a′E

[0] for the lack of space.

188

G(M(A⇒A)⇒A)[0] & G(M(A⇒A)⇒A)[1] & G(M(A⇒A)⇒A)[2] A(fixA)sm⇒ G(M(A⇒A)⇒A)[3]

q̂[3]

q̂[2]

aEW
[2]

q̂[0]

a′WW
[0]

aWW
[3]

q[3]

q[2]

〈@0[2]

q[2]

〈@1[2]

〈@0[3]

...
...

q[3]

q[2]

〉@1[2]

〉@0[3]

q[3]

q[2]

][2]

][3]

q[3]

q[2]

〈@1[2]

〈@0[3]

...
...

q[3]

q[2]

〉@1[2]

〉@0[3]

q[3]

q[2]

〉@0[2]

q[2]

][2]

][3]

...
...

q[3]

q[2]

X[2]

X[3]

189

where we have omitted the iteration of q̂[2].aEW
[2].q̂[0].a′WW

[0] for the lack of space.

With m-views, there is clearly a finite table A(fixA)m that implements A(fixA)sm.

It is then not hard to see that st(A(fixA)) = fixA holds, showing that fixA is viable.

Also, it is easy to see that A(fixA) is standard.

Note that we have shown that every PCF-atomic elements of the set DPCF
(Definition 4.2.9) is realized by a standard st-algorithm.

4.4.3 PCF-Completeness of Viable Dynamic Strategies

In the last two sections, we have seen through examples that PCF-atomic dynamic

strategies (Definition 4.2.9) are all viable (and realized by standard st-algorithms).

In addition, Theorem 4.4.13 shows that constructions on dynamic strategies preserve

viability. From these two facts, our main theorem immediately follows:

Theorem 4.4.18 (Main theorem I). Every static strategy σ : Sσ definable by PCF

has a viable dynamic strategy φσ : Dσ that satisfies σ = Hω(φσ) : Hω(Dσ) P Sσ.

Proof. By lemma 4.2.10, examples in Sections 4.4.1-4.4.2 and Theorem 4.4.13.

Since PCF is Turing complete [82, 122], this result particularly implies:

Corollary 4.4.19 (Turing completeness). Every partial recursive function f : Nk ⇀

N, where k ∈ N and Nk df.
= N× N · · · × N︸ ︷︷ ︸

k

, has a viable dynamic strategy φf :

Df that satisfies Hω(Df) P N k ⇒ N , where N k df.
= N&N . . .&N︸ ︷︷ ︸

k

, and, for all

(n1, n2, . . . , nk) ∈ Nk, Hω(〈n1, n2, . . . , nk〉† ‡ φf) ' f(n1, n2, . . . , nk).

Proof. Let x1 : N, x2 : N, . . . , xk : N ` F : N be a term of PCF that implements a given

partial recursive function f : Nk ⇀ N, i.e., F[n1/x1, n2/x2, . . . , nk/xk] evaluates to

f(n1, n2, . . . , nk) if f(n1, n2, . . . , nk) is defined and diverges otherwise, for all ni ∈ N
(i = 1, 2, . . . , k), where n : N is the nth-numeral, and F[n1/x1, n2/x2, . . . , nk/xk] is the

result of substituting ni for xi in F for i = 1, 2, . . . , k (see, e.g., [82, 122] for how to con-

struct F from f). Then, there is a normalized dynamic strategy σf : N k ⇒ N in PCF
that interprets F, following the static game semantics of PCF [14]. By Theorem 4.4.18,

there is a viable dynamic strategy φf : Df such that Hω(φf) = σf and Hω(Df) P
N k ⇒ N . Hence, Hω(〈n1, n2, . . . , nk〉† ‡ φf) = Hω(〈n1, n2, . . . , nk〉†);Hω(φf) =

〈n1, n2, . . . , nk〉†;σf ' f(n1, n2, . . . , nk), where the last Kleene equality ' is by the

adequacy [18] of the static game semantics of PCF [100, 14].

190

Remark. Crucially, there is clearly a partial recursive function f : Nk ⇀ N such that

σf is not viable (but φf is viable) by the finitary nature of tables of st-algorithms.

As our game-semantic model of computation is Turing complete, some of the well-

known theorems in computability theory [46, 157] are immediately generalized (in the

sense that they are not restricted to computation on natural numbers):

Corollary 4.4.20 (Generalized smn-theorem). If dynamic strategies σi : T ⇒ Ai, i =

1, 2, . . . , n, and φ : D such that Hω(D) P A1&A2 . . .&An&B1&B2 . . .&Bm ⇒ C are

all realized by (standard) st-algorithms, then we may obtain a (standard) st-algorithm

that realizes a viable dynamic strategy φσ1,σ2,...,σn : DA1,A2,...,An such that:

1. Hω(φσ1,σ2,...,σn) : Hω(DA1,A2,...,An) P T&B1&B2 . . .&Bm ⇒ C;

2. 〈{ε}, τ1, τ2, . . . , τm〉† ‡ φσ1,σ2,...,σn ' 〈σ1, σ2, . . . , σn, τ1, τ2, . . . , τm〉† ‡ φ for any dy-

namic strategies τj : T ⇒ Bj (j = 1, 2, . . . ,m).

Proof. We define φσ1,σ2,...,σn
df.
= Λ�(· · ·Λ�︸ ︷︷ ︸

m

(〈σ1, σ2, . . . , σn〉†‡Λ(· · ·Λ︸ ︷︷ ︸
m

(φ) · · ·)) · · ·), where

the proof of Theorem 4.4.13 describes how to ‘effectively’ obtain a standard st-

algorithm that realizes φσ1,σ2,...,σn in an informal sense.11 Note that Corollary 4.4.19

implies that it is in fact a generalization of the conventional smn-theorem [46].

Corollary 4.4.21 (Generalized FRT). Given a viable dynamic strategy ϕ : D realized

by a standard st-algorithm such that Hω(D) P A⇒ A for some normalized dynamic

game A, there is another viable dynamic strategy σϕ : Dϕ realized by a standard

st-algorithm such that Hω(Dϕ) P T ⇒ A and Hω(σ†ϕ ‡ ϕ) = Hω(σϕ) : T ⇒ A.

Proof. Let Dϕ
df.
= (T ⇒ D)†‡((A⇒ A)⇒ A) and σϕ

df.
= (ϕT)†‡fixA. Then, Hω(Dϕ) =

Hω((T ⇒ D)† ‡ ((A ⇒ A) ⇒ A)) P Hω((T ⇒ !(A ⇒ A)) ‡ ((A ⇒ A) ⇒ A)) P
T ⇒ A by Lemmata 3.3.29 and 3.3.30, and Hω(σ†ϕ ‡ ϕ) = (Hω(ϕT)†; fixA)†;Hω(ϕ) =

Hω(ϕT)†; fixA = Hω((ϕT)† ‡fixA) = Hω(σϕ) by Lemma 3.3.52, where [101] shows that

fixA in fact computes fixed-points. Again, Corollary 4.4.19 implies that it is in fact a

generalization of the conventional first recursion theorem (FRT) [46].

11It is interesting future work to formalize this informal ‘effective computability’ by certain viable
strategies.

191

4.5 Conclusion and Future Work of the Chapter

We have given a novel notion of ‘effective computability’ in game semantics, namely,

viability of strategies. Due to its intrinsic, non-inductive and non-axiomatic natures,

it gives a fundamental investigation of ‘effective’ computation beyond classical one,

where note that viability of strategies makes sense universally, i.e., regardless of

the underlying games (e.g., games do not have to correspond to types of PCF).

Furthermore, our game-semantic model of computation formulates both high-level

and low-level computational processes, and defines ‘effectivity’ of the former in terms

of the latter, which sheds new light on the very notion of computation. For instance,

dynamic strategies n : N may be seen as the definition of natural numbers, and thus

a viable dynamic strategy of the form φ : N k ⇒ N can be regarded as an abstract,

high-level computational process on natural numbers, not on their representations,

and (the table of) an st-algorithm A(φ) that realizes φ can be seen as a ‘symbolic

implementation’ of φ. Moreover, the instruction strategies induced by A(φ) can be

seen as the corresponding low-level computational processes.

There are various directions for further work. First, we need to analyze the

exact computational power of viable dynamic strategies, in comparison with other

known notion of higher-order computability [122]. Also, as an application, the present

framework may give an accurate measure for computational complexity [115], where

note that dynamic games and strategies have already given such a measure via in-

ternal moves, but the present work may refine it further since two single steps in

a dynamic game G may take different numbers of steps in the instruction game

G(MG)3 ⇒ G(MG). Moreover, it may be possible to define computational complexity

relative to that of oracle (or Opponent) computation, which would be an accurate

measure for computational complexity of higher-order computation. It is also of the-

oretical interest to see which theorems in recursion theory can be generalized by the

present framework in addition to the smn- and the first recursion theorems. Neverthe-

less, the most imminent future work is, by exploiting the flexibility of game semantics,

to enlarge the scope of the present work (i.e., not only the language PCF) in order to

establish a computational model of various logics and programming languages. We

are particularly interested in how to apply our approach to non-innocent strategies.

Next, although the solely game-semantic approach gives a novel mathematical

model of computation, one may wonder in terms of the well-established hierarchy of

automata (i.e., the Chomsky hierarchy [33, 169]) which class of automata suffices to

‘implement’ the computation of viable dynamic strategies modeling PCF. Of course

192

it is not very surprising if TMs suffice, but all the symbol manipulations executed

in the low-level computational processes for viable dynamic strategies modeling PCF

are actually very simple and also non-erasing (i.e., a move in a play will never be

erased or replaced once performed). Hence, we are naturally led to ask:

Are there any automata that are strictly weaker than TMs yet powerful

enough to ‘implement’ all the dynamic strategies modeling PCF?

We leave it as future work to answer this question.

Finally, let us propose two more open questions. Since the definition of viable

strategies is somewhat reflexive (as it is via strategies), we may naturally consider

strategies that can be realized by a viable strategy. Let us define such strategies to be

2-viable. More generally, rephrasing viability as 1-viability, we define a strategy to be

(n + 1)-viable if it can be realized by an n-viable strategy for each n ∈ N. Clearly,

any n-viable strategy is ‘effective’ in an informal sense. Then, the first questions is:

Is the class of all (n + 1)-viable dynamic strategies strictly larger than

that of all n-viable strategies for each n ∈ N?

This question seems highly interesting from a theoretical perspective.12 If the answer

is positive for each n ∈ N, then there would be an infinite hierarchy of generalized

viable dynamic strategies. It is then natural to ask the following second question:

Does the hierarchy, if it exists, correspond to any known hierarchy (per-

haps in recursion theory or proof theory)?

We aim to answer these questions as future work as well.

12Note that this question would not have arisen in the first place if we had not defined ‘effective
computability’ of strategies solely in terms of games and strategies.

193

Chapter 5

Game Semantics of MLTT

5.1 Introduction to the Chapter

In this last main chapter, we give a game semantics of Martin-Löf type theory (MLTT)

for the motivation explained in Section 1.3.

5.1.1 Why Difficult?

Since the early 1990’s, game semantics has been highly successful in giving semantics

of various programming languages [9, 100, 139, 117, 94, 13, 12, 97, 6, 8]; thus, it is a

surprising fact that there has been only one game semantics of MLTT established so

far [10], which is not a complete solution either (see Section 5.1.3 for this point).

In contrast, a set-theoretic interpretation of MLTT is relatively straightforward.

A dependent type may be interpreted as a family B = (B(a))a∈A of sets B(a) indexed

by elements a of another set A. Then, a dependent function type (or a Π-type) from

A to B is modeled by a set of functions f : A→
⋃
a∈AB(a) such that f(a) ∈ B(a) for

all a ∈ A, called dependent functions, which is a generalization of a set of functions.

Also, a dependent pair type (or a Σ-type) of A and B is interpreted as a set of pairs

(a, b) of elements a ∈ A and b ∈ B(a), called dependent pairs, which is a generalization

a cartesian product of sets. In fact, there is a domain-theoretic model of MLTT [147]

obtained by sophisticating this idea by order-theoretic structures (though it models

partial (i.e., not every program normalizes) MLTT).

Thus, it would be helpful for understanding the content of the chapter to think of

why it is difficult to give a game semantics of MLTT. A possible answer is:

It is not clear how to interpret type dependency via intensional processes.

Note that such an intensional semantics of MLTT would be meaningful as explained

in Section 1.1 and therefore worth pursuing. A dependent type is not a problem; we

194

may interpret it as a family B of games B(σ) indexed by strategies σ on another

game A. However, since a strategy σ : A is usually ‘gradually revealed’ as a play

proceeds, it seems impossible for Player in the game for the Π-type from A to B to

determine, at the beginning of a play, Opponent’s strategy σ : A in the domain, let

alone the component game B(σ) in the codomain. Moreover, even when a play has

been completed, there might be more than one strategy σ : A that corresponds to the

play. That is, the problem is in the point that we cannot determine a fibre σ → B(σ)

to play. A similar point is applied to games for Σ-types.

5.1.2 Our Solution in a Nutshell

Our solution for the problem is to incorporate an extensional structure into games to

model type dependency in MLTT that is in accordance with the intensional structure

of games. More specifically, we require that the participants of a game have to ‘declare’

their strategies in mind before a play of the game begins. To respect the intensional

nature of games mentioned above, we define the ‘declarations’ by the participants as

‘invisible’ to each other, so that the chosen strategies are still ‘gradually revealed’ as a

play proceeds. In this way, we model type dependency by games in a similar manner

to the domain-theoretic model of MLTT, keeping the intensional nature of games.

This idea leads to a generalization of games, called predicative (p-) games. The

mathematical structure of p-games is radically different from that of conventional

games, and thus it is challenging to give a CCC, let alone a categorical model of

MLTT, of p-games. The main technical achievement of the chapter is to overcome it.

5.1.3 Related Work and Contribution of the Chapter

In the literature, several interpretations of MLTT that may be seen as a mathe-

matical formalization of the meaning explanation (or the BHK-interpretation) have

been proposed: domain models [147] and realizability models [156, 170, 20, 17, 39].

However, domain models interpret programs as (continuous) functions, which cannot

capture dynamics or intensionality of MLTT; realizability models take, as realizers,

e.g., (codes of) TMs or λ-terms, but TMs are too ‘low-level’ to capture type-theoretic

phenomena, and λ-terms are syntax (not suitable for our aim; see Chapter 1).

The game semantics of dependent types [10] is certainly mathematical, syntax-

independent and intensional. This work is definitely a significant achievement: It is

the first game semantics of dependent type theories, and it gives a full completeness

result for a certain fragment of (a variant of) MLTT. However, their mathematical

195

structures are not very novel; their games and strategies are just the variant of [9];

consequently, their model is rather involved and not completely game-semantic in the

following sense. For instance, their interpretation of Π-types is defined by a complex

induction, following the recipe in [8] for the interpretation of (second-order) universal

quantification. Even worse, they interpret Σ-types not by games but (finite) lists of

games with dependency (which are certain families of games indexed by strategies),

called context games ; the name is misleading as a context game is not a game.

More specifically, they define:

• A game with dependency on a game A to be a pair of a game U (B) and a

function B : str(A)→ sub(U (B)), where str(A) is the set of all strategies on A,

and sub(U (B)) is the set of all subgames of U (B);

• A context game to be a finite list (X1, X2, . . . , Xk) such that each element Xi

(i = 1, 2, . . . , k) is a game with dependency on U (X1)&U (X2)& . . .&U (Xi−1).

In other words, they do not give a game-semantic counterpart of Σ-types but just

employ the general list construction which does not exploit any game-semantic struc-

ture. Consequently, they model types and terms of MLTT respectively by context

games and lists of strategies. In this sense, one may say that their model is not

completely game-semantic, and to some degree they lost the conceptual naturality of

game semantics. Moreover, their game semantics does not interpret universes at all.

In contrast, our game semantics of MLTT consists of a novel variant of games,

viz., p-games, which naturally generalizes conventional games. Notably, they are

defined in terms of strategies, which matches the meaning explanation that defines

a formula by specifying its proofs (see Section 5.2); mathematically, it allows us

to interpret Σ-types elegantly. Consequently, we may interpret types and terms of

MLTT respectively by p-games and strategies on them, rather than lists of games

and strategies, and give reasonably simple, natural interpretation of Π- and Σ-types

as well as a cumulative hierarchy of universes. In particular, the interpretation of

universes clarifies the difference between (dependent) types and terms of universes.1

On the other hand, our full completeness result is much weaker than theirs since it

relies on an inductive construction of p-games and strategies though in the presence

of universes a non-inductive full completeness seems much harder to establish.

1This distinction is not always clear, e.g., types and terms of universes are identified in [184].

196

5.1.4 Chapter Outline

This longest chapter is structured as follows. We first recall the syntax of MLTT in

Section 5.2, where we also explain briefly how the meaning explanation extends and

refines the BHK-interpretation of intuitionistic logic. Next, in Section 5.3, we develop

the central notion of p-games, based on which, as the first highlight of the chapter,

we give a category with families (CwF), an abstract model of MLTT, of p-games in

Section 5.4. The CwF of p-games induces an injective (for types built without N-

and Id-types) model of the intensional variant of MLTT equipped with 1-, 0-, N-, Π-,

Σ- and Id-types. It, however, cannot interpret universes completely; also, it is not

surjective. We fix these problems in Section 5.5, by carving out certain elements in

the CwF, giving rise to a recursive, bijective (again for types built without N- and

Id-types) subCwF that interprets types mentioned above as well as the cumulative

hierarchy of universes. We then investigate the degree of intensionality of the resulting

game semantics in terms of several type-theoretic principles in Section 5.6: It refutes

the principles of equality reflection (EqRelf) and function extensionality (FunExt) as

well as univalence axiom (UA), and it validates the principle of uniqueness of identity

proofs (UIP) and Streicher’s three criteria of intensionality (CoI). We finally draw a

conclusion and propose further work in Section 5.7.

5.2 Martin-Löf Type Theory

Let us begin with recalling our target language, (the intensional variant of) MLTT

in the style of [92] except that universes are cumulative, and judgements for types

contain additional information (for universes): the ranks of types. For injectivity of

our interpretation, we adopt the uniqueness (or η-) rules of 1-, Π- and Σ-types.

Note that here we mainly focus on the syntax and just briefly explain the meaning

explanation; for a comprehensive introduction to MLTT, see, e.g., [140, 126].

5.2.1 Judgements

MLTT is a formal logical system similar to natural deduction [65, 180] except that

vertices of a derivation tree are judgements, for which we usually write J . There

are the following six kinds of judgements (followed by their intended meanings):

• ` Γ ctx (Γ is a context);

• Γ ` A typei (A is a type of rank i ∈ N+ in the context Γ);

197

• Γ ` a : A (a is a term (or program) of type A in the context Γ);

• ` Γ ≡ ∆ ctx (Γ and ∆ are judgmentally equal contexts);

• Γ ` A ≡ B typei (A and B are judgmentally equal types of rank i in Γ);

• Γ ` a ≡ a′ : A (a and a′ are judgmentally equal terms of type A in Γ)

where we often omit the subscript i in typei when the rank i is irrelevant (n.b., we may

recover the usual syntax if we completely ignore the ranks). That is, MLTT consists

of axioms J and (inference) rules J1 J2...Jk
J0

, which are to make a conclusion from

hypotheses by constructing a derivation (tree) exactly as natural deduction does.

In Sections 5.2.2–5.2.10 below, we present the axioms and rules of MLTT.

Remark. One may say that there is just a single kind of judgements Γ ` A in natural

deduction, which are intended to mean that ‘the formula A is true in the context Γ’.

Each type construction in MLTT is defined by its formation, introduction,

elimination and computation rules. The formation rule stipulates how to form

the type, and the introduction rule defines the canonical terms (see Section 5.2.11

below) of the type. Then, the elimination and computation rules describe respectively

how to consume the canonical terms and the result of such a consumption (in the

form of an equation), both of which are easily justified by the introduction rule.

As often expressed by ‘MLTT internalizes the Curry-Howard isomorphism’, its

contexts, types and programs are meant to be assumptions (or premises), formulas

and proofs in logic, respectively, as well. Therefore, e.g., the judgement Γ ` a : A can

be read as ‘the formula A has the proof a under the assumption Γ’, and so on.

5.2.2 Contexts

A context is a finite sequence x1 : A1, x2 : A2, . . . , xn : An of pairs of a variable xi and

a type Ai such that the variables x1, x2, . . . , xn are pair-wise distinct. We write ♦ for

the empty context, i.e., the empty sequence ε; we usually omit ♦ when it appears on

the left-hand side of the symbol ` in a judgement.

We have the following axiom and rules for contexts:

` ♦ ctx
(Ctx-Emp)

Γ ` A typei

` Γ, x : A ctx
(Ctx-Ext)

` Γ ≡ ∆ ctx Γ ` A ≡ B typei

` Γ, x : A ≡ ∆, y : B ctx
(Ctx-ExtEq)

198

where x (resp. y) does not occur in Γ (resp. ∆).

The rules Ctx-Emp and Ctx-Ext determine that contexts are exactly finite lists

of pairs of a variable and a type. The rule Ctx-ExtEq is a congruence rule, i.e., it

states that judgmental equality is preserved under ‘context extension’.

Convention. We will skip writing down congruence rules for the other constructions.

5.2.3 Structural Rules

Here, we collect the rules applied to all types as structural rules:

` x1 : A1, x2 : A2, . . . , xn : An ctx

x1 : A1, x2 : A2, . . . , xn : An ` xj : Aj
(Var)

` Γ ctx

` Γ ≡ Γ ctx
(Ctx-EqRefl)

` Γ ≡ ∆ ctx

` ∆ ≡ Γ ctx
(Ctx-EqSym)

` Γ ≡ ∆ ctx ` ∆ ≡ Θ ctx

` Γ ≡ Θ ctx
(Ctx-EqTrans)

Γ ` A typei

Γ ` A ≡ A typei
(Ty-EqRefl)

Γ ` A ≡ B typei

Γ ` B ≡ A typei
(Ty-EqSym)

Γ ` A ≡ B typei Γ ` B ≡ C typei

Γ ` A ≡ C typei
(Ty-EqTrans)

Γ ` a : A

Γ ` a ≡ a : A
(Tm-EqRefl)

Γ ` a ≡ a′ : A

Γ ` a′ ≡ a : A
(Tm-EqSym)

Γ ` a ≡ a′ : A Γ ` a′ ≡ a′′ : A

Γ ` a ≡ a′′ : A
(Tm-EqTrans)

` Γ ≡ ∆ ctx Γ ` A typei

∆ ` A typei
(Ty-Conv)

Γ ` a : A ` Γ ≡ ∆ ctx Γ ` A ≡ B typei

∆ ` a : B
(Tm-Conv)

where j ∈ {1, 2, . . . , n}.
The rule Var states the reasonable idea that we may give an element xj : Aj if it

occurs in the context just by ‘copy-catting’ it. The next nine rules stipulate that

every judgmental equality is an equivalence relation. Finally, the rules Ty-Conv and

199

Tm-Conv formalize the natural phenomenon that judgements are preserved under

the exchange of judgmentally equal contexts and/or types.

The following weakening and substitution rules are admissible (or derivable)

in MLTT, but it is convenient to present them explicitly:

Γ,∆ ` J Γ ` A typei

Γ, x : A,∆ ` J
(Weak)

Γ, x : A,∆ ` J Γ ` a : A

Γ,∆[a/x] ` J[a/x]
(Subst)

where x does not occur in Γ or ∆ for Weak, and not in Γ for Subst, and J[a/x] (resp.

∆[a/x]) denotes the capture-free substitution [85, 92] of a for x in J2 (resp. ∆).

5.2.4 Unit Type

We proceed to introduce specific type constructions. Let us begin with the simplest

type, called the unit type (or the 1-type) 1, which is the type that has just one

canonical term ?. Thus, from the logical point of view, it is the simplest true formula.

Its rules are the following:

` Γ ctx

Γ ` 1 type1
(1-Form)

` Γ ctx

Γ ` ? : 1
(1-Intro)

Γ ` t : 1

Γ ` t ≡ ? : 1
(1-Uniq)

Γ, x : 1 ` C typei Γ ` c : C[?/x] Γ ` t : 1

Γ ` R1(C, c, t) : C[t/x]
(1-Elim)

Γ, x : 1 ` C typei Γ ` c : C[?/x]

Γ ` R1(C, c, ?) ≡ c : C[?/x]
(1-Comp)

Note that 1-Uniq implies 1-Elim and 1-Comp if we define R1(C, c, t)
df.≡ c.

The formation rule 1-Form states that it is an atomic type in the sense that we

may form it without assuming any other type. It has the rank 1 as other atomic types

do; this point will be clear when we have introduced our game-semantic counterpart of

ranks. The introduction rule 1-Intro defines that it has just one canonical term, viz.,

?. Thus, the uniqueness rule 1-Uniq should make sense, from which the remaining

rules 1-Elim and 1-Comp immediately follow.

5.2.5 Empty Type

Next, let us introduce the empty type (or the 0-type), which is the type that has

no canonical term. Thus, it corresponds in logic to the simplest false formula.

2Here, J denotes the righthand side of any judgement.

200

Its rules are the following:

` Γ ctx

Γ ` 0 type1
(0-Form)

Γ, x : 0 ` C typei Γ ` a : 0

Γ ` R0(C, a) : C[a/x]
(0-Elim)

The formation rule 0-Form is the same as that of the 1-type. The elimination rule

0-Elim corresponds in logic to ex falso, i.e., ‘anything follows from a contradiction’.

The 0-type has no introduction or computation rule since it has no canonical term.

5.2.6 Natural Number Type

We proceed to introduce an important atomic type, called the natural number type

(or the N-type), which is, as the name indicates, the type of natural numbers.

Its rules are the following:

` Γ ctx

Γ ` N type1
(N-Form)

` Γ ctx

Γ ` zero : N
(N-IntroZ)

Γ ` n : N

Γ ` succ(n) : N
(N-IntroS)

Γ, x : N ` C typei Γ ` cz : C[zero/x] Γ, x : N, y : C ` cs : C[succ(x)/x] Γ ` n : N

Γ ` RN(C, cz, cs, n) : C[n/x]
(N-Elim)

Γ, x : N ` C typei Γ ` cz : C[zero/x] Γ, x : N, y : C ` cs : C[succ(x)/x]

Γ ` RN(C, cz, cs, zero) ≡ cz : C[zero/x]
(N-CompZ)

Γ, x : N ` C typei Γ ` cz : C[zero/x]

Γ, x : N, y : C ` cs : C[succ(x)/x] Γ ` n : N

Γ ` RN(C, cz, cs, succ(n)) ≡ cs[n/x,RN(C, cz, cs, n)/y] : C[succ(n)/x]
(N-CompS)

Again, the formation rule N-Form states that the N-type is an atomic type. The

introduction rules N-IntroZ and N-IntroZ inductively determine the canonical terms:

zero (for 0 ∈ N) and succ(n) if so is n (for n ∈ N⇒ n+ 1 ∈ N). The elimination rule

N-Elim represents both mathematical induction and primitive recursion: To show

a predicate C over N, it suffices to prove C(zero) and C(n) implies C(succ(n)), or

equivalently under the Curry-Howard isomorphism, to define a (dependent) function

f from N to C, it suffices to define its outputs f(zero) on zero and f(succ(n)) on succ(n)

in terms of f(n) and n. It makes sense since canonical terms of the N-type are exactly

zero and successors. Finally, the computation rules N-CompZ and N-CompS stipulate

the expected behavior of proofs or computations generated by N-Elim.

Notation. Given a context ` Γ ctx and a natural number n ∈ N, we define the term

Γ ` n : N, called the nth-numeral, by induction on n as follows:

201

• (Base Case) Γ ` 0
df.≡ zero : N;

• (Inductive Step) Γ ` n + 1
df.≡ succ(n) : N.

The nth-numeral is intended to represent the natural number n.

5.2.7 Dependent Function Types

Now, let us introduce a central non-atomic type construction, called dependent

function types (or Π-types). The Π-type Πx:AB(x) is intended to represent the

space of dependent functions from A to B as described in Section 5.1.1.

The rules of Π-types are the following:

Γ ` A typei Γ, x : A ` B typej

Γ ` Πx:AB typemax(i,j)
(Π-Form)

Γ, x : A ` b : B

Γ ` λxA.b : Πx:AB
(Π-Intro)

Γ ` f : Πx:AB Γ ` a : A

Γ ` f(a) : B[a/x]
(Π-Elim)

Γ, x : A ` b : B Γ ` a : A

Γ ` (λxA.b)(a) ≡ b[a/x] : B[a/x]
(Π-Comp)

Γ ` f : Πx:AB

Γ ` λxA.f(x) ≡ f : Πx:AB
(Π-Uniq)

where x does not occur free in f for Π-Uniq.

The formation rule Π-Form states that we may form the Π-type Πx:AB from types

A and B, where B may depend on A. The introduction rule Π-Intro defines how to

construct the canonical terms of Πx:AB; it is the usual way of defining a function f

from A to B, i.e., to specify its output f(a) : B[a/x] on each input a : A. Then, the

elimination and computation rules Π-Elim and Π-Comp should make sense. Finally,

the uniqueness rule Π-Uniq stipulates that terms of Π-types are only canonical ones.

5.2.8 Dependent Pair Types

Another important type construction is dependent sum types (or Σ-types), which

represent the spaces of dependent pairs again as explained in Section 5.1.1.

202

The rules of Σ-types are the following:

Γ ` A typei Γ, x : A ` B typej

Γ ` Σx:AB typemax(i,j)
(Σ-Form)

Γ, x : A ` B type Γ ` a : A Γ ` b : B[a/x]

Γ ` 〈a, b〉 : Σx:AB
(Σ-Intro)

Γ, z : Σx:AB ` C typei Γ, x : A, y : B ` g : C[〈x, y〉/z] Γ ` p : Σx:AB

Γ ` RΣ([z : Σx:AB]C, [x : A, y : B]g, p) : C[p/z]
(Σ-Elim)

Γ, z : Σx:AB ` C typei Γ, x : A, y : B ` g : C[〈x, y〉/z] Γ ` a : A Γ ` b : B[a/x]

Γ ` RΣ([z : Σx:AB]C, [x : A, y : B]g, 〈a, b〉) ≡ g[a/x, b/y] : C[〈a, b〉/z]
(Σ-Comp)

Γ ` p : Σx:AB

Γ ` 〈πA,B
1 (p), πA,B

2 (p)〉 ≡ p : Σx:AB
(Σ-Uniq)

where

Γ ` πA,B
1 (p)

df.≡ RΣ([z : Σx:AB]A, [x : A, y : B]x, p) : A;

Γ ` πA,B
2 (p)

df.≡ RΣ([z : Σx:AB]B[πA,B
1 (z)/x], [x : A, y : B]y, p]) : B[πA,B

1 (p)/x]

are projections constructed by Σ-Elim.

The formation rule Σ-Form is the same as that of Π-types. The introduction

rule Σ-Intro specifies that canonical terms of a Σ-type Σx:AB are dependent pairs

〈a, b〉 : Σx:AB of terms a : A and b : B[a/x]. Again, the elimination and computation

rules Σ-Elim and Σ-Comp should make sense by the introduction rule. Finally, the

uniqueness rule Σ-Uniq stipulates that terms of Σ-types are only canonical ones, i.e.,

what are obtained by the introduction rule.

5.2.9 Identity Types

Note that a judgmental equality Γ ` a ≡ a′ : A is a judgement, not a formula, and thus

it cannot be used in a context nor derived by an induction principle. For this point,

the following (intensional) identity types (or Id-types) have been introduced3:

3We can then for instance formulate and prove Peano axioms [148] in the presence of Id-types.

203

Γ ` A typei Γ ` a : A Γ ` a′ : A

Γ ` a =A a′ typei
(=-Form)

Γ ` A typei Γ ` a : A

Γ ` refla : a =A a
(=-Intro)

Γ, x : A, y : A, p : x =A y ` C typei Γ, z : A ` c : C[z/x, z/y, reflz/p]

Γ ` a : A Γ ` a′ : A Γ ` q : a =A a′

Γ ` R=(C, c, a, a′, q) : C[a/x, a′/y, q/p]
(=-Elim)

Γ, x : A, y : A, p : x =A y ` C typei Γ, z : A ` c : C[z/x, z/y, reflz/p] Γ ` a : A

Γ ` R=(C, c, a, a, refla) ≡ c[a/z] : C[a/x, a/y, refla/p]
(=-Comp)

The formation rule =-Form states that we may form an Id-type a =A a′ from a

type A and terms a, a′ : A, whose rank is the same as that of A. The introduction rule

=-Intro defines that there is just one canonical term refla of an Id-type a =A a′ if a ≡ a′

(and there is non otherwise). Therefore, again, the elimination and computation rules

=-Elim and =-Comp make sense for the introduction rule.

5.2.10 Universes

As the last type construction, we assume the existence of a cumulative hierarchy

of universes U0,U1,U2, . . . The initial idea by Martin-Löf was to have a ‘type U of all

types’ to increase the proof-theoretic strength of MLTT, e.g., it allows one to obtain,

by N-Elim, a family of types n : N ` FSN(n) : U4 such that FSN(n) is the type of n-

tuples of natural numbers (where note that it is impossible for n : N ` FSN(n) type).

In fact, an early version of MLTT has such a single universe U, but it in particular

implies Γ ` U : U, leading to its inconsistency known as Girard’s paradox [69].

For this problem, Martin-Löf later excluded the judgement Γ ` U : U [127], and

further proposed the cumulative hierarchy of universes [124] in the Tarski-style [126],

so that every type Γ ` A type has its ‘code’ Γ ` c : Ui for some i ∈ N such that

Γ ` El(c) ≡ A type, where x : Ui ` El(x) type is a ‘decoding’ operation equipped with

the universe Ui. Then, in particular, every universe Γ ` Ui type has its ‘code’ Γ ` ui : Uj

for some j > i such that Γ ` El(ui) ≡ Ui type without inconsistency. We adopt this

cumulative hierarchy of Tarski-style universes.

