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Abstract

In this dissertation we explore primarily the category of finite dimen-

sional vector spaces over a finite field F , FdVectF , and its relevance and

possible uses in quantum information theory. The main results will be

related to Frobenius algebras in FdVectF , particularly:

1) The link between classical structures in Rel the category of finite re-

lations and single valued classical structures in FdVectF2 , which I show

are equivalent to abelian groupoids whose components are of odd order.

2) Monoidal structures in FdVectFp (dimension n) that are isomorphic to

the finite field Fpn . The main result here is that such monoidal structures

always exist and each admits a special Frobenius algebra.

This work also provides a background to the use of category theory in

quantum computing. We cover the use of symmetric monoidal categories,

diagrammatic calculi, abstract categories in both quantum and classical

systems and give an introduction to copying and deleting operations. We

see FdVectF in action with several examples of familiar quantum proto-

col and properties. Also we give some other interesting concrete categories

worth studying in future work.
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Introduction

Much of the mathematical foundations for quantum computing were made

over 70 years ago by Von Neumann with the use of Hilbert spaces. In recent

years significant work has been made in developing more advanced methods for

quantum computing using category theory. This category theoretic approach to

the subject will be the focus of my dissertation. I will discuss the importance

of category theory in quantum mechanics more in chapter 2.

In this dissertation I will study the use in quantum computing of the cate-

gory of finite dimensional vector spaces over finite fields (denoted FdVectF ). I

will aim to:-

1. Investigate which properties of quantum computing we can model using these

categories, as well as which seem natural.

2. Find out how this can be used to give a different perspective on quantum

computing, or as a tool in quantum computing.

3. Understanding how finite fields may be used in quantum computing in the

future and where future study might be best focussed.

To give an outline of the structure of this dissertation, we start in chap-

ter 1 by looking at finite dimensional vector spaces and finite fields. We discuss

the properties that are going to be useful in quantum computing and the prop-

erties we may want, but not have.

Chapters 2-6 provides a background to the category theoretic approach to quan-

tum mechanics, this should be accessible even for a reader completely unfamiliar

with category theory. Chapter 2 introduces category theory, chapter 3 describes

the diagrammatic calculi that makes such an approach so appealing. In chapter

4 we introduce the symmetric monoidal category which forms the basic structure

to classical and quantum systems. In chapter 5 we look at categories defining

properties, that are either classified as classical or quantum. Chapter 6 intro-

duces copying and deleting operations.

In chapter 7 we focus on Frobenius algebras and in particular classical structures.

We get back to FdVectF here and look at what classical structures and special

Frobenius algebras look like in this category. Chapter 8 provides examples of

FdVectF in action, we see many familiar quantum protocols and properties.

Chapter 9 gives examples of other interesting categories worth studying in future

work.
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1 Finite dimensional vector spaces and finite fields

We first look at our usual setting for quantum mechanics the Hilbert space

Definition 1.1. A (finite dimensional) Hilbert space is vector space H over C
which also comes with an inner product, i.e. a map

〈−|−〉 : H×H → C (1)

satisfying,

〈ψ|c1 · φ1 + c2 · φ2〉 = c1〈ψ|φ1〉+ c2〈ψ|φ2〉 (2)

〈c1 · ψ1 + c2 · ψ2|φ〉 = c̄1〈ψ1|φ〉+ c̄2〈ψ2|φ〉 (3)

〈ψ|φ〉 = 〈φ|ψ〉 〈ψ|ψ〉 ∈ R+ 〈ψ|ψ〉 = 0⇔ ψ = 0 (4)

The concrete categories FdVectK of finite dimensional vector spaces over

field K and FdHilb of finite dimensional hilbert spaces, share properties that

make them useful in quantum mechanics. For example both can be made dagger

compact categories. This is shown by theorem 5.7 and the fact Hilbert spaces

are finite dimensional vector spaces over the field C. The other defining feature

of a Hilbert space is its inner product, this leads to the question, can we define

such an inner product on different finite dimensional vector spaces? We will

discuss this more later.

Finite fields

Finite fields were first studied in the 17th and 18th centuries, they now play

key roles in areas of maths such as number theory, group theory and algebraic

geometry. They have also proved an important resource in more applied ar-

eas such as computer science, coding and cryptography. While little work has

been done on their applications in quantum mechanics, finite fields do possess

qualities that make them a good candidate to study in this area. Because of

the finite number of elements we can often run computer simulations on all the

elements in a finite field to check a result or search for patterns. They also have

the nice multiplication and addition structure of a field.

The first obvious limitation as a full model of quantum mechanics is their dis-

crete nature will not allow the study of continuous data which we see in quantum

mechanics. However the does not rule out the possibility of creating finite field

extensions or some sort of limit functions to handle continuous data. Besides,
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previous research has already shown us that discrete categories such as Rel the

category of relations can produce enough resources to simulate a teleportation

protocol or describe the notion of quantum entanglement.

The next limitation we face is when we look at inner products in FdVectK.

Let ψ and φ be elements of a vector space V , we can represent these as maps

from the base field K to V , i.e. |φ〉 : K → V :: 1 7→ φ. The adjoint of elements

of V can be represented by |φ〉† : V → K :: φ 7→ 1. We can use the transpose as

our adjoint (see theorem 5.5) to give us a map from K → K via the square of

the norm 〈ψ|φ〉 = |ψ〉† ◦ |φ〉. This map is also linear with respect to ψ and φ,

however consider say the vector φ = (1, 1) in GF(2) this gives 〈φ|φ〉 = 1 + 1 = 0

violating the final condition of 4. A non-zero vector being orthogonal to itself is

a property we want to avoid. However the base field having non-zero characteris-

tic will always mean an inner product is difficult to define, because of this reason.

One attempt to get round this problem is to focus our attention on vec-

tors ψ in our vector space which have non-zero inner product 〈ψ|ψ〉, we call

this set S. While our vector space is not actually an inner product space, this

inner product can still be applied in a useful way to chosen vectors. Scalar

multiplication will be closed on S as we can see from

〈sψ|sψ〉 = s2〈ψ|ψ〉

and the fact that in any finite field (or any field) the product of non-zero elements

is non-zero. It also makes sense to restrict our attention to operations which

map vectors in S to other vectors in S. An obvious candidate would be unitary

maps. For this to be the case the transpose would be equal to the inverse. Below

is an example in GF(3)

U =

(
0 1

2 0

)
UT = U−1 =

(
0 2

1 0

)
(

0 1

2 0

)(
0 2

1 0

)
=

(
1 0

0 4

)
=

(
1 0

0 1

)
We also have U preserving the inner product and therefore maps vectors in S

to S.

〈Uψ|Uφ〉 = ψT ◦ UT ◦ U ◦ ψ = ψT ◦ φ = 〈ψ|φ〉

The addition operation however will not be closed, for example in GF(2) we

have

(1, 0) + (0, 1) = (1, 1)
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While this restriction would allow an inner product to have more meaning, the

fact S cannot be preserved under addition means we would then not allow the

possibility of superposition of states. This is essential in any model of quantum

mechanics. Also the lack of an inner product gives less meaning to our adjoint.

In the category of Rel the adjoint has an intuitive meaning i.e. y is related to

x in f† iff x is related to y in f ; in FdVectF the adjoint does not have such

intuitive meaning behind it. We will continue to study the adjoint in FdVectF ,

which for the rest of this dissertation will be the transpose.

It is clear FdVectF is not going to capture all the features of a full quan-

tum system. However that is not to say we cannot observe concepts such as

entanglement or quantum protocols, such as teleportation and superdense cod-

ing. Using the simplest finite field F2 we see many similarities between the

more studied category Rel and FdVectF2 . In fact we observe the difference

boils down to a difference in matrix arithmetic.

Example 1.2. Semi-ring of Booleans in Rel

If we write an element A ⊆ X as,

A =
⋃
i∈X

ai{i}

we can think of our coefficients ai as part of the Boolean B semi-ring (ring

without additive inverses). We can use + and ∗ to represent ∪ and ∩, giving

the following arithmetic.

0 + 0 = 1 0 + 1 = 1 + 0 = 1 1 + 1 = 1

0 ∗ 0 = 0 0 ∗ 1 = 1 ∗ 0 = 0 1 ∗ 1 = 1

This allows us to multiply and add matrices in familiar ways and even makes

our relations linear operators over this arithmetic.(
0 1

1 0

)
+

(
0 1

0 1

)
=

(
0 1

1 1

)
(

0 1 0

1 0 1

)
0 1

0 1

1 0

 =

(
0 1

1 1

)
(
a b

c d

)(
λ

(
x1

x2

)
+ µ

(
y1

y2

))
= λ

(
a b

c d

)(
x1

x2

)
+ µ

(
a b

c d

)(
y1

y2

)
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2 Introducing category theory

While the traditional use of Hilbert spaces can describe our quantum systems,

we often find very intuitive or simple results can seem excessively complicated

or inaccessible. We not only lack the perspective to see the big picture, but

find it hard to get to the essence of the result. The category theoretic approach

allows us to do all of this. Maybe the three most appealing properties to this

approach are, firstly we can immediately identify the property of our quantum

systems that gives rise to a result. Secondly, we can represent results using

easy to understand and intuitive diagrammatic form. We can manipulate this

form in a formal way, much the same you would do with equations. Thirdly,

category theory gives us a framework to study quantum mechanics outside the

tradition Hilbert space setting. Not only does this give us a new perspective to

quantum mechanics, but opens up the entire world of mathematics as possible

places where quantum computing can take place.

This third property is probably the most relevant to this dissertation as

I will be studying quantum computing out of its usual contexts. An analogy

we make is that we can think of quantum mechanics as a group of animals all

living inside a specific habitat which is our Hilbert spaces. It may seem daunt-

ing to take the animals out of the habitat where we know they can all live and

to build a new home from scratch for all the animals would be a massive task.

However category theory acts like a guide telling us where each animal can live

and where it interacts with the environment in a natural way. With the help of

this guide, we can find better places to use the animals (perform simulations or

protocols), for example farming. Or just observe the animals in different types

of environment, allowing us to understand them better. It also means we have

the entire world (corresponding to the entire world of mathematics) to explore

and find better homes for these animals.

I will now define some of the category theory that will be used in this dis-

sertation.

Definition 2.1. A category is a structure containing objects, usually denoted

A,B,C etc. and morphisms, depicted as arrows between objects and usually

denoted f,g etc. More formally a category comprises

1. A collection of objects |C|
2. A collection of morphisms (arrows). For any A,B ∈ |C| the hom-set C(A,B)
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is the set of all morphisms from A to B.

3. For any A,B,C ∈ |C|, f ∈ C(A,B) and g ∈ C(B,C) there exists a composite

g ◦ f ∈ C(A,C), i.e. there is a composition operation

− ◦ − : C(A,B)×C(B,C)→ C(A,C) :: (f, g) 7→ g ◦ f

with the following properties

i. Associativity. For any f ∈ C(A,B), g ∈ C(B,C) and h ∈ C(C,D) we have

h ◦ (g ◦ f) = (h ◦ g) ◦ f

ii. Existence of identities. For any A,B ∈ |C| there exists 1A ∈ C(A,A) and

1B ∈ C(B,B), such that for any f ∈ C(A,B) we have

f = f ◦ 1A = 1B ◦ f

Categories are found in a broad range of places. We can see examples in how

we view natural and physical processes or in mathematical structures or even

can be studied as a part of mathematics in its own right. We will split them

into three different types

1. Real world categories. These are processes we see all around us in the

world, for example processes in physics or chemistry or quantum mechanics.

