
On the Verge to Improve Technique
of T-count Reduction via Spider

Nest Identities

Witalis Domitrz
Supervisors: Aleks Kissinger, Quanlong Wang

Linacre College

University of Oxford

A dissertation submitted for the degree of

Master of Science in Mathematics and Foundations of Computer Science

Trinity 2021

Acknowledgements

I would like to thank Aleks Kissinger for introducing me to diagrammatic rea-

soning, ZX-calculus, and quantum computing, Quanlong Wang, who helped

me keep the right direction and for the regular supervision, and Xiaoning Bian

for help in using the stomp-code [9].

Approximate, universal quantum computation is most commonly described by circuits

consisting of Clifford+T gates. The T gate, except being crucial for the universality, is

the one which is, in real-world implementations, the most resource-intensive, and the

least fault-tolerant of all operations. Because of that, a natural question emerges – how

to reduce the number of T gates (or T-count) in a given circuit. The known methods

used to reduce the T-count to an optimal value have an exponential running time [24, 2],

which motivates the search for an efficient heuristic algorithm. The importance of this

problem, along with proposed solutions were discussed in multiple publications including

[6, 18, 16, 15, 7, 23].

Spider nest identities, introduced in [16], together with the decomposition of the cir-

cuit inspired by [18], were combined in [15] to provide an effective algorithm for T-count

reduction. This approach was tested and compared with previous results, and, in some

cases, it resulted in a significant improvement of the state of the art. Another advantage

of this algorithm was, in contrast to the other results, a significant improvement of the

execution time. In this dissertation, we discuss several modifications of the algorithm in

order to gain partial outperformance without a significant increase of the running time,

which include analysis of the influence of the order of applying the identities, efficient

usage of identities generated from small and big spider nests, combining the results ob-

tained in [25] with spider nest identities, and others. Some of these modifications improve

or achieve the current state of the art for various circuits. We also provide a quantita-

tive comparison of results, verified using [3] – a tool created alongside [4], on numerous

benchmark circuits obtained from [9, 26, 3]. Moreover, we present abstract formulations

of considered problem, pose a question of completeness of spider nest identities with re-

spect to T-count reduction, and present different, possibly more elegant, way of phrasing

the spider nest identities, as dense spider nest identities.

Contents

1 Introduction 8

1.1 Content of the dissertation and originality 9

1.1.1 Preliminaries . 9

1.1.2 Main contributions . 10

1.1.2.1 Rephrasing the phase gadgets T-count reduction 10

1.1.2.2 Dense spider nest identities 10

1.1.2.3 Modifications of the PHAGE Tactics 10

1.1.2.4 Modifications of the decomposition phase 11

1.2 Tools and software . 11

2 Preliminaries 12

2.1 ZX-calculus . 12

2.1.1 Diagrams of ZX-calculus . 12

2.1.1.1 Phases . 12

2.1.2 Rules . 13

2.1.2.1 Spider-fusion . 13

2.1.2.2 Identity, cup, and cap 13

2.1.2.3 Strong complementarity 14

2.1.2.4 Rotations by π
2

. 15

2.1.2.5 Hadamard gate . 16

2.1.3 Commutation of NOT . 16

2.1.4 Completeness . 17

2.1.5 Notation . 17

2.1.5.1 Horizontal vs vertical notation 17

2.1.5.2 Wires . 17

2.1.5.3 CNOT . 17

2.2 Gadgets and phase gadgets . 17

2.2.1 Phase gadgets . 19

2.2.1.1 Properties of phase gadgets 20

5

2.3 Spider nests . 21

2.3.1 Spider nest identity on 4 wires . 21

2.3.2 Spider nest identities of arbitrary size 22

2.3.3 Remarks on spider nest identities 25

2.3.4 Combining spider nest identities 25

2.4 PHAGE Tactic . 26

2.4.1 Remark on circuits realizing identity transformation and circuits

equivalence . 26

2.4.2 General PHAGE Tactic . 26

2.4.3 PHAGE Tactics and spider nest identities 27

2.4.3.1 Definition of considered sets of identities 27

2.4.3.2 PHAGE4 and PHAGE5 Tactics 28

2.4.3.3 A small example of the advantage of composites spider

nests . 28

2.5 Algorithm . 29

2.5.1 moveH . 30

2.5.2 Hadamard gate gadgetisation . 31

2.5.3 Decomposing gates into phase gadgets 32

2.5.4 Commuting other gates . 33

2.5.4.1 SWAP . 33

2.5.4.2 CNOT . 33

2.5.4.3 NOT . 34

2.5.4.4 Direction of commutation 34

3 Rephrasing the phase gadgets T-count reduction 35

3.1 Correspondence to the PHAGE Tactics 35

3.2 T-count optimization using spider nest identities 36

3.2.1 Completeness of spider nest identities 37

3.2.2 Extending the problem . 37

3.3 Significance and open questions . 38

4 Dense spider nest identities 39

4.1 Existences of all dense spider nest identities 39

4.2 Elegant dense spider nest identities . 41

4.2.1 Two small dense spider nest identities 41

4.3 All elegant dense spider nest identities 43

4.4 Modification of problems from chapter 3 44

4.4.1 Natural generalisation . 44

6

5 Modifications of the PHAGE Tactics 45

5.1 Order matters . 45

5.1.1 Motivation . 45

5.1.2 Process of constructing the order 45

5.1.3 Results . 46

5.1.4 Usage in practical applications . 48

5.2 Other modifications . 48

5.2.1 Changing the distribution of the identities 48

5.2.1.1 Results . 48

5.2.2 Problems with bigger identities 48

5.2.2.1 Composite spider nest identities on n wires 49

5.2.2.2 Results and discussion 49

5.2.2.3 Possible explanations and need for other approaches . . 49

6 Modifications of the decomposition phase 51

6.1 Commutation rules for the GF (2m) multipliers 51

6.2 Preprocessing step . 55

6.2.1 Differences and advantages . 55

6.3 Results . 55

6.4 Problems with generalization to other circuits 56

7 Summary 57

7.1 Time of execution . 57

Bibliography 59

7

Chapter 1

Introduction

The goal of realizing universal quantum computation is currently, approached by approx-

imations that use both Clifford and non-Clifford gates. The usage of Clifford gates is a

natural consequence of their relative stability and efficiency [10], but unfortunately, as we

can efficiently simulate all circuits consisting of only Clifford operations on classical com-

puter [1], to achieve the efficient, approximate universality, there is a need for usage of the

non-Clifford gates. The canonical choice of such an operation is the T gate (a phase rota-

tion by π
4
), which is sufficient to realize the approximate universal quantum computation

[28]. The drawback that comes with the T gate, is its significantly lower fault-tolerance,

or when implemented in a fault-tolerant way, significantly higher resource requirements

[10]. Such circumstances make us consider a natural question – how to modify a circuit

such that its semantics remains the same, but it uses as few T gates as possible – or in

other words, how to reduce the T -count of a given circuit.

In this dissertation, we focus on the question of efficient T -count reduction. This

problem was already considered in various publications including [6, 17, 7, 23, 18, 16, 15].

We focus our work on improving the newest of mentioned algorithms [15]. A reoccurring

approach in the T -count optimization problem is analyzing the non-Clifford diagonal

circuits. In our work, we follow the approach from [18], by using the improved version

presented in [15], in order to synthesize a single subcircuit composed of phase gadgets [23]

and containing all T gates. Additionally, we utilize the results of [25, 29, 11] in order to

present a modified way of transforming Galois Field multipliers circuits, which combined

with the considered algorithm yields new state-of-the-art results.

In order to process the diagonal non-Clifford part of the circuits, following [15], we use,

introduced in [16], spider nest identities. This particular family of circuits was proven to

be highly effective in both [15, 16]. We discuss various approaches to this challenge – by

analyzing the problem and the identities in abstract formal terms, as well as by practical

modifications of phase gadget elimination tactics (or PHAGE Tactics) [15, 16].

8

1.1 Content of the dissertation and originality

This dissertation is composed of the two following parts, the content of which we describe

below. Additionally, for each chapter, we clearly state its original contributions.

1.1.1 Preliminaries

Chapter 2 covers preliminaries, foundations, and background for the problems considered

in the dissertation. All the concepts discussed in this chapter are not novel work. Here

we will briefly discuss the content of each of sections 2.1 to 2.5.

ZX-calculus

In section 2.1, we present a short introduction to the ZX-calculus, based on [14]. We cover

basic rules and give various proofs of some of the properties in order to familiarize the

reader with the notation. The presented there approach is meant to be purely axiomatic,

not to intimidate the reader with the complexity of the underlying concepts. It is also

not meant to be a full introduction to a ZX-calculus. As such, we recommend reading

[14]. All proofs and concepts considered in this section were introduced, used, known,

and considered previously.

Phase gadgets

In section 2.2 we introduce gadgets, and more specific phase gadgets, along with their

interesting properties. All proofs and concepts considered in this section were introduced,

used, known, and considered previously.

Spider nest identities

Section 2.3 is is an introduction to spider nest identities as described in [15, 16]. We

start from a description of the spider nest identity on 4 wires and extend it to multiple

wires using the method presented in [15]. Finally, we discuss the T -count of spider

nest identities and present the composite spider nest identities. All proofs and concepts

considered in this section were introduced, used, known, and considered previously.

PHAGE Tactics

In section 2.4, we present PHAGE Tactics as described in [15], as well as more specific

PHAGE4 and PHAGE5 tactics. We discuss problems related to PHAGE Tactics and

present a small example illustrating the advantage of utilizing the composite spider nest

identities in PHAGE Tactics. All proofs and concepts considered in this section, except

9

the small example for the advantage of composite spider nest identities, were introduced,

used, known, and considered previously.

Algorithm

In the final section of the preliminaries– section 2.5, we present a detailed recap of the al-

gorithm presented in [15] including descriptions of all major steps (excluding the PHAGE

Tactics). All proofs and concepts considered in this section were introduced, used, known,

and considered previously.

1.1.2 Main contributions

In this section, we discuss the main contributions of this dissertation and explicitly state

which parts are original, and which were already present in the literature.

1.1.2.1 Rephrasing the phase gadgets T-count reduction

In chapter 3 we give a formal definition of a problem abstracting the goal of PHAGE

Tactics, we also consider specific instances of the problem for the spider nest identities.

Then we state an open question about the completeness of spider nest identities with

respect to T-count reduction and consider an example of a possible way to create a

counterexample. Finally, we extend our problem by a transformation resembling the way

CNOT gate commutes through the phase gadgets. We did not find any similar approaches

to explicitly formalize in that way the problem of phase gadget T -count reduction in the

literature. Here we should also note that an other known way of analyzing the problem

in an abstract way is highly related to the Reed-Muller codes [7].

1.1.2.2 Dense spider nest identities

In chapter 4 we introduce a new, elegant way of phrasing the spider nest identities by

considering dense spider nest identities. We also reformulate the problem from chapter 3

using the newly defined identities. We did not find any similar work in the literature.