4Originally, the judgements Γ ` A type and Γ ` A : U are rather identified as in [184]. This variant
is called the Russell-style universes [146].

204

Their basic inference rules are the following:

` Γ ctx i ∈ N
Γ ` Ui typei+2

(U-Form)
Γ ` c : Ui ∀j < i. Γ 6` c : Uj

Γ ` El(c) typei+1
(U-Elim)

Γ ` c : Ui

Γ ` c : Ui+1
(U-Cumul)

where U-Cumul explains why they are called cumulative. The increments +2 (U-

Form) and +1 (U-Elim) will be clear when we define games to interpret universes.

However, universes are not yet guaranteed to have the ‘code’ of every type. For this

point, a standard approach is to introduce constructions on the ‘codes’ of types that

correspond to constructions on ‘smaller types’ [126, 92], e.g., the ‘code’ Γ ` N : U0

such that Γ ` El(N) ≡ N type1 and the construction Γ ` Π(A,B) : Umax(i,j) such that

Γ ` El(Π(A,B)) ≡ Π(A,B) typemax(i,j)+1 for any Γ ` A : Ui and Γ, x : El(A) ` B : Uj.

Consequently, the following introduction and computation rules are admissible:

Γ ` A typei

Γ ` En(A) : Ui−1
(U-Intro)

Γ ` A typei

Γ ` El(En(A)) ≡ A typei
(U-Comp)

where En(A) denotes some term that is assigned to the type A. Note that we have

introduced the ranks of types solely for U-Intro. Also, it is straightforward to see that

type-checking remains decidable in the presence of this formulation of universes.

Remark. The ‘decoding’ operation El is part of the syntax (it is a dependent type),

while the dual ‘encoding’ operation En is a meta-notation, i.e., En(A) represents a

specific term of a universe assigned to each type A, since an expression of the form

‘A type’ cannot be in a context. Accordingly, we do not have a congruence rule for

En. In fact, we do not require reflection of equality (RoE), i.e., Γ ` A ≡ B typei does

not imply Γ ` En(A) ≡ En(B) : Ui−1 [146], which appears conceptually natural as it

means that there may be more than one ‘code’ of a type.5 Hence, the operation El is

surjective but not injective, and thus the uniqueness rule of universes does not hold.

The difference between types Γ ` A type and terms of universes ∆ ` u : U is often

blurred, e.g., these two notions are simply identified in [184]. In our formulation of

universes, types and terms of universes are corresponding (not bijectively though),

but they are distinct concepts. From the viewpoint of categorical logic [150, 41, 102],

the latter should be interpreted in game semantics as strategies, but what about the

former? Moreover, what are the game-semantic counterpart of the ranks of types and

the ‘(de)coding’ operations? We shall answer these questions in Section 5.5.

5Indeed, RoE is not always assumed; for instance, see [146].

205

5.2.11 Meaning Explanation

Martin-Löf elaborated the meaning explanation of MLTT in order to explain and

justify the syntax [126]. Thus, it plays the role of a standard model (or an intended

model) of MLTT in the sense of model theory though it is pre-mathematical.

In spite of its pre-mathematical nature, the meaning explanation gives a highly

convincing, systematic explanation of the syntax. In fact, our explanation of the

syntax given above is an abbreviated, informal version of the meaning explanation;

see [126, 54, 140] for more details. More significantly, the meaning explanation per se

(i.e., independently of the syntax) is a fundamental underpinning of the very notion

of constructive mathematics.6 Since we propose our game semantics of MLTT as a

mathematical formalization of the meaning explanation, we briefly introduce it below.

First, the meaning explanation is an extension of the BHK-interpretation in the

sense that the former applies the ‘proofs-as-computations’ translation of the latter

not only to the logical part but also the non-logical part of MLTT. In other words, it

clarifies not only what proofs are but also what mathematical objects are.

Also, the former is a refinement of the latter by introducing the distinction between

canonical and non-canonical proofs (or terms) as well as equality between them.

Recall that the BHK-interpretation regards a formula as the set of its proofs. Similarly

but more elaborately, the meaning explanation argues that a formula is the set of its

proofs equipped with an equality between them, which has been defined as soon as its

canonical proofs and an equality between them have been specified: Any computation

that evaluates to a canonical proof of a formula is a proof of the formula, and two

proofs of a formula are equal if they evaluate to equal canonical proofs. Intuitively,

canonical proofs may be thought of as values in computation or normalized proofs in

logic. Notably, each judgement is completely (though pre-mathematically) explained

in terms of proofs and equalities between them defined as such [126, 54, 140].

5.3 Predicative Games

Having introduced MLTT, this section presents a generalization of games, called

predicative (p-) games, to model type dependency in MLTT. The basic idea is as

follows. In a game G, every position s ∈ PG belongs to some strategy σ : G in the

sense that σ may lead to s7; thus, it makes no essential difference for Player to first

‘declare’ the name of a strategy in such a way that is ‘invisible’ to Opponent and then

6This perspective is shared with some logicians and mathematicians, e.g., see [154].
7For instance, take σ

df.
= Pref({s})Even.

206

play by the ‘declared’ one. In this view, a game corresponds to a set of valid strategies

with some constraint (Theorem 5.3.19); by relaxing the constraint and introducing

the ranks of games8 to model the cumulative hierarchy of universes, we arrive at the

notion of p-games that can be seen as families of games, modeling type dependency.

5.3.1 Valid Strategies as Deterministic Games

We first reformulate valid strategies as a particular kind of games. This would enable

us to talk about valid strategies without underlying games (n.b., see the last few

paragraphs of Section 5.3.2 on the technical and conceptual reasons why we need it).

We first need the following:

Definition 5.3.1 (Identification of sets of positions). The identification of sets

of positions of a game G is the relation 'G on subsets of PG given by:

S 'G T
df.⇔ ∀sm ∈ S, t ∈ T.s 'G t.∃tl ∈ T.sm 'G tl

∧ ∀tl ∈ T, s ∈ S. t 'G s.∃sm ∈ S. tl 'G sm

for all S, T ⊆ PG.

In a similar manner to the case of identification of strategies (Corollary 2.3.5), we

may show that the identification 'G of sets S ⊆ PG of positions that satisfy

(Tree) S 6= ∅ ∧ ∀sm ∈ S. s ∈ S

is a PER for any game G:

Lemma 5.3.2 (Second PER lemma). Let G be a game, and S 'G T ⊆ PG; assume

that S and T both satisfy tree. Then, ∀s ∈ S.∃t ∈ T.s 'G t∧∀t ∈ T.∃s ∈ S. t 'G s.

Proof. By a straightforward induction on the length of positions.

Corollary 5.3.3 (PER on sets of positions). Given a game G, the identification 'G
of sets of positions, when restricted to subsets S ⊆ PG that satisfy tree, is a PER.

Proof. The symmetry is obvious. For the transitivity, let S, T, U ⊆ PG be any subsets

that satisfy tree, S 'G T and T 'G U ; assume sm ∈ S, u ∈ U and s 'G u; it suffices

to find some up ∈ U such that sm 'G up since the other direction is symmetric.

By Lemma 5.3.2, there is some tl ∈ T such that sm 'G tl. Finally, for u 'G t and

U 'G T , there is some up ∈ U such that tl 'G up, whence sm 'G up.
8As expected, we shall see that they correspond to the ranks of types introduced in Section 5.2.

207

Therefore, as in the case of strategies (Definition 2.3.6), it makes sense to define:

Definition 5.3.4 (Validity of sets of positions). Given a game G, a subset S ⊆ PG

is valid if it satisfies the axiom tree and S 'G S.

For instance, the set PG of all positions of G is valid for any game G. Also, validity

is clearly preserved under union but not intersection of sets.

We are now ready to characterize strategies as certain sets of positions (Lemma 5.3.6).

Definition 5.3.5 (Strategies as trees). Given a strategy σ : G, the tree-form of σ

with respect to G is the subset (σ)G ⊆ PG given by:

(σ)G
df.
= σ ∪ {sm ∈ PG | s ∈ σ }.

Notation. We often omit the subscript G when it is obvious.

Clearly, we may recover σ from σ by removing odd-length positions. Thus, σ and

σ are essentially the same (in the context of G), just in different forms. Moreover, we

may restrict the codomain of the map σ 7→ σ so that it becomes a bijection:

Lemma 5.3.6 (Strategies in second-form). Given a game G, there is a bijection f

between strategies σ : G and subsets S ⊆ PG that satisfy:

• (Tree) Non-empty and prefix-closed: S 6= ∅ ∧ ∀sm ∈ S. s ∈ S;

• (Edet) Deterministic: ∀smn, smn′ ∈ SEven. smn = smn′;

• (Oinc) Inclusive on odd-length positions: ∀sm ∈ POdd
G . s ∈ S ⇒ sm ∈ S.

Moreover, σ 'G τ (Definition 2.3.3) iff f(σ) 'G f(τ) for any strategies σ, τ : G.

Proof. Let us define f(σ)
df.
= σ for all σ : G. First, it is straightforward to see that

for each strategy σ : G the subset σ ⊆ PG satisfies the three conditions of the lemma,

e.g., σ is non-empty because ε ∈ σ, and it is prefix-closed: For any sm ∈ σ, if s ∈ σ,

then s ∈ σ; otherwise, i.e., sm ∈ σ, we may write s = tn ∈ PG with t ∈ σ, whence

s ∈ σ. For the converse, assume that a subset S ⊆ PG satisfies the three conditions;

we then clearly have SEven : G.

Next, we show ()Even = f−1. Clearly (σ)Even = σ for all σ : G. It remains to

establish SEven = S for all S ⊆ PG satisfying the three conditions. Let S ⊆ PG be

such a subset. It is immediate that s ∈ SEven iff s ∈ S for any s ∈ P Even
G . If tm ∈ SEven

is of odd-length, then t ∈ SEven and tm ∈ PG, and thus tm ∈ S as S satisfies oinc.

Conversely, if un ∈ SOdd, then u ∈ SEven by tree and un ∈ PG, whence un ∈ SEven.

Finally, for the logical equivalence of the two kinds of validity, the ‘if’ direction is

immediate from their definitions, and the ‘only if’ direction is by I3 on G.

208

Lemma 5.3.7 (Valid strategies as subgames). Given a valid strategy σ : G, we have:

(σ̂)G
df.
= (M(σ̂)G , λG �M(σ̂)G ,`(σ̂)G , (σ)G,'G ∩ ((σ)G × (σ)G)) P G

for which we often omit the subscript G, where Mσ̂ ⊆ MG is the set of moves of G

that occur in a position of σ, and `σ̂ ⊆ `G ∩ (({?} ∪Mσ̂)×Mσ̂) contains pairs that

occur in a position of σ as ? and an initial occurrence or as an occurrence m and a

non-initial occurrence justified by m.

Proof. By Lemma 5.3.6, Pσ̂ = σ satisfies tree, and 'σ̂ satisfies I3 for σ is required to

be valid. The remaining conditions for σ̂ P G are easy to verify.

Let us call a game whose positions satisfy the axiom edet a deterministic game.

We are now ready to establish the main theorem of the present section:

Theorem 5.3.8 (Valid strategies as deterministic games). Given a game G, valid

strategies σ : G and subgames H P G such that PH is valid and satisfies edet and oinc

(with respect to PG) are in one-to-one correspondence. In particular, valid strategies

(on some games) and deterministic games are in one-to-one correspondence.

Proof. The second statement is a corollary of the first one which follows from Lem-

mata 5.3.6 and 5.3.7, where the assumption that games are economical is crucial.

Remark. This one-to-one correspondence between valid strategies and deterministic

games implies in some sense that validity of strategies is a reasonable condition to

impose by default, not only for a fully complete interpretation of syntax.

If we identify valid strategies with deterministic games, then we may talk about

them without underlying games. To justify this view further, let us show that the

bijection (σ : G)
∼7→ (σ̂)G P G, where σ is valid, commutes with constructions on

games and strategies (Theorem 5.3.14). For this, we first need:

Definition 5.3.9 (Composition of games). Given games A, B and C and subgames

J P A(B and K P B (C, all of which we regard as normalized dynamic games

(Definition 3.3.11), the composition J ;K of J and K is defined by J ;K
df.
= H(J ‡K).

Notation. We also write K ◦ J for J ;K.

Clearly, by Theorem 3.3.25, games are closed under composition. Also, note that

J ;K P A(C if J P A(B and K P B(C by Lemma 3.3.30.

Lemma 5.3.10 (Characterization of composition of games). The composition J ;K

of games J P A(B and K P B(C can be equivalently defined by:

209

• MJ ;K
df.
= (MJ ∩MA) + (MK ∩MC);

• λJ ;K
df.
= [λJ �MA, λK �MC];

• ? `J ;K m
df.⇔ ? `K m;

• m `J ;K n (m 6= ?)
df.⇔ m `J n ∨m `K n ∨ ∃b ∈MB. m `K b ∧ b `J n;

• PJ ;K
df.
= {s � A,C | s ∈J((A(B[1])(B[2])(C , s � A,B[1] ∈ PJ , s � B[2], C ∈ PK ,

s � B[1], B[2] ∈ prB };

• s 'J ;K t
df.⇔ s � A 'A t � A∧s � C 'C t � C∧∀i ∈ N.s(i) ∈MA ⇔ t(i) ∈MA.9

Proof. Clear from the definition.

We also need the following three technical lemmata:

Lemma 5.3.11 (O-view lemma). Let A, B and C be games and J P A (B and

K P B(C subgames, all of which we regard as normalized dynamic games; assume

that s ∈ P Even
J‡K does not end with a move of B. Then, bs � A,CcA(C � bscJ‡K � A,C.

Proof. By induction on the length of s. The base case s = ε is trivial; assume

s = tmn. Let us focus on the case n ∈MA since the other case n ∈MC is simpler.

First, assume that t is of the form ulv, where l justifies n in s; the other case

(i.e., when m justifies n) is handled below. Note that l ∈MA +MB. If l ∈MA, then:

bs � A,CcA(C = bulvmn � A,CcA(C
= bu � A,CcA(C .ln

� (bucJ‡K � A,C).ln (by the induction hypothesis)

= bucJ‡K .ln � A,C

= bulvmncJ‡K � A,C

= bscJ‡K � A,C.

On the other hand, if l ∈ MB, then n ∈ M Init
A and l ∈ M Init

B ; thus, we may write

s = w1cw2llvmn, where c ∈ M Init
C and it justifies the left occurrence of l, which in

9Strictly speaking, we need to take the subsets of MJ;K and `J;K in such a way that makes J ;K
economical (Definition 2.2.15) in the obvious manner.

210

turn justifies the right occurrence of l. Hence, we may conclude that:

bs � A,CcA(C = bw1cw2llvmn � A,CcA(C
= bw1 � A,CcA(C .cn

� (bw1cA(C � A,C).cn (by the induction hypothesis)

= bw1cA(C .clln � A,C

= bw1cw2lcJ‡K .ln � A,C

= bw1cw2llvmncJ‡K � A,C

= bscJ‡K � A,C.

Finally, consider the case where m justifies n in s. It is just reduced to the

induction hypothesis if m ∈MA; and it is handled in the same manner as the second

case above if m ∈M Init
B (in this case, we may write s = ucvmmn, where c ∈MC and

it justifies the left occurrence of m), completing the proof.

Lemma 5.3.12 (Covering lemma 1). Let A, B, C and D be games, and φ : A(B

and ψ : C (D strategies; assume s ∈ φ ⊗ ψ and sm ∈ PA⊗C(B⊗D. Then, sm �

A,C ∈ LA⊗C ∧ sm � B,D ∈ LB⊗D ⇔ sm � A,B ∈ LA(B ∧ sm � C,D ∈ LC(D.

Proof. We proceed by the case analysis on m. Let us just focus on the case m ∈MA

since the other three cases are similar or simpler. In this case, we have to show

that (s � A,C).m ∈ LA⊗C ⇔ (s � A,B).m ∈ LA(B. Clearly, the two alternation

conditions are logically equivalent.

Now, note that Jsm(m) ∈ MA since m is an O-move. Thus, the two justification

conditions are logically equivalent. Finally, since only Player may switch between

the domain and codomain of a linear implication, it is not hard to see that the two

visibility conditions are also logically equivalent, completing the proof.

Lemma 5.3.13 (Covering lemma 2). Let A, B and C be games, and assume that

sm is an odd-length j-sequence of the arena ((A (B[1]) (B[2])(C such that

m ∈ MA(C, s � A,B[1] ∈ LA(B[1]
, s � B[2], C ∈ LB[2](C and s � B[1], B[2] ∈ prB.

Then, sm � A,C ∈ LA(C ⇔ sm � A,B[1] ∈ LA(B[1]
∧ sm � B[2], C ∈ LB[2](C.

Proof. The implication ⇐ has been well-established in the literature; see, e.g., [129]

for the detail. Let us show the other implication⇒; assume that sm � A,C ∈ LA(C .

First, it is clear that sm � A,B[1] (resp. sm � B[2], C) is a j-sequence of the arena

A (B[1] (resp. B[2] (C) that satisfies alternation by Table 3.2. It remains to

establish visibility. Let us focus on the case m ∈ MA as the other case m ∈ MC is

211

similar. Again by Table 3.2, we may write sm = ta1m with a1 ∈MA. Note that the

O-view bta1c does not have moves of B[1], B[2] or C after the justifier l ∈MA of m in s

occurs because otherwise it cannot contain l, contradicting the visibility of sm � A,C

for bta1 � A,Cc � bta1c � A,C (by Lemmata 5.3.10 and 5.3.11). Thus, bta1c is of the

form ula2ka2k−1 . . . a4a3a2a1, where a2i ∈ MA justifies a2i−1 ∈ MA for i = 1, 2, . . . , k.

Therefore, the O-view bs � A,B[1]c is of the form vla2ka2k−1 . . . a4a3a2a1, and so

it in particular contains l = Js(m). Hence, sm � A,B[1] satisfies visibility (and

sm � B[2], C trivially satisfies it).

We can now establish the desired commutativity:

Theorem 5.3.14 (Interactions of constructions on games and strategies). Given

games A, B, C and D, and valid strategies φ : A(B, ψ : C (D, ϕ : !A(B and

θ : A(C, we have the following four equations:

1. φ̂⊗ ψ̂ = φ̂⊗ ψ P A⊗ C (B ⊗D;

2. ϕ̂† = ϕ̂† P !A(!B;

3. 〈φ̂, θ̂〉 = 〈̂φ, θ〉 P A(B&C;

4. θ̂; ψ̂ = θ̂;ψ P A(D.

Proof. Since the subgame relations are obvious by Lemmata 2.3.16, 2.3.19, 2.3.22,

2.3.25 and 5.3.7, and Theorem 2.2.29, it suffices to show the equations between the

corresponding sets of positions.

Let us begin with the equation 1. For brevity, we define φ⊗ψ df.
= Pφ̂⊗ψ̂. It is easy

to see that (φ⊗ψ)Even = φ⊗ψ = (φ⊗ ψ)Even holds. To show (φ⊗ψ)Odd = (φ⊗ ψ)Odd,

it suffices to observe the following chain of logical equivalences:

sm ∈ (φ⊗ ψ)Odd

⇔ s ∈ φ⊗ ψ ∧ sm ∈ PA⊗C(B⊗D
⇔ sm ∈ L ∧ s � A,B ∈ φ ∧ s � C,D ∈ ψ ∧ sm � A,C ∈ PA⊗C ∧ sm � B,D ∈ PB⊗D
⇔ sm ∈ L ∧ s � A,B ∈ φ ∧ s � C,D ∈ ψ ∧ sm � A,B ∈ PA(B ∧ sm � C,D ∈ PC(D

(by Lemma 5.3.12)

⇔ sm ∈ L ∧ s � A,B ∈ φ ∧ s � C,D ∈ ψ ∧ ((s � A,B).m ∈ PA(B ∨ (s � C,D).m ∈ PC(D)

⇔ sm ∈ L ∧ ((s � A,B).m ∈ φ ∧ s � C,D ∈ ψ) ∨ (s � A,B ∈ φ ∧ (s � C,D).m ∈ ψ)

⇔ sm ∈ L ∧ sm � A,B ∈ φ ∧ sm � C,D ∈ ψ

⇔ sm ∈ (φ⊗ ψ)Odd

212

where L
df.
= LA⊗C(B⊗D. The equations 2 and 3 are even simpler to prove.

It remains to establish the equation 4. Let us define θ;ψ
df.
= Pθ̂;ψ̂. Again, the

equation (θ;ψ)Even = θ;ψ = (θ;ψ)Even is straightforward to show; for (θ;ψ)Odd =

(θ;ψ)Odd, observe the following chain of logical equivalences:

sm ∈ (θ;ψ)Odd

⇔ ∃tm ∈J . tm � A,D = sm ∧ tm � A,C[1] ∈ θ ∧ tm � C[2], D ∈ ψ

∧ tm � C[1], C[2] ∈ prC

⇔ ∃tm ∈J . tm � A,D = sm ∧ t � A,C[1] ∈ θ ∧ t � C[2], D ∈ ψ ∧ tm � C[1], C[2] ∈ prC

∧ ((t � A,C[1]).m ∈ PA(C[1]
∨ (t � C[2], D).m ∈ PC[2](D)

⇔ ∃tm ∈J . tm � A,D = sm ∧ t ∈ θ‖ψ ∧ tm � C[1], C[2] ∈ prC

∧ tm � A,C[1] ∈ PA(C[1]
∧ tm � C[2], D ∈ PC[2](D

⇔ ∃tm ∈J . tm � A,D = sm ∧ t ∈ θ‖ψ ∧ tm � C[1], C[2] ∈ prC

∧ tm � A,C[1] ∈ LA(C[1]
∧ tm � C[2], D ∈ LC[2](D ∧ tm � A ∈ PA ∧ tm � D ∈ PD

⇔ ∃tm ∈J . tm � A,D = sm ∧ t ∈ θ‖ψ ∧ tm � C[1], C[2] ∈ prC

∧ tm � A,D ∈ LA(D ∧ tm � A ∈ PA ∧ tm � D ∈ PD (by Lemma 5.3.13)

⇔ ∃tm ∈J . t ∈ θ‖ψ ∧ sm = tm � A,D ∧ tm � A,D ∈ PA(D
⇔ s ∈ θ;ψ ∧ sm ∈ PA(D

(⇐ holds for m, Jsm(m) and the last move of s (if exists) all belong to A or B)

⇔ sm ∈ (θ;ψ)Odd

by Lemma 5.3.10, where J
df.
= J((A(C[1])(C[2])(D, completing the proof.

To summarize the present section, Theorem 5.3.8 establishes the fact that valid

strategies on a game G correspond to subgames H P G such that PH is valid and

satisfies the axioms edet and oinc (with respect to PG). Moreover, as shown in

Theorem 5.3.14, constructions on games and valid strategies may be identified.

These results suggest that we may reformulate valid strategies as follows:

Definition 5.3.15 (V-strategies). A v-strategy is a deterministic game. The com-

position ◦, tensor ⊗, pairing 〈 , 〉 and promotion ()† on v-strategies are the

corresponding ones on games, respectively. The copy-cat (resp. dereliction) on a

game A is the v-strategy ĉpA (resp. ˆderA), but we use the notation cpA (resp. derA)

for it. Given a v-strategy σ and a game G, we say that σ is on G and write σ : G

if σ P G and Pσ satisfies the axiom oinc (with respect to PG), and σ is innocent

(resp. well-bracketed, total, noetherian, winning) if so is the set P Even
σ .

213

Remark. Given a v-strategy σ, a game G that satisfies σ : G may not be unique, e.g.,

({̂ε, q.0})N is a v-strategy on any of the following games:

q q q q

. . .

0
?

0

�

1
?

2

-

0
�

1

�

2
?

3
-

. . . 0

�

1

-

q
?

Notation. Given σ : G, s ∈ P Even
σ and sm ∈ PG, we write σ(sm)↓ if there is a move

n ∈MG such that smn ∈ Pσ (also write σ(sm) = n) and σ(sm) ↑ otherwise.

At the end of the present section, let us show:

Lemma 5.3.16 (V-lemma). If σ : G is a strategy with no pair smn, tlr ∈ σ such that

sm 'G tl and smn 6'G tlr, then there is a v-strategy ν : G such that σ ⊆ P Even
ν : G.

Proof. By Theorem 5.3.8, it suffices to show the existence of a valid strategy ν : G

such that σ ⊆ ν. Let us define a sequence (νi)i∈N of strategies νi : G as follows. First,

let ν0
df.
= σ. Next, we obtain νi+1 from νi by adding any unique choice of tlr ∈ PG if

smn, t ∈ νi, |s| = 2i, sm 'G tl and any tlr′ ∈ PG such that smn 'G tlr′ is not yet in

νi. Note that such tlr must exist by the axiom I3 on G. We then define ν
df.
=

⋃
i∈N νi,

which is clearly a valid strategy on G such that σ ⊆ ν.

5.3.2 Games via V-Strategies

This section introduces, based on the last section, a characterization of games as sets

of v-strategies with some constraint. From this fact, by relaxing the constraint (and

equipping ranks), we shall arrive at a more general notion of predicative games.

Then, what constraint should we impose? Well, for instance, a set of v-strategies

on the same game must be consistent in the sense that they share the same labeling,

enabling, odd-length positions and identification of positions. Thus, we define:

Definition 5.3.17 (Consistency). A set S of v-strategies is consistent if, for all

σ, τ ∈ S, it satisfies:

1. λσ(m) = λτ (m) for all m ∈Mσ ∩Mτ ;

2. ? `σ m⇔ ? `τ m and m `σ n⇔ m `τ n for all m,n ∈Mσ ∩Mτ ;

214

3. sm ∈ Pσ ⇔ sm ∈ Pτ for all s ∈ P Even
σ ∩ P Even

τ and sm ∈ Pσ ∪ Pτ ;

4. s 'σ t⇔ s 'τ t for all s, t ∈ Pσ ∩ Pτ .

Two v-strategies σ and τ are consistent, written σ � τ , if so is the set {σ, τ}.

Note that the first four components of a given game G may be recovered from

the consistent set vs(G) of all v-strategies on G because MG =
⋃
σ∈vs(G) Mσ, λG =⋃

σ∈vs(G) λσ, `G =
⋃
σ∈vs(G) ` σ and PG =

⋃
σ∈vs(G) Pσ (see the proof of Theorem 5.3.19

below). However, it is not the case for the identification 'G of positions; for instance,

consider the game N ⇒ N : q.(q, 0) 'N⇒N q.(q, 1), but q.(q, 0) 6'φ q.(q, 1) for all

v-strategies φ : N ⇒ N . This suggests that we should keep 'G in addition to vs(G).

Generally, given a pair (S,'S), called a consistent pair, of a consistent set S
of v-strategies and an equivalence relation 'S ⊇

⋃
σ∈S 'σ on

⋃
σ∈S Pσ that satisfies

the axioms I1, I2 and I3 as well as the following consistency of validity

(CoV) ∀(s, t) ∈ 'S \
⋃
σ∈S 'σ .∀σ ∈ S. s 6∈ Pσ ∨ t 6∈ Pσ

called an identification on S, we may construct the union game
⋃

(S,'S) of the

consistent pair (S,'S) by:⋃
(S,'S)

df.
= (

⋃
σ∈SMσ,

⋃
σ∈S λσ,

⋃
σ∈S `σ,

⋃
σ∈S Pσ,'S)

where the first condition of the consistency of S guarantees that
⋃

(S,'S) is a well-

defined game, and the other three and the axiom CoV on 'S preserve the structure

of each σ ∈ S in
⋃

(S,'S). In other words, the consistency of S is equivalent to

the existence of a common underlying game for all v-strategies in S, and CoV on 'S
ensures that the restriction of 'S to positions of each σ ∈ S coincides with 'σ.

However, some v-strategies on
⋃

(S,'S) may not exist in S. For example, consider

a consistent set S = {σ, τ} of v-strategies σ and τ such that Pσ = Pref({ac, bc}),
Pτ = Pref({ad, bd}), where a, b, c and d are pairwise distinct moves, and both have

only the trivial identification of positions (the other components are obvious), and

the trivial identification = on S. Clearly, a v-strategy φ :
⋃

(S,'S) defined by

Pφ
df.
= Pref({ac, bd}) (again, the other components are obvious), does not exist in S.

Even a simpler v-strategy ψ :
⋃

(S,'S) defined by Pψ
df.
= {ε, a, b} does not exist in S.

For this point, in view of Lemma 5.3.6, we define:

Definition 5.3.18 (Completeness). A consistent pair (S,'S) is complete if any

valid (with respect to 'S) subset A ⊆
⋃
σ∈S Pσ such that

215

• (Tree) A 6= ∅ ∧ ∀sm ∈ A. s ∈ A;

• (Edet) ∀smn, smn′ ∈ AEven. smn = smn′;

• (Oinc) ∀sm ∈ P⋃
(S,'S) =

⋃
σ∈S Pσ. s ∈ AEven ⇒ sm ∈ A

satisfies (ÂEven)⋃(S,'S) ∈ S.

Intuitively, the completeness of a consistent pair (S,'S) means the closure of S
under ‘patchwork’ A ⊆

⋃
σ∈S Pσ of v-strategies. We may easily see that in the above

example the pair (S,=) is not complete; there are total nine v-strategies on σ ∪ τ ,

and so we need to add φ, ψ and the remaining five to S to make it complete.

Now, we have arrived at the desired characterization:

Theorem 5.3.19 (Games as collections of v-strategies). There exists a one-to-one

correspondence between games and complete pairs:

1. Given a game G, the pair (vs(G),'G) of the set vs(G)
df.
= {σ | σ : G } of all

v-strategies on G and the identification 'G of positions of G is complete, and

G =
⋃

(vs(G),'G);

2. Given a complete pair (S,'S), v-strategies on the union game
⋃

(S,'S) are

precisely elements of S.

Proof. For the clause 1, let G be a game. First, the pair (vs(G),'G) is clearly

complete. For the equation G =
⋃

(vs(G),'G), it suffices to show PG =
⋃
σ∈vs(G) Pσ

since then the other components clearly coincide (note that G is economical). The

inclusion
⋃
σ∈vs(G) Pσ ⊆ PG is immediate. For the other inclusion, let s ∈ PG; by

Lemmata 5.3.6 and 5.3.16, it suffices to show s ∈ τ for some strategy τ : G satisfying

the assumption of Lemma 5.3.16, but then we may just take τ
df.
= Pref({s})Even.

Next, for the clause 2, let (S,'S) be a complete pair. To show vs(
⋃

(S,'S)) ⊆ S,

let φ be a v-strategy on
⋃

(S,'S); we have to show φ ∈ S. For each i ∈ N, we define

the subset S(φ, i) ⊆ S by τ ∈ S(φ, i)
df.⇔ {s ∈ Pτ | |s| 6 2i } = {t ∈ Pφ | |t| 6 2i }

for all τ ∈ S. Then, it suffices to show S(φ, i) 6= ∅ for all i ∈ N. The base case

(i = 0) is trivial because the completeness of S in particular implies S 6= ∅. Consider

the inductive step where we have to show S(φ, i + 1) 6= ∅. Let us take an arbitrary

τ ∈ S(φ, i) by the induction hypothesis. For φ :
⋃

(S,'S), there is some φsm ∈ S
that satisfies φsm(sm) ' φ(sm) for each sm ∈ Pφ with |sm| = 2i + 1.10 We take

10If φ(sm)↑ but there seems no τ ∈ S such that τ(sm)↑, then pick any ψ ∈ S with sm ∈ Pψ and
eliminate proper suffixes of sm from Pψ to form φsm, which actually lies in S by the completeness.

216

A df.
= τ ∪ {sm.φsm(sm) | sm ∈ Pφ, |sm| = 2i + 1, φ(sm) ↓ } ∪ {sm.φsm(sm).n ∈

POdd⋃
(S,'S) | sm ∈ Pφ, |sm| = 2i + 1, φ(sm) ↓ } ⊆ P⋃

(S,'S); clearly, A ⊆
⋃
σ∈S Pσ, and

it is valid and satisfies the three conditions. Thus, by the completeness of the pair

(S,'S), we may conclude that ÂEven ∈ S, which implies S(σ, i+ 1) 6= ∅. Finally, the

opposite inclusion S ⊆ vs(
⋃

(S,'S)) clearly holds.

Theorem 5.3.19 particularly implies that any game is of the form
⋃

(S,'S), where

(S,'S) is a complete pair, and v-strategies on
⋃

(S,'S) are precisely elements of S.

Now, given a complete pair (S,'S), observe that there is no essential difference

between the union game
⋃

(S,'S) and the sum game11
∑

(S,'S) defined by:

• M∑
S

df.
= {qS} ∪ ‖S‖ ∪ {(m)‖σ‖

df.
= (m, ‖σ‖) | σ ∈ S,m ∈ Mσ}, where ‖σ‖ is the

name of each σ ∈ S, i.e., ‖ ‖ is any injection (e.g., the simplest choice is to

define ‖ ‖ to be the identity function on S), and qS is any element such that

qS 6∈ ‖S‖ ∪ {(m)‖σ‖ | σ ∈ S,m ∈Mσ};

• λ∑S : qS 7→ OQ, (‖σ‖ ∈ ‖S‖) 7→ PA, (m)‖σ‖ 7→ λσ(m);

• `∑S df.
= {(?, qS)} ∪ {(qS , ‖σ‖) | σ ∈ S } ∪ {(‖σ‖, (m)‖σ‖) | σ ∈ S, ? `σ m }

∪ {((m)‖σ‖, (n)‖σ‖) | σ ∈ S,m `σ n };

• P∑
S

df.
= {ε, qS} ∪ {qS .‖σ‖.(s)‖σ‖ | σ ∈ S, s ∈ Pσ }, where qS justifies ‖σ‖, ‖σ‖

justifies initial moves occurring in s, and s = m1m2 . . .mk implies (s)‖σ‖
df.
=

(m1)‖σ‖.(m2)‖σ‖ . . . (mk)‖σ‖;

• '∑
S

df.
= {(ε, ε), (qS , qS)}

∪ {(qS .‖σ‖.(s)‖σ‖, qS .‖τ‖.(t)‖τ‖) | σ, τ ∈ S, s ∈ Pσ, t ∈ Pτ , s 'S t }.

