The Scyther Tool: Verification, Falsification,
and Analysis of Security Protocols*
(Tool Paper)

Cas Cremers

Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland
cas.cremers@inf.ethz.ch

1 Introduction

With the rise of the Internet and other open networks, a large number of security
protocols have been developed and deployed in order to provide secure commu-
nication. The analysis of such security protocols has turned out to be extremely
difficult for humans, as witnessed by the fact that many protocols were found to
be flawed after deployment. This has driven the research in formal analysis of
security protocols. Unfortunately, there are no effective approaches yet for con-
structing correct and efficient protocols, and work on concise formal logics that
might allow one to easily prove that a protocol is correct in a formal model, is
still ongoing. The most effective approach so far has been automated falsification
or verification of such protocols with state-of-the-art tools such as ProVerif [1]
or the Avispa tools [2]. These tools have shown to be effective at finding attacks
on protocols (Avispa) or establishing correctness of protocols (ProVerif).

In this paper we present a push-button tool, called Scyther, for the verifica-
tion, the falsification, and the analysis of security protocols. Scyther can be freely
downloaded, and provides a number of novel features not offered by other tools,
as well as state-of-the-art performance. Novel features include the possibility of
unbounded verification with guaranteed termination, analysis of infinite sets of
traces in terms of patterns, and support for multi-protocol analysis.

Scyther is based on a pattern refinement algorithm, providing concise repre-
sentations of (infinite) sets of traces. This allows the tool to assist in the analysis
of classes of attacks and possible protocol behaviours, or to prove correctness for
an unbounded number of protocol sessions. The tool has been successfully ap-
plied in both research and teaching.

2 The Scyther tool

The tool provides a graphical user interface (Fig. 1), that complements the
command-line and Python scripting interfaces. The GUI is aimed at users inter-
ested in verifying or understanding a protocol. The command-line and scripting
interfaces facilitate the use of Scyther for large-scale protocol verification tests.

* This work was partially supported by the Hasler Foundation, ManCom project 2071.

Scyther combines a number of novel features with state-of-the art perfor-
mance. First, Scyther is guaranteed to terminate whilst allowing to prove cor-
rectness of protocols for an unbounded number of sessions, and can optionally
output the proof tree (by using the backend). In contrast to other unbounded
verification tools, the tool provides useful results even in the case that no attack
is found but also no unbounded correctness can be established. In such cases,
the results from Scyther have a similar interpretation as bounded verification
tools, stating that no attack exists within a certain bound.

=) Second, Scyther assists in protocol
iy Sl analysis by providing classes of proto-
oo col behaviour (or classes of attacks),
as opposed to just single attack traces

provided by other tools.

Third, Scyther facilitates so-called
multi-protocol analysis. In such an anal-
ysis, the parallel composition of two
(sub)protocols is analyzed, as in [3].
Traditionally, such an analysis has been
infeasible for protocol tools because of
state-space explosion. With the perfor-
mance provided by the Scyther tool,
multi-protocol analysis has become fea-
sible, and can be performed by simply
- e . verifying the concatenation of multiple
Claim Status Comments Patterns protocol description files.

w5 | neal reahable Ok veded Brectylicepatiem [1vacepatem]

Rt e Ok e ceyzuscepouens. (zvscsporens] Given the description of a protocol
—— 3} in the spdllanguage, which is based on
- the operational semantics found in [4],
the tool can be used in three ways: to
verify whether the security claims in
the protocol description hold or not; to automatically generate appropriate secu-
rity claims for a protocol and verify these; to analyze the protocol by performing
complete characterization. We describe each of these modes below.

Fig. 1. The graphical user interface

Verification of claims. The input language of Scyther allows for specification
of security properties in terms of claim events, i.e., in a role specification one can
claim that a certain value is confidential (secrecy) or certain properties should
hold for the communication partners (authentication). Scyther can be used to
verify these properties or falsify them.

Automatic claims. If the protocol specification contains no security claims,
Scyther can automatically generate claims. At the end of each role, authentica-
tion claims are added, claiming that the supposed communication partners must
have performed the protocol as expected. Similarly, secrecy claims are added for
all locally generated values (nonces) and variables. This augmented protocol de-
scription is then analyzed by Scyther as in the previous case. This enables users
to quickly assess the properties of a protocol.

Characterization. For protocol analysis, each protocol role can be “charac-
terized”, which means that Scyther analyzes the protocol, and provides a finite
representation of all traces that contain an execution of the protocol role. In
most cases, this representation consists of a small number (1-5) of possible ex-
ecution patterns. By manually inspecting these patterns, one can quickly gain
insight in the potential problems with the protocol and modify it if necessary.
For example, given the Needham-Schroeder protocol, Scyther determines that
there are only two patterns for the responder role: one is the correct behaviour of
the protocol, and the other is the well-known man-in-the-middle attack. Hence,
there are no other possible ways of executing the responder role.