Our physical or chemical or quantum states become objects and the processes

that take our system from one state to another are morphisms. In these cat-

egories the identity is the same as ‘doing nothing’ and the composite g ◦ f is

to do process f followed by process g. We don’t have to restrict ourselves to

such scientific examples we could use category theory to look at the process of

washing a car or even writing a dissertation.

2. Concrete categories. Here our objects are mathematical structures and mor-

phisms are structure preserving maps between them; these will often be the

structures used to model the real world processes. Examples are Pos or Grp

where the objects are posets and groups respectively and the morphisms are

order preserving maps for Pos and group homomorphisms for Grp. Below is

another important example

Example 2.2. Let FdVectK be the concrete category with

1. Objects as finite dimensional vector spaces over K
2. Morphisms as linear maps between these vector spaces

3. The composition of two linear maps as the ordinary function composition

(giving another linear map) and the identity function (again linear).
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3. Abstract categories. Here categories are studied as mathematical struc-

tures in their own right. By defining properties in these categories we can build

a structure that can be used to model or simulate a physical system. We can

also think of these categories as a way of axiomatising our system. The study

of these categories can reveal often interesting and unusual information about

our system. A strict monoidal category is an example of an abstract category,

it provides the basic structure to most of the categories we see in quantum

computing.

Definition 2.3. A strict monoidal category C is a category with the following

properties

1. Objects come with a monoid structure (|C|,⊗, I). I is the unit object, ⊗ the

monoidal product. This means for all A,B,C ∈ |C|

A⊗ (B ⊗ C) = (A⊗B)⊗ C and I ⊗A = A = A⊗ I

2. for all objects A,B,C,D ∈ |C| there exists an operation

−⊗− : C(A,B)×C(C,D)→ C(A⊗ C,B ⊗D) :: (f, g) 7→ f ⊗ g

which is associative and has 1I as its unit:

f ⊗ (g ⊗ h) = (f ⊗ g)⊗ h and 1I ⊗ f = f = f ⊗ 1I

3. For all f, g, h, k such that f’s output (codomain) matches g’s input (domain)

and h’s output matches k’s input.

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h)

4. For all objects A,B ∈ |C| we have

1A ⊗ 1B = 1A⊗B

Finally in this section we will define a few of the most basic and important

concepts to category theory. Feel free to skip to the next section if category

theory is already familiar to you.

Definition 2.4. An isomorphism f ∈ C(A,B) is a morphism with an inverse,

i.e. there exists a g ∈ C(B,A) such that g ◦f = 1A and f ◦g = 1B . Two objects

are isomorphic if there exists an isomorphism between them.

Definition 2.5. The opposite category Cop of a category C is a category with

1. The same objects as C
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2. Morphism are reversed i.e. for every f ∈ C(A,B) we get opposite morphism

fop ∈ Cop(B,A). Also,

- Identities in Cop are those C, and

- If h = g ◦ f in C then hop = fop ◦ gop, in other words,

fop ◦ gop = (g ◦ f)op

Definition 2.6. Let C and D be categories. A functor F : C → D is a map

taking each object A ∈ |C| to an object F (A) ∈ |D| and taking each morphism

f ∈ C(A,B) to a morphism F (f) ∈ D(F (A), F (B)), such that for all objects A

and morphisms f and g in category C we have

1. F (1A) = 1F (A)

2. F (g ◦ f) = F (g) ◦ F (f)

In the same way a functor is a structure preserving map from one category

to another, a natural transformation is a structure preserving map from one

functor to another.

Definition 2.7. Let C and D be categories and let F and G be functors from

C to D. A natural transformation from F to G denoted η : F .→ G is a function

that assigns to every object A ∈ C a morphism in D ηA : F (A) → G(A) such

that for any f ∈ C(A,B) the below diagram commutes (we will talk more about

commutative diagrams in the next section)

F (A)
ηA //

F (f)

��

G(A)

G(f)

��
F (B)

ηB

// G(B)
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3 Diagrams and notation

One of the most important features of using categories in quantum mechanics

is that the systems and processes we encounter can be represented in a purely

diagrammatic calculus. This means that situations which may look extremely

complicated and at first glance uninterpretable, in the form of equations, now

become very intuitive and easy to read. Abstract categorical structures, the

axioms that define them and derivable equations all have purely diagrammatic

counterparts. Below we see what these counterparts are

The diagrams are read from bottom to top.

- Identities 1I are an empty diagram

- Identities on object A, 1A, are depicted as an arrow from bottom to top.

- Morphisms are depicted as a box and the composition of f then g is shown

as a box f connected to a box g above it.

Identity 1A Morphism f : A→ B Composition g ◦ f : A→ C

OO

A

A OOB OOC

g

B

f

A

f

A

Tensor products are depicted as lining the diagrams up side by side. For

example f ⊗ g is a morphism f on the left of a morphism g.

The symmetry operation is shown as swapping of the lines.
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Tensor f ⊗ g : A⊗ C → B ⊗D Symmetry σAB : A⊗B → B ⊗A

OOB OOD

f

A

g

C A

AMM

B

BQQ

Another form of diagram we will see a lot is the commutative diagram. This

is very similar to an equation with the different paths of the diagram forming

different sides to the equation.

Example 3.1. In any strict monoidal category with f ∈ C(A,C), g ∈ C(B,D)

we have

(f ⊗ 1D) ◦ (1A ⊗ g) = (1C ⊗ g) ◦ (f ⊗ 1B)

In terms of a graphical calculus this looks like

f

A

C OO

=

g

B

D OO

g

D OO

B

f

C OO

A

In terms of a commutative diagram this looks like

A⊗B
f⊗1B //

1A⊗g
��

C ⊗B

1C⊗g
��

A⊗D
f⊗1D

// C ⊗D

One type of notation commonly used in quantum mechanics is Dirac nota-

tion. Bras and kets also have graphical counterparts via a 90◦ clockwise rotation.

Inner products and projectors can also be represented in our graphical calculus.
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|ψ〉 =
ψ

�
��

@
@@

〈φ| =

φ
�
��

@
@@

〈φ|ψ〉 =
ψ

φ

�
��

@
@@

�
��

@
@@

By introducing an asymmetry to the box used to represent function f it is

possible to represent notions of transpose, conjugate and adjoint. The trans-

pose is made through a 180◦ rotation, adjoint by a vertical flip and conjugate

by horizontal flip (or vertical flip and 180◦ rotation). This will come up more

in chapter 4 when we introduce a unit.

f = f
�

or f
�
�� f† = f

�
or f

A
AA

f∗ = f
�

or f
A
AA fT = f

�
or f
�
��

For the rest of this paper I will interchange between the use of equations, Dirac

notation, commutative diagrams and graphical calculus. I will aim to use the

most appropriate representation to make the definition or theorem as intuitive

and informative as possible.
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4 Building structure with abstract categories

At the end of section 1 I defined a strict monoidal category. While this is the

basic structure to the real world categories we encounter in quantum mechanics,

the mathematical structures used to represent these systems do not admit the

required properties. The strictness of the equalities is where the connection

fails. In the concrete categories of groups, topological spaces, vector spaces and

Hilbert spaces we do not have

A⊗ (B ⊗ C) = (A⊗B)⊗ C or I ⊗A = A = A⊗ I

We do however have instead of an equality, an isomorphism.

A⊗ (B ⊗ C) ' (A⊗B)⊗ C and I ⊗A ' A ' A⊗ I

These are in fact natural isomorphisms. Natural isomorphisms are natural trans-

formations which are also isomorphisms. We introduce the natural transforma-

tions α (associativity) to switch the brackets and λ and ρ (left and right units)

to introduce new objects relative to an existing one. Later we will also encounter

the symmetry natural isomorphism σ which is used to switch objects across the

monoidal product. These natural isomorphisms allow us to define the abstract

categories needed to model our concrete categories (as well as the real world

ones).

Definition 4.1. A monoidal category C is a category with the following prop-

erties

1. There exists an object I ∈ |C|
2. A bifunctor − ⊗ −, which is an operation on objects and morphisms such

that

−⊗− : |C| × |C| → |C| :: (A,B) 7→ A⊗B

−⊗− : C(A,B)×C(C,D)→ C(A⊗ C,B ⊗D) :: (f, g) 7→ f ⊗ g

and also for all objects A,B and morphisms f,g,h,k of appropriate type

(g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h) and 1A ⊗ 1B = 1A⊗B (5)

3. Three natural isomorphisms

α ={A⊗ (B ⊗ C)
αA,B,C−→ (A⊗B)⊗ C| A,B,C ∈ |C|}

λ ={A λA−→ I ⊗A| A ∈ |C|}

ρ ={A ρA−→ A⊗ I| A ∈ |C|}

15



and for all A,B,C,D,A’,B’,C’ and f,g,h of appropriate types, the below diagrams

commute:-

Naturality conditions, showing these isomorphisms interact with morphisms in

the appropriate way.

A⊗ (B ⊗ C)
αA,B,C //

f⊗(g⊗h)
��

(A⊗B)⊗ C

(f⊗g)⊗h
��

A′ ⊗ (B′ ⊗ C ′)
αA′,B′,C′

// (A′ ⊗B′)⊗ C ′

(6)

A
λA //

f

��

I ⊗A

1A⊗f
��

A
ρA //

f

��

A⊗ I

f⊗1A

��
B

λI

// I ⊗B B ρI

// B ⊗ I

(7)

Another associativity condition.

A⊗ (B ⊗ (C ⊗D)) α //

1A⊗α
��

(A⊗B)⊗ (C ⊗D) α // ((A⊗B)⊗ C)⊗D
OO

α⊗1D

A⊗ ((B ⊗ C)⊗D)
α

// (A⊗ (B ⊗ C))⊗D
(8)

Coherence conditions, showing the isomorphisms interact with each other in the

correct way.

A⊗B
1A⊗λB//

ρA⊗1B &&MMMMMMMMMMM A⊗ (I ⊗B)

αA,I,B

��

λI = ρI

(A⊗ I)⊗B

(9)

Definition 4.2. A symmetric monoidal category is a monoidal category with

a fourth natural isomorphism called symmetry

σ ={A⊗B σA,B−→ B ⊗A| A,B ∈ |C|}

Such that for all A,B,C,D and f, g of appropriate types, the following diagrams

commute:-

16



Naturality condition

A⊗B
σA,B //

f⊗g
��

B ⊗A

g⊗f
��

C ⊗D σC,D

// D ⊗ C

(10)

Another condition of the symmetry isomorphism

A⊗B
σA,B //

1A⊗B %%JJJJJJJJJ B ⊗A
σB,A

��
A⊗B

(11)

Coherence conditions

A
λA //

ρA ""EE
EE

EE
EE

E I ⊗A
σI,A

��
A⊗ I

(12)

A⊗ (B ⊗ C) α //

1A⊗σB,C

��

(A⊗B)⊗ C
σ(A⊗B),C // C ⊗ (A⊗B)

α

��
A⊗ (C ⊗B)

α
// (A⊗ C)⊗B

σA,B⊗1C

// (C ⊗A)⊗B

(13)

It is also useful to add structure to our abstract categories to represent

the idea of adjoints which we see in FdHilb. These adjoints in FdHilb also

play a key part in defining the inner product. We therefore introduce a dagger

monoidal category.

