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Abstract

The use of quantum graphical calculi, such as the ZX-calculus [13], has lead to great
advances in fields such as quantum circuit optimization. Particularly the ZH-calculus
has proven useful for reasoning about higher-level quantum operations, such as Toffoli
and Hadamard gates, which form an approximately universal set of gates, for which
the qubit ZH-calculus is complete [7]. More recently, quantum computing based on
d-ary basis states has gained traction, with the ZX- and ZW-calculi having been gen-
eralized to higher dimensions [26][38]. However, no generalization of the ZH-calculus
is known. Such a generalization might lead to new insights about higher-dimensional
equivalents of the Toffoli-gate. In this dissertation, we provide this generalization
of the qubit ZH-calculus to qudits by generalizing a classification of qubit quantum
graphical calculi due to Carette and Jeandel [12] by relaxing a condition that would
have excluded a qudit ZH-calculus from being constructed. We then use this gener-
alization to reduce the ruleset of the qubit ZH-calculus by one rule. Additionally, we
give a first-of-its-kind algorithm for constructing ZH-diagrams from the matrix rep-
resentation of linear maps, and use this algorithm to show that, for prime dimension,
ZH-calculus is universal.
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Chapter 1

Introduction

Quantum computers provide a powerful alternative to classical computation, often yielding signif-
icant computational speedups. The perhaps best known example is Shor’s algorithm for factoring
integers [40], of which a large scale implementation would lead to widespread breakage of con-
temporary encryption mechanisms that rely on the hardness of the factoring problem1. Another
famous example is Grover’s algorithm for unstructured search [25], a probabilistic algorithm for
finding a needle in a haystack in O(

√
N) with constant probability independent of the size N

of the haystack2. The first quantum algorithm providing a provably exponential speedup over
classical computers was the Deutsch-Jozsa algorithm [16]3.

Today, quantum computing is still in its infancy, and theoretical research is far ahead of what
is practically feasible. Modern quantum computers can only operate on a handful of qubits (the
quantum equivalent of a bit) and can only realize operations of limited scale. These limitations
arise from the fact that it is very difficult to keep quantum states from degrading over time,
meaning the longer a computation keeps going, the more likely it is to result in random noise.
This is why we call the current era of quantum computing the Noisy Intermediate-Scale Quantum
(NISQ) era [37].

In this chapter, we first give a brief introduction to the mathematical model of quantum com-
putation due to Deutsch [17]. Then we introduce quantum graphical calculi, which are tools for
manipulating and optimizing quantum circuits. Note that we can only give a very brief intro-
duction to quantum computing concepts in this dissertation. We refer to Picturing Quantum
Processes by Bob Coecke and Aleks Kissinger [14] for an in-depth introduction to quantum com-
puting in general, and to ZX-calculus for the working quantum computer scientist by John van
de Wetering [48] for an rigorous introduction to the ZX- and ZH-calculi.

We conclude this chapter by describing the goals of this dissertation and discussing some related
research.

1Josza later found an algorithm to solve the hidden subgroup problem[31], which subsumes a variety of tradi-
tionally intractable problems that underpin modern cryptography

2Implications of this algorithm include the decidability of a non-trivial subclass of regular languages in sublinear
time, a result due to Aaronson, Schaeffer and Grier [3]

3While the existence of exponential speedups might lead one to conjecture that quantum computers can solve
NP-complete problems in polynomial time, no such algorithm has been found (although neither has its non-
existence been proven) [1]
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1.1 The mathematical model of quantum computation

The first formal model of a quantum computer was given by David Deutsch in 1985 in the form
of a quantum Turing-machine [15]. He later refined this model to the simpler circuit model [17]
that we still use today and which we introduce here. In this section we assume familiarity with
working in Hilbert spaces.

A quantum computer’s state is stored in qubits, whose state is a unit vector (with regards to
the standard euclidean scalar product) in the two dimensional vector space C2. We denote the
standard basis e1 = (1, 0)T , e2 = (0, 1)T by |0⟩ and |1⟩ and call it the computational basis. A n-
qubit system operates on states represented by unit vectors in (C2)⊗n ∼= C(2n). Its computational
basis are the vectors |b1⟩ ⊗ ... ⊗ |bn⟩ for b⃗ := (b1, ..., bn) ∈ {0, 1}n, which we denote by |⃗b⟩ or
|b1...bn⟩ for short.

Since quantum states are represented by unit vectors, the only operations a quantum computer
is allowed to execute have to preserve this property, meaning they have to be unitary. The
most important qubit operations are controlled NOT, Hadamard and Z-rotations, as these are
universal for quantum computation.

CNOT :=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , H :=
1√
2

(
1 1
1 −1

)
,

Z(α) =

(
1 0
0 eiα

)
α ∈ [0, 2π)

Figure 1.1: The controlled NOT (CNOT), Hadamard (H) and Z-rotation (Z(α)) operations

Further commonly used operations are S- and T -gates, which are special cases of Z-rotations,

S := Z(π/2) =

(
1 0
0 i

)
and T := Z(π/4) =

(
1 0
0 ei

π
4

)
,

and the controlled-controlled-NOT (CCNOT, also known as Toffoli -gate). The set of opera-
tions generated by CNOT, H and S is the Clifford group, a set of operations that is efficiently
classically simulatable [2], yet still represents many important quantum protocols such as quan-
tum teleportation [48, Sec. 5.4], various cryptography algorithms for secure key exchange [28]
and quantum error correction algorithms [24]. If we adjoin the T-gate to this group, we get the
Clifford+T group, which is approximately universal [22], meaning every quantum operation can
be approximate within an arbitrarily small margin of error. Another approximately universal set
of operations is the Toffoli+H set [39].

Since writing out a quantum operation as its unitary matrix is very cumbersome (the matrices’
dimensions are exponential in the number of qubits), quantum operations are often written in
quantum circuit notation. A quantum circuit is a visual representation of a sequence of operations
on a fixed number of qubits. Each qubit is represented by a wire, with operations read left-to-
right.

⊕
:=CNOT H := H Z(α) := Zα (1.1)

Figure 1.2: The CNOT, H and Z(α) operations in quantum circuit notation
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However, while quantum circuit notation provides a convenient way of describing quantum op-
erations, it does not allow for any manipulation of quantum circuits, as it does not provide a set
of rewrite rules. Proving identities such as

=
⊕

⊕

⊕
(1.2)

Figure 1.3: The SWAP operation implemented using three CNOTs

requires to evaluate the underlying matrices and checking for equality.

Yet, equipping quantum circuit notation with an equational theory makes us runs into the
problem that we are only allowed to express equations between unitary operations (potentially
with post-selections on specific qubits), a very restricted class. Quantum graphical calculi, which
we introduce in the next section, work around this limitation by instead providing an equational
theory for the entire class of linear maps. The downside of this is that diagrams cannot be
readily interpreted as quantum circuits anymore, even if they represent a unitary operation. The
process of turning arbitrary diagrams back into quantum circuits is called circuit extraction and
an active area of research [20].

1.2 Quantum graphical calculi

In this section we introduce the concept of quantum graphical calculi as a generalization of
quantum circuit notation. While the foundational building blocks of quantum circuit notation
are specific unitary operations, quantum graphical calculi break these unitary operations into
sequences of linear operations. Thus, quantum graphical calculi provide a way to reason about
general linear maps. The second difference to quantum circuit notation is that diagrams are
often laid out bottom-to-top instead of left-to-right.

There are three main properties that are always investigated first for quantum graphical calculi
(and, in fact, for any equational theory):

• Soundness: Given an equality derived using the rules of the calculus, does it still hold
when interpreted as an equality of matrices?

• Universality for a class L of linear maps: Given an arbitrary linear map L ∈ L, can we
find a graphical representation of it?

• Completeness for a class L of linear maps: Given an arbitrary equation involving linear
maps in L (e.g. CNOT ◦CNOT† ◦CNOT = SWAP), can we derive it graphically (e.g.
can we find a series of rewrite steps transforming the graphical representation of the LHS
into the graphical representation of the RHS)?

Clearly, any useful equational theory has to be sound. Universality and completeness on the
other hand often require significant work to be proven.
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1.2.1 Properties of quantum graphical calculi

Quantum graphical calculi allow us to reason about the interaction between two or more families
of spiders, which are special linear maps usually represented by colored dots (the name derives
from the wires connecting the dots looking like legs):

. . .

. . .

Figure 1.4: A spider

There are three fundamental properties quantum graphical calculi generally have in common:
The only connectivity matters (ocm) paradigm [14, Cor. 3.5], flexsymmetry of spiders [12, Def.
6] and fusion of spiders [13, Thm. 1]. Furthermore, bialgebra-style rules are considered a central
component [12].

The ocm paradigm is a metarule for reasoning about diagrams. It states that wires can be
deformed at will, as long as their connectivity with non-wire objects remains unchanged. Addi-
tionally, non-wire objects can be placed at arbitrary locations in the diagram, as long as their
connectivity to wires remains unchanged. For example, the following diagrams have the same
interpretation, since they only differ in the way wires are laid out:

f g

f

g
=

Flexsymmetry states that any spider is invariant under swapping legs and additionally allows
bending them, turning inputs into outputs and vice versa:

=
. . . . . .

. . .. . .. . .. . .

and =
. . . . . .

. . .. . .
(1.3)

Figure 1.5: The flexsymmetry axioms for a spider

Lastly, fusion allows us to merge spiders of the same kind whenever they are connected via their
legs. There are two kinds of fusion rules:

i) Spider fusion, where two spiders are directly connected via one (or more) legs, e.g.

n

m

ñ

m̃

=

n + ñ

m + m̃

. . .

. . .
. . .

. . .

. . .

. . .

ii) Harvestman fusion, where the spiders need to be connected via some intermediary node,

4



e.g.
n

m

ñ

m̃

=

n + ñ

m + m̃

. . .

. . .
. . .

. . .

. . .

. . .

Note that in the case of harvestman fusion, the intermediary node does not necessarily have to
be a spider of the same kind as the ones being merged.

In this section, we first introduce two quantum graphical calculi for reasoning about qubit oper-
ations, the ZX- and ZH-calculi (a third one, the ZW-calculus, exists, but is not relevant to this
dissertation [26]).

1.2.2 The ZX-calculus

The ZX-calculus, first introduced by Coecke and Duncan in 2007 [13], is an equational theory
based around Z- and X-spiders, the former generalizing the Z(α)-rotation operation. In addition
to these spiders, it also uses the Hadamard gate as part of its basic building blocks for diagrams,
yielding the following generators:

:=
1√
2

(
1 1
1 −1

)
, α

. . .

. . .

m

n

:= |0⟩⊗n⟨0|⊗m + eiα|1⟩⊗n⟨1|⊗m, α
. . .

. . .
α

. . .

. . .

:=

Figure 1.6: Generators of the qubit ZX-calculus

Note that the X-spider is a derived generator, as it is defined in terms of other generators instead
of an interpretation as a linear map.

One clearly sees that spiders are generally not unitary, especially since the number of inputs does
not have to match the number of outputs. We can nevertheless embed the quantum operations
of CNOT,H, and Z(α) from Equation 1.1 into the ZX-calculus via (note that unlabelled spiders
are to be interpreted as having phase 0):

= = H = Zαα
⊕

Figure 1.7: Translating quantum circuit notation into ZX-diagrams

From this, it is clear how to translate the S- and T-operations by setting α = π
2 ,

π
4 respectively.

Since CNOT,H and Z(α) are universal for quantum computation, the ZX-calculus is automat-
ically universal as well. However, it is even universal for the entire class of linear maps [48, Sec.
3.7].
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≈ α

ππ

≈ -α
ππ

. . . . . .

. . .. . .

Bialgebra (b) π-copy (π)

= ≈

Hadamard (h) Complementarity/Hopf (h)

= =

Identity (id)

Figure 1.8: Example of qubit ZX rewrite-rules, where ≈ denotes equality up to non-zero scalar

The ruleset for rewriting ZX-diagrams is not generally agreed upon, and different rulesets yield
complete calculi for different subclasses of linear maps: Backens first provided a ZX-calculus that
is complete for the Clifford fragment [6], Jeandel et al provide a version complete for Clifford+T
[29], which they later modify to be complete for quantum mechanics in its entirety [30]. However,
beyond the ocm paradigm, flexsymmetry of Z- and X-spiders, and the following variant of the
spider fusion rule (which holds unchanged for X-spiders)

α

γ

n

m

ñ

m̃

= δ

n + ñ

m + m̃

. . .

. . .
. . .

. . .

. . .

. . .
where δ := α+ β mod 2π,

most versions of qubit ZX use a ruleset subsuming the rules of Figure 1.8. The rewrite rules of
the ZX-calculus make proving the swap identity from 1.2 almost trivial [35]:

b
≈ f

=
h
≈ id

=

Note how in our translation from quantum circuit notation we have failed to give a ZX-diagram
for the Toffoli gate. This was with good reason, as a representation of the Toffoli as a ZX-diagram
is quite involved [14, p. 694]:
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π
4

π
4

π
4

π
4

-π4
-π4

π
4

Figure 1.9: Realization of the Toffoli-gate in qubit ZX

The main difficulty arises from the fact that the Toffoli-gate contains logical conjunction of its
two control wires. Conjunction, however, is not a reversible map, meaning its implementation as
a unitary operation is challenging. Since the ZX-calculus directly generalizes the basic unitary
operators of quantum circuit notation, this challenge continues to be an obstacle. The ability to
give a more compact representation of intermediary-level gates such as the Toffoli gate was one
of the main motivations behind the development of the ZH-calculus, which we introduce next.

1.2.3 The ZH-calculus

While the ZX-calculus uses spiders that generalize specific rotation operations, the ZH-calculus
only uses the phaseless version of the Z-spider, and pairs it with a spider that generalizes the
hadamard operation:

. . .

. . .

n

m

:=
1√
2

∑
i1,...,im∈{0,1}
j1,...,jn∈{0,1}

(−1)i1·...·im·j1·...·jn |j1...jn⟩⟨i1...im|.

Writing out the matrix for this linear map, we see that it is filled with 1-entries everywhere but
the bottom-right corner, where we have a (−1)-entry.

The H-box allows for the following simple realization of the AND-gate

AND =

and from this the following realization of the Toffoli-gate

(1.4)

Figure 1.10: Realization of the Toffoli-gate in qubit ZH

The ZH-calculus is complete for the approximately universal Toffoli+H set of operations [7][39],
which corresponds to matrices with entries in Z[1/

√
2] [4]. We provide its rewrite rules in Figure

1.11.
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n

m

ñ

m̃

=

n + ñ

m + m̃

. . .

. . .
. . .

. . .

. . .

. . .
=

Z-fusion (zs) Identity (id)

. . .

. . .
. . .

. . .
=

n

m

ñ

m̃

. . .

. . .

n + ñ

m + m̃

=

H-fusion (hs) Hadamard (hh)

. . .

. . .

=

. . .

. . .

. . . . . .

. . .

. . .

=

. . .

. . .

. . . . . .

Z/X bialgebra (ba1) Z/H bialgebra (ba2)

=

=

Multiply (m) Ortho (o)

Figure 1.11: The core ZH-calculus rewrite rules, as presented by Backens et al [7, Fig. 1]
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1.2.4 Qudit calculi

An active area of current research is quantum computing based on qudits instead of qubits,
meaning quantum computers whose computational basis is the standard basis of the Hilbert
space Cd. Researchers hope that, by utilizing these higher dimensional states as intermediaries
during computation, circuits that would classically require ancilla qubits to store information can
be realized without ancillae by instead storing the additional data in qudit states. Additionally, it
could give insights about higher-dimensional generalizations of multi-controlled gates such as the
Toffoli, although currently there is no characterization of these gatesets in terms of matrix-rings
[22].

For this, we seek qudit versions of the mainstream quantum graphical calculi. Ideally, these would
behave similarly to their qubit counterparts, e.g. be flexsymmetric, allow some sort of bialgebra
rule, obey the ocm paradigm and have either traditional or harvestman fusion of spiders. Carette
and Jeandel provide a categorical construction of abstract calculi satisfying these conditions [12],
using which they were able to construct qudit versions of the ZX- and ZW-calculi. However, they
note that any attempt at generalizing the ZH-calculus to higher dimensions ran into complications
[12, Sec. 3.2].

