
Keeping Data Secret under Full Compromise
using Porter Devices

Christina Pöpper
System Security Group

Computer Science
ETH Zurich

poepperc@inf.ethz.ch

David Basin
Information Security Group

Computer Science
ETH Zurich

basin@inf.ethz.ch

Srdjan Čapkun
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ABSTRACT
We address the problem of confidentiality in scenarios where the
attacker is not only able to observe the communication between
principals, but can also fully compromise the communicating par-
ties (their devices, not only their long term secrets) after the con-
fidential data has been exchanged. We formalize this problem and
explore solutions that provide confidentiality after the full compro-
mise of devices and user passwords. We propose two new solutions
that use explicit key deletion and forward-secret protocols com-
bined with key storage on porter devices. Our solutions provide the
users with control over their privacy. We analyze the proposed so-
lutions using an automatic verification tool. We also implement a
prototype using a mobile phone as a porter device to illustrate how
the solution can be realized on modern platforms.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer-Communication
Networks; K.6.5 [Management of Computing and Information
Systems]: Security and Protection—Unauthorized access

General Terms
Design, Security

Keywords
Security Protocol, System Security, Full Compromise

1. INTRODUCTION
Confidential communication is a basic security requirement for

modern communication systems. Solutions to this problem pre-
vent an attacker that observes the communication between two par-
ties from accessing the exchanged data. We address a related, but
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harder, problem in a scenario where the attacker is not only able to
observe the communication between the parties, but can also fully
compromise these parties at some time after the confidential data
has been exchanged. If a protocol preserves confidentiality under
such attacks, we say that it provides forward secrecy under full
compromise. This is a stronger notion than forward secrecy [18],
which guarantees confidentiality when participants’ long-term se-
crets (but not their devices or passwords) are compromised. For
example, a subpoena is issued and the communication parties must
relinquish their devices and secrets after (e. g., e-mail) communica-
tion took place. In this scenario, the parties would like to guarantee
that the authorities cannot access the exchanged information, even
when given full access to devices, backups, user passwords, and
keys, including all session keys stored on the devices.

Assuming public communication channels, any solution to the
above problem must ensure that the communication is encrypted to
prevent eavesdropping. The challenge in solving this problem is the
appropriate management and deletion of the keys used to encrypt
the data. Several solutions to this problem have been proposed.
First, the Ephemerizer system [28] stores the encryption keys on a
physically separate, trusted server accessible by all communicating
parties. A drawback of this approach is that trust is placed in one
entity, whose compromise would be disastrous for all parties using
its services (e. g., companies and individuals). To address this con-
cern, [21] proposes using Distributed Hash Table (DHT) networks
for key storage and deletion, thereby removing trust from a cen-
tral entity. This system, however, only provides probabilistic key
deletion without guarantees on the deletion times of stored keys.
Furthermore, researchers have shown how to attack this prototype
implementation using Sybil attacks on DHTs, which enabled the at-
tackers to reconstruct keys [36]. This attack highlights the problem
of delegating key deletion to arbitrarily selected, untrusted nodes.

In this work, we formalize the problem of forward secrecy under
full compromise and explore new solutions that provide confiden-
tially after the compromise of devices and user passwords. Our so-
lutions rely on the existence of trusted, reliable porter devices that
manage encryption keys. We do not require that the principals trust
one central server but enable the receivers to select their own key
storage devices (based on their trust). We thus enable users to con-
trol their own privacy. Although it might seem that – given trusted
porter devices – solutions to this problem would be simple, they
turn out to be surprisingly complex. This complexity stems from
(i) the need to ensure that the protocols do not allow key reconstruc-
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Figure 1: Timeline for time-limited data. Data can be accessed until its expiration time te + ∆max, where te relates to the sender’s clock
and ∆max is the maximal clock difference of the receiver with respect to the sender. After time te + ∆max, data must be inaccessible to all
parties, even under full system compromise.

tion under full compromise and (ii) the need to provide guarantees
on the key deletion. Abstractly, our solutions use forward-secret
subprotocols, session keys with different lifetimes, and timed, ex-
plicit key deletion as building blocks to achieve forward secrecy
under full compromise. This prevents data access by all parties,
including attackers, after a well-defined time. The requirement of
guaranteed deletion motivates our use of porter devices: they en-
able timely key deletion even if the communication devices (e. g.,
PCs, laptops) cannot be guaranteed to be active.

Our main contributions are as follows. First, we formalize the
concept of forward secrecy under full compromise. Second, we
present two practical solutions to achieve it. Third, we formally
analyze the presented solutions using an automatic verification tool
[15]. Finally, we analyze their practical feasibility with a prototype
implementation, using a mobile phone as porter device. We thus
illustrate how the solution can be realized on modern platforms and
how practical considerations can be handled.

The remainder of this paper is organized as follows. In Section 2,
we specify the system requirements and our system and attacker
models. In Section 3, we motivate our solution. We present our
solution and formally analyze its properties in Section 4. In Sec-
tion 5, we examine possible realizations and describe our prototype
implementation. We discuss related work in Section 6 and draw
conclusions in Section 7.

2. SYSTEM SPECIFICATION

2.1 Requirement Specification
Our goal is to design a system that provides data access only

during a defined time period and afterward prevents access for all
parties. We first introduce some key notions, which are illustrated
in Figure 1.

Definition 1. The sender specifies data as time-limited by as-
signing a time after which the data must be inaccessible to the
sender, the receiver, and any other party. We denote this time by
te, also called the expiration time.