1.1.2.3 Modifications of the PHAGE Tactics

In chapter 5 we consider various modifications of the way the PHAGE Tactics utilize

the spider nest identities. We present approaches that improved the performance of

the algorithm as well as discuss problems with other modifications. We also present a

quantitative comparison of achieved results some of which are a new state-of-the-art.

As this chapter focuses mostly on the PHAGE Tactics, it highly relies on [15], but the

approaches considered there were not previously considered in the literature.

10

1.1.2.4 Modifications of the decomposition phase

In chapter 6 we utilize the results of [25] in order to modify and improve the way we

process the Galois field multipliers family of circuits before it is in a form suitable for

applying PHAGE Tactics. We discuss in detail how the preprocessing steps are executed,

and we point out problems preventing us from using them for general quantum circuits.

We quantitatively compare the results with other approaches. The work presented in this

chapter highly relies on results of [15, 25], we present the proofs of (previously known)

commutation steps for CNOT and Toffoli gates, which we did not find anywhere else

in the literature. By combining both approaches we achieve and present new, state of

the art results.

1.2 Tools and software

While working on the dissertation, we used and utilized various tools and software, which

we present below.

• For generating our results, we used a modified version of stomp – Haskell imple-

mentation of the T-count optimization algorithm ”stomp” [9].

• For validating our results, we used Feynman – Quantum circuit analysis toolkit [3, 4].

• For creating the diagrams, we used TikZiT – a super simple GUI editor for graphs

and string diagrams [21].

• For automatic reasoning and validating our proves, we used PyZX – Python library

for quantum circuit rewriting and optimisation using the ZX-calculus [22].

• As a template for this dissertation we used A Thesis Class provided at https:

//www.maths.ox.ac.uk/members/it/faqs/latex/thesis-class.

11

https://www.maths.ox.ac.uk/members/it/faqs/latex/thesis-class
https://www.maths.ox.ac.uk/members/it/faqs/latex/thesis-class

Chapter 2

Preliminaries

2.1 ZX-calculus

In this dissertation, we use the ZX-calculus, as introduced in [12] and described in [14].

For the sake of simplicity, we omit global, nonzero coefficients (so we use the equivalence

up to a nonzero number as the equality). Here we introduce basic rules of ZX-calculus

in order to familiarize the reader with the notation. For a more extensive introduction,

we suggest reading and studying [14].

2.1.1 Diagrams of ZX-calculus

In ZX-calculus we consider (possibly empty) diagrams constructed of red and green nodes

(also called spiders) each associated with some (possibly zero) phase, and some inputs

and outputs. We also add special Hadamard nodes that are defined using the red and

green nodes.

2.1.1.1 Phases

Phases, in case of ZX-calculus are representing angles, so they are real numbers up to an

equivalence relation ∼ given by 2kπ + α ∼ α for all α ∈ R and k ∈ Z.

Spiders with zero phase

For simplicity, we draw spiders with zero phases without any phase. It is a substantial

simplification as we tend to use zero phase spiders most commonly.

:= 0

.

.
0:=

.

.
(2.1)

12

2.1.2 Rules

We present the set of rules as they are presented in [14]. Other, equivalent, sets of rules

are known and present in the literature [27, 30, 13].

2.1.2.1 Spider-fusion

The spider-fusion rules allow us to fuse two connected nodes of the same colour into a

single spider. The resulting spider has all the inputs and outputs of these nodes, excluding

the ones between one another.

. . .

. . .

.

. . .

=

.

.

α+ β

α

β

. . .

. . .

.

. . .

=

.

.

α+ β

β

α

(2.2)

Consequences

This rule, despite being extremely simple, has some far-fetched consequences. The

most important one, for our application, is the fact that it causes phase gadgets (which

we will introduce later) to commute, and more precisely (and generally), the following

property holds.

= = (2.3)

2.1.2.2 Identity, cup, and cap

We say that a single node with no phase (phase 0) and exactly one input and one output,

two inputs, or two outputs can be removed.

= = = = = = (2.4)

Consequence of cups and caps

A notable consequence of these rules is the fact that if some edge is not an input nor

an output of the whole diagram, it doesn’t matter if it is an input or an output of nodes

to which it is connected. This allows us to abuse the notation as follows.

= = = = = =:= (2.5)

13

2.1.2.3 Strong complementarity

The rules of strong complementarity, or some of their equivalent forms, are a way to

describe how the spiders (with no phase, or phase 0) of different colors can commute.

= (2.6)

= (2.7)

= (2.8)

Disconnecting

First, two rules allow us to replace two single spiders of the same color with a spider

of opposing color with the same edges, additionally connected to a new single node of

the original color (eqs. (2.6) and (2.7)).

Commutation

The rule eq. (2.8) introduces a way to commute spiders of different colors.

Equivalent formulation

We can use these simple rules of bounded size to introduce a more general and simpler

to use equivalent rule:

=

. . .

. . .
. . .

. . .
n

m

n

m

(2.9)

for every non-negative integers n and m.

Proof of the equivalence

Equations (2.6) and (2.7) are cases of eq. (2.9) for (n,m) = (2, 0) and (n,m) = (0, 2)

respectively. Additionally eq. (2.8) is eq. (2.9) for (n,m) = (2, 2).

On the other hand, eq. (2.9) for n = 1, or for m = 1 are tautologies, by eq. (2.4).

. . .

n

=
. . .

n

=
. . .

n

14

. . .
n

=
. . .
n

=

. . .

n

Moreover, by a simple induction and spider-fusion, eqs. (2.6) and (2.7) imply eq. (2.9)

for n = 0 or m = 0.

. . .
n+ 1

=

. . .

= . . .

n− 1

= . . .

n+ 1

To prove eq. (2.9) for every n > 2 and every m = 2 (as in [14]), we first note that the

base case, so n = 2 is exactly eq. (2.8), and now, if we assume it for some fixed n, then

we can prove it for n+ 1 as following.

=

. . .

n+ 1

. . .

n

=

. . .

n

=

. . .
n

=

. . .
n

. . .
n+ 1

=

(2.10)

Finally, to get eq. (2.9) in other cases, we fix some m and n and, analogically to

eq. (2.10), proceed as follows to get the equation for m+ 1.

=
. . .

n

. . .

m+ 1

. . .

n

. . .

m

=
. . .

n

. . .

m

=

. . .
n

. . .

m

. . .
=

. . .
n

. . .

m+ 1

(2.11)

2.1.2.4 Rotations by π
2

All above the rules (except spider-fusion) were defined for zero phase spiders. In order to

extend them to π
2

rotations, let’s introduce the following rule.

15

=

π
2

π
2

−π
2

−π
2

−π
2

−π
2

π
2

(2.12)

This rule gives us interesting implications, for example, =
π
2

−π
2

, and is highly

related to the Bloch sphere interpretation of quantum states. It is also the last rule

needed for completeness of ZX-calculus with phases that are multiples of π
2

so of Clifford

maps.

2.1.2.5 Hadamard gate

We will also use a Hadamard gate, sometimes presented as a different kind of wire. It is

defined as follows:

:=

π
2

π
2

π
2= (2.13)

which comes with the following rule.

. . .

. . .

. . .

. . .

α
α

= (2.14)

Let’s note that this rule works for arbitrary angle α, which is a substantial difference

from the previous rule, where all angles were multiples of π
2
.

Remark 1. Using the Hadamard gate we can easily convert all diagrams to diagrams

composed of spiders of only one color and Hadamard gates. Such an approach can be

observed for example in [14].

2.1.3 Commutation of NOT

The final rule that we will introduce is a commutation rule for one spider with phase π.

π

πα

−α
= (2.15)

16

2.1.4 Completeness

It is important to mention that the rules that we presented do not give us the completeness

of the ZX-calculus (interpreted in terms of linear maps [14]). However, this notable result

has already been achieved, first in [20] for ZX-calculus with phases that are multiples of
π
4
, so with Clifford+T maps, and finally, universal completion of the ZX-calculus was

given in [27] (with some follow-up papers which introduce alternative sets of rules).

2.1.5 Notation

2.1.5.1 Horizontal vs vertical notation

As circuits are typically oriented horizontally, not vertically, we will, from now on, if

we are drawing ZX-diagrams that correspond to circuits, draw them horizontally, not

vertically.

2.1.5.2 Wires

For ZX-diagrams that correspond to circuits, by the kth wire, we call the kth vertical

line (counting from the top) and edges that it contains, which contains an input and an

output.

2.1.5.3 CNOT

For simplicity, we will use the name CNOT in the context of a ZX diagram, to describe

the following diagram, which corresponds to the CNOT gate. Moreover, we call the

control wire, the wire to which the green node is connected, and the target wire, the wire

to which the red node is connected.

= ⊕ (2.16)

2.2 Gadgets and phase gadgets

Using ZX-calculus we can construct multiple interesting diagrams and explore their prop-

erties. An interesting family of diagrams are gadgets and especially phase gadgets as

presented in definitions 1 and 2 [23].

Definition 1.

...

17

A gadget on n wires is a diagram with n + 1 inputs and n outputs, such that the last

input is connected to a red node, which is connected to n green nodes, each of which is

connected to exactly one input and exactly one output.

Before we consider the main advantages of phase gadgets, first let’s focus on the

underlying construction – what kind of quantum circuits are equivalent to the gadgets.

To do it, let’s first consider the following lemma, which answers this question for gadgets

on two wires.

Lemma 1.

=

On the left-hand side, we have a gadget on n wires with one of its legs surrounded by two

CNOT gates with control on some other wire. On the right-hand side, we have a gadget

on n+ 1 wires.

Proof.

= =

Using analogical reasoning, we can not only create the gadgets but also extend them,

as presented in the following lemma 2.

Lemma 2.

= ...
...

First, we transform the initial diagram by merging two green spiders and splitting the

new spider as presented above. Then we apply the complementary rule to get the final

diagram.

Proof.

= ...
...

=...

This proof is a straightforward application of the strong complementarity equation.

18

From this lemma we can conclude the following generalizations of lemma 1 – corol-

laries 1 and 2.

Corollary 1.

=
...

... ...

In this identity, on the right-hand side, we have just a gadget on n wired.

On the left-hand side, we have, going from the left, a green node on the first wire

connected with a red node on the second wire, a green node on the second wire connected

with a red node on the third wire, and so on up to a green node on (n−1)th wire connected

with a red node on nth wire. Then we get a green node connected to the input of the

phase gadget. Finally, we obtain a green node on (n− 1)th wire connected to a red node

on nth wire and so on up to a green node on the first wire connected with a red node on

the second wire.

Corollary 2.

=
.

In this identity, on the right-hand side, we have just a gadget on n wired.