1.3 Related work

Research into qudit quantum graphical calculi has been sparse. The first paper venturing beyond
qubit mechanics was published in 2014, when Ranchin constructed a non-flexsymmetric qudit
ZX-calculus [38], which he proved to be universal. Independently, Wang and Bian developed
a (also not flexsymmetric) universal qutrit ZX-calculus [47], which Wang later proved to be
complete for stabilizer quantum mechanics (e.g., the Clifford fragment) [46]. Wang also provides
a framework for combining qudit ZX-calculi of different dimensions, which he calls the qufinite
ZX-calculus [45].

The first qudit ZW-calculus was presented by Hadzihasanovic in 2017 as part of his DPhil
dissertation, which also introduced qubit ZW-calculus [26]. Wang later simplified this qudit
ZW-calculus [42] and provides a qufinite version.

Van de Wetering and Yeh use a flexsymmetric variation of Wang’s qutrit ZX-calculus to inves-
tigate qutrit phase gadgets [49]. They also use quantum circuit notation to construct qutrit
controlled Clifford+T unitaries in the Clifford+T fragment [50].

To our knowledge, no published work covers a qudit generalization of the ZH-calculus.

1.4 Structure of this dissertation

In this dissertation, we construct a qudit ZH-calculus and prove that for d prime it is universal
for matrices with integer entries.

Chapter 2 first provides the necessary background in category theory and briefly recaps Carette
and Jeandel’s recipe for constructing quantum graphical calculi. It then generalizes the construc-
tion slightly by relaxing a condition that would have excluded a qudit ZH-calculus from being
constructed. In Chapter 3 we then construct the main component of our qudit ZH-calculus, the

9



generalization of the H-box. After this, we go on to describe a set of rewrite rules in Chapter 4
and derive some useful identities. Then, we prove our universality result in Chapter 5. Chapter
6 concludes and discusses some potential future areas of research.

Appendix A provides some background on the algebraic theory of roots of unity required to
understand the qudit constructions of Chapter 3. Appendix B proves the soundness of the
rewrite rules of our qudit ZH-calculus. Lastly, Appendix C provides some gadgets useful for
constructing ZH-diagrams. Appendix D covers some completeness considerations and additional
derived rules.
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Chapter 2

A categorical construction of
quantum graphical calculi

Over time, multiple variations of ZX, ZH and ZW have been proposed, mostly differing in the
normalization of the generators. In 2020, Carette and Jeandel [12] provided a classification
of flexsymmetric graphical calculi satisfying (a version of) the bialgebra rule as introduced in
Section 1.2. Their main result was that, for qubits, ZX, ZH and ZW are essentially the only
interesting calculi (a fourth one exists, but it arises from the interaction of the Z-spider with
itself, and is thus a trivial edge case). Their paper provides a recipe for constructing these calculi
from monoids and comonoids in the category of finite dimensional Hilbert spaces.

In this chapter, we briefly recap, and slightly generalize, their construction, giving the required
background in category theory along the way.

2.1 Categorical foundations of graphical calculi

Graphical calculi are a special case of rewriting systems for string diagrams, which provide
a way to reason about morphisms in a strict monoidal category. Here we give a brief from-
scratch introduction to this formalism. This section is mainly based on Carette and Jeandel’s
classification paper [12] and additional material provided in Picturing Quantum Processes [14].

2.1.1 Strict monoidal categories

We start by defining what a category is and which additional constraints we put on it to make
it strict monoidal.

Definition: A (locally small) category C consists of

• A collection Ob(C ) of objects, and

• For each pair A,B of objects a set1 of morphisms HomC (A,B).
1Generally, the morphisms do not need to form a set, in which case we drop the locally small attribute.
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such that

• For each triplet A,B,C of objects there exists an associative composition map

◦ : HomC (B,C)×HomC (A,B) → HomC (A,C)

(g, f) 7→ g ◦ f.

• For each object A there exists an identity morphism idA ∈ HomC (A,A) such that for every
object B and f ∈ HomC (A,B), g ∈ HomC (B,A) we have

idA ◦ g = g, and f ◦ idA = f.

Notationally, we write A ∈ C for A ∈ Ob(C ), and f : A → B for f ∈ HomC (A,B) whenever the
category C is obvious from context.

Example 2.1.1 (Finite-dimensional Hilbert spaces): The category FDHilbd for fixed
d ∈ N consists of the Hilbert spaces C(dn) for n ∈ N0 with linear maps as morphisms. Identity
morphisms are the identity maps. We will work almost exclusively in this category.

Example 2.1.2 (Partial Orderings): It is a common misconception that morphisms al-
ways have to be functions. However, for a counter-example, consider the category where the
objects are natural numbers and where we define

Hom(n,m) =

{
∅ n > m

{∗} n ≤ m
,

where {∗} denotes an arbitrary singleton set.

Similar to how in abstract algebra we define homomorphisms to be structure preserving maps
between groups, rings, fields, etc., we can define something akin to a category homomorphism,
which we call a functor :

Definition: A functor F : C → D between categories C ,D is a map F : Ob(C ) → Ob(D) and
a collection of maps F : HomC (A,B) → HomD(F (A), F (B)) such that

F (f ◦ g) = F (f) ◦ F (g), and F (idA) = idA

for A,B ∈ C and morphisms g : A → B, f : B → C.

Using this notion, we can then finally define strict monoidal categories:

However, all categories considered here happen to be locally small, meaning we do not need to concern ourselves
with foundational issues of set theory
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Definition: A strict2 monoidal category is a category C together with a functor ⊗ : C ×C → C ,
the tensor product, and a special object I ∈ C such that (writing ⊗ as an infix operator)

A⊗ (B ⊗ C) = (A⊗B)⊗ C, and I ⊗A = A = A⊗ I

for all A,B,C ∈ C .

Here the product category C × C is defined in the obvious way, meaning objects are just tuples
of objects from C and morphisms are just tuples of morphisms. Particularly, the requirement
that ⊗ is a functor then means that we have

(f1 ◦ g1)⊗ (f2 ◦ g2) = (f1 ⊗ f2) ◦ (g1 ⊗ g2). (2.1)

Example 2.1.3 (Finite-dimensional Hilbert spaces, again): The category FdHilbd is
a strict monoidal category where ⊗ is the tensor product of vector spaces/linear maps and
I = C. In fact, this category has the special property that every object apart from I is just a
tensor product of Cd with itself.

2.1.2 String diagrams

String diagrams are a graphical way to portray and manipulate morphisms in a strict monoidal
category. In this dissertation (and in most literature on quantum graphical calculi), string
diagrams are read bottom-to-top, with boxes representing morphisms and wires representing in-
/outputs. For instance, a morphism f : A ⊗ B ⊗ C → D ⊗ E in some strict monoidal category
would be represented by diagram (a) in Figure 2.1, the composite morphism (idD ⊗g) ◦ f is
represented in diagram (b).

(a) f

D E

A B C

(b)
f

D F

A B C

g

Figure 2.1: Examples of simple string diagrams

We thus see that the tensor product of morphisms (sometimes also called parallel composition)
is portrayed by juxtaposition, while composition is realized by connecting matching wires. Here
the fact that the tensor product is a functor (2.1) becomes central, as it means that the two
interpretations of the following diagram are identical:

2The attribute strict comes from the use of equality below. If we replace it with the concept of natural
isomorphism, we could drop the “strict”, however all categories we consider in this thesis happen to fulfill the
additional requirement of strictness
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f1

g1 g2

f2

An identity morphism is represented by just a wire. We further adopt the convention that we
do not draw wires of type I.

Generally, string diagrams provide a much more readable way of writing out identities of strict
monoidal categories, as we see in the following subsection.

2.1.3 Symmetric and compact closed structure

While string diagrams of a strict monoidal category are a convenient way of portraying mor-
phisms, they do not allow for much manipulation yet. The reason for this is that they are rigid
in the sense that we cannot freely move boxes around (a property often called the only connec-
tivity matters paradigm [14, Cor. 3.5]). To attain this freedom of movement, we need (strict)
symmetric and compact closed structures.

Definition: A strict monoidal category C is symmetric if for every pair A,B ∈ C there exist a
swap map

σA,B : A⊗B → B ⊗A

such that

S1) σA,I = idA = σI,A,

S2) σA,B⊗C = (idB ⊗σA,C) ◦ (σA,B ⊗ idC),

S3) σA,B ◦ σB,A = idA⊗B ,

S4) σA′,B′ ◦ (f ⊗ g) = (g ⊗ f) ◦ σA,B for f : A → A′, g : B → B′.

As a string diagram, we portray the swap maps as a crossing of wires:

BA

B A

Figure 2.2: String diagram for the swap map in a strict symmetric category

Then the above conditions S1) to S4) are visualized as follows:
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A

A

=

A

A

=

A

A A BC

BC A

=

A B C

B C A

A B

A B

A B

A B

=
f g

B′ A′

A B

=

B′ A′

A B

g f

Figure 2.3: String diagrams of the swap equations in a strict symmetric category

Definition: A strict symmetric monoidal category C is compact closed if for every A ∈ C there
exists a dual object A∗ ∈ C and morphisms

εA : A⊗A∗ → I, and ηA : I → A∗ ⊗A

such that the yanking equations are satisfied

(εA ⊗ idA) ◦ (idA ⊗ηA) = idA, and (idA∗ ⊗εA) ◦ (ηA ⊗ idA∗) = idA∗

and
εA ◦ σA,A∗ = εA∗ , and σA,A∗ ◦ ηA = ηA∗ .

We call the maps εA and ηA the cap and cup respectively, motivated by their visualization as
string diagrams:

εA = ηA =
A A∗

A∗ A

Figure 2.4: String diagrams for the cup and cap in a compact closed category

The yanking equations are the following string diagram

= =

A

A A

A

A∗

A∗ A∗

A∗

(Y)

Figure 2.5: Yanking equations

whereas the symmetry conditions are

AA∗

A∗A

AA∗

=

A∗A

= (2.2)

Figure 2.6: Symmetry equations for cap and cup

Note that a given category can allow for multiple compact structures. For instance, we later see
how every spider in a quantum graphical calculus comes with its own compact structure, despite
all of them living in FdHilbd.
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Example 2.1.4 (Finite-dimensional Hilbert spaces, yet again): We call the orthonor-
mal standard basis e1, ..., ed of Cd the computational basis and write its elements |0⟩, ..., |d−1⟩.
By ⟨0|, ..., ⟨d− 1| we denote its dual basis of (Cd)∗.

The special structure of FdHilbd, where every element is a tensor product of Cd with itself,
allows us to define symmetric and compact closed structures on just Cd, which then extend to
the entire category. The symmetric structure is always induced by the canonical swap

σ : Cd ⊗ Cd → Cd ⊗ Cd

|i⟩ ⊗ |j⟩ 7→ |j⟩ ⊗ |i⟩,

which then extends to the entire category via S2).

Regarding the compact closed structure, we can let every element be self-dual and define

εCd :=

d−1∑
i=0

⟨i| ⊗ ⟨i|, and ηCd :=

d−1∑
i=0

|i⟩ ⊗ |i⟩

which again extends to the entire category. Particularly, this means we only need to consider
string diagrams where all wires are Cd-labelled and can omit the type labels.

This works not only in FdHilbd, but in any category equivalent to a so-called PROP (product
and permutation category), which consists of natural numbers as objects and addition as tensor
product. Otherwise, we still get a compact structure for the full subcategory induced by tensor
products of the element we define the cap and cup on.

This concludes our introduction to the basics of category theory and string diagrams. Next up,
we look at how Carette and Jeandel systematically describe the spiders of quantum graphical
calculi in purely categorical terms.

2.2 Anatomy of quantum graphical calculi

Quantum graphical calculi enrich the structure of a strict symmetric compact closed monoidal
category with special spider -morphisms which allow for special rewrite rules that depend on the
actual category the calculus is defined for (this category is always FdHilbd in our case).

In this section we briefly recap Carette and Jeandel’s construction of spiders in terms of inter-
acting monoids and comonoids.

2.2.1 Monoids and Comonoids

Let (C ,⊗, I) be a strict symmetric monoidal category, e.g. not necessarily compact closed.

Definition: A monoid in C is a triple (M,m, e) consisting of an object M , a multiplication
morphism m : M ⊗M → M and a unit e : I → M such that

m ◦ (m⊗ idM ) = m ◦ (idM ⊗m), and m ◦ (idM ⊗e) = idM = m ◦ (e⊗ idM ).
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A monoid (M,m, e) is commutative if

m ◦ σM,M = m.

Pictorially, we depict the multiplication map as a half-circle (because, as we will later see, it is
half a spider), and the associativity, unit and symmetry conditions above become:

= = = = (M1-M3)

Figure 2.7: String diagrams for the commutative monoid equations

Let us consider some examples of monoids.

Example 2.2.1 (Algebraic monoids [12, Ex. 5]): One might wonder what the connection
between a monoid in a monoidal category and an algebraic monoid is. To see this, consider
the category Set of sets and functions between them. If we consider its skeleton by factoring
modulo cardinality, we get a strict monoidal category where the tensor product is the cartesian
product and the neutral element is the singleton {∗}. Then a monoid (X,m, e) is exactly an
algebraic monoid on the chosen representative of sets of cardinality |X|, where multiplication
is given by m and the neutral element is e(∗).

Example 2.2.2 (The co-copy monoid [12, Ex. 6]): In FdHilbd, define a commutative
monoid on Cd by setting

m : Cd ⊗ Cd → Cd e : C → Cd

|i⟩ ⊗ |j⟩ 7→ δij |i⟩ 1 7→
∑d−1

i=0 |i⟩.

This monoid is half of the Z-spider.

In FdHilbd, monoids on Cd correspond to associative, d-dimensional C-algebrae.

Dual to the notion of a monoid is that of a comonoid. Informally, we get a comonoid by turning
all the monoid equations upside-down:

= = = = (C1-C3)

Figure 2.8: String diagrams for the cocommutative comonoid equations

Formally, this leads to the following definition.
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Definition: A comonoid in C is a triple (C, c, δ) consisting of an object C, a comultiplication
morphism c : C → C ⊗ C and a counit δ : C → I such that

(c⊗ idC) ◦ c = (idC ⊗c) ◦ c, and (idC ⊗δ) ◦ c = idC = (δ ⊗ idC) ◦ c.

A comonoid is cocommutative if
σC,C ◦ c = c.

Example 2.2.3 (The copy comonoid [12, Ex. 12]): In FdHilbd, define a cocommutative
comonoid on Cd by setting

c : Cd → Cd ⊗ Cd δ : Cd → C
|i⟩ 7→ |i⟩ ⊗ |i⟩ |i⟩ 7→ 1.

This comonoid is the second half of the Z-spider.

Example 2.2.4 (Group (co-)monoids [12, Ex. 7, Ex. 13]): Given a finite group (G, ·) of
order d with neutral element 1, identify the computational basis of Cd with the group elements.
Then we can define a monoid on Cd via

m : Cd ⊗ Cd → Cd e : C → Cd

|g⟩ ⊗ |h⟩ 7→ |g · h⟩ 1 7→ |1⟩

and a comonoid via

c : Cd → Cd ⊗ Cd δ : Cd → C
|g⟩ 7→

∑
a,b∈G
a·b=g

|a⟩ ⊗ |b⟩ |g⟩ 7→ δg1 .

These are (co)commutative if G is commutative.

The group monoid/comonoid pair induced by (Z/dZ,+) forms exactly the two parts of the
X-spider.

Lastly, note how the associativity of (co)multiplication allows us to define semi-circles with
arbitrarily many in-/outputs:

. . .

n

:= ..
.

n − 1
. . .

n

:= n − 1..
.

and

This justifies us calling (co)monoids half spiders.
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2.2.2 Frobenius Algebrae and their induced compact structure

In the previous section we mention how specific monoid/comonoid pairs together form a spider.
In this section we investigate what additional properties these pairs have to fulfill to actually
define a spider that follows a well-defined fusion rule.

Definition: A monoid (M,m, e) and comonoid (M, c, δ) on the same object M in C form a
Frobenius algebra if

(idM ⊗m) ◦ (c⊗ idM ) = c ◦m = (m⊗ idM ) ◦ (idM ⊗c).

The Frobenius algebra is commutative if the monoid is commutative and the comonoid is cocom-
mutative.