We note that te is relative to the sender’s local clock.

Definition 2. During the lifetime of time-limited data, autho-
rized access is granted only to parties that the sender selects as
authorized to access the data.

Our system shall meet the following security requirement:
R1 Time-dependent access control: The time-limited data is

inaccessible outside of the lifetime period specified by the
sender.

(a) During the data lifetime, only authorized access shall
be granted.

(b) After the data lifetime, no data access is possible for
any party. This includes the sender, the receiver, and
any compromised party.

We also define a functional requirement:
R2 Data availability: Given the successful communication be-

tween the sender and an authorized receiver (i. e., messages
reach the intended recipient), the receiver can access the data
during its lifetime.

2.2 System model
We consider the setting where a sender wants to transfer time-

limited data to one or more receivers (the authorized recipients).
The transfer may use any communication medium and include dif-
ferent applications, e. g., email exchange or server upload and down-
load. A special case is the local storage of time-limited data as a
form of self-communication involving only the sender. We make
the following four assumptions:

Trusted communication partners. Communication partners,
also called principals, follow the protocol. In particular, their de-
vices timely and safely delete1 data and they do not reveal time-
limited data or keys in ways not specified by the protocol. Princi-
pals may shut down their communication devices and resume com-
munication later, i. e., their devices need not be online at all times.

Authenticated communication. The sender and the receiver
can communicate authentically. This may be achieved using pre-
shared secret keys or authentic, pre-distributed (long-term) public
keys. Pre-shared secrets are used to generate and verify message
authentication codes (MACs) whereas long-term public keys are
used for signature verification.

Trusted storage device. There exists a reliable device with an
independent clock used for data (key) storage. Typical instances of
such devices are built-in Trusted Platform Modules (TPMs), Hard-
ware Security Modules (HSMs), or any external device, such as
mobile phones, PDAs, or (e-banking) smartcards with readers (see
also Section 5). Throughout this paper, we call this device a porter
and denote it P . In our solution, the porter must be trusted in three
ways: (i) P supports authentic communication, e. g., using authen-
tic public keys or a physically secure channel, (ii) P supports the
confidential storage and retrieval of data (in our protocols by the re-
ceiver), and (iii) P is regularly active and can provide autonomous,
permanent erasure of stored data at specified times (or its inacces-
sibility after specified times). In general, the simpler the porter

1We assume that the principals use secure deletion [24,33] prevent-
ing data restoration.



device, the less complex its key deletion operation will be. At the
same time, simple porter devices are, in general, more controllable
and less error-prone than complex, general-purpose devices. We
thus envision TPMs or dedicated smartcards as porters for corpo-
rate use and mobile phones or PDAs for (less critical) private use.

Loose time synchronization. The sender S, the receiver R, and
the porter P are loosely time-synchronized. The local clock dif-
ferences between the sender and the other principals at the data
expiration time do not exceed ∆max: when S’s clock hits te, R’s
and P ’s clocks are between te−∆max and te +∆max. The princi-
pals’ devices are not required to remain synchronized within ∆max

throughout the lifetime of the data but just at the expiration time.
Time-limited data should be accessible at least until te−∆max and
be inaccessible after te + ∆max.

2.3 Attacker model
We consider a two-phased attacker model. Our main aim is to

model attackers capable of full compromise (introduced below),
which models for example court orders or subpoenas. If such an
attacker is present during the data access period, all protocols that
require the data to be in the (accessible) device’s memory are triv-
ially insecure. We therefore design our protocols to provide secu-
rity guarantees with respect to a two-phase attacker model (Fig-
ure 1): (i) before and during the data access period (defined by the
sender), we consider a strong network (Dolev-Yao [19] type) at-
tacker, and (ii) after the data access period, we consider an even
stronger attacker capable of full compromise. Let U be the set of
users authorized to access the transmitted data before its expiration
time te.

Attacker model for t ≤ te + ∆max: Active external attacker.
The attacker controls the network and may eavesdrop, intercept,
inject, and block messages, but she has no control over the de-
vices of users from the set U . Users not in U may collude with
the attacker and deviate from the protocol description. This at-
tacker model corresponds to the standard Dolev-Yao model and is
applicable to communication systems comprising ISPs, web mail
providers, proxies, relay nodes, etc.

Attacker model for t > te + ∆max: Full Compromise. In ad-
dition to controlling the network, the attacker completely controls
the users’ devices, including porter devices, and can compromise
users’ passwords and passphrases. The attacker can access and
change all data stored on the devices and backups, possibly sup-
ported by court orders or subpoenas that oblige users to disclose
data. In particular, she may compromise the principals’ keys, in-
cluding long-term and ephemeral secret keys, and she can coerce
users to reveal the passwords used to secure decryption keys. We
refer to this model as full compromise. This model is stronger than
the Dolev-Yao model in that it allows the compromise of all data
on the devices, including the data protected by user-selected pass-
words.

This two-phase attacker model is very strong. In many practical
settings, the first-phase attacker will be weaker than a Dolev-Yao
attacker. For example, it may be reasonable to assume that even
in case of a subpoena after te + ∆max, only communication logs
were recorded in the phase before te + ∆max (e. g., by web mail or
internet service providers), but no active attack was mounted. In-
deed, such attacks often make evidence inadmissible. The concept
of a phased attacker model also allows us to define other attackers
that are stronger than the Dolev-Yao attacker in the first phase. In
some scenarios the attacker might use a cryptographic attack to ac-
cess principals’ long-term secrets before getting full access to the
devices at te + ∆max. Although this is not part of our core attacker
model, our solution even resists some attacks of this nature.