Definition 4.3. A dagger monoidal category C is a monoidal category with a

identity-on-objects contravariant involutive functor

† : Cop → C

satisfying the below equations,

1. for all objects A,A† = A (identity on objects),

2. for all morphisms f, f†† = f (involutive),

3.

(f ⊗ g)† = f† ⊗ g†

Also all unit and associativity natural isomorphisms are unitary, i.e. the inverse
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and adjoint (defined by †) coincide.

A dagger symmetric monoidal category is both a dagger monoidal category and

a symmetric monoidal category in which the symmetry natural isomorphism is

unitary.
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5 Quantum and classical tensors

Until now the structure we have imparted on our categories can be used as

much in classical information systems as it can in quantum information sys-

tems. In both classical and quantum systems it seems natural that we want

to have composition of operation as well as the ability to perform operations

simultaneously. This is why symmetric monoidal categories form a basis for a

categorical approach for both. However we must choose a suitable monoidal

tensor to allow further either classical properties or quantum properties to be

defined on our mathematical structure. For example in FdVectK defining our

monoidal tensor as the direct sum ⊕ gives us classical-like properties and us-

ing the tensor product ⊗ we get quantum-like properties. We see below both

describe a dagger symmetric monoidal category.

Theorem 5.1. FdVectK with respect to ⊕, the direct sum, is a dagger sym-

metric monoidal category.

Proof. In example 2.2 I describe how FdVectK forms a category, however to

show it is a monoidal category requires 8 (eq 5-9) conditions to be satisfied,

for symmetry another 4 (eq 10-13) and for it to be dagger another 7 (1-3 in

def 4.3 and unitary conditions on the 4 natural isomorphisms). To save myself

from a monstrous proof spanning many pages I will therefore define the natural

isomorphisms and prove a couple of the conditions.

The monoidal unit is given by the 0-dimensional space {0} containing just the

0 vector.

αV1,V2,V3 : V1 ⊕ (V2 ⊕ V3)→ (V1 ⊕ V2)⊗ V3 :: v′ ⊕ (v′′ ⊕ v′′′) 7→ (v′ ⊕ v′′)⊗ v′′′

λV : V → {0} ⊕ V :: v 7→ 0⊕ v ρV : V → V ⊕ {0} :: v 7→ v ⊕ 0

σV1,V2 : V1 ⊕ V2 → V2 ⊕ V1 :: v′ ⊕ v′′ 7→ v′′ ⊕ v′

We are often given a choice of †, for example when our underlying field is C the

most obvious choice of † is to take the conjugate transpose. However whatever

our underlying field the transpose (defined with respect to a given basis) will

provide a † structure. We will use the transpose for the purposes of this proof.

Condition 13

The below diagram commutes
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v′ ⊗ (v′′ ⊗ v′′′) α //

1V1⊗σV2,V3

��

(v′ ⊗ v′′)⊗ v′′′
σ(V1⊗V2),V3 // v′′′ ⊗ (v′ ⊗ v′′)

α

��
v′ ⊗ (v′′′ ⊗ v′′)

α
// (v′ ⊗ v′′′)⊗ v′′

σV1,V2⊗1V3

// (v′′′ ⊗ v′)⊗ v′′

Condition 3 from def 4.3

Taking f to be an m1 by n1 matrix F (with respect to the same basis as our

transpose is defined against) and g an m2 by n2 matrix G. f ⊕ g is an m1 +m2

by n1 + n2 matrix as below.

f ⊕ g =

(
F 0

0 G

)

(f ⊕ g)T =

(
F 0

0 G

)T

=

(
FT 0

0 GT

)
= fT ⊕ gT

Theorem 5.2. FdVectK with monoidal tensor ⊗, the tensor product, is a

dagger symmetric monoidal category.

Proof. The monoidal unit for ⊗ is given by the underlying field K. The natural

isomorphisms α and σ are defined as in the ⊕ case. Again we take the transpose

to be our †.

λV : V → K⊕ V :: v 7→ 1⊗ v ρV : V → V ⊕K :: v 7→ v ⊕ 1

λ−1
V : K⊕ V → V :: k ⊗ v 7→ k · v

Condition 6

The below diagram commutes

v ⊗ (v′ ⊗ v′′)
αV1,V2,V3 //

f⊗(g⊗h)
��

(v ⊗ v′)⊗ v′′

(f⊗g)⊗h
��

f(v)⊗ (g(v′)⊗ h(v′′))
αV ′1 ,V ′2 ,V ′3

// (f(v)⊗ g(v′))⊗ h(v′′)

Condition 9

The below diagram commutes

v ⊗ v′
1V1⊗λV2//

ρV1⊗1V2 &&LLLLLLLLLL v ⊗ (1⊗ v′)

αV1,K,V2

��
(v ⊗ 1)⊗ v′
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and

λKk = 1⊗ k = k = k ⊗ 1 = ρKk

Quantum categories

We now introduce one of the defining features of quantum-like systems, dis-

tinguishing them from their classical counterparts. The unit and counit in a

compact closed category will give us the notion of entanglement and be key in

protocols such as teleportation or entanglement swapping.

Definition 5.3. A compact closed category is a symmetric monoidal category

with the following :-

1. For every A ∈ |C|, there exists A∗ the dual of A,

2. A pair of morphisms

ηA : I → A∗ ⊗A and εA : A⊗A∗ → I,

called the unit and counit respectively (sometimes referred to as cup and cap)

, with the below diagrams commuting

A
ρA //

1A

��

(A⊗ I)
1A⊗ηA // A⊗ (A∗ ⊗A)

αA,A∗,A

��
A (I ⊗A)

λ−1
Aoo (A⊗A∗)⊗AεA⊗1Aoo

A∗
λA∗//

1A∗

��

(I ⊗A∗)
ηA⊗1A∗ // (A∗ ⊗A)⊗A∗

α−1
A∗,A,A∗

��
A∗ (A∗ ⊗ I)

ρ−1
A∗oo A∗ ⊗ (A⊗A∗)

1A∗⊗εAoo

These objects and morphisms have a diagrammatic representation

A is depicted as an upwards arrow as before. A∗ is depicted as a upwards

arrow labelled A∗ or a downward arrow labelled A. A and A∗ are shown below

respectively.
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6 6

?
AA∗A

or

ηA the unit and εA the counit will be depicted as,'$
?

6&%
The commutation of the diagrams above looks like

��counit

��
unit

6 6

=

��counit

��
unit

?

6

=

Definition 5.4. A dagger compact category is a compact closed category and

a dagger symmetric monoidal category where for all A ∈ |C|,

εA = η†A ◦ σA,A∗

Theorem 5.5. FdVectK is compact closed with respect to the tensor product.

Proof. We take the dual space V ∗ to be the usual linear algebraic dual space.

Let {|i〉}i be a basis for V and {〈i|}i be a basis for V ∗ such that 〈i|j〉 = δij

(note that 〈ψ|φ〉 may not necessarily define an inner product). We take the unit

to be,

ηV : K→ V ∗ ⊗ V :: 1 7→
n∑
i=1

〈i| ⊗ |i〉

and the counit to be,

εV : V ⊗ V ∗ → K :: |i〉 ⊗ 〈j| 7→ 〈i|j〉

We note that the linear maps ηV and εV do not depend on the choice of basis

{|i〉}i we can see this by the fact there is a canonical isomorphism called the

name p q(see ref [categories for the practicing physicist])

p q : FdVectK(V, V )→ FdVectK(K, V ∗⊗V ) ::
∑

mij |i〉〈j| 7→
∑

mij〈i| ⊗ |j〉
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Notice this canonical isomorphism does not depend on the choice of basis. Also

as ηV is the image in this isomorphism of 1V , which also does not depend on

the choice of basis, we see ηV is defined independently of the choice of basis. By

a similar argument it follows εV also does not depend on the choice of basis.

The compactness conditions on a general state |ψ〉 = Σψi|i〉

(εV ⊗ 1V ) ◦ (1V ⊗ ηV ) ◦

((
n∑
i=1

ψi|i〉

)
⊗ 1V ⊗ 1V

)

= (εV ⊗ 1V ) ◦

 n∑
i,j=1

ψi|i〉 ⊗ 〈j| ⊗ |j〉


= 1V ⊗ 1V ⊗

 n∑
j=1

ψj |j〉


and for 〈ψ| = Σψi〈i|

(1V ⊗ εV ) ◦ (ηV ⊗ 1V ) ◦

(
1V ⊗ 1V ⊗

(
n∑
i=1

ψi〈i|

))

= (1V ⊗ εV ) ◦

 n∑
i,j=1

ψi〈j| ⊗ |j〉 ⊗ 〈i|


=

 n∑
j=1

ψj〈j|

⊗ 1V ⊗ 1V

There are also other possibilities to turn FdVectK into a compact category.

Given an invertible function f : V → V we can use,

η′V := (1V ∗ ⊗ f) ◦ ηV and εV ◦ (f−1 ⊗ 1V ∗)

It is fairly easy to see the compactness conditions hold using diagrammatic form,��

��
f

f−1

6

=

��
��

f

f−1

6

=

6

f−1

f
=

6

and
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��

��
f

f−1

?

=

��

��?

=

?

Using previous asymmetrical notation for a morphism f we can now define our

transpose. ��

��?

�
��f = �

��
f

?

In example 3.1 we came across the idea of sliding morphisms, depicted as boxes,

along identity lines. We now introduce the concept of sliding these boxes around

the U-bends of the unit and counit.

��
6

�
��

f =

���
��f

6
��

?

�
��

f =

��
�
��f

?

Example 5.6. The quantum teleportation protocol is one of the most in-

teresting and remarkable consequences of entanglement in quantum systems.

It also provides a good example of compact closed categories in action. Let

X ∈ |FdHilb| be the 2-dimensional space with basis elements |0〉 and |1〉 with

X∗ = X. We now set up the necessary parts to the protocol in three steps:-

1. We use the method of 5.5 to create the Bell state unit |Φ+〉 = |00〉+ |11〉 and

counit 〈Φ+| = 〈00|+ 〈11|.
2. Using the Bell matrices fi, which are invertible (with f† = f−1), we can

create the Bell basis (the method for creating units and counits from invertible

functions is explained above) |Φ+〉, |Φ−〉 = |00〉 − |11〉, |Ψ+〉 = |01〉 + |10〉 and

|Ψ−〉 = |01〉 − |10〉. Each of these defines a unit and counit.