Graphically, this means:

= = (F)

Figure 2.9: String diagram for the Frobenius algebra equations

It is these equations that allow for well-defined spider fusion. Thus, for a monoid/comonoid pair
forming a commutative Frobenius algebra, we can indeed use the term spider and write:

. . .

n

. . .

m

:=

. . .

n

. . .

m

The only thing this spider is missing is the ability to bend its legs. For this, we need a compact
closed structure on the underlying category (or at least for cups and caps of type M). Thankfully,
our Frobenius algebra gives us those for free via:

:= := (2.3)

Figure 2.10: The compact structure defined by a commutative Frobenius algebra

This pair of cap and cup satisfies the yanking equation, as:

2.3
=

F
=

M2
C2=

Note that if we were, for example, in the category FdHilbd and had a commutative Frobenius
algebra on Cd, this suffices to define a compact closed structure on the entire category.
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Theorem 2.2.5: The above-defined spiders are flexsymmetric and fuse.

Proof (Sketch): To see that the spiders fuse correctly, use the Frobenius algebra equations to
“sort” all comultiply semicircles to the top of the diagram. Symmetry follows immediately from
commutativity. To see that legs bend correctly, observe:

2.3
=

F
=

M2
= (2.4)

■

Example 2.2.6 (Z-spider): The cocopy monoid and copy comonoid from the previous sub-
section form a commutative Frobenius algebra, and thus a spider. Their induced compact
structure is exactly the one mentioned in Example 2.1.4 and the spider is the well-known Z-
spider from ZX-calculus:

. . .

n

. . .

m

=

d−1∑
i=0

|i⟩⊗n⟨i|⊗m

Example 2.2.7 (X-spider): Every pair of group monoid/comonoid forms a Frobenius alge-
bra. The algebra induced by (Z/dZ,+) is commutative and thus yields a spider, namely the
X-spider from ZX-calculus:

. . .

n

. . .

m

=
∑

i1,...,im,j1,...,jn∈Z/dZ
i1+...+im=j1+...+jn

|j1⟩...|jn⟩⟨i1|...⟨im|.

Its compact structure has cap

2.3
=

2.2.4
= ⟨0|

d−1∑
x=0

d−1∑
y=0

|x+ y⟩⟨x|⟨y| =
∑

x,y∈Z/dZ
x+y=0

⟨x|⟨y| =
d−1∑
x=0

⟨x|⟨−x|

and cup
∑d−1

x=0 |x⟩| − x⟩ by analogous computation.

As the previous two examples might have reminded the reader, a quantum graphical calculus
generally has two types of spiders. If we construct both spiders from Frobenius algebrae, we
run into the problem that we get two compact closed structures, which generally will not be
identical. This means that bending legs on each type of spider requires a different cup/cap,
which is undesirable. The next section thus introduces the machinery to modify one type of
spider slightly to allow its legs to bend using the other spider’s compact closed structure.
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2.3 Compatibility is unnecessary

In their classification of all flexsymmetric qubit quantum graphical languages, Carette and Jean-
del imposed a condition they call compatibility [12, Def. 19] on the compact structures induced
by the two Frobenius algebrae. The idea here is that to be flexsymmetric, both spiders need to
play nice with the same compact structure, meaning one of the spiders needs to be modified.
For this, they introduce the dualizer [12, Def. 19]:

:= (2.5)

The intention here is that if we put a dualizer on each output leg of our black spiders, and then
bend these legs using the white cap, half the dualizer vanishes, leaving only the black cap. Since
the black cap is part of the compact structure of the black spider, this bends the leg as wanted:

2.5
=

Y
=

2.4
=

Bending the other leg requires us to use the symmetric structure of the category we are working
in to see that the dualizer is invariant under mirroring along the vertical axis. Then the proof
becomes completely analogous.

Lemma 2.3.1:

=

Proof:

S1
=

S4
=

S2
=

2.2
=

2.2
S2=

S4
=

S1
=

■

This leads to a redefinition of our basic building blocks of a spider as follows [12, p. 8]:

:= := := := (2.6)

Figure 2.11: Redefined spider components

It is this redefinition that turns normal spider fusion into the harvestman fusion encountered in
qubit ZH. The point of fusing via some intermediary spider is to cancel out the dualizers we have
just introduced, and then fall back to fusion of the gray dots. It is here where the above-mentioned
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notion of compatibility comes into play. Carette and Jeandel require this intermediary spider
to also be the dualizer, and their notion of compatibility is the requirement that the dualizer is
self-inverse, expressed as follows:

= (2.7)

This condition, however, is not necessary if we instead use the RHS of the compatibility condition
as our intermediary spider, as it is always the inverse of the dualizer by the snake equations.

Theorem 2.3.2 (Generalization of [12, p. 9]): Any two spiders yield a flexsymmetric quan-
tum graphical calculus, potentially with one spider following harvestman fusion. Additionally, the
bialgebra3 rule [12, p. 9] holds as

=

−1 −1

−1 if =

Proof: Follows immediately from the definitions ■

The compatibility condition arises as a consequence of two interacting Frobenius-algebrae forming
a Hopf -algebra [18, Cor. 6.9], meaning they satisfy the following condition [18, Thm. 6.8, Def.
6.2]:

= (2.8)

Figure 2.12: Abstract Hopf-algebra rule for interacting Frobenius algebrae

The ZX-Calculus satisfies this rule via the map x 7→ −x in Z/dZ (see [36, Eq. 4.3], also H),
which is trivial for d = 2, making qubit ZX particularly pleasant to work with. The underlying
Frobenius-algebrae of the ZW-calculus also form a Hopf-algebra [36, p. 133]. In qubit ZH, we
do not have a Hopf-algebra (The second condition of [18, Thm. 6.4] is not satisfied), but the
dualizer is the Hadamard gate, which is self-adjoint in this special case, which is why we still get
complementarity. However, when trying to construct a qudit ZH-calculus, the dualizer is still
the quantum Fourier transform, which is no longer self-adjoint in dimension d ≥ 3.

The ability to drop this condition has consequences for Carette and Jeandel’s classification of
qubit quantum graphical calculi [12, Thm. 30]. No new graphical calculi arise, as the classification
of candidate pairs of spiders is based on a classification of all algebrae in two-dimensional complex
vector spaces tracing back to 1890 [41]. The only place where Carette and Jeandel impose the
restriction of compatibility is the proof of their Theorem 30 [12, Thm. 30], which classifies valid
phase shifts. In fact, all this proof entails is a classification of phase shifts yielding compatible

3Carrette and Jeandel refer to this rule as the bigebra rule, as they correctly note that for two Frobenius
algebrae to form a bialgebra, they need to fulfill 3 additional axioms [12, Def. 21]. We stick to the name bialgebra
for this rule, as is established in ZX-literature
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calculi. Dropping the requirement of compatibility thus yields that no matter how we phase shift
a calculus, it remains valid, except that fusion of one of the involved spiders has to be performed
via the inverse of the dualizer, and that the bialgebra rule becomes 2.3.2.

2.4 A flexsymmetric qudit ZX-Calculus

As an easy example for how to construct quantum graphical calculi using this recipe, let us
consider the case of qudit ZX. Van de Wetering and Yeh describe a flexsymmetric qutrit ZX-
Calculus in their 2022 paper on qutrit phase gadgets [49], where they notice that only a slight
modification to the X-spider is required, yielding a harvestman fusion rule. As we will see
shortly, this modification is necessary because the dualizer of the Z and X structures is no longer
trivial. Their modification is exactly the last step described in Carette and Jeandel’s paper, and
generalizes to arbitrary dimension.

In Examples 2.2.6 and 2.2.7 we already saw how to define the Z- and X-spider for arbitrary
dimension. Thus the only thing left to do is determine the dualizer and modify the X-spider to
make its legs bend using the cup and cap induced by the Z-algebra. We have

= =

d−1∑
j=0

d−1∑
k=0

|k⟩⟨−j|k⟩⟨j|
d−1∑
j=0

d−1∑
k=0

δ−j,k|k⟩⟨j| =
d−1∑
j=0

|j⟩⟨−j|

meaning the dualizer is indeed negation modulo d. This is in fact self-adjoint, meaning the Z-
and X-algebrae are even compatible in Carette and Jeandel’s sense. Thus we get a flexsymmetric
quantum graphical calculus where the Z-spider fuses normally, and the X-spider fuses via the
dualizer.

Keeping in line with van de Wetering and Yeh’s notation, we draw the redefined X-spider in
light pink:

. . .

n

. . .

m

. . .

n

. . .

m

:= =
∑

i1,...,im,j1,...,jn∈Z/dZ
i1+...+im=j1+...+jn

|−j1⟩...|−jn⟩⟨i1|...⟨im|

=
∑

i1,...,im,j1,...,jn∈Z/dZ
i1+...+im+j1+...+jn=0

|j1⟩...|jn⟩⟨i1|...⟨im|.

This is exactly Equation 4 of van de Wetering and Yeh’s paper [49]. We leave the determination
of appropriate rewrite rules for this calculus mostly to other works. Appendix A briefly concerns
itself with the color-change rule. Van de Wetering and Yeh describe rewrite rules for the qutrit
case [49], while Booth and Carette provide a complete axiomatization of the Clifford fragment
in odd prime dimension [10].
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Chapter 3

Construction of a qudit H-box for
d > 2

In this chapter we work towards the main goal of this dissertation, the generalization of the
qubit ZH-calculus to higher dimensions. We provide the most important building block of ZH-
calculus, namely the H-box, which we construct in a flexsymmetric way (with regard to the
compact structure induced by the Z-spider).

Our approach for constructing the H-box is based on the following ideas:

(i) Look at the (co)monoid the qubit ZH-calculus is constructed from. The monoid here turns
out to be logical AND, or multiplication in F2.

(ii) Attempt to use multiplication in Fd as monoid and try to find a comonoid with which it
forms a Frobenius algebra.

(iii) Modify the resulting H-box as in the previous chapter to get a flexsymmetric qudit ZH-
calculus.

3.1 Building blocks of qubit ZH

Carette and Jeandel’s classification of all qubit quantum graphical calculi tells us that the mul-
tiply morphism m of the monoid associated with the qubit ZH-calculus [12, p. 10] acts as logical
AND on the computational basis states |0⟩, |1⟩, e.g.

m |0⟩ |1⟩
|0⟩ |0⟩ |0⟩
|1⟩ |0⟩ |1⟩

,

whereas the comonoid does not allow for any immediately obvious interpretation. We furthermore
know of the following relation between logical AND, and H-boxes in ZH-calculus:

24



AND = (3.1)

Figure 3.1: AND-gate realization in qubit ZH

In fact, this equation is just the first of 2.6 with the inverse of the dualizer applied to the outputs.
These key observations about qubit ZH give us a very good starting point for attempting to
construct a qudit ZH-calculus:

(i) The monoid of qudit ZH should be a generalization of logical AND.

(ii) The (inverse) dualizer should be a generalization of the Hadamard gate.

We now work out exactly what these two generalizations should be, and how we can construct
a whole qudit H-box from them.

3.2 Monoid from generalizing AND

An obvious generalization of logical AND to dits is multiplication, either modulo d or in finite
fields Fd (for d prime these coincide, however multiplication in Fpr for r ≥ 2 is not multiplication
modulo pr as Fpr ̸= Z/prZ). As an operation on the computational basis state, we can define
such a “multiply box” as follows:

· :=

d−1∑
i=0

d−1∑
j=0

|i · j⟩⟨i|⟨j| (3.2)

Figure 3.2: Multiply box as a generalization of logical AND

Clearly, similarly to logical AND, this multiply box defines a monoid with unit |1⟩, so we can
portray it as a yellow semi-circle, e.g.

·:= := |1⟩ (3.3)

Figure 3.3: The multiply monoid

Intuitively, we now want to replace the AND-box in Equation 3.1 with this multiply box and
solve for the H-box. However, before we can successfully attempt this, we need to determine
our generalization of the Hadamard gate. In all generalizations of ZX-calculus to higher dimen-
sions considered so far, the Hadamard has been generalized to the quantum Fourier transform
[10][45][49], that is, to the map
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:=
1√
d

d−1∑
i=0

d−1∑
j=0

ζij |i⟩⟨j|

Figure 3.4: The quantum Fourier transform

where ζ denotes a primitive d-th root of unity (see Appendix A for details on roots of unity
and why we can pick any primitive root). We keep van de Weterings and Yeh’s notation of
using a slanted box to denote the quantum Fourier transform [49] to indicate that it is no longer
self-adjoint. This loss of self-adjointness, however, introduces a slight problem, as it gives us
two possible ways of generalizing the Hadamard: Both the quantum Fourier transform and its
adjoint are candidates. Its adjoint, the inverse quantum Fourier transform, is the map

=
1√
d

d−1∑
i=0

d−1∑
j=0

ζ
ij |i⟩⟨j| =−1

Figure 3.5: The inverse quantum Fourier transform

Thus, we have the following two candidates for the bottom half of our qudit H-box, based on
replacing the AND-box in Equation 3.1 with the multiply box, and the Hadamard with either
the quantum Fourier transform or its inverse:

?
= =

1√
d

d−1∑
i=0

d−1∑
j=0

d−1∑
k=0

ζ
ijk|k⟩⟨i|⟨j| and ?

= =
1√
d

d−1∑
i=0

d−1∑
j=0

d−1∑
k=0

ζijk|k⟩⟨i|⟨j|

Figure 3.6: Two possible definitions of the bottom half of the qudit H-box

We see that these only differ in the choice of root of unity. However, as we show in Appendix
A, we could have picked any primitive root of unity in our definition of the quantum Fourier
transform1, meaning these two definition of the H-box are not essentially different. We shall use
the second one, as it is ever so slightly simpler.

Note that this choice implies the following generalization of Equation 3.1:

· = (3.4)

Figure 3.7: Realization of the multiply box in qudit ZH

We want to note the similarity of this half qudit H-box with the known qubit H-box. Recall
that in the qubit ZH-calculus we have [7, Sec 2.1]

1The conjugate of a primitive root of unity is again primitive, as (ζ)k = 1 implies ζk = 1 by conjugating both
sides
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. . .

n

=
1√
2

∑
j,i1,...,in∈{0,1}

(−1)j·i1·...·in |j⟩⟨i1...in|.

We clearly have a generalization of this, since −1 is a second root of unity (in fact, it is the only
one, and particularly self-conjugate, which is why we do not have any ambiguities regarding the
choice of root of unity in qubit ZH). This clearly gives us a good indication what the other half of
our H-box is supposed to look like, which is how we construct our comonoid in the next section.

3.3 Comonoid from guesswork

In the previous section we saw how to construct half an H-box using multiplication modulo d
as our monoid, and then recovering the H-box by generalizing an identity regarding the AND
gate from qubit ZH. This further gave us a good indication of what the other half of the H-box
should look like, namely:

n

. . .
=

1√
d

∑
j1,...,jn,i∈Z/dZ

ζj1·...·jn·i|j1...jn⟩⟨i|.

Therefore, considering Equation 3.4, let us try defining our comonoid comultiplication as

:= =
1

√
d
3

d−1∑
i=0

d−1∑
j=0

d−1∑
k=0

ζijk
d−1∑
µ=0

ζ
µj

d−1∑
ν=0

ζ
νk|µ⟩|ν⟩⟨i|

=
1

√
d
3

d−1∑
i=0

d−1∑
j=0

d−1∑
k=0

d−1∑
µ=0

d−1∑
ν=0

ζijk−µj−νk|µ⟩|ν⟩⟨i|. (3.5)

We could reduce the nesting of summations using A.1.5, but after such a simplification the
coassociativity and cocommutativity is no longer obvious. The counit of this comonoid is

=
1√
d

d−1∑
i=0

ζi⟨i| (3.6)

as

=
1

d2

d−1∑
i=0

d−1∑
j=0

d−1∑
k=0

d−1∑
µ=0

d−1∑
ν=0

ζµ+ijk−µj−νk|ν⟩⟨i|

=
1

d2

d−1∑
i=0

d−1∑
ν=0

|ν⟩⟨i|
d−1∑
j=0

d−1∑
k=0

(
ζij−ν

)k d−1∑
µ=0

(
ζ1−j

)µ
A.1.5
=

1

d

d−1∑
i=0

d−1∑
ν=0

|ν⟩⟨i|
d−1∑
k=0

(
ζi−ν

)k A.1.5
=

d−1∑
i=0

|i⟩⟨i|,
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which is the identity wire written in bra-ket notation.