3. SOLUTION SPACE
In this section, we explore the space of possible systems that

meet the requirements given in Section 2. We also introduce and
categorize related work and motivate our solution.

Data transmitted over an open network cannot, in general, be ex-
plicitly deleted since the sender does not have access to (and may
not even be aware of) all existing copies. Hence the sender must
encrypt data before transmission to protect its confidentiality. Since
an attacker (as defined in Section 2.3) may have full access to all de-
vices after the data expiration time, data must also never be stored
in plaintext on any device where it could possibly still reside after
the time te + ∆max. As principals can communicate authentically,
they can use public-key cryptography to establish secret (session)
keys over open networks and use the resulting keys to secure sub-
sequent communication. The solution space therefore amounts to
different ways of creating, managing, and deleting decryption keys.

Intuitive Approaches. We first look at two approaches for key
management and deletion that appear intuitive but are inappropriate
as solutions.

(1) The sender and receiver delete the established key imme-
diately after the encryption and decryption phases, respec-
tively.

This approach does not fulfill requirement R1.b (Section 2) if the
encrypted data sent by the sender S arrives at receiver R after te +
∆max or if it never arrives at R (e. g., due to message blocking or
delay attacks, transmission failures, or R being offline / inactive).
In this case, the pre-agreed key K remains stored on R because the
receiver never starts the decryption phase. This reveals the time-
limited data under full compromise after te + ∆max.

(2) The sender and receiver delete the key at its lifetime expira-
tion te, e. g., using a job or task scheduler such as Cron.

This does not guarantee requirement R1.b because these automated
tasks are not guaranteed to succeed. For example, users’ personal
computers usually have periods of inactivity during which they
are turned off or they may have to be handed in for repair. In
such cases, R may be turned off at the expiration time and sys-
tem processes cannot erase expired keys from the device memory
and disks.

From the above considerations, we conclude that the key K used
to encrypt the time-limited data cannot be stored on either S or R.
Hence it must be stored externally.

Related Work. We briefly review selected related work to il-
lustrate relevant parts of the solution space. In the Ephemerizer
system [28] and its application to file deletion [29], a physically
separate, trusted machine, the Ephemerizer, generates and stores
the keys used to encrypt and decrypt the data. Users interact with
the Ephemerizer in order to retrieve the encryption or decryption
keys. A potentially large number of users, for example a company’s
employees, use the same (logical) key generator and storage.

The authors of Vanish [21] propose using a de-centralized key
storage based on peer-to-peer networks and DHTs. In their system,
the sender picks a random encryption key, splits it using secret shar-
ing, and stores the key shares in a DHT network from where the
receiver can retrieve them as long as they exist. Due to the natural
churn in such networks, the keys are eventually deleted.

Solution Dimensions. We identify four properties of key storage
devices: (i) storage type, (ii) access options, (iii) level of guaran-
tees for key management, and (iv) scalability. In the remainder of
this section we explain these properties and show in Table 1 how
they apply to the approaches above and to our solution.

(i) Storage type. The storage may be centralized (e. g., a re-
mote server [28]), or distributed [21]; distributed storage requires
key sharing. While deletion on a centralized storage is a well-



Ephemerizer [28] Vanish [21] Our solution (Section 4)
Storage type centralized/shared distributed/shared personal
Key generation by the storage server by S by S and R or by R
Key deletion deterministic probabilistic deterministic
Access to K both S and R both S and R R (or S)

over an open network over an open network over open/trusted networks
Scalability scales (special-purpose) limited (secondary scales (special-purpose or secon-

with many users) dary with few users per storage)

Table 1: Dimensions of the key storage and their instantiation by different solutions. Our solution allows access to the encryption key K by
R but can easily be extended to enable access also by S on a separate storage (belonging to S).

defined operation, providing guarantees on the deletion of (suffi-
ciently many) key shares on distributed storage is challenging.

(ii) Access. The storage may be personal or shared. Personal
storage allows exclusive access by either S or R. The access to
personal storage may be based on public or secure channels; an
example for the latter are independent storage units within a user’s
device. Shared storage (e.g., a network server) permits multiple
parties to store and retrieve data. We do not consider storage that
only S and R can access because it is a special case that could
be used to directly transfer time-limited data. The communication
channels to access shared storage are typically public. Since the
key must be stored in plaintext on shared storage2, it may allow
attackers to collect data before the expiration time and use it later
to access the data. The attack [36] on Vanish is an example of this.

(iii) Guarantees on key management. Any key storage must
store and manage keys and delete them in a timely way. We dis-
tinguish between deterministic and probabilistic key deletion. In
contrast to probabilistic key deletion, deterministic key deletion
provides guarantees on the times when keys will be deleted; it is
typically harder to achieve on complex or distributed systems (e. g.,
network servers) than on simple, monolithic devices.

(iv) Scalability. The storage should provide functionality for a
large number of users without substantially degraded performance.
We distinguish special-purpose storage that can be designed to scale
well with the number of users (e. g., [28]) and secondary storage
that fulfills different primary purposes and, additionally, provides
key management. In the latter case, the primary functions may
degrade with the additional key management functionality of the
storage; in this case, the scalability is limited.