The algorithm developed for the Scyther tool extends on ideas described
in [5], and the idea of analyzing protocols in terms of trace classes was published
first in [6]. Scyther addresses the undecidability of the security problem by (1)
significantly improving and extending the class pruning theorems from [5] and
(2) introducing a parameter that limits the pattern size, ensuring termination.
Even though the pattern depth size is limited, Scyther can perform unbounded
verification of the majority of protocols, as each pattern represents an infinite
class of traces. In practice, with protocols from libraries such as SPORE [7],
Scyther is known to provide in about 80 percent of cases either unbounded
verification or falsification, and in the other 20 percent provides bounded ver-
ification. Further details about the underlying methods are given in [8]. The
Scyther tool is freely available for Windows, Linux, and Max OS X platforms. It
can be downloaded at http://people.inf.ethz.ch/cremersc/scyther/, and
comes with a library of example protocols modeled after the SPORE library [7].

3 Performance and applications

We have extensively investigated the performance of Scyther compared to other
state-of-the-art protocol verification tools, which is reported in [9]. In these
tests, Scyther outperformed the state-of-the-art Avispa tools [2]. Even though
no abstraction techniques are used by Scyther, it offered a level of performance
similar to the abstraction-based ProVerif tool [1]. In practice this means small
(e.g. Needham-Schroeder, Yahalom, Otway-Rees) to medium-sized (e.g. TLS,
Kerberos) protocols are usually verified in less than a second. To the best of our
knowledge, Scyther is currently the fastest protocol verification tool that does
not use approximation methods.

Scyther has been successfully used for the analysis and design of proto-
cols, and has also been used for theoretical research and teaching. Exploit-
ing the state-of-the-art performance of Scyther, we have discovered a num-
ber of previously unreported attacks, e.g. as in [3,10]. Scyther has also been
used to verify theoretical results regarding protocol composition in [11], and
was used for finding the counterexample that led to the main theorem of [12].
The tool is currently being used for teaching purposes at several universities,
including the Eindhoven University of Technology, ETH Zurich, University of
Luxembourg, University of Twente, and the University of Grenoble. For teach-
ing, the clear relation between the protocol specification and the protocol se-

mantics has proven useful in explaining the fundamentals of protocol design
and analysis. The concise protocol descriptions help in focussing on the pro-
tocol as opposed to tool details, in contrast to other protocol tools, which re-
quire the specification of error-prone scenarios for the verification of properties.
For teaching purposes, a set of example exercises for students is available at
http://people.inf.ethz.ch/cremersc/scyther/scyther-exercises.html.

In future work we aim to turn the informal Scyther proof output into a

proof object that can be verified by mechanical theorem provers. The underlying
protocol model has already been modeled in Isabelle/HOL, as described in [13].

References

1.

=~

10.

11.

12.

13.

Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules.
In: Proc. 14th IEEE Computer Security Foundations Workshop (CSFW), IEEE
(2001) 82-96

. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, L.,

Drielsma, P., Hedm, P., Kouchnarenko, O., Mantovani, J., Mddersheim, S., von
Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Vigano, L., Vigneron,
L.: The AVISPA tool for the automated validation of internet security protocols
and applications. In: Proc. Computer Aided Verification (CAV). Volume 3576 of
LNCS. Springer (2005) 281-285

Cremers, C.: Feasibility of multi-protocol attacks. In: Proc. of The 1st Int. Conf.
on Availability, Reliability and Security (ARES), IEEE (April 2006) 287-294
Cremers, C., Mauw, S.: Operational semantics of security protocols. In Leue,
S., Systé, T., eds.: Scenarios: Models, Transformations and Tools, Int. Workshop,
Revised Selected Papers. Volume 3466 of LNCS., Springer (2005)

Song, D.: An Automatic Approach for Building Secure Systems. PhD thesis, UC
Berkeley (December 2003)

Doghmi, S., Guttman, J.D., Thayer, F.: Skeletons, homomorphisms, and shapes:
Characterizing protocol executions. In: Proc. of the 23rd Conf. on the Mathe-
matical Foundations of Programming Semantics (MFPS XXIII). Volume 173 of
ENTCS., Elsevier ScienceDirect (April 2007) 85-102

Security Protocols Open Repository: http://www.lsv.ens-cachan.fr/spore.
Cremers, C.: Scyther - Semantics and Verification of Security Protocols. Ph.D.
dissertation, Eindhoven University of Technology (2006)

Cremers, C., Lafourcade, P.: Comparing state spaces in automatic protocol verifi-
cation. In: Proc. of the 7th Int. Workshop on Automated Verification of Critical
Systems (AVoCS’07). ENTCS (September 2007) To appear.

Cremers, C., Mauw, S.: Generalizing Needham-Schroeder-Lowe for multi-party
authentication (2006) CSR 06-04, Eindhoven University of Technology.

Andova, S., Cremers, C., Gjgsteen, K., Mauw, S., Mjglsnes, S., Radomirovié¢, S.:
A framework for compositional verification of security protocols. Information and
Computation 206 (February 2008) 425-459

Cremers, C.: On the protocol composition logic PCL. In Abe, M., Gligor, V.,
eds.: Proc. of the ACM Symposium on Information, Computer & Communication
Security (ASIACCS ’08), Tokyo, ACM Press (March 2008) 66—76

Meier, S.: A formalization of an operational semantics of security proto-
cols. Diploma thesis, ETH Zurich (August 2007) http://people.inf.ethz.ch/
meiersi/fossp/index.html.