The last thing we now need to check is whether this monoid/comonoid pair forms a Frobenius
algebra.

Theorem 3.3.1: The multiplication monoid and the comonoid defined above form a commuta-
tive Frobenius algebra.

Proof: We need to verify that F holds. Essentially, this is just an exercise in rearranging sums
and applying A.1.5. The key insight here is that the outputs are always multiples of the inputs.
We have

|a⟩ |b⟩

=

d−1∑
j=0

d−1∑
k=0

d−1∑
µ=0

d−1∑
ν=0

ζajk−µj−νk|µ⟩|νb⟩ =
d−1∑
µ=0

d−1∑
ν=0

|µ⟩|νb⟩
d−1∑
j=0

ζ
µj

d−1∑
k=0

(
ζaj−ν

)k

A.1.5
= d ·

d−1∑
µ=0

d−1∑
j=0

ζ
µj |µ⟩|ajb⟩

|a⟩ |b⟩

=

d−1∑
j=0

d−1∑
k=0

d−1∑
µ=0

d−1∑
ν=0

ζabjk−µj−νk|µ⟩|ν⟩ =
d−1∑
µ=0

d−1∑
ν=0

|µ⟩|ν⟩
d−1∑
j=0

ζ
µj

d−1∑
k=0

(
ζabj−ν

)k

A.1.5
= d ·

d−1∑
µ=0

d−1∑
j=0

ζ
µj |µ⟩|ajb⟩

|a⟩ |b⟩

=

d−1∑
j=0

d−1∑
k=0

d−1∑
µ=0

d−1∑
ν=0

ζabjk−µj−νk|µ⟩|ν⟩ =
d−1∑
µ=0

d−1∑
ν=0

|µ⟩|ν⟩
d−1∑
k=0

ζ
νk

d−1∑
j=0

(
ζabk−µ

)j

A.1.5
= d ·

d−1∑
ν=0

d−1∑
k=0

ζ
νk|abk⟩|ν⟩

|a⟩ |b⟩

=

d−1∑
j=0

d−1∑
k=0

d−1∑
µ=0

d−1∑
ν=0

ζbjk−µj−νk|µa⟩|ν⟩ =
d−1∑
µ=0

d−1∑
ν=0

|µa⟩|ν⟩
d−1∑
k=0

ζ
vk

d−1∑
j=0

(
ζbk−µ

)j

A.1.5
= d ·

d−1∑
ν=0

d−1∑
k=0

ζ
νk|abk⟩|ν⟩.

The “commutative” part follows as the monoid and comonoid are commutative and cocommuta-
tive respectively. ■
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Thus our monoid and comonoid form a generalization of the H-box in arbitrary dimension d > 2.
Next up, we will determine the dualizer and modify these spider parts to arrive at a flexsymmetric
ZH-calculus. However, first let us conclude this section with some remarks on the construction
so far.

Remark 3.3.2: We started our construction of the H-box by constructing a multiply box as a
generalization of the AND-gate. We could just the same have started with an “unmultiply” box
that is the transpose of the multiply box, in the sense of 2.2.4. This would have resulted in the
same calculus.

However we want to note that multiply and unmultiply together do not form a Frobenius-algebra,
as even if ((Z/dZ)∗, ·) is a group, (Z/dZ, ·) never is, as 0 does not have an inverse. Thus, we do
not actually form a group algebra.

Remark 3.3.3: As we mention at the beginning of this chapter, for d = pr with p prime, we
have some ambiguity regarding the choice of the monoid. Since we see later in this dissertation
that many results based on defining the monoid as multiplication modulo d do not hold for d not
prime, it is natural to ask if we can recover them for d = pr were we to consider arithmetic in
Fpr instead.

The answer to this question is sadly no, as the structure of Fpr is given by considering an
irreducible polynomial q with deg q = r over Fp and then setting 2

Fpr := Fp[X]/(q).

Particularly, the additive structure of this is no longer isomorphic to any quotient of the integers,
making exponentiation of roots of unity impossible.

3.4 Qudit ZH from scratch

To build a flexsymmetric qudit ZH-calculus, we first need to determine the ZH dualizer and its
inverse. Recall that by Equation 2.5, we need to first compute the compact structure induced
by the H-algebra. For the cap, we have

2.3
=

3.3
3.6=

1√
d

d−1∑
i=0

d−1∑
j=0

ζij⟨i|⟨j|,

and for the cup we have

2.3
=

3.3
3.5=

1
√
d
3

d−1∑
j=0

d−1∑
k=0

d−1∑
µ=0

d−1∑
ν=0

ζjk−µj−νk|µ⟩|ν⟩ A.1.5
=

1√
d

d−1∑
µ=0

d−1∑
ν=0

ζ
µν |µ⟩|ν⟩.

2As q is irreducible, it is the minimal polynomial of one of its roots, say α, e.g. Fp[X]/(q) ∼= Fp(α). As
q is irreducible, (q) is a maximal ideal and thus Fp(α) a field. Since q has degree r, we get that the degree
[Fp(α) : Fp] of the field extension Fp(α) : Fp is r. Particularly, Fp(α) is a r-dimensional vector space over Fp and
thus has |Fp|n = pr elements. However, finite fields are unique up to isomorphism and therefore we must have
Fpr

∼= Fp[X]/(q). We again refer to standard textbooks on abstract algebra such as Lang [33] for an in-depth
explanation of these concepts
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This means that our dualizer is

2.5
= =

and its inverse is

=

which should come as no big surprise. In fact, from the considerations in the previous two
sections, we already know what the resulting H-box will look like, while Section 2.3 tells us how
the harvestman fusion rule will look:

. . .

. . .

n

m

:=
1√
d

∑
i1,...,im,j1,...,jn∈Z/dZ

ζi1·...·im·j1·...·jn |j1...jn⟩⟨i1...im| (3.7)

Figure 3.8: Flexsymmetric qudit H-box

. . .

. . .

. . .

. . .

=

n

m

ñ

m̃

. . .

. . .

n + ñ

m + m̃

(3.8)

Figure 3.9: Harvestman fusion rule for qudit H-boxes

There is one last thing we need to verify before we can truly claim to have found a qudit ZH-
calculus, namely that the H-box satisfies a form of the bigebra rule [12, p.9]. According to
Theorem 2.3.2, it suffices to check that the original H-monoid satisfies the traditional bigebra
rule with the Z-comonoid. However, this is obvious if we remember that the Z-comonoid is just
the COPY map and the H-monoid is multiplication:

=

COPY COPY

· ·
=

·

COPY
=
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Chapter 4

Qudit ZH-calculus

In Chapter 3 we construct a flexsymmetric H-box. Now, we pair this box with the Z-spider to
describe the ZH-calculus for qudits, which is the main goal of this dissertation.

We first describe the generators of our qudit ZH-calculus, which are very similar to those of
Backens et al’s qubit ZH-calculus (up to normlization) [7]. For convenience, we reproduce the
qubit version of the rules in Figure 1.11. We then investigate a possible set of rewrite rules and
conclude the chapter by generalizing some known qubit identities to the qudit case.

4.1 Generators

In this section we briefly describe the (derived) generators of our qudit ZH-calculus. The basic
generators are clearly the Z-spider and the H-box. Recall from 2.2.6 that

. . .

n

. . .

m

:=

d−1∑
i=0

|i⟩⊗n⟨i|⊗m

and from the end of Chapter 3 that

. . .

. . .

n

m

:=
1√
d

∑
i1,...,im,j1,...,jn∈Z/dZ

ζi1·...·im·j1·...·jn |j1...jn⟩⟨i1...im|.

Note that we still write the quantum Fourier transform, e.g. the H-box with a single in-/output,
slanted:

:=
1√
d

d−1∑
i=0

d−1∑
j=0

ζij |i⟩⟨j|

Just as in the qubit case, we introduce the X-spider as a derived generator by applying a quantum
Fourier transform to each leg of a Z-spider:
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:=
. . .

. . .

. . .

. . .

(x)

Figure 4.1: Definition of the X-spider as a derived generator

Note that this red spider does not equal the pink spider introduced for qudit ZX in Section 2.4.
As we show in Lemma A.2.1, it is only equal to said spider up to a scalar factor dependant on
the number of legs.

Next, let us consider the two additional derived generators Backens et al introduce for the qubit
ZH-calculus [7, Eq. 1, Eq. 3]:

¬
. . .

. . .
:=

. . .

. . .
¬
. . .

. . .
:=

. . .

. . .
(4.1)

Figure 4.2: Generalized ¬-spiders

One easily verifies that the green negate spider with one in- and output still realizes Pauli-Z,
which in the qudit case becomes [49, Eq. 1]

Z|i⟩ = ζi|i⟩.

However, the red negate spider with one in- and output no longer realizes Pauli-X. Instead, its
operation on a single qudit is best described as pointwise reflection along d− 1. Luckily, we can
recover Pauli-X1 by applying two quantum Fourier-transforms to its output (the scalar factor
arises due to the X-spider only realizing addition up to a scalar factor):

+ ¬
:= (4.2)

Figure 4.3: Realization of Pauli-X in qudit ZH

We pick the notation “+” as qudit Pauli-X realizes the following linear map [49, Eq. 1]:

X|i⟩ = |i+ 1⟩.

Lastly, we introduce generators for some very common scalars:

:= and := (4.3)

Requiring scalars in our rewrite rules is unfortunate, but as de Beaudrap shows, it is impossible
to avoid for the ZH-calculus [8, Ap. E]2.

We conclude this section by providing an algebraic interpretation of these operators by giving
a correspondence with arithmetic operations of Z/dZ, based on how Backens et al interpret the
qubit ZH-generators as boolean operations [7, Eq. 5]:

1We identify this ability to express Pauli-X using the red ¬-spider as central, which is why we pick the
generalization using the inverse quantum Fourier transform. See C.0.4 for the alternate generalization

2He does provide a version with less scalars at the cost of less intuitive interpretation of the generators
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COPY

n

↔

n

+

n

↔
√
d
n−1

n

·

n

↔

n

. . . . . .

. . . . . . . . .. . .
PAULI-X ↔ + (4.4)

Figure 4.4: Correspondence between qudit ZH-generators and arithmetic in Z/dZ

4.2 Qudit ZH rules

In this section, we describe a possible ruleset for our qudit ZH-calculus. We use Backens et al’s
qubit ZH completeness result [7, Fig. 1] as a starting point, and first try to generalize as many
of their rules as possible. Note that we defer soundness to Appendix B.

The most obvious rule is the Z-spider fusion rule, which holds unchanged from qubit ZH:

Rule 1 (Z-spider fusion):
n

m

ñ

m̃

=

n + ñ

m + m̃

. . .

. . . . . .

. . .

. . .

. . .

..
. (zs)

We also already saw the H-box fusion rule in the previous chapter (Eq. 3.8). We can actually
slightly strengthen this into a rule that allows us to contract any odd-length sequence of H-boxes
interspersed by quantum Fourier transforms:

Rule 2 (H-box contraction):

. . .

. . .
. . .

. . .
=

n1

m1

ñ2

m̃2

. . .

. . .

n1 + n2 + n3

m1 + m2 + m3

. . .

. . .

ñ3

m̃3

(hs)

The identity rule also holds unchanged:

Rule 3 (Identity):

= (id)
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From here on we deviate slightly from Backens et al’s rule set. This is because their rule (hh) –
the self-adjointness of the Hadamard gate – does not hold anymore in the qudit case for d > 2.
We know that its generalization, the quantum Fourier transform, requires fourfold repetition
before yielding the identity again. However, we see in Section 4.3 that we can derive this “Fourier
transform” rule from the remaining rules we introduce in this section. Therefore, we skip straight
to the generalizations of the bialgebra rules.

As we choose a normalization of the quantum Fourier transform different from Backens et al [7,
Section 2.1] (they pick 1, we pick 1√

d
), our red spider is only equal to the pink spider of qudit ZX

introduced in Section 2.4 up to a scalar that depends on the number of legs (see A.2.1). Thus,
our version of the bialgebra rule for Z- and X-spider introduces some scalar factors:

Rule 4 (Bialgebra 1):

=

n

m

. . .

. . . (n−1)(m−1)

m

. . .

n

. . .

. . . . . . (ba1)

If (n− 1)(m− 1) < 0, introduce −(n−1)(m−1) to the LHS instead.

The second bialgebra rule in Backens et al’s paper [7, Fig. 1, (ba2)] concerns the interaction of
the Z-spider and H-box. We already saw a bialgebra rule for these generators in 2.3.2, which in
our specific case becomes:

. . .

. . .

. . . . . .
=

. . .

. . .

We can make this rule look more like the one in Backens et al’s paper to arrive at

Rule 5 (Bialgebra 2):

. . .

. . .

=

. . .

. . .

. . . . . . (ba2)

Our last rule is a generalization of the multiply rule (m). It turns out what this rule really captures
is the cyclic structure of the additive group of Z/dZ, which is why we call its generalization (c)
for cyclic:

Rule 6 (Cyclic):

d

=. . .d (c)
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Note how these rules cannot possibly form a complete set of rewrite rules. To see this, consider
the following equation, which states that the Frobenius map x 7→ xd is the identity:

. . .d =

In finite fields, such as Z/dZ for d prime, this equation holds true, as multiplication forms a cyclic
group (see C.0.1). However, consider d = 4. Here we have 22 = 4 = 0, meaning 24 = 0 ̸= 2,
meaning the equation is not true in general.

Since none of our rewrite rules actually include any side conditions on the dimension d, any
sequence of rewrite steps that transform the Frobenius map into the identity would work for any
d. Therefore, since the above rules are sound, we cannot derive the Frobenius identity for prime
d.

Beyond simply stating that we are missing rewrite rules, this further implies that any additional
rewrite rule must somehow capture the “essence” of the multiplicative group of Z/dZ. While
for prime d this might be simple, the rules required for d not prime might potentially be quite
unwieldy. A general set of rewrite rules that works for all d simultaneously seems unlikely (or
would require a myriad of side conditions).

4.3 Deriving (ft) and color change

Note how the above ruleset neither contains a rule stating that repeating Fourier transform four
times yields the identity, nor an inverted color change rule. That is because we can derive them
from the rules presented in the previous section:

Lemma 4.3.1 (Quantum Fourier Transform):

=
(ft)

Proof:

id
zs=

ba1
=

ba1
=

id
zs=

x
= id

= ■

Lemma 4.3.2 (Color Change): . . .

. . .

=
. . .

. . .

(h)
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Proof:

x
= id

=
x
=

zs
= ba1

=
ba1
=

zs
=

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
. . .

. . . . . . . . .

. . . . . .
■

Note that in both of these proofs, the application of the bialgebra rule ba1 does not introduce
scalars, as the number of inputs or output of the subdiagram we apply the rule to is always 1.

We use the name (h) for the color change rule to keep in line with Yeh and van de Wetering’s
notation [49, Fig. 1].

Lastly, note how in both of these proofs we only use rules that are also valid in ZX-calculus,
meaning these derivations also hold for phaseless qudit ZX. If we introduce phases for the Z- and
X-spiders, the above proof no longer works. This is because the color change rule h shuffles the
phases, as Yeh and van de Wetering demonstrate [49, Fig. 1].

4.4 Further generalizations

In this section we talk about generalizing the two further rules proposed by Backens et al [7, Fig.
1, Lem. 2.28]. These rules are instrumental in proving completeness in the qubit case, but two
of them become quite complicated in the qudit setting, which is why we are reluctant to include
them in our base ruleset. Note that technically Backens et al introduce a third rule [7, Lem.
5.1], but since that rule is simply the Frobenius equation from the previous section, we see no
need to cover it again.

4.4.1 The ortho rule

The ortho rule (o) is the most complicated qubit rule. It essentially states that

∀x, y, z.xy = z(y + 1) ⇐⇒ xy = 0 = z(y + 1).

This observation is based on “exhausting” all possible values of Z/2Z: No matter what y ∈ Z/2Z
we choose, we have {y, y + 1} = Z/2Z. That means either y or y + 1 is zero, so one of xy and
z(y + 1) is always zero. Thus, if xy = z(y + 1), both products must equal 0.