4. OUR SOLUTION

4.1 Solution Overview
As motivated in Section 3, the sender encrypts the time-limited

data prior to transmission. The encryption key is established on a
per-message basis between S and R using an authenticated Diffie-
Hellman (DH) key establishment protocol. In our solution, we re-
locate the encryption keys to an autonomous porter device under
the receiver’s control (we do not use a central server because it re-
quires the users’ trust and creates a single point of failure). The
porter device will independently delete keys once the expiration
time of the messages encrypted using those keys is reached. Given
that the porter possesses the sole copy of this encryption key at the
expiration time and the porter will delete keys when they expire,
this approach prevents data access by any party after te + ∆max.

2If the decryption key K was encrypted, this would bring us back to
the original problem: how and where to store the key. Asymmetric
encryption with R’s long-term public key would not resist a full-
compromise attack after te + ∆max.

A porter-based approach requires elaboration to provide authen-
ticity and forward-secrecy for the connections from the sender to
the receiver and between the receiver and the porter. This requires
carefully managing multiple short-term keys. In security applica-
tions, e. g., off-the-record messaging [3, 11], short-term keys are
created on demand and deleted immediately after the data encryp-
tion and decryption. Deleting the decryption key after the data
transmission is, however, not a solution in our scenario: we must
ensure data inaccessibility after the expiration time te +∆max even
if the sender’s message is not received before te + ∆max (see Sec-
tion 3).

4.2 Forward Secrecy under Full Compromise
We introduce the notion of forward forward secrecy under full

compromise and explain why we need it. Forward secrecy means
that the compromise of the principals’ long-term private keys does
not compromise past session keys [18, 27]. Our system requires
forward secrecy not only under the compromise of long-term keys
but also under full compromise (as defined in Section 2.3) after the
expiration time. Given this extended notion of compromise, we
similarly extend the definition of forward secrecy.

Definition 3. A protocol is forward-secret under full compro-
mise with respect to time-limited data m if the full compromise
of the involved principals and their devices after the data expiration
time does not compromise the secrecy of m.

Forward secrecy under full compromise is a stronger property than
(standard) forward secrecy because it also accounts for the prin-
cipals’ internal states after the expiration time. As a consequence,
time-critical data and the respective encryption keys must be erased
from the principal’s devices such that they are nonexistent at the ex-
piration time. Key and data deletion must be part of any protocol
that provides forward secrecy under full compromise. A second
essential component concerns those parts of the protocol that in-
volve session keys, which we call subprotocols, e. g., for key es-
tablishment. Forward secrecy under full compromise requires that
all subprotocols used to establish session keys for data encryption
provide forward secrecy.

4.3 Protocol
We now present the main idea of our protocols. We focus on

the case where the receiver uses the key storage (rather than the
sender). Figure 2 provides a protocol sketch that we will later in-
stantiate with concrete solutions. All delete commands are secure
deletions. We consider the following four protocol phases:

1. Key establishment: The sender S defines the data lifetime
te and agrees with the receiver R on the mid-term key K (or
a key pair where K is the decryption key). R initiates the
safe storage of K along with te on the porter P and deletes



S (sender) channel 1 R (receiver) channel 2 P (porter)

?

Phase 1

?

Phase 1
Key establishment
& assignment of K, te Key storage

expiration time te(delete K) delete K K, te

Phase 2
...

Transmission of encryp-
ted time-limited data mdelete m Phase 3

Key retrievaldecrypt m Phase 4 (ongoing):
t delete K, m At te: delete K, te t

Figure 2: Protocol sketch. The basic building blocks are commands for explicit, secure deletion and forward-secret subprotocols during the
communication phases (Phases 1–3).

its own copy of K.3 If the key establishment involves key
contributions from the principals, the ephemeral private keys
are deleted right after the key establishment.

2. Communication/storage: S transmits the data m, encrypted
using key K, and then deletes both the plaintext and K.

3. Data access: Upon receiving the encrypted data, R attempts
to retrieve K from P in order to decrypt m. After successful
data access, R deletes both the plaintext m and K. This
phase may occur multiple times.

4. Key management/deletion: In parallel with phases 1–3, P
permanently deletes keys from its storage once they expire.

Our solution involves three kinds of keys for different time inter-
vals:

1. a mid-term encryption key K (or key pair) for encrypting and
decrypting time-limited data,

2. long-term authentication keys used to authenticate the mes-
sages, and

3. short-term (ephemeral) session keys to provide secrecy of the
communication between the principals and to the porter.

The notion of a mid-term key is non-standard but is appropriate
for our key K, which must exist during the data’s lifetime and is
permanently erased thereafter.

Encryption using mid-term keys can be based on symmetric or
public-key cryptography. We will provide examples of both in
Section 4.4. The examples also differ in the assumptions on the
communication channels underlying the protocols. We require two
channels: one between the sender and the receiver for data trans-
mission and key-establishment and a second channel between the
receiver and the porter for key storage and retrieval. We introduce
two common channel types in the following; based on the available
channels, different subprotocols will provide forward-secrecy.
Physically secure channel: A physically secure (PS) channel pro-

vides confidentiality and authenticity without cryptographic
measures. An example of such a channel is a shielded wire
that connects the receiver’s motherboard to a trusted hard-
ware module. Due to the physical security of the communi-
cation, forward secrecy is trivially achieved because no long-
term or short-term keys are involved in the communication.

Dolev-Yao channel: A Dolev-Yao (DY) channel is subject to at-
tacks under the Dolev-Yao attacker model, involving eaves-
dropping, message corruption, insertion, and blocking (eras-
ing). An example of a DY channel is a wireless (e. g., Blue-
tooth) connection between two devices.

3In our protocols, R stores and retrieves the key. In a different
protocol, S may also store the key on a porter of its own.

