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ABSTRACT
This paper presents a query evaluation technique for posi-
tive relational algebra queries with aggregates on a represen-
tation system for probabilistic data based on the algebraic
structures of semiring and semimodule. The core of our eval-
uation technique is a procedure that compiles semimodule
and semiring expressions into so-called decomposition trees,
for which the computation of the probability distribution
can be done in polynomial time in the size of the tree and
of the distributions represented by its nodes. We give syn-
tactic characterisations of tractable queries with aggregates
by exploiting the connection between query tractability and
polynomial-time decomposition trees.

A prototype of the technique is incorporated in the prob-
abilistic database engine SPROUT. We report on perfor-
mance experiments with custom datasets and TPC-H data.

1. INTRODUCTION
This paper considers the evaluation problem for queries

with aggregates on probabilistic databases.
The utility of aggregation has been argued for at length.

In particular, aggregates are crucial for OLAP and decision
support systems. All 22 TPC-H queries involve aggregation.

Probabilistic databases are useful to represent and query
imprecise and uncertain data, such as data acquired through
measurements, integrated from multiple sources, or produced
by information extraction [21]. In this paper, we use a rep-
resentation system for probabilistic data called pvc-tables.
It is based on the algebraic structures of semiring and semi-
module to support a mixed representation of aggregated val-
ues and tuple annotations for different classes of annotations
and aggregations [2]. The pvc-tables can represent any fi-
nite probability distribution over relational databases. In
addition, the results of queries with aggregates can be repre-
sented as pvc-tables of polynomial size. This contrasts with
main-stream representation systems such as pc-tables [21],
which can require an exponential-size overhead [15].

The problem of query evaluation is #P-hard already for
simple conjunctive queries [21]. Aggregates are a further

source of computational complexity: for example, already
deciding whether there is a possible world in which the SUM
of values of an attribute equals a given constant is NP-hard.
Existing approaches to aggregates in probabilistic databases
have considered restricted instances of the problem: they fo-
cus on aggregates over one probabilistic table of restricted
expressiveness [4, 20, 16], or rely on expected values and
Monte-Carlo sampling [10, 12, 22]. Expected values can
lead to unintuitive query answers, for instance when data
values and their probabilities follow skewed and non-aligned
distributions [19]. Abiteboul et al. investigate XML queries
with aggregates on probabilistic data [1]. An algebra pro-
posed by Koch represents annotations and data values as
rings which enables efficient incremental view maintenance
in the presence of aggregations [13].

Our approach considers the problem of exact probabil-
ity computation for positive relational algebra queries with
aggregates on pvc-tables. The core of our technique is a
procedure that compiles arbitrary semimodule and semiring
expressions over random variables into so-called decompo-
sition trees, for which the computation of the probability
distribution can be done in polynomial time in the size of
the tree and of the distributions at its nodes. Decompo-
sition trees are a knowledge compilation technique [5] that
reflects structural decompositions of expressions into inde-
pendent and mutually exclusive sub-expressions. Flavours
of decomposition trees have been proposed as compilation
target for propositional formulas that arise in the evaluation
of relational algebra queries (without aggregates) on proba-
bilistic c-tables [18]. It has been shown that more complex
tasks, such as conditioning probabilistic databases on given
constraints [14] and sensitivity analysis and explanation of
query results [11], can benefit from decomposition trees.

Example 1. Figure 1 shows six pvc-tables, amongst them
the suppliers table S, the products tables P1 and P2, and
the table PS pairing suppliers and products. They all have
an annotation column Φ to hold expressions in a semiring
K generated by a set of independent random variables, with
operations sum (+) and product (·), and neutral elements
0k and 1K . Each valuation of the random variables into a
semiring (e.g. integers or Booleans) canonically maps semi-
ring expressions into that semiring by interpreting + and ·
as the corresponding operations of that semiring. Each such
valuation defines a possible world of the database.