We can generalize this argument to Z/dZ for arbitrary d:

∀y.{y, y + 1, ..., y + d− 1} = Z/dZ

and thus

∀x0, ..., xd−1, y.x0y = ... = xd−1(y + d− 1) ⇐⇒ ∀i ∈ {0, ..., d− 1}.xi(y + i) = 0.

36



Expressing this as ZH-diagram (assuming that the Pauli-X inputs are on the left) we get

+
. . .

. . .

. . .

+ = +
. . .

. . .

. . .

+

d−1

For d prime this rule actually becomes slightly stronger, as the absence of zero-divisors tells us:

∀x0, ..., xx−1, y.x0y = ... = xd−1(y + d− 1) ⇐⇒ at most one xi ̸= 0,

however, this condition is not easily expressible as a ZH-diagram.

4.4.2 Lemma 2.28

Backens et al.’s Lemma 2.28 [7] states that

∀x, y.xy = 1 ⇐⇒ x = 1 ∧ y = 1.

Clearly, this does not hold for d > 2, however for prime d we can generalize it to the following
statement:

∀x, y.xy ̸= 0 ⇐⇒ x ̸= 0 ∧ y ̸= 0

Obviously, this does not hold for d composite, since then Z/dZ admits zero-divisors. Using C.0.1
and C.0.4 we can realize this as the diagrammatic equation

. . .

= . . . . . .

where all “. . .” represent (d− 1)-fold repetition.

4.5 Comparison to the qubit case

Let us briefly compare our qudit ruleset to the qubit ruleset Backens et al use in their completeness
paper [7]. Ignoring differences in scalars introduced by us choosing a different normalization for
H-boxes, only three rules exhibit changes. We denote these qubit versions with superscripts as
follows:

(hs2)
=

(ft2)
=

. . .

. . .

. . . . . .(ba22)
=

. . .

. . .. . .
. . .

. . .
. . .

(4.5)

Figure 4.5: Qubit rewrite rules that need adjustments for the qudit setting
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The first question that arises is whether ft2 is redundant in the qubit case. The answer is,
surprisingly, yes:

Corollary 4.5.1: The rule ft2 is redundant.

Proof: In the previous section we derive ft for arbitrary dimension d. Thus, it also holds in the
qubit case. However, due to the changed fusion rule for H-boxes, we get

hs2
=

ft
= ■

This has implications for Backens et al’s completeness result, as it brings down the number of
rewrite rules required by one. In light of their comparison of quantum graphical calculi regarding
number of rules [7, Tab. 1] this means that qubit ZH is actually the smallest calculus in their
comparison.

Intuitively, comparison between the qudit and qubit rules shows that, in a way, hs2 and ba22
contain ft2 implicitly: The qubit versions replace the sequences of three quantum Fourier trans-
forms required in the general case by just a single Hadamard. Therefore, there is no need to
additionally require ft2. Note that these two rules are absent in qubit ZX-calculus, meaning that
it is very unlikely that (hh) is also redundant there.

A second question arises from the concluding remarks of Section 4.2: Where does qubit ZH store
information about the multiplicative structure of Z/2Z?

The ortho rule (o) does not actually encode any deep information about multiplication. It merely
states that if we have equations involving sufficiently many distinct values, then by the pigeon
hole principle some of those values must be zero. It thus encodes information about the dimension
d.

The only other difference between our rulesets is that two rules, namely hs2 and ba22, implic-
itly use the self-adjointness of the Hadamard gate. Thus all structural information about the
multiplicative group is seemingly contained in the equation “1 = −1”.

Lastly, note how Backens et al prove (o), a rule that does not seem to encode multiplicative
information, to be equivalent to the union of two rules that make very strong assertions about
multiplication [7, Section 8.1]. We briefly consider those in the previous section. These rules seem
significantly stronger than ortho itself. Furthermore, the fact that we replace a rule not reasoning
about multiplication structure of Z/dZ with two multiplicative rules leads us to conjecture that
a simpler set of rules exists in the qubit case. This claim is further justified by the results of the
previous section, where we generalize (o) to arbitrary dimension, but are only able to generalize
the two multiplicative rules to prime dimension.

4.6 Derived rules

In this section we derive simple, yet often useful, rewrite rules using the qudit ZH-calculus. If a
rule generalizes a known rule for qudit ZH, we provide a reference to the relevant part of Backens
et al’s paper [7]. In these cases, the proofs are often virtually identical and only need some
adjustments regarding the number of quantum Fourier transforms.
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Lemma 4.6.1 ([7, Lem. 2.11]):

= and =

Proof:

x
= id

=

The second part of the lemma then follows immediately from ft. ■

Lemma 4.6.2 (Pushthrough rules [7, Lem. 2.15, Lem 2.16]): The following rules also hold
with all colors swapped:

. . .

. . .

=

. . .

. . .

and

. . .

. . .

=

. . .

. . .

Proof: Follow by alternating application of h, x and then ft. ■

We can prove a similar push through rule for H-boxes:

Lemma 4.6.3 (H-pushthrough):

=
. . . . . .

. . . . . .

Proof:

ft
=

hs
=

. . . . . .

. . . . . .

. . .

. . .
■

Lemma 4.6.4 (X fusion): The first of these rules works for an arbitrary, non-zero, number of
wires connecting the X-spiders via intermediary spider

n

m

ñ

m̃

=

n + ñ

m + m̃

. . .

. . . . . .

. . .

. . .

. . .
and

. . .

. . .
=

. . .

. . .
(xs)
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Proof: For the first equations we have

n

m

ñ

m̃

x
4.6.1=

n+ ñ

m+ m̃

. . .

. . .
. . .

. . .

. . .

. . .

n

m

ñ

m̃

. . .

. . .
. . .

. . .

ft
=

n

m

ñ

m̃

. . .

. . .

. . .

. . .

zs
=

n+ ñ

m+ m̃

. . .

. . .

x
=

and for the second one we have
. . .

. . .
4.6.2
=

. . .

. . .
4.6.1
=

. . .

. . .
=

. . .

. . .
■

Lemma 4.6.5 ([7, Lem. 2.5]):

=

Proof: Unchanged from the qubit case via ba2. ■

Lemma 4.6.6 ([7, Lem 2.21, Lem 2.23, Lem. 2.26]):

. . .
m

= . . .
and

m

. . .
m

. . .= and

. . .

= . . .
and

. . .

=
. . .

m−1 m−1

m

Proof: Follow immediately from ba1 and ba2. ■

Next up, we investigate some scalar cancellations:

Lemma 4.6.7 ([7, Lem. 2.3, Lem 2.4]):

= (d)

Proof:
4.6.6
=

4.6.5
=

4.3
= ■

Remark: Note that we can also express using just Z- and X-spiders in a slightly more intuitive
way via

= .
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The proof of this is slightly more complicated, but is quite educational for demonstrating the
technique of catalysis. It is based upon the identity

zs
= h

=
x
= id

=
4.6.6
=

zs
= 4.3

= (∗)

We then have

ba1
=

zs
=d

=
(∗)
=

d
=

and adding a to both sides yields the desired identity. Furthermore, Booth and Carette [10, Fig
1.] give

=

For this version, we have

id
=

ba1
=

zs
xs=

d
4.6.6=

xs
4.3
d=

The following lemma could be see as a qudit version of the complementarity rule well known
in ZX-calculus [7, Lem. 2.30][14, Eq. 9.2]. In fact, if we think of complementarity as the Hopf
rule 2.8, then we have found the “true” generalization [23, Lem. 2.8]. However, complementarity
also generalizes in a second way (see 4.6.9), which seems to have generally become the accepted
generalization [10, Fig. 1]. We thus reserve the name “qudit complementarity” for that version.

Lemma 4.6.8 (Hopf):

= (H)

Proof:

4.6.1
=

id
=

zs
xs=

ba1
=

4.6.6
zs=

id
xs= ■

This proof is very similar to the one given by Feng [36, Eq. 4.3] and the abstract one done using
the dualizer by Duncan and Dunne [18, Thm. 4.6]3. As a rewrite rule, this lemma was already
known to Booth and Carette [10, Eq. 21]. In terms of Z/dZ-arithmetic, this lemma simply states
“x− x = 0”.

Lemma 4.6.9 (Complementarity [7, Lem 2.30]):

. . .d =

d

3I want to thank John van de Wetering for pointing out these similarities when proof-reading an early draft
of this dissertation.
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Proof:

. . . x
= . . . hs

=

. . .
ba2
ft
=

. . .

= 4.6.2
=. . .

. . .

c
=

h
x=

4.6.6
=

x
=

d d

d
d

d d

■

Flipping this rule upside-down, its natural interpretation is that multiplication by d always results
in 0 in Z/dZ (because copying a number d times and then adding up all those copies is the same
as multiplying the number by d).

The following lemma is what Yeh and van de Wetering call (SP) for special in the qutrit case
[49, Fig. 1]:

Lemma 4.6.10 ([10, Eq. 21]):

. . .d − 1 =

d−2

Proof:

. . .d − 1
zs
xs=

. . . H
=

. . . zs
xs=

. . .dd − 1 4.6.9
=

zs
id

4.6.1
xs=

d−2 d−2 d

d − 1

d

■

Lastly, we want to document the changed behavior of the red ¬-spiders:

Lemma 4.6.11 ([7, Lem 2.12, special case]):

¬
¬

=

Proof:

¬
¬

4.1
=

x
h=

4.6.1
xs
ft
=

4.6.6
ft
=

4.6.2
=

4.6.1
zs=

H
=

ft
=

zs
id

4.6.5=

■

Note that the general form of the lemma, where the red ¬-spiders have multiple in-/outputs
respectively, no longer holds, as
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¬
¬

4.1
=

xs
=

4.1
4.6.11=

4.6.1
=

. . .

. . .

. . .

. . .
. . .

. . .

. . .

. . .

. . .

. . .

Adding a X-spider with one in-/output between the two red ¬-spiders also does not help. How-
ever, the following variation does hold:

Lemma 4.6.12:

¬
=

. . .

. . .

. . .

. . . ¬
= ¬

. . .

. . .

. . .

. . .
and

Proof:

¬

. . .

. . .

xs
4.6.1=

. . .

. . .

¬
4.6.2
4.6.1=

. . .

. . .

¬

ft
4.6.11
4.1=

. . .

. . .

xs
=

. . .

. . .

and

¬

. . .

. . .

4.1
=

. . .

. . .

xs
= 4.1

=

. . .

. . .
¬
. . .

. . .
■
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Chapter 5

Universality

In this chapter we present two universality results. The first one is for matrices with entries in
some arbitrary ring, under the assumption that we have H-boxes labeled a priori with elements
r ∈ R. The second one is for matrices with integer entries, without the above assumption. Both
are valid for dimensions d prime.

The results of this chapter are based on a novel construction algorithm for ZH-diagrams for
binary matrices, which we introduce in the first section. We then use this algorithm to describe
normalforms for ZH-diagrams.

5.1 Constructing ZH-diagrams for binary matrices in prime
dimension

In this section we introduce the most foundational building block of our normalform diagrams,
namely an algorithm for constructing ZH-diagrams for linear maps represented in the computa-
tional basis by binary matrices. For this, let us first introduce some new jargon:

Definition 5.1.1: A matrix M = (mij)ij is r, s-pseudobinary if mij ∈ {r, s} for all i, j. It is
binary if it is 0, 1-pseudobinary. Similarly, we call a linear map (pseudo)binary if its presentation
matrix regarding the computational basis is (pseudo)binary.

To go from a binary matrix to a ZH-diagram, we perform two intermediary steps:

1) Describe the location of the ones in a binary matrix using a logical formula φ

2) Convert the formula into a polynomial whose roots are exactly the fulfilling assignments
of φ

Since we know how to express addition and multiplication as ZH-diagrams, turning a polynomial
into a diagram is then rather straight-forward.
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5.1.1 A model-theoretic description of binary matrices

One of the most fundamental facts of linear algebra is that a linear map is uniquely determined
by its action on a fixed basis. This property is what allows us to finitely represent a linear map1

L of an n-dimensional vector space as a matrix: For a given basis b1, ..., bn, write the image L(bi)
of each bi under L as a linear combination λ1ib1+ ...+λnibn in the same basis, and then write the
coordinates λ1i, ..., λni of that linear combination into the ith column of a matrix. Furthermore,
we have

πj(L(bi)) = λji

where πj is the j-th coordinate projection.

If the resulting matrix is binary, we have λji ∈ {0, 1} for all 1 ≤ i, j ≤ n. In this case, we can
define a relation Rb

L ⊂ {1, ..., n}2 as follows:

(i, j) ∈ Rb
L ⇐⇒ λji = 1,

meaning we have (i, j) ∈ Rb
L if the image of bi under L is a linear combination involving bj . One

could now ask for a propositional formula φ with two free variables x, y over ({1, ..., n},−,+, ·,=)
such that Rb

L is the set of all models of φ. Clearly such a formula always exists, e.g.

φL(x, y) =
∨

i,j=1,...,n
λji=1

(x = i) ∧ (y = j).

Let us extend this setting a bit. Instead of an arbitrary basis b1, ..., bn let us consider the
computational basis |0⟩, ..., |d− 1⟩ of Cd. For linear maps L : (Cd)⊗m → (Cd)⊗n write

L(|⃗a⟩) =
∑

b⃗∈{0,...,d−1}n

λb⃗a⃗ |⃗b⟩

and assume λb⃗ ∈ {0, 1}. In this setting, define RL to be a (n+m)-ary relation over {0, ..., d− 1}
such that

(⃗a, b⃗) ∈ RL ⇐⇒ λb⃗a⃗ = 1.

Then we look for a formula φ with n+m free variables such that RL is the set of all models of
φ. Clearly, we can still very easily construct such a formula for arbitrary L via

φL(x1, ..., xm, y1, ..., yn) =
∨

i1,...im
j1,...,jn

∈{0,...,d−1}
λi1...imj1...jn=1

m∧
k=1

(xk = ik) ∧
n∧

ℓ=1

(yℓ = jℓ). (5.1)

Sadly, conjunction and disjunction of boolean values are not easily expressible in qudit ZH,
meaning this representation of linear maps does not lead to a diagrammatic realization, yet. For
that, we rephrase our formula in terms of something we can realize very well as a ZH-diagram:
A polynomial over Z/dZ.

1Here assumed to be an endomorphism
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5.1.2 An algebraic description of binary matrices

Our construction is based on the following observation:

Lemma 5.1.2: Given a polynomial p ∈ (Z/dZ)[X1, ..., Xn] in n variables, we can construct a
ZH-diagram that evaluates to 1 on states |b1...bn⟩ such that p(b1, ..., bn) = 0, and to 0 on all other
states.

Proof: Let p ∈ (Z/dZ)[X1, ..., Xn] be a polynomial. We first inductively construct a ZH-
diagram realizing the linear map

Lp : (Cd)⊗n → Cd

|b1...bn⟩ 7→ |p(b1, ..., bn)⟩

by inducting on the number of variables:

I.B.: n = 0: If n = 0, then p ∈ Z/dZ is a constant, which we know how to realize via C.0.2

I.S.: n− 1 7→ n: By definition of polynomial rings we can abuse notation slightly to write
p ∈ ((Z/dZ)[X1, ..., Xn−1])[Xn], e.g.

p =

k∑
i=0

piX
i
n for p0, ..., pk ∈ (Z/dZ)[X1, ..., Xn−1].

By the inductive hypothesis, we have ZH-diagrams realizing p0, ..., pk, which we denote
by boxes labeled “p0” through “pk”. Then we get the following diagram for p via 4.4:

p0 pk

b1 bn−1 bn

. . .

. . .

. . .

. . .

. . .k

. . .· · ·

. . .

p1

. . .

. . .