The standard way to achieve forward secrecy on a Dolev-Yao chan-
nel is to establish ephemeral encryption keys, typically by using an
authenticated DH protocol [12], and to discard them after their use.
In this case, the ephemeral DH public keys grS and grR are ex-
changed and stored only during the key establishment. They are
destroyed thereafter along with the private keys rS and rR. The
established key K = grSrR = grRrS is the encryption key.

4.4 Protocol Instances
We now present two instances of the protocol sketch of Figure 2,

shown in Figures 3 and 4. The two protocols differ in how they
achieve forward secrecy on the communication channels between
S, R, and P .

We use the following notation: [M ]K and [M ]−1
K denote the

symmetric encryption and decryption of a message M with key K.
AS(M) denotes that message M is authenticated by principal S

(described below). Communication is expressed as S
M // R,

meaning that S transmits message M to receiver R. The tupling of
multiple data items in a message is denoted by “,”. For DH key es-
tablishment, g denotes the public generator of the group used, rS is
the ephemeral private key of principal S, and grS is S’s ephemeral
public key; the use of the modulus (mod n) is implicit.

4.4.1 Protocol 1
Protocol 1 (Figure 3) is designed to be used when S, R, and P

communicate over DY channels. In this scenario, P may, e. g., be a
mobile phone that belongs to R. Protocol 1 uses symmetric encryp-
tion to transmit the time-limited data m. The protocol is initiated by
S, who starts a DH key establishment with R. R then establishes
another ephemeral DH key L with the porter device P and uses
it to send K encrypted to P . Later, after receiving the encrypted
time-limited data from S, R establishes a new ephemeral key L′

with P and uses L′ to retrieve K. For each subsequent retrieval of
the encryption key K, a new ephemeral key is established.

The DH key exchanges of Protocol 1 follow the standard two-
way ISO-9798-3 protocol [23].4 We do not require a third message
for key confirmation in which the sender returns both ephemeral
public keys to the receiver to confirm that it possesses the same key.
Under our attacker model, the receiver is not compromised before
it sends its DH key contribution (when te expires, both parties abort
the protocol).

The following components are essential to Protocol 1:
4The standard also specifies a random index i into a universal hash
function family H in message 2, so that the shared key computed
is K = Hi(g

rSrR). We do not use this.



S (sender) DY channel 1 R (receiver) DY channel 2 P (porter)

pick rS

compute grS
AS(1,grS ,te) // pick r′R; compute gr′R

AR(2,g
r′R ) // pick rP , compute grP

pick rR; compute grR
AP (3,g

r′R ,grP )oo L = gr′RrP , delete rP

K = grSrR , L = grP r′R
AR(4,S,te,[K,4.1]L)// K = [K]−1

L , delete L

K = grRrS
AR(5,grS ,grR ,te)oo delete K, L, rR, r′R

delete rS

...

m, [m]K
AS(6,[m,6.1]K ,te)// pick r∗R, compute gr∗R

AR(7,g
r∗R ,S,te)// pick r∗P , compute gr∗P

delete m, K L′ = gr∗P r∗R , delete r∗R
AP (8,g

r∗R ,g
r∗P ,[K]L′ )oo L′ = gr∗Rr∗P

K = [K]−1
L′ , delete L′ delete r∗P , delete L′

m = [m]−1
K , delete K

After usage: delete m At time te (ongoing):
delete (S, te, K)

Figure 3: Protocol 1. The protocol can be run over two Dolev-Yao (DY) channels, between S and R and between R and P . The established
symmetric mid-term key K is used by S to encrypt the time-limited data m. All messages are authenticated, denoted by the authentication
function AX(·), which represents the function input concatenated with a digital signature of principal X .

1. All messages are authenticated by the transmitter, as indi-
cated by the authentication function AX(·) where X ∈ {S,
R, P} is the authenticating principal. This can be achieved
using message authentication codes (MACs) with pre-shared
symmetric keys or by digital signatures using X’s long-term
secret key. In the latter case, the first message would be
1, grS , te, SigS(1, grS , te), where SigS(M) denotes the dig-
ital signature of M using S’s long-term key.

2. The principals verify the authenticity of received messages
(by verifying signatures or MACs) and check the validity of
te. The principals abort the protocol if te has expired or if
message authenticity cannot be verified.

3. If the protocol aborts due to failed time or authenticity checks,
abortive measures must be taken. In particular, critical data
(such as encryption keys and DH key contributions), which
may be present on a device, must be securely deleted.

Encrypted vs. plain storage of K. In Protocol 1, the mid-term
encryption (decryption) key is stored in plaintext on P and revealed
only to R (encrypted over the DY-channel). While the unencrypted
storage of K may seem like a weakness, under our attacker model,
full device compromise only occurs after the expiration time when
K is already deleted. We still consider it realistic that the porter
device (e. g., a mobile phone) may be lost or stolen before the expi-
ration time; in either case, we can assume that the owner is aware
of the loss. To preserve data privacy in this case, we propose to
store K encrypted on P : In Protocol 1, the receiver would send
the encrypted key K to the porter (i. e., [[K]X ]L instead of [K]L)
and store the symmetric encryption key X along with the expira-
tion time te of K on R. Whenever the owner notices the loss of his
porter device, he can delete X from R’s disk.

4.4.2 Protocol 2
Protocol 2 (Figure 4) assumes a physically secure (PS) channel

between R and P ; e.g., P could be a TPM directly connected to
R’s computer. Thus no key agreement is required on this chan-
nel. Furthermore, Protocol 2 uses asymmetric encryption to secure
time-limited data (independent of the PS channel).