3. The teleportation protocol then reduces to just sliding boxes and one use of

the compactness condition to simplify.
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Alice Bob

��

��
A
AA

fi

6

�
��fi

=

Alice Bob

��

��

A
AA

fi

6

�
��fi

=

Alice Bob

6

Corollary 5.7. FdVectK is dagger compact with respect to the tensor product

Proof. Follows from theorem 5.2, theorem 5.5 and that for ηV and εV we have

εV = η†V ◦ σV,V ∗

Classical categories

In the same way compact closed categories form the basis for defining what

makes a system quantum-like we can also add categorical structure to help us

define classical properties. Cartesian categories can be thought of the classical

counterparts to compact closed categories in that they provide the first steps in

defining classical properties in a system. They will allow us to describe uniform

copying and deleting operation that do not exist in quantum systems due to the

no-cloning and no-deleting theorems.

Definition 5.8. A product of A1 and A2 ∈ |C| is a triple consisting of

1. Object A1 ×A2 ∈ |C|
2. Morphism π1 : A1 ×A2 → A1

3. Morphism π2 : A1 ×A2 → A2

Such that for all B,A1, A2 ∈ |C| the operation

(π1 ◦ −, π2 ◦ −) : C(B,A1 ×A2)→ C(B,A1)×C(B,A2)

admits an inverse 〈−,−〉B,A1,A2
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Definition 5.9. A category C is Cartesian if any pair of objects in C admit a

product.

Note that in a Cartesian category the products are not necessarily unique,

however two distinct products of a pair of objects will be isomorphic. Using the

disjoint union + we now define the coproduct.

Definition 5.10. A coproduct of A1 and A2 ∈ |C| is a triple consisting of

1. Object A1 +A2 ∈ |C|
2. Morphism ι1 : A1 → A1 +A2

3. Morphism ι2 : A2 → A1 +A2

Such that for all B,A1, A2 ∈ |C| the operation

(− ◦ ι1,− ◦ ι2) : C(A1 +A2, B)→ C(A1, B)×C(A2, B)

admits an inverse 〈−,−〉B,A1,A2

Equivalently a category C is co-Cartesian if any pair of objects in C admit

a coproduct.

We combine the notions of product and co-product with biproducts or direct

sums. Firstly we remark that a zero object is one with exactly one morphism

to and from each object (including itself). The zero map 0A,B is the canonical

map composing the unique morphism from A to the zero object with the unique

morphism from the zero object to B.

Definition 5.11. In a category C, with a zero object, a biproduct (or direct

sum) of A1 and A2 ∈ |C| is a quintuple consisting of object A1 ⊕A2 ∈ |C| and

four morphism:

A1

ι1 --
A1 ⊕A2

π1

kk
π1

33 A2

ι1qq

satisfying

π1 ◦ ι1 = 1A1 π2 ◦ ι1 = 0A1,A2

π1 ◦ ι2 = 0A2,A1 π2 ◦ ι2 = 1A2

A category C is a biproduct category if any pair of objects in C admits a

biproduct.

Theorem 5.12. FdVectK is a Cartesian category with respect to the direct

sum ⊕
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Proof. Take objects V1 and V2, n and m dimensional vector spaces respectively,

then we let V1⊕V2, π1, π2 be the product. π1 is a matrix with the first n columns

an n× n identity matrix followed by m columns of 0s. Similarly π2 is a matrix

with the first n columns 0s followed by an m×m identity matrix.

π1 =


1 0 . . .

0 1 . . .
...

...
. . .︸ ︷︷ ︸

n columns

0 0 . . .

0 0 . . .
...

...
. . .


︸ ︷︷ ︸

m columns

n rows

π2 =


0 0 . . .

0 0 . . .
...

...
. . .︸ ︷︷ ︸

n columns

1 0 . . .

0 1 . . .
...

...
. . .


︸ ︷︷ ︸

m columns

m rows

Take any space W a p dimensional space and morphism f : W → V1 ⊕ V2

represented by the (n+m)× p matrix F . The operation (π1 ◦ −, π2 ◦ −) takes

f to (f1, f2) where f1 is represented by a matrix F1 containing the top n rows

of F and equivalently F2 the bottom m rows of F . The inverse 〈−,−〉W,V1,V2 is

obtained by simply putting the two halves back together again i.e.

〈f1, f2〉W,V1,V2 =

(
F1

F2

)

Note also that if we let ι1 = πT1 and ι2 = πT2 it is easy to see that V1 ⊕ V2

is a biproduct and therefore FdVectK a biproduct category with respect to ⊕.

Here the zero object is the zero-dimensional vector space and the zero map, just

a matrix of 0s.
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6 Copying, deleting and classical structures

In classical computing the idea of copying and deleting information seems fun-

damental in any practical device. However this is one area where quantum

computers and classical computers differ significantly; in quantum computing

we cannot copy or delete arbitrary qubits.

Example 6.1. The CNOT gate will negate the second qubit when the first

qubit is 1 and leave the second qubit unchanged when the first qubit is 0, it will

always leave the first qubit unchanged.

The CNOT gate in classical computing can be used to copy one qubit if we

place a zero bit next to it. If we choose an arbitrary qubit however the result is

not the same.

Classical case

00 CNOT−→ 00 10 CNOT−→ 11

Quantum case

(a|0〉+ b|1〉)|0〉 CNOT−→ a|00〉+ b|11〉

We can see in the quantum case the only states which will be copied are |0〉 and

|1〉.

In fact it is easy to show for any linear map we can at best only copy orthog-

onal states, giving rise to the no-cloning theorem. There exists an equivalent

theorem called the no-deleting theorem showing the reverse, i.e. that we cannot

take two identical qubits and transform them into a single qubit of the same

state. These theorems are consistent with other results in physics, for exam-

ple both the ability to delete qubits or copy qubits would allow us to transfer

data faster than the speed of light. Also the ability to copy qubits would also

contradict the uncertainty principle, because we could make measurements on

many copies allowing arbitrary precision. The no-cloning theorem also plays a

key role in quantum cryptography.

We can study the concepts behind copying and deleting information using a

category theory approach. I will define internal monoidal and comonoidal struc-

tures below. In classical-like systems (more formally Cartesian categories) these

structures are exactly copying and deleting operations. In quantum-like systems
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these structures will not copy all states, often copying certain states. They al-

low the generation of entangled states, needed in protocols such as quantum

teleportation.

Definition 6.2. An internal monoid (X,m, e) is an object X with a pair of

morphism m, the multiplication, and e (sometimes denoted u), the multiplicative

unit,

X ⊗X m−→ X
e←− I

such that the below diagrams commute,

X X ⊗Xmoo X

X ⊗X

m

OO

X ⊗X ⊗X

1X⊗m

OO

m⊗1X

oo I ⊗X
e⊗1X

//

'
99tttttttttt

X ⊗X

m

OO

X ⊗ I

'
eeJJJJJJJJJJ

1X⊗e
oo

Definition 6.3. An internal comonoid (X, δ, ε) is an object X with a pair of

morphism δ, the comultiplication, and ε, the comultiplicative unit,

X ⊗X δ←− X ε−→ I

such that the below diagrams commute,

X
δ //

δ

��

X ⊗X

1X⊗δ
��

X
'

yytttttttttt
'

%%JJJJJJJJJJ

δ

��
X ⊗X

δ⊗1X

// X ⊗X ⊗X I ⊗X X ⊗X
ε⊗1X

oo
1X⊗ε

// X ⊗ I

Strictly we should only refer to internal (co)monoids by (X,m, e) or (X, δ, ε).

However as the (co)unit will be unique, we sometimes refer to a (co)monoid sim-

ply by its (co)multiplication, implying that a (co)unit does exist.

We can also represent these morphisms in diagrammatic form,

m := δ := e := ε :=

For example the two commutative diagrams used to define a monoid (the asso-

ciative law and unit law) can be represented as below

= = =
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We see below the respective conditions for commutativity in an internal monoid

and comonoid.

= =

In a dagger monoidal category we can use the adjoint to find an internal

comonoid given we know an internal monoid or vice versa.

Lemma 6.4. Given an internal (commutative) monoid (X,m, e), (X,m†, e†)

defines an internal (commutative) comonoid

Proof. It is fairly easy to see that taking the adjoint of one of the above diagrams

is the same as flipping the diagram upside. More formally from the associative

law on (X,m, e) we get,

m ◦ (m⊗ 1) = m ◦ (1⊗m)

(m ◦ (m⊗ 1))† = (m ◦ (1⊗m))†

(m⊗ 1)† ⊗m† = (1⊗m)† ⊗m†

(m† ⊗ 1)⊗m† = (1⊗m†)⊗m†

giving the associative law in (X,m†, e†). Also from the unit law on (X,m, e) we

get,

m ◦ (e⊗ 1) = 1 = m ◦ (1⊗ e)

(m ◦ (e⊗ 1))† = 1 = (m ◦ (1⊗ e))†

(e† ⊗ 1)⊗m† = 1 = (1⊗ e†)⊗m†

giving the unit law in (X,m†, e†). Finally from commutativity in (X,m, e) we

get,

m ◦ σ = m

(m ◦ σ)† = m†

σ† ◦m† = σ ◦m† = m†

Definition 6.5. An internal dagger monoidal structure is an internal monoidal

structure (X,m, e) together with an internal comonoidal structure (X, δ, ε) such

that the comonoidal structure is the dagger of the monoidal structure. I.e.

m† = δ and e† = ε. Note that the combination of a monoidal and comonoidal

structure is often written as (X,m, e, δ, ε).
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Definition 6.6. Frobenius algebra (also called Frobenius monoidal category)

have internal monoidal and comonoidal structures (X,m, e, δ, ε) satisfying the

Frobenius condition, shown below.

X ⊗X
1⊗δ //

δ⊗1

��

m

%%KKKKKKKKKK X ⊗X ⊗X

m⊗1

��

X
δ

%%KKKKKKKKKK

X ⊗X ⊗X
1⊗m

// X ⊗X

Alternatively here are the conditions in diagrammatic form,

= =

Definition 6.7. A Frobenius category is called special if

m ◦ δ = 1

In diagrammatic form,

=

Definition 6.8. A morphism f : X → Y is a monoid homomorphism for

internal monoids (X,m, e) and (Y,m′, e′) if

f ◦m = m′ ◦ (f ⊗ f) and f ◦ e = e′

and a comonoid homomorphism for internal comonoids (X, δ, ε) and (Y, δ′, ε′) if

δ′ ◦ f = (f ⊗ f) ◦ δ and ε′ ◦ f = ε

Definition 6.9. A copyable element (or classical element) of a †-Frobenius

monoid (X,m, e) is a comonoid homomorphism α : I → X, i.e. the below

diagrams commute

I
α //

δ

��

X

δ

��

I
1I

��?
??

??
??

?

α

��
I ⊗ I

α⊗α
// X ⊗X X ε

// I
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Note these two diagrams show the element is copyable and deletable respec-

tively, even though it is still only referred to as copyable. The name classical

comes from the classical properties it possesses. As we see in theorem 6.10 given

an internal comonoid in FdVectK, with monoidal tensor ⊕, every element is

a classical element. In fact in general, the existence of an internal comonoid

structure making every element classical is an equivalent definition of a Carte-

sian category, also if such an internal comonoid exists it will be the only possible

internal comonoid, see [3].

Theorem 6.10. The only possible internal comonoids in FdVectK with monoidal

tensor ⊕ are universal copying and deleting operations.