To now turn this diagram into an effect that evaluates to 1 on that |b1...bn⟩ such that p(b1, ..., bn) =
0, and to 0 on all other states, post-select the output by |0⟩. ■

Note that often ad-hoc constructions using 4.4 yield simpler diagrams than the inductive algo-
rithm above, particularly as the above diagram is completely unsimplified. Let us look at some
simple examples to get a feel for this construction:

46



Example 5.1.3 (Identity map): Consider the polynomial p(x, y) = x−y. It encodes a linear
map L such that RL = {(x, y) ∈ (Z/dZ)2 | x = y}, e.g. the identity. Applying the construction
from the above proof, we see that the resulting ZH-diagram indeed represents the identity wire
if we bend up one of the inputs:

d
x=

xs
= 4.6.1

=

Example 5.1.4 (Qudit ZX triangle generator [45, Rem. 2.1]): As a slightly more in-
volved example, we construct a ZH-diagram for the triangle generator sometimes defined in
qudit ZX-Calculus. Its definition is [45, Rem. 2.1]

id−
d−1∑
i=0

|0⟩⟨i|

from which we can immediately construct the following formula:

φ∆(x, y) = (x = y) ∨ (y = 0)

meaning we have to realize the polynomial p(x, y) = (x − y)y. This is only a very slight
adaptation from the previous example and yields

d
=

In light of 5.1, this means that if we can find a polynomial p ∈ (Z/dZ)[X1, ..., Xm, Y1, ..., Yn] such
that p(x1, ..., xm, y1, ..., yn) = 0 ⇐⇒ φ(x1, ..., xm, y1, ...yn), we can use 5.1.2 and map-state-
duality to construct arbitrary binary linear maps as ZH-diagrams.

Theorem 5.1.5: If d is prime, then for every propositional formula φ over ({1, ..., n},−,+, ·,=)
in n free variables there exists a polynomial pφ ∈ (Z/dZ)[X1, ..., Xn] such that

pφ(x1, ..., xn) = 0 ⇐⇒ φ(x1, ..., xn).

Proof: Let φ be a formula over ({1, ..., n},−,+, ·,=) in n free variables. We describe our
polynomial p inductively. Note that every arithmetic expression in our formula is already a
polynomial, since we only allow addition, negation and multiplication in our signature. Thus,
we only have to deal with equality, negation, disjunction and conjunction2.

2Technically we do not need to deal with conjunction, since ¬ and ∨ are functionally complete
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1) In the case of φ = (p1(x1, ..., xn) = p2(x1, ..., xn)) for p1, p2 ∈ (Z/dZ)[X1, ..., Xn], set

pφ = p1 − p2

2) In the case of φ = ¬φ′, set
pφ = 1− (pφ′)d−1

3) In the case of φ = φ1 ∨ φ2, set
pφ = pφ1

· pφ2

4) In the case of φ = φ1 ∧ φ2 use deMorgan and let

pφ = p¬(¬φ1∨¬φ2) = 1− (1− (pφ1)
d−1)(1− (pφ2)

d−1)

= 1− (1− (pφ1)
d−1 − (pφ2)

d−1 + (pφ1pφ2)
d−1)

= (pφ1)
d−1 + (pφ2)

d−1 − (pφ1pφ2)
d−1

The only non-obvious part of the construction is the construction for negation. For this, recall
from C.0.1 that exponentiating with d− 1 in Z/dZ maps 0 to 0 and everything else to 1. Lastly,
note that the construction in 3) makes use of the absence of zero-divisors in fields. ■

Altogether, this means

Corollary 5.1.6: For prime d, every binary linear map L : (Cd)⊗m → (Cd)⊗n has a qudit
ZH-diagram realizing L.

Furthermore, this gives us two tools to manipulate ZH-diagrams outside of the ZH-Calculus,
namely by logical manipulations of a propositional formula, or by algebraic manipulations of a
polynomial. These might be useful for determining additional rewrite rules. Conversely, this
allows us to reason about polynomials and logical formulae via ZH-Calculus, provided we are
able to re-extract those from a modified diagram.

5.2 Realizing a multiplexer

In this subsection, our goal is the construction of a multiplexer, which is a key part of our
normalform diagrams3:

MULTIPLEXER

cx0 xd−1

y

. . .

A multiplexer is a binary linear map that selects one of the d first inputs to sent to the output
by means of a control input |c⟩:

MUX(|x0...xd−1⟩ ⊗ |c⟩) = |xc⟩,

or in other words: If c = i, then y = xi for i = 0, ..., d − 1. This allows us to construct linear
maps by means of the fundamental theorem of linear maps:

3Multiplexer’s have previously been used to describe a variation of the qubit AND-gate in ZW [27, Def. 51]
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1) Construct some state ϕi that represents the ith column of the matrix of our linear map

2) Connect these d states to the first d inputs of a multiplexer

3) Let c be the input and y be the output

Pictorially, this means:

MULTIPLEXER

ϕ1

L

ϕd

=

. . .

Figure 5.1: Realization of a linear map by specifying its columns as states and feeding them
into a multiplexer

Since a multiplexer is a binary linear map, we can describe it by means of the algorithm introduced
in the previous section. First, we express it as a propositional formula:

φmux(x0, ..., xd−1, c, y) =

d−1∨
i=0

(c = i) ∧ (y = xi).

By the construction described in 5.1.5 this yields the polynomial

p(x0, ..., xd−1, c, y) =

d−1∏
i=0

(
(c− i)d−1 + (y − xi)

d−1 − (cy − cxi − iy + ixi)
d−1
)
.

This results in the ZH-diagram in Figure 5.4.

5.3 Universality for arbitrary rings

In this section, let R ⊃ Z[ζ, 1√
d
] be a commutative unitary ring containing all roots of the

polynomial Xd− 1, as well as
√
d. In this chapter we show that by introducing H-boxes labelled

with elements r ∈ R, we can realize arbitrary matrices with entries in R as ZH-diagrams. Keeping
in line with Backens et al’s notation, we call this calculus ZHR [7, Sec. 7].

We formally define these H-boxes via:

r := r with r =
1√
d

d−1∑
i=0

ri|i⟩
. . .

. . .

. . .

. . .
(5.2)

Figure 5.2: Labelled H-boxes in qudit ZHR

One could interpret the unlabeled H-box as a ζ-labelled one. Furthermore, one easily verifies
that the following identity holds:
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r
. . .

. . .

. . .

. . .

=

n

m

ñ

m̃

r
. . .

. . .

n + ñ

m + m̃

(5.3)

We now describe a procedure for constructing a normalform for ZHR-diagrams by writing them
out as Schur-products4, which we can realize in ZH as follows [7, p. 27]:

ϕ ψ

. . .. . .

. . .

=
ϕ ⋆ ψ

. . .

For our normalform, we express an arbitrary R-valued matrix M = (mij) as a Schur-product of
r, 1-pseudobinary matrices (see 5.1.1), e.g. matrices whose entries are all either 1 or r for some
fixed r ∈ R. Namely, for r ∈ R, let Mr = (m

(r)
ij ) be the matrix such that

m
(r)
ij =

{
r mij = r

1 otherwise
. (5.4)

Then we have
M =⋆ r∈R

Mr ̸=1
Mr,

where 1 is the matrix containing only ones (Mr = 1 means that M has no r-entries). This Schur
product is finite, since clearly a matrix can only have finitely many distinct entries.

Recall from Section 5.1 that we have an algorithm for constructing ZH-diagrams for binary linear
matrices M . The key idea behind this algorithm is the construction of an effect-gadget that
evaluates to 1 on inputs |x1...xmy1...yn⟩ where π|y1...yn⟩(M |x1...xm⟩) = 1, and to zero otherwise.

We can modify this algorithm to work for r, 1-pseudobinary matrices as well by making the
following slight modification to 5.1.2:

Corollary 5.3.1: Given a polynomial p ∈ (Z/dZ)[X1, ..., Xn] in n variables, we can construct
a ZH-diagram that evaluates to 1 on states |b1...bn⟩ such that p(b1, ..., bn) = 0, and to r on all
other states.

Proof: In the proof 5.1.2, we post-select the output of the constructed diagram with |0⟩. Look-
ing at the definition of labeled H-boxes, we get

0
5.2
=

if we use the convention 00 = 1. However, just replacing the 0-labelled H-box with a r-labeled
one does not get the desired result, as we get a gadget that evaluates to ri on input |i⟩. We thus

4entrywise product of matrices of equal dimension
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need to somehow first map all |i⟩ ≠ |0⟩ to |1⟩. For d prime, the exponentiator gadget from C.0.1
does exactly this for us, yielding

r
. . .d − 1

r

. . .d − 1 5.2
=

■

Thus, we can construct ZHR-diagrams for each Mr matrix, and then diagramatically construct
their Schur-product to get a ZHR-diagram for M , proving universality.

5.4 Universality for Z

Backens et al [7] show that in the qubit case, ZH is universal for integer-valued matrices even
without introducing labeled H-boxes as new generators. To show this, they construct all integer
labeled H-boxes from realizing that the 0-labelled box is already part of ZX-calculus, and then
constructing a successor gadget that increments the label of an arbitrary H-box by 1. Construc-
tion of negative integers is done by finding the inverse of the successor gadget. We follow a similar
path of first constructing a successor gadget to increment H-box labels, but unlike Backens et
al we do not provide its inverse, instead realizing that we only need the (−1)-labeled H-box to
achieve universality.

5.4.1 The qudit successor gadget

The qubit successor gadget has a very simple implementation via [7, Eq. 13]:

¬

If we interpret this diagram for qudits, d prime, instead of qubits, we get the linear map

d−1∑
i,j=0
ij=0

ζij | − 1− j⟩⟨i| =
d−1∑
j=0

|j⟩⟨0|+
d−1∑
i=0

|d− 1⟩⟨i| =


1 0 · · · 0
...

...
. . .

...
... 0 · · · 0
1 · · · · · · 1

 .

We immediately see that this matrix has rank 2 < d and is thus not invertible. Furthermore, we
get 

1
0
...
0

⇝

1
1
...
1

⇝


1
...
1

d− 1

⇝


1
...
1

2d− 1

⇝ ...,
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meaning we do not get anything resembling neither the labeled H-boxes from the previous section
nor any sort of incrementation.

Backens et al note [7, p. 15] that their successor gadget coincides with the qubit triangle generator
Wang introduces in his qudit ZX-Calculus [45, Rem. 2.1]. In qudit ZH, we can construct the
triangle generator as a ZH-diagram (see 5.1.4, up to a transpose). If we instead use the qudit
triangle as our successor, we get

1
0
...
0

⇝

1
1
...
1

⇝

1
2
...
2

⇝ ...⇝


1
a
...
a

⇝ ...

which does give us a sensible way of encoding positive integers via an invertible gadget. However,
the so-defined H-boxes do not coincide with those of the previous section.

A successor gadget S that plays nicely with the previous section’s H-boxes has to satisfy the
following equation:

S ·


1
a
a2

...
ad−1

 =


1

a+ 1
(a+ 1)2

...
(a+ 1)d−1

 .

Writing out this linear system of equations, we get

1 = s00 + s01a + s02a
2 + · · · + s0(d−1)a

d−1

a+ 1 = s10 + s11a + s12a
2 + · · · + s1(d−1)a

d−1

...
...

...
...

...
(a+ 1)d−1 = s(d−1)0 + s(d−1)1a + s12a

2 + · · · + s(d−1)(d−1)a
d−1

.

Instead of solving this, we can make the following observation:

(a+ 1)j =

d∑
i=0

(
j

i

)
ai.

Thus, by comparison of coefficients, we get sij =
(
i
j

)
with the convention

(
i
j

)
= 0 for i > j. This

means that the matrix S encodes Pascal’s triangle in form of a lower triangular matrix.

Our task is therefore to somehow construct a ZH-diagram for S using only binary matrices (as
these are the only type of matrices we know how to implement using just the zero-labeled H-box,
see Section 5.1). For this, first consider the following matrix

R =



1 0 · · · · · · 0

1 1
. . .

...

0
. . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · 0 1 1


.
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When repeatedly applying it to |0⟩ we get

1
0
...

⇝

1
1
0
...

⇝

1
2
1
0
...

⇝


1
3
3
1
0
...


⇝ ...

meaning Ri|0⟩ for 0 ≤ i < d results in a state representing the (i+ 1)th-row of Pascal’s triangle.
Since R is a binary matrix, we know how to construct a ZH-diagram for it. We can simplify R
slightly by adding a 1-entry to the top right corner. This additional entry will only have an effect
if we apply the matrix to a vector that has a non-zero dth entry. However, since we only use
R to compute rows of Pascal’s triangle, this is only the case after the (d− 1)th application. As
past the (d− 1)th iteration a d-dimensional vector is too small to hold an entire row of Pascal’s
triangle anyway, we conclude that this inaccuracy is irrelevant.

This allows us to encode the location of the 1-entries in R as

φR(x, y) = (y = x) ∨ (y = x+ 1),

for which we get the following diagram:

R =
+

0
4.2

4.6.12=

¬
0

xs
ba1=

0 ¬

= 0
¬

We can use the multiplexer from Section 5.2 to write these vectors into the columns of a matrix,
yielding a ZH-diagram realizing the matrix that has the ith row of Pascals triangle in its ith
column. A simple transpose then yields what we want:

S := MULTIPLEXER

R

R

. . .

. . .

Using this we can realize any integer labeled H-box where the label is non-negative. This
already allows us to construct arbitrary N0-valued matrices. To get all integer labeled H-boxes,
we construct −1 in the next subsection.

5.4.2 Negative integers

Backens et al construct negative integers by applying a green ¬-spider to a positively labeled
H-box [7, Eq. 16]. In the qudit setting, this does no longer work, as Pauli-Z is the matrix
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diag(1, ζ, ζ2, ..., ζd−1), yet we would require diag(1,−1, 1,−1, ...) to invert the sign of an H-box.
Alternatively, we could search for an inverse to S and define the (−n)-labeled H-box to be
S−n|0⟩ for n > 0. However, while in the qubit case the inverse was very simple [7, Lem. 5.9],
we have a more complicated case. First, we need to determine whether S even has an integer
valued inverse. This follows either as a corollary to Cramer’s rule5 or by explicitly computing
the inverse via forward substitution. Then, we would need to construct a ZH-diagram for S−1.
However, S−1 has negative entries, meaning we do not know how to construct the diagram yet.

Our approach is thus to construct the (−1)-labeled H-box manually. This is enough to construct
arbitrary integer valued matrices by the following observation:

Proposition 5.4.1: Let M be an Z-valued matrix, abs(M) be the matrix resulting from taking
the absolute value of every entry of M , and sg(M) be the matrix resulting from applying the
signum function to every entry of M (with the convention sg(0) = 1). Then

M = sg(M) ⋆ abs(M).

Since abs(M) is N0-valued, we know how to construct it, and we can realize sg(M) as soon as
we know how to construct the (−1)-labeled H-box, since it is −1, 1-pseudobinary.

In fact, we do not even have to construct the −1-labeled H-box, it suffices to construct any state
of the form (1,−1, x3, ..., xd−1) for arbitrary x3, ..., xd−1. To construct such a state, consider the
following corollary to A.1.3:

Corollary 5.4.2: For ζ ̸= 1 a dth root of unity, we have

d−1∑
i=1

ζi = −1.

Then our desired state is

Proposition 5.4.3: For d prime, we have

. . .d − 1

= |0⟩ − |1⟩ =
(
1 −1 0 · · · 0

)
∈ Cd.

Proof: The H-box with one output prepares the state

|0⟩+ ζ|1⟩+ ...+ ζd−1|d− 1⟩,

and by C.0.1 the exponentiator gadget with d − 1 wires maps all non-zero states to |1⟩. Thus,
the above state is

|0⟩+ ζ|1⟩+ ζ2|1⟩+ ...+ ζd−1|1⟩ = |0⟩+

(
d−1∑
i=1

ζi

)
|1⟩ 5.4.2

= |0⟩ − |1⟩.
■

5The matrix S is integer-valued and triangular with only ones on the diagonal, meaning it has determinant 1
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Utilizing this gadget to bootstrap our (−1)-labeled H-box then allows us to construct sg(M) for
arbitrary integer-valued matrices M , and thus yields universality of the qudit ZH-Calculus for
integer-valued matrices in prime dimension.

Additionally, we get the following corollary

Corollary 5.4.4 (Scalar −1):

−1 = . . . d − 1

Proof: Clearly we have

−1 5.4.3
=

. . .

+

4.2
=

. . .

¬

4.1
ft
d=

. . .

xs
4.6.1
ft
=

. . .

where all “· · · ” represent (d− 1)-fold repetition. ■

This means that in qudit ZH, we do not need to adjoin −1 as an additional scalar, as is required
for qudit ZX [10, Sec. 2.2].