It is easy to see that
∑

(S,'S) is a well-defined game. A position qS .‖σ‖.(s)‖σ‖ of∑
(S,'S) is essentially a position s of

⋃
(S,'S) prefixed with the two moves qS .‖σ‖

and equipped with the ‘tag’ ()‖σ‖ on subsequent moves, where σ is any (not unique)

σ ∈ S such that s ∈ Pσ (such σ must exist as shown in the proof of Theorem 5.3.19);

the difference between
∑

(S,'S) and
⋃

(S,'S) is whether to specify such σ ∈ S.

Intuitively, a play of the sum game
∑

(S,'S) proceeds as follows. For conceptual

clarity, let us introduce Judge of the game. Judge first asks Player about her v-

strategy in mind by the question qS , and Player answers it by the name ‖σ‖ of a

v-strategy σ ∈ S; then an actual play between Opponent and Player begins as in⋃
(S,'S) except that Player must follow the declared v-strategy σ.

11It is similar to the weak sum ⊕ of games (Definition 2.2.27), but this point is not relevant here.

217

To be fair, the declared v-strategy should be ‘invisible’ to Opponent, and he

also has to declare to Judge an anti-strategy, i.e., a set of odd-length positions that

is non-empty, odd-prefix-closed and deterministic on odd-length positions, at the

beginning of a play, which is ‘invisible’ to Player, and play by following it. Clearly, we

may achieve ‘invisibility’ of v-strategies to Opponent by imposing that anti-strategies

cannot depend on ‘tags’, i.e., any anti-strategy τ on
∑

(S,'S) must satisfy:

qS .‖φ‖.(m1)‖φ‖.(m2)‖φ‖ . . . (m2k+1)‖φ‖ ∈ τ ⇔ qS .‖ψ‖.(m1)‖ψ‖.(m2)‖ψ‖ . . . (m2k+1)‖ψ‖ ∈ τ

for any φ, ψ ∈ S and m1m2 . . .m2k ∈ Pφ ∩ Pψ. Note that we have introduced the

notion of judge for a conceptual understanding of this mathematical formulation.

Nevertheless, since the ‘spirit’ of game semantics is not to restrict Opponent’s

computational power at all, we choose not to incorporate anti-strategies, let alone

Opponent’s ‘declaration’ of them or their ‘invisibility’ condition to Player, into games.

To sum up, we may reformulate any game in the form of
∑

(S,'S), where S is

a consistent set of v-strategies, and 'S is an identification on S such that the pair

(S,'S) is complete. But what is the point of this reformulation? Well, first, since

S becomes explicit in
∑

(S,'S), i.e., a part of the structure, by defining v-strategies

on
∑

(S,'S) to be elements of S and dropping the completeness of (S,'S), we may

regard
∑

(S,'S) as a generalization of games; some v-strategy on
∑

(S,'S) in the

sense of Definition 5.3.15 may not correspond to any v-strategy on
∑

(S,'S) in the

sense just defined. Also, 'S induces an equivalence relation on elements of S in the

obvious manner; thus, a game
∑

(S,'S) is defined in terms of its v-strategies and an

equality between them, matching the idea of the meaning explanation which defines

a formula in terms of a set of its proofs and an equality between them.

Remark. Although games are more primitive than strategies in conventional game

semantics, Definition 5.3.15 and Theorem 5.3.19 enable us to reverse the order.

Moreover, since we take a disjoint union of sets of moves for
∑

(S,'S), it is

trivially a well-defined game even if we drop the consistency of S; then
∑

(S,'S) can

be thought of as a family of games as its v-strategies may have different underlying

games, where Player has an additional opportunity to ‘declare’ a v-strategy which

simultaneously specifies an underlying game to play. It is to model type dependency.

This is the idea behind predicative games : A predicative game is a game of the

form
∑

(S,'S), where S is a (not necessarily consistent) set of v-strategies, 'S
satisfies the axiom CoV, and v-strategies on

∑
(S,'S) are elements of S.

Remark. If we had defined v-strategies on
∑

(S,'S) in the sense of Definition 5.3.15,

then we would not be able to enforce Player’s ‘declaration’ of v-strategies.

218

However, this naive idea brings a Russell’s-like paradox as follows. Let G be a v-

strategy given by PG
df.
= Pref({q.‖G‖}) with only the trivial identification of positions

for each game G. Then, we may form a class P of v-strategies by:

P df.
= {G | G is a game, (‖G‖)‖G‖ 6∈MG}.

Now, observe that the game P
df.
=

∑
(P , {(s, s) | G ∈ P , s ∈ PG }) gives rise to a

paradox: If (‖P‖)‖P‖ ∈ MP , then (‖P‖)‖P‖ 6∈ MP , and vice versa. Our solution

for this problem is the ranks of games, which we introduce in the next section.

Remark. One may simply have recourse to axiomatic set theory [142, 56] to circumvent

the paradox because the set MP is a proper class. However, we shall employ the ranks

of games as they are the game-semantic counterpart of the ranks of types (Section 5.2),

and moreover the both notions of ranks avoid the paradox in the same fashion.

At the end of the present section, let us answer the following question: One may

wonder if it would be much simpler to require the declaration of strategies directly on

games. However, it is not the case (and thus the present section is not meaningless).

To see this point closely, let us define such a game D(G) for each game G by:

• MD(G)
df.
= {qG} ∪ {‖σ‖ | σ : G } ∪MG;

• λD(G) : qG 7→ OQ, ‖σ‖ 7→ PA, (m ∈ mG) 7→ λG(m);

• `D(G)
df.
= {(?, qG)} ∪ {(qG, ‖σ‖) | σ : G } ∪ {(‖σ‖,m) | ? `G m }

∪ {(m,n) | m 6= ?,m `G n };

• PD(G)
df.
= Pref({qG.‖σ‖.s | σ : G, s ∈ σ}), where qG justifies ‖σ‖ and ‖σ‖ justifies

initial moves occurring in s;

• 'D(G)
df.
= {(ε, ε), (qG, qG)} ∪ {(qG.‖σ‖.s, qG.‖τ‖.t | s 'G t }.

Moreover, we may define the notion of consistent sets S of games and take the union

games
⋃
S in the obvious manner.

Then, we may interpret a Π-type Π(A,B) by D(Π(A,B)), where Π(A,B) is the

subgame of A⇒
⋃
σ:AB(σ) such that ∀s ∈ PΠ(A,B), σ : G.s � A ∈ σ ⇒ s � B ∈ PB(σ),

where A and (B(σ))σ:A are interpretations of the type A and the dependent type B

on A, respectively, such that (B(σ))σ:A is consistent. Actually, the construction D is

not necessary at all to model Π-types; the game Π(A,B) may model Π(A,B).

Thus, D is virtually to model Σ-types Σ(A,B); however, it does not work as unlike

Π(A,B) we cannot carve out the required subgame of A&
⋃
σ:AB(σ) in terms of plays.

This is why we had to reformulate games in terms of strategies in this section.

219

5.3.3 Predicative Games

As we have just observed, a naive formulation of sum games leads to a paradox. To

circumvent this problem, we introduce the ranks of moves, which also induce the

ranks of p-games. We begin with defining the ranks of moves:

Definition 5.3.20 (Ranked moves). A move of a game is ranked if it is a pair

(m, r) of some object m and a natural number r ∈ N, which is usually written [m]r.

A ranked move [m]r is more specifically called an rth-rank move, and r is said to

be the rank of the move. In particular, a 0th-rank move is called a mere move.

Notation. We often write m for a ranked move [m]r when the rank r is not important.

Our intention is as follows. A mere move is just a move of a game in the usual

sense, and an (r + 1)st-rank move is the name (Definition 5.3.22) of another game

such that its moves are all ranked, and the supremum of the ranks of the moves is r:

Definition 5.3.21 (Ranked games). A ranked game is a game G such that its

moves are all ranked, and 'G respects the ranks of moves (i.e., s 'G t implies that

s(i) and t(i) have the same rank for any i ∈ N). The rank R(G) of G is given by:

R(G)
df.
=

{
1 if MG = ∅
Sup({r | [m]r∈MG }) + 1 otherwise.

More specifically, G is called an R(G)th-rank game.

Remark. One may wonder if the rank of a ranked game can be transfinite; however,

as we shall see, the rank of a predicative game is always a natural number.

Definition 5.3.22 (Names of ranked games). The name of a ranked gameG, written

‖G‖, is the pair [G]R(G) of G (as a set) itself and its rank R(G).

Of course, the name of a ranked game can be a move of a ranked game; however,

that name cannot be a move of the game itself because of its rank, which prevents

the paradox described above (we shall show it formally as Proposition 5.3.34 below).

Notation. Given a v-strategy σ and a sequence [s]r = [m1]r1 [m2]r2 . . . [mk]rk of ranked

moves, let [s]
‖σ‖
r

df.
= [m1]

‖σ‖
r1 .[m2]

‖σ‖
r2 . . . [mk]

‖σ‖
rk

df.
= [(m1)‖σ‖]r1 .[(m2)‖σ‖]r2 . . . [(mk)‖σ‖]rk .

We are now ready to define the following central notion of the chapter:

Definition 5.3.23 (P-games). For each integer r > 1, an r-predicative (r-p-)

game is a quintuple G = (MG, λG,`G, PG,'G) equipped with a set VS(G) of ranked

v-strategies σ such that Mσ ⊆ (B×{0})∪{‖H‖ | H is an l-predicative game, l < r},
where B is an arbitrarily fixed set containing q, each n ∈ N, tt ,ff andX, that satisfies:

220

• R(G)
df.
= Sup({R(σ) | σ ∈ VS(G) }) = r, where R(G) is called the rank of G;

• MG =
∑

σ∈VS(G) Mσ
df.
= {[m]

‖σ‖
l | σ ∈ VS(G), [m]l ∈Mσ };

• λG : [m]
‖σ‖
l 7→ λσ([m]l);

• `G = {(?, [m]
‖σ‖
l) | σ ∈ VS(G), ? `σ [m]l }

∪ {([m]
‖σ‖
l , [n]

‖σ‖
k) | σ ∈ VS(G), [m]l `σ [n]k };

• PG = {ε, qG} ∪ {qG.‖σ‖.[s]
‖σ‖
l | σ ∈ VS(G), [s]l ∈ Pσ }, where qG

df.
= [0]0;

• ε 'G ε ∧ qG 'G qG ∧ ∀σ, τ ∈ VS(G). (qG.‖σ‖ 'G qG.‖τ‖ ⇔ σ � τ)

∧ ∀σ ∈ VS(G). (qG.‖σ‖.[s]
‖σ‖
l 'G qG.‖σ‖.[t]‖σ‖r ⇔ [s]l 'σ [t]r).

A predicative (p-) game is an r-predicative game for some r > 1. A v-strategy

on a predicative game G is any element in VS(G), and σ : G denotes σ ∈ VS(G).

Remark. Since moves of a 1-p-game are elements of the fixed set B (with rank 0),

the class of moves of a p-game will never be a proper class.

Convention. Henceforth, every mere move is assumed to be an element of B × {0}.

Notation. We write PGr (resp. PG6r) for the set of all r-p-games (resp. i-p-games

with 1 6 i 6 r). Similar notation VS l (resp. VS6l) applies to the set of all lth-rank

(resp. ith-rank with 1 6 i 6 l) v-strategies.

Thus, p-games G are ranked games of the form
∑

(VS(G),'G) inductively defined

along with their ranks except that elements qG and ‖σ‖ are not counted as moves.

Thus, strictly speaking, a p-game G is not a game in the sense of Definition 2.2.10

for elements qG and ‖σ‖ (σ ∈ VS(G)) are not moves, they do not have labels, and

‖σ‖ occurs in a position without a justifier. Nevertheless, we may easily fix this

problem by adding qG and ‖σ‖ into MG, defining λG : qG 7→ OQ, ‖σ‖ 7→ PA, and so

on; however, because the initial protocol qG.‖σ‖ at the beginning of each position is

conceptually made between Judge and Player, which is ‘invisible’ to Opponent, we

have defined G as above so that the initial protocol does not appear in an O-view.

Also, it prevents the name ‖σ‖ of each σ ∈ VS(G) from affecting the rank R(G).

Except these points, a p-game is a particular type of a ranked game.

Intuitively, a play of a p-game G proceeds as follows. At the beginning, Player has

an opportunity to ‘declare’ a v-strategy σ : G to Judge via an initial protocol qG.‖σ‖,
and then a play between Opponent and Player follows, where Player is forced to play

by the ‘declared’ σ. The point is that σ : G may range over v-strategies on different

221

games in the conventional sense (Definition 5.3.15), and so Player may choose an

underlying game when she selects σ. Thus, a p-game G is a family of games, where

each component game corresponds to a maximal consistent subset of VS(G), which

is to interpret type dependency in MLTT; see Example 5.3.27 below.

Remark. We may define an order 6 between v-strategies on each p-game G by:

σ 6 τ
df.⇔ σ � τ ∧ σ P τ

for all σ, τ : G. Moreover, if each maximal consistent subset of VS(G) is complete,

then G forms an algebraic cpo [67, 11, 173] just as games do [129]. It is then easy

to show that this constraint is preserved under the constructions in Definition 5.3.40

and moreover satisfied by every p-game that models a type of MLTT; thus, we may

reasonably adopt it as a part of the definition of p-games. Also, it is straightforward

to see that each v-strategy on a linear implication (Definition 5.3.40) between such

cpo-enriched p-games can be seen as a continuous function [67, 11, 173] with respect

to the order 6. However, we do not need such domain-theoretic structures in the rest

of the chapter; thus, for simplicity, we have not imposed the condition on p-games.

As a generalization of identifications of valid strategies on games, let us define:

Definition 5.3.24 (Identification of v-strategies on p-games). Given a p-game G, the

equivalence relation'G on v-strategies onG, called the identification of v-strategies

on G, is given by σ 'G τ
df.⇔ Pref({qG.‖σ‖.s | s ∈ Pσ }) 'G Pref({qG.‖τ‖.t | t ∈ Pτ }).

I.e., given v-strategies σ and τ on a p-game G, σ 'G τ exactly when they are

consistent and identified by 'G on ‘actual’ positions in the sense of Definition 5.3.1.

Example 5.3.25 (Example of p-games). A maximal position of the 1-p-game N1

corresponding to N is of the form qN1 .‖n0‖.[q]
‖n0‖
0 .[n]

‖n0‖
0 , where n0 is obtained from n

by changing each move m to the mere move [m]0. For readability, we often abbreviate

the position as qN1 .‖n‖.q.n, which corresponds to the position q.n of N . Henceforth,

we usually abbreviate N1 as N .

Now, recall the terminal game T
df.
= (∅, ∅, ∅, {ε}, {(ε, ε)}) in Example 2.2.11

and the empty game 0
df.
= flat(∅) in Example 2.2.12. Again, abusing notation, we

usually write T and 0 for the corresponding 1-p-games T1 and 01, respectively. Also,

we sometimes write 1 for T , and > and ⊥ for the unique v-strategies > : T and ⊥ : 0,

respectively, when we regard 1 and 0 as the simplest true and false formulas.

Let us call the p-games N , 1 (or T) and 0 the natural number p-game, the

unit p-game and the empty p-game, respectively. Typical plays of these p-games

may be depicted as in the following diagrams:

222

N 1 0
qN q1 q0
‖n‖ ‖>‖ ‖⊥‖
q q
n

Notice that a p-game G is completely determined by specifying a set VS(G) of all

v-strategies on G and an identification 'G of positions of G. For instance, we have

just defined N , 1 and 0 respectively by VS(N)
df.
= {⊥} ∪ {n | n ∈ N }, VS(1)

df.
= {>}

and VS(0)
df.
= {⊥}, where 'N , '1 and '0 are the trivial ones.

More in general, just like the sum games
∑

(S,'S) in the last section, we may

define a p-game
∮

(S,'S) for any given pair (S,'S) of a set S of v-strategies such

that there is an upper bound of the ranks of elements of S and an equivalence relation

'S on the induced positions satisfying the axioms I1, I2 and I3 as well as the axiom

(PI) ε 'S ε ∧ q∮ (S,'S) 'S q∮ (S,'S) ∧ ∀σ, τ ∈ S. (q∮ (S,'S).‖σ‖ 'S q∮ (S,'S).‖τ‖ ⇔ σ � τ)

∧ ∀σ ∈ S. (q∮ (S,'S).‖σ‖.[s]
‖σ‖
l 'S q∮ (S,'S).‖σ‖.[t]‖σ‖r ⇔ [s]l 'σ [t]r)

such that VS(
∮

(S,'S)) = S and '∮
(S,'S) = 'S . Let us record this observation:

Definition 5.3.26 (Predicative union). Given an integer k > 1 and a set S ⊆ VS6k,
the quadruple

∮
S = (M∮

S , λ
∮
S ,`∮ S , P∮

S) is defined by:

• M∮
S

df.
=

∑
σ∈SMσ = {[m]

‖σ‖
l | σ ∈ VS(G), [m]l ∈Mσ };

• λ∮ S : [m]
‖σ‖
r 7→ λσ([m]r);

• `∮ Sdf.
= {(?, [m]

‖σ‖
r) | σ ∈ S, ? `σ [m]r } ∪ {([m]

‖σ‖
r , [n]

‖σ‖
l) | σ ∈ S, [m]r `σ [n]l };

• P∮
S

df.
= {ε, q∮ S} ∪ {q∮ S .‖σ‖.[s]

‖σ‖
r | σ ∈ S. [s]r ∈ Pσ }, where q∮ S df.

= [0]0.

A pair (S,'S) is a predicative pair if 'S is an equivalence relation on P∮
S that

satisfies the axioms I1, I2, I3 and PI. The predicative union
∮

(S,'S) on (S,'S)

is the p-game defined by
∮

(S,'S)
df.
= (

∮
S).('S) = (M∮

S , λ
∮
S ,`∮ S , P∮

S ,'S).

Clearly, every p-game G is a predicative union: G =
∮

(VS(G),'G).

Notation. Given k > 1 and S ⊆ VS6k, abusing notation, let us define∮
S df.

=
∮

(S, {(ε, ε), (q∮ S , q∮ S)}∪{(q∮ S .‖σ‖.[s]
‖σ‖
l , q∮ S .‖σ‖.[t]‖σ‖r) | σ ∈ S, [s]l 'σ [t]r}).

Example 5.3.27 (An example of predicative union). Consider the predicative union∮
{100,>}, whose typical positions are as depicted in the following tables:

223

∮
{100,>}

∮
{100,>}

q∮ {100,>} q∮ {100,>}
‖100‖ ‖>‖
q

100

This p-game is not very meaningful, but it illustrates the point that a p-game can be

seen as a family of games.

Also, given a game A, we define the 1-p-game A1 by A1
df.
=

∮
({α0 | α : A },'A1),

where α0 is obtained from α by changing each move m to the mere move [m]0, and

'A1

df.
= {(ε, ε), (qA1 , qA1)} ∪ {(qA1 .‖α0‖.[s]

‖α0‖
0 , qA1 .‖α′0‖.[t]

‖α′0‖
0) | α, α′ : A, s ∈ α, t ∈

α′, s 'A t }. This construction generalizes the examples given in Example 5.3.25.

Again, we usually abbreviate the p-game A1, a v-strategy α0 : A1 and a position

[s]
‖α0‖
0 ∈ PA1 as A, α : A and s ∈ PA, respectively.

Let us define another convenient construction:

Definition 5.3.28 (Parallel union). Given an integer k > 1 and a set S ⊆ PG6k,
the parallel union

∫
S is the p-game given by:

• M∫
S

df.
=

⋃
G∈SMG = {[m]

‖σ‖
r | ∃G ∈ S. [m]

‖σ‖
r ∈MG };

• λ∫ S : [m]
‖σ‖
r 7→ λσ([m]r);

• `∫ S df.
= {(?, [m]

‖σ‖
r) | ∃G ∈ S. ? `G [m]

‖σ‖
r }

∪ {([m]
‖σ‖
r , [n]

‖σ‖
l) | ∃G ∈ S. [m]

‖σ‖
r `G [n]

‖σ‖
l };

• P∫
S

df.
= {ε, q∫ S} ∪ {q∫ S‖σ‖[s]

‖σ‖
r | ∃G ∈ S. qG‖σ‖[s]

‖σ‖
r ∈ PG }, where q∫ S df.

= [0]0;

• '∫
S

df.
= {(ε, ε), (q∫ S , q∫ S)}

∪ {(q∫ S‖σ‖[s]
‖σ‖
r , q∫ S‖τ‖[t]‖τ‖l) | ∃G ∈ S. qG‖σ‖[s]

‖σ‖
r 'G qG‖τ‖[t]‖τ‖l }.

That is, the construction
∫

forms a p-game from a set of p-games by ‘unifying the

first moves qG (G ∈ S)’. Clearly, each parallel union is a well-defined p-game, where

note that we take union for identification of positions (n.b., intersection would not

work), and a v-strategy σ : G for some G ∈ S is again a v-strategy on
∫
S.

Remark. We take union, not disjoint union, of moves for parallel union since otherwise

Player would be able to see component p-games of the interpretation of Π- and Σ-types

by ‘tags’ for the disjoint union, (partially) violating the ‘invisibility’ of anti-strategies.

Also, such ‘tags’ would prohibit the uniformity condition in Definition 5.3.35 from

functioning properly on the interpretation of Π-types.

224

Example 5.3.29 (An example of parallel union). Consider the parallel union
∫
{N,1},

whose typical positions are as depicted in the following tables:∫
{N,1}

∫
{N,1}

q∫ {N,1} q∫ {N,1}
‖100‖ ‖>‖
q

100

where for brevity we omit ‘tags’ on moves occurring after initial protocols.

Next, let us adapt the subgame relation to p-games. In view of Theorem 5.3.19,

the subgame relation on games (Definition 2.2.13) and the subset relation on their

sets of v-strategies are logically equivalent. Hence, it is natural to define:

Definition 5.3.30 (P-subgames). A predicative subgame (p-subgame) of a p-

game G is a p-game H that satisfies VS(H) ⊆ VS(G) and 'H = 'G ∩ (PH × PH).

Notation. We write H P G to mean that H is a p-subgame of a p-game G.

Given p-games A and B, we clearly have A = B ⇔ A P B ∧ B P A; thus, the

relation P forms a partial order on p-games.

Example 5.3.31 (Examples of p-subgames). In contrast to conventional games in

Chapter 2, among which the terminal game T is the least one, the terminal p-game T1

is not the least p-game, e.g., T1 6P 01, T1 6P 11 and T1 6P N1. Instead, the least p-game

is the initial p-game I defined by I
df.
=

∮
(∅,'I), where 'I

df.
= {(ε, ε), (qI , qI)}.

On the other hand, the subgame relation on games has been certainly generalized

to p-games for we have A P B ⇔ A1 P B1 for any games A and B.

We now define a certain kind of p-games to interpret universes of MLTT, which

should be called universe games. As we are interested in MLTT with a hierarchy of

universes, we shall construct the corresponding hierarchy of universe games.

Definition 5.3.32 (Universe games). For each k ∈ N, the kth-universe game is

the p-game Uk
df.
=

∮
{G | G ∈ PG6k+1}, where G

df.
= flat({‖G‖})1. A universe game

is the kth-universe game for some k ∈ N, and it is often abbreviated as U .

Notation. Given a v-strategy µ : T ⇒ U , we write El(µ) for the unique p-game such

that El(µ)T = µ if it exists (otherwise it is undefined). Since the identification 'U of

positions is just the equality =, we may define the operation El on the equivalence

classes [µ] of v-strategies µ : T ⇒ U as well in the obvious manner.

225

Proposition 5.3.33 (Predicativity of universe games). For each k ∈ N, the kth-

universe game Uk is a (k + 2)-p-game.

Proof. Observe that T ∈ PG1 and ∀k ∈ N.Uk ∈ PGk+2 by induction on k.

As a consequence, we have Ui : Uj for all i, j ∈ N with i < j, which conceptually

induces a hierarchy of universe games : U0 : U1 : U2 . . . On the other hand, we clearly

have Uk 6∈ VS(Uk) for all k ∈ N because ranks of p-games prohibit a Russell’s-like

paradox as promised previously:

Proposition 5.3.34 (Paradox-free). The name of a p-game is not a move of the

game itself, i.e., if G is a p-game, then ‖G‖ /∈MG.

Proof. Let G be an r-predicative game. By the definition, each move [m]l ∈ MG

satisfies l < r. Thus, since the name ‖G‖ has rank r, it cannot be in MG.

By the definition, G ∈ PG6k+1 ⇔ G : Uk for all k ∈ N. Thus, as intended, the

kth-universe game Uk is the ‘universe’ of all i-p-games with 1 6 i 6 k+ 1. Intuitively,

a play of a universe game U starts with Opponent’s question q, meaning ‘What is

your game?’, and Player answers it by the name of a p-game such as ‖G‖, meaning

‘It is the game G!’ (here we omit the initial protocol for brevity).

Remark. Now, interpreting ranks of types by ranks of p-games, the increments +2

(U-Form), +1 (U-Elim) in the syntax (see Section 5.2) should make sense.

5.3.4 The CCC of Logical Predicative Games

This section generalizes the existing constructions on games (in Chapter 2) so that

they preserve predicativity of games, based on which we shall define the CCC LPG of

logical p-games and winning v-strategies, generalizing the CCC LMG in Chapter 2.

To obtain a cartesian closed structure of p-games, however, there is a technical

challenge in linear implication ((Definition 2.2.21). Note that a Π-type Πa:AB(a)

is a generalization of the function type A⇒ B. Thus, an interpretation of Πa:AB(a)

must be a generalization of implication A⇒ B, where B(σ) may vary, depending on

a v-strategy σ : A which Opponent chooses to play. Naively, it seems that we may

interpret it by the p-subgame of A ⇒
∫
{B(σ) | σ : A } whose v-strategies φ satisfy

φ ◦ σ† : B(σ) for all σ : A. Now, the initial protocol becomes qB.qA.‖σ‖.‖φ ◦ σ†‖, and

then a play of the p-subgame σ ⇒ φ ◦ σ† P σ ⇒ B(σ) follows.

This nicely captures the phenomenon of Π-types, but imposes another challenge:

The play described above no longer follows the initial protocol because the second

226

move qA is not the name of a v-strategy to follow. Even if we somehow enforce the

protocol, then we would lose the initial two questions and two answers to determine

the component p-game σ ⇒ B(σ).

Our solution for this problem is the following:

Definition 5.3.35 (PoPLIs). Given p-games A and B, a product of pointwise

linear implications (PoPLIs) from A to B is a v-strategy of the form φ = &σ:Aφσ,

where (φσ)σ:A is a family of v-strategies φσ : σ (πφ(σ) and πφ ∈ VS(B)VS(A), that

satisfies the following uniformity axiom:

(Uni) ∀σ1, σ2 : A, sm ∈ POdd
φσ1
∩POdd

φσ2
, smn ∈ POdd

φσ1
∪POdd

φσ2
.smn ∈ Pφσ1

⇔ smn ∈ Pφσ2

where &σ:Aφσ is defined by:

• M&σ:Aφσ
df.
= {[m]

‖σ‖
r | σ : A, [m]r ∈Mφσ};

• λ&σ:Aφσ : [m]
‖σ‖
r 7→ λφσ([m]r);

• `&σ:Aφσ
df.
= {(?, [m]

‖σ‖
r) | σ : A, ? `φσ [m]r }

∪ {([m]
‖σ‖
r , [n]

‖σ‖
l) | σ : A, [m]r `φσ [n]l };

• P&σ:Aφσ
df.
=

⋃
σ:A{[s]

‖σ‖
r | [s]r ∈ Pφσ}, where [s]

‖σ‖
r

df.
= [m1]

‖σ‖
r1 [m2]

‖σ‖
r2 . . . [mk]

‖σ‖
rk if

[s]r = [m1]r1 [m2]r2 . . . [mk]rk ;

• '&σ:Aφσ
df.
= {([s]

‖σ‖
r , [t]

‖σ‖
l) | σ : A, [s]r 'φσ [t]l }.

Notation. The set of all PoPLIs from A to B is written LI(A,B).

Definition 5.3.36 (Composition on PoPLIs). Given p-games A, B and C, and

PoPLIs φ ∈ LI(A,B) and ψ ∈ LI(B,C), the composition ψ ◦ φ (also written

φ;ψ) of φ and ψ is defined by:

ψ ◦ φ df.
= &σ:Aψπφ(σ) ◦ φσ.

Lemma 5.3.37 (Well-defined composition on PoPLIs). For any p-games A, B and

C, if φ ∈ LI(A,B) and ψ ∈ LI(B,C), then ψ ◦ φ ∈ LI(A,C).

Proof. Immediate from Lemma 2.3.16, where uniformity is clearly preserved.

Clearly, PoPLIs φ ∈ LI(A,B) are well-defined v-strategies. They are intended to

be v-strategies on the linear implications A(B defined in Definition 5.3.40 below.

The basic idea is as follows. When Opponent performs the first move in A(B, he

227

is enforced to determine a v-strategy σ on A due to ‘tags’ for the linear implication,

which together with Player’s ‘declared’ strategy φ : A (B in turn selects her v-

strategy πφ(σ) on B. Note that φ has to be uniform because she should not be

able to see Opponent’s choice σ : A. In fact, by uniformity, PoPLIs are a natural

generalization of strategies on linear implications (Definition 2.2.21) as we shall see.

Next, we generalize exponential ! of games (Definition 2.2.25). The point is that

a strategy on an exponential !A is not necessarily the exponential of a strategy on

A, unlike tensor ⊗ or product &, which prohibits us from defining !A in terms of

strategies on A. We have to overcome this point since p-games are defined in terms

of its v-strategies. However, it is not a difficult problem; it suffices to consider:

Definition 5.3.38 (C-tensor). Given a countably infinite family σ = (σn)n∈N of

strategies σn on a game A, their countable (c-) tensor ⊗σ = ⊗n∈Nσn is given by:

• M⊗σ
df.
= {(a, n) | n ∈ N, a ∈Mσn};

• λ⊗σ : (a, n) 7→ λσn(a);

• `⊗σ
df.
= {(?, (a, n)) | n ∈ N, ? `σn a } ∪ {((a, n), (a′, n)) | n ∈ N, a `σn a′ };

• P⊗σ
df.
= {s ∈ L⊗σ | ∀n ∈ N. s � n ∈ Pσn};

• s '⊗σ t
df.⇔ ∃ϕ ∈ P(N). π∗2(s) = (ϕ ◦ π2)∗(t) ∧ ∀n ∈ N. s � ϕ(n) 'A t � n.

Lemma 5.3.39 (Well-defined c-tensor). For any countably infinite family (σn)n∈N of

v-strategies on a game A, the c-tensor ⊗n∈Nσn is a v-strategy on the exponential !A.

Conversely, every v-strategy on !A is a c-tensor of v-strategies on A.

Proof. Straightforward.

Remark. ‘Tags’ (, n), where n ∈ N, are deleted when we take a view of a position of

a c-tensor similarly to exponential ! of games.

We are now ready to define constructions on p-games:

Definition 5.3.40 (Constructions on p-games). Given a family (Gi)i∈I of p-games,

let G1 (G2
df.
=

∮
(LI(G1, G2),'G1(G2), !G1

df.
=

∮
({⊗n∈Nσn | ∀n ∈ N. σn : G1},'!G1)

and ♣i∈IGi
df.
=

∮
({♣i∈Iσi | ∀i ∈ I. σi : Gi},'♣i∈IGi) if ♣i∈I is ⊗ or &, where:

• qG1(G2‖φ‖[s]
‖σ‖
r 'G1(G2 qG1(G2‖ψ‖[t]

‖τ‖
l

df.⇔ φ � ψ ∧ qG1‖σ‖([s]
‖σ‖
r � G1) 'G1

qG1‖τ‖([t]
‖τ‖
l � G1) ∧ qG2‖πφ(σ)‖([s]

‖σ‖
r � G2) 'G2 qG2‖πψ(τ)‖([t]‖τ‖l � G2)

∧ ∀j ∈ N. (([s(j)]r(j) ∈ MG1 ⇔ [t(j)]l(j) ∈ MG1) ∧ (J ([s(j)]r(j)) = [s(k)]r(k) ⇔
J ([t(j)]l(j)) = [t(k)]l(k)));

228

• q!G1‖ ⊗n∈N σn‖[s]
‖⊗n∈Nσn‖
r '!G1 q!G1‖ ⊗n∈N τn‖[t]

‖⊗n∈Nτn‖
l

df.⇔ ∃ϕ ∈ P(N). π∗2(s) =

(ϕ ◦ π2)∗(t) ∧ ∀n ∈ N. qG1‖σϕ(n)‖([s]r � ϕ(n))‖σϕ(n)‖ 'G1 qG1‖τn‖([t]l � n)‖τn‖;

• q♣i∈IGi‖♣i∈Iσi‖[s]
‖♣i∈Iσi‖
r '♣i∈IGi q♣i∈IGi‖♣i∈Iτi‖[t]

‖♣i∈Iτi‖
l

df.⇔ (∀j ∈ N.[s(j)]r(j) ∈
MG1 ⇔ [t(j)]l(j) ∈MG1)∧∀i ∈ I. qGi‖σi‖([s]r � Gi)‖σi‖ 'Gi qGi‖τi‖([t]l � Gi)‖τi‖

if ♣i∈I is tensor ⊗ or product &.

Notation. Henceforth, we write ♣i∈I for (and ! as well.

Theorem 5.3.41 (Well-defined constructions on p-games). P-games are closed under

all the constructions defined in Definition 5.3.40.

Proof. It is not hard to see that the constructions on identifications of positions

preserve the axioms I1, I2, I3 and PI. Then, the theorem follows from the well-

definedness of the constructions on v-strategies, and Lemmata 5.3.37 and 5.3.39.