In Figure 4 we use the notation from the beginning of this sec-

tion. Additionally {M}
PK+

R
(and {M}

PK−
R

) denote the public-
key encryption (and decryption) of message M with the public
(private) key PK+

R (PK−R ) of principal R, respectively. Proto-
col 2 is based on R’s authenticated broadcast, indicated by *, of the
mid-term public keys PK+

R . These public keys form part of freshly
generated key pairs and are broadcasted along with their expiration
times te. An example broadcast is the authenticated publication
of PK+

R along with te on the receiver’s website, or the receiver’s
reply to a request by the sender (not shown in Figure 4). The cor-
responding secret keys PK−R are not stored on R but on a porter
directly connected to R over a PS channel. At any point in time, the
sender may pick the public key that corresponds to the desired data
lifetime, use it to encrypt the time-limited data, and transmit the
message to the receiver, along with the respective expiration time
(thereby enabling the receiver to identify the right secret key). The
messages transmitted over the DY channel are authenticated.

4.4.3 Comparison
Protocols 1 and 2 differ in (i) how they create the mid-term en-

cryption key and (ii) how they achieve forward-secrecy on the com-
munication channel between R and P .

Protocol 1 uses key contributions by both the sender and the
receiver to establish the symmetric encryption key and assumes
a DY channel between R and P . This requires DH session key
establishments on both communication channels. A typical appli-
cation for Protocol 1 is the forward-secure email-communication
of a company (under our full-compromise attacker model) using a
trusted remote device for key management, e. g., a key card or other
special-purpose devices.

In contrast to this, Protocol 2 uses asymmetric encryption with
key pairs created by the receiver. The public keys may, e. g., be an-
nounced on a private user’s webpage. Protocol 2 does not require
DH key establishment on the communication channel between S
and R. Due to the PS channel, it also does not require DH key
establishment between R and P . The communication devices us-
ing Protocol 2 must be able to perform public-key operations; for
example, the porter can be a TPM attached to R. In a slightly dif-
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Figure 4: Protocol 2. The protocol assumes a physically secure (PS) channel between R and P (e. g., P is an HSM physically wired to R’s
hard disk). Hence, messages between S and R need not to be further protected by encryption or authentication measures. The mid-term key
pair used for data encryption and decryption is (PK+

R , PK−R ). There are no ephemeral keys used.

ferent setting, this protocol can also be applied if S and R are porter
devices that can directly communicate. In this case, the operations
on the PS channel are simple storage and data retrieval operations
to and from the memory of the porter.

In summary, if the communication devices can perform key man-
agement, they can also be used for key storage; if not, the key man-
agement should be outsourced to a suitable porter. We also note
that the building blocks of Protocols 1 and 2 can be mixed, e. g.,
one can build an implementation that uses symmetric encryption
while relying on a TPM connected by a PS channel.

4.5 Formal Protocol Analysis
We now construct formal models of our protocols and analyze

the secrecy of the message m with respect to our attacker model
(Section 2.3) using the Scyther tool [15]. We chose Scyther since it
provides support for revealing the principals’ states and enables us
to analyze forward secrecy under full compromise [6, 7]. We first
provide background information on Scyther.

4.5.1 Background on Scyther
Scyther is a tool for the symbolic automatic analysis of the se-

curity properties of cryptographic protocols (typically confiden-
tiality or variants of authenticity). It assumes perfect cryptogra-
phy, meaning that an attacker gains no information from an en-
crypted message unless she knows the decryption key (this is a
standard assumption in symbolic methods). Scyther takes as in-
put a role-based description of a protocol in which the intended
security properties are specified using claims. Claims are of the
form claim(Principal,Claim,Parameter), where Principal is the user’s
name, Claim is a security property (such as ’secret’), and Parameter
is the term for which the security property is checked.

Recent versions of Scyther can analyze protocols with respect
to a family of attacker models, ranging from a standard Dolev-Yao
style network attacker to stronger attackers capable of various types
of compromise. The attacker model is specified by selecting a set of
attacker capabilities, such as revealing the short-term or long-term
secrets of users. To analyze our protocols, we enable the follow-
ing attacker capabilities: (i) Long-term key reveal for all princi-
pals and for other parties after the protocol execution, (ii) Session
(short-term) key reveal for all parties not part of the current pro-
tocol execution, and (iii) Session-state reveal, which reveals the
entire contents of the session-state of the parties. Together, these
capabilities model the attacker from Section 2.3.

For most protocols and properties, the tool either finds an attack

or establishes the unbounded verification of the protocol’s proper-
ties with respect to the specified attacker model. In the remaining
cases, bounded verification is performed where the bound defines
the number of considered runs, i. e., the maximum number of paral-
lel threads (or executions of role descriptions) executed by honest
principals. This bounded result is similar to model-checking ap-
proaches for formal protocol verification. Attacks such as replay or
man-in-the-middle attacks are typically found within the bound of
two or three runs for many protocols (e. g., [5])5. The verification of
over 100 protocols in [16] showed that no attacks were found that
involved more runs than the number of principals in the protocol
(except for protocols specifically constructed as counterexamples).