Proof. Let (X, δ, ε) define a comonoid in FdVectK. We can split up our δ into

two parts δ1 = π1 ◦ δ and δ2 = π2 ◦ δ, so for x ∈ X δ(x) = (δ1(x), δ2(x)). We

now use the unit law to give

x = λ−1
A ◦ (ε⊕ 1X) ◦ δ(x) = λ−1

A ◦ (ε ◦ δ1(x), δ2(x)) = k · δ2(x)

So δ2(x) is a scalar multiple k′′ of x. By the right unit law we get similarly δ1(x)

is a scalar multiple k′ of x, note our multiple must be invertible and therefore

non-zero. Next by associativity we see.

(1X ⊕ δ) ◦ δ = (δ ⊕ 1X) ◦ δ

(δ1, δ1 ◦ δ2, δ2 ◦ δ2) = (δ1 ◦ δ1, δ2 ◦ δ1, δ2)

While we already know δ1 ◦ δ2 = δ2 ◦ δ2 due to commutativity of scalars, we also

get δ1 = δ1 ◦ δ1 telling us that k′ = k′2 therefore k′ = 1, and similarly we get

k′′ = 1. Therefore δ(x) = (x, x) for all x ∈ X we also note that ε(x) = 1.

Definition 6.11. A classical structure is a dagger Frobenius algebra which is

also commutative and special.

While at first the name may seem misleading as classical-like categories such

as Cartesian categories will not have a classical structure, however the name

comes about through the role of extracting classical resources of the structure via

classical elements. However classical structures also provides many important

quantum resources, for example we can use them to create quantum structures.

Definition 6.12. A quantum structure in a dagger monoidal category is a pair

(X, η) such that η : I → X ⊗ X and η† : X ⊗ X → I defines a unit (not to

be confused with the multiplicative unit) and counit, making our category a

compact closed category with X the dual of itself.
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Theorem 6.13. Every classical structure induces a quantum structure with

the unit η : I e−→ X
δ−→ X ⊗ X and counit η† : X ⊗ X m−→ X

ε−→ I, also

making the category dagger-compact.

Proof. The compact closed conditions are easily seen when written in diagram-

matic form and by use of the Frobenius equations.

While every classical structure induces a quantum structure, not all quantum

structures arise from classical structures. By applying the copying operation of

a classical structure to a non-classical element we obtain an entangled state, in

the case of a quantum structure via the non-classical multiplicative unit e.
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7 Classical structures in FdHilb, Rel and Fd-

Vect over GF(p)

Classical structures form a key part to any quantum-like category. Not only do

they allow construction of quantum structures which are used in many quantum

protocols, but they often have an interesting structure within their mathemati-

cal contexts.

Classical structures in FdHilb

In finite dimensional Hilbert spaces classical structures correspond to orthonor-

mal bases (the set of classical elements forming the basis). We can also charac-

terise orthogonal bases and in fact any arbitrary basis using weaker conditions.

These theorems are stated below, see [11] for proofs of these results.

Theorem 7.1. Commutative special Frobenius categories correspond to arbi-

trary bases.

Theorem 7.2. Commutative †-Frobenius categories correspond to orthogonal

bases.

Theorem 7.3. Commutative special †-Frobenius categories correspond to or-

thonormal bases.

It is interesting to see that commutative Frobenius categories do not display

such nice characteristic as the structures above and can come in a wide range

of forms. One of the dagger or special condition is needed for the structures to

correspond to a basis. We also note that classical structures are often refered

to as basis structures because of the connection in theorem 7.3

Classical structures in Rel

In Rel we can define a basis in a similar way to a vector space, for exam-

ple every element can be written as composition of basis elements below we

show how this is done in FdVect and Rel,

|ψ〉 =
∑
i∈X

ψi · |i〉 A =
⋃
i∈X

ai{i}

In Rel the sum becomes a union and coefficient become Boolean valued. How-

ever we see classical structures that do not copy basis element, called non-

standard classical structures. For example taking X to be the two element set
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denoted II = {0, 1} we can define comultiplication δ and comultiplicative unit

ε to be,

δ(0) = {00, 11} ε(0) = {∗}

δ(1) = {01, 10} ε(1) = ∅

Here 00 represents 0⊗ 0. This provides a classical structure but only copies one

element {0, 1}.
It turns out that the classical structures in Rel correspond exactly to abelian

groupoids. The different categorical conditions give us the needed properties for

our structure to form an abelian groupoid, these are summarised below.

Categorical condition Groupoid condition

Associativity of multiplication Associativity

Multiplicative unit Identity

Special condition Closure over elements of X

Frobenius and special condition Inverses

Commutativity Commutativity

Before a more formal proof, we define the term single-valued internal monoid in

Rel.

Definition 7.4. An internal monoid in Rel is single-valued iff for all a, b ∈ X,

m(a⊗ b) = ∅ or m(a⊗ b) = c, where c is a single element of X.

Theorem 7.5. Any abelian groupoid defines a classical structures in Rel.

Proof. This proof is based on the proof given in [4], I have included some di-

agrams to make the proof easier to follow. For a, b, c ∈ X if a · b = c in our

groupoid then we define m(a⊗ b) = c in our internal multiplication (we will de-

note a⊗ b as ab). Associativity, commutativity and identity of the groupoid (or

set of identities of components) then directly translate into a commutative in-

ternal monoidal structure (and therefore also the internal comonoidal structure).

It remains to show the special and Frobenius conditions. For all a, b ∈ X,

m(a, b) is a single element of the set X (m is single-valued), therefore for all

x ∈ X, δ(x) = {ab|a, b ∈ X ∧m(ab) = x}. By considering xex where ex = xx−1,

δ(x) 6= ∅, it follows m(δ(x)) = x, the special condition. We can write the
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Frobenius condition as,

∀x, y ∈ X {ab|a, b ∈ X ∧m(ab) = m(xy)} = {cm(d, y)|c, d ∈ X ∧m(cd) = x}

= {m(x, c)d|c, d ∈ X ∧m(cd) = y}

Consider cm(d, y) on the RHS(top), by associativity m(cm(d, y)) = m(x, y) and

therefore it will appear on the LHS. Similarly for m(x, c)d. Now take an a, b

from the LHS, consider c = a and d = m(by−1), so by associativity

cm(d, y) = am(m(by−1)y) = ab

c(m(d,y)) appears on the RHS(top) as (again making use of associativity),

m(cd) = m(am(by−1)) = m(m(xy)y−1) = x

giving the top equality. By considering c = m(x−1a) and d = b, we get the

bottom equality.

Before we start on proving the other direction we start with a useful lemma

Lemma 7.6. Given a single-valued internal monoid in Rel the left and right

action are partial bijections.

Proof. We now define the left and right action and an involution ∗ on elements

of X. Ra(b) = m(ab) and La(b) = m(ba) are the right and left action of a re-

spectively, we will depict these as below:-

La = Ra =

We define the involution ∗ by a∗ = (a† ⊗ 1) ◦ δ ◦ e. In diagrammatic form,

a∗ =

Making use of the Frobenius equations and the unit law we show this is in fact

an involution and therefore a bijection on X. Also that La∗ = L†a.

(a∗)∗ = = =
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La∗ = = = = L†a

As m is single-valued for any a ∈ X La is a partial map on X. Also as La∗

must also be a partial map, (La)† is a partial map, more precisely that for each

b ∈ X there is at most one x ∈ X such that m(a, x) = b. This makes La a

partial bijection. We can show Ra is a partial bijection with a very similar

argument.

Theorem 7.7. Any classical structure in Rel defines an abelian groupoid.

Proof. In the reverse to theorem 7.5 we externalise our internal monoidal struc-

ture to define a multiplication on elements of X. The special condition gives two

important properties meaning the multiplication is single valued and for each

x ∈ X there exists a, b ∈ X such that a · b = x. Again associativity, commu-

tativity and the unit (we will look more at the unit later in the proof) of the

internal monoid directly translate into our multiplication.

Next we show we can partition X into disjoint sets Xi such that each Xi has a

single element of X, ei as its identity. Let e = {ei}i with ei ∈ X, it is easy to

see for any x ∈ X that for each ei m(x, ei) = x or m(x, ei) = ∅. For each x ∈ X
there exist exactly one ei such that m(x, ei) = x as Lx is injective, we therefore

place x in Xi.

We now show these sets Xi: firstly do not interact with each other and sec-

ondly that each one forms a group. Take xi ∈ Xi and xj ∈ Xj and (i 6= j),

m(xi, xj) = m(xi,m(ej , xj)) = m(m(xi, ej), xj)) = m(∅, xj) = ∅

Take a, b ∈ Xi, if m(a, b) = c 6= ∅ then if c ∈ Xj , m(m(a, b), ej) = m(a,m(b, ej))

is defined and therefore m(b, ej) which implies i = j. Consider now a ∈ Xi

and a∗ ∈ Xj , so a∗ = La∗(ej) = L†a(ej) therefore m(a, a∗) = ej . We see a∗ is

the inverse of a and also here i = j, so a∗ ∈ Xi (by considering La = L(a∗)†

we get m(a∗, a) = ei without needing commutativity). Now we have inverses it

remains to show that our multiplication is total over Xi. Consider a, b ∈ Xi, so

b = m(ei, b) = m(m(a∗, a), b) = m(a∗,m(a, b)) (14)

therefore m(a, b) is defined.
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Theorem 7.8. Classical structures in Rel are precisely the abelian groupoids

over the set X

Proof. This follows from theorem 7.5 and 7.7.

Note that we only used commutativity in making our group abelian and

vice versa, therefore the non-commutative special Frobenius algebras correspond

exactly to non-abelian groupoids.

Classical structures in FdVectFp

Before this project very little was known about the different categorical struc-

tures of FdVectFp or for that matter vector spaces over any finite field. To

investigate this problem I started by using the mathematical program Math-

ematica to calculate different structures in FdVectF2 . These structures in-

clude commutative internal monoids (the transpose provides the commutative

comonoid see lemma 6.4), commutative Frobenius algebras, special commuta-

tive Frobenius algebras, dagger commutative Frobenius algebras and classical

structures (special dagger commutative Frobenius algebras). This analysis was

done firstly using X = F 2
2 then X = F 3

2 . These results can be found in Ap-

pendix A. Theorems 7.13, 7.14, 7.15, 7.16, 7.19, 7.20 and 7.21 are all original

work (with most theorems that provide lead up to these results either original

or the proof constructed from scratch).

From the 2-dimensional case over F2 we get two classical structures with

monoids as below (positions in matrix from left to right correspond to 00, 01,

10 and 11 and going down 0 and 1)(
1 0 0 0

0 0 0 1

) (
0 1 1 1

1 1 1 0

)

Immediately we can see we have one standard classical structure and one non-

standard classical structure. For the case of more than 2 dimensions we also get

at least one standard classical structure. We generalise this with the following

result. Note below the abstract notion of orthonormal basis.

Theorem 7.9. Given a vector space X over field K with our † involution defined

over the direct sum as well as the tensor product (ie. (f ⊕ g)† = f† ⊕ g†).

Given any choice of basis |0〉, |1〉, ..., |n〉 ∈ X such that 〈i|j〉 = δij (if 〈φ|ψ〉
defines an inner product then this is an orthonormal basis) then the base copying

38



operation δ|i〉 = |ii〉 and comultiplicative unit ε|i〉 = 1 gives a classical structure

in FdVectK.