Corollary 5.3.42 (Well-defined constructions on v-strategies). Given p-games A,

B, C and D, and v-strategies φ : A (B, ψ : C (D, ϕ : !A (B, ϑ : A (C,

the tensor φ ⊗ ψ : A ⊗ C (B ⊗ D, the pairing 〈φ, ϑ〉 : A (B&C, the promotion

ϕ† : !A(!B and the composition ψ ◦ ϑ : A(D are all well-defined v-strategies.

Proof. Immediate from Theorem 5.3.41.

Example 5.3.43 (Examples of constructions on p-games). Consider the v-strategies

succ, double : N (N :

N
succ
(N N

double
(N

qN(N qN(N
‖succ‖ ‖double‖

[q]
‖n‖,‖succ‖
0 [q]

‖m‖,‖double‖
0

[q]
‖n‖,‖succ‖
0 [q]

‖m‖,‖double‖
0

[n]
‖n‖,‖succ‖
0 [m]

‖m‖,‖double‖
0

[n+ 1]
‖n‖,‖succ‖
0 [2m]

‖m‖,‖double‖
0

The tensor 0⊗ 1 : N ⊗N and the composition succ; double : N (N play as follows:

N ⊗ N N
succ;double
(N

qN⊗N qN(N
‖0⊗ 1‖ ‖s ; d‖

[q]
‖0⊗1‖
0 [q]

‖n‖,‖s;d‖
0

[0]
‖0⊗1‖
0 [q]

‖n‖,‖s;d‖
0

[q]
‖0⊗1‖
0 [n]

‖n‖,‖s;d‖
0

[1]
‖0⊗1‖
0 [2(n+ 1)]

‖n‖,‖s;d‖
0

229

where s ; d is an abbreviation for succ; double. Note that conceptually Player (resp.

Opponent) can see only the ‘tags’ ‖0⊗ 1‖ and ‖s ; d‖ (resp. ‖n‖ and ‖m‖).

Importantly, for p-games Gi corresponding to games, i.e., the pairs (VS(Gi),'Gi)
are all complete (Theorem 5.3.19), the constructions in Definition 5.3.40 coincide with

the constructions on games in Chapter 2, where the resulting pairs (VS(♣i∈IGi),'VS(♣i∈IGi)

) are again complete. For instance, consider the linear implication A(B between

games A and B. Given a v-strategy φ : A (B, we may define a v-substrategy,

which is just the subgame φσ P φ in the sense of Definition 2.2.13 for each σ : A

by Pφσ
df.
= {s ∈ Pφ | s � A ∈ Pσ }; then the product &σ:A(φσ)0, where (φσ)0 is

the first-rank v-strategy obtained from φσ by replacing moves m with [m]0, clearly

forms a v-strategy on the p-game A1 (B1, which essentially coincides with φ it-

self. Conversely, any v-strategy ψ : A1 (B1 may be seen as a v-strategy on the

game A (B, more specifically as
⋃

({(ψσ)−1
0 | σ : A1 },

⋃
σ:A1

('ψσ)−1
0) : A (B

(recall union games in Section 5.3.2), which is essentially the same as ψ, thanks to

the uniformity of ψ. Moreover, these constructions are mutually inverses again by the

uniformity of φ. Therefore, in view of Theorem 5.3.19, we may conclude that A(B

and A1 (B1 are essentially the same. It is even simpler to see the correspondence

for other constructions.

Finally, let us generalize the most basic strategies:

Definition 5.3.44 (Copy-cats on p-games). The copy-cat (v-strategy) on a p-

game G is the v-strategy cpG = &σ:Gcpσ : G(G.

Definition 5.3.45 (Derelictions on p-games). The dereliction on a p-game G is

the v-strategy derG = &⊗τ :!Gder τ0 : !G(G, where ⊗τ = ⊗n∈Nτn.

Diagrammatically, the dereliction derA on any p-game A plays as follows:

!A
derA
(A

q!A(A

‖derA‖
[a(1)]

‖⊗τ‖,‖derA‖
r(1)

[(a(1), 0)]
‖⊗τ‖,‖derA‖
r(1)

[(a(2), 0)]
‖⊗τ‖,‖derA‖
r(2)

[a(2)]
‖⊗τ‖,‖derA‖
r(2)

[a(3)]
‖⊗τ‖,‖derA‖
r(3)

[(a(3), 0)]
‖⊗τ‖,‖derA‖
r(3)

...

230

where ⊗τ : !A and [a(1)]r(1) [a(2)]r(2) [a(3)]r(3) · · · ∈ Pτ0 . Note that Player (resp. Oppo-

nent) can see the ‘tag’ ‖derA‖ (resp. ‖⊗ τ‖) but not ‖⊗ τ‖ (resp. ‖derA‖).
We are now ready to define:

Definition 5.3.46 (The category LPG). The category LPG of logical p-games and

winning v-strategies is defined as follows:

• Objects are well-founded p-games G such that VS(G) 6= ∅, which we call logical

p-games (lp-games);

• Morphisms A→ B are the equivalence classes [φ] of winning v-strategies (wv-

strategies) φ : A⇒ B with respect to the equivalence relation 'A⇒B;

• The composition [ψ] • [φ] : A→ C of morphisms [φ] : A→ B and [ψ] : B → C

is defined by [ψ] • [φ]
df.
= [ψ • φ]

df.
= [ψ ◦ φ†];

• The identity idA on each object A is [derA] : A→ A.

Theorem 5.3.47 (Well-defined LPG). LPG forms a well-defined category.

Proof. The composition is well-defined by Lemma 2.3.16 and Corollary 5.3.42, and

the identities are clearly well-defined by Lemma 2.3.27. Finally, the associativity and

the unit law follow from those of LMG (see, e.g., [129] for the proof).

Remark. Importantly, Opponent’s anti-strategies do not have to be innocent, well-

bracketed, total or noetherian at all (we have not formulated these notions precisely,

but it should be clear what they are). In particular, strategies ⊗σ for any morphism

[φ] = [&⊗σ:!Aφσ] : A→ B in LPG range over any v-strategies on !A.

Thus, the category LPG is a natural generalization of the category LMG of well-

founded games and winning strategies for IPC in Chapter 2. Note that there is at

least one (not necessarily winning) v-strategy on each game, corresponding to the

non-emptiness of objects of LPG, but see Section 5.3.5. As in the case of LMG, we

may think of objects and morphisms of LPG as formulas and proofs, respectively.

Convention. We often call objects and morphisms in LPG formulas and proofs,

respectively. Let LPG(A)
df.
= LPG(T,A) for all A ∈ LPG. A formula G ∈ LPG is

true if ∃[φ] ∈ LPG(G), where [φ] is called a proof of G, and false otherwise.

231

Mathematically, the category LPG is well-behaved. Its linear version (in the sense

of LLMG for LMG in Chapter 2) gives rise to an NSC (Definition 2.4.2), and thus

LPG induces a CCC (by Theorem 2.4.3), in a completely similar manner to the case

of LLMG and LMG. In fact, the structure of LPG may be obtained via this route.

Nevertheless, since this result is not directly relevant to the rest of the thesis, we

just state it here without giving a proof:

Theorem 5.3.48 (The NSC LLPG). There is the NSC LLPG of logical p-games

and winning v-strategies with the comonad ! such that LLPG ! = LPG.

Corollary 5.3.49 (The CCC LPG). The category LPG is cartesian closed.

Proof. By Theorems 5.3.48 and 2.4.3.

5.3.5 Coproducts of Predicative Games

At this point, one may have recognized that the mathematical structure of p-games

is somewhat similar to that of the Fam-construction (which takes a model C of call-

by-name computation and generates a model Fam(C) of call-by-value computation)

applied to the CCC CMG of conventional (call-by-name) games by Abramsky et al.

[13], which is bicartesian closed. Therefore, it is reasonable to expect that p-games

also have coproducts. The present section briefly addresses this point though it is not

strictly necessary for the rest of the chapter. In order to discuss the relation between

coproducts and fixed-points [98], we define the CCC CPG of computational p-games

and v-strategies obtained from LPG by relaxing the well-foundedness condition on

objects and the winning condition on morphisms.

Remark. There are, however, notable differences between p-games and call-by-value

games of [13]. Firstly, morphisms in LPG and CPG are not necessarily strict unlike

those in the BCC Fam(CMG); thus, LPG and CPG both model call-by-name com-

putation, which is appropriate for embodying logic since it allows proofs that com-

pletely ignore assumptions. Secondly, Fam(CMG) has families of games and families

of strategies as objects and morphisms, respectively. Although a family {Ai | i ∈ I }
of games and a family {φi : !Ai (

∑
j∈J !Bj | i ∈ I } : {Ai | i ∈ I } →

∑
{Bj | j ∈ J }

of strategies may be regarded as a single (pointed) game
∑
{Ai | i ∈ I } =

∑
i∈I Ai,

where
∑

: Fam(CMG)→ Fam(CMG) is a strong monad [136] on Fam(CMG), and a

single (strict) strategy φ :
∑

i∈I !Ai(
∑

j∈J !Bj, respectively (see [13] for the detail),

the linear implication
∑

i∈I !Ai(
∑

j∈J !Bj no longer has the canonical form
∑

(). In

232

this sense, one of the novelties of p-games lies in the point that the structure of fam-

ilies of games and families of strategies is incorporated into game-semantic concepts

(or formulated solely in terms of games and strategies).

5.3.5.1 Initial Objects

Let us begin with (strong) initial objects. It is immediate from the definition of

linear implication (between p-games (Definition 5.3.40) that the initial p-game I

(Example 5.3.31) would have been an initial object of LPG if we allow that an object

of LPG has no v-strategy at all. However, we have excluded I from LMG in order

to keep the intensional or play-relevant nature of p-games:

• Recall that a position qG.‖σ‖.(s)‖σ‖ of a p-game G is divided into the initial

protocol qG.‖σ‖ and the actual position (s)‖σ‖, where we regard only the latter

as the essential part since then the chosen strategy σ : G is ‘gradually revealed’

as a play proceeds (which conforms to conventional games);

• Let us call this nature that only actual positions matter in logical p-games

play-relevance;

• However, I breaks play-relevance of logical p-games, e.g., T and I both have

the same (and trivial) actual position ε, but it is a win for Player in T but a

defeat in I due to their difference in the initial protocols;

Alternatively, we may regard initial protocols also as an essential part of plays

so that T and I are reasonably distinguished. In this case, the notion of p-games

departs from conventional games (in Chapter 2) since Player reveals her strategy in

mind to Opponent in one go. From this standpoint, we define the CCCs ILPG and

ICPG obtained from LPG and CPG, respectively, by simply adding I.

Although plays of p-games in ILPG and ICPG appear extensional, these CCCs

are actually highly intensional, e.g., they are not well-pointed, standing in sharp

contrast to extensional categories such as the category Sets of sets and functions. On

the other hand, they are closer to Sets than LPG or CPG since it has the initial object

I ∈ WPG similarly to the empty set ∅ ∈ Set , and they do not have fixed-points, e.g.,

there is no fixed-point of id I : I → I in ILPG or even in ICPG (which saves them

from becoming trivial, i.e., objects are all isomorphic to T , by the argument in [98]).

Nevertheless, from the view of proofs-as-programs [172], the weak initial object or

the empty p-game 0 (Example 5.3.25) is much more preferable as falsity than I; for

instance, the negation ¬A df.
= A⇒ 0 enables us to systematically relate classical and

233

intuitionistic reasonings as we have seen for LMG in Section 2.4.7, but the negation

A⇒ I obviously cannot. Moreover, in the presence of I, 0 cannot model falsity very

well; see the proof of Lemma 5.4.32.

To summarize, we have adopted the CCC LPG, excluding the initial object I, as

the underlying category for modeling MLTT in order to conform to the intensional

nature of conventional games and model negation in the play-relevant manner.

5.3.5.2 Binary Coproducts

Next, let us consider (strong) binary coproducts. We focus on the CCCs CPG and

ICPG in this section since the case for LPG and ILPG would be completely similar.

It is easy to see that neither CPG nor ICPG has binary coproducts (they only have

weak ones), but if we remove the uniformity condition on PoPLIs (Definition 5.3.35),

then they both have strong ones. Let us define the revealed CCCsRCPG andRICPG
obtained from CPG and ICPG, respectively, by relaxing uniformity on morphisms.

Theorem 5.3.50 (Binary coproducts in RCPG and RICPG). The CCCs RCPG
and RICPG both have binary coproducts.

Proof. We focus on RCPG since the case for RICPG is just the same. The coproduct

A⊕B of A,B ∈ RCPG is given by A⊕B df.
=

∮
(VS(A)+VS(B),'A + 'B), for which

the injections and copairings are the obvious ones. Then, it is straightforward to

see that this structure satisfies the axioms of binary coproducts (in particular, initial

protocols prohibit the problem described in Section 2.4.5 from occurring).

Example 5.3.51 (An example of coproduct of p-games). Consider the coproduct

N ⊕ 1, whose typical positions are as depicted in the following tables:

N ⊕ 1 N ⊕ 1
qN⊕1 qN⊕1
‖100‖ ‖>‖
q

100

where for brevity we omit ‘tags’ for the disjoin union of the sets of moves.

The CCCs RCPG and RICPG are again not well-pointed, embodying intensional

categories of computation. However, they significantly differ from the categories of

conventional games for Player is allowed to see Opponent’s choice of an anti-strategy:

Example 5.3.52 (An example of copairing on p-games). Consider the copairing

[succ, 0] : !N⊕ !N (N :

234

!N ⊕ !N
[succ,0]
(N

q!N⊕!N(N

‖[succ, 0]‖
[q]
‖⊗σ‖,‖[succ,0]‖
0

[(q, 0)]
‖⊗σ‖,‖[succ,0]‖
0

[(n, 0)]
‖⊗σ‖,‖[succ,0]‖
0

[n+ 1]
‖⊗σ‖,‖[succ,0]‖
0

!N ⊕ !N
[succ,0]
(N

q!N⊕!N(N

‖[succ, 0]‖
[q]
‖⊗σ‖,‖[succ,0]‖
0

[0]
‖⊗σ‖,‖[succ,0]‖
0

This phenomenon is unusual from the viewpoint of conventional game semantics since

Opponent’s choice of an anti-strategy may affect the behavior of a v-strategy.

One may wonder if RCPG has fixed-points (clearly, RICPG does not). The

following example demonstrates that the answer is no:

Example 5.3.53 (An example of a v-strategy with no fixed-points). We have the

v-strategy nonfixN : !N (N in RCPG that behaves as follows:

!N
nonfixN
(N

q!N(N

‖nonfixN‖
[q]
‖⊗σ‖,‖nonfixN‖
0

[0]
‖⊗σ‖,‖nonfixN‖
0

if σ0 = ⊥ : N , and

!N
nonfixN
(N

q!N(N

‖nonfixN‖
[q]
‖⊗σ‖,‖nonfixN‖
0

[(q, 0)]
‖⊗σ‖,‖nonfixN‖
0

[(n, 0)]
‖⊗σ‖,‖nonfixN‖
0

otherwise (i.e., σ0 = n : N for some n ∈ N). Therefore, given a v-strategy φ : T ⇒ N ,

we have nonfixN ◦ φ† =

{
0 if φ = ⊥
⊥ otherwise

so that nonfixN • φ 6= φ.

235

On the other hand, it is clear that the uniformity condition brings fixed-points into

RCPG just similarly to the case of conventional categories of games and strategies

such as CMG. This point may be seen as a game-semantic counterpart of the general

categorical phenomenon that binary coproducts and fixed-points are incompatible in

a CCC unless it is trivial [98]: Conventional CCCs of games and strategies such as

CMG have fixed-points but not binary coproducts for the (implicit) presence of the

uniformity condition; they obtain binary coproducts but lose fixed-points if we relax

uniformity. The generalization of games to p-games makes this point evident.

Corollary 5.3.54 (The BCCsRICPG andRILPG). The CCCsRICPG andRILPG
both have (strong) coproducts.

In this manner, we have established a truly game-semantic coproducts in the sense

explained in Section 2.4.5. However, as already mentioned, these BCCs break:

• The idea of initial protocols in p-games (for Player cannot complete it in I);

• The interpretation of falsity by the empty p-game 0;

• The invisibility of Opponent’s choice of an anti-strategy to Player.

For this reason, we take the CCCs CPG and LPG (in particular the latter) as central

in this thesis though it is possible to extend them to BCCs RICPG and RILPG.

Remark. It is of course possible to obtain BCCs from ICPG and ILPG by restricting

objects to pointed ones and morphisms to strict ones, respectively, just similarly

to the BCC of call-by-value games in [13]. Recall that a game is pointed if it

is well-opened and has at most one initial move, and a strategy between pointed

games is strict if it responds to the initial move in the codomain by the initial move

of the domain whenever it is possible. Notably, the resulting BCCs may interpret

fixed-points [136, 13]. However, to embody logic, we would like to have non-strict

morphisms since they correspond to proofs that completely ignore assumptions; also,

fixed-points would make every formula provable. Thus, we shall not consider these

BCCs in the rest of the chapter either.

In the next section, which is the highlight of the present chapter, we give a game

semantics of MLTT based on the category LPG, implying that the generalization of

LMG to LPG corresponds to the route from propositional logic to predicate logic.

236

5.4 Game Semantics of MLTT

We are now ready to present a game semantics of MLTT. Our approach is based

on an abstract and algebraic model of MLTT, called categories with families (CwFs)

[53, 92] because it is in general easier to show that a mathematical structure is an

instance of an abstract model than to directly establish that it is a model of MLTT,

and CwFs are closer to the syntax than other abstract or categorical semantics, so

that we may directly see semantic counterparts of syntactic phenomena.

More specifically, the present section gives a CwF based on the category LPG
(Definition 5.3.46) and equips it with semantic type formers [92] such as 1-, 0-, N-,

Π-, Σ- and Id-types. We shall present our game-semantic universes in Section 5.5.

5.4.1 Dependent Logical Predicative Games

In MLTT, a dependent type over a type A is a judgement of the form Γ, x : A,∆ ` B type

[126, 125, 127]. As we have seen in Section 5.2, the syntactic construction (in fact a

dependent type) El is a surjective but not injective map from terms Γ, x : A,∆ ` c : U

of universes to dependent types Γ, x : A,∆ ` El(c) type with the right inverse En.

In this manner, dependent types and terms of universes are closely related. Then,

how should we interpret them respectively? For simplicity, assume Γ and ∆ are both

♦. Intuitively, the former denotes merely a family of types (B(x))x:A, while the latter

represents the corresponding computation: (x : A) 7→ En(B(x)). The point is that

dependent types in MLTT are not any families of types but the ones inductively

generated by rules of MLTT whose computational meanings are clear, which is why

El is surjective (otherwise there would be dependent types with no their ‘codes’).

Now, note that a dependent type x : A ` B type is a predicate on the formula A in

logic. Thus, it should be interpreted in a category C of formulas and proofs as a family

of objects indexed by morphisms in C(T,A), where T ∈ C is a terminal object. In the

case of LPG, it is a family of p-games indexed by elements of LPG(A) = LPG(T,A):

Definition 5.4.1 (Dlp-games). A dependent logical predicative (dlp-) game

over an lp-gameA ∈ LPG is a familyB = {B([σ]) ∈ LPG|[σ] ∈ LPG(A)} of lp-games

indexed by elements of LPG(A) with R(B)
df.
= Sup({R(B([σ])) | [σ] ∈ LPG(A)}) ∈ N.

It is constant if B([σ]) = B([σ′]) for all [σ], [σ′] ∈ LPG(A).

Notation. If B is constant, then we write B = {B0}A or just {B0}, where B0 = B([σ])

for all [σ] ∈ LPG(A). We write DLPG(A) for the set of all dlp-games over an lp-game

A. We often write B[σ] for B([σ]). We define
∫
B

df.
=

∫
{B[σ] | [σ] ∈ LPG(A)} ∈ LPG.

237

Example 5.4.2. Let us generalize the operation El : Given a wv-strategy φ : A⇒ U ,

we define the dlp-game El([φ]) ∈ DLPG(A) by:

El([φ])
df.
= {El([φ • σ]) | [σ] ∈ LPG(A) }.

It is a generalization as El([µ]) = {El([µ •]) | [] ∈ LPG(T) } = {El([µ])} for any

µ : T ⇒ U in LPG.

Example 5.4.3. Let L(N) be the dlp-game over N such that L(N)[k] with k >

1 is the lp-game whose maximal positions are of the form q1n1q2n2 . . . qknk, where

n1, n2, . . . , nk ∈ N, representing the k-tuple (n1, n2, . . . , nk) ∈ Nk, and L(N)[0] is the

lp-game whose only the position is ε, representing the empty tuple ε ∈ N0.

Example 5.4.4. The dlp-game ENDO over U is given by ENDO([µ])
df.
= El([µ])⇒

El([µ]) for all µ : T ⇒ U in LPG. Similarly, we have ⊗,(,& ∈ DLPG(U&U) and

! ∈ DLPG(U) that correspond to ⊗, (, & and !, respectively.

5.4.2 Dependent Function Spaces

We now present our game-semantic interpretation of Π-types. The construction here

is, however, preliminary; the full interpretation of Π-types is given in Section 5.4.6.1.

Definition 5.4.5 (Π̂-spaces). The dependent function (Π̂-) space Π̂(A,B) of a

dlp-game B ∈ DLPG(A) over an lp-game A ∈ LPG is the lp-subgame of A ⇒
∫
B

whose v-strategies φ satisfy ∀[σ] ∈ LPG(A). [φ • σ] ∈ LPG(B[σ]).

The idea is best described by a set-theoretic analogy: Π̂(A,B) represents the set

of all (set-theoretic) functions f : A→
⋃
x∈AB(x), where B = (B(x))x∈A is a family

of sets indexed by elements of the set A, that satisfies f(a) ∈ B(a) for all a ∈ A.

Thus, when B is constant, Π̂(A, {B0}) coincides with the implication A⇒ B0.

However, we will have to handle the case where A is a dlp-game; so Π̂ given above

is not general enough (note that an lp-game A may be identified with the singleton

dlp-game {A}). In terms of the syntax of MLTT, we can interpret the rule

(Π-Form) Γ, x : A ` B(x) type⇒ Γ ` Πx:AB(x) type

only when Γ = ♦ at the moment. This is why we use the symbol Π̂ here; we shall

define a more general construction Π of dependent function space shortly.

Example 5.4.6. On the Π̂-space Π̂(N,L(N)), we define a wv-strategy φ : Π̂(N,L(N))

by Pφσ
df.
= Pref({q1qkn1q2n2 . . . qknk}) if σ0 = k with k > 1 and Pφσ

df.
= {ε} if σ0 = 0,

which represents the dependent function (k ∈ N) 7→ (n1, n2, . . . , nk) ∈ Nk.

238

5.4.3 Dependent Pair Spaces

In a similar manner to Π̂-space, we define an interpretation of Σ-types. Again, the

construction here is preliminary; see Section 5.4.6.2 for the full interpretation.

Definition 5.4.7 (Σ̂-spaces). The dependent pair (Σ̂-) space Σ̂(A,B) of a dlp-

game B ∈ DLPG(A) over an lp-game A ∈ LPG is the lp-subgame of the product

A&(
∫
B) whose v-strategies 〈σ, τ〉 satisfy [σT] ∈ LPG(A)⇒ [τT] ∈ LPG(B[σ]).

In terms of the set-theoretic analogy, Σ̂(A,B) represents the set of all pairs (a, b),

where a ∈ A, b ∈ B(a). Again, this construction Σ̂ is not general enough; we shall

define a more general one Σ shortly. Note that when B is a constant dlp-game {B0},
the Σ̂-space Σ̂(A, {B0}) coincides with the product A&B0.

Example 5.4.8. The Σ̂-space Σ̂(N,L(N)) represents the ‘space’ of dependent pairs

(k, (n1, n2, . . . , nk)), where k, n1, n2, . . . , nk ∈ N.

5.4.4 Identity Spaces

We proceed to define lp-games that interpret Id-types :

Definition 5.4.9 (Îd- spaces). GivenG ∈ LPG, the identity (Îd-) space ÎdG([σ], [τ])

between [σ], [τ] ∈ LPG(G) is defined by:

ÎdG([σ], [τ])
df.
=

{
1 if [σ] = [τ];

0 otherwise.

Therefore, ÎdG([σ], [τ]) is true iff [σ] = [τ]. Again, the construction Îd is not general

enough; we shall define its generalization Id in Section 5.4.6.3.

Remark. It is certainly possible to define a more intensional version of Îd-spaces that

compare the behavior of two given proofs of the same formula. However, such an

intensional formulation cannot fully model Id-types as we shall see in Section 5.4.6.3.

5.4.5 Game-Semantic Category with Families

We now define the CwF LPG of lp-games and wv-strategies. Let us first recall the

general definition of CwFs, where our presentation is based on [92]:

Definition 5.4.10 (CwFs [53, 92]). A category with families (CwF) is a tuple

C = (C,Ty ,Tm, { }, T, . , p, v , 〈 , 〉), where:

• C is a category;

239

• Ty assigns, to each object Γ ∈ C, a set Ty(Γ), called the set of all types in the

context Γ;

• Tm assigns, to each pair of an object Γ ∈ C and a type A ∈ Ty(Γ), a set

Tm(Γ, A), called the set of all terms of type A in the context Γ;

• For each morphism f : ∆ → Γ in C, { } induces a function {f} : Ty(Γ) →
Ty(∆), called the substitution on types, and a family ({f}A : Tm(Γ, A)→
Tm(∆, A{f}))A∈Ty(Γ) of functions, called the substitutions on terms ;

• T ∈ C is a terminal object;

• . assigns, to each pair of a context Γ ∈ C and a type A ∈ Ty(Γ), a context

Γ.A ∈ C, called the comprehension of A;

• p associates each pair of a context Γ ∈ C and a type A ∈ Ty(Γ) with a morphism

p(A) : Γ.A→ Γ in C, called the first projection associated to A;

• v associates each pair of a context Γ ∈ C and a type A ∈ Ty(Γ) with a term

vA ∈ Tm(Γ.A,A{p(A)}) called the second projection associated to A;

• 〈 , 〉 assigns, to each triple of a morphism f : ∆ → Γ in C, a type A ∈ Ty(Γ)

and a term g ∈ Tm(∆, A{f}), a morphism 〈f, g〉A : ∆ → Γ.A in C, called the

extension of f by g

that satisfies, for all Γ,∆,Θ ∈ C, A ∈ Ty(Γ), f : ∆ → Γ, e : Θ → ∆, h ∈ Tm(Γ, A)

and g ∈ Tm(∆, A{f}), the following equations:

• (Ty-Id) A{idΓ} = A;

• (Ty-Comp) A{f ◦ e} = A{f}{e};

• (Tm-Id) h{idΓ}A = h;

• (Tm-Comp) h{f ◦ e}A = h{f}A{e}A{f};

• (Cons-L) p(A) ◦ 〈f, g〉A = f ;

• (Cons-R) vA{〈f, g〉A} = g;

• (Cons-Nat) 〈f, g〉A ◦ e = 〈f ◦ e, g{e}A{f}〉A;

• (Cons-Id) 〈p(A), vA〉A = idΓ.A.

240

It is straightforward to consider a substructure relation between CwFs:

Definition 5.4.11 (SubCwFs). A CwF C ′ = (C ′,Ty ′,Tm ′, { }′, T ′, .′ , p ′, v ′, 〈 , 〉′)
is a subCwF of a CwF C = (C,Ty ,Tm, { }, T, . , p, v , 〈 , 〉) if:

• C ′ is a subcategory of C;

• Ty(Γ′) ⊆ Ty(Γ′) for each Γ′ ∈ C ′;

• Tm(Γ′, A′) ⊆ Tm(Γ′, A′) for each Γ′ ∈ C ′ and A′ ∈ Ty(Γ′);

• A′{f ′}′ = A′{f ′} and a′{f ′}′ = a′{f ′} for all f ′ : ∆′ → Γ′ in C ′, A′ ∈ Ty ′(Γ′)

and a′ ∈ Tm ′(Γ′, A′);

• T ′ = T and Γ′.′A′ = Γ′.A′ for all Γ′ ∈ C ′ and A′ ∈ Ty ′(Γ′);

• p ′(A′) = p(A′) and v ′A′ = vA′ for all Γ′ ∈ C ′ and A′ ∈ Ty(Γ′);

• 〈f ′, g′〉A′ = 〈f ′, g′〉′A′ for all f ′ : ∆′ → Γ′ in C ′, A′ ∈ Ty(Γ′) and g′ ∈ Tm ′(Γ′, A′).

Next, let us recall the interpretation of MLTT in a CwF. Roughly, judgements of

MLTT as presented in Section 5.2 are interpreted in a CwF C as follows:

` Γ ctx 7→ JΓK ∈ C; (5.1)

Γ ` A typei 7→ JAK ∈ Ty(JΓK) such that R(JAK) = i; (5.2)

Γ ` a : A 7→ JaK ∈ Tm(JΓK, JAK); (5.3)

` Γ ≡ ∆ ctx⇒ JΓK = J∆K ∈ C; (5.4)

Γ ` A ≡ B typei ⇒ JAK = JBK ∈ Ty(JΓK); (5.5)

Γ ` a ≡ a′ : A⇒ JaK = Ja′K ∈ Tm(JΓK, JAK). (5.6)

where J K denotes the interpretation. The last three equations are the soundness of

J K; see [92] for the proof. As we shall see, the additional equality of the rank of a type

and the rank of its interpretation is easily established by induction on Γ ` A typei.

Remark. An interpretation is applied to judgements, and thus JΓK, JAK and JaK should

be strictly speaking written respectively as J` Γ ctxK, JΓ ` A typeK and JΓ ` a : AK. For

brevity, however, we shall often adopt the shorter notation if it is not confusing.

Note that for a deduction of a judgement in MLTT is not unique in the presence

of the rules Ty-Con and Tm-Con, a priori we cannot define an interpretation by

induction on deductions. For this point, a standard approach is to define an inter-

pretation J K on pre-syntax which is partial, and show that it is well-defined on every

241

valid syntax (i.e., judgement) and preserves judgmental equality as the correspond-

ing semantic equality [92]. By this soundness result, a posteriori we may describe the

interpretation J K of the syntax by induction on derivation of judgements:

Definition 5.4.12 (Interpretation of MLTT in CwFs [92]). The interpretation J K of

MLTT in a CwF C = (C,Ty ,Tm, { }, T, . , p, v , 〈 , 〉) is defined as follows:

• (Ct-Emp) J` ♦ ctxK df.
= T ;

• (Ct-Ext) J` Γ, x : A ctxK df.
= J` Γ ctxK.JΓ ` A typeK;

• (Var) JΓ, x : A ` x : AK df.
= vJAK;

JΓ, x : A,∆, y : B ` x : AK df.
= JΓ, x : A,∆ ` x : AK{p(JΓ, x : A,∆ ` B typeK)}JAK;

• (Ty-Con) J∆ ` A typeK df.
= JΓ ` A typeK;

• (Tm-Con) J∆ ` a : BK df.
= JΓ ` a : AK

where the hypotheses of the rules are as presented in Section 5.2.

We leave the interpretation of 1-, 0-, N-, Π-, Σ- and Id-types as well as universes

by semantic type formers [92] to the next section.

We now define our game-semantic CwF:

Definition 5.4.13 (The CwF LPG). The CwF LPG of lp-games and wv-strategies

is the tuple LPG = (LPG,Ty ,Tm, { }, I, . , p, v , 〈 , 〉), where:

• The underlying category LPG has been defined in Definition 5.3.46;

• For each Γ ∈ LPG, Ty(Γ)
df.
= DLPG(Γ);

• For each pair of Γ ∈ LPG and A ∈ DLPG(Γ), Tm(Γ, A) is the set of all

equivalence classes [φ] of wv-strategies φ : Π̂(Γ, A);

• For each morphism [φ] : ∆ → Γ in LPG, the function {[φ]} : Ty(Γ) → Ty(∆)

is defined by A{[φ]} df.
= {A[φ • δ] | [δ] ∈ LPG(∆) } for all A ∈ Ty(Γ), and the

functions {[φ]}A : Tm(Γ, A) → Tm(∆, A{[φ]}) are defined by [ϕ]{[φ]}A
df.
=

[ϕ] • [φ] = [ϕ • φ] for all A ∈ Ty(Γ) and [ϕ] ∈ Tm(Γ, A);

• T is the terminal p-game defined in Example 2.2.11;

• Given Γ ∈ LPG and A ∈ DLPG(Γ), Γ.A
df.
= Σ̂(Γ, A);

• p(A)
df.
= [fst Σ̂(Γ,A)] : Σ̂(Γ, A)→ Γ, where fst Σ̂(Γ,A) is derΓ up to ‘tags’;

242

• vA
df.
= [snd Σ̂(Γ,A)] : Π̂(Σ̂(Γ, A), A{p(A)}), where snd Σ̂(Γ,A) is [der ∫

A] up to ‘tags’;

• Given Γ ∈ LPG, A ∈ DLPG(Γ), [φ] ∈ LPG(∆,Γ) and [τ] ∈ Tm(∆, A{[φ]}),
〈[φ], [τ]〉A

df.
= [〈φ, τ〉] : ∆→ Σ̂(Γ, A).

Notation. We often omit subscripts A on {[φ]}A and 〈 , 〉A. We often write fst and

snd respectively for fst Σ̂(Γ,A) and snd Σ̂(Γ,A) if the underlying Σ̂(Γ, A) is obvious. Our

choice of the notation for the projections, p(A) and vA, or fst Σ̂(Γ,A) and snd Σ̂(Γ,A),

depends on the context; we just employ what is easier to read.

Theorem 5.4.14 (Well-defined LPG). The tuple LPG forms a well-defined CwF.

Proof. It is obvious that each component is well-defined except substitutions on terms

and extensions. Therefore, we consider just these two. Let Γ ∈ LPG, A ∈ DLPG(Γ),

[φ] ∈ LPG(∆,Γ), [ϕ] ∈ Tm(Γ, A) and [τ] ∈ Tm(∆, A{[φ]}) in LPG.