On the left-hand side, we have, going from the left, a green node on the first wire

connected with a red node on the nth wire, a green node on the second wire connected

with a red node on the nth wire, and so on up to a green node on (n−1)th wire connected

with a red node on nth wire. Then we obtain a green node connected to the input of the

phase gadget. Finally, we get a green node on (n − 1)th wire connected to a red node

on nth wire and so on up to a green node on the first wire connected with a red node on

the nth wire.

2.2.1 Phase gadgets

We call a gadget that is connected to a single green spider (with possibly nonzero phase),

a phase gadget (as in definition 2). Phase spiders have various properties that will be

useful in our applications.

Definition 2.

... α

19

Phase gadget on n wires with phase α is a gadget on n wires with a green node with

phase α connected to the last input.

2.2.1.1 Properties of phase gadgets

Commutativity Because all gadgets are connected to the wires by green spiders, all

gadgets commute regardless of the sets of wires that they are connected to. This property

holds not only for phase gadgets but for gadgets in general.

Additivity A diagram with two-phase gadgets on exactly the same set of wires is

equivalent to a diagram with a single phase gadget on that set of wires with a phase

equal to the sum of phases – as presented in lemma 3.

Lemma 3.

... α ... β ... α+ β
=

Proof.

... α ... β
=

...
...

α

...
...

β

=

...

α+ β

... ... α+ β
=

First, we decompose both gadgets by corollary 1, then we eliminate adjacent not gates,

by using the fact that pair of spiders with different colours connected by an even number

of wires is equivalent to the two spiders not connected, and we merge two green spiders

with phases α and β. Finally, we again use corollary 1 to get the desired spider.

Easy translation to circuits Sometimes translating a non-unitary ZX diagram to

an equivalent quantum circuit of minimal size poses a significant challenge [23]. In the

case of phase gadgets, with phases that are multiples of π
4
, we can do it as follows.

Observation 1.

...
π
4 =

...
...

T⊕ ⊕
⊕ ⊕

20

Obvious relation to T -count Each phase gadget with a phase which is an odd

multiple of π
4

increases the number of T gates in the circuit by exactly 1, regardless of

the size of the spider.

Phase gadget with no phase is an identity

Lemma 4.

... =
...

Proof. By the strong complementarity, we transform the red node and green node with

exactly one input, merge connected green nodes and remove all nodes with no phase, one

input and one output.

Phase gadget on a single wire

α

= α

Phase gadget on one wire is equivalent to a green spider with the same phase on one wire

as the red spider with no phase and two legs is a wire, and we can merge two connected

green spiders.

2.3 Spider nests

Except for the properties of single-phase gadgets (section 2.2.1.1), they manifest another,

critical for our application, behaviour – that they can be composed to get spider nest

identities [16, 15, 25].

2.3.1 Spider nest identity on 4 wires

The smallest, non-trivial [25] spider nest identity is the following identity on 4 wires.

Theorem 1.

π
4

−π
4

−π
4

−π
4

−π
4

π
4

π
4

π
4

π
4

π
4

π
4

−π
4

−π
4

−π
4

−π
4

=

For each size s ∈ {1, 2, 3, 4} and each subset S of wires of size s, there is a phase gadget

on these wires with phase (−1)s π
4
.

21

This identity has been proven in [5], and using only ZX-calculus, in [25]. Moreover,

to get a ”brute force” proof of this identity, it is sufficient to calculate in the matrix

representation of the left-hand side diagram.

The significance of this single identity is clearly visible in the presented inductive

proof of theorem 2, which, thanks to the identity on 4 wires, is quite straightforward and

compact.

2.3.2 Spider nest identities of arbitrary size

An obvious limitation of the above identity is that it cannot be used to reason about

bigger phase gadgets. This problem can be addressed by the introduction of spider nest

identities on more wires, where the biggest phase gadget uses all of the wires.

Theorem 2.

π
4

αn

αn

αn

βn βn βn
−π
4

=n

.

...
...

...

(
n
2

) (
n
3

)
,

where αn := −(n− 2)(n− 3)π
8

and βn := (n− 3)π
4
.

For each wire, there is a phase gadget with phase αn on this wire, for each pair of

wires, there is a phase gadget with phase βn on these wires, for each triplet of wires, there

is a phase gadget with phase −π
4

on these wires, also there is a phase gadget of phase π
4

on all n wires.

Remark 2. αn = −(n− 2)(n− 3)π
8

is always an integer multiple of π
4
, as always one of

n− 2 and n− 3 is an even number.

The following proof was introduced in [16] and relies heavily on theorem 1.

Proof. For n = 3 both αn = 0 and βn = 0. Moreover, the whole identity simplifies to

π
4

−π
4

= ,

which holds by lemmas 3 and 4.

The case n = 4 is exactly theorem 1. We will also use this case as a base case for the

induction. (We could use case n = 3 as the base case, but as we need case n = 4 (or

theorem 1), as we will use it in the inductive step.)

22

If we assume that this identity holds for some fixed n, then to prove it for n + 1, we

take a phase gadget with phase −π
4

on n + 1 wires, decompose it using lemma 2. Let’s

say that controls of the two created CNOT gates are on the first wire and targets on

the second wire. Then we use the inductive assumption on n wires, and cancel out two

gadgets on the same set of wires and with the same angles but with opposite signs by

the properties of phase gadgets from section 2.2.1.1.

The step-by-step transformation of the diagrams looks as follows.

−π
4

=
...

...
n+ 1

−π
4

=
...

...
n

=
...

βn βn βn

. . .
−π
4

. . .
π
4

...

−π
4

...

...

βn βn βn

. . .
−π
4

. . .

αn

αn

αn

αn

αn

αn

Now we commute one CNOT gate through all the phase gadgets until it reaches the

other one, and when it does, we remove two consecutive CNOT gates. In that way, for

all but the first two wires, we have gadgets on each set of 1, 2 or 3 wires with phases αn,

βn and −π
4

respectively, and for each set of 2, 3 or 4 wires containing the first two wires

we have phase gadgets with phases αn, βn and −π
4

respectively. In order to remove the

phase gadgets on 4 wires, for each set of 4 wires on which we have a phase gadget, we

use the spider nest identity of size 4. After this operation, all phase gadgets on 4 wires

are ”annihilated”. Moreover

• for each single wire that is not the first or the second wire, we have a phase gadget

on this wire with phase αn + (n− 2)α4 = −(n− 2)(n− 3)π
8
− 2(n− 2)π

8
= −(n−

1)(n − 2)π
8

= αn+1 (phase αn comes from the phase gadget that was on this wire

initially, and (n − 2)α4 comes from the spider nest identities of size 4 applied to

n− 2 sets containing this wire).

• for of the first and second wires we also have a phase gadget on this wire with phase(
n−1
2

)
α4 = −(n− 1)(n− 2)1

2
π
4

= αn+1, as these wires are in
(
n−1
2

)
sets to which the

identities of size 4 are applied.

• for each pair of wires not including any of the first and second wires, we have a

phase gadget on these two wires with phase βn + β4 = (n− 3)π
4

+ pi
4

= βn+1.

23

• for each pair of wires with exactly one wire from the fires and second wires, we have

a phase gadget on these two wires with phase (n− 2)β4 = (n− 2)π
4

= βn+1.

• for first and second wire, we have a phase gadget on these wires with phase αn +(
n−1
2

)
β4 = −(n− 2)(n− 3)π

8
+ (n− 1)(n− 2)1

2
π
4

= βn+1.

• Finally, for all sets of 3 wires we have a phase gadget with phase −π
4

= βn+(n−2)−π
4

.

This gadget either already was there, was added by a single spider nest identity of

size 4, or was composed of one gadget with phase βn and (n− 2) gadgets of phase
−π
4

.

Diagrammatic representation of these operations looks as follows.

αn

αn

αn

αn

βn βn βn βn βn βn
−π
4

−π
4

−π
4

−π
4

=

...

αn

αn

αn

βn βn βn βn βn βn
−π
4

−π
4

−π
4

−π
4

=

...

αn

n

n− 1

. . .

.

αn+1

αn+1

αn+1

βn+1 βn+1 βn+1
−π
4

...
n+ 1

.

. . .

Finally, in order to get the desired result, we combine two phase gadgets on n + 1

wires to form an identity, as follows.

π
4

αn

αn

αn

βn βn βn
−π
4

n+ 1

.

...
...

π
4

=...

−π
4

...
... =

24

Remark 3. [25] presents a generalized version of this identity (see Theorem 5.1 in [25]),

which proof also relies on induction with inductive step analogical to the presented proof

of theorem 2.

2.3.3 Remarks on spider nest identities

As pointed in [15], phases αn and βn might be even multiples of π
4

(so integer multiples

of π
2
), and consequently have no influence on the T -count of the circuit. More precisely

• For odd n, βn is an integer multiple of π
2
, so all phase gadgets on 2 wires in this

identity do not influence the T -count.

• For n ≡ 2 mod 4, or n ≡ 3 mod 4, αn is an integer multiple of π
2
, so all phase

gadgets of size 1 in this identity do not influence the T -count.

These two observations combined mean that the spider nest identities of size n have

T -count of:

•
(
n
n

)
+
(
n
3

)
+
(
n
2

)
+
(
n
1

)
for n ≡ 0 mod 4,

•
(
n
n

)
+
(
n
3

)
+
(
n
1

)
for n ≡ 1 mod 4,

•
(
n
n

)
+
(
n
3

)
+
(
n
2

)
for n ≡ 2 mod 4,

•
(
n
n

)
+
(
n
3

)
for n ≡ 3 mod 4.

2.3.4 Combining spider nest identities

As we pointed out before, the spider nest identities have T -count of 1
6
n3 + O(n2). This

might lead to difficulties when trying to effectively utilize them in a T -count reduction

algorithm [16, 15] – in order to reduce the number of T gates in a circuit using a single

such identity of increased size, multiple phase gadgets must be present circuit for the

operation to give a significant decrease of T -count.

To overcome this difficulty, one can combine multiple spider nest identities in order to

get composite spider nest identities with significantly lower T -count [16, 15]. The most

basic example of such a combination is the one with two identities with a size difference

of 1 where the smaller one using a subset of wires of the bigger one. This, allows us to

reduce the T -count to n2 +O(n) [15].

25

π
4

−3π
4

−3π
4

−3π
4

−3π
4

π
2

π
2

π
2

π
2

π
2

π
2

−π
4

−π
4

−π
4

−π
4

−3π
4

π
2

π
2

π
2

π
2

−π
4

−π
4

−π
4

−π
4

−π
4

−π
4

π
4

−π
4

−π
4

−π
4

−π
4

π
4

π
4

π
4

π
4

π
4

π
4

−π
4

−π
4

−π
4

−π
4

=

(
5
3

)(
5
2

)(
4
3

)(
4
2

)

π
4

−3π
4

π
2

π
2

π
2

−π
4

−π
4

−π
4

−π
4

π
2

−π
4

−π
4

π
4

−π

−π

−π

−π

3π
4

3π
4

3π
4

3π
4

3π
4

3π
4

−π
2

−π
2

−π
2

−π
2 (

5
3

)
−
(
4
3

)(
5
2

)
−
(
4
2

) (
4
3

)(
4
2

)

Figure 2.1: An example of an identity created by combining the spider nest identities on
4 and 5 wires.