5.5 Considerations for d not prime

All of the results of this section so far are only valid for d prime, meaning for the case where Z/dZ
is a field. The obvious question is how much of our machinery translates over to the case of d
not prime. In the finite case, the notions “field” and “integral domain” are equivalent [5, Ch. 11,
Ex 7.1], this means that for d not prime, the ring Z/dZ admits zero-divisors. And indeed, since
Z/dZ contains all prime factors of d, we can simply multiply them all to write 0 as a non-trivial
product.

This presence of zero-divisors has profound consequences for polynomial rings over Z/dZ, as we
lose the ability to uniquely factor them based on their roots. For example, in Z/6Z consider
the polynomial f = X2 + X. Clearly, 0 is a root, and so is 5 because we can write f =
X(X + 1). However, since 6 = 2 · 3, we also get the root 2, and 12 = 3 · 4 implies 3 to also
be a root. Furthermore, we get a second representation of f as a product of linear factors via
f = (X + 2)(X + 3).

This makes polynomial interpolation over Z/dZ impossible in the general case, as above we have
shown that any polynomial with roots 1 and 5 also necessarily has roots 2 and 3. Thus we cannot
interpolate datasets of the form {(1, 0), (2, 1), (5, 0), ...}.

55



Since our construction of ZH-diagrams for (pseudo)binary matrices heavily relies on this inter-
polatability (via 5.1.5), a different approach for constructing normal forms needs to be found,
potentially via a direct translation of formulae to ZH-diagrams without using polynomials.

5.6 The normalform generalizes the qubit normalform

In this section we briefly discuss how our qudit ZH normalform is a generalization of the qubit
ZH normalform Backens et al use to prove completeness [7, Sec. 4]. Note that for clarity, we
omit scalars in this section, since Backens et al use different normalizations for their generators.

Recall from Equation 5.4 that our normalform is based on taking the Schur-product of 1, r-
pseudobinary matrices. However, unlike Backens et al, our pseudobinary matrices have more
than one non-1 entry, whereas Backens et al break apart our Mr matrices further into a Schur
product of matrices containing only a single r-entry. For such a matrix there exists only a single
pair of computational basis states |i1...im⟩ and |j1, ..., jn⟩ such that λi1,...,im,j1,...,jn = r. Thus,
we can simplify Equation 5.1 to

φ(x1, ..., xm, y1, ..., yn) =

m∨
k=1

(xk ̸= ik) ∨
n∨

ℓ=1

(yℓ ̸= jℓ),

as every entry not containing the r will contain a 1.

Our construction algorithm turns this into the following polynomial

p(x1, ..., xm, y1, ..., yn) =

m∏
k=1

(1− (xk − ik)
d−1) ·

n∏
ℓ=1

(1− (yℓ − jℓ)
d−1),

which yields the following ZH-diagram (wlog assuming n = 0 as we can always use map-state
duality to get row-matrix and thus a diagram with no outputs):

r

i1

. . . d − 1. . . d − 1

x1 xm
. . .

.
.
.

im

. . .

r

i1

. . . d − 1. . . d − 1

x1 xm
. . .

im

. . .

ft
=

.
.
.

.
.
.

.
.
.

r

i1

. . . d − 1. . . d − 1

x1 xm
. . .

im

. . .

.
.
.

.
.
.

h
4.1=

¬ ¬

(5.5)

Figure 5.3: Qudit normalform of a matrix that has a single r-entry and is filled with 1s otherwise

Let us interpret this for the case of d = 2. Here we have:
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r

i1

x1 xm
. . .

im

. . .

.
.
.

.
.
.

¬ ¬

hs2

id=

r

i1

x1 xm
. . .

im

. . .

.
.
.

.
.
.

¬ ¬ 4.1
4.6.2=

r

i1

x1 xm
. . .

im

. . .

.
.
.

.
.
.

¬ ¬

Additionally, the ik are either 0 or 1, meaning the basis-shift gadgets simplify as follows:

hs2
4.1=

¬and
4.6.1
hs2=

Note how we still have the red negate spiders at the top. Since these cancel in pairs (4.6.11), our
diagram becomes

x1 xm

i1...im
. . .

r

. . .

where the “i1...im”-labelled box is exactly the indexing gadget Backens et al define [7, Def. 2.38].
Thus, the normalforms coincide up to a transpose.

However, due to the indexing gadget being significantly more complicated, finding a set of rewrites
that turns qudit ZH-generators into normalform seems quite difficult. Nevertheless, we wish to
make some concluding remarks about this indexing gadget:

1) The indexing gadget still copies through Z-spiders (we provide a proof of this in Appendix
D). This seems to imply that the general rewrite strategies for subsuming generators into
normalform diagrams Backens et al use are still valid for qudit ZH.

2) Since d is a prime number, d must be odd if its greater than 2. Thus d− 1 is even and we
get

. . . d − 1

4.6.2
=

. . . B.0.1
=

. . . d−1
2

d − 1

. . .d−1
2

. . .ft
= d − 1

Obviously, for d = 2, the two hadamards cancel anyway.
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MUX-PART :=

i xi c y

ycxii

. . .

. . .. . .

MUX-PART MUX-PART

+ . . .

. . .

x0 xd−1

. . .

c

y

. . .

. . .

. . .

MULTIPLEXER

cx0 xd−1

y

. . .

=

Figure 5.4: Realization of a multiplexer in qudit ZH. Here we assume the Pauli-X inputs to be
on the left
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Chapter 6

Conclusion

In this thesis we spearhead the development of a general qudit ZH-calculus. The main challenge
is to generalize the qubit H-box from the qubit setting. To do this, we generalize a 2020 classifica-
tion of qubit quantum graphical calculi provided by Carette and Jeandel [12]. This classification
enumerates all qubit quantum graphical calculi satisfying some reasonable conditions such as
being flex-symmetric and allowing a bialgebra rule [12, Thm. 20]. They achieve this result by
describing the spiders of quantum graphical calculi as Frobenius-algebrae in a strict symmetric
monoidal category, and then classifying these algebrae. They also find generalizations of the ZX-
and ZW-algebrae to the qudit setting, but note that any attempt at generalizing ZH resulting
in the resulting Frobenius-algebra violating the compatibility condition (2.7), which we show to
be unnecessary.

At the end of Chapter 2 we show that the trade-off of dropping the compatibility condition
are slightly changed bialgebra and spider fusion rules 2.3.2. This has further implications for
Carette and Jeandel’s classification [12, Thm. 20], as without compatibility, all phase-shifts of
valid quantum graphical calculi again yield quantum graphical calculi, potentially changing the
bialgebra and fusion rules to use the inverse dualizer.

After covering these classification results, we set out to actually construct our qudit H-box in
Chapter 3, based on the observation that we can generalize logical AND to a dit operation
by considering multiplication modulo d. In Chapter 4 we then enrich our graphical language
with rewrite rules, yielding the titular qudit ZH-calculus. These rewrite rules are generalizations
of those proposed by Backens et al in their completeness paper for qubit ZH-calculus [7]. We
also discuss generalizations of further rewrite rules that are very specific to Backens et al’s
completeness result [7, Fig. 1, (o), Sec. 8.2], but which we do not consider fundamental enough
to include in our preliminary rule set. Furthermore, we specialize our qudit results to the qubit
case to show that here, the double hadamard cancellation rule (hh) is subsumed by the other
rules. We conclude the chapter by deriving widely known equations, to justify our choice of
rewrite rules.

After providing a detailed description of the qudit ZH-calculus, we turn towards proving its
universality for quantum systems of prime dimension in Chapter 5. Similarly to Backens et al’s
result, we first show that by a priori introducing labelled H-boxes, we get a calculus that, under
reasonable assumptions, is universal for the ring R from which we choose the labels. Then we
specifically consider the case R = Z[ζ, 1/

√
d] of integer-valued matrices and show that here we
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do not need to adjoin labelled H-boxes to our language to achieve universality. The normalform
we provide is a generalization of Backens et al’s normalform [7, Sec. 3]. To construct the normal
form, we devise a novel construction algorithm for ZH-diagrams for binary matrices.

6.1 Novel contributions

Novel contributions of this dissertations are

• the observation that Carette and Jeadels’ compatibility condition [12, Def. 19] is unnec-
essary for the construction of flexsymmetric quantum graphical calculi, and that phase-
shifting a quantum graphical calculus does not break any of its fundamental properties
(2.3.2),

• the construction of a flexsymmetric qudit H-box (Chapter 3) and (to a lesser extend, as
we simply generalize what is already known for the qubit case) the surrounding calculus
(Section 4.2)

• that for qubit ZH, the (hh) rule of Backens et al’s completeness result [7] is redundant
(Section 4.3, Corollary 4.5.1),

• the proof that qudit ZH-calculus is universal for integer-valued matrices, and that ZHR

calculus is universal for R-valued matrices (Chapter 5),

• the construction algorithm for ZH-diagrams of binary linear maps (Section ??).

6.2 Future Work

In this section, we outline some possible directions for future research regarding the qudit ZH-
calculus, as well as some ideas that we were not able to explore in the limited scope of this
Master’s dissertation.

Universality The calculus we present in this dissertation is only universal for prime dimension
d. This is due to our normalform construction relying on polynomial interpolation modulo d 5.1.5,
which is impossible if Z/dZ admits zero-divisors (Section ??). Thus, for d not prime, a different
approach is needed to achieve universality. Wang has previously described normalforms for the
qudit ZX-calculus via elementary matrices and reverse Gaußian elimination [43]. This approach
works without any restrictions on the dimension d, and even yields universality for arbitrary
semi-rings R. Thus we ask for a similar normalform for ZH-diagrams.

Completeness As we discuss at the end of Section 4.2, our ruleset here is provably incomplete.
The main issue here is that we do not have any rules for reasoning about the multiplicative
group (Z/dZ)∗. For d = 2, all information about the multiplicative group is stored in the
hadamard cancellation rule ft2, which encodes the statement “1 = −1”. However, Booth and
Carette’s completeness result for stablizer qudit ZX [10] suggests that a rule schema that encodes
multiplicative structure even just for prime dimensions (where the multiplicative groups are
cyclic) might not be very straightforward.
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In Appendix D we briefly discuss a few difficulties that arise when trying to generalize Backens et
al’s completeness results, mainly stemming from our significantly more complex indexing gadget
used in our normalform diagrams. It would be interesting to see if these could be overcome.

Additionally, qubit ZH allows for a class of hypergraph rewrite rules generalizing local complemen-
tation and pivoting from ZX-calculus [19][34]. Lemonnier et al conjecture that these hypergraph
operations could yield an alternate path towards completeness for the ZH-calculus, which should
be investigated.

Relation to qudit ZX Our qudit ZH-calculus as presented here does not subsume the qudit
ZX-calculi presented by Wang [42] or Booth and Carette [11], as we do not allow for phases on
our Z-spiders. Finding translations between the qudit ZX- and ZH-calculi, as was done by Wang
for the qubit case [44], might yield new insights and might allow for a completeness proof by
translation, as was done for the first completeness proofs for the qubit ZX-calculus (which were
translated from the ZW-calculus) [29]. One difficulty in finding such a translation might be that
the following equation [21, p. 27, top right]

α
=

eiα

does no longer hold, as qudit ZX phases are vectors, whereas H-boxes continue to be labelled by
scalars.

Furthermore, for the qubit ZX- and ZH-calculi, there exists a Fourier-type relation for translating
between diagrams of the two calculi, due to Kuijpers et al [32]. Van de Wetering and Yeh
conjecture that this connection could lead to a definition of qutrit H-boxes via phase multipliers
[49]. It would be interesting to see whether these correspondences generalize for our categorically
constructed H-boxes, or whether they give rise to an alternate ZH-calculus. A potential approach
for generalizing this relation is to replace the boolean Fourier transform Kuijpers et al us with
the Fourier transform of a finite abelian group, such as Z/dZ.

Another approach towards translating ZH-diagrams into ZX-diagrams could be to exploit the
relation1 ((Z/dZ)∗, ·) ∼= (Z/(d − 1)Z,+) for prime d by simulating addition modulo d − 1 in
d-dimensional space, and permuting the computational basis according to the isomorphism.

Lastly, the brute-force variant would be to use the universality of Wang’s qudit ZX-calculus to
construct the normalform diagram for the H-box.

Qudit controlled unitaries The original rationale for researching the qudit ZH-calculus was
to investigate the simulation of qubit gates in higher dimension further. Of specific interest here
is the Toffoli-gate (which has a very simple qubit ZH-representation vs. its very complicated
ZX-representation) and its higher-dimensional generalizations. Some investigations into this for
the qutrit case have been done by Yeh and van de Wetering [50], using quantum circuit notation.
We are interested in seeing if qudit ZH could be employed here to simplify and generalize their
results. We want to note that a simple reinterpretation of qubit ZH-diagram for the Toffoli-gate
(1.4) generalizes the notion of qutrit control introduced by Bocharov et al [9].

Lastly we want to note that the multiplexer we construct in Section 5.2 trivially generalizes to
1The multiplicative group of a finite field is cyclic, and cyclic groups of a given order are unique up to

isomorphism. Since |(Z/dZ)∗| = d− 1 = |Z/(d− 1)Z|, these groups have to be isomorphic
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multiple controls, and that multiple multiplexers can be used to multiplex multiple qubits. Then
it is trivial to write down ZH-diagrams for controlled unitaries.
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Appendix A

Roots of unity

In this chapter we very briefly cover the algebraic theory of roots of unity over some field F . For
an in-depth discussion we refer the reader to any standard textbook on abstract algebra, such as
Lang [33].

A.1 Introduction

Let F be a field and n ∈ N. We call some ζ in the algebraic closure of F a n-th root of unity
in F if it is a root of the polynomial f = Xn − 1, or in other words: if ζn = 1. The following
basic result about roots of unity can be found in any standard undergraduate course on abstract
algebra:

Lemma A.1.1 ([33, §IV.3]): The n-th roots of unity form a cyclic group that has order n if
charF does not divide n.

We call a generator of this cyclic group a primitive root of unity. Since we are working exclusively
with roots of unity over C, let us take a look at their specific properties

Example A.1.2: In C the n-th roots of unity are precisely ζk = e
2πik
n for k = 0, ..., n − 1.

Additionally, we have
ζ−1
k = ζk

and these are again roots of unity (since if x is a root of some polynomial f , then so is its
complex conjugate).

Lemma A.1.3: Let ζ ̸= 1 be an n-th root of unity of F . Then

ζn−1 + ζn−2 + ...+ ζ + 1 = 0.

Proof: Factor f as

Xn − 1 = (Xn−1 +Xn−2 + ...+X + 1)(X − 1).
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Since ζ ̸= 1 is a root of f , yet it is not a root of X − 1, it has to be a root of Xn−1 + ...+X +1,
as fields have no zero divisors. Thus, the lemma follows. ■

In practice, we use this lemma as follows:

Corollary A.1.4: Let I ̸= ∅ be some finite index set, f : I → Z some function and ζ ̸= 1 a
primitive root of unity. Then ∑

i∈I

n−1∑
k=0

(ζf(i))k =
∑
i∈I

f(i)≡n0

n.

Proof: Since the n-th roots of unity form a cyclic group and ζ is a generator, we have ζf(i) = 1
iff n | f(i). By A.1.3 the inner summation is 0 whenever ζf(i) ̸= 1. ■

Corollary A.1.5: In the setting of A.1.4, we g : Z/nZ → V be some function where V is some
Fd-vector space. If charF does not divide n, we have∑

i∈I

n−1∑
y=0

n−1∑
k=0

(ζf(i)−y)kg(y) = n ·
∑
i∈I

g(f(i)).

Proof: Apply A.1.4 to get∑
i∈I

n−1∑
y=0

n−1∑
k=0

(ζf(i)−y)kg(y) =

n−1∑
y=0

g(y)
∑
i∈I

n−1∑
k=0

(ζf(i)−y)k
A.1.4
=

n−1∑
y=0

g(y)
∑
i∈I

f(i)−y≡n0

n.

Rewriting this slightly using indicator variables we get
n−1∑
y=0

g(y)
∑
i∈I

f(i)−y≡n0

n = n ·
∑
i∈I

n−1∑
y=0

1f(i)−y≡n0 · g(y).

Since (Z/nZ,+) is a group, the equation f(i) = y has a unique solution modulo n, namely
y = f(i) mod n, and since y ranges from 0 to n−1, only a single term of our inner sum remains.
We thus get

n ·
∑
i∈I

n−1∑
y=0

1f(i)−y≡n0 · g(y) = n ·
∑
i∈I

g(f(i)).