For the substitution [ϕ]{[φ]} = [ϕ • φ], note first that it does not depend on

the choice of the representatives ϕ and φ, and thus it is well-defined. Moreover,

ϕ • φ is a wv-strategy on Π̂(∆, A{[φ]}) because if [δ] ∈ LPG(∆), then [ϕ • φ] • [δ] =

[(ϕ • φ) • δ] = [ϕ • (φ • δ)] ∈ LPG(A[φ • δ]) = LPG(A{[φ]}([δ])). Thus, {[φ]} is a

well-defined function from Tm(Γ, A) to Tm(∆, A{[φ]}).
For the extension 〈[φ], [τ]〉 = [〈φ, τ〉] : ∆ → Γ&(

∫
A), let [δ] ∈ LPG(∆). Again,

〈[φ], [τ]〉 and 〈[φ], [τ]〉 • [δ] = [〈φ, τ〉] • [δ] = [〈φ, τ〉 • δ] does not depend on the choice

of the representatives φ, τ and δ. We have to show [〈φ, τ〉 • δ] ∈ LPG(Σ̂(Γ, A)), but

it clearly holds as 〈φ, τ〉 • δ = 〈φ• δ, τ • δ〉 and [τ • δ] = [τ]{[δ]} ∈ LPG(A{[φ]}([δ])) =

LPG(A[φ • δ]).
Finally, we verify the required equations:

• (Ty-Id) Given Γ ∈ LPG and A ∈ DLPG(Γ),

A{idΓ} = {A[derΓ • δ] | [δ] ∈ LPG(∆) } = {A[δ] | [δ] ∈ LPG(∆) } = A;

• (Ty-Comp) Given ∆,Θ ∈ LPG and [ψ] : Θ→ ∆, [φ] : ∆→ Γ in LPG,

A{[φ] • [ψ]} = A{[φ • ψ]}

= {A[(φ • ψ) • θ] | [θ] ∈ LPG(Θ) }

= {A[φ • (ψ • θ)] | [θ] ∈ LPG(Θ) }

= {A{[φ]}([ψ • θ]) | [θ] ∈ LPG(Θ) }

= {A{[φ]}{[ψ]}([θ]) | [θ] ∈ LPG(Θ) }

= A{[φ]}{[ψ]};

243

• (Tm-Id) Given a wv-strategy ϕ : Π̂(Γ, A),

[ϕ]{idΓ} = [ϕ] • [derΓ] = [ϕ • derΓ] = [ϕ];

• (Tm-Comp) Under the same assumption,

[ϕ]{[φ] • [ψ]} = [ϕ] • [φ • ψ]

= [ϕ • (φ • ψ)]

= [(ϕ • φ) • ψ]

= [ϕ • φ] • [ψ]

= [ϕ]{[φ]} • [ψ]

= [ϕ]{[φ]}{[ψ]};

• (Cons-L) Given a wv-strategy τ : Π̂(∆, A{φ}),

p(A) • 〈[φ], [τ]〉 = [fst] • [〈φ, τ〉] = [fst • 〈φ, τ〉] = [φ];

• (Cons-R) vA{〈[φ], [τ]〉} = [snd] • [〈φ, τ〉] = [snd • 〈φ, τ〉] = [τ];

• (Cons-Nat) 〈[φ], [τ]〉 • [ψ] = [〈φ, τ〉] • [ψ] = [〈φ, τ〉 • ψ] = [〈φ • ψ, τ • ψ〉] =

〈[φ • ψ], [τ • ψ]〉 = 〈[φ] • [ψ], [τ]{[ψ]}〉;

• (Cons-Id) 〈p(A), vA〉 = 〈[fst], [snd]〉 = [〈fst , snd〉] = [der Σ̂(Γ,A)] = idΓ.A

which completes the proof.

5.4.6 Game-Semantic Type Formers

Note that a CwF handles only the ‘core’ of MLTT: It interprets just the syntax

common to all types. Thus, for a full interpretation of MLTT, we need to equip the

CwF LPG with additional structures to interpret 1-, 0-, N-, Π-, Σ- and Id-types. This

is the aim of the present section; we consider each type in order.

5.4.6.1 Game-Semantic Dependent Function Types

We begin with Π-types. Let us first recall the general interpretation of Π-types:

Definition 5.4.15 (CwFs with Π-types [92]). A CwF C supports Π-types if:

• (Π-Form) For any Γ ∈ C, A ∈ Ty(Γ) and B ∈ Ty(Γ.A), there is a type

Π(A,B) ∈ Ty(Γ);

244

• (Π-Intro) If b ∈ Tm(Γ.A,B), then there is a term

λA,B(b) ∈ Tm(Γ,Π(A,B));

• (Π-Elim) If k ∈ Tm(Γ,Π(A,B)), g ∈ Tm(Γ, A), then there is a term

AppA,B(k, g) ∈ Tm(Γ, B{g})

where g
df.
= 〈idΓ, g〉A : Γ→ Γ.A;

• (Π-Comp) AppA,B(λA,B(b), g) = b{g};

• (Π-Subst) Given ∆ ∈ C and f : ∆→ Γ in C,

Π(A,B){f} = Π(A{f}, B{f+})

where f+ df.
= 〈f ◦ p(A{f}), vA{f}〉A : ∆.A{f} → Γ.A;

• (λ-Subst) λA,B(b){f} = λA{f},B{f+}(b{f+}) ∈ Tm(∆,Π(A{f}, B{f+})) for all

b ∈ Tm(Γ.A,B);

• (App-Subst) AppA,B(k, g){f} = AppA{f},B{f+}(k{f}, g{f}) ∈ Tm(∆, B{g}{f}),
where note that k{f} ∈ Tm(∆,Π(A{f}, B{f+})), g{f} ∈ Tm(∆, A{f}) and

f+◦g{f} = 〈f◦p(A{f}), vA{f}〉A◦〈id∆, g{f}〉A{f} = 〈f, g{f}〉A = 〈idΓ, g〉A◦f =

g ◦ f .

Furthermore, C supports Π-types in the strict sense if it also satisfies:

• (λ-Uniq) Given w : Π̂(Γ,Π(A,B)),

λA,B(AppA{p(A)},B{p(A)+}(w{p(A)}, vA)) = w.

Definition 5.4.16 (Interpretation of Π-types). The interpretation J K of Π-types in

a CwF C that supports Π-types is given by:

• (Π-Form) JΓ ` Πx:AB typeK df.
= Π(JΓ ` A typeK, JΓ, x : A ` B typeK);

• (Π-Intro) JΓ ` λx. b : Πx:ABK df.
= λJAK,JBK(JΓ, x : A ` b : BK);

• (Π-Elim) JΓ ` f(a) : B[a/x]K df.
= AppJAK,JBK(JΓ ` f : Πx:ABK, JΓ ` a : AK).

where the hypotheses of the rules are as presented in Section 5.2.

245

Again, the soundness of the interpretation holds for this interpretation of Π-types,

where the uniqueness rule Π-Uniq is also interpreted if the CwF C supports Π-types

in the strict sense; see [92] for the detail. This point holds for the other semantic

type formers given below, and thus we henceforth skip pointing it out.

We now propose our game-semantic Π-types:

Lemma 5.4.17 (Π-types in LPG). The CwF LPG supports Π-types in the strict

sense.

Proof. Let Γ ∈ LPG, A ∈ DLPG(Γ) and B ∈ DLPG(Σ̂(Γ, A)), and assume that

ϕ : Π̂(Σ̂(Γ, A), B) is a wv-strategy.

• (Π-Form) As stated before, we need to generalize the construction of Π̂-spaces

as A is a dlp-game: Let Π(A,B)
df.
= {Π̂(A[γ], B[γ]) | [γ] ∈ LPG(Γ)} ∈ DLPG(Γ),

where B[γ]
df.
= {B[〈γ, σ〉] | [σ] ∈ LPG(A[γ])} ∈ DLPG(A[γ]). Note that if Γ = T ,

then Π(A,B) = {Π̂(A[], B[])}; therefore, Π is a generalization of Π̂, and thus

we call Π(A,B) the dependent function (Π-) space of B over A.

• (Π-Intro) Thanks to the correspondence Π̂(Σ̂(Γ, A), B) ∼= Π̂(Γ,Π(A,B)) up

to ‘tags’, we may obtain λA,B(β) : Π̂(Γ,Π(A,B)) from any β : Π̂(Σ̂(Γ, A), B) by

‘adjusting the tags’. Clearly, this operation λA,B preserves the identification of

positions. Thus, given [β] ∈ Tm(Σ̂(Γ, A), B), we define λA,B([β])
df.
= [λA,B(β)] ∈

Tm(Γ,Π(A,B)). Note that λA,B has the obvious inverse λ−1
A,B. We often omit

the subscripts A and B on λA,B and λ−1
A,B.

• (Π-Elim) Given κ : Π̂(Γ,Π(A,B)) and α : Π̂(Γ, A) in LPG, we define:

AppA,B(κ, α)
df.
= λ−1

A,B(κ) • α

where α = 〈derΓ, α〉 : Γ⇒ Σ̂(Γ, A). As in the proof of Theorem 5.4.14, we have

λ−1
A,B(κ) • [α] : Π̂(Γ, B{[α]}). Then, we define:

AppA,B([κ], [α])
df.
= [AppA,B(κ, α)] = [λ−1

A,B(κ) • α] ∈ Tm(Γ, B{[α]}).

It is easy to see that AppA,B([κ], [α]) does not depend on the choice of the

representatives κ and α. We often omit the subscripts A,B on AppA,B.

• (Π-Comp) By a simple calculation, we obtain:

AppA,B(λA,B([β]), [α]) = [λ−1
A,B(λA,B([β]))] • [α]

= [β] • [α]

= [β]{[α]}.

246

• (Π-Subst) Given ∆ ∈ LPG and [φ] : ∆→ Γ in LPG, we have:

Π(A,B){[φ]} = {Π̂(A[γ], B[γ]) | [γ] ∈ LPG(Γ) }{[φ]}

= {Π̂(A[φ • δ], B[φ•δ]) | [δ] ∈ LPG(∆) }

= {Π̂(A{[φ]}([δ]), B{[φ+]}[δ]) | [δ] ∈ LPG(∆) }

= Π(A{[φ]}, B{[φ]+})

where [φ]+
df.
= 〈[φ] • p(A{[φ]}), vA{[φ]}〉 : Σ̂(∆, A{[φ]})→ Σ̂(Γ, A) and B{[φ]+} ∈

DLPG(Σ̂(∆, A{[φ]})). The third equation holds because we have:

B{[φ]+}[δ]([ψ]) = B{[φ]+}〈[δ], [ψ]〉

= B(〈[φ] • p(A{[φ]}), vA{[φ]}〉 • [〈δ, ψ〉])

= B(〈[φ] • [fst], [snd]〉 • 〈[δ], [ψ]〉)

= B(〈[φ • fst], [snd]〉 • [〈δ, ψ〉])

= B([〈φ • fst , snd〉] • [〈δ, ψ〉])

= B[〈φ • fst , snd〉 • 〈δ, ψ〉]

= B[〈φ • fst • 〈δ, ψ〉, snd • 〈δ, ψ〉〉]

= B[〈φ • δ, ψ〉]

= B〈[φ • δ], [ψ]〉

= B〈[φ] • [δ], [ψ]〉

= B[φ]•[δ]([ψ])

for all [ψ] ∈ LPG(A[φ • γ]).

• (λ-Subst) Given [β] ∈ Tm(Σ̂(Γ, A), B),

λA,B([β]){[φ]} = [λA,B(β)] • [φ]

= [λA,B(β) • φ]

= [λA{[φ]},B{[φ]+}(β • 〈φ • fst Σ̂(∆,A{[φ]}), snd Σ̂(∆,A{[φ]})〉)]

= λA{[φ]},B{[φ]+}([β] • 〈[φ] • [fst Σ̂(∆,A{[φ]})], [snd Σ̂(∆,A{[φ]})]〉)

= λA{[φ]},B{[φ]+}([β] • 〈[φ] • p(A{[φ]}), vA{[φ]}〉)

= λA{[φ]},B{[φ]+}(β{[φ]+}).

247

• (App-Subst) Moreover, it is easy to see that:

AppA,B([κ], [α]){[φ]} = ([λ−1
A,B(κ)] • [〈derΓ, α〉]) • [φ]

= [(λ−1
A,B(κ) • 〈derΓ, α〉) • φ]

= [λ−1
A,B(κ) • (〈derΓ, α〉 • φ)]

= [λ−1
A,B(κ) • 〈φ, α • φ〉]

= [λ−1
A{[φ]},B{[φ]+}(κ • φ) • 〈der∆, α • φ〉]

= [λ−1
A{[φ]},B{[φ]+}(κ • φ) • (α • φ)]

= AppA{[φ]},B{[φ]+}([κ • φ], [α • φ])

= AppA{[φ]},B{[φ]+}([κ]{[φ]}, [α]{[φ]}).

where α • φ df.
= 〈der∆, α • φ〉 : ∆⇒ Σ̂(∆, A{[φ]}).

• (λ-Uniq) Finally, if [ω] ∈ Tm(Γ,Π(A,B)), then we have:

λA,B(AppA{p(A)},B{p(A)+}([ω]{p(A)}, vA))

= λA,B(λ−1
A{p(A)},B{p(A)+}([ω]{[fst Σ̂(Γ,A)]}) • 〈[der Σ̂(Γ,A)], [snd Σ̂(Γ,A)]〉)

= λA,B([λ−1
A{p(A)},B{p(A)+}(ω • fst Σ̂(Γ,A))] • [〈der Σ̂(Γ,A), snd Σ̂(Γ,A)〉])

= λA,B([λ−1
A{p(A)},B{p(A)+}(ω • fst Σ̂(Γ,A)) • 〈der Σ̂(Γ,A), snd Σ̂(Γ,A)〉])

= [λA,B(λ−1
A{p(A)},B{p(A)+}(ω • fst Σ̂(Γ,A)) • 〈der Σ̂(Γ,A), snd Σ̂(Γ,A)〉)]

= [λA,B(λ−1
A,B(ω))]

= [ω]

completing the proof.

5.4.6.2 Game-Semantic Dependent Pair Types

Next, we consider Σ-types. Again, we begin with the general definition:

Definition 5.4.18 (CwFs with Σ-types [92]). A CwF C supports Σ-types if:

• (Σ-Form) Given Γ ∈ C, A ∈ Ty(Γ) and B ∈ Ty(Γ.A), there is a type

Σ(A,B) ∈ Ty(Γ);

• (Σ-Intro) There is a morphism in C

PairA,B : Γ.A.B → Γ.Σ(A,B);

248

• (Σ-Elim) Given P ∈ Ty(Γ.Σ(A,B)) and p ∈ Tm(Γ.A.B, P{PairA,B}), there

is a term

RΣ
A,B,P (p) ∈ Tm(Γ.Σ(A,B), P);

• (Σ-Comp) RΣ
A,B,P (p){PairA,B} = p;

• (Σ-Subst) Given ∆ ∈ C and f : ∆→ Γ in C,

Σ(A,B){f} = Σ(A{f}, B{f+})

where f+ df.
= 〈f ◦ p(A{f}), vA{f}〉A : ∆.A{f} → Γ.A;

• (Pair-Subst) p(Σ(A,B)) ◦ PairA,B = p(A) ◦ p(B) and f ∗ ◦ PairA{f},B{f+} =

PairA,B◦f++, where f ∗
df.
= 〈f◦p(Σ(A,B){f}), vΣ(A,B){f}〉Σ(A,B) : ∆.Σ(A,B){f} →

Γ.Σ(A,B) and f++ df.
= 〈f+ ◦ p(B{f+}), vB{f+}〉B : ∆.A{f}.B{f+} → Γ.A.B;

• (RΣ-Subst) RΣ
A,B,P (p){f ∗} = RΣ

A{f},B{f+},P{f∗}(p{f++}).

Moreover, C supports Σ-types in the strict sense if it additionally satisfies:

• (RΣ-Uniq) If any p ∈ Tm(Γ.A.B, P{PairA,B}) and q ∈ Tm(Γ.Σ(A,B), P)

satisfy the equation q{PairA,B} = p, then q = RΣ
A,B,P (p).

Definition 5.4.19 (Interpretation of Σ-types). The interpretation J K of Σ-types in

a CwF C that supports Σ-types is given by:

• (Σ-Form) JΓ ` Σx:AB typeK df.
= Σ(JΓ ` A typeK, JΓ, x : A ` B typeK)

• (Σ-Intro) JΓ ` (a, b) : Σx:ABK df.
= Pair JAK,JBK ◦ 〈JΓ ` a : AK, JΓ ` b : B[a/x]K〉JBK

• (Σ-Elim) JΓ ` RΣ(C, g, p) : C[p/z]K df.
= RΣ

JAK,JBK,JCK(JΓ, x : A, y : B ` g : C[(x, y)/z]K)◦
JΓ ` p : Σx:ABK

where the hypotheses of the rules are as presented in Section 5.2, JΓ ` a : AK df.
=

〈id JΓK, JaK〉 : JΓK→ JΓK.JAK and JΓ ` p : Σx:ABK df.
= 〈id JΓK, JpK〉 : JΓK→ JΓK.JΣx:ABK.

Now, we describe our game-semantic interpretation of Σ-types:

Lemma 5.4.20 (Σ-types in LPG). The CwF LPG supports Σ-types in the strict

sense.

Proof. Let Γ ∈ LPG, A ∈ DLPG(Γ) and B ∈ DLPG(Σ̂(Γ, A)).

249

• (Σ-Form) Similarly to Π̂-spaces, we generalize Σ̂-spaces to Σ-spaces by Σ(A,B)
df.
=

{Σ̂(A[γ], B[γ]) | [γ] ∈ LPG(Γ) } ∈ DLPG(Γ). Again, Σ is a generalization of Σ̂

for Σ(A,B) = {Σ̂(A[], B[])} if Γ = T , and we call Σ(A,B) the dependent

pair (Σ-) space of B over A.

• (Σ-Intro) By the obvious correspondence Σ̂(Σ̂(Γ, A), B) ∼= Σ̂(Γ,Σ(A,B)) up

to ‘tags’, we define the morphism PairA,B : Σ̂(Σ̂(Γ, A), B) → Σ̂(Γ,Σ(A,B)) to

be the equivalence class of the obvious dereliction up to ‘tags’, i.e., PairA,B
df.
=

[〈fst Σ̂(Γ,A) • fst Σ̂(Σ̂(Γ,A),B), 〈snd Σ̂(Γ,A) • fst Σ̂(Σ̂(Γ,A),B), snd Σ̂(Σ̂(Γ,A),B)〉〉]. Note that

Pair−1
A,B = [〈〈fst Σ̂(Γ,Σ(A,B)), fst∫ Σ(A,B)•snd Σ̂(Γ,Σ(A,B))〉, snd ∫

Σ(A,B)•snd Σ̂(Γ,Σ(A,B))〉].

• (Σ-Elim) Given P ∈ DLPG(Σ̂(Γ,Σ(A,B))) and [ψ] ∈ Tm(Σ̂(Σ̂(Γ, A), B), P{PairA,B})
in LPG, we may construct, by the correspondence described above, the term

RΣ
A,B,P ([ψ]) ∈ Tm(Σ̂(Γ,Σ(A,B)), P) by RΣ

A,B,P ([ψ])
df.
= [ψ] • Pair−1

A,B.

• (Σ-Comp) RΣ
A,B,P ([ψ]){PairA,B} = RΣ

A,B,P ([ψ]) • PairA,B = ([ψ] • Pair−1
A,B) •

PairA,B = [ψ] • (Pair−1
A,B • PairA,B) = [ψ].

• (Σ-Subst) Given ∆ ∈ LPG and [φ] : ∆ → Γ in LPG, by the same reasoning

as the case of Π-space, Σ(A,B){[φ]} = Σ(A{[φ]}, B{[φ]+}).

• (Pair-Subst) Under the same assumption, we clearly have:

p(Σ(A,B)) • PairA,B = [fst • 〈fst • fst , 〈snd • fst , snd〉〉]

= [fst • fst]

= [fst] • [fst]

= p(A) • p(B)

250

and we also have:

[φ]∗ • PairA{[φ]},B{[φ]+}

= 〈[φ] • p(Σ(A,B){[φ]}), vΣ(A,B){[φ]}〉 • PairA{[φ]},B{[φ]+}

= 〈[φ] • p(Σ(A{[φ]}, B{[φ]+})) • PairA{[φ]},B{[φ]+}, vΣ(A,B){[φ]} • PairA{[φ]},B{[φ]+}〉

= 〈[φ] • p(A{[φ]}) • p(B{[φ]+}), vΣ(A{[φ]},B{[φ]+}) • PairA{[φ]},B{[φ]+}〉

= 〈[φ] • [fst] • [fst], [snd] • 〈[fst] • [fst], 〈[snd] • [fst], [snd]〉〉〉

= [〈φ • fst • fst , snd • 〈fst • fst , 〈snd • fst , snd〉〉〉]

= [〈φ • fst • fst , 〈snd • fst , snd〉〉]

= [〈fst • fst , 〈snd • fst , snd〉〉 • 〈〈φ • fst • fst , snd • fst〉, snd〉]

= [〈fst • fst , 〈snd • fst , snd〉〉 • 〈〈φ • fst , snd〉 • fst , snd〉]

= 〈[fst] • [fst], 〈[snd] • [fst], [snd]〉〉 • 〈〈[φ] • [fst], [snd]〉 • [fst], [snd]〉

= PairA,B • 〈〈[φ] • p(A{[φ]}), vA{[φ]}〉 • p(B{[φ]+}), vB{[φ]+}〉

= PairA,B • 〈[φ]+ • p(B{[φ]+}), vB{[φ]+}〉

= PairA,B • [φ]++

where [φ]∗
df.
= 〈[φ]•p(Σ(A,B){[φ]}), vΣ(A,B){[φ]}〉 : Σ̂(∆, Σ̂(A,B){[φ]})→ Σ̂(Γ, Σ̂(A,B))

and [φ]++ df.
= 〈[φ]+•p(B{[φ]+}), vB{[φ]+}〉 : Σ̂(Σ̂(∆, A{[φ]}), B{[φ]+})→ Σ̂(Σ̂(Γ, A), B).

• (RΣ-Subst) Clearly, we have:

RΣ
A,B,P ([ψ]){[φ]∗}

= [ψ] • Pair−1
A,B • 〈[φ] • p(Σ(A,B){[φ]}, vΣ(A,B){[φ]}〉

= [ψ] • [〈〈fst , fst • snd〉, snd • snd〉] • 〈[φ] • [fst], [snd]〉

= [ψ • 〈〈fst , fst • snd〉, snd • snd〉 • 〈φ • fst , snd〉]

= [ψ • 〈〈φ • fst , fst • snd〉, snd • snd〉]

= [ψ • 〈〈φ • fst , snd〉 • fst , snd〉 • 〈〈fst , fst • snd〉, snd • snd〉]

= [ψ] • 〈〈[φ] • [fst], [snd]〉 • [fst], [snd]〉 • 〈〈[fst], [fst] • [snd]〉, [snd] • [snd]〉

= [ψ] • 〈[φ]+ • [fst], [snd]〉 • 〈〈[fst], [fst] • [snd]〉, [snd] • [snd]〉

= [ψ] • 〈[φ]+ • p(B{[φ]+}), vB{[φ]+}〉 • Pair−1
A{[φ]},B{[φ]+}

= RΣ
A{[φ]},B{[φ]+},P{[φ]∗}([ψ] • 〈[φ]+ • p(B{[φ]+}), vB{[φ]+}〉)

= RΣ
A{[φ]},B{[φ]+},P{[φ]∗}(ψ{[φ]++}).

• (RΣ-Uniq) If [ϕ] ∈ Tm(Σ̂(Γ,Σ(A,B)), P) satisfies [ϕ]{PairA,B} = [ψ], then

[ϕ] = [ψ] • Pair−1
A,B = RΣ

A,B,P ([ψ])

251

completing the proof.

5.4.6.3 Game-Semantic Identity Types

Next, we consider Id-types. Again, we first review the general interpretation:

Definition 5.4.21 (CwFs with Id-types [92]). A CwF C supports Id-types if:

• (Id-Form) Given Γ ∈ C and A ∈ Ty(Γ), there is a type

IdA ∈ Ty(Γ.A.A+)

where A+ df.
= A{p(A)} ∈ Ty(Γ.A);

• (Id-Intro) There is a morphism in C

ReflA : Γ.A→ Γ.A.A+.IdA;

• (Id-Elim) Given B ∈ Ty(Γ.A.A+.IdA) and b ∈ Tm(Γ.A,B{ReflA}), there is a

term

RId
A,B(b) ∈ Tm(Γ.A.A+.IdA, B);

• (Id-Comp) RId
A,B(b){ReflA} = b;

• (Id-Subst) Given ∆ ∈ C and f : ∆→ Γ in C,

IdA{f++} = IdA{f} ∈ Ty(∆.A{f}.A{f}+)

where A{f}+ df.
= A{f}{p(A{f})} ∈ Ty(∆.A{f}), f+ df.

= 〈f ◦ p(A{f}), vA{f}〉A :

∆.A{f} → Γ.A, and f++ df.
= 〈f+ ◦p(A+{f+}), vA+{f+}〉A+ : ∆.A{f}.A+{f+} →

Γ.A.A+;

• (Refl-Subst) ReflA ◦ f+ = f+++ ◦ ReflA{f} : ∆.A{f} → Γ.A.A+.IdA, where

f+++ df.
= 〈f++◦p(IdA{f++}), vIdA{f++}〉IdA : ∆.A{f}.A+{f+}.IdA{f} → Γ.A.A+.IdA;

• (RId-Subst) RId
A,B(b){f+++} = RId

A{f},B{f+++}(b{f+}).

Definition 5.4.22 (Interpretation of Id-types). The interpretation J K of =-types in

a CwF C that supports Id-types is given by:

• (=-Form) JΓ ` a =A a′ typeK df.
= IdJAK{〈JΓ ` a : AK, JΓ ` a′ : AK〉JAK};

• (=-Intro) JΓ ` reflA : a =A aK df.
= vIdJAK{Refl JAK ◦ JΓ ` a : AK};

252

• (=-Elim) JΓ ` R=(C, c, a, a′, q) : C[a/x, a′/y, q/p]K df.
= RId

JA,CK(JcK){〈〈JaK, Ja′K〉JAK, JqK〉Ja=Aa′K}

where the hypotheses of the rules are as presented in Section 5.2.

We then equip the CwF LPG with our game-semantic Id-types:

Lemma 5.4.23 (Id-types in LPG). The CwF LPG supports Id-types.

Proof. Let Γ ∈ LPG and A ∈ DLPG(Γ).

• (Id-Form) We define the dlp-game IdA ∈ DLPG(Σ̂(Σ̂(Γ, A), A+)) by:

IdA
df.
= {ÎdA[γ•]([σ], [σ′]) | 〈〈[γ], [σ]〉, [σ′]〉 ∈ LPG(Σ̂(Σ̂(Γ, A), A+)) }.

Let us also call IdA the identity space on A.

• (Id-Intro) We define ReflA : Σ̂(Γ, A1) → Σ̂(Σ̂(Σ̂(Γ, A2), A+
3), IdA) to be the

equivalence class of the wv-strategy that plays as the dereliction between Σ̂(Γ, A1)

and Σ̂(Γ, A2), between
∫
A1 and

∫
A+

3 , or as the unique wv-strategy on Σ̂(Γ, A1)→
1, where the subscripts 1, 2 and 3 are to distinguish the different copies of A.

Clearly, there is the inverse Refl−1
A : Σ̂(Σ̂(Σ̂(Γ, A2), A+

3), IdA)→ Σ̂(Γ, A1) which

is the equivalence class of the dereliction between Σ̂(Γ, A2) and Σ̂(Γ, A1).

Remark. Note that if we had allowed a non-canonical proof of IdA, then ReflA

would have only the left inverse, being unable to interpret the rule Id-Elim

below, which is why we have defined Îd-spaces as in Definition 5.4.9.

• (Id-Elim) GivenB ∈ DLPG(Σ̂(Σ̂(Σ̂(Γ, A2), A+
3), IdA)) and [β] ∈ Tm(Σ̂(Γ, A), B{ReflA})

in LPG, we define:

RId
A,B([β])

df.
= [β] • Refl−1

A ∈ Tm(Σ̂(Σ̂(Σ̂(Γ, A1), A+
2), IdA), B).

• (Id-Comp) We then clearly have:

RId
A,B([β]){ReflA} = RId

A,B([β]) • ReflA = [β] • Refl−1
A • ReflA = [β].

253

• (Id-Subst) Given ∆ ∈ LPG and [φ] : ∆→ Γ in LPG,

IdA{[φ]++}

= {ÎdA[γ•]([σ], [σ′]) | 〈〈[γ], [σ]〉, [σ′]〉 ∈ LPG(Σ̂(Σ̂(Γ, A), A+)) }{[φ]++}

= {IdA(〈〈[γ], [σ]〉, [σ′]〉) | 〈〈[γ], [σ]〉, [σ′]〉 ∈ LPG(Σ̂(Σ̂(Γ, A), A+)}{[φ]++}

= {IdA([φ]++ • 〈〈[δ], [α]〉, [α′]〉) | 〈〈δ, α〉, α′〉 ∈ LPG(Σ̂(Σ̂(∆, A{[φ]}), A{[φ]}+))}

= {IdA(〈[φ • δ], [α]〉, [α′]〉) | 〈〈[δ], [α]〉, [α′]〉 ∈ LPG(Σ̂(Σ̂(∆, A{[φ]}), A{[φ]}+))}

= {ÎdA[(φ•δ)•]([α], [α′]) | 〈〈[δ], [α]〉, [α′]〉 ∈ LPG(Σ̂(Σ̂(∆, A{[φ]}), A{[φ]}+))}

= {ÎdA{[φ]}[δ•]([α], [α′]) | 〈〈[δ], [α]〉, [α′]〉 ∈ LPG(Σ̂(Σ̂(∆, A{[φ]}), A{[φ]}+))}

= IdA{[φ]}

where [φ]+
df.
= 〈[φ] • p(A{[φ]}), vA{[φ]}〉 : Σ̂(∆, A{[φ]}) → Σ̂(Γ, A) and [φ]++ df.

=

〈[φ]+ • p(A+{[φ]+}), vA+{[φ]+}〉 : Σ̂(Σ̂(∆, A{[φ]}), A+{[φ]+}) → Σ̂(Σ̂(Γ, A), A+).

Note that for the forth equation we have:

[φ]++ • 〈〈[δ], [α]〉, [α′]〉 = 〈[φ]+ • p(A+{[φ]+}), vA+{[φ]+}〉 • 〈〈[δ], [α]〉, [α′]〉

= 〈[φ]+ • p(A+{φ+}) • 〈〈[δ], [α]〉, [α′]〉, vA+{[φ]+} • 〈〈[δ], [α]〉, [α′]〉〉

= 〈〈[φ • δ], [α]〉, [α′]〉.

• (Refl-Subst) Also, the following equation holds:

ReflA • [φ]+ = ReflA • 〈[φ] • p(A{[φ]}), vA{[φ]}〉

= 〈〈〈[φ] • p(A{[φ]}), vA{[φ]}〉 • p(A+{[φ]+}) • p(IdA{[φ]++}),

vA+{[φ]+} • p(IdA{[φ]++})〉, vIdA{[φ]++}〉 • ReflA{[φ]}

= 〈〈[φ]+ • p(A+{[φ]+}), vA+{[φ]+}〉 • p(IdA{[φ]++}), vIdA{[φ]++}〉 • ReflA{[φ]}

= 〈[φ]++ • p(IdA{[φ]++}), vIdA{[φ]++}〉 • ReflA{[φ]}

= [φ]+++ • ReflA{[φ]}

where [φ]+++ df.
= 〈[φ]++ • p(IdA{[φ]++}), vIdA{[φ]++}〉.

• (RId-Subst) Finally, we have:

RId
A,B([β]){[φ]+++} = ([β] • Refl−1

A) • [φ]+++

= [β] • (Refl−1
A • [φ]+++)

= [β] • ([φ]+ • Refl−1
A{[φ]}) (by Refl-Subst)

= ([β] • [φ]+) • Refl−1
A{[φ]}

= RId
A{[φ]},B{[φ]+++}([β] • [φ]+)

= RId
A{[φ]},B{[φ]+++}([β]{[φ]+})

254

which completes the proof.

5.4.6.4 Game-Semantic Natural Number Type

We proceed to give our game-semantic natural number type. Again, we first present

the abstract interpretation:

Definition 5.4.24 (CwFs with the N -type [92]12). A CwF C supports the N-type

or natural numbers if:

• (N-Form) Given Γ ∈ C, there is a type

NΓ ∈ Ty(Γ)

called the natural number type (in Γ), which we often abbreviate as N ;

• (N-Intro) There are a term and a morphism in C

0Γ ∈ Tm(Γ, N)

succΓ : Γ.N → Γ.N

that satisfy

0Γ{f} = 0∆ ∈ Tm(∆, N)

p(N) ◦ succΓ = p(N) : Γ.N → Γ

succΓ ◦ 〈g, vN〉N = 〈g, vN{succ∆}〉N : ∆.N → Γ.N

for any morphisms f : ∆→ Γ and g : ∆.N → Γ in C;

Notation. With zeroΓ
df.
= 〈idΓ, 0Γ〉N : Γ → Γ.N , we clearly have zeroΓ ◦ f =

〈f, 0∆〉N = 〈f, vN{zero∆}〉N : ∆ → Γ.N . We often omit the subscript Γ on 0Γ,

zeroΓ and succΓ. We define for each n ∈ N the term nΓ ∈ Tm(Γ, N) by:

– 0Γ is already given;

– n+ 1Γ

df.
= vN{succΓ ◦ 〈idΓ, nΓ〉}.