2.4 PHAGE Tactic

In this section, we describe PHAGE Tactics, which were introduced in [15, 16].

The goal of the PHAGE Tactic is to reduce the T -count of diagonal circuits using

families of circuits that are equivalent to an identity transformation. The spider nest

identities are a notable example of such a family, and we, later in this chapter, discuss

using them in that context.

2.4.1 Remark on circuits realizing identity transformation and
circuits equivalence

Before we start considering this setup, we should note that, because of the unitary nature

of quantum circuits, for every circuit, its adjoint circuit is its inverse. That means, that

every equivalence of a form A = B, where A and B are quantum circuits, we can represent

as AB† = AB−1 = I, where I is an identity transformation. That means that the choice

of circuits equivalent to an identity transformation instead of just transformations of

circuits of fixed size, in the case of the PHAGE Tactic will not be a limiting factor.

2.4.2 General PHAGE Tactic

The PHAGE Tactic is a very intuitive, greedy algorithm, which is parameterized with a

family of identities. As described in [15], if we assume that we are given a family Ii of

identities, the PHAGE Tactics applied to a circuit C works as follow:

1. Choose an identity Ii, such that Ii reduces the T -count of C.

26

2. Compute a circuit C ′, such that C ′ is C with applied Ii, and, if possible, further

simplified (for example, if the considered circuit is composed of phase gadgets, then

we might be able to reduce it using their additive property (section 2.2.1.1)).

3. Replace C with C ′ and repeat it until the T -count can be reduced.

Instances of this general algorithm can be found in various publications [15] (for

example these from [6, 18]).

As noted in [15], the difficulty of effectively applying the PHAGE Tactics comes from

the huge number of different subsets of wires to which the identities can be applied, as

well as from the choice of the considered identities themselves. In section 5.1 we discuss

the influence of the way we pick the next identity to be considered on the final result of

the algorithm using real-world circuits as the examples.

It is also worth mentioning that the difficulty of the problem itself is tightly related

to the difficulty of decoding the Reed-Muller codes [7].

2.4.3 PHAGE Tactics and spider nest identities

Combining the above algorithm, with the composite spider nest identities (which we

describe in section 2.3.4), leads to the emergence of PHAGE4 and PHAGE5 tactics [15],

which we describe here.

2.4.3.1 Definition of considered sets of identities

Before we look at the tactics themselves, let’s first formally introduce the sets of identities

that we will consider.

Definition 3. Let’s say that, for finite W ∈ Z+, |W | > 4, NW is a spider nest identity

on wires from set W .

Now we define, Si, for i ∈ {4, 5}, as:

• S4 := {N[4]},

• S5 :=
{
N p0

[5]N
p1
[5]\{1}N

p2
[5]\{2}N

p3
[5]\{3}N

p4
[5]\{4}N

p5
[5]\{5} : (pi)

5
i=0 ∈ {0, 1}

6 \ {(0)6}
}
.

Remark 4. Some identities in S5 are equivalent up to a permutation of wires. This

implicitly makes the PHAGE5 Tactic use them more often.

27

2.4.3.2 PHAGE4 and PHAGE5 Tactics

Let’s take a list L of all elements of S5 (or S4).

The PHAGE5 (or PHAGE4) tactic work as follows:

1. For each identity I ∈ L, repeat R times (where R is some fixed constant):

(a) Choose uniformly at random S ⊆ [n], such that |S| = 5 (or |S| = 4).

(b) Let K be the identity I but action on the qubits from the set S.

(c) Apply the tactic PHAGE with the singleton set of identities {K}.

These tactics, despite their simplicity, turned out to be of significant effectiveness [15],

which indicates the expressiveness of the spider nest identities.

2.4.3.3 A small example of the advantage of composites spider nests

The greediness of the PHAGE Tactic makes the usage of the composite spider nests a

significant advantage over a similar algorithm, but using only the spider nests on 4 and

5 wires as the identities. Let’s illustrate it with the following, small example.

Let’s take the following circuit (represented by a ZX diagram) on 5 wires.

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

This circuit consists of 8 phase gadgets, all with phase π
4
, which means that it has

T -count equal to 8. There are all possible 6 phase gadgets on each pair of the last four

wires, as well as two phase gadgets on three wires – on first, second and third, and on

first, fourth and fifth wire.

First of all, let’s note that using a composite spider nest identity presented in sec-

tion 2.3.4, we can reduce this circuit as presented below.

=

π
4

−3π
4

π
2

π
2

π
2

−π
4

−π
4

−π
4

−π
4

π
2

−π
4

−π
4

π
4

−π

−π

−π

−π

3π
4

3π
4

3π
4

3π
4

3π
4

3π
4

−π
2

−π
2

−π
2

−π
2

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

π
4

−3π
4

π
2

π
2

π
2

−π
4

−π
4

π
2

−π
4

−π
4

π
4

−π

−π

−π

−π

π π π π π π −π
2

−π
2

−π
2

−π
2

28

The resulting circuit has only 7 phase gadgets with phases that are odd multiples of
π
4

– one on 1 wire, 4 on 3 wires, one on 4 wires and one on 5 wires – so it has a strictly

smaller T -count.

Now, let’s notice that using the spider nest identity on all five wires, we cannot reduce

the T -count of this circuit, as it has no phase gadgets influencing the T -count on sets of

2 wires, and by using it, we can only ”remove” the 2 phase gadgets on 3 wires, which

leads to increase of the T -count from 8 to 20

If we try to apply a spider nest identity on the last four wires, then we will reduce

all the phase gadgets on 2 wires, but we will still increase the T -count to 11 – we add

4 phase gadgets on 1 wire, 4 on 4 wires, 1 on 4 wires, and we don’t reduce the phase

gadgets on 3 wires that are connected to the first wire.

Finally, if we try to apply a spider nest identity on some other set of four wires, then

we will reduce exactly 3 phase gadgets on 2 wires and one phase gadget on 3 wires, so

we will have a circuit of T -count 16.

This example, although simple, illustrates well the power of a thoughtful way of

choosing the considered identities.

2.5 Algorithm

In this section, we present a recap of the algorithm presented in [15] with a description

of all individual parts.

The input of the algorithm is a circuit with gates NOT , CNOT , Toffoli, Z, CZ, CCZ,

Hadamard, S, T , SWAP . The algorithm aims to reduce the T -count of the given circuit

without changing its semantics. In order to achieve that goal, we proceed as follows.

1. Decompose all Toffoli gates into Hadamard gate, CCZ gate and Hadamard gate.

2. Split the circuit into 3 parts:

• The initial part, which contains only Clifford operations,

• The main part, which contains all non-Clifford operations (so it is the only

part that determines the T -count of the circuit),

• The final part, which contains only Clifford operations.

3. Move as many Hadamard gates out of the main part as possible using the procedure

moveH described below.

4. Replace all Haramard gates that remain in the main part, by Hadamard gate gad-

getisation described below.

29

5. Decompose as many gates as possible into phase gadgets and commute all gates

that are not phase gadgets to either the initial or the final part of the circuit as

described below.

6. Treat the main part not as a sequence of gates, but as a set of gadgets. Sum the

phases of gadgets that are using the same sets of wires.

7. Use the PHAGE Tactics with the spider-nest identities (as in section 2.4.3).

8. Transform the main part of the circuit back to a list of operations (in any order)

and return the whole circuit.

Remark 5. The initial steps of the algorithm were first introduced in [18] and then

modified in [15], in order to improve their performance.

2.5.1 moveH

The procedure moveH attempts to move as many Hadamard gates from the main part of

the circuit to the initial and final parts. It realizes it by the following rules.

• Hadamard gate any other gate on strictly different wires commute,

• Two consecutive Hadamard on the same wire cancel out,

=H H

• Hadamard gate commutes through CNOT changing it to CZ,

=⊕H H

• Hadamard gate commutes through CZ changing it to CNOT ,

= ⊕ HH

• Hadamard gate commutes through NOT changing it to Z,

=⊕ Z HH

• Hadamard gate commutes through Z changing it to NOT ,

= ⊕Z HH

30

• Hadamard gate commutes through SWAP by changing the wire to which it is

applied.

=
H

H

Moreover, if a gate following a Hadamard gate does not commute, then it tries to move

the following gate first by similar rules, for example, we can use these rules, among others,

to move the CNOT gate.

=⊕ ⊕
Z

=⊕ Z ⊕Z

Z

It also tries to apply the following rule, which does not commute the Hadamard gate

but decreases the number of Hadamard gates in the main part.

HSH = HS Z S Z

Moreover, it tries to use the following two rules, which does not decrease the number

of Hadamard gates and does not move the Hadamard gates past the following gates, but

as they change the location of the Hadamard gate, they might allow a one that is stuck,

to commute further.

=⊕
H H ⊕

H H
=⊕

H

H

⊕
H

H

Combining all these rules we get a procedure that moves all Hadamard gates to one

end of a circuit. We apply it two times to the main part - once to commute as many gates

as possible to the final part of the circuit, and then once to move as many as possible

remaining Hadamard gates to the initial part of the circuit. In that way, we reduce the

number of Hadamard gates in the main part without increasing the number of wires and

T -count.

2.5.2 Hadamard gate gadgetisation

To decompose the Hadamard gate, we use Hadamard gadgetisation [18], which can be

represented as follows.

|+〉
= H

X

⊕
(2.17)

That means that using a single auxiliary qubit, SWAP and CZ gates and one classically

controlled NOT operation, we can decompose a Hadamard gate without introducing any

31

additional T gates, or in other words, the Hadamard gate can be rephrased as a post-

selection which does not affect the T-count of a circuit. Moreover, as we will shortly see,

the CZ gate can be easily transformed into a phase gadget.

For each Hadamard state that we have in the main part, we need to prepare an

auxiliary state in the initial phase and perform a classically controlled NOT operation in

the final phase. Unfortunately, this procedure increases the number of wires in the main

part by the number of remaining Hadamard gates, so the procedure moveH is indeed

crucial for the effectiveness of this algorithm.

In terms of ZX-diagrams, one might rephrase eq. (2.17) as the following observation

2.

Observation 2.

= =
π

π

=π π

2.5.3 Decomposing gates into phase gadgets

Using the following identities for we transform the following gates into phase gadgets.

• = πZ

• = π
2S

• = π
4T

• = = π
2

π
2

π
2

= π
2

π
2

π
2

=
π
2

π
2

−π
2

• We can obtain the decomposition of CCZ gate in multiple ways. We move by a

”brute force” all CNOT gates to one side of the circuit, as it is presented in the

following section, such that they cancel out, and we get the following identity. We

present only the first step of the process of commuting the CNOT gates as all other

32

steps are analogical.