Proof. Firstly we rewrite the comultiplication and unit in terms of morphisms

from V → I and I → V ⊗ V

δ =
∑
i

|ii〉 ◦ 〈i| ε =
∑
i

〈i|

we can now take the adjoint to give our multiplication

m = δ† =

(∑
i

|ii〉 ◦ 〈i|

)†
e = ε† =

∑
i

|i〉

=
∑
i

|i〉 ◦ 〈ii|

Next we show that (X, δ, ε) defines a commutative internal comonoid and there-

fore by lemma 6.4 (X,m, e) defines a commutative internal monoid. For general

element |ψ〉 = Σψi · |i〉,

Commutativity

σ ◦ δ ◦ |ψ〉 = σ ◦

∑
j

|jj〉 ◦ 〈j|

 ◦(∑
k

ψk · |k〉

)

= σ ◦

∑
j

ψj · |jj〉


=

∑
j

ψj · |jj〉

 = δ ◦ |ψ〉

Associativity

(δ ⊗ 1) ◦ δ ◦ |ψ〉 =

(∑
i

|ii〉 ◦ 〈i| ⊗ 1

)
◦

∑
j

ψj · |jj〉


=
∑
i

ψi · |iii〉

=

(
1⊗

∑
i

|ii〉 ◦ 〈i|

)
◦

∑
j

ψj · |jj〉

 = (1⊗ δ) ◦ δ ◦ |ψ〉
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Left unit

(ε⊗ 1) ◦ δ ◦ |ψ〉 =

(∑
i

〈i| ⊗ 1

)
◦

∑
j

ψj · |jj〉


=

(∑
i

ψi · |i〉

)
= |ψ〉

Right unit follows from the left unit and commutativity

Next the Frobenius conditions, with general element |φ〉 = Σφi,j · |ij〉

δ ◦m ◦ |φ〉 =

(∑
i

|ii〉 ◦ 〈i|

)
◦

∑
j

|j〉 ◦ 〈jj|

 ◦∑
k,l

φk,l · |kl〉

=

(∑
i

|ii〉 ◦ 〈i|

)
◦
∑
j

φj,j · |j〉

=
∑
i

φi,i · |ii〉

(m⊗ 1) ◦ (1⊗ δ) ◦ |φ〉 =

(∑
i

|i〉 ◦ 〈ii| ⊗ 1

)
◦

1⊗
∑
j

|jj〉 ◦ 〈j|

 ◦∑
k,l

φk,l · |kl〉

=

(∑
i

|i〉 ◦ 〈ii| ⊗ 1

)
◦
∑
k,j

φk,j · |kjj〉

=
∑
i

φi,i · |ii〉

(1⊗m) ◦ (δ ⊗ 1) ◦ |φ〉 =

(
1⊗

∑
i

|i〉 ◦ 〈ii|

)
◦

∑
j

|jj〉 ◦ 〈j| ⊗ 1

 ◦∑
k,l

φk,l · |kl〉

=

(
1⊗

∑
i

|i〉 ◦ 〈ii|

)
◦
∑
j,l

φj,l · |jjl〉

=
∑
i

φi,i · |ii〉
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Finally the special condition

m ◦ δ ◦ |ψ〉 =

(∑
i

|i〉 ◦ 〈ii|

)
◦

∑
j

|jj〉 ◦ 〈j|

 ◦∑
k

ψk · |k〉

=

(∑
i

|i〉 ◦ 〈ii|

)
◦
∑
j

ψj · |jj〉

=
∑
i

ψi · |i〉 = |ψ〉

From now on in this section we will assume a basis to X, |0〉, |1〉, ..., |n〉 and

take the † to be the transpose of the map defined over this basis. This means

that we get the condition above that 〈i|j〉 = δij .

Theorem 7.10. Given classical structures (X,m, e, δ, ε) and (Y,m′, e′, δ′, ε′)

vector spaces X and Y respectively over field K. We can define a classical

structure in X ⊕ Y .

Proof. Take the basis |0〉, |1〉, ..., |n〉 for X and |n+ 1〉, |n+ 2〉, ..., |n+m〉 for Y.

We define our new multiplication m′′ to be:-

m′′(|i〉, |j〉) =


m(i, j) i ≤ n, j ≤ n
m′(i, j) i > n, j > n

0 i ≤ n, j > n

0 i > n, j ≤ n

the new unit e′′ is just e + e′. Any element a in X ⊕ Y we can write uniquely

as a = ax + ay with ax ∈ X and ay ∈ Y . We also have

a+ b = (ax + bx) + (ay + by)

m′′(a, b) = m(ax, bx) +m′(ay, by)

δ(a) = δ(ax) + δ(ay)

a† = a†x + a†y

All the required properties of a classical structure in X ⊕ Y now follow directly

from the equivalent properties in X and Y .

In FdVectF2 we can define a similar notion of single-valued as in Rel.

Definition 7.11. An internal monoid in FdVectF2 is single-valued iff for all

basis element |i〉 and |j〉, m|ij〉 = 0 or m|ij〉 = |k〉, where |k〉 is a basis element.
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When comparing FdVectF2 to Rel (as pointed out in chapter 1) the arith-

metic only differs with 1 + 1 = 1 in Rel and 1 + 1 = 0 in F2, and this situation

rarely comes up in the conditions for a classical structure when the monoid is

single-valued. This leads to the fact that single-valued internal monoids corre-

spond exactly to abelian groupoids with components of odd order. We start

with a lemma about abelian groups.

Lemma 7.12. A finite abelian group X has odd order if and only if for all

elements x ∈ X, |{y|y2 = x}| is odd.

Proof. All finite abelian groups can be expressed as the direct sum of cyclic

groups of prime power order. E.g. any abelian group of order 12 would be

isomorphic to either Z3⊕Z4 or Z3⊕Z2⊕Z2. Take an odd order abelian group

we can describe it as isomorphic to Zk1 ⊕ Zk2 ⊕ ... ⊕ Zkn where k1, ..., kn are

all odd. In any cyclic group of odd order m each element x has one square

root, if x is even then x/2 or odd then x/2 +m/2. It follows that in the direct

sum of odd order cyclic groups each element (x1, x2, ..., xn) has one square root

(
√
x1,
√
x2, ...,

√
xn).

Similarly if we take an abelian group of even order, then at least one of our

Zki
will be even. In an even order cyclic group every element has two square

roots, x/2 and x/2 + m/2. It follows that the number of square roots of any

element of our abelian group must therefore be a multiple of 2.

In theorems 7.13 to 7.15 we let X be an n-dimensional vector space over F2.

N denotes a set of n elements.

Theorem 7.13. Any abelian groupoids with each component of odd order

defines a single-valued classical structure in FdVectF2 .

Proof. Again we internalise the groupoid multiplication of N , so for i, j, k ∈ N ,

if i · j = k then m(|i〉 ⊗ |j〉) = |k〉 (we will denote m(|i〉 ⊗ |j〉) as m|ij〉). As-

sociativity, commutativity and identity again translate directly to X, note that

while the identity in X may be the sum of basis vectors, |i〉, only one |i〉 will

interact with any given basis element at a time. Also notice that our structure

is again single valued.

Next we see a difference from Rel when we look at the special condition. For

i ∈ N , δ|i〉 is the set of all pairs j, k that multiply to make i. Notice if j 6= k

then we get the pair jk and kj due to commutativity. Therefore these pairs will

not play a role in mδ|i〉 and we only need to consider pair jj that multiply to i.
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The special condition is therefore satisfied if the number of these is odd for all

i ∈ N , by lemma 7.12 this is equivalent to when all components of the groupoid

are of odd order. Finally for the Frobenius condition we need to show that given

inputs |i〉, |j〉 basis elements we do not get any repeat pairs as outputs then our

1 + 1 = 0 arithmetic of F2 comes into play. The only way this can happen is if

for some i, j, k, l ∈ N you get two pairs jk and jl that multiply to i (by com-

mutativity we do not need to consider when kj and lj multiply to i). However

the existence of inverses prevents this as m|j−1i〉 = m(m|jj−1〉⊗|k〉) = |k〉, but

similarly m|j−1i〉 = l contradicting the fact m is single-valued.

Theorem 7.14. Any single-valued classical structure in FdVectF2 defines an

abelian groupoids with each component of odd order.

Proof. We start by externalising our internal monoidal structure, so for i, j, k ∈
N if m|ij〉 = |k〉 then we let i · j = k. Associativity and commutativity directly

translate into our external multiplication. We notice importantly that lemma

7.6 holds in FdVectF2 .

Next we partition X into disjoint sets Xi, again like in Rel so we have a single

element of Xi, ei as its identity. Take e = σ|ei〉 where ei ∈ N are the identities

of the components of the groupoid. The next step we need to take carefully

as it differs to the Rel case. For any x ∈ N and for any y 6= x ∈ N there

must be an even number of i such that m(x, ei) = y and an odd number such

that m(x, ei) = x, however as Lx is an injection there will be no ei such that

m(x, ei) = y and exactly one ei such that m(x, ei) = x, we therefore place x in

Xi. The rest of the proof that a classical structure defines an abelian groupoid

follows exactly as in Rel. It remains to show that this abelian groupoid has

each component of even order, like in theorem 7.13 we see the special condition

applied to an abelian groupoid restricts the groupoid to having only components

of odd order.

Theorem 7.15. Single-valued classical structures in FdVectF2 are precisely

the abelian groupoids with each component of odd order.

Proof. This follows from theorem 7.13 and 7.14.

Going back to the 2-dimensional case we see a structure which does not copy

basis elements and also is not single-valued:(
0 1 1 1

1 1 1 0

)
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When we look carefully at this however we see some interesting properties. Con-

sider the non zero elements of X, {|0〉, |1〉, (|0〉+ |1〉)} this is isomorphic to the

group Z3 with respect to the multiplication, where (|0〉 + |1〉) is the identity.

Furthermore as the elements of X form a group with respect to addition (with

the 0 element different to the 1 element) and the multiplication distributing over

addition due to linearity we get a finite field.

It may seem like a finite field is bound to have enough structure to it to satisfy

the conditions needed to make it a classical structure, however this is not the

case. If we consider the monoid below:(
1 0 0 1

0 1 1 1

)

this defines three Frobenius algebras with respect to the three comonoids below:

the first will make our structure dagger but not special, the second special but

not dagger and the third neither dagger or special.
1 0

0 1

0 1

1 1




1 1

1 0

1 0

0 1




0 1

1 1

1 1

1 0


Theorem 7.16. In FdVectFp given any n-dimensional vector space X it is

always possible to construct an internal monoid on X that forms a finite field

isomorphic to Fpn with respect to the multiplication m and addition.

Proof. We can assign each basis element to powers of x in the usual polynomial

representation, then assign the same multiplication as in the finite field. This

multiplication must be linear as in a field the multiplication distributes over

addition. The unit and associativity translate directly into our monoid from

the field’s multiplicative structure.