• (N-Elim) Given any triple of P ∈ Ty(Γ.N), cz ∈ Tm(Γ, P{zero}) and cs ∈
Tm(Γ.N.P, P{succ ◦ p(P)}), there is a term

RN
P (cz , cs) ∈ Tm(Γ.N, P);

12In the book, the definition is actually left to the reader; accordingly, this definition is the author’s
solution, which may be shown to be sound in the same manner as in the case of Π-, Σ- and Id-types
introduced above [92]. This applies for the remaining semantic type formers below as well.

255

• (N-Comp) We have the following equations:

RN
P (cz , cs){zero} = cz ∈ Tm(Γ, P{zero});

RN
P (cz , cs){succ} = cs{〈idΓ.N ,RN

P (cz , cs)〉P} ∈ Tm(Γ.N, P{succ});

• (N-Subst) NΓ{f} = N∆ ∈ Ty(∆);

• (RN-Subst) RN
P (cz , cs){f+} = RN

P{f+}(cz{f}, cs{f++}) ∈ Tm(∆.N, P{f+}),
where f+ df.

= 〈f◦p(N), vN〉N : ∆.N → Γ.N and f++ df.
= 〈f+◦p(P{f+}), vP{f+}〉P :

∆.N.P{f+} → Γ.N.P .

Definition 5.4.25 (Interpretation of N-types). The interpretation J K of N-types in

a CwF C that supports the N -type is given by:

• (N-Form) JΓ ` N typeK df.
= N JΓK;

• (N-IntroZ) JΓ ` zero : NK df.
= 0JΓK;

• (N-IntroS) JΓ ` succ(n) : NK df.
= vN{succJΓK ◦ 〈id JΓK, JΓ ` n : NK〉};

• (N-Elim) JΓ ` RN(C, cz, cs, n) : C[n/x]K df.
= RN

JCK(JczK, JcsK){〈id JΓK, JnK〉N}

where the hypotheses of the rules are as presented in Section 5.2.

It is easy to see by mathematical induction that we have JΓ ` n : NK = nJΓK for

any context ` Γ ctx and natural number n ∈ N.

We now propose our game-semantic natural number type:

Lemma 5.4.26 (Natural numbers in LPG). The CwF LPG supports the N-type.

Proof. Let Γ,∆ ∈ LPG and [φ] : ∆→ Γ in LPG.

• (N-Form) Given Γ ∈ LPG, we define NΓ to be the constant dlp-game {N}Γ.

• (N-Intro) We define [0Γ] ∈ Tm(Γ, {N}Γ) to be the morphism [zΓ] in LPG,

where zΓ = &⊗γ:!Γz⊗γ and Pz⊗γ
df.
= Pref({q.0}). Similarly, we define [succΓ] :

Σ̂(Γ, {N[1]}Γ) → Σ̂(Γ, {N[2]}Γ) to be the morphism 〈p({N}Γ), [sΓ]〉 in LPG,

where sΓ
df.
= &(⊗γ)⊗(⊗σ):!Γ⊗!N[1]

s(⊗γ)⊗(⊗σ) : Σ̂(Γ, {N[1]}Γ) ⇒ N[2], Ps(⊗γ)⊗(⊗σ)

df.
=

Pref({q[2].q[1].n[1].(n + 1)[2] |n ∈ N }) if σ0 = n and Ps(⊗γ)⊗(⊗σ)

df.
= Pref({q[2].q[1] })

otherwise (i.e., σ0 = ⊥). Moreover, since [0Γ]•[φ] = [0∆] and [sΓ]•〈[ψ], v{N}∆〉 =

[s∆] = v{N}∆{[succ∆]}, where [ψ] : Σ̂(∆, {N}∆) → Γ is any morphism in LPG,

the required equations clearly hold.

256

Remark. We write [0], [zeroΓ] and [succΓ], instead of 0, zeroΓ and succΓ, for

consistency of the notation.

• (N-Elim) We apply the ‘indirect’ interpretation of fixed-point combinators as

in [9, 14] for the fixed-point v-strategies in Chapter 4 are not noetherian, and

thus they cannot be employed here. Given P ∈ DLPG(Σ̂(Γ, {N})), [cz] ∈
Tm(Γ, P{[zero]}) and [cs] ∈ Tm(Σ̂(Σ̂(Γ, {N}), P), P{[succ] ◦ p(P)}) in LPG,

there are two terms

[̃cz] ∈ Tm(Σ̂(Π̂(Σ̂(Γ, {N}), P), {Σ̂(Γ, {N})}), P{[zero] • [fst] • [snd]});

[̃cs] ∈ Tm(Σ̂(Π̂(Σ̂(Γ, {N}), P), {Σ̂(Γ, {N})}), P{[succ] • [pred] • [snd]})

defined by:

[̃cz] : Π̂(Σ̂(Γ, {N}), P)&Σ̂(Γ, {N}) [snd]→ Σ̂(Γ, {N}) [fst]→ Γ
[cz]→

∫
P{[zero]};

[̃cs] : Π̂(Σ̂(Γ, {N}), P)&Σ̂(Γ, {N}) 〈[pred]•[snd],[ev]{〈[fst],[pred]•[snd]〉}〉→ Σ̂(Γ, {N})&
∫
P

[cs]→
∫
P{[succ] ◦ p(P)}

where the term [ev] ∈ Tm(Σ̂(Π̂(Σ̂(Γ, {N}), P), {Σ̂(Γ, {N})}), P{[snd]}) (or

written [evP]) is the evaluation over P [5] given by [ev]
df.
= λ−1([der Π̂(Σ̂(Γ,N),P)])

(compare it with the evaluation in Definition ??), and the morphism [pred] :

Σ̂(Γ, {N})→ Σ̂(Γ, {N}) is the predecessor defined in a similar manner to [succ]

such that [pred] • [succ] = [der Σ̂(Γ,{N})] and [pred] • [zero] = [zero].

Also, writing

Pz
df.
= P{[zero] • p(N)}) ∈ Ty(Σ̂(Γ, {N}));

Ps
df.
= P{[succ] • [pred] • p(Pz)} ∈ Ty(Σ̂(Σ̂(Γ, {N}), Pz))

we have the term

[cond] ∈ Tm(Σ̂(Σ̂(Σ̂(Γ, N), Pz), Ps), P{p(Pz) • p(Ps)})

(or written [condΓ]) that is the standard interpretation of conditionals in PCF

[9, 100, 14, 129]: cond first asks an input natural number in the component N of

the domain, and plays as the dereliction between Pz and P{p(Pz)•p(Ps)} if the

answer is 0, and as the dereliction between Ps and P{p(Pz) • p(Ps)} otherwise.

We then define FNP ([cz], [cs]) : Π̂(Σ̂(Γ, {N}), P)→ Π̂(Σ̂(Γ, {N}), P) by:

FNP ([cz], [cs])
df.
= λ{Σ̂(Γ,{N})},{P{[snd]}}([cond]{〈〈[snd], [̃cz]〉, [̃cs]〉}).

257

Finally, we define the termRN
P ([cz], [cs]) ∈ Tm(Σ̂(Γ, {N}), P) to be the least up-

per bound of the following chain of terms (RN
P ([cz], [cs])n ∈ Tm(Σ̂(Γ, {N}), P))n∈N:

RN
P ([cz], [cs])0

df.
= [] up to ‘tags’;

RN
P ([cz], [cs])n+1

df.
= FNP ([cz], [cs]) • RN

P ([cz], [cs])n.

• (N-Comp) By the definition, we clearly have:

RN
P ([cz], [cs]){[zero]} = [cz] ∈ Tm(Γ, P{[zero]});

RN
P ([cz], [cs]){[succ]} = [cs]{〈[der Σ̂(Γ,{N})],R

N
P ([cz], [cs])〉} ∈ Tm(Σ̂(Γ, {N}), P{[succ]}).

• (N-Subst) By the definition, it is clear that {N}Γ{[φ]} = {N}∆.

• (RN-Subst) Finally, by induction on n ∈ N, we clearly have:

RN
P ([cz], [cs])n{[φ]+} = RN

P ([cz], [cs])n • 〈[φ] • p({N}∆), v{N}∆〉

= RN
P{[φ]+}([cz]{[φ]}, [cs]{[φ]++})n

for all n ∈ N, where [φ]+
df.
= 〈[φ] • p({N}∆), v{N}∆〉 : Σ̂(∆, {N}∆)→ Σ̂(Γ, {N}Γ)

and [φ]++ df.
= 〈[φ]+•p(P{[φ]+}), vP{[φ]+}〉 : Σ̂(Σ̂(∆, {N}∆), P{[φ]+})→ Σ̂(Σ̂(Γ, {N}Γ), P).

Therefore, we may conclude that

RN
P ([cz], [cs]){[φ]+} = RN

P{[φ]+}([cz]{[φ]}, [cs]{[φ]++})

which completes the proof.

5.4.6.5 Game-Semantic Unit Type

We further proceed to consider the unit type though it is rather simple. First, the

categorical interpretation is as follows:

Definition 5.4.27 (CwFs with unit type [92]). A CwF C supports unit type if:

• (Unit-Form) Given Γ ∈ C, there is a type

1Γ ∈ Ty(Γ)

called the unity type (in Γ);

• (Unit-Intro) Given Γ ∈ C, there is a term

>Γ ∈ Tm(Γ,1Γ);

258

• (Unit-Elim) Given Γ ∈ C, A ∈ Ty(Γ.1Γ), a ∈ Tm(Γ, A{>Γ}) and t ∈
Tm(Γ,1Γ), there is a term

R1
A(a, t) ∈ Tm(Γ, A{t})

where > df.
= 〈idΓ,>Γ〉1Γ : Γ→ Γ.1Γ and t

df.
= 〈idΓ, t〉1Γ : Γ→ Γ.1Γ;

• (Unit-Comp) Under the same assumption, we have:

R1
A(a,>Γ) = a;

• (Unit-Subst) Given a morphism f : ∆→ Γ in C, we have:

1Γ{f} = 1∆ ∈ Ty(∆);

• (>-Subst) Finally, we have:

>Γ{f} = >∆ ∈ Tm(∆,1∆).

Moreover, C supports unit type in the strict sense if it additionally satisfies:

• (>-Uniq) t = >Γ for all t ∈ Tm(Γ,1Γ).13

Definition 5.4.28 (Interpretation of unit type). The interpretation J K of 1-type in

a CwF C that supports unit type is given by:

• (1-Form) JΓ ` 1 typeK df.
= 1JΓK;

• (1-Intro) JΓ ` ? : 1K df.
= >JΓK;

• (1-Elim) JΓ ` R1(C, c, t) : C[t/x]K df.
= R1

JCK(JcK, JtK)

where the hypotheses of the rules are as presented in Section 5.2.

We now propose our game-semantic unit type:

Lemma 5.4.29 (Unit type in LPG). The CwF LPG supports unit type in the strict

sense.

Proof. Let Γ,∆ ∈ LPG and [φ] : ∆→ Γ in LPG.

13Note that >-Uniq implies Unit-Elim and Unit-Comp by defining R1
A(a, t)

df.
= a.

259

• (Unit-Form) We define 1Γ to be the constant dlp-game {1}Γ, where 1 is the

unit p-game in Example 5.3.25.

• (Unit-Intro) We define [>Γ] ∈ Tm(Γ, {1}Γ) to be the morphism [&⊗γ:!Γ>⊗γ] :

Γ→ 1 in LPG, where >⊗γ
df.
= > up to ‘tags’.

Remark. Again, we write [>Γ] rather than >Γ for consistency of the notation.

• (Unit-Elim) Given A ∈ DLPG(Σ̂(Γ, {1}Γ)), [α] ∈ Tm(Γ, A{〈[derΓ], [>Γ]〉})
and [ι] ∈ Tm(Γ, {1}Γ) in LPG, we clearly have [ι] = [>Γ], i.e., >-Uniq is

satisfied, and thus we define R1
A([α], [ι])

df.
= [α].

• (Unit-Comp) Under the same assumption, R1
A([α], [>Γ]) = [α].

• (Unit-Subst) By the definition, {1}Γ{[φ]} = {1}∆.

• (>-Subst) In the same way, [>Γ] • [φ] = [>∆] : ∆→ 1

which completes the proof.

5.4.6.6 Game-Semantic Empty Type

Finally, we interpret empty type. First, its categorical interpretation is as follows:

Definition 5.4.30 (CwFs with empty type [92]). A CwF C supports empty type

if:

• (Empty-Form) Given Γ ∈ C, there is a type

0Γ ∈ Ty(Γ)

called the empty type (in Γ);

• (Empty-Elim) Given Γ ∈ C, A ∈ Ty(Γ.0Γ) and z ∈ Tm(Γ,0Γ), there is a term

R0
A(z) ∈ Tm(Γ, A{z})

where z
df.
= 〈idΓ, z〉0Γ : Γ→ Γ.0Γ;

• (Empty-Subst) Given f : ∆→ Γ in C,

0Γ{f} = 0∆ ∈ Ty(∆);

260

• (R0-Subst) Under the same assumption,

R0
A{f+}(z{f}) = R0

A(z){f}

where f+ df.
= 〈f • p(0∆), v0Γ〉0Γ : ∆.0∆ → Γ.0Γ.

Remark. Since there is no term of empty type, there is no notion of CwFs supporting

empty type in the strict sense.

Definition 5.4.31 (Interpretation of empty type). The interpretation J K of 0-type

in a CwF C that supports empty type is given by:

• (0-Form) JΓ ` 0 typeK df.
= 0JΓK;

• (0-Elim) JΓ ` R0(C, a) : C[a/x]K df.
= R0

JCK(JaK)

where the hypotheses of the rules are as presented in Section 5.2.

We now propose our game-semantic interpretation of empty type:

Lemma 5.4.32 (Empty type in LPG). The CwF LPG supports empty type.

Proof. Let Γ ∈ LPG and [φ] : ∆→ Γ in LPG.

• (Empty-Form) We define 0Γ to be the constant dlp-game {0}Γ, where 0 is

the empty p-game defined in Example 5.3.25.

• (Empty-Elim) Let A ∈ DLPG(Σ̂(Γ, {0})) and [ζ] ∈ Tm(Γ, {0}) in LPG. For

[ζ] ∈ Tm(Γ, {0}), we may obtain the term R0
A([ζ]) ∈ Tm(Γ, A{[ζ]}) by the case

distinction on whether A = {T}, where [ζ]
df.
= 〈[derΓ], [ζ]〉 : Γ→ Σ̂(Γ, {0})

Remark. It must be the case A 6= {I}, which is why we have excluded I from

the CCC LPG at the end of Section 5.3.4.

• (Empty-Subst) We clearly have {0}Γ{[φ]} = {0}∆.

• (R0-Subst) By the definition of R0(), we clearly have:

R0
A{[φ]+}([ζ]{[φ]}) = R0

A{[φ]+}([ζ] • [φ])

= R0
A([ζ]) • 〈[φ] • p({0}∆), v{0}∆〉

= R0
A([ζ]){[φ]+}

which completes the proof.

261

5.4.6.7 Game-Semantic Universes

At the end of the present section, let us describe why the CwF LPG cannot interpret

a cumulative hierarchy of universes, giving the motivation for the next section.

Recall that in Section 5.2 we have adopted Tarski-style universes equipped with

the dependent type El and the meta-theoretic operation En. They in particular allow

us to formulate universes in such a way that follows the usual pattern of formation,

introduction, elimination and computation rules:

Definition 5.4.33 (CwFs with universes). A CwF C supports (a cumulative

hierarchy of) universes if:

• (U-Form) Given Γ ∈ C, there is a type

UΓ
k ∈ Ty(Γ)

called the kth-universe (in Γ) for each natural number k ∈ N;

Notation. We often omit the superscript Γ on UΓ
k , and even write U for Uk with

some k ∈ N unspecified.

• (U-Intro) Given A ∈ Ty(Γ) that is not a universe and a natural number

k ∈ N, there are terms

En(A) ∈ Tm(Γ,U);

En(Uk) ∈ Tm(Γ,Uk+1);

• (U-ElimComp) Any term C ∈ Tm(Γ,U) induces a type El(C) ∈ Ty(Γ) that

satisfies El(En(A)) = A for all A ∈ Ty(Γ);

• (U-Cumul) If C ∈ Tm(Γ,Uk), then C ∈ Tm(Γ,Uk+1) for all k ∈ N;

• (U-Subst) Given f : ∆→ Γ in C,

UΓ
k {f} = U∆

k ∈ Ty(∆)

for all k ∈ N.

Definition 5.4.34 (Interpretation of universes). The interpretation J K of universes

in a CwF C that supports universes is given by:

• (U-Form) JΓ ` Ui typeK df.
= U JΓK

i ;

262

• (U-Intro) JΓ ` En(A) : Ui−1K
df.
= En(JAK);

• (U-Elim) JΓ ` El(c) typeK df.
= El(JcK)

where the hypotheses of the rules are as presented in Section 5.2.

Nevertheless, we cannot interpret U-Intro in LPG for some dlp-games may not

be encoded. For instance, consider a dlp-game H ∈ DLPG(N ⇒ N) such that

H[φ] 6= H[ψ] if [φ] 6= [ψ] for all [φ], [ψ] ∈ LPG(N ⇒ N). To interpret U-Intro and U-

ElimComp, we need a term [En(H)] ∈ Tm(N ⇒ N,U) such that [En(H)]•[φ] = H[φ]

for all [φ] ∈ LPG(N ⇒ N) so that El([En(H)]) = {H[φ] | [φ] ∈ LPG(N ⇒ N)} = H.

Then, however, En(H) would be able to identify each [φ] ∈ LPG(N ⇒ N), which

is impossible because En(H) is noetherian. For this problem, we need to restrict

dlp-games to what correspond to type-theoretic constructions in MLTT.

To such dlp-games we may inductively assign the corresponding terms of universes,

which realizes our game-semantic interpretation of the encoding operation En:

Definition 5.4.35 (Constructions on codes of types). Given Γ, G ∈ LPG and [φ] :

Γ → U , [ψ] : Σ̂(Γ,El([φ])) → U , [σ], [σ′] : Tm(Γ,El([φ])) in LPG, we define the

morphisms GΓ,Π([φ], [ψ]),Σ([φ], [ψ]), Id[φ]([σ], [σ′]) : Γ→ U in LPG as follows:

• We define GΓ : Γ→ U to be the obvious non-strict one at ‖G‖;

• As ψ induces its p-subgame ψ⊗γ : El([φ]◦ [⊗γ])→ U for each ⊗γ : !Γ defined by

ψ⊗γ
df.
= &⊗τ :!El([φ]◦[⊗γ])ψ(⊗γ)⊗(⊗τ) (i.e., only ⊗τ varies), we may define Π([φ], [ψ]) :

Γ→ U to be the morphism in LPG that plays as [φ] except that for each ⊗γ : !Γ

the last move ‖El([φ] ◦ [⊗γ])‖ is replaced by ‖Π̂(El([φ] ◦ [⊗γ]),El([ψ⊗γ]))‖;

• The morphism Σ([φ], [ψ]) : Γ→ U is defined in the same manner to Π([φ], [ψ]);

• We define Id[φ]([σ], [σ′]) to be [φ] except that for each ⊗γ : !Γ the last move

‖El([φ] ◦ [⊗γ])‖ is replaced by ‖ÎdEl([φ]◦[⊗γ])([σ] ◦ [⊗γ], [σ′] ◦ [⊗γ])‖.

With these constructions on wv-strategies into universe games, we shall interpret

universes in the next section.

263

5.5 Effectivity and Bijectivity

We have interpreted MLTT in the CwF LPG in the last section, but the model in

LPG is not effective, where a game G is effective if its components are representable

by partial recursive functions, or more precisely:

• MG is a recursively enumerable (r.e.) set of natural numbers;

• λG is a recursive function, whose labels are some fixed natural numbers;

• `G is a semi-decidable relation;

• PG is an r.e. set of finite sequences of natural numbers;

• 'G is a semi-decidable relation.

Note that fixing a recursive bijection 〈 〉 : N∗ → N whose inverse is also recursive, we

may talk about r.e. sets of and semi-decidable relations on finite sequences of natural

numbers (see, e.g., [46, 157]). Then, assuming that the set B in Definition 5.3.23

contains only a finite (or countable) number of elements other than natural numbers,

this notion of effective games is clearly applicable to p-games as well.

Since our aim is to give an accurate explanation of MLTT, effectivity, full com-

pleteness and faithfulness (n.b., the model in LPG is already faithful for types built

without N- and Id-types, which can be established by the same proof in this section)

are desirable properties of an interpretation of MLTT. Therefore, the rest of the thesis

is dedicated to carve out a subCwF of LPG that forms an effective, faithful (for types

built without N- and Id-types) and fully complete model of MLTT; in fact, we shall

establish an effective and bijective interpretation of MLTT. Moreover, it enables us

to interpret the cumulative hierarchy of universes as promised before.

Remark. Below, we achieve the surjectivity result by an inductive construction for

universes (n.b., non-inductive full completeness in the presence of universes would be

quite hard). On the other hand, full completeness for types built without universes

is left as future work. One may argue that such an inductive surjectivity is just too

trivial or it says virtually nothing; however, we claim that it is not the case. First,

although our inductive construction on elements in LPG as a whole corresponds to

constructions of MLTT, it is not a rule-wise correspondence, i.e., we do not just mimic

the syntactic induction. Also, our game-semantic construction does not correspond

to constructions of CwFs in this sense either; some game-semantic phenomena do not

make sense in an arbitrary CwF (see Definition 5.5.1 below). Thus, the surjectivity

264

result in this section is not entirely trivial. Moreover, it clarifies our game-semantic

interpretation of MLTT better than LPG; it provides some insights both on the

syntax and CwFs.

5.5.1 Elementary P-Games and V-Strategies

We now present the CwF EPG of elementary lp-games, wv-strategies and dlp-games:

Definition 5.5.1 (The CwF EPG). The subCwF EPG of the CwF LPG is con-

structed from LPG as follows:

1. Lp-games, wv-strategies and dlp-games in LPG are restricted respectively to

elementary predicative games (ep-games), elementary v-strategies

(ev-strategies) and dependent elementary predicative games (dep-

games) defined below. Ep-games and equivalence classes of certain ev-strategies

defined below, called contextual v-strategies (cv-strategies), form a sub-

category EPG of the category LPG. Given Γ ∈ EPG, we write DEPG(Γ) for

the set of all dep-games over Γ, and given A ∈ DEPG(Γ), we write EVS(Γ, A)

for the set of all equivalence classes of ev-strategies on Π̂(Γ, A).

These elements of EPG are inductively defined as follows:

• (Base case) T ∈ EPG, {1}T , {0}T , {N}T , {Uk}T ∈ DEPG(T), [zT] ∈
EVS(T, {N}T), [sT] ∈ EVS(Σ̂(T, {N}T), {N}Σ̂(T,N)) (n.b., Σ̂(T, {N}T) ∈
EPG and {N}Σ̂(T,{N}T) ∈ DEPG(Σ̂(T, {N}T)) by the constructions Σ and

{ } below), [1T], [0T], [NT] ∈ EVS(T, {U0}T), [UkT] ∈ EVS(T, {Ul}T),

where k, l ∈ N with l > k;

• (Inductive step) Ep-games, equivalence classes of ev-strategies and dep-

games are inductively constructed via > : Γ 7→ >Γ ∈ EVS(Γ, {1}Γ), Σ̂,

〈 , 〉, { } : (A, [φ]) 7→ A{[φ]}, • : ([α], [φ]) 7→ [α] • [φ], [fst Σ̂(,)], [snd Σ̂(,)],

Π, Π, λ, λ−1, Σ, Σ, Id { , } : (A, [α], [α′]) 7→ IdA{〈〈[derΓ], [α]〉, [α′]〉}14,

Id, Refl , Refl−1, RN , R0, El , where Γ,∆ ∈ EPG, A ∈ DEPG(Γ), [φ] ∈
EVS(∆, {Γ}∆) and [α], [α′] ∈ EVS(Γ, A);

• (Cv-strategies) Cv-strategies are ev-strategies generated by > and

〈 , 〉 (thus, each cv-strategy φ satisfies [φ] : ∆→ Γ for some Γ,∆ ∈ EPG);

14This particularly means that we do not regard the construction A 7→ IdA as ‘atomic’. This point
is crucial to establish a correspondence between dep-games and ev-strategies into universe games
(because it is not always possible to determine the equality of given two parallel morphisms in EPG).

265

2. Fixing the order of generating elementary elements by these rules, which we call

the canonical order, we define the construction number](G) ∈ N of each

ep-game G (resp. equivalence class of ev-strategies) G by](G)
df.
= 〈CG,R(G)〉 ∈

N, where G is the Cth
G element among ep-games (resp. equivalence classes of

ev-strategies) of rank R(G) in the canonical order (n.b., R([φ]) is defined to be

R(φ), which clearly does not depend on the choice of a representative φ);

3. The name ‖G‖ of an ep-game (resp. ev-strategy) G that occurs as a move in a

position of another ep-game is replaced by the construction number](G);

4. Each universe game Uk is modified into Uk
df.
= {G | G ∈ EPG6k+1}, where

G
df.
= flat(](G))1.

Remark. V-strategies ⊗σ for any ev-strategy of the form φ = &⊗σ:!Γφ⊗σ : Π̂(Γ, A)

range over any v-strategies on !Γ, not only elementary ones. Also, note that the

‘tags’ []‖⊗σ‖ in φ are unchanged as they do not occur as moves in a position.

Remark. Two ep-games (resp. equivalence classes of ev-strategies) may get different

construction numbers even if they are the same element of EPG; e.g., consider p-

games N and L(N)[1]. It just means that Player may have several different programs

for the same algorithm, and such a choice does not affect plays in a p-game.

5.5.2 Effective, Bijective Game Semantics of MLTT

The finitary nature of the inductive construction of EPG establishes:

Corollary 5.5.2 (Effectivity and bijectivity). The structure EPG forms an effective

CwF (in the sense that its objects and representatives of its morphisms are effective)

which supports all the semantic type formers of LPG and a cumulative hierarchy of

universes. Moreover, the induced interpretation of MLTT in EPG is injective (for

types built without N- and Id-types) and surjective.

Proof. First, it is straightforward to see that EPG has enough elements from LPG to

form a subCwF of LPG equipped with 1-, 0-, N -, Π-, Σ- and Id-types. For instance, it

has the identity [derΓ] : Γ→ Γ on every Γ ∈ EPG: derT = >T : T ⇒ T if Γ = T and

der Σ̂(∆,A) = 〈fst Σ̂(∆,A), snd Σ̂(∆,A)〉 if Γ = Σ̂(∆, A) for some ∆ ∈ EPG and A ∈ Ty(∆).

Moreover, EPG supports a cumulative hierarchy of universes15 since dlp-games

are now restricted to elementary ones, so that it may interpret U-Intro:

15We emphasize here again that this point is the main motivation to carve out the subCwF EPG
from the CwF LPG.

266

• (U-Form) Given Γ ∈ EPG, {Uk}Γ = {Uk}T{[>Γ]} ∈ DEPG(Γ) for all k ∈ N.

• (U-Intro) By induction on A ∈ DEPG(Γ), it is easy to see that there is a term

En(A) ∈ Tm(Γ, {Uk}Γ) in EPG, where R(A) = k + 2, such that En(A) • [γ] =

A[γ] for all [γ] ∈ EPG(Γ). Explicitly, we define the operation En by:

– If A = {G}T , where G is either 1, 0, N or U , then:

En({G}T)
df.
= [GT]

where GT : T ⇒ U is GT : U up to ‘tags’;

– If A = A′{[φ]}, where A′ ∈ DEPG(∆) and [φ] : Γ→ ∆ in EPG, then:

En(A′{[φ]}) df.
= En(A′) • [φ];

– If A = Π(B,C) (resp. A = Σ(B,C)) for some B ∈ DEPG(Γ) and C ∈
DEPG(Σ̂(Γ, B)), then:

En(Π(B,C))
df.
= Π(En(B),En(C));

En(Σ(B,C))
df.
= Σ(En(B),En(C));

– If A = IdB{〈〈[derΓ], [β]〉, [β′]〉} for some B ∈ DEPG(Γ) and [β], [β′] ∈
Tm(Γ, B) in EPG, then:

En(IdB{〈〈[derΓ], [β]〉, [β′]〉}) df.
= IdEn(B)([β], [β′]);

Remark. We cannot define En on IdB since otherwise there would be

some term in Tm(Γ.B.B+,U) that may decide whether given two terms in

Tm(Γ, B) are the same by a finite interaction with them, which is impos-

sible in the presence of the p-game N . As already remarked before, this is

why we have taken the operation (B, [β], [β′]) 7→ IdB{〈〈[derΓ], [β]〉, [β′]〉},
not B 7→ IdB, as ‘atomic’ in EPG.

– If A = El([µ]) for some [µ] ∈ Tm(Γ, {U}Γ) in EPG, then:

En(El([µ]))
df.
= [µ].

It is well-defined since El([µ]) 6= El([µ′]) for any [µ] 6= [µ′] ∈ Tm(Γ, {U}Γ)

in EPG, which is because each element of Tm(Γ, {U}Γ) in EPG is either

a non-strict one or the second projection (this fact is easily checked by

induction on terms of this kind).

267

• (U-IntroElimComp) It is easy to see that El(En(A)) = A holds for all A ∈
DEPG(Γ) (again by induction on A).

• (U-Cumul) [µ] ∈ Tm(Γ, {Uk}Γ) clearly implies [µ] ∈ Tm(Γ, {Uk+1}Γ).

• (U-Subst) Given [φ] : ∆→ Γ in EPG and k ∈ N, we clearly have {Uk}Γ{[φ]} =

{Uk}∆ ∈ DEPG(∆).

We have shown that EPG is a CwF with the semantic type formers supported in LPG
as well as a cumulative hierarchy of universes.

Now, recall the syntactic notion of context morphisms [92], which is derived

rather than primitive. Formally, a context morphism from a context ` Γ ctx to

another ` ∆ ctx, where ` ∆ ≡ ♦, x1 : D1, x2 : D2, . . . , xn : Dn ctx, is a finite sequence

d = (d1, d2, . . . , dn) : Γ→ ∆ of terms such that:

Γ ` d1 : D1;

Γ ` d2 : D2[d1/x1];

...

Γ ` dn : Dn[d1/x1, d2/x2, . . . , dn−1/xn−1].

Its interpretation in a CwF as a morphism d : JΓK→ J∆K is defined by induction on

|∆|: J()K df.
= !Γ : JΓK→ T and J(d1, d2, . . . , dn, dn+1)K df.

= 〈J(d1, d2, . . . , dn)K, Jdn+1K〉JDn+1K :

JΓK → T.JD1K.JD2K . . . JDnK.JDn+1K. Furthermore, given a syntactic expression E, we

define the generalized substitution E[d/x] of d for x in E, where x = (x1, x2, . . . , xn),

to be the expression

E[d1/x1, d2/x2, . . . , dn/xn]

i.e., what is obtained from E by simultaneously substituting di for xi in E for i =

1, 2, . . . , n. Then, it is shown in [92] that if ∆,Θ ` J is a judgement, then so is

Γ,Θ[d/x] ` J[d/x]. Note that generalized substitution subsumes the rules Subst and

Weak. It is an important theorem in [92] that generalized substitution corresponds to

the semantic substitution { } in a CwF. Although context morphisms and generalized

substitution are implicit and rather derived in the syntax, it is one of the points that

the categorical interpretation of type theories make elegant and useful to take them

as primitive and interpret substitution in this manner.

Note, however, that morphisms in the category EPG are a particular kind of terms

of the CwF EPG, namely contextual ones. This suggests that context morphisms may

be regarded as terms, which we call contextual terms. It is in fact possible, and

268

thus context morphisms are no longer an unofficial or auxiliary concept; let us define

the contextual term Σ(d) that corresponds to the context morphism d given above

to be the term

Γ ` Σ(d)
df.≡ 〈. . . 〈〈?, d1〉, d2〉, . . . , dn〉 : Σ(∆)

where the type Γ ` Σ(∆) type (with no free variable) is defined by induction on |∆|:

Σ(∆)
df.≡

{
1 if ` ∆ ≡ ♦ ctx;

Σs:Σ(∆′)Dn+1[π∆′
1 (s)/x1, π

∆′
2 (s)/x2, . . . , π

∆′
n (s)/xn] if ` ∆ ≡ ∆′, xn+1 : Dn+1 ctx

where ` ∆′ ≡ ♦, x1 : D1, x2 : D2, . . . , xn : Dn ctx, and the terms

Γ, s : Σ(∆′) ` π∆′

0 (s) : 1;

Γ, s : Σ(∆′) ` π∆′

i (s) : D∆′

i (s)
df.≡ Di[π

∆′

1 (s)/x1, π
∆′

2 (s)/x2, . . . , π
∆′

i−1(s)/xi−1] (i = 1, 2, . . . , n)

are ∆′-projections defined simultaneously (in the sense that Σ(∆′) and ∆′-projections

enable us to define Σ(∆), which in turn defines ∆-projections) by induction on |∆′|:

Γ, s : Σ(♦) ` π♦0 (s)
df.≡ ? : 1;

Γ, s : Σ(∆′, xn+1 : Dn+1) ` π∆
i (s)

df.≡ π∆′

i (π
Σ(∆′),Dn+1

1 (s)) : D∆
i (s) (i = 0, 1, . . . , n);

Γ, s : Σ(∆′, xn+1 : Dn+1) ` π∆
n+1(s)

df.≡ π
Σ(∆′),Dn+1

2 (s) : D∆
n+1(s).

Clearly, we have:

Γ ` π∆
0 (Σ(d)) ≡ ? : 1;

Γ ` π∆
i (Σ(d)) ≡ di : D∆

i (Σ(d)) (i = 1, 2, . . . , n)

so that Γ ` Σ(d) : Σ(∆) holds.

Then, by induction on |∆|, it is easy to see that the interpretation of d in EPG
coincides with that of Σ(d), i.e.,

J(d1, d2, . . . , dn) : Γ→ ∆K = JΓ ` 〈. . . 〈〈?, d1〉, d2〉, . . . , dn〉 : Σ(∆)K.