π
4

=

−π
4

π
4

π
4

π
4

−π
4

−π
4

=

π
4

π
4

=
−π
4

π
4

−π
4

π
4

−π
4

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

2.5.4 Commuting other gates

After the previous step, the main part of the circuit consists only of the phase gadgets

and SWAP , CNOT and (possibly classically controlled) NOT gates. Now we commute

each of these gates to either the initial or final part of the circuit.

2.5.4.1 SWAP

The commutation of the SWAP gate is straightforward. We just swap the two swapped

wires.

2.5.4.2 CNOT

In one case, we commute CNOT gate using lemma 2 and cancelling out two consecutive

CNOT gates, as follows.

= ... α
... α

... α

=

The second possible case, as demonstrated below, is straightforward.

= ... α
... α

33

2.5.4.3 NOT

To commute the (possibly classically controlled) NOT gate, we first consider the com-

mutation of NOT gate as follows.

... α
=

π

... α
=π

π

... απ

π

= ... −α

π

Which, by lemma 3, means that we can represent the commutation of classically

controlled NOT gate as follows.

... α

π, s

= ... α

π, s

... −2α, s

This representation is particularly fortunate, as, because we only use α that is a

multiple of π
4
, the controlled phase gadget always is a multiple of π

2
, so we can move it to

the final part and keep all the phase gadgets with odd multiples of π
4
, so all influencing

the T -count, in the main part.

2.5.4.4 Direction of commutation

It is of high importance to note that the above commutation rules can be used to commute

the gates in both directions. The direction of commutation of SWAP gate, because of the

nature of its commutation, does not influence the algorithm. It is similar with (possibly

classically controlled) NOT gates, as they only negate the angles and introduce the phase

gadgets with even multiples of π
4
.

The commutation of the CNOT gate is the only source of introducing phase gadgets

on multiple wires. To minimize the average size of phase gates that are present in the

main part of the circuit, the direction of the commutation is based on the difference of

the number of phase gadgets that will be expanded by the given CNOT gate (such that

the common wire of the CNOT and the phase gadget is the target of the CNOT) and

phase gadgets that will get the number of wires decreased by the given CNOT gate (such

that both wires used by CNOT are also used by the phase gadget).

34

Chapter 3

Rephrasing the phase gadgets
T-count reduction

The final step of the algorithm, the PHAGE Tactics is used to optimize the T -count of

a circuit expressed entirely using phase gadgets. Let’s phrase it as a completely formal

and abstract computational problem. In order to do so, let’s first introduce the following

definition.

Definition 4. For a set A ∈ P (P ([k])) and an injective function σ : [k]→ [n] we denote

σ(A) := {{σ(a) : a ∈ A} : A ∈ A}.

Remark 6. We use a standard notation [n] := {1, ..., n}.

Problem 1. [Optimal phase gadgets T-count reduction]

Input: Positive integers n, k and li (for i ∈ [k]), a set C ∈ P (P ([n])), and k sets

Ii ∈ P (P ([li])).

Output: A set C ′ ∈ P (P ([n])) of a form C ′ := C4σ1(Ii1)4...4σm(Iim), where

ij ∈ {1, ..., k} and σij : [lij] → [n] are injective functions, such that C ′ has minimal

possible size.

3.1 Correspondence to the PHAGE Tactics

The goal of the PHAGE Tactics is to reduce the number of phase gadgets with a phase

which is an odd multiple of π
4

in the circuit as much as possible. Note that as we mentioned

before – each such phase gadget corresponds to exactly one T gate. In that way, we can

treat the set C as the description, where a single set g ∈ C indicates a single phase gadget

g on wires w ∈ g with a phase which is an odd multiple of π
4
.

In a similar way, we represent the identities that can be used in the Phase tactics.

Each identity is represented by a set Ii, which is set containing some phase gadgets with

odd multiples of π
4
. The gadgets with even multiples of π

4
are ignored, as they don’t

35

influence the T -count in any way. An example of such representation of identity is the

representation of a spider nest identity of size 4, which is P ([4]) \ {∅}.
The injective functions σij correspond to choices of wires on which we want to apply

the chosen identities. It is worth pointing out here that thanks to the commutative

property of the phase gadgets (section 2.2.1.1), the choice of wires is sufficient to determine

how the identity will transform the circuit.

Moreover, because of the additive property of the phase gadgets (section 2.2.1.1), a

symmetric difference of the described representations of circuit and identity is a repre-

sentation of a circuit obtained by applying chosen to identify to that circuit.

Let’s note that, as mentioned in [15], the PHAGE Tactics, is an example of a greedy

algorithm, which aims to solve this abstract problem. The optimization used in [15]

– usage of composite spider nest identities – aims to improve the performance of the

heuristics and is very effective in practice [15].

3.2 T-count optimization using spider nest identities

As the problem 1 is parametrized with the considered identities, we can give a more spe-

cific formulation – using exactly the identities that we consider, the spider nest identities,

that will correspond to our application.

First let’s define the identities in terms of sets (these are fixed, and are not parameters

of the problem).

Definition 5. For n > 4, we define

In :=

(
[n]
n

)
∪
(
[n]
3

)
∪
(
[n]
2

)
∪
(
[n]
1

)
if n ≡ 0 mod 4(

[n]
n

)
∪
(
[n]
3

)
∪
(
[n]
1

)
if n ≡ 1 mod 4(

[n]
n

)
∪
(
[n]
3

)
∪
(
[n]
2

)
if n ≡ 2 mod 4(

[n]
n

)
∪
(
[n]
3

)
if n ≡ 3 mod 4

where
(
A
k

)
:= {B ⊆ A : |B| = k} (so for example

(
[n]
n

)
= {[n]}, or

∣∣∣([n]k)∣∣∣ =
(
n
k

)
).

Problem 2. [Optimal phase gadgets T-count reduction using spider nest identities]

Input: Positive integer n and a set C ∈ P (P ([n])).

Output: A set C ′ ∈ P (P ([n])) of a form C ′ := C4σ1(Ii1)4...4σm(Iim), where

ij ∈ {4, ..., n} and σij : [ij] → [n] are injective functions, such that C ′ has minimal

possible size.

Remark 7. As all the identities Ik, are symmetric – i.e. for every permutation σ :

[k] → [k], σ(Ik) = Ik – in the problem 2, instead of choosing the injective functions

σij : [ij]→ [n], we can choose subsets of [n] of size ij.

36

Such a problem naturally corresponds to the problem that we consider – minimizing

the T -count of a circuit using spider nest identities. The sets (or identities) In, as

described in section 3.1, are created from the spider nest identities, and contain exactly

the sets of wires to which the phase gadgets with phases that are odd multiples of π
4

are

connected.

3.2.1 Completeness of spider nest identities

When given such a general problem, a natural question about its completeness arises – if

given a circuit on n wires, consisting of only phase gadgets with phase π
4

on sets of wires

C ⊆ P (P ([n])), if we can reduce the T -count of such circuit to m, can we also get a set

C ′, such that |C ′| = m, in problem 2. The answer to this question is not apriori obvious,

as there are some circuits transformations that we can perform on the circuits, but not in

our problem – for example, for n = 3, we can do the following transformation of circuits,

=

π
4

=

π
4

π
4

π
4

π
4

π
4

, (3.1)

but using only spider nest identities, we cannot express the transformation

{{2, 3}, {1, 2}} 7→ {{1, 2, 3}, {2}} .

Note that these sets, even though they don’t represent equivalent circuits, should we con-

sidered equivalent in our problem, as they are equal up to preceding and following Clifford

transformations (and we already ignore phase gadgets representing Clifford operations in

our definition of the problem).

3.2.2 Extending the problem

If the spider nests are not enough for completeness result for this problem, one might con-

sider an extended version of that problem with added relevant transformations. Following

the above example, we can present such an extended version in the following way.

Definition 6. We call a function f : P (P ([n]))→ P (P ([n])) such that

f(A) := {X ∈ A : c 6∈ X} ∪ {X4{t} : c ∈ X}

a (t, c) CNOT transition.

37

Remark 8. A (t, c) CNOT transition corresponds to the transformation of phase gadgets

in a circuit when a CNOT gate commutes from one end of the circuit to another. t

corresponds to the target wire, and c corresponds to the control wire.

Problem 3. [Optimal phase gadgets T-count reduction using spider nest identities and

CNOT transitions]

Input: Positive integer n and a set C ∈ P (P ([n])).

Output: A set C ′ ∈ P (P ([n])) of a form C ′ := fm (fm−1 (...f1 (f0 (C)4σ1(Ii1))4...)4σm(Iim)),

where ij ∈ {4, ..., n} and σij : [ij]→ [n] are injective functions, such that C ′ has minimal

possible size, and where for every l ∈ {0, 1, ...,m}, fl is either an identity, or a composition

of (t, c) CNOT transitions (for t, c ∈ [n]).

3.3 Significance and open questions

Such a formal approach allows us to better understand what the spider nests are capable

of and consider their possible limitations.

As the last part of this chapter, we leave an open question – whether the spider nest

identities (or spider nest identities with CNOT transitions) are complete in terms of

T -count reduction.

Remark 9. Let’s note that we ask about the completeness in terms of T -count reduction,

as eq. (3.1) instantly proofs that spider nests themselves are not complete in terms of

non-Clifford phase gadget transformations up to Clifford operations.

38

Chapter 4

Dense spider nest identities

In this chapter, we define and prove the existence of dense spider nest identities, which are

an alternative (and possibly more natural) way of expressing the spider nest identities.

Definition 7. We say that a composite spider nest identity is dense, if, for every

nonempty set of wires, it has a phase gadget on this set of wires with a phase which

is an odd multiple of π
4
. We call such a composite spider nest identity, a dense spider

nest identity.

4.1 Existences of all dense spider nest identities

Theorem 3. For every n > 4, there exists a dense spider nest identity on n wires.

Proof. To prove this theorem, let’s give a precise example.

Theorem 4. A circuit composed of phase gadgets such that for each W ⊆ [m], W 6= ∅,

if

• |W | > 4, then on set of W of wires, we have a phase gadget with phase π
4
,

• |W | = 3, then on set W of wires, we have a phase gadget with phase

−π
4

(
2n−3 − 1

)
,

• |W | = 2, then on set W of wires, we have a phase gadget with phase

π

4

(
2n−3n− 2n−1 + 1

)
,

• |W | = 1, then on set W of wires, we have a phase gadget with phase

−π
4

(
7 ∗ 2n−3 − 7 ∗ 2n−4n+ 2n−4n2 − 1

)
,

39

is equivalent to an identity transformation.

Proof. We compose the circuit out of spider nest identities on all sets of wires W ⊆ [n]

such that |W | > 4.

By the definition of the spider nest identities, on each set of at least 4 wires, we have

a phase gadget with phase exactly π
4
.