Any such internal monoid will automatically be commutative from commu-

tativity of the finite field. Also importantly a finite field structure on X given

by a monoid (X,m, e) has enough structure to guarantee there exists a special

Frobenius algebra, however there will not always exist a dagger Frobenius al-

gebra. Before we get to this theorem we lay the groundwork with some more

general statements about Frobenius algebras.
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Theorem 7.17. Take an internal monoidal category (X,m, e) in FdVectK and

an element of the usual algebraic dual space ε : X → I, called a Frobenius form,

such that the nullspace of the Frobenius form {x ∈ X|ε ◦ x = 0} contains no

nontrivial left ideals. This will uniquely define a δ such that (X,m, e, δ, ε) is a

Frobenius algebra.

Proof. We have used an alternative definition of Frobenius algebra found in

[9] def 2.2.1. The main theorem of chapter 2 in this ref is to prove that the ε

Frobenius form uniquely determines a comonoid satisfying our usual definition of

Frobenius algebra in definition 6.6. This proof should be easy to follow owing to

much of the proof being written in diagrammatic form, using a slightly different

looking left to right tubes, instead of bottom to top wires.

Given an Frobenius form ε and an invertible element a we can define a new

Frobenius form ε′ = ε◦m(a⊗1X). While they have different nullspaces, because

a is invertible the respective nullspaces will have the same left ideals.

We also make the remark here that if every non-zero element in X forms a

group then any non-trivial left ideal in X is the entire space X, therefore the

only element in the dual space which contains a left ideal in its nullspace is the

0 element. This means every non-zero element of the dual space X∗ defines a

Frobenius form.

Lemma 7.18. Let (X,m, e, δ, ε) be a Frobenius algebra in FdVectK. The

handle operation ω := m ◦ δ, is a left X-module homomorphism. i.e. ω ◦m =

m(1X ⊗ ω). For more on the handle operator see [9].

Proof. With the use of the Frobenius condition and then associativity the result

follows, with a simple diagrammatic proof.

= =

Note we also get ω as a right X-module homomorphism by a similar proof.

The next theorem is the main theorem of this section, it relates to the cate-

gory FdVectFp
. This theorem along with theorem 7.16 and corollary 7.20 are

original work.
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Theorem 7.19. Given a monoid (X,m, e) in FdVectFp
which forms a finite

field on the set of elements in X, there exists exactly one special Frobenius

algebra (X,m, e, δ, ε).

Proof. Firstly we show that the handle operator is the same as multiplication

by a particular element, which we call the handle element, h.

let h = ω ◦ a = = =

Note we if we had split a into m(ea) we would get the handle operator as

left multiplication by h, therefore without commutativity of m we still see that

h commutes with every element of X. Next we take any Frobenius form ε (as

mentioned before we have the choice of any element in the X∗) with respective

comultiplication δ, the corresponding handle element we call h. We now define

a new ε′ = ε ◦m(1X ⊗ h) and δ′ = δ ◦m(1X ⊗ h−1), see below

= δ′ =

With a bit of playing about with diagrams it is fairly easy (although time

consuming) to show (X,m, e, δ′, ε′) defines a Frobenius algebra. With the below

calculations we show this is special.

= = =

Corollary 7.20. In FdVectFp
given any n-dimensional vector space X it is

always possible to construct a special Frobenius algebra on X that forms a finite

field isomorphic to Fpn with respect to the multiplication m and addition.
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Proof. The result follows from theorem 7.16 and 7.19.

Theorem 7.21. Let X be an n-dimensional vector space over F2. There exists

a dagger special internal monoid which is isomorphic to the finite field F2n .

Proof. As mentioned before, to create an internal monoid that has a finite field

structure all we need to do is choose n elements of X that span X with respect

to addition, and the associated multiplication structure will always be linear. If

we choose a generator x for the multiplication group (the multiplication group

is isomorphic to Z2n−1), then the basis elements x, x2, x4, ..., x2n−1
have a useful

property that taking the square cycles the basis elements, this is enough to show

the monoid is special. For some generators these n elements will be a basis and

for some not, however using the ‘normal basis theorem’ see [6] (a note to Karin

Erdmann for helping point this out) such a basis will always exist.

This result is original, although considerably less interesting than the previ-

ous result as the dagger special internal monoids produced are not necessarily

Frobenius; out of the three properties this is certainly the most important.

The hope of extending this proof to include Frobenius is also lost as in the 4-

dimensional case the only two classical structures (up to isomorphism of basis

element) isomorphic to the finite field F2n are not of this form (below is one of

them as an example).
1 1 1 0 1 1 0 0 1 0 0 1 0 0 1 1

1 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0

1 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1

0 0 1 1 0 1 1 0 1 1 1 1 1 0 1 1


It is not known whether there always (for any p and n) exist classical structures

which are isomorphic to a finite field. In the case over F2 there does for di-

mensions 2-4 at least. However I would not be surprised if this did not hold in

higher dimensions, due to the lack of pattern between these classical structures

in different dimensions.

In our analysis of classical structures in FdVectF2 we are left with one more

case which does not fit into a single-valued groupoid or finite field structure. It

is shown below. 
1 1 1 1 0 0 1 0 0

0 0 1 0 1 0 1 0 0

0 0 1 0 0 1 1 1 1


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Unlike the other classical structures (as well as many other non-dagger or spe-

cial structures) it does not form any sort of group structure, with the element

0+1+2 not having an inverse. We must gain more understanding of this fas-

cinating and unexpected new structure before we gain complete knowledge of

classical structures in FdVectF2 .

In conclusion to this section we find the existence of special Frobenius alge-

bras isomorphic to finite fields, in theorem 7.19 and corollary 7.20, probably the

most interesting results in this section. Despite this the classification of classical

structures in FdVectF2 or FdVectFp remain open questions. I will discuss this

more in the conclusion.
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8 The uses of FdVect over GF(2)

In this section we see some examples of vector spaces over finite fields in action.

We look at basis structures (classical structures) and teleportation protocols

and also discuss some of the limitations of FdVectF.

As mentioned before we sometimes refer to classical structures as basis struc-

tures due to the fact the classical elements form an orthonormal bases in FdHilb

(see theorem 7.3). In FdHilb unbiased elements with respect to an orthogonal

basis correspond to elements which, when a measurement is made over the basis

we are equally likely to get any of the outcomes, i.e. for basis |ai〉 the normalised

state |ψ〉 satisfies |〈ψ|ai〉|2 = 1/dim(H) for all i. We now introduce the abstract

notion of unbiased elements with respect to a classical structure

Definition 8.1. Given a classical structure (X,m, e) a state ψ : I → X is

unbiased iff its left action Lψ is unitary, i.e. L−1
ψ = L†ψ. Below we see this in

diagrammatic form.

=

An important concept is the notion of complementary basis. In FdHilb

they correspond to two bases where the basis elements of the first are unbiased

with respect to the second and vice verse.

Definition 8.2. Two classical structures (X,m, e) and (X,m′, e′) are comple-

mentary iff:

1. Whenever φ : I → X is classical for (X,m, e) it is unbiased for (X,m′, e′)

2. Whenever ψ : I → X is classical for (X,m′, e′) it is unbiased for (X,m, e)

3. e is classical for (X,m′, e′) and e′ is classical for (X,m, e)

For FdVectF2 , in the 2-dimensional case the two possible classical structures

are not complementary, the monoid(
0 1 1 1

1 1 1 0

)
(15)

has no classical elements (it needs at least the unit of the other classical struc-

ture to be a classical element).
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However in the 3-dimensional case we see the classical structures (X,mA, eA)

and (X,mB , eB), depicted below, are complementary. Note, instead of (X,mA, eA)

we could pick a structure with |0〉 being copied and then the structure seen in

(15), on the second and third basis elements (we will comment on this alterna-

tive choice of complementary basis structures later).
1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1




1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0


The structure (X,mA, eA) corresponds to the familiar basis copying operation

on |0〉, |1〉 and |2〉. The structure (X,mB , eB) corresponds to Z3 on the three

basis elements with |0〉 as the unit. The classical elements of (X,mA, eA) are

|0〉, |1〉 and |2〉 which are also the unbiased elements of (X,mB , eB). The only

classical element of (X,mB , eB) is |0〉 + |1〉 + |2〉 which is the only unbiased

element of (X,mA, eA). Also both units are classical elements in the other

classical structures.

Example 8.3. We outline how to simulate a teleportation protocol in the same

way as the sketch proof [10] (proposition 2.2). Firstly we note that we can see

that given any pair of complementary classical structures on X we can define a

classical structure (X ⊗X, (1X ⊗ σX,X ⊗ 1X) ◦ (mA ⊗mB), eA ⊗ eB). We now

consider the structure (X, (mA⊗1X)◦ (1X⊗m†B) : X⊗X → X⊗X), in [16] we

see this defines a ‘bell-basis’ with respect to the classical structure described on

X⊗X. This paper goes on to show any ‘bell-basis’ will support a teleportation

protocol.

In our case we see our ‘bell basis’ is |00〉 + |11〉 + |22〉, |01〉 + |12〉 + |20〉 and

|02〉+ |10〉+ |21〉 and the corresponding unitary bell matrices.
1 0 0

0 1 0

0 0 1




0 0 1

1 0 0

0 1 0




0 1 0

0 0 1

1 0 0



Example 8.4. The superdense coding protocol is also a result of the ‘bell basis’

described above, see [16]. Using the same example of complementary bases we

apply one of three unitaries to half of our shared entangled state. Then we

transfer our quantum piece of information and get out one of three possible
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measurement outcomes. We see the term superdense is slightly out of place

here as we could just have transfered a prepared state corresponding to one

of the basis elements |0〉, |1〉 or |2〉 then perform a measurement over the basis

structure (X,mA, eA), without having to use entanglement. However it may still

be possible with a more complicated example to perform a useful superdense

coding in FdVectF2 .

Both these results are very interesting. The fact our ‘bell basis’ only contains

3 elements in a 9 dimensional space seems slightly unusual, although given the

varying nature of the classical structures in FdVectF2 the fact we are able to

reproduce such a familiar teleportation protocol at all is remarkable. We only

have to look at the other choice of complementary basis in the three dimen-

sional case of FdVectF2 , to find some stranger results. In this alternative case

applied to the teleportation protocol, the measurement has only one outcome

and therefore we need to transfer no classical information. However if this were

physically possible, then it would allow information to be teleported instantly

and therefore allow faster than light communication. In our superdense coding

example we now lose all our information as the measurement has only one out-

come.

Overall it seems that some complementary basis structures will produce pro-

tocols similar to those seen in FdHilb while others give different or unexpected

results. These unexpected results and the classical structures that create them

are intriguing, giving us a new perspective on these protocols, it will take further

study to fully understand their importance.
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9 Other interesting concrete categories

In this section we will take a look at vector spaces over other fields and types

of arithmetic. As far as I know no work has been done in quantum computing

on these categories. We will identify some basic properties which are likely to

be of interest in any further study of them.

Example 9.1. FdVectFalg is the category of vector spaces over the algebraic

closure of finite field F .

Here we have extended our finite field to make it algebraically closed (the

smallest such extension), meaning that any polynomials over the base field will

now have solutions. This can be useful in say normalising vectors. However

any field extension of F will have the same characteristic, therefore the alge-

braic closure still has non-zero characteristic. This will prove problematic in

any attempt to define an inner product. When our finite field is of order p the

algebraic closure is the union of copies of Fpn for all n, so we are likely to see

at least some properties similar to the categories FdVectFpn .