■

This lemma is highly technical. When we use it,
∑

i∈I will always be some nested summation
over integers, f(i) will be some product of index variables and g will be a labelling of kets.

A.2 Irrelevance of choice of primitive ζ for quantum graph-
ical calculi

Generally, the d-dimensional quantum Fourier transform is defined with ζ = e
2πi
d [45, p. 4][49,

Def. 2.3]. However, for the ZX- and ZH-calculi, we only demand two properties of our yellow
box with one input and output:

67



i) The color change rule, meaning attaching a box to every leg of a green spider turns it red,
and vice versa, and

ii) The fact that repeating the yellow box three times yields its adjoint.

It turns out that, as long as we replace ζ with another primitive root of unity, these properties
still hold.

The second point arises from the fact that, independently of the choice of primitive ζ, the
quantum Fourier transform applied twice in succession is negation modulo d on the computational
basis. Since negation is involutive (and clearly independent of which root of unity we chose), we
get that four times the quantum Fourier transform is the identity, from which our claim follows.

For the first point, observe:

Lemma A.2.1: The color change rule holds independent of the choice of ζ ̸= 1.

Proof:

|x1⟩ |xn⟩

. . .

. . .

m

=
1

√
d
n

d−1∑
i1=0

· · ·
d−1∑
in=0

(
n∏

k=1

ζikxk

) . . .

. . .
|in⟩|i1⟩

=
1

√
d
n

d−1∑
j=0

(
n∏

k=1

ζjxk

)
. . .

|j⟩ |j⟩

m

m

=
1

√
d
n+m

d−1∑
j=0

(
n∏

k=1

ζjxk

)
d−1∑
y1=0

· · ·
d−1∑
ym=0

(
m∏

ν=1

ζyνj

)
|y1...ym⟩

=
1

√
d
n+m

d−1∑
j=0

d−1∑
y1=0

· · ·
d−1∑
ym=0

ζj(
∑n

k=1 xk+
∑m

ν=1 yν)|y1...ym⟩

=
1

√
d
n+m

d−1∑
y1=0

· · ·
d−1∑
ym=0

d−1∑
j=0

(
ζ
∑n

k=1 xk+
∑m

ν=1 yν

)j
|y1...ym⟩

A.1.4
=

1
√
d
n+m−2 ·

∑
y1,...,yn∈Z/dZ

x1+...+xn+y1+...+ym=0

|y1...ym⟩ ■
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Appendix B

Soundness of qudit ZH rewrite rules

In this appendix, we argue for the soundness of the rewrite rules introduced in Section 4.2.

The soundness of the spider fusion rule zs follows from the construction of the Z-spider as a
commutative Frobenius-algebra.

For the H-box contraction rule hs, we first introduce the following lemma:

Lemma B.0.1: We can freely transfer a double quantum Fourier transform between the legs of
a H-box, e.g.

=
. . . . . .

. . . . . .

Proof: We have

=

d−1∑
i=0

d−1∑
j=0

d−1∑
k=0

ζijk|−k⟩⟨i|⟨j| =
d−1∑
i=0

d−1∑
j=0

d−1∑
k=0

ζ
ijk|k⟩⟨i|⟨j| =

d−1∑
i=0

d−1∑
j=0

d−1∑
k=0

ζijk|k⟩⟨i|⟨−j| = (∗)

Using this we then have

3.8
=

. . .

. . .
∗
=

. . .

. . .
3.8
=

. . . . . .

. . . . . .
■

Then we get:
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. . .

. . .
. . .

. . .

n1

m1

n2

m2

. . .

. . .

n3

m3

ft
=

. . .

. . .
. . .

. . .

n1

m1

n2

m2

. . .

. . .

n3

m3

B.0.1
=

. . .

. . .

. . .

. . .

n1

m1

n2

m2 . . .

. . .

n3

m3

. . .

. . .

n1 + n2 + n3

m1 + m2 + m3

3.8
=

For the identity rule, simply observe that

=

d−1∑
i=0

|i⟩⟨i| = idCd .

To argue soundness of the two bialgebra rules, we adopt the proof strategy of Backens et al
[7, Eq. 5], where they reinterpret the qubit ZH-generators as the boolean operators conjunction
(and), negation and xor. While our generators no longer correspond to boolean operations, recall
from 4.4 that we can interpret them as arithmetic operations in Z/dZ.

Note also that we use ft and h in these proofs. This might seem like we are going in circles, as
we proved ft and h using the bialgebra rule, but note how in this section we are not conducting
proofs within ZH-calculus, but rather proofs about it. This means that any fact that is provable
using only linear algebra and expressible as a diagram is available to use. Thus, without further
ado, we present the remaining soundness proofs:

Proof (Bialgebra for Z- and X-spider):

. . .

. . .

x
h=

. . .

. . .

= 1√
d
n−1

. . .

+

COPY

. . .

=

+ +

COPY COPY

. . .

. . . . . .

. . .

=
√
d
(n−1)(m−1)

. . .

. . .

. . . . . .
1√

d
n−1

From here on, use (ft) on each wire of the bipartite graph in the middle to introduce four
quantum Fourier transforms. Then use (x) and (h) once each on each spider to eliminate all
Fourier transforms, yielding the RHS of our rule. Lastly, observe that

x
=4.3

= =
1√
d

d−1∑
i=0

d−1∑
j=0

ζij
A.1.5
=

√
d.

■

The remaining proofs are straightforward.
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Proof (Bialgebra for Z-spider and H-box):

. . .

. . .

x
h=

. . .

. . . . . .2.3.2
=

ft
=

. . . . . .

. . .

ft
=

. . .

. . .

. . .

. . .

. . . . . .

■

Proof (Cyclic):

d

. . . zs
= ..

.

d
h
=

ft
=

dd 4.2
=

+

+

d (∗)
=

ft
=

d d d d..
.

..
.

..
.

Here the step marked (∗) uses the fact that repeating Pauli-X a total of d times in succession is
just the identity. ■
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Appendix C

Gadgets for ZH-diagrams

In this appendix we present common gadgets useful in the construction of complex ZH-diagrams.
We use these ideas mainly for our universality results, but they often prove helpful in constructing
ZH-diagrams on-the-fly.

Theorem C.0.1 (Exponentiator): The exponentiator gadget

. . .k

realizes the map
|i⟩ 7→ |ik⟩.

For prime d, this has the following special cases:

i) For k = d− 2 we have ik = i−1 for i ̸= 0

ii) For k = d− 1 we have ik = 1 for i ̸= 0

iii) For k = d we have ik = i

Proof: Since the multiplicative group of a finite field is cyclic of order d−1 we have id−1 = 1 for
all i ̸= 0. The other two special cases then follow from multiplication with i−1 and i respectively.■

The next gadget allows us to express arbitrary computational basis states:

Theorem C.0.2: The gadget

. . .

k−1

k

realizes the state |i⟩.
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Proof: Clearly,

|k⟩ =
+

+

k..
.

as Pauli-X is the map |i⟩ 7→ |i+ 1⟩ and the X-unit is the state
√
d|0⟩, meaning

Xk|0⟩ = |k⟩.

From there on, note that

|k⟩ =
+

+

..
. 4.1

4.2
d=

xs
=

4.6.2
ft
=. . . . . .

k−1

k−1 k−1

..
.

■

Using this, we can realize a “basis shift” gadget that is useful for encoding dit-strings:

Theorem C.0.3: The gadget

..
.

k

k

realizes the map
|i⟩ 7→ |i− k⟩.

Proof: First observe that we can recover the C.0.2-gadget via

..
. . . .

??
4.6.2=

xs
=

k
k

. . .

k

Then recall from 4.4 that the X-spider realizes addition modulo d of basis states but with the
result negated (introducing an additional ). Thus, the RHS above realizes the map

|i⟩ 7→ | − (−i+ k)⟩ = |i− k⟩. ■

For the penultimate gadget, we introduce a slight variation of the red ¬-spider. Recall that
the red ¬-spider realizes reflection amount d − 1. We can modify it slightly to instead realize
reflection among 1:

Theorem C.0.4: The gadget

realizes reflection along 1.
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Proof: We have

4.6.2
??=

¬

which realizes the map
|i⟩ 7→ | − (−(−i)− 1)⟩ = |1− i⟩. ■

Finally, we introduce a gadget that implements an “is zero” check:

Theorem C.0.5: For d prime, the effect-gadget

m

. . .

evaluates to 1 if at least one of the inputs is |0⟩ and 0 otherwise.

Proof: We have

x
h=. . .

. . .

meaning we post-select the result of a multiplication to be
√
d|0⟩. Since d is prime, Z/dZ is a

field and thus zero-divisor free, the result of a multiplication being zero means at least one of
our inputs was |0⟩. The scalar factor

√
d originates in A.2.1, since we have an X-spider with

one input and no outputs. The proof of the bialgebra rule in the previous chapter shows that
=

√
d, meaning by d it cancels with . ■
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Appendix D

Further rewrite rules and
completeness considerations

In this appendix, we derive further rewrite rules that have no direct application in the main
parts of this dissertation, yet might be useful for someone trying to prove completeness. We also
briefly discuss some results that might make translating over Backens et al’s completeness results
[7, Sec. 4.2] very challenging. Many sections of this appendix are open-ended rather than giving
positive or negative results. We further ignore scalars.

D.1 The indexing gadget copies through Z-spiders

Goal of this section is to provide a qudit proof of Lemma 2.39 in Backens et al’s paper [7], which
states that for qubits, the indexing map copies through Z-spiders. For a dit-string d⃗ = d1...dm
define the following qudit generalization of Backens et al’s indexing map [7, Def. 2.38] based on
5.5:

d1

. . . d − 1. . . d − 1

dm

. . .

.
.
.

.
.
.

¬ ¬

d⃗
. . .

. . .

:= (D.1)

Figure D.1: Dit indexing map

Note that Backens et al’s indexing map is invariant under horizontal mirroring, whereas ours
is not. Since we chose to define our normalform for effects as opposed to states, our version of
Backens et al’s Lemma 2.39 is thus upside down:
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Lemma D.1.1 ([7, Lem. 2.39]):

d⃗

. . .

. . .

. . . . . .

=

d⃗
. . .

. . .

d⃗
. . .

. . .

. . .

Before we can prove this, we need to generalize a copy-through lemma for green ¬-spiders

Lemma D.1.2 ([7, Lem. 2.20]):

¬
=

¬ ¬
. . .

. . .

Proof:

¬
4.1
=

. . . . . .

ba1
=

4.6.6
ft
=

. . . . . .

4.6.2
=

. . . 4.1
=

¬ ¬
. . . ■

With this we then get

Proof (Of D.1.1): Clearly it suffices to prove the lemma for m = 1, e.g.

d⃗

. . .

D.1
=

. . .

.
.
.

¬

. . .

4.6.2
=

. . .

.
.
.

¬

. . .

D.1.2
ft
=

. . .

.
.
.

. . .
¬¬

4.6.2
=

. . .

.
.
.

. . .

¬¬

ba2
=

. . .

.
.
.

. . .
¬¬

zs
=

. . .

.
.
.

¬¬

. . . . . .

ba1
=

. . .

¬¬

. . . . . .

. . .

4.6.2
=

. . .

¬¬

. . . . . .

. . .

4.6.6
ft
=

¬¬

. . . . . .

. . . .
.
.

.
.
. D.1

=
d⃗ d⃗
. . .

■
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D.2 Multiply, Intro and Average

In this section, we briefly discuss the three rules Backens et al [7, Sec. 3] introduce to prove
completeness of the qubit ZH-calculus.

The multiply rule [7, Sec. 3.1]

a b

=
ab

holds unchanged. To see this, recall from Chapter 5 that a Z-spider with one output realizes the
Schur-product of its inputs. Clearly we have

(1, a, a2, ..., a−1) ⋆ (1, b, b2, ..., bd−1) = (1, ab, (ab)2, ..., (ab)d−1).

The latter two, intro [7, Sec. 3.2] and average [7, Sec. 3.3] are more complicated. Their qubit
equations are invalid for the qudit case if d > 2. For intro, observe that evaluating the LHS of

a
=

a a

¬

on |0⟩ yields the a-labelled H-box, whereas the RHS yields the ad−1-labelled H-box. However,
we can generalize the rule as follows using the indexing gadget of Equation D.1:

a
=

· · ·a a

0 d− 1

However, clearly this rule involved a significant number of generators.

Lastly, for the average rule

¬
a b =

a+ b 2
¬

the LHS becomes
d−1∑
i=0

ad−1−ibi,

while the RHS becomes
d−1∑
i=0

(a+ b)i2d−1−i.

We were not able to find a generalization of the average rule to the qudit setting. Note, however,
that Backens et al’s Lemma 8.7 holds in a generalized form if we replace 1

2 with 1
2d−1 .
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D.3 A review of normalform rewriting

In this section, we discuss which parts of Backens et al’s algorithm [7, Sec. 4] for rewriting ZH-
diagrams into normalform translates into the qudit setting, and for which steps we have found
no generalization.

The most significant obstacle is that we were unable to find a sequence of rewrite steps that
transforms the ZH-generators into normalform. These issues mostly arise from the indexing
gadget being significantly more complicated than in the qubit case, meaning it is a lot more
difficult to create “out of thin air”. This is indeed the main obstacle we faced when trying to
bring the identity wire into normal form.

The normalform diagram for an a-labelled H-box is

a
=

1 a ad−1

0 1 d− 1
· · ·

Particularly, this normalform requires ai-labelled H-boxes. Our only idea for introducing these
would be a generalization of Lemma 4.6.5 to arbitrary labelled H-boxes [7, Lem. 2.31].

One observation we can make is that 1-labelled H-boxes can be omitted from normal-form
diagrams, as

Proposition D.3.1:

d⃗

. . .

1
. . .

= . . .

Proof: As

d⃗

. . .

1
. . .

= d⃗

. . .

. . .

1

= d⃗

. . .

. . .
4.6.2
= d⃗

. . .

. . .

d⃗

. . .

. . .
4.6.6
= = d⃗

. . .

. . .1 1

it suffices to show the proposition for 1-ary indexing boxes. For these, we get

. . .

.
.
.

¬

h
4.1=

. . .

.
.
.

4.6.6
4.6.5=

. . .

.
.
.

4.6.6
zs= .

.
.

4.6.6
x= .

.
. 4.6.5

= ■

If one thinks back to how our normal form leverages Schur-products, this makes sense as a matrix
filled with 1-entries is the identity.
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The next few steps of Backens et al’s completeness proof involve either combining normalform
diagrams, or absorbing generators into normalform diagrams. Here, we can give some positive
results: The proof that a normalform diagram juxtaposed with a Z-counit can be brought into
normalform [7, Prop 4.10] translates over immediately, if we use our generalized intro-rule. The
proof that the Schur-product of two normalform diagrams can be brought into normalform [7,
Prop 4.11] also works in the qudit case via D.1.1. From this it then also follows that the tensor
product of normalform diagrams can be brought into normalform [7, Cor. 4.12].

The proof that composing a normalform diagram with a Z-unit yields a normalform diagram
[7, Lem. 4.17] relies on the average rule, and thus has no immediately obvious generalization.
Further investigations here could potentially result in a qudit average rule.

We assume that proving the arithmetic rules for the case of integer labelled H-boxes [7, Sec. 5]
is incredibly involved due to the complicated nature of the qudit successor gadget (see Chapter
5).

D.4 Ring identities

In this section, we derive some equations relating to the structure of the unital commutative ring
(Z/dZ,+, ·) diagrammatically.

Lemma D.4.1 (Distributivity [7, Lem. 8.1][44, Lem. 5.34]): This lemma expresses the iden-
tity x · (y + z) = x · y + x · z.

=

Proof:

ft
ba2=

hs
=

4.6.2
= ■

Lemma D.4.2 (Multiplicative Unit): This lemma expresses the identity x · 1 = x:

+

=

Proof:

+

4.2
d=

¬

4.1
xs
d=

4.6.1
ft
=

hs
=

ft
= ■
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Lemma D.4.3 (Multiplicative annihilation): This lemma expresses the identity x · 0 = 0

=

Proof:

4.6.6
=

4.6.2
= ■
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