For a fixed set W of 3 wires, we get a phase gadget on W with phase −π
4

for each

set of at least 4 wires, that is a superset of W , which means that sum of phases of these

gadgets will be equal to

−π
4

n∑
k=4

(
n− 3

k − 3

)
=
−π
4

(
2n−3 − 1

)
.

For a fixed set W of 2 wires, we get a phase gadget on W with phase π
4
(k − 3) for

each set of k > 4 wires, that is a superset of W , which means that sum of phases of these

gadgets will be equal to

π

4

n∑
k=4

(k − 3)

(
n− 2

k − 2

)
=
π

4

(
2n−3n− 2n−1 + 1

)
.

For a fixed set W of 1 wire, we get a phase gadget on W with phase −π
8

(k− 2)(k− 3)

for each set of k > 4 wires, that is a superset of W , which means that sum of phases of

these gadgets will be equal to

−π
4

n∑
k=4

(k − 2)(k − 3)

2

(
n− 1

k − 1

)
=
−π
4

(
7 ∗ 2n−3 − 7 ∗ 2n−4n+ 2n−4n2 − 1

)
.

Now it remains to notice, that for n > 4, all numbers

• 2n−3,

• 2n−3n− 2n−1,

• 7 ∗ 2n−3 − 7 ∗ 2n−4n+ 2n−4n2,

are even. It concludes the proof of theorem 3.

40

4.2 Elegant dense spider nest identities

The expressions for phases of small phase gadgets in theorem 4 are complicated enough

not to give us precise information about the phases at a glance. Let’s solve this problem

with the following theorem and two observations.

Theorem 5. For n > 6, a circuit composed of phase gadgets on all nonempty subsets of

[n] with phases exactly π
4

is equivalent to an identity transformation.

Proof. It is enough to notice that all the numbers

• 2n−3,

• 2n−3n− 2n−1,

• 7 ∗ 2n−3 − 7 ∗ 2n−4n+ 2n−4n2,

for n > 6 and are multiples of 8 and use theorem 4.

4.2.1 Two small dense spider nest identities

Finally we have two remaining dense spider nest identities, for n = 4 and n = 5.

Remark 10. The dense spider nest identity on 4 wires is exactly the spider nest identity

on 4 wires, so it has

• phase gadgets on 1 wire with phases −π
4

,

• phase gadgets on 2 wires with phases π
4
,

• phase gadgets on 3 wires with phases −π
4

,

• phase gadget on 4 wires with phase π
4
.

Remark 11. The dense spider nest identity on 5 wires has

• phase gadgets on 1 wire with phases π
4
,

• phase gadgets on 2 wires with phases −3π
4

,

• phase gadgets on at least 3 wires with phases π
4
.

Finally, in order to reduce these two special cases, we can use the two following

lemmas.

41

Lemma 5.

π

=

π

π

π

π

π

π π

π

π

Proof. It follows directly from the π-copy rule (see π-copy rule in [14]).

Lemma 6.
π
2

π
2

π
2

π
2

π
2

=

π
2

π
2

π
2

Proof. In order to prove this lemma, let’s note that it is sufficient to prove the following

identity, as then we can connect it, using green nodes, to four wires.

π
2

=

π
2

π
2

π
2

π
2

π
2

π
2

π
2

To do so, we first, using the strong complementarity, merge two pairs of gadgets (which

is a generalization of their additive property). Then we transform the green π
2

spiders

(with one input) to red spiders with phases −π
2

(see the Proposition 9.109 in [14]). Then,

in a few steps, we create Hadamard gates (using equation (9.114) from [14]). Now, in

order to use the strong complementarity again, we move Hadamard gates and red spiders

and use it. Finally, we break the symmetry of the circuit, by moving both Hadamrd gates

towards the same pair of outputs and moving green and red nodes with phases π down

and up respectively. The few last steps are just removing the doubled wires, changing

the colour of a red spider, and the π-copy rule (see π-copy rule in [14]).

42

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

=

π
2

π
2

π
2

π
2

π
2

π
2

π
2

π
2

=

π
2

π
2

π
2

π
2

−π
2

−π
2

−π
2

−π
2

=

π

π

π

π

−π
2

−π
2

−π
2

−π
2

=

−π
2

−π
2

−π
2

−π
2

π

π

π

π

−π
2

−π
2

−π
2

−π
2

=

−π
2

−π
2

−π
2

−π
2

−π
2

−π
2

−π
2

−π
2

π
2

π
2

π
2

π
2 π

π

π

π

=

π
2

π
2

π
2

π
2

π

π

π

π

=

π
2

π
2

π
2

π
2 π

π

π

π

=
π

π

ππ

ππ

=
π

π

ππ

ππ

=π

ππ

ππ

=π

π

π

ππ

ππ

π

π

ππ

π

= =

4.3 All elegant dense spider nest identities

Combining all previous observations we can finally state the following, final theorem

about elegant dense spider nest identities.

43

Theorem 6. For n > 4, a circuit composed of phase gadgets on all nonempty subsets of

[n] with phases exactly π
4

is equivalent to an identity transformation.

Proof. Follows directly from theorem 5, remarks 10 and 11, and lemmas 5 and 6.

4.4 Modification of problems from chapter 3

Using theorem 3, we can instantly simplify the formulations of the problems 2 and 3 by

replacing In with P([n]) \ {∅} (for each n > 4), or simplify it even further, by replacing

σj(Iij) by P (Aj) \ {∅} for Aj ⊆ [n], |Aj| > 4.

A formulation of problem 2, after this simplification, looks as follows.

Problem 4. [Optimal phase gadgets T-count reduction using dense spider nest identities]

Input: Positive integer n and a set C ∈ P (P ([n])).

Output: A set C ′ ∈ P (P ([n])) of a form C ′ := (C4P (A1)4...4P (Aj)) \ {∅}, where

for each i ∈ [j], Ai ⊆ [n] and |Ai| > 4, minimizing |C ′|.

4.4.1 Natural generalisation

The formulation of problem 4 leads to a natural generalisation, where we consider pow-

ersets of sets of sizes restricted by some given integer, which in the case of problem 4 is

equal to 4.

Problem 5. [Restricted optimal phase gadgets T-count reduction using big and dense

spider nest identities]

Input: Positive integers k and n, and a set C ∈ P (P ([n])).

Output: A set C ′ ∈ P (P ([n])) of a form C ′ := (C4P (A1)4...4P (Aj)) \ {∅}, where

for each i ∈ [j], Ai ⊆ [n] and |Ai| > k, minimizing |C ′|.

Remark 12. Problem 2 for k > 4 corresponds to a T -count reduction in a circuit

composed of phase gadgets using dense spider nest identities of a size at least k. For

k < 4 there is no obvious correspondence to the problem of T -count reduction. Moreover,

for k = 1 the problem has a trivial solution.

44

Chapter 5

Modifications of the PHAGE Tactics

In this chapter, we focus on various modifications and improvements of the used PHAGE

Tactics (which we described in section 2.4). We discuss their influence on the result of

T -count reduction, examine their strong and week sides, as well as present quantitative

results of the improved methods.

5.1 Order matters

In this section, we focus on the influence of the order of identities used in the PHAGE5

tactics on the final output of the algorithm. We quantitatively compare results for dif-

ferent orders and present our results with conclusions.

5.1.1 Motivation

Results presented in [15] reached and improved the state of the art for multiple of the

considered circuits, however in the case of two noticeably small circuits, namely Barenco

Tof4 [15] (also know as Λ4(X) [6, 8]) and NC Toff5 [15], it didn’t reach the state of

the art results missing them by a small margin – one T gate. That made us consider

modifications of the algorithm that would improve results in cases of these circuits, and

possibly in the case of both families of circuits from which these two circuits come. As

the PHAGE5 Tactic is using a fixed list of identities (as described in section 2.4.3) which

are considered in the given order, the natural question is how and if will reshuffling the

list affect the efficiency of the procedure.

5.1.2 Process of constructing the order

For the sake of simplicity of the description, let’s define PHAGE5(L), as a procedure

analogical to PHAGE5, but using a different list of considered identities.

45

To systematically find out how the order of identities affect the result of PHAGE5(L)

Tactics, we used the following procedure.

1. Choose a fixed number K (in our case we mostly used K = 10).

2. Prepare and store K empty lists.

3. Repeat until the desired T -count is reached.

(a) For every list L of the K lists, and every element I of S5 such that I is not in

L, take L′ which is L with added I as the last element.

(b) Execute the algorithm with PHAGE5(L′) Tactic.

(c) Choose K lists L′ achieving the best results as the new stored lists.

Using this simple procedure we were able to extract various lists of length up to 5

such that both circuits of our interests reached the desired result. By considering the

monotonicity of various features of the lists (for example if from some point on, every

identity used was created with nonzero power of N[5]), we noticed that they share a

common feature – they were decreasing with respect to the T -count. As this feature is

not determining a total order of the identities, we sampled various orders holding this

feature and confirmed that in all the cases we reached the desired T -count.

From now on, if we do not explicitly specify otherwise, the order refers to an instance

of order in which identities with higher T -count are followed by the identities with lower

T -count (decreasing with respect to T -count).

5.1.3 Results

As we found out, it is possible to affect (and sometimes improve) the result of PHAGE5

tactics. Unfortunately, this result turned out to be only a partial success, as in the case

of some circuits, the opposite order was a strictly better choice. With multiple attempts,

we were not able to find a single order that ”suits them all”. Moreover, identification an

optimal order of identities, or at least deciding which out of multiple orders is the best,

is a challenging task itself.

In table 5.1 we present a comparison of results from [15] and our results – using the

described above order as well as the revered order.

46

Circuit result from [15] the order the reversed order
initial #T #T #T #T

Adder8 399 176 209 208
Barenco Tof3 28 13 14 13
Barenco Tof4 56 25 24 25
Barenco Tof5 84 37 36 37
Barenco Tof10 224 97 98 98
CSLA MUX3 70 44 45 50
CSLA MUX9 196 84 84 84
GF(24) Mult 112 53 56 57
GF(25) Mult 175 88 88 86
GF(26) Mult 252 128 130 128
GF(27) Mult 343 167 173 184
GF(28) Mult 448 229 236 232
GF(29) Mult 567 306 281 277
GF(210) Mult 700 357 355 353
GF(216) Mult 1792 972 973 966

Mod54 28 7 7 7
Mod Adder1024 1995 1010 1007 1009

Mod Mult55 49 19 20 20
Mod Red21 119 65 61 63

QCLA Adder10 238 147 152 143
QCLA Com7 203 84 79 83
QCLA Mod7 413 233 229 231
RC Adder6 77 38 41 38
NC Toff3 21 13 13 13
NC Toff4 35 19 19 19
NC Toff5 49 26 25 26
NC Toff10 119 60 59 60

VBE Adder3 70 20 20 20

Table 5.1: Comparison of initial T -count of the circuits, results presented in [15], achieved
by the PHAGE5 tactics with identities ordered by the T -count in decreasing, and increas-
ing order. All results, except those for Mod Adder1024 and QCLA Mod7 circuits, were
verified using [3].