The category of relations Rel has been pivotal in the development of cate-

gory theory in quantum mechanics. We have already compared the similarities

between FdVectF2 and this well studied category. Now we look at slightly

modified versions

Example 9.2. Rel2 is the category of vector spaces over the following semi-ring

arithmetic (+2, ∗2) on the set of integers {0, 1, 2}:-

i+2 j = min(i+ j, 2)

i ∗2 j = min(i ∗ j, 2)

This category is likely to have similar properties to Rel, there might also be

connections between this and FdVectF3 , which has similar matrix arithmetic.

The fact this arithmetic has zero characteristic means we can define an inner

product on the vector space.

Example 9.3. RelC is the category of vector spaces over the following semi-

ring arithmetic (+c, ∗c) on the continuous interval of the real line [0,1]:-

i+c j = min(i+ j, 1)

i ∗c j = i ∗ j

Here we have a continuous form of Rel and possibly the most interesting

of these examples. Again zero characteristic will mean it is possible to de-

fine a meaningful inner product. One way we can think of this category is
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in terms of probabilities of events being related, i.e. in the one element case

{∗} f→ {∗} g→ {∗}, the composition will give us the probabilities multiplied

together. With more than one element we introduce addition. However addi-

tion will only have an intuitive meaning in terms of probability, if events are

mutually exclusive. One way to keep meaning is to apply restrictions to our

relations, i.e. that the column vectors in our matrices do not sum to more than

1. We now lose the direct connection between this category and Rel, in that we

cannot have a surjective map, taking relations of value 1 in RelC to relations

in Rel. We still observe however observe the map from RelC to Rel, mapping

non-zero relations in RelC to relations in Rel. In terms of our probabilistic

interpretation this is the move from observing relations that are certain to re-

lations that have some probability of occurrence.

The fact RelC takes continuous values may allow more properties of quan-

tum systems to be simulated and could help bridge the gap between Rel and

FdHilb. We also note that there are likely to be many other such structures

that have been studied thoroughly in other areas of mathematics, waiting to be

introduced to the world of quantum computing.
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10 Conclusion and further areas of research

In this project we have seen how a category theoretic approach to quantum

computing can give a whole new perspective to the systems and processes we

study. The use of diagrammatic representation and ability to reduce complex

concepts to their absolute essence within the framework of an abstract category

makes this approach instantly appealing.

We go back to our analogy of using category theory as a guide to where quan-

tum mechanics can live in the world of mathematics outside Hilbert spaces.

Where does finite fields fit into our new world for quantum computing? It has

many nice feature, already providing useful setting for areas such as coding,

cryptography, elliptic curves etc. In this project we have shown even simple

finite fields have the necessary resources to perform protocols such as quantum

teleportation and we can also observe concepts of entanglement. To make the

claim that the whole of quantum mechanics can live within the finite field set-

ting would be too much and finding out which parts of quantum computing do

not naturally fit in with finite fields is an aim of this project. Certainly I could

imagine vector spaces over finite fields in the future being a new home for some

parts of quantum computing. I would hope at the very least that they would

help us come to a better understanding of quantum computing.

The study of Frobenius algebras on vector spaces over finite fields provides

us with several interesting results. We see a link between single valued classical

structures in FdVectF2 and the classical structures of Rel, due to the similar-

ities in the matrix arithmetic. Despite the fact there are relatively few classi-

cal structures in FdVectF2 , without restricting our attention to single-valued

monoids, the classical structures do not have a great deal of pattern to them,

and there is currently no way to classify them. The existence of special Frobe-

nius algebras isomorphic to finite fields is probably the most useful result in this

section. Also while special Frobenius structures take on a much wider range of

forms than our classical structures, it may be worth dropping the slightly un-

natural dagger condition (except for in the case of single-valued monoids) and

in further analysis focus attention more on special Frobenius structures.

Further research could also be done on categories FdVectFpn where n is greater

than 1. These categories have hardly been touched upon in this dissertation.

Also an obvious follow up to some of the work done on FdVectF2 would be to

see if any similar results hold in FdVectFp for p > 2. In chapter 8 we examine
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a teleportation protocol in FdVectF2 , it would be interesting to see if we can

simulate the same protocols using vector space over different finite fields, or if

for example we can describe the category Spek in FdVectF2 like we can in Rel.

Also further work could be done on other protocols and quantum properties in

FdVectF . In chapter 9 we also introduced several new semi-ring arithmetic

which could provide the base to a vector space, studying these in more depth I

feel would provide some interesting results.
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A Mathematica results

2-dimensional results, X = F 2
2

Internal monoidal structures. Monoids in the first row have |0〉 unit, second

row |1〉 unit and third row |0〉+ |1〉 unit. Positions in matrix from left to right

correspond to 00, 01, 10 and 11 and going down 0 and 1.(
1 0 0 0

0 1 1 0

)(
1 0 0 1

0 1 1 0

)(
1 0 0 0

0 1 1 1

)(
1 0 0 1

0 1 1 1

)
(

0 1 1 0

0 0 0 1

)(
0 1 1 0

1 0 0 1

)(
1 1 1 0

0 0 0 1

)(
1 1 1 0

1 0 0 1

)
(

1 0 0 0

1 1 1 0

)(
0 1 1 1

1 1 1 0

)(
1 0 0 0

0 0 0 1

)(
0 1 1 1

0 0 0 1

)

Commutative Frobenius algebras
(

1 0 0 0

0 1 1 0

)
,

(
0 1 1 0

0 0 0 1

)T

(

1 0 0 0

0 1 1 0

)
,

(
0 1 1 1

0 0 0 1

)T
(

1 0 0 1

0 1 1 0

)
,

(
1 0 0 1

0 1 1 0

)T

(

1 0 0 1

0 1 1 0

)
,

(
0 1 1 0

1 0 0 1

)T
(

1 0 0 0

1 1 1 0

)
,

(
0 1 1 0

0 0 0 1

)T

(

1 0 0 0

1 1 1 0

)
,

(
0 1 1 1

0 0 0 1

)T
(

0 1 1 1

1 1 1 0

)
,

(
0 1 1 1

1 1 1 0

)T

(

0 1 1 1

1 1 1 0

)
,

(
1 1 1 0

1 0 0 1

)T
(

0 1 1 1

1 1 1 0

)
,

(
1 0 0 1

0 1 1 1

)T

(

1 0 0 0

0 0 0 1

)
,

(
1 0 0 0

0 0 0 1

)T
(

0 1 1 0

0 0 0 1

)
,

(
1 0 0 0

0 1 1 0

)T

(

0 1 1 0

0 0 0 1

)
,

(
1 0 0 0

1 1 1 0

)T
(

1 1 1 0

0 0 0 1

)
,

(
1 0 0 0

0 1 1 1

)T

(

0 1 1 1

0 0 0 1

)
,

(
1 0 0 0

0 1 1 0

)T
(

0 1 1 1

0 0 0 1

)
,

(
1 0 0 0

1 1 1 0

)T

(

0 1 1 0

1 0 0 1

)
,

(
1 0 0 1

0 1 1 0

)T
(

0 1 1 0

1 0 0 1

)
,

(
0 1 1 0

1 0 0 1

)T

(

1 1 1 0

1 0 0 1

)
,

(
0 1 1 1

1 1 1 0

)T
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
(

1 1 1 0

1 0 0 1

)
,

(
1 1 1 0

1 0 0 1

)T

(

1 1 1 0

1 0 0 1

)
,

(
1 0 0 1

0 1 1 1

)T
(

1 0 0 0

0 1 1 1

)
,

(
1 1 1 0

0 0 0 1

)T

(

1 0 0 1

0 1 1 1

)
,

(
0 1 1 1

1 1 1 0

)T
(

1 0 0 1

0 1 1 1

)
,

(
1 1 1 0

1 0 0 1

)T

(

1 0 0 1

0 1 1 1

)
,

(
1 0 0 1

0 1 1 1

)T
Commutative dagger Frobenius algebras
(

1 0 0 1

0 1 1 0

)
,

(
1 0 0 1

0 1 1 0

)T

(

0 1 1 1

1 1 1 0

)
,

(
0 1 1 1

1 1 1 0

)T
(

1 0 0 0

0 0 0 1

)
,

(
1 0 0 0

0 0 0 1

)T

(

0 1 1 0

1 0 0 1

)
,

(
0 1 1 0

1 0 0 1

)T
(

1 1 1 0

1 0 0 1

)
,

(
1 1 1 0

1 0 0 1

)T

(

1 0 0 1

0 1 1 1

)
,

(
1 0 0 1

0 1 1 1

)T
Commutative special Frobenius structures
(

0 1 1 1

1 1 1 0

)
,

(
0 1 1 1

1 1 1 0

)T

(

1 0 0 0

0 0 0 1

)
,

(
1 0 0 0

0 0 0 1

)T
(

1 1 1 0

0 0 0 1

)
,

(
1 0 0 0

0 1 1 1

)T

(

1 1 1 0

1 0 0 1

)
,

(
1 0 0 1

0 1 1 1

)T
(

1 0 0 0

0 1 1 1

)
,

(
1 1 1 0

0 0 0 1

)T

(

1 0 0 1

0 1 1 1

)
,

(
1 1 1 0

1 0 0 1

)T
Classical structures
(

0 1 1 1

1 1 1 0

)
,

(
0 1 1 1

1 1 1 0

)T

(

1 0 0 0

0 0 0 1

)
,

(
1 0 0 0

0 0 0 1

)T
3-dimensional results, X = F 3

2

Classical structures (monoids shown). Rows 1-3 have units |0〉, |1〉 and |2〉
respectively, rows 4-6 have unit |0〉 + |1〉 + |2〉 Positions in matrix from left to

right correspond to 00, 01, 02, 10, 11, 12, 20, 21 and 22 and going down 0,1 and 2.
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
1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0




1 0 0 0 0 1 0 1 0

0 1 0 1 1 1 0 1 0

0 0 1 0 0 1 1 1 1




0 1 0 1 0 0 0 0 1

0 0 1 0 1 0 1 0 0

1 0 0 0 0 1 0 1 0




1 1 1 1 0 0 1 0 0

0 0 1 0 1 0 1 0 0

0 0 1 0 0 1 1 1 1




0 0 1 0 1 0 1 0 0

1 0 0 0 0 1 0 1 0

0 1 0 1 0 0 0 0 1




1 1 1 1 0 0 1 0 0

0 1 0 1 1 1 0 1 0

0 1 0 1 0 0 0 0 1




1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 1




1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 1

0 0 0 0 1 1 0 1 0




0 0 1 0 0 0 1 0 1

0 0 0 0 1 0 0 0 0

1 0 1 0 0 0 1 0 0




0 1 0 1 1 0 0 0 0

1 1 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 1




0 1 0 1 0 1 0 1 1

1 0 1 0 0 1 1 1 0

0 1 1 1 1 0 1 0 0




0 0 1 0 1 1 1 1 0

0 1 1 1 0 0 1 0 1

1 1 0 1 0 1 0 1 0


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