4.5.2 Analysis of Protocol 1
We model Protocol 1 (Figure 3) using eight send and receive

events for the three principals S, R, and P . The complete proto-
col models and the tool itself are available at [2]. To give some
intuition, we display the part that models the sender S:

role S {
const rS: Nonce; // S’s DH key contribution
const te: Nonce; // expiration time
const M: Nonce; // time-limited data
var beta: Ticket; // R’s DH key contribution

claim_sidS(S, SID, te); // mark T_e as session id
// Phase 1
send_1(S,R,g1(rS),te,{l1,g1(rS),te}sk(S));
recv_5(R,S,g1(rS),beta,te,{l5,g1(rS),beta,te}sk(R));
// Phase 2
send_!6( S,R, {l6a,M}g2(beta,rS),
{l6b,{l6a,M}g2(beta,rS)}sk({S});

claim_s(S, Secret, M);
}

When using Scyther, security properties are modeled as local prop-
erties: If an agent executes a particular role, what can be concluded
about the state of other agents or the attacker’s knowledge? Here
we analyze whether the protocol ensures the secrecy of m after the
execution of an instance of S or R, and the secrecy of K after the
execution of an instance of P , both under full compromise. In par-
ticular, we verified the following claims: S: claim(S,Secret,m), R:
claim(R,Secret,m), and R: claim(P ,Secret,K). As Scyther currently
does not support explicit key expiration times, we model the expi-
ration as happening immediately after the protocol execution, i. e.,

5The security analysis in [5] indicates that the Ephemerizer proto-
col is secure in terms of secrecy but insecure regarding integrity.
The analysis is based on two (or three) runs.



Figure 5: Scyther result for Protocol 1.

after the key is retrieved from P . This is a worst case model be-
cause early key expiration only gives the attacker more knowledge
at earlier times and thus more possibilities for attacks.

Figure 5 shows the results of the Scyther analysis. Scyther vali-
dates that no attacks exist on the model of Protocol 1 that involve
less than four honest agent runs. For bounds of four or more parallel
runs, the verification process did not terminate (within a day) due to
the complexity of the analysis. Similar to bounded model-checking
this neither falsifies the protocol nor proves its correctness, but es-
tablishes that no attacks exist within the given bounds.

4.5.3 Analysis of Protocol 2
We model Protocol 2 (Figure 4) in Scyther by two send events

over the DY channel. Messages over the physically secure channel
are not modeled as events because they are not subject to compro-
mise (as opposed to the DY channel). Consequently, we verified the
following two claims: S: claim(S,Secret,m) and R: claim(R,Secret,
m). The input file provided to the Scyther tool can be found at [2].
The automatic analysis validates that no attacks exist on the model
of Protocol 2 that involve less than ten honest agent runs. For
bounds of ten or more parallel runs, the verification process did
not terminate (within a day).

5. IMPLEMENTATION AND EVALUATION
We now examine possible realizations of key storage devices

(Section 5.1), describe results from our mobile phone prototype
implementation (5.2), and evaluate our solution (5.3).

5.1 Possible Realizations of Porter Devices
Dedicated Platforms. One possible realization of the porter de-

vice uses a platform that is embedded in the receiver device or
is (occasionally) attached to the receiver. Example platforms on
which porter functionality (i. e., key storage and delayed deletion)
can be implemented are dedicated hardware security modules ( [1]
is an example of a platform that offer porter functionality). Note
that our solution does not assume that the porter is tamper-resistant.
Existing TPM modules could be used as porters but their function-
ality would have to be extended with delayed key deletion. TPMs
used for this purpose must have an internal battery and clock; these
are typically available in more advanced platforms (e. g., the IBM
4758 Cryptographic Coprocessor [14]). Typically, the communica-
tion with such a dedicated platform is a physically secure channel
(a wired link); thus no additional measures are needed to guarantee
the forward secrecy of the communication to and from the porter.

Mobile Phones. Private users might not have access to dedi-
cated platforms. However access to mobile phones is widespread,
so they are natural candidates for porter devices. For most users,
their primary mobile phone is always operational and users pay
close attention to their correct functioning and charging. The us-
ability of mobile phones and personal computers has improved over
the years and there are many convenient (wireless and wired) chan-
nels through which these devices can communicate and synchro-

nize (e.g., Bluetooth [10]). The storage requirements of our so-
lution are easily met with today’s smartphone platforms (see Sec-
tion 5.2). The communication between a mobile phone porter and
the user’s device must be forward-secret. Message secrecy is pre-
served, even given mobile phone loss prior to key deletion, as dis-
cussed in Section 4.3.

5.2 Prototype Implementation
To demonstrate the practical feasibility of our solution, we de-

veloped a prototype implementation of Protocol 1 for the commu-
nication between the receiver and the porter device. Our porter is
a NexusOne [35] mobile phone (firmware 2.1, kernel 2.6.29, An-
droid OS, 512 MB memory), depicted in Figure 6a. The receiver is
implemented on a laptop running MacOSX 10.6.2.

The communication between the receiver and the porter is based
on Bluetooth, using the Bluecove library [9], which we recompiled
for a 64-bit Mac. Cryptographic operations are implemented using
the Bouncycastle [4] library. To secure the key K on the wire-
less channel, we use symmetric AES/CBC/PKCS5 encryption with
a 256-bit key that is derived from the established ephemeral DH
key L (or L′) by a SHA-256 hash. All messages are authenticated
by a 32-byte HMAC-SHA with a 224-bit key that is pre-shared
between the laptop and the mobile phone. Furthermore, we use 2-
byte packet IDs, 8-byte timestamps, a 16-byte initialization vector
for AES, and 1024-bit DH-key pairs. We use base64 encoding to
transmit the packets over an RFComm Bluetooth connection and
the tool srm to perform secure deletions on the laptop.