47

5.1.4 Usage in practical applications

Even though we were not able to create an ”optimal” ordering of the identities, we

should note that in practical quantum circuit compilers, a useful approach would be

the usage of PHAGE5(L) algorithm with various choices of L. Moreover, by utilizing

the parallel computing capabilities of the modern CPUs, it would be feasible to execute

simultaneously multiple instances of the PHAGE5(L) at the same time

5.2 Other modifications

Here we present some other modifications of PHAGE Tactics that we considered, which

did not give us any notable results. We also discuss our approaches and related problems.

5.2.1 Changing the distribution of the identities

As pointed out in [15], and as we pointed in section 2.4.3, in the set of identities considered

in PHAGE5 tactic, there are multiple occurrences of identities that are equivalent up to

a permutation of wires. This makes us consider a natural question – is this distribution

the optimal one, or maybe, could we improve the algorithm by choosing a different one.

5.2.1.1 Results

In order to check the influence of the distribution of identities, we tested various different

distributions. For example a uniform distribution of all 10 unique (up to permutation of

wires) composite spider nest identities, distribution proportional to the inverse of T -count

and others. The results of this approach, as we quickly noticed, were highly dependent

on the order of the considered identities, not on their distribution (assuming that the

same number of identities was chosen and that we did not skip any identities). As we

already considered the influence of the distribution on the result, we moved to different

approaches.

5.2.2 Problems with bigger identities

A different modification of the algorithm that we considered, was incorporating bigger

spider-nest identities. In our case, we have chosen to test the identities of sizes from 6 to

8. Before we further describe this approach, let’s first discuss more the composite spider

nest identities.

48

5.2.2.1 Composite spider nest identities on n wires

In order to classify the composite spider nest identities on n wires, let’s have the following

lemma.

Lemma 7. There exists a bijection between composite spider nest identities on n wires

with phase either 0 or π
4

for all phase gadgets on at least 4 wires and subsets of P ([n])

containing elements of size at least 4.

Proof. If we choose A ⊆ P ([n]) such that for every a ∈ A, |a| > 4, then we create an

unique composite spider nest identity from this set, as composition of all Na for a ∈ A
(see definition 3). Let’s note that two composite spider nest identities created from two

different sets A and B are different – if a ∈ A and a 6∈ B, then the phase gadget on wires

from a has phase π
4

in the identity created from A and phase 0 in the identity created

from B.

Moreover, for a given composite spider nest identity, we can create a set A corre-

sponding to this identity taking as its elements all the sets of at least 4 wires, on which

we have a phase gadget with phase π
4
.

This means that the number of all different, nontrivial composite spider nest identities

on n wires grows double exponentially, and to be precise, it is equal to

2(2n−
∑3

k=0 (n
k)) − 1.

Let’s note that already for n = 6 this number already is equal 222 − 1.

5.2.2.2 Results and discussion

As the number of all possible composite spider nest identities grows so rapidly, direct

use of all possible composite spider nest identities on at least 6 wires is unrealistic. This

motivates the search for an optimal subset of these identities to be used. Unfortunately,

we were not able to choose the bigger identities in any effective way. We tested adding

the bigger composite spider nest identities with lower T -count, higher T -count, choosing

them at random and combining all these approaches, but none of them achieved better

than PHAGE5 procedure results.

5.2.2.3 Possible explanations and need for other approaches

The spider nest identities of bigger sizes, not only, in their base form, have significantly

higher T -count, but also act on more wires, which makes them significantly more chal-

lenging to use effectively. It is caused by the fact that there are significantly more possible

choices of wires on which we can apply them. Moreover, if we decide to use the ones with

49

a higher T -count, we will not only have noticeably more choices of different sets of wires

but also each choice will need to contain more phase gadgets influencing the T -count.

This suggests a need for a different, more circuit-oriented approach to utilizing them in

T -count reduction problems.

50

Chapter 6

Modifications of the decomposition
phase

In the previous chapters, we focused on modifications of circuits composed of the phase

gadgets assuming the decomposition to be fixed and given. In this chapter, we consider

the usage of different prepossessing steps, motivated by the procedure presented in [25],

which describes the commutation of generalized Toffoli gates. We present alternative

proofs based on the spider nest identities, for special cases of the commutation steps, that

are necessary for transforming the family of Galois Field multipliers circuits. We use it

then as a prepossessing step, to move the CNOT gates away from the main part of the

circuit [25], for the algorithm from [15] in order to reach a new state of the art results for

optimization of the GF (2m) multipliers circuits family. Finally, we also discuss problems

that arise from attempts to generalize these results for the other circuits.

6.1 Commutation rules for the GF (2m) multipliers

The GF (2m) circuits can be expressed using only Toffoli and CNOT gates [11], which

allows us to move the CNOT gates away from the middle of the circuit, as it is presented

in [25]. It is done using the commutation rules which we present here along with proofs

based on the phase gadgets and spider nest identities (lemmas 8 to 10). For the sake

of completeness, we should note that [11, 25] present a more complete set of rules – for

Toffoli gates with controls of arbitrary size – which we do not consider here.

First, we consider the most basic case.

Lemma 8. If the targets of a Toffoli gate and a CNOT gate are the same wire, we can

commute these gates without any problems.

⊕⊕ = ⊕ ⊕

51

The proof of this property is straightforward.

Proof. First, we decompose the Toffoli gate, then we merge the CNOT gate with the

Hadamard gate, we commute green nodes, and again move the Hadamard gate to finally

compose the gates back.

⊕

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=⊕⊕ =

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

⊕

= ⊕ ⊕

The more interesting case is the one of target gate of the Toffoli gate on the same

wire as the control of the CNOT gate.

Lemma 9. In that case commutation of the CNOT will result in an emergence of a new

Toffoli gate.

⊕
⊕ =

⊕ ⊕
⊕

Proof. In order to prove this equality we start in a similar way as in the proof of lemma 8,

then we need to commute the CNOT gate through multiple phase gadgets, as we de-

scribed it in section 2.5.4.2. Now, in order to remove the phase gadget on 4 wires, we

use the spider nest identity (more precisely, we use its adjoint, as the adjoint of identity

is an identity). Finally, we commute two Hadamard gates through the CNOT gate and

compose all the gates back.

52

⊕
⊕ =

⊕

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

−π
4

π
4

π
4

π
4

π
4

−π
4

−π
4

−π
4

−π
4

−π
4

−π
4

π
4

π
4

π
4

π
4

=

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

⊕

=

⊕ ⊕
⊕

Analogical transformation happens when the target of a CNOT gate is on the same

53

wire as one of the controls of a Toffoli gate.

Lemma 10.

⊕

⊕

=
⊕

⊕ ⊕

The proof of this equality is mostly analogical to the one of lemma 9.

Proof.

⊕

⊕

=
⊕

=
π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

−π
4

π
4

π
4

π
4

π
4

−π
4

−π
4

−π
4

−π
4

−π
4

−π
4

π
4

π
4

π
4

π
4

=

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

⊕
=

⊕

⊕ ⊕

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

=

=

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

π
4

π
4

π
4

−π
4

−π
4

π
4

−π
4

54

Circuit [15] [25] Ours
initial #T #T #T #T

GF (24) Mult 112 53 62 50
GF (25) Mult 175 88 97 83
GF (26) Mult 252 128 131 109
GF (27) Mult 343 167 183 157
GF (28) Mult 448 229 263 223
GF (29) Mult 567 306 299 262
GF (210) Mult 700 357 361 314
GF (216) Mult 1792 972 1038 963

Table 6.1: Comparison of our T -count reduction results and those from [25, 15]. All
results were verified using [3].

6.2 Preprocessing step

Using these commutation rules, we can, before processing the circuit in any other way,

move all CNOT gates away from the main part of the circuit. To be precise, for each

CNOT gate we check if we should commute it to the left, or to the right by counting

the number of Toffoli gates it interacts with during the commutation. It is a heuristics

analogical to the one used in section 2.5.4.2. The choice of such a metric is motivated by

lemmas 9 and 10 – each commutation of a CNOT and Toffoli gates produces a single

new Toffoli gate.

6.2.1 Differences and advantages

In the procedure from [15], the Toffili gates will be decomposed into CCZ andHadamard

gates, then we will attempt to move the Hadamard gates, and only after it is done, we

will attempt to move the CNOT gates. This might lead, and in the case of all considered

circuits leads, to a different structure of the main part of the circuit, and to a noticeable

increase in its complexity. This motivates the question about the effectiveness of the

algorithm with the new prepossessing steps.

6.3 Results

In table 6.1, we present results of T -count reduction of the Galois field multiplier circuits.

We compare against results from [15, 25]. A more detailed comparison is presented in

chapter 7.

55

6.4 Problems with generalization to other circuits

As this approach gives us a significant improvement of the T -count, an obvious next step

would be to turn it into a general procedure that could be applied for all kinds of circuits.

Unfortunately, it turns out to be a highly complicated problem, as the preprocessing

phase heavily relies on the structure of the circuit – the fact that it consists only of

Toffoli and CNOT gates. The main difficulty of the problem lies in the fact that

commutation of a CNOT gate through a Hadamrad gate that is on the same wire as

the control wire of CNOT gate, leads to the emergence of a new quantum gate (which

is a gate equivalent to CZ gate in the dual base). In terms of the ZX-calculus, we can

express this commutation as follows.

=

One might try to consider various extensions of the set of considered quantum gates.

Unfortunately, it is important to consider the limitations of our approach. We try to

represent the circuit as a sequential composition of three parts where the first and the

last parts are required to be composed of Clifford operations, and the main part should

consist of only phase gadgets. Because of that, on a fixed set of n wires, we can represent

only a finite number of circuits – each of the initial and final parts consist of (possibly

classically controlled) Clifford operations, and the main part consists of phase gadgets,

of which we can also have only a finite number. To be more precise, as using the spider

nest identities we can decompose all phase gadgets of size bigger than 3, we can represent

at most 2((n
3)+(n

2)+(n
1)) different main circuits up to a Clifford transformation.

Connecting it with the fact that the set of Clifford+T gates is capable of approximat-

ing arbitrary unitary transformations, without extending the size of a circuit (what we

only do when we process the Hadamard gates), we are not able to represent most of the

circuits.

56

Chapter 7

Summary

In this dissertation, we covered the theoretical foundations of the circuit optimization

using the spider nest identities and provided abstract definitions of the considered prob-

lems. We introduced dense spider nest identities as an alternative way of looking at the

spider nest identities and used the spider nest identities to prove their existence. Then

we looked closer at the performance issues of the novel method from [15] and proposed

a way to overcome them in a systematic way. We also analyzed other, non-successful

approaches to improve the performance of this algorithm. Finally, we used the method

from [25, 19], for commuting the n-qubit Toffoli gates, to move CNOT gates away from

the middle of the circuit as a preprocessing step instead of doing it at the later stage of

the algorithm, which resulted in improved T-count.