Notice that this equation does not necessarily hold (or it does not even make sense)

in a CwF in general because terms may not be interpreted as morphisms in the

underlying category. Moreover, given a context ` ∆ ctx, a type ∆ ` C type and a term

∆ ` c : C, we may obtain a context ` ♦, s : Σ(∆) ctx, a type ♦, s : Σ(∆) ` C∆(s) type

269

and a term ♦, s : Σ(∆) ` c∆(s)
df.≡ c[π∆

1 (s)/x1, π
∆
2 (s)/x2, . . . , π

∆
n+1(s)/xn+1] : C∆(s) such

that the following five equations hold:

J` ♦, s : Σ(∆) ctxK = J` ∆ ctxK;

J♦, s : Σ(∆) ` C∆(s) typeK = J∆ ` C typeK;

J♦, s : Σ(∆) ` c∆(s) : C∆(s)K = J∆ ` c : CK;

JΓ ` C∆[Σ(d)/s] typeK = JΓ ` C[d/x] typeK;

JΓ ` c∆[Σ(d)/s] : C∆[Σ(d)/s]K = Jc[d/x] : C[d/x]K.

What these equations really mean is that our game semantics suggests that each

context morphism d : Γ → ∆ should be regarded as a term, namely the contextual

term Γ ` Σ(d) : Σ(∆), and types ∆ ` C type and terms ∆ ` c : C should be trans-

formed into their contextual form ` ♦, s : Σ(∆) ctx and ♦, s : Σ(∆) ` C∆(s) type,

respectively, where generalized substitution of context morphisms are replaced by

that of context terms. This resolves the gap between syntactic (context) morphisms

and game-semantic morphisms in EPG. Nevertheless, for notational brevity, we shall

not employ the transformation of context morphisms into contextual terms (resp. of

types and terms into canonical form) in the rest of the thesis.

Next, it is not hard to see that ev-strategies are all effective if we ignore ‘tags’ in

ev-strategies on linear implication16, where note that the number of the ‘tags’ can be

uncountable. Importantly, a v-strategy of the form φ : A (B is representable as

the union
⋃
φ

df.
=

⋃
σ:A φσ by its uniformity, and we may recover φ from

⋃
φ because

φ = ̂&σ:A{s ∈ P Even⋃
φ | s � A ∈ Pσ }. Thus, we may safely ignore the ‘tags’.

In particular, we have shown that morphisms in EPG of the form µ : Γ → U
are effective. Thus, given a dep-game A ∈ DEPG(Γ), we may obtain an ‘effective

algorithm’ En(A) : Γ→ U that embodies A; thus, each dep-game is ‘effective’ in this

sense. It then easily follows from this fact that each ep-game is also effective.

Below, we show that the interpretation J K is fully complete and faithful ; in fact,

it is injective (for types built without N- and Id-types) and surjective, i.e., the three

maps (5.1), (5.2), (5.3) above are bijections. By induction on the construction of

elementary elements, applying the substitution lemma [92] for the substitutions { },
it is straightforward to prove that the interpretation in EPG is surjective, i.e., given

Γ ∈ EPG, A ∈ DEPG(Γ) and [α] ∈ Tm(Γ, A) in EPG, there are judgements ` Γ ctx,

Γ ` A typei and Γ ` a : A such that J` Γ ctxK = Γ, JΓ ` A typeiK = A, JΓ ` a : AK = [α]

and R(A) = i. Just for clarity, we describe in detail the inductive argument below:

16It conceptually makes sense too because Player must be blind to the ‘tags’.

270

• (Case T ∈ EPG) We have ` ♦ ctx by Ctx-Emp such that J` ♦ ctxK = T .

• (Case {1}T , {0}T , {N}T , {U}T ∈ DEPG(T)) Let A be {1}T , {0}T or {N}T .

Then, ♦ ` A type1 by Ctx-Emp and A-Form such that J♦ ` A type1K = A and

R(A) = 1. The case A = {U}T is analogous.

• (Case [zT] ∈ Tm(T, {N}T)) We have ♦ ` zero : N by Ctx-Emp and N-IntroZ

such that J♦ ` zero : NK = [zT].

• (Case [sT] ∈ Tm(Σ̂(T, {N}T), {N}Σ̂(T,{N}T))) We have ♦, x : N ` succ(x) : N by

Ctx-Emp, N-Form, Ctx-Ext, Var and N-IntroS such that

J♦, x : N ` succ(x) : NK = v{N}T {[succT] • 〈id Σ̂(T,{N}T), v{N}T 〉}

= v{N}T • 〈id Σ̂(T,{N}T), v{N}T {[succT]}〉

= v{N}T • [succT]

= v{N}T • 〈p({N}T), [sT]〉

= [sT].

• (Case [1T], [0T], [NT], [UT] ∈ Tm(T, {U}T)) Let µ be either 1I , 0T , NT or UT .

For {1}T , {0}T , {N}T , {U}T ∈ DEPG(T), we have ♦ ` u : U by Ctx-Emp and

U-Intro such that J♦ ` u : UK = [µ].

• (Case [>Γ] ∈ EPG(Γ, T)) Since Γ ∈ EPG, we have ` Γ ctx such that J` Γ ctxK =

Γ (by the induction hypothesis). Then, by 1-Intro, we have Γ ` ? : 1 such that

JΓ ` ? : 1K = [>Γ].

• (Case Σ̂(∆, A) ∈ EPG) Since ∆ ∈ EPG, A ∈ DEPG(∆), we have ` ∆ ctx,

∆ ` A type such that J` ∆ ctxK = ∆ and J∆ ` A typeK = A (by the induction

hypothesis). By Ctx-Ext, we obtain ` ∆, x : A ctx such that J` ∆, x : A ctxK =

Σ̂(J` ∆ ctxK, J∆ ` A typeK) = Σ̂(∆, A).

• (Case 〈[φ], [α]〉 ∈ EPG(∆, Σ̂(Γ, A))) Since Γ,∆ ∈ EPG, A ∈ DEPG(Γ),

[φ] : ∆→ Γ, [α] ∈ Tm(∆, A{[φ]}) in EPG, we have terms ∆ ` Σ(d) : Σ(Γ) and

∆ ` a : A[Σ(d)/x] such that J∆ ` Σ(d) : Σ(Γ)K = [φ] and J∆ ` a : A[Σ(d)/x]K =

[α] (by the induction hypothesis). We form another term ∆ ` 〈Σ(d), a〉 : Σ(Γ, y : A)

such that J∆ ` 〈Σ(d), a〉 : Σ(Γ, y : A)K = 〈JΣ(d)K, JaK〉 = 〈[φ], [α]〉.

271

• (Case A′{[φ]} ∈ DEPG(Γ), [α′] • [φ] ∈ Tm(Γ, A′{[φ]}) and [φ] ∈ EPG(Γ,∆))

Since A′ ∈ DEPG(∆) and [φ] : Γ→ ∆ in EPG, we have a type ∆ ` A′ type and a

term Γ ` Σ(d) : Σ(∆) such that J∆ ` A′ typeK = A′ and JΓ ` Σ(d) : Σ(∆)K = [φ]

(by the induction hypothesis). Then, by the generalized substitution, we have

the judgement Γ ` A′[Σ(d)/x] type such that

JΓ ` A′[Σ(d)/x] typeK = J∆ ` A′ typeK{JΓ ` Σ(d) : Σ(∆)K} = A′{[φ]}

by the substitution lemma. The case [α′] • [φ] ∈ Tm(Γ, A′{[φ]}) is analogous.

• (Case p(A) ∈ EPG(Σ̂(Γ, A),Γ) and vA ∈ Tm(Σ̂(Γ, A), A)) Since Γ ∈ EPG
and A ∈ DEPG(Γ), we have ` Γ ctx and Γ ` A type such that J` Γ ctxK = Γ and

JΓ ` A typeK = A (by the induction hypothesis). Without loss of generality, we

may assume ` Γ ≡ ♦, x1 : A1, x2 : A2, . . . , xn : An ctx. Then, we have:

Γ, x : A ` x1 : A1

Γ, x : A ` x2 : A2[x1/x1]

...

Γ, x : A ` xn : An[x1/x1, x2/x2, . . . , xn−1/xn−1]

so that we may form the contextual term

Γ, x : A ` 〈. . . 〈〈?, x1〉, x2〉, . . . , xn〉 : Σ(Γ)

that satisfies JΓ, x : A ` 〈. . . 〈〈?, x1〉, x2〉, . . . , xn〉 : Σ(Γ)K = p(A). Also, by Ctx-

Ext and Var, we obtain Γ, x : A ` x : A such that JΓ, x : A ` x : AK = vA.

• (Case Π(A,B),Σ(A,B) ∈ DEPG(Γ)) ForA ∈ DEPG(Γ), B ∈ DEPG(Σ̂(Γ, A)),

by the induction hypothesis, we have Γ ` A typei and Γ, x : A ` B typej such

that JΓ ` A typeiK = A, JΓ, x : A ` B typejK = B, R(A) = i and R(B) = j.

By Π-Form, we obtain Γ ` Πx:AB typemax(i,j) such that JΠx:ABK = Π(JAK, JBK) =

Π(A,B). Also, R(Π(A,B)) = max(R(A),R(B)) = max(i, j). It is completely

analogous for the case Σ(A,B) ∈ EPG.

• (Case Π([φ], [ψ]),Σ([φ], [ψ]) ∈ Tm(Γ, {U}Γ)) Since we have φ ∈ Tm(Γ, {U}Γ)

and ψ ∈ Tm(Σ̂(Γ,El([φ])), {U}Σ̂(Γ,El([φ]))) in EPG, by the induction hypothesis,

we have Γ ` b : U and Γ, y : El(b) ` c : U such that JbK = [φ] and JcK = [ψ]. We

have Γ ` El(b) type and Γ, y : El(b) ` El(c) type by U-Elim such that JEl(b)K =

272

El(JbK) = El([φ]) and JEl(c)K = El(JcK) = El([ψ]). Thus, by Π-Form and

U-Intro, we have Γ ` En(Πy:El(b)El(c)) : U such that

JEn(Πy:El(b)El(c))K = En(Π(JEl(b)K, JEl(c)K))

= En(Π(El([φ]),El([ψ])))

= Π(En(El([φ])),En(El([ψ])))

= Π([φ], [ψ]).

The case Σ([φ], [ψ]) ∈ Tm(Γ, {U}Γ) is completely analogous.

• (Case λA,B([β]) ∈ Tm(Γ,Π(A,B))) For A ∈ DEPG(Γ), B ∈ DEPG(Σ̂(Γ, A))

and [β] ∈ Tm(Σ̂(Γ, A), B), by the induction hypothesis, we have Γ ` A type,

Γ, x : A ` B type and Γ, x : A ` b : B with JAK = A, JBK = B and JbK = [β]. By

Π-Intro, we have Γ ` λxA.b : Πx:AB such that JλxA.bK = λA,B(JbK) = λA,B([β]).

• (Case λ−1
A,B([ψ]) ∈ Tm(Σ̂(Γ, A), B)) For [ψ] ∈ Tm(Γ,Π(A,B)), we have, by the

induction hypothesis and Π-Uniq, Γ ` λx.f(x) : Πx:AB such that Jλx.f(x)K = [ψ].

Thus, we have Γ, x : A ` f(x) : B(x) such that:

JΓ, x : A ` f(x) : B[x/x]K = λ−1
A,B(JΓ ` λx.f(x) : Πx:ABK)

= λ−1
A,B([ψ]).

• (Case IdA{〈〈[derΓ], [α]〉, [α′]〉} ∈ DEPG(Γ)) For Γ ∈ EPG, A ∈ DEPG(Γ) and

[α], [α′] ∈ Tm(Γ, A) in EPG, by the induction hypothesis, we have Γ ` A typei,

Γ ` a : A and Γ ` a′ : A such that JAK = A, R(A) = i, JaK = [α] and Ja′K = [α′].

Thus, by =-Form, we have Γ ` a =A a′ typei such that

Ja =A a′K = IdJAK{〈〈der JΓK, JaK〉, Ja′K〉}

= IdA{〈〈[derΓ], [α]〉, [α′]〉}.

• (Case Id[µ]([τ], [τ ′]) ∈ Tm(Γ,U)) For [µ] ∈ Tm(Γ,U) and [τ], [τ ′] ∈ Tm(Γ,El([µ])),

we have Γ ` b : U, Γ ` t : El(b) and Γ ` t′ : El(b) (by the induction hypothesis)

such that JbK = [µ], JtK = [τ] and Jt′K = [τ ′]. We then have Γ ` En(t =El(b) t′) : U

by =-Form and U-Intro such that

JEn(t =El(b) t′)K = En(Jt =El(b) t′K)

= En(IdJEl(b)K{〈[derΓ], JtK〉, Jt′K〉})

= En(IdEl([µ]){〈[derΓ], [τ]〉, [τ ′]〉})

= IdEn(El([µ]))([τ], [τ ′])

= Id[µ]([τ], [τ ′]).

273

• (Case ReflA : Σ̂(Γ, A1)� Σ̂(Σ̂(Σ̂(Γ, A2), A+
3), IdA) : Refl−1

A) For Γ ∈ EPG and

A ∈ DEPG(Γ), by the induction hypothesis, ` Γ ctx and Γ ` A type such that

JΓK = Γ and JAK = A. Let us write Γ ` idΓ : Σ(Γ) for the obvious identity context

term on Γ. By =-Intro, Γ, x : A ` 〈〈〈idΓ, x〉, x〉, reflx〉 : Σ(Γ, y : A, z : A, y =A z)

and Γ, x : A, y : A, z : x =A y ` 〈idΓ, x〉 : Σ(Γ, z : A) such that J〈〈〈idΓ, x〉, x〉, reflx〉K =

ReflA and J〈idΓ, x〉K = Refl−1
A (n.b., the two terms are not inverses to each other,

which indicates that our interpretation is not faithful for Id-types).

• (Case RN
P ([cz], [cs]) ∈ Tm(Σ̂(Γ, {N}Γ), P) and R0([ζ]) ∈ Tm(Γ, A{[ζ]}))

Since we have P ∈ DEPG(Σ̂(Γ, {N}Γ)), [cz] ∈ Tm(Γ, P{zero}) and [cs] ∈
Tm(Σ̂(Σ̂(Γ, {N}Γ), P), P{succ • p(P)}), by the induction hypothesis, we have

Γ, x : N ` P(x) type, Γ ` cz : P[0/x], Γ, x : N, y : P(x) ` cs(x, y) : P[succ(x)/x] such

that JP(x)K = P , JczK = [cz] and Jcs(x, y)K = [cs]. By Weak, Var and N-Elim,

we obtain Γ, x : N ` RN(P, cz, cs, x) : P(x) such that

JRN(P, cz, cs, x)K = RN
JPK(JczK, JcsK){〈p(N), JΓ, x : N ` x : NK〉}

= RN
P ([cz], [cs]) • [der Σ̂(Γ,N)]

= RN
P ([cz], [cs]).

It is even simpler for the case R0([ζ]) : Π̂(Γ, A{[ζ]}).

• (Case El([µ]) ∈ DEPG(Γ)) For Γ ∈ EPG and [µ] ∈ Tm(Γ, {U}Γ), by the

induction hypothesis, we have Γ ` u : U such that JΓ ` u : UK = [µ]. By U-Elim,

we have Γ ` El(u) type such that JΓ ` El(u) typeK = El(JΓ ` u : UK) = El([µ]).

It remains to show that the interpretation is injective (for types built without N-

and Id-types). Let Γ ∈ EPG A ∈ DEPG(Γ) and [α] ∈ Tm(Γ, A) in EPG. Exploit-

ing the surjectivity just established, below we prove that a context ` Γ ctx, a type

Γ ` A type and a term Γ ` a : A that denote Γ, A and [α], respectively, are unique by

induction on Γ, A and a:

• If ` Γ ≡ ♦ ctx, then Γ = T . Clearly, only ` ♦ ctx denotes T .

• If ` Γ ≡ Γ′, x : A ctx, then Γ = Σ̂(Γ′, A). Any context that denotes Γ must be

of the form ` ∆′, y : B ctx. Since Σ̂(∆′, B) = J` ∆′, y : B ctxK = Γ = Σ̂(Γ′, A),

it follows that ∆′ = Γ′ and B = A. By the induction hypothesis, ` ∆′ ≡ Γ′ ctx

and Γ′ ` B ≡ A type, whence ` ∆′, y : B ≡ Γ′, x : A ctx by Ctx-ExtEq.

274

• If either Γ ` A ≡ 1 type, Γ ` A ≡ 0 type, Γ ` A ≡ N type or Γ ` A ≡ U type, then

A = {G}Γ, where G is either 1, 0, N or U . Note that Γ ` A type cannot be a

Π-, Σ- or Id-type (e.g., T ⇒ G 6= G and T&G 6= G by ‘tags’ for disjoint union).

Thus, Γ ` A type is the unique type that denotes A.

• By Π-Uniq, Π-Comp, Σ-Uniq, Σ-Comp, 1-Uniq and 1-Comp, we may exclude

the cases where a is constructed by Π-Elim, Σ-Elim or 1-Elim.

Remark. It is the lack of a uniqueness rule for the N-type that prevents us from

obtaining an injective interpretation of MLTT in the presence of the N-type.

• If Γ ` a ≡ xi : Ai, where Γ ≡ x1 : A1, . . . , xn : An ctx, i ∈ {1, . . . , n}, then [α] =

vAi . It is then clear that Γ ` xi : Ai is only the term that denotes [α]. It is

analogous for the cases where a is ?, zero, succ(n) or R0(C, a). In the following,

it is an important point that we may exclude these cases for a.

• If Γ ` A ≡ El(a) type, where Γ ` a : U, then A = El([α]). Assume that there

is another type Γ ` A′ type such that A′ = El([α]). Then, since En(A′) =

En(El([α])) = [α], by the induction hypothesis, we have Γ ` En(A′) ≡ a : U,

whence Γ ` A′ ≡ El(En(A′)) ≡ El(a) ≡ A type.

• If Γ ` A ≡ Πx:CD(x) type, then A = Π(C,D). Let Γ ` B type be another type

that denotesA. Then, we must have Γ ` B ≡ Πx:C′D
′(x) type for some Γ ` C′ type,

Γ, x : C′ ` D′(x) type. However, since Π(C,D) = Π(C ′, D′) implies C = C ′

and D = D′17, by the induction hypothesis, we have Γ ` C ≡ C′ type and

Γ, x : C ` D(x) ≡ D′(x) type. Finally, by the congruence for Π-types, we obtain

Γ ` A ≡ Πx:CD(x) ≡ Πx:C′D
′(x) ≡ B type. It is analogous for Γ ` A ≡ Σx:CD(x) type.

• If Γ ` a ≡ λxC.d(x) : Πx:CD(x), then [α] = λC,D([δ]) : Π̂(Γ,Π(C,D)), where δ :

Π̂(Σ̂(Γ, C), D) in EPG. Let Γ ` a′ : Πx:CD(x) be a term that denotes [α]. By Π-

Uniq, a′ is of the form Γ ` a′ ≡ λxC.d′(x) : Πx:CD(x) for some Γ, x : C ` d′(x) : D(x).

By the induction hypothesis, Γ, x : C ` d(x) ≡ d′(x) : D(x), whence, by the con-

gruence for Π-Intro, Γ ` a ≡ λxC.d(x) ≡ λxC.d′(x) ≡ a′ : Πx:CD(x).

• If Γ ` a ≡ 〈c, d〉 : Σx:CD(x), then [α] = 〈[ϑ], [δ]〉 : Σ(C,D) for some [ϑ] and [δ].

Let Γ ` a′ : Σx:CD(x) be another term that denotes [α], which is of the form

Γ ` a′ ≡ 〈c′, d′〉 : Σx:CD(x) by Σ-Uniq. Let [ϑ′] and [δ′] be the denotations of

c′ and d′, respectively. For 〈[ϑ], [δ]〉 = 〈[ϑ′], [δ′]〉 implies [ϑ] = [ϑ′] and [δ] =

17Note that Π(C, {1}Σ̂(Γ,C)) 6= Π(C ′, {1}Σ̂(Γ,C)) if C 6= C ′ thanks to ‘tags’ for linear implication.

275

[δ′], by the induction hypothesis, Γ ` c ≡ c′ : C and Γ ` d ≡ d′ : D[c/x], whence

Γ ` a ≡ 〈c, d〉 ≡ 〈c′, d′〉 ≡ a′ : Σx:CD(x) by the congruence for Σ-Intro.

• If Γ ` a ≡ En(A) : U, then [α] = En(A). Let Γ ` a′ : U be a term that denotes

[α]. Then a′ must be of the form Γ ` a′ ≡ En(A′) : U for some Γ ` A′ type. Let

A′ be the denotation of A′. Then A = El(En(A)) = El([α]) = El(Ja′K) =

El(JEn(A′)K) = El(En(A′)) = A′. Thus, Γ ` A ≡ A′ type by the induction hy-

pothesis, whence Γ ` a ≡ En(A) ≡ En(A′) ≡ a′ : U by the congruence for U-Intro.

5.6 Intensionality

We now investigate how intensional the model of MLTT in EPG is through some of

the syntactic rules.

5.6.1 Equality Reflection

The axiom of Equality reflection (EqRefl), which states that propositionally equal

terms are are judgmentally equal too, i.e., Γ ` p : a =A a′ ⇒ Γ ` a ≡ a′ : A for any

type Γ ` A type and terms Γ ` a : A, Γ ` a′ : A and Γ ` p : a =A a′, is the difference

between the intensional and extensional variants of MLTT: The extensional one is

the extension of the intensional one by adding EqRefl.

EqRefl is not valid in EPG when we consider open terms. For example, consider

terms x : N, y : 0 ` x : N and x : N, y : 0 ` succ(x) : N; they are interpreted as differ-

ent v-strategies T&N&0
[fst]→ T&N

[snd]→ N and T&N&0
[fst]→ T&N

[sT]→ N in EPG,

respectively. However, we may interpret a term x : N, y : 0 ` p : succ(x) =N x as:

p : Π̂(Σ̂(Σ̂(T, {N}), {0}), Id{N}{〈〈[der Σ̂(Σ̂(T,{N}),{0})], [snd] • [fst]〉, [sT] • [fst]〉})

in EPG that just plays in the component game 0 in the domain at the second move,

so that it is trivially a proof. Note that p is elementary because we may apply the

constructionR0 for the dlp-game Id{N}{〈〈[der Σ̂(Σ̂(T,{N}),{0})], [snd]•[fst]〉, [sT]•[fst]〉} ∈
DEPG(Σ̂(Σ̂(T, {N}), {0})) and the projection [snd] ∈ Tm(Σ̂(Σ̂(T, {N}), {0}), {0}).

276

5.6.2 Function Extensionality

Next, we consider the principle of function extensionality (FunExt), which states

that for any types Γ ` A type and Γ, x : A ` B type and terms Γ ` f : Πx:AB(x) and

Γ ` g : Πx:AB(x), we can inhabit the type

Γ ` Πx:Af(x) = g(x)→ f = g type.

Let us focus on the case where ` Γ ≡ ♦ ctx, and ignore T = J` ♦ ctxK for simplicity.

It is not hard to see that the model in EPG refutes this axiom for a v-strategy φ =

&⊗σ:!Aφσ : Π̂(A,B) is not completely specified by the function πφ : VS(!A)→ VS(
∫
B)

and its behavior in
∫
B. For instance, let us consider strategies 0N , 0̂N : N → N

defined by P0N

df.
= Pref({q.0}) and P0̂N

df.
= Pref({q.q.n.0 | n ∈ N }). Note that the

former is clearly elementary, and so is the latter by the construction RN . Then, we do

not have a strategy on the p-game Π̂(N, Id{N}{〈〈[derN], 0N〉, 0̂N〉})⇒ ÎdN⇒N(0N , 0̂N)

in EPG because the domain is true but the codomain is false.

5.6.3 Uniqueness of Identity Proofs

Next, we investigate the principle of uniqueness of identity proofs (UIP), which states

that for any type Γ ` A type, the following type can be inhabited:

Γ ` Πa1,a2:AΠp,q:a1=a2p = q type.

If the empty type occurs in Γ, then the interpretation of this type has a proof in the

same way as the case of EqRefl; so assume otherwise. Then, for any Γ ∈ EPG, A ∈
DEPG(Γ), a1, a2 : Π̂(Γ, A), any two v-strategies p, q : Π̂(Γ, IdA{〈〈[derΓ], [a1]〉, [a2]〉})
must be the same, and so there must be the trivial v-strategy between them. It is

now clear that there is a v-strategy on the game Π̂(JΓK, JΠa1,a2:AΠp,q:a1=a2p = qK) in

EPG (but it is a bit too tedious to write down what exactly the v-strategy is).

We regard this point as unsatisfactory since it has been shown by the classic

groupoid model [93] by Hofmann and Streicher that UIP is not derivable in MLTT.

Of course, one may regard that it is just a deficiency or incompleteness of the syntax

(for instance, it is Streicher’s motivation to introduce Axiom K [174]); however, our

standpoint is that UIP should not be valid in MLTT for the following reasons:

• The recent active research on HoTT is stimulated by the infinite hierarchy of

Id-types and its connection with higher categories and homotopy theory, which

becomes trivial if UIP holds;

277

• Conceptually, proofs Γ ` p : a1 =A a2 and Γ ` q : a1 =A a2 are computations that

witness an equality of a1 and a2, and thus p and q may be judgmentally different.

5.6.4 Criteria of Intensionality

There are Streicher’s three Criteria of Intensionality [174]:

• (I) A : U, x, y : A, z : x =A y 6` x ≡ y : A.

• (II) A : U,B : A→ U, x, y : A, z : x =A y 6` B(x) ≡ B(y) : U.

• (III) If ♦ ` p : t =A t′, then ♦ ` t ≡ t′ : A.

The point here is that Opponent’s anti-strategy does not have to be innocent, wb,

total or noetherian; in particular, he does not need to provide a proof for an iden-

tity game. For the criterion I, we have the two derelictions on A as the interpre-

tation of A : U, x, y : A, z : x =A y ` x : A and A : U, x, y : A, z : x =A y ` y : A. These

v-strategies are clearly different as Opponent may behave differently for x and y, so

the model in EPG satisfies the criterion I. In a similar manner, it is straightforward

to see that our model in EPG satisfies the criterion II as well. Finally, the criterion

III is also satisfied in our model because the terms t and t′ are closed.

5.6.5 Univalence Axiom

We finally analyze the univalence axiom (UA), the heart of HoTT, which states that

the type

Γ ` (En(A) =U En(B)) ' (A ' B) type

is inhabitable for all types Γ ` A type and Γ ` B type. A term of an equivalence

Γ ` A ' B type consists of functions Γ ` f : A→ B, Γ ` g : B→ A and identity proofs

Γ ` p : f ◦ g = idB and Γ ` q : g ◦ f = idA; for the precise definition, see [184]. The

essence of UA is the component

Γ ` (A ' B)→ En(A) =U En(B) type.

For simplicity, let us focus on the case where ` Γ ≡ ♦ ctx. Its interpretation, if exists,

must be a v-strategy φ : A ' B → ÎdU(En(A),En(B)). The point is when A = B

but](A) 6=](B); for instance consider the p-games N and L(N)[1]. They are clearly

the same p-game, but](N) 6=](L(N)[1]), and so there is no proof for the implication

(N ' L(N)[1])⇒ ÎdU(En(N),En(L(N)[1])).

278

Hence the model in EPG does not validate UA.

This suggests that to interpret UA we need to allow non-trivial proofs for identity

spaces, so that we have proofs for ÎdU(En(A),En(B)) when](A) 6=](B) but A and B

are equivalent p-games. For this aim, it seems promising to incorporate the groupoid

structure of [93]; in fact, the work [190] formulates this idea precisely, and also it has

improved the present work in the point that it refutes UIP.

Nevertheless, from a computational viewpoint, our game semantics suggests that

the formula

(A ' B)⇒ ÎdU(En(A),En(B)).

is not computational or constructive as any proof of the formula, if exists, needs to

determine whether or not](A) =](B) by a finite interaction in the domain A ' B.

5.7 Conclusion and Future Work of the Chapter

In this chapter, we have presented a new variant of games that gives rise to an effective

and surjective game semantics of MLTT with 1-, 0-, N-, Π-, Σ-, and Id-types as well as

a cumulative hierarchy of universes. When Id-types are excluded, the interpretation

is additionally injective. Notably, one may regard v-strategies as a mathematical and

syntax-independent formulation of computation of MLTT, which is in accordance

with the meaning explanation. Also, as shown in the previous section, our model is

in fact intensional, and it is more abstract or ‘high-level’ than, e.g., TMs. Thus, we

have achieved to some degree our research aim described in Section 1.3.

However, its interpretation of Id-types does not capture phenomena of HoTT very

well as we have seen in the previous section (it validates UIP and refutes UA). In

particular, it implies that our model is not faithful. Meanwhile, we have recognized

that the CwF LPG looks quite similar to the CwF of groupoids in the classic paper

[93]. Thus, it is future work to refine the model by equipping it with a groupoid

structure to interpret Id-types better; see [190]. Also, it would be meaningful to

strengthen our full completeness result in terms of some intrinsic constraint on games

and strategies (perhaps for MLTT without universes). Moreover, our semantics pro-

vides some insights to reformulate CwFs categorically in the sense that types and

terms are interpreted in the underlying category.

279

Chapter 6

Piecing Together

In the last three chapters, we have extended conventional game semantics reviewed

in Chapter 2 to capture dynamics and intensionality of computation (Chapter 3),

higher-order computability (Chapter 4) and dependent types (Chapter 5). As stated

in the introduction, these three developments are essentially orthogonal, and thus it is

possible to combine them to establish a single mathematical framework to encompass

them all. The present chapter briefly summarizes the consequences of this unification.

6.1 Dynamic Game Semantics of MLTT

First, it is now clear how to incorporate the generalized structure of dynamic games

and strategies in Chapter 3 into the game semantics of MLTT in Chapter 5.

From the view of dynamic game semantics, the reformulation of games in terms of

strategies in Chapter 5 is pleasing. Recall that in the CCBoC LDG (Definition 3.4.1) a

β-morphism A→ B is a pair (J, [φ]) of a dynamic game J such that Hω(J) P A⇒ B

and Hω(J†) = Hω(J)†, and the equivalence class [φ] = {ψ : J | ψ is winning, ψ 'J φ}
of a valid, winning dynamic strategy φ : J , where the underlying dynamic game J is

mainly to take the equivalence class [φ] with respect to 'J , but the reformulation of

Chapter 5 allows us to dispense with it, resulting in a simpler semantics that ignores

the inessential distinction on the underlying dynamic games.

From the point of game semantics of MLTT, the dynamic, intensional extension of

Chapter 3 models the distinction between canonical and non-canonical terms, and the

normalization of the meaning explanation of MLTT, respectively, by the distinction

between normalized and non-normalized dynamic strategies, and the hiding operation

H. Therefore, we have achieved a mathematical, syntax-independent formulation of

the meaning explanation. On the other hand, however, it remains to establish a DCP

for MLTT (with respect to some small-step operational semantics).

280

6.2 Game-Semantic Realizability for MLTT

It is also straightforward to apply the definition of viability (Definition 4.4.7) or JPA-

computability (Definition ??) to the generalized strategies given in Chapter 5, and

show that every dynamic strategy definable in MLTT is viable or JPA-computable,

giving rise to an intrinsic model of computation for MLTT. Note in particular that

fixed-point strategies introduced in Chapter 4 are not noetherian in general, but we

may overcome this point just by restricting its use to primitive recursion.

This result is technically not surprising at all since MLTT is computationally

weaker than PCF. However, it has a conceptually appealing point: The low-level

computational processes of viable or JPA-computable dynamic strategies may be

regarded reasonably as realizers, and thus this development seems suitable from the

point of realizability interpretation [179, 181].

Moreover, one may say that we have established a mathematical model of higher-

order computation that has enough structures to embody constructive logic and math-

ematics. In other words, our game-semantic approach might be useful for a semantic,

analytic study of various principles in constructive logic and mathematics [181].

6.3 Classical, Intuitionistic and Linear Logics

Finally, we may certainly apply the recipe in Section 2.4 to the game semantics of

MLTT in Chapter 5 in order to give a systematic account on classical, intuitionistic

and linear predicate logics though it is still a rough idea, not an established theory.

As already seen in Section 5.3.4, our game semantics of MLTT seems to be able to

naturally model intuitionistic linear reasoning; let us here focus on classical reasoning.

Let us see reasonability of the why not construction ? (Definition 2.4.11) for the

game semantics of MLTT by considering how it models a well-known phenomenon:

the incompatibility of Σ-types and classical reasoning [86]. The problem is the second

projection vB ∈ Tm(?Σ(A,B), ?B{p(B)}) since in general the first projection p(A) :

?Σ(A,B)⇒ ?A may consist of several different v-strategies on A, and thus we cannot

select just one component lp-game of B as the codomain of the second projection vB.

This problem does not occur if there is no non-constant dlp-game; however, even

such a propositional case has another problem: An lp-game of the form ?(A⊕B) does

not allow Player to reselect a component game (i.e., A or B), and thus, e.g., the law

of excluded middle (LEM) is not true in the BCC RICPG in Section 5.3.4. Thus, it

seems that we have to adopt the weak sum + to retain classical reasoning.

281

Chapter 7

Conclusion and Future Work

7.1 Conclusion of the Thesis

The present thesis has extended conventional game semantics to capture some central

aspects of logic and computation in a natural, mathematical, syntax-independent

manner. Therefore, to a certain degree, we may say that games may be regarded as

mathematics of logic and computation as the title of the thesis indicates.

In Chapter 3, we have generalized the standard semantics of computation both in

the categorical and the game-semantic levels to capture dynamics and intensionality

of computation. Specifically, we have first studied in depth algebraic structures of

dynamic games and strategies, and obtained a CCBoC of them. And then, we have

given the first game semantics that satisfies the DCP for FPCF, capturing dynamics

and intensionality of computation. In this manner, we have overcome the static,

extensional nature of existing game semantics. On the other hand, it remains open

how to extend this framework to more complex programming languages.