Figure 6b displays the execution times and the standard deviation
for 100 runs as measured on the laptop. We see that key storage and
retrieval are below one second, once the Bluetooth connection has
been established. The times for key storage have a larger variance
than for key retrieval since files are created and written rather than
just read.

The key storage and delayed deletion functionality on the porter
is implemented as follows. We store the keys along with their ex-
piration times in files. To ensure the timely deletion of a file (i. e.,
key), we set an alarm service to automatically trigger the deletion of
the respective file upon the timestamp’s expiration. If the phone is
shut down and rebooted before the expiration time, a background
process (triggered by the boot-complete system broadcast) parses
the key files, deletes files with expired timestamps, and resets the
alarms. Figure 6c displays the time for setting the system alarm
for different numbers of keys (files). We see the linear dependency
of the number of keys on the alarm reset time. This background
process does not significantly degrade the usability of the device.

Given the execution times in Figure 6 and a consumption of
1.5 kB for program storage and 0.18 kB per key, our prototype im-
plementation confirms the usability of our approach in practice.

Note on Secure Deletion
When exploring implementation options, we observed that many
embedded devices have limited functionality for secure deletion
due to OS characteristics (like versioning) or hardware specifics
(e.g., NAND storage often uses log-structured sequential writes).
Enabling secure deletion on these devices is subject to recent re-
search, examples include [26] for the Android YAFFS file sys-
tem, [30] for versioning file systems, and [34] regarding data re-
manence in flash memory devices. Secure deletion may not be re-
alized on certain off-the-shelf devices and care should thus be taken
in the selection of the porter device.

5.3 Integration with Applications
Given a functional porter device, our solution can be integrated
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Figure 6: (a) Prototype implementation of the key storage (porter) functionality on a NexusOne mobile phone. (b) Protocol execution times
for the receiver. The plot shows the average times and the standard deviation for 100 runs of Protocol 1. (c) Time for resetting the system
alarm (used to delete keys at their expiration time) after a phone reboot for different numbers of keys.

in many applications, such as file storage, web services, and e-mail.
File Storage. The simplest application of our solutions is to lo-

cal file storage, where a device locally stores confidential data that
should be inaccessible after the expiration time. To enable this, the
device encrypts the data locally with a key stored on a porter de-
vice. Here, our protocols can be substantially simplified: the only
communication that needs to be forward-secret is that between the
device and the porter (this can be further simplified if this chan-
nel is physically secure). Remote file storage is similar to local file
storage in that the only device that has access to the data decryption
keys is the device that created them. However, the communication
between the user’s device and the remote file server where the data
is stored must be forward-secret.

Web Services. Another application is where users share their
data (e. g., pictures, movies, files) using remote storage in the form
of a web service. The data is to be kept secret even in the case of full
device (sender and receiver) and service compromise. In contrast
to standard remote file storage, here the communication key must
be agreed upon between the sender (who uploads the data) and the
receiver(s) (who download the data). The receiver stores the key
on a porter device and obtains it when it downloads the data. The
communication used for key agreement must be forward secret.

E-mail. Finally, we consider the scenario where the sender and
the receiver wish to preserve the secrecy of their e-mail correspon-
dence. In this scenario, the parties first agree on the keys that
they will use for their communication and on their expiration times.
They then store the keys on their respective porter devices and ex-
change e-mail. Although we could directly use Protocol 1, it can
be optimized by making a mobile phone porter establish the keys
directly with the sender. This can be alternatively done via e-mail
exchange, without the participation of the receiver. The receiver
could be notified that the keys are established when it synchronizes
(e. g., over an IMAP server) with the e-mail communication.

6. RELATED WORK
Shoup [32] defined three notions for the compromise of prin-

cipals: static corruptions (in which principals are either compro-
mised or not), adaptive corruptions (in which long-term keys may
be compromised), and strong adaptive corruptions (in which the
compromise of principals reveals both long-term and short-term
stored secrets). In our attacker model, we build on the third notion
by considering full device and user password compromise after a
specific time.

Methods for protecting data confidentiality under device com-
promise include secret sharing [31], threshold cryptography [17],
and forward secrecy [22]; we focus on the last method. Canetti
et al. [13] proposed a forward-secure public-key encryption scheme
in which a receiver evolves its private key such that it can only de-
crypt messages with a later timestamp. A similar idea was adopted
by Bellare et al. [8] for forward-secure digital signature schemes.
We cannot use such approaches because private keys cannot evolve
when devices are inactive.

The confidentiality of data exchanged between individuals or or-
ganizations is attracting increasing attention. Centralized systems
such as [20] for server-based sharing and storage of personal data
offer access control and data deletion at user-defined or automati-
cally derived times. However, they require full trust in the service
provider to treat passwords and data confidentially and to delete
both when specified. Ephemerizer-based solutions [25,28,29] sim-
ilarly require trust in a central server. As discussed in [21], this
does not ensure the data confidentiality in the presence of service-
provider mismanagement and legal action to reveal data.

7. CONCLUSION
We addressed the problem of data confidentiality in scenarios

where attackers can observe the communication between princi-
pals and can also fully compromise the principals after the data
has been exchanged, thereby revealing the entire state of the prin-
cipals’ devices. We explored the design space of solutions to this
problem and proposed two protocols that use key storage on porter
devices along with explicit deletion and forward secret subproto-
cols to achieve secrecy under full device, user and communication
compromise. The solutions provide users with full control over
their data privacy. We formalized our proposed solutions and an-
alyzed them using an automatic verification tool. Our prototype
implementation shows their practicality and feasibility.
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