Table 7.1 presents a detailed comparison of our results, best-known results, and those

from [15].

7.1 Time of execution

It is important to note that the methods that we considered in this dissertation were not

only meant to improve the algorithm presented in [15], but do so without a significant

increase of the execution time. All presented modifications, as well as the results satisfy

the requirements, keeping the complexity as well as the approximate execution time of

this method. That means that we can obtain the notable T -counts reduction in run-times

which are typically less than the time required to make a fresh cup of coffee [15].

57

Ours
Circuit init. best prev. [15] dec. ch. 5 inc. ch. 5 chapter 6

n #T #T source #T #T #T #T
Adder8 24 399 167 [23] 176 209 208

Barenco Tof3 5 28 13 [16] 13 14 13
Barenco Tof4 7 56 24 [18] 25 24 25
Barenco Tof5 9 84 34 [18] 37 36 37
Barenco Tof10 19 224 84 [18] 97 98 98
CSLA MUX3 15 70 40 [18] 44 45 50
CSLA MUX9 30 196 74 [18] 84 84 84
GF(24) Mult 12 112 47 [16] 53 56 57 50
GF(25) Mult 15 175 84 [16] 88 88 86 83
GF(26) Mult 18 252 118 [16] 128 130 128 109
GF(27) Mult 21 343 167 [15] 167 173 184 157
GF(28) Mult 24 448 214 [23] 229 236 232 223
GF(29) Mult 27 567 295 [18] 306 281 277 262
GF(210) Mult 30 700 351 [18] 357 355 353 314
GF(216) Mult 48 1792 922 [18] 972 973 966 963

Mod54 5 28 7 [16] 7 7 7
Mod Adder1024 28 1995 978 [18] 1010 1007 1009

Mod Mult55 9 49 18 [16] 19 20 20
Mod Red21 11 119 55 [16] 65 61 63

QCLA Adder10 36 238 147 [15] 147 152 143
QCLA Com7 24 203 81 [18] 84 79 83
QCLA Mod7 26 413 216 [23] 233 229 231
RC Adder6 14 77 37 [16] 38 41 38
NC Toff3 5 21 13 [16] 13 13 13
NC Toff4 7 35 19 [16] 19 19 19
NC Toff5 9 49 25 [18] 26 25 26
NC Toff10 19 119 56 [16] 60 59 60

VBE Adder3 10 70 20 [18] 20 20 20

Table 7.1: Comparison of T -count achieved by our methods, the best results from [6, 18,
23, 15, 16], and those from [15]. ”Init. n” denotes the number of input qubits of the
circuit, ”init. #T” denotes the initial T -count of the circuit, column ”best prev.” contains
the best previous results and indicates where were they first achieved. The next column
contains the results from [15]. The three last columns (the ones labelled ”Ours”) contain
the results that we achieved using methods presented in this dissertation. ”Dec. ch. 5”
refers to the decreasing order described in chapter 5, and ”inc. ch. 5” to the increasing
one. The final column contains the results of the method described in chapter 6. Our
results, which strictly improved the ones from [15], are marked in colour. Additionally,
for each circuit, we present in bold the best-achieved result. All results, except those for
Mod Adder1024 and QCLA Mod7 circuits, were verified using [3].

58

Bibliography

[1] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits.

Physical Review A, 70(5), Nov 2004.

[2] M. Amy, D. Maslov, M. Mosca, and M. Roetteler. A meet-in-the-middle algorithm for

fast synthesis of depth-optimal quantum circuits. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 32(6):818–830, Jun 2013.

[3] Matthew Amy. Feynman, github, https://github.com/meamy/feynman, 2019.

[4] Matthew Amy. Towards large-scale functional verification of universal quantum

circuits. Electronic Proceedings in Theoretical Computer Science, 287:1–21, Jan 2019.

[5] Matthew Amy, Jianxin Chen, and Neil J. Ross. A finite presentation of cnot-dihedral

operators. Electronic Proceedings in Theoretical Computer Science, 266:84–97, Feb

2018.

[6] Matthew Amy, Dmitri Maslov, and Michele Mosca. Polynomial-time t-depth op-

timization of clifford+t circuits via matroid partitioning. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 33(10):1476–1489, Oct

2014.

[7] Matthew Amy and Michele Mosca. T-count optimization and reed–muller codes.

IEEE Transactions on Information Theory, 65(8):4771–4784, Aug 2019.

[8] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Nor-

man Margolus, Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter.

Elementary gates for quantum computation. Physical Review A, 52(5):3457–3467,

Nov 1995.

[9] Xiaoning Bian. stomp-code, github, https://github.com/onestruggler/

stomp-code, 2020.

[10] Earl T. Campbell, Barbara M. Terhal, and Christophe Vuillot. Roads towards fault-

tolerant universal quantum computation. Nature, 549(7671):172–179, Sep 2017.

59

https://github.com/meamy/feynman
https://github.com/onestruggler/stomp-code
https://github.com/onestruggler/stomp-code

[11] Donny Cheung, Dmitri Maslov, Jimson Mathew, and Dhiraj K. Pradhan. On the

design and optimization of a quantum polynomial-time attack on elliptic curve cryp-

tography. In Yasuhito Kawano and Michele Mosca, editors, Theory of Quantum

Computation, Communication, and Cryptography, pages 96–104, Berlin, Heidelberg,

2008. Springer Berlin Heidelberg.

[12] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra

and diagrammatics. New Journal of Physics, 13(4):043016, Apr 2011.

[13] Bob Coecke and Ross Duncan. Interacting quantum observables: categorical algebra

and diagrammatics. New Journal of Physics, 13(4):043016, Apr 2011.

[14] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in

Quantum Theory and Diagrammatic Reasoning. Cambridge University Press, 2017.

[15] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Fast and effective techniques

for t-count reduction via spider nest identities, 2020.

[16] Niel de Beaudrap, Xiaoning Bian, and Quanlong Wang. Techniques to reduce pi/4-

parity-phase circuits, motivated by the zx calculus. Electronic Proceedings in Theo-

retical Computer Science, 318:131–149, May 2020.

[17] David Gosset, Vadym Kliuchnikov, Michele Mosca, and Vincent Russo. An algorithm

for the t-count, 2013.

[18] Luke E Heyfron and Earl T Campbell. An efficient quantum compiler that reduces

t count. Quantum Science and Technology, 4(1):015004, sep 2018.

[19] Kazuo Iwama, Yahiko Kambayashi, and Shigeru Yamashita. Transformation rules

for designing cnot-based quantum circuits. In Proceedings of the 39th Annual De-

sign Automation Conference, DAC ’02, page 419–424, New York, NY, USA, 2002.

Association for Computing Machinery.

[20] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. A complete axiomatisation

of the zx-calculus for clifford+t quantum mechanics, 2018.

[21] Aleks Kissinger. Tikzit: a super simple gui editor for graphs and string diagrams,

https://tikzit.github.io/.

[22] Aleks Kissinger and John van de Wetering. PyZX: Large Scale Automated Dia-

grammatic Reasoning. In Bob Coecke and Matthew Leifer, editors, Proceedings

60

https://tikzit.github.io/

16th International Conference on Quantum Physics and Logic, Chapman Univer-

sity, Orange, CA, USA., 10-14 June 2019, volume 318 of Electronic Proceedings in

Theoretical Computer Science, pages 229–241. Open Publishing Association, 2020.

[23] Aleks Kissinger and John van de Wetering. Reducing the number of non-clifford

gates in quantum circuits. Physical Review A, 102(2), Aug 2020.

[24] Olivia Di Matteo and Michele Mosca. Parallelizing quantum circuit synthesis. Quan-

tum Science and Technology, 1(1):015003, Mar 2016.

[25] Anthony Munson, Bob Coecke, and Quanlong Wang. And-gates in zx-calculus:

spider nest identities and qbc-completeness, 2020.

[26] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov.

optimizer, github, https://github.com/njross/optimizer, 2018.

[27] Kang Feng Ng and Quanlong Wang. A universal completion of the zx-calculus, 2017.

[28] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum

Information: 10th Anniversary Edition. Cambridge University Press, 2010.

[29] Tommaso Toffoli. Reversible computing. Technical Report MIT/LCS/TM-151,MIT

LCS, Feb., 1980.

[30] Quanlong Wang. An algebraic axiomatisation of zx-calculus, 2021.

61

https://github.com/njross/optimizer

	Introduction
	Content of the dissertation and originality
	Preliminaries
	Main contributions
	Rephrasing the phase gadgets T-count reduction
	Dense spider nest identities
	Modifications of the PHAGE Tactics
	Modifications of the decomposition phase

	Tools and software

	Preliminaries
	ZX-calculus
	Diagrams of ZX-calculus
	Phases

	Rules
	Spider-fusion
	Identity, cup, and cap
	Strong complementarity
	Rotations by pi/2
	Hadamard gate

	Commutation of NOT
	Completeness
	Notation
	Horizontal vs vertical notation
	Wires
	CNOT

	Gadgets and phase gadgets
	Phase gadgets
	Properties of phase gadgets

	Spider nests
	Spider nest identity on 4 wires
	Spider nest identities of arbitrary size
	Remarks on spider nest identities
	Combining spider nest identities

	PHAGE Tactic
	Remark on circuits realizing identity transformation and circuits equivalence
	General PHAGE Tactic
	PHAGE Tactics and spider nest identities
	Definition of considered sets of identities
	PHAGE4 and PHAGE5 Tactics
	A small example of the advantage of composites spider nests

	Algorithm
	moveH
	Hadamard gate gadgetisation
	Decomposing gates into phase gadgets
	Commuting other gates
	SWAP
	CNOT
	NOT
	Direction of commutation

	Rephrasing the phase gadgets T-count reduction
	Correspondence to the PHAGE Tactics
	T-count optimization using spider nest identities
	Completeness of spider nest identities
	Extending the problem

	Significance and open questions

	Dense spider nest identities
	Existences of all dense spider nest identities
	Elegant dense spider nest identities
	Two small dense spider nest identities

	All elegant dense spider nest identities
	Modification of problems from the prievous chapter
	Natural generalisation

	Modifications of the PHAGE Tactics
	Order matters
	Motivation
	Process of constructing the order
	Results
	Usage in practical applications

	Other modifications
	Changing the distribution of the identities
	Results

	Problems with bigger identities
	Composite spider nest identities on n wires
	Results and discussion
	Possible explanations and need for other approaches

	Modifications of the decomposition phase
	Commutation rules for the GF(2m) multipliers
	Preprocessing step
	Differences and advantages

	Results
	Problems with generalization to other circuits

	Summary
	Time of execution

	Bibliography