In Chapter 4, we have given an intrinsic, non-axiomatic, non-inductive notion of

‘effective computability’ in game semantics and proved that it is Turing complete.

By the interactive nature of game semantics, this game-semantic approach naturally

accommodates higher-order computation, which extends the fundamental analysis

of classical computability by Turing to non-classical one. In this sense, our game-

semantic approach can be seen as a mathematical model of computation in its own

right, in contrast to conventional game semantics which has been primarily employed

for full abstraction (i.e., to characterize programs up to observational equivalence).

In Chapter 5, we have developed a game semantics of MLTT equipped with 1-,

0-, N-, Π-, Σ- and Id-types as well as a cumulative hierarchy of universes. Notably,

we have modeled the syntax by a novel variant of games, called p-games, not families

or lists of games; in this sense, we have given a truly game semantic model of MLTT.

282

Finally in Chapter 6, we have combined these three developments into a single

mathematical framework that captures dynamics and intensionality of computation,

higher-order computability and dependent types. On the other hand, we have also

witnessed that our framework is intrinsically intuitionistic, not classical.

7.2 Future Work of the Thesis

There are various directions for further work, and we have already mentioned them

at the end of the main chapters. Finally, we repeat some of the most imminent ones.

First, it is definitely immediate future work to apply the framework of dynamic

game semantics in Chapter 3 to other logics and computations. Note that the present

formulation of the hiding operation is tailored to a specific operational semantics

of FPCF; thus, this problem is not a trivial one. In particular, since the hiding

operation can be refined to the ‘move-wise’ fashion, we are interested in modeling

finer computational calculi such as explicit substitution [158] and the differential λ-

calculus [55]. We believe that this direction would lead to a deeper understanding of

dynamics and intensionality of logic and computation.

It is also important to extend the game-semantic model of PCF-computation. We

are particularly concerned with extending it to non-innocent strategies so that we

may cover computation with states. In addition, we are interested in employing the

framework as a mathematical foundation to investigate the computational natures

of various principles in constructive mathematics. Furthermore, it would be fruitful

to employ the‘low-level computational processes of viable and/or JPA-computable

dynamic strategies as a measure of computational complexity for programming.

Finally, it remains open to improve our game-semantic interpretation of Id-types.

Note that the result in Chapter 5 is unsatisfactory in the point that it validates

UIP since the syntax does not [93]. The unpublished paper [190] has addressed

this problem by incorporating the structure of groupoinds but based on the simpler

version of our game semantics of MLTT. Thus, we have to see how this work can be

adjusted to the game semantics of the present thesis. Moreover, it is a challenging,

yet interesting, problem to generalize the groupoid structure to ω-groupoids in order

to model the infinite hierarchy of Id-types in HoTT. This would in particular shed

new light on connections between computation and topology via the common internal

language, viz., HoTT; it would lead to new topological structures in computation as

well as novel computational natures in topology.

283

Bibliography

[1] Samson Abramsky. Computational interpretations of linear logic. Theor. Com-

put. Sci., 111(1&2):3–57, 1993.

[2] Samson Abramsky. Information, processes and games. J. Benthem van & P.

Adriaans (Eds.), Philosophy of Information, pages 483–549, 2008.

[3] Samson Abramsky. Axioms for definability and full completeness. arXiv

preprint arXiv:1401.4735, 2014.

[4] Samson Abramsky. Intensionality, Definability and Computation. In Johan van

Benthem on Logic and Information Dynamics, pages 121–142. Springer, 2014.

[5] Samson Abramsky et al. Semantics of Interaction: An Introduction to Game

Semantics. Semantics and Logics of Computation, Publications of the Newton

Institute, pages 1–31, 1997.

[6] Samson Abramsky, Kohei Honda, and Guy McCusker. A fully abstract game

semantics for general references. In Logic in Computer Science, 1998. Proceed-

ings. Thirteenth Annual IEEE Symposium on, pages 334–344. IEEE, 1998.

[7] Samson Abramsky and Radha Jagadeesan. Games and Full Completeness for

Multiplicative Linear Logic. The Journal of Symbolic Logic, 59(02):543–574,

1994.

[8] Samson Abramsky and Radha Jagadeesan. A Game Semantics for Generic

Polymorphism. Annals of Pure and Applied Logic, 133(1):3–37, 2005.

[9] Samson Abramsky, Radha Jagadeesan, and Pasquale Malacaria. Full Abstrac-

tion for PCF. Information and Computation, 163(2):409–470, 2000.

[10] Samson Abramsky, Radha Jagadeesan, and Matthijs Vákár. Games for Depen-

dent Types. In Automata, Languages, and Programming, pages 31–43. Springer,

2015.

284

[11] Samson Abramsky and Achim Jung. Domain theory. In Handbook of logic in

computer science. Oxford University Press, 1994.

[12] Samson Abramsky and Guy McCusker. Linearity, sharing and state: a fully

abstract game semantics for Idealized Algol with active expressions. In Algol-

like languages, pages 297–329. Springer, 1997.

[13] Samson Abramsky and Guy McCusker. Call-by-value games. In Computer

Science Logic, pages 1–17. Springer, 1998.

[14] Samson Abramsky and Guy McCusker. Game Semantics. In Computational

logic, pages 1–55. Springer, 1999.

[15] Samson Abramsky and P-A Mellies. Concurrent games and full completeness.

In Logic in Computer Science, 1999. Proceedings. 14th Symposium on, pages

431–442. IEEE, 1999.

[16] Peter Aczel. The type theoretic interpretation of constructive set theory. Studies

in Logic and the Foundations of Mathematics, 96:55–66, 1978.

[17] Peter Aczel, Seppo Miettinen, and Jouko Vaananen. The strength of Martin-

Löf’s intuitionistic type theory with one universe. 1984.

[18] Roberto M Amadio and Pierre-Louis Curien. Domains and lambda-calculi.

Number 46. Cambridge University Press, 1998.

[19] Hajnal Andréka, István Németi, and Ildikó Sain. Algebraic logic. In Handbook

of philosophical logic, pages 133–247. Springer, 2001.

[20] Michael J Beeson. Foundations of constructive mathematics: Metamathematical

studies, volume 6. Springer Science & Business Media, 2012.

[21] Stefano Berardi, Thierry Coquand, and Susumu Hayashi. Games with 1-

backtracking. Annals of Pure and Applied Logic, 161(10):1254–1269, 2010.

[22] Gérard Berry and Pierre-Louis Curien. Sequential algorithms on concrete data

structures. Theoretical Computer Science, 20(3):265–321, 1982.

[23] Gavin M Bierman. What is a categorical model of intuitionistic linear logic?

In International Conference on Typed Lambda Calculi and Applications, pages

78–93. Springer, 1995.

285

[24] RS Bird. Introduction to functional programming in haskell. international series

in computer science, 1998.

[25] Andreas Blass. A game semantics for linear logic. Annals of Pure and Applied

logic, 56(1):183–220, 1992.

[26] Andreas Blass and Yuri Gurevich. Algorithms: a quest for absolute definitions.

Church?s Thesis After, 70:24–57, 2006.

[27] Valentin Blot. Game semantics and realizability for classical logic. PhD thesis,

Ecole normale supérieure de lyon-ENS LYON, 2014.

[28] Valentin Blot. Realizability for peano arithmetic with winning conditions in

hon games. Annals of Pure and Applied Logic, 168(2):254–277, 2017.

[29] William Blum and CHL Ong. A Concrete Presentation of Game Semantics,

2008.

[30] Susanne Bobzien. Ancient logic. 2006.

[31] Antonio Bucciarelli. Another approach to sequentiality: Kleene’s unimonotone

functions. In Mathematical Foundations of Programming Semantics, pages 333–

358. Springer, 1994.

[32] Chen Chung Chang and H Jerome Keisler. Model theory, volume 73. Elsevier,

1990.

[33] Noam Chomsky. Three models for the description of language. IRE Transac-

tions on information theory, 2(3):113–124, 1956.

[34] Alonzo Church. An unsolvable problem of elementary number theory. American

journal of mathematics, 58(2):345–363, 1936.

[35] Alonzo Church. Review of Turing 1936. The journal of symbolic logic, 2:42–43,

1937.

[36] Alonzo Church. A formulation of the simple theory of types. The journal of

symbolic logic, 5(02):56–68, 1940.

[37] Pierre Clairambault and Russ Harmer. Totality in Arena Games. Annals of

pure and applied logic, 161(5):673–689, 2010.

286

[38] RL Constable, SF Allen, HM Bromley, WR Cleaveland, JF Cremer, RW Harper,

DJ Howe, TB Knoblock, NP Mendler, P Panangaden, et al. Implementing

mathematics with the nuprl proof development system. 1986.

[39] Catarina Coquand. A realizability interpretation of martin-löf’s type theory.

Twenty-Five Years of Constructive Type Theory, 1998.

[40] Thierry Coquand. Computational content of classical logic. Semantics and

logics of computation, 14:33, 1997.

[41] Roy L Crole. Categories for Types. Cambridge University Press, 1993.

[42] Pierre-Louis Curien. Abstract Böhm Trees. Mathematical Structures in Com-

puter Science, 8(06):559–591, 1998.

[43] Pierre-Louis Curien. Notes on Game Semantics. From the author?s web page,

2006.

[44] Pierre-Louis Curien. Definability and full abstraction. Electronic Notes in

Theoretical Computer Science, 172:301–310, 2007.

[45] Haskell B Curry. Grundlagen der kombinatorischen logik. American journal of

mathematics, 52(4):789–834, 1930.

[46] Nigel Cutland. Computability: An Introduction to Recursive Function Theory.

Cambridge university press, 1980.

[47] Vincent Danos, Hugo Herbelin, and Laurent Regnier. Game semantics and

abstract machines. In Logic in Computer Science, 1996. LICS’96. Proceedings.,

Eleventh Annual IEEE Symposium on, pages 394–405. IEEE, 1996.

[48] Vincent Danos and Laurent Regnier. Head linear reduction. Unpublished, 2004.

[49] Antony JT Davie. Introduction to Functional Programming Systems Using

Haskell, volume 27. Cambridge University Press, 1992.

[50] Richard Dedekind and Wooster Woodruff Beman. Essays on the Theory of

Numbers: I. Continuity and Irrational Numbers, II. The Nature and Meaning

of Number. Open court publishing Company, 1901.

[51] Peter J Denning. What is computation. Ubiquity, 2010.

287

[52] Aleksandar Dimovski, Dan R Ghica, and Ranko Lazić. Data-abstraction Re-

finement: A Game Semantic Approach. In International Static Analysis Sym-

posium, pages 102–117. Springer, 2005.

[53] Peter Dybjer. Internal Type Theory. In Types for Proofs and Programs, pages

120–134. Springer, 1996.

[54] Peter Dybjer and Erik Palmgren. Intuitionistic type theory. Stanford Encyclo-

pedia of Philosophy, 2016.

[55] Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. The-

oretical Computer Science, 309(1):1–41, 2003.

[56] Herbert Enderton and Herbert B Enderton. A mathematical introduction to

logic. Academic press, 2001.

[57] Solomon Feferman. A language and axioms for explicit mathematics. In Algebra

and logic, pages 87–139. Springer, 1975.

[58] Solomon Feferman. Predicativity. 2005.

[59] Walter Felscher. Dialogues as a foundation for intuitionistic logic. In Handbook

of philosophical logic, pages 341–372. Springer, 1986.

[60] Hugo Férée. Game semantics approach to higher-order complexity. Journal of

Computer and System Sciences, 87:1–15, 2017.

[61] Gottlob Frege. Begriffsschrift, a formula language, modeled upon that of arith-

metic, for pure thought. From Frege to Gödel: A source book in mathematical

logic, 1931:1–82, 1879.

[62] RO Gandy. Dialogues, Blass games and sequentiality for objects of finite type.

Unpublished manuscript, 1993.

[63] Robin Gandy. Church’s thesis and principles for mechanisms. Studies in Logic

and the Foundations of Mathematics, 101:123–148, 1980.

[64] Gerhard Gentzen. Untersuchungen über das logische schließen. i. Mathematis-

che zeitschrift, 39(1):176–210, 1935.

[65] Gerhard Gentzen. Untersuchungen über das logische schließen. I. Mathematis-

che zeitschrift, 39(1):176–210, 1935.

288

[66] Gerhard Gentzen. Untersuchungen über das logische schließen. II. Mathema-

tische Zeitschrift, 39(1):405–431, 1935.

[67] Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D Lawson,

Michael Mislove, and Dana S Scott. Continuous lattices and domains, vol-

ume 93. Cambridge University Press, 2003.

[68] Seymour Ginsburg, Sheila A Greibach, and Michael A Harrison. Stack automata

and compiling. Journal of the ACM (JACM), 14(1):172–201, 1967.

[69] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de

l?arithmétique d?ordre supérieur. PhD thesis, PhD thesis, Université Paris VII,

1972.

[70] Jean-Yves Girard. Linear logic. Theoretical computer science, 50(1):1–101,

1987.

[71] Jean-Yves Girard. Geometry of interaction I: Interpretation of System F. Stud-

ies in Logic and the Foundations of Mathematics, 127:221–260, 1989.

[72] Jean-Yves Girard. Geometry of interaction II: Deadlock-free algorithms. In

COLOG-88, pages 76–93. Springer, 1990.

[73] Jean-Yves Girard. Geometry of interaction III: accommodating the additives.

London Mathematical Society Lecture Note Series, pages 329–389, 1995.

[74] Jean-Yves Girard. Linear logic: its syntax and semantics. London Mathematical

Society Lecture Note Series, pages 1–42, 1995.

[75] Jean-Yves Girard. Geometry of interaction IV: the feedback equation. In Logic

Colloquium, volume 3, pages 76–117. Citeseer, 2003.

[76] Jean-Yves Girard. Geometry of interaction V: logic in the hyperfinite factor.

Theoretical Computer Science, 412(20):1860–1883, 2011.

[77] Jean-Yves Girard. Geometry of interaction VI: a blueprint for transcendental

syntax. preprint, 2013.

[78] Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and Types, volume 7.

Cambridge University Press Cambridge, 1989.

289

[79] Kurt Gödel. Uber die Vollstandigkeit des Logikkalkuls. PhD thesis, PhD thesis,

Vienna, 1929.

[80] Kurt Gödel. Über formal unentscheidbare sätze der principia mathematica und

verwandter systeme i. Monatshefte für mathematik und physik, 38(1):173–198,

1931.

[81] William Edward Greenland. Game Semantics for Region Analysis. PhD thesis,

University of Oxford, 2005.

[82] Carl A Gunter. Semantics of Programming Languages: Structures and Tech-

niques. MIT press, 1992.

[83] Yuri Gurevich. Abstract state machines: An overview of the project. Founda-

tions of Information and Knowledge Systems, pages 6–13, 2004.

[84] Matthew Hague, Andrzej S Murawski, C-HL Ong, and Olivier Serre. Collapsible

pushdown automata and recursion schemes. In Logic in Computer Science,

2008. LICS’08. 23rd Annual IEEE Symposium on, pages 452–461. IEEE, 2008.

[85] Chris Hankin. Lambda calculi: A guide for the perplexed. 1994.

[86] Hugo Herbelin. On the degeneracy of sigma-types in presence of computational

classical logic. In TLCA, pages 209–220. Springer, 2005.

[87] Arend Heyting. Die formalen regeln der intuitionistischen logik. Sitzungsberichte

der Preussischen Akademie der Wissenshaften, physikalisch-mathematische

Klasse, 42:158–169, 1930.

[88] David Hilbert. The foundations of mathematics. 1927.

[89] Barnaby P Hilken. Towards a proof theory of rewriting: the simply typed

2λ-calculus. Theoretical Computer Science, 170(1-2):407–444, 1996.

[90] Charles Antony Richard Hoare. Communicating sequential processes. In The

origin of concurrent programming, pages 413–443. Springer, 1978.

[91] Wilfrid Hodges. Model theory, volume 42. Cambridge University Press, 1993.

[92] Martin Hofmann. Syntax and semantics of dependent types. In Extensional

Constructs in Intensional Type Theory, pages 13–54. Springer, 1997.

290

[93] Martin Hofmann and Thomas Streicher. The groupoid interpretation of type

theory. Twenty-five years of constructive type theory (Venice, 1995), 36:83–111,

1998.

[94] Kohei Honda and Nobuko Yoshida. Game theoretic analysis of call-by-value

computation. In Automata, Languages and Programming, pages 225–236.

Springer, 1997.

[95] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to

automata theory, languages, and computation. Acm Sigact News, 32(1):60–65,

2001.

[96] John E. Hopcroft and Jeffrey D. Ullman. Nonerasing stack automata. Journal

of Computer and System Sciences, 1(2):166–186, 1967.

[97] Dominic Hughes. Hypergame semantics: full completeness for system F. PhD

thesis, D. Phil. thesis, Oxford University, 2000.

[98] Hagen Huwig and Axel Poigné. A note on inconsistencies caused by fixpoints

in a cartesian closed category. Theoretical Computer Science, 73(1):101–112,

1990.

[99] J Martin E Hyland and C-H Luke Ong. Fair games and full completeness for

multiplicative linear logic without the mix-rule. preprint, 190, 1993.

[100] J Martin E Hyland and C-HL Ong. On full abstraction for PCF: I, II, and III.

Information and computation, 163(2):285–408, 2000.

[101] Martin Hyland. Game Semantics. Semantics and logics of computation, 14:131,

1997.

[102] Bart Jacobs. Categorical Logic and Type Theory, volume 141. Elsevier, 1999.

[103] Giorgi Japaridze. Introduction to computability logic. Annals of Pure and

Applied Logic, 123(1-3):1–99, 2003.

[104] Peter T Johnstone. Sketches of an elephant: A topos theory compendium, vol-

ume 2. Oxford University Press, 2002.

[105] Peter T Johnstone. Topos theory. Courier Corporation, 2014.

291

[106] SC Kleene. Unimonotone functions of finite types (recursive functionals and

quantifiers of finite types revisited IV). Recursion Theory, 42:119–138, 1985.

[107] Stephen Cole Kleene. Introduction to metamathematics. 1952.

[108] Stephen Cole Kleene. Recursive functionals and quantifiers of finite types I.

Transactions of the American Mathematical Society, 91(1):1–52, 1959.

[109] Stephen Cole Kleene. Recursive functionals and quantifiers of finite types II.

Transactions of the American Mathematical Society, 108(1):106–142, 1963.

[110] Stephen Cole Kleene. Recursive functionals and quantifiers of finite types re-

visited I. Studies in Logic and the Foundations of Mathematics, 94:185–222,

1978.

[111] Stephen Cole Kleene. Recursive functionals and quantifiers of finite types revis-

ited II. Studies in Logic and the Foundations of Mathematics, 101:1–29, 1980.

[112] Stephen Cole Kleene. Recursive functionals and quantifiers of finite types re-

visited III. Studies in Logic and the Foundations of Mathematics, 109:1–40,

1982.

[113] Stephen Cole Kleene. Recursive functionals and quantifiers of finite types revis-

ited. V. Transactions of the American Mathematical Society, 325(2):593–630,

1991.

[114] Teodor Knapik, Damian Niwiński, and Pawe l Urzyczyn. Higher-order pushdown

trees are easy. In International Conference on Foundations of Software Science

and Computation Structures, pages 205–222. Springer, 2002.

[115] Dexter C Kozen. Theory of Computation. Springer Science & Business Media,

2006.

[116] Dexter C Kozen. Automata and Computability. Springer Science & Business

Media, 2012.

[117] James Laird. Full Abstraction for Functional Languages with Control. In

Logic in Computer Science, 1997. LICS’97. Proceedings., 12th Annual IEEE

Symposium on, pages 58–67. IEEE, 1997.

[118] Joachim Lambek and Philip J Scott. Introduction to Higher-order Categorical

Logic, volume 7. Cambridge University Press, 1988.

292

[119] Olivier Laurent. Polarized games. Annals of Pure and Applied Logic, 130(1-

3):79–123, 2004.

[120] Olivier Laurent. Game semantics for first-order logic. arXiv preprint

arXiv:1009.4400, 2010.

[121] Øystein Linnebo. Platonism in the philosophy of mathematics. 2009.

[122] John Longley and Dag Normann. Higher-Order Computability. Springer, 2015.

[123] Saunders MacLane and Ieke Moerdijk. Sheaves in geometry and logic: A first

introduction to topos theory. Springer Science & Business Media, 2012.

[124] Per Martin-Löf. An intuitionistic theory of types: Predicative part. Studies in

Logic and the Foundations of Mathematics, 80:73–118, 1975.

[125] Per Martin-Löf. Constructive mathematics and computer programming. Studies

in Logic and the Foundations of Mathematics, 104:153–175, 1982.

[126] Per Martin-Löf. Intuitionistic Type Theory: Notes by Giovanni Sambin of a

series of lectures given in Padova, June 1980. 1984.

[127] Per Martin-Löf. An intuitionistic theory of types. Twenty-five years of con-

structive type theory, 36:127–172, 1998.

[128] GUY McCUSKER. Games and definability for fpc. Bulletin of Symbolic Logic,

3(3):347–362, 1997.

[129] Guy McCusker. Games and Full Abstraction for a Functional Metalanguage

with Recursive Types. Springer Science & Business Media, 1998.

[130] Colin McLarty. Elementary categories, elementary toposes. Clarendon Press,

1992.

[131] Paul-André Mellies. Asynchronous games 4: A fully complete model of propo-

sitional linear logic. In LiCS 2005–Logic in Computer Science, pages 386–395.

IEEE, 2005.

[132] Paul-André Mellies. Axiomatic rewriting theory I: A diagrammatic standard-

ization theorem. In Processes, Terms and Cycles: steps on the road to infinity,

pages 554–638. Springer, 2005.

293

[133] Robin Milner. Software science: From virtual to reality. Bulletin of EATCS,

87.

[134] Robin Milner. A calculus of communicating systems. Lecture Notes in Comput.

Sci. 92, 1980.

[135] Gerd Mitschke. The standardization theorem for λ-calculus. Mathematical Logic

Quarterly, 25(1-2):29–31, 1979.

[136] Eugenio Moggi. Notions of computation and monads. Information and compu-

tation, 93(1):55–92, 1991.

[137] Yiannis N Moschovakis. On founding the theory of algorithms. Truth in math-

ematics, pages 71–104, 1998.

[138] John Myhill. Constructive set theory. The Journal of Symbolic Logic, 40(3):347–

382, 1975.

[139] Hanno Nickau. Hereditarily Sequential Functionals. In Logical Foundations of

Computer Science, pages 253–264. Springer, 1994.

[140] Bengt Nordström, Kent Petersson, and Jan M Smith. Programming in martin-

löfs type theory, volume 7 of international series of monographs on computer

science, 1990.

[141] Ulf Norell. Towards a Practical Programming Language Based on Dependent

Type Theory, volume 32. Citeseer, 2007.

[142] Piergiorgio Odifreddi. Classical Recursion Theory: The Theory of Functions

and Sets of Natural Numbers, volume 125. Elsevier, 1992.

[143] C-H Luke Ong. Normalisation by traversals. arXiv preprint arXiv:1511.02629,

2015.

[144] C-HL Ong. On Model-checking Trees Generated by Higher-order Recursion

Schemes. In 21st Annual IEEE Symposium on Logic in Computer Science

(LICS’06), pages 81–90. IEEE, 2006.

[145] Joël Ouaknine. A Two-Dimensional Extension of Lambek’s Categorical Proof

Theory. PhD thesis, McGill University, Montréal, 1997.

294

[146] Erik Palmgren. On universes in type theory. In Twenty Five Years of Construc-

tive Type Theory, volume 36, pages 191–204. Oxford University Press, 1998.

[147] Erik Palmgren and Viggo Stoltenberg-Hansen. Domain interpretations of

martin-löf’s partial type theory. Annals of Pure and Applied Logic, 48(2):135–

196, 1990.

[148] Giuseppe Peano. Arithmetices principia, nova methodo exposita, 1899. English

translation in [51], pages 83–97, 1879.

[149] Giuseppe Peano. Arithmetices principia: nova methodo exposita. Fratres Bocca,

1889.

[150] Andrew M Pitts. Categorical logic. In Handbook of logic in computer science,

pages 39–123. Oxford University Press, 2001.

[151] Gordon D. Plotkin. LCF considered as a programming language. Theoretical

computer science, 5(3):223–255, 1977.

[152] Gordon D Plotkin. A structural approach to operational semantics. 1981.

[153] Emil L Post. Formal reductions of the general combinatorial decision problem.

American journal of mathematics, 65(2):197–215, 1943.

[154] Michael Rathjen. The constructive hilbert program and the limits of martin-

löf type theory. In Logicism, Intuitionism, and Formalism, pages 397–433.

Springer, 2009.

[155] Estéban Requena, Paul LORENZEN, and Kuno LORENZ. Dialogische logik,

1980.

[156] Bernhard Reus. Realizability models for type theories. Electronic Notes in

Theoretical Computer Science, 23(1):128–158, 1999.

[157] Hartley Rogers and H Rogers. Theory of Recursive Functions and Effective

Computability, volume 5. McGraw-Hill New York, 1967.

[158] Kristoffer Høgsbro Rose. Explicit Substitution: Tutorial & Survey. Computer

Science Department, 1996.

[159] Moses Schönfinkel. Über die bausteine der mathematischen logik. Mathematis-

che Annalen, 92(3):305–316, 1924.

295

[160] Helmut Schwichtenberg and Stanley S Wainer. Proofs and computations. Cam-

bridge University Press, 2011.

[161] Dana Scott. Outline of a mathematical theory of computation. Oxford University

Computing Laboratory, Programming Research Group, 1970.

[162] Dana Scott. Data types as lattices. SIAM Journal on computing, 5(3):522–587,

1976.

[163] Dana S Scott. A type-theoretical alternative to ISWIM, CUCH, OWHY. The-

oretical Computer Science, 121(1):411–440, 1993.

[164] Dana S Scott and Christopher Strachey. Toward a mathematical semantics

for computer languages, volume 1. Oxford University Computing Laboratory,

Programming Research Group, 1971.

[165] Robert AG Seely. Linear logic,*-autonomous categories and cofree coalgebras.

Ste. Anne de Bellevue, Quebec: CEGEP John Abbott College, 1987.

[166] Robert AG Seely. Modelling computations: A 2-categorical framework. In

LICS, pages 65–71, 1987.

[167] Stewart Shapiro. Classical logic. 2000.

[168] Joseph R Shoenfield. Mathematical Logic, volume 21. Addison-Wesley Reading,

1967.

[169] Michael Sipser. Introduction to the Theory of Computation. Cengage Learning,

2012.

[170] Jan Smith. An interpretation of martin-löf’s type theory in a type-free theory

of propositions. The Journal of symbolic logic, 49(03):730–753, 1984.

[171] Robert I Soare. The history and concept of computability. Handbook of com-

putability theory, 140:3–36, 1999.

[172] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard

isomorphism, volume 149. Elsevier, 2006.

[173] Viggo Stoltenberg-Hansen, Ingrid Lindström, and Edward R Griffor. Mathe-

matical theory of domains, volume 22. Cambridge University Press, 1994.

[174] Thomas Streicher. Investigations into Intensional Type Theory. 1993.

296

[175] Alfred Tarski. The concept of truth in the languages of the deductive

sciences. Prace Towarzystwa Naukowego Warszawskiego, Wydzial III Nauk

Matematyczno-Fizycznych, 34(13-172):198, 1933.

[176] Alfred Tarski. Pojecie prawdy w jezykach nauk dedukcyjnych: la notion de

la vérité dans les langages des sciences déductives, volume 2. Nakladem To-

warzystwa Naukowego Warszawskiego, 1933.

[177] COQ DEVELOPMENT TEAM et al. The Coq proof assistant reference man-

ual. TypiCal Project (formerly LogiCal), 2012.

[178] Anne S Troelstra. Metamathematical investigation of intuitionistic arithmetic

and analysis, volume 344. Springer Science & Business Media, 1973.

[179] Anne Sjerp Troelstra et al. Realizability. 1998.

[180] Anne Sjerp Troelstra and Helmut Schwichtenberg. Basic proof theory. Num-

ber 43. Cambridge University Press, 2000.

[181] Anne Sjerp Troelstra and Dirk van Dalen. Constructivism in mathematics. Vol.

I, volume 121 of. Studies in Logic and the Foundations of Mathematics, page 26,

1988.

[182] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in Mathematics,

volume 2. Elsevier, 2014.

[183] Alan Mathison Turing. On computable numbers, with an application to the

entscheidungsproblem. J. of Math, 58(345-363):5, 1936.

[184] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foun-

dations of Mathematics. https://homotopytypetheory.org/book, Institute

for Advanced Study, 2013.

[185] Jean Van Heijenoort. From Frege to Gödel: a source book in mathematical logic,

1879-1931, volume 9. Harvard University Press, 1967.

[186] Jaap Van Oosten. Realizability: an introduction to its categorical side, volume

152. Elsevier, 2008.

[187] Alfred North Whitehead and Bertrand Russell. Principia mathematica, vol-

ume 1. University Press, 1910.

297

https://homotopytypetheory.org/book

[188] Glynn Winskel. The Formal Semantics of Programming Languages: An Intro-

duction. MIT press, 1993.

[189] Norihiro Yamada. Game Semantics for Martin-Löf Type Theory. arXiv preprint

arXiv:1610.01669, 2016.

[190] Norihiro Yamada. Game-theoretic investigation of intensional equalities. arXiv

preprint arXiv:1703.02015, 2017.

298

	Introduction
	Dynamics and Intensionality
	Dynamics of Logic and Computation
	Intensionality of Logic and Computation
	Denotational Semantics
	Towards Semantics of Dynamics and Intensionality

	Mathematical Models of Computation
	Turing Machines
	Beyond Classical Computation
	High-Level vs. Low-Level Computational Processes
	Towards Mathematics of Computational Processes

	Meaning Explanation of MLTT
	Martin-Löf Type Theory
	Meaning Explanation
	Towards a Mathematical Foundation of Constructivism

	Classical, Intuitionistic and Linear Logics
	Classical, Intuitionistic and Linear Logics
	Towards a Unified View on the Logics

	Our Approach: Games and Strategies
	Main Results of the Thesis
	Philosophical Implications
	Semantic, Analytic Study of Logic
	Unity of Proof, Model and Recursion Theories

	Thesis Outline

	Preliminary: Games and Strategies
	Pre-Mathematical Introduction
	Games
	Arenas and Legal Positions
	Games
	Constructions on Games

	Strategies
	Strategies
	Constructions on Strategies

	Categories of Games and Strategies
	Logic vs. Computation
	Cartesian Closure via New-Seely Categories
	Computational CCCs of Games and Strategies
	Logical CCCs of Games and Strategies
	Coproducts
	Logic of Games and Strategies
	Classical Linear and Classical Logics?

	Dynamic Game Semantics
	Introduction to the Chapter
	Existing Game Semantics Is Static
	Dynamic Games and Strategies
	Dynamic Game Semantics
	Related Work and Contribution of the Chapter
	Chapter Outline

	Dynamic Bicategorical Semantics
	Beta-Categories of Computation
	Finitary PCF
	Dynamic Semantics of Finitary PCF

	Dynamic Games and Strategies
	Dynamic Arenas and Legal Positions
	Dynamic Games
	Constructions on Dynamic Games
	Dynamic Strategies
	Constructions on Dynamic Strategies

	Dynamic Game Semantics of Finitary PCF
	Dynamic Game Semantics of Finitary PCF
	Dynamic Correspondence Property for FPCF

	Conclusion and Future Work of the Chapter

	Game-Semantic Model of Higher-Order Computation
	Introduction to the Chapter
	Towards Game-Semantic Model of Computation
	Viable Strategies
	Related Work and Contribution of the Chapter
	Chapter Outline

	Game-Semantic PCF-Computation
	The Lazy Natural Number Game
	Dynamic Games and Strategies for PCF-Computation
	The Last-Three-Move Lemma

	On `Tags' for Disjoint Union of Sets
	Constructions on Dynamic Games Revisited
	Constructions on Dynamic Strategies Revisited

	Viable Strategies
	Viable Strategies
	Examples of Viable Dynamic Strategies
	PCF-Completeness of Viable Dynamic Strategies

	Conclusion and Future Work of the Chapter

	Game Semantics of MLTT
	Introduction to the Chapter
	Why Difficult?
	Our Solution in a Nutshell
	Related Work and Contribution of the Chapter
	Chapter Outline

	Martin-Löf Type Theory
	Judgements
	Contexts
	Structural Rules
	Unit Type
	Empty Type
	Natural Number Type
	Dependent Function Types
	Dependent Pair Types
	Identity Types
	Universes
	Meaning Explanation

	Predicative Games
	Valid Strategies as Deterministic Games
	Games via V-Strategies
	Predicative Games
	The CCC of Logical Predicative Games
	Coproducts of Predicative Games
	Initial Objects
	Binary Coproducts

	Game Semantics of MLTT
	Dependent Logical Predicative Games
	Dependent Function Spaces
	Dependent Pair Spaces
	Identity Spaces
	Game-Semantic Category with Families
	Game-Semantic Type Formers
	Game-Semantic Dependent Function Types
	Game-Semantic Dependent Pair Types
	Game-Semantic Identity Types
	Game-Semantic Natural Number Type
	Game-Semantic Unit Type
	Game-Semantic Empty Type
	Game-Semantic Universes

	Effectivity and Bijectivity
	Elementary P-Games and V-Strategies
	Effective, Bijective Game Semantics of MLTT

	Intensionality
	Equality Reflection
	Function Extensionality
	Uniqueness of Identity Proofs
	Criteria of Intensionality
	Univalence Axiom

	Conclusion and Future Work of the Chapter

	Piecing Together
	Dynamic Game Semantics of MLTT
	Game-Semantic Realizability for MLTT
	Classical, Intuitionistic and Linear Logics

	Conclusion and Future Work
	Conclusion of the Thesis
	Future Work of the Thesis

	Bibliography