Figure 1d shows the result of the query Q1 that asks for
prices of products available in shops. The annotations of the
result tuples are constructed as follows: The annotation of a
join of two tuples is the product of their annotations, and the
annotation obtained from projection or union is the sum of



S

sid shop Φ

1 M&S x1

2 M&S x2

3 M&S x3

4 Gap x4

5 Gap x5

(a)

PS

sid pid price Φ

1 1 10 y11
1 2 50 y12
2 1 11 y21
2 2 60 y22
3 3 15 y33
3 4 40 y34
4 1 15 y41
4 3 60 y43
5 1 10 y51

(b)

P1

pid weight Φ

1 4 z1
2 8 z2
3 7 z3
4 6 z4

P2

pid weight E

1 5 z5

(c)

Q1 = πshop, price[S 1 PS 1 (P1 ∪ P2)]

shop price Φ

M&S 10 x1y11(z1 + z5)
M&S 50 x1y12z2
M&S 11 x2y21(z1 + z5)
M&S 60 x2y22z2
M&S 15 x3y33z3
M&S 40 x3y34z4
Gap 15 x4y41(z1 + z5)
Gap 60 x4y43z3
Gap 10 x5y51(z1 + z5)

(d)

Q2 = πshopσP≤50$shop;P← max(price)[Q1]

Shop Φ

M&S [x1y11(z1 + z5)⊗ 10 +max

x1y12z2 ⊗ 50 +max

x2y21(z1 + z5)⊗ 11 +max

x2y22z2 ⊗ 60 +max

x3y33z3 ⊗ 60 +max

x3y34z4 ⊗ 15 ≤ 50] ·Ψ1

Gap [x4y41(z1 + z5)⊗ 15 +max

x4y43z3 ⊗ 60 +max

x5y51(z1 + z5)⊗ 10 ≤ 50] ·Ψ2

(e)
Ψ1 = [x1y11(z1 + z5) +x1y12z2 +x2y21(z1 + z5) +x2y22z2 +x3y33z3 +x3y34z4 6= 0K ] Ψ2 = [x4y41(z1 + z5) +x4y43z3 +x5y51(z1 + z5) 6= 0K ]

Figure 1: A database containing relations (a) Supplier S, (c) Products P1, P2, and (b) the many-to-many
relation ProductSupplied PS, and the results of the positive query Q1 and of the aggregate query Q2.

the annotations of the participating tuples [7]. For instance,
the tuple 〈M&S, 10〉 has the annotation x1y11(z1+z5), whose
probability distribution can be computed as a function of
probability distributions of the random variables x1, y11, z1,
and z5 [21].

Consider the query Q2 from Figure 1e that asks for shops
in which the maximal price for the products in P1 or P2 is
less than 50. Aggregation is expressed using the $ operator,
which in this query groups by the column shop and applies
the aggregation MAX on price within each group.

The annotations of result tuples are built using semi-
module expressions of the form Ψ ⊗ v, where Ψ is a semi-
ring expression and v is a data value. Such expressions
can be “summed up” with respect to aggregation opera-
tions: For MIN, the sum α +min β is min(α, β); for MAX,
α+maxβ = max(α, β); for SUM, α+sumβ = α+β. The sums
correspond to operations in commutative monoids. The an-
notation Φ of M&S in Q2’s result is constructed as follows.
This tuple represents a group of six tuples in the result of
Q1, all with the M&S shop value. The annotation Φ then
expresses the conditions (1) that the sum of the price val-
ues of these six tuples in the MAX monoid is less than 50,
and (2) that the group is not empty (as expressed by Ψ1).
Depending on the valuation of the variables in Φ, these con-
ditions can be true (>) or false (⊥), or, more generally, the
additive or multiplicative neutral element of the semiring.

For instance, a valuation ν1 that maps x1, x2, y11, y21, z1,
z2, z5 to > and all other variables to ⊥ satisfies Φ, since

ν1(Φ) ≡ [>⊗ 10 +max ⊥⊗ 50 +max >⊗ 11 +max

⊥⊗ 60 +max ⊥⊗ 60 +max ⊥⊗ 15 ≤ 50] · >
≡ [10 +max 11 ≤ 50] ≡ [max(10, 11) ≤ 50] ≡ >. 2

If the variables in such expressions are random variables,
then the expressions themselves can be interpreted as ran-
dom variables. Moreover, the probability distributions of
the obtained expressions reflect the probabilities of query
answers taking particular values in a randomly drawn world
of the database. Our technique allows to efficiently com-
pute probabilities defined by such expressions by structural
decomposition. For example, an expression α = ab ⊗ 10 +
xy ⊗ 20 can be decomposed in independent sub-expressions
ab⊗ 10 and xy⊗ 20 that do not share variable symbols and
hence constitute independent random variables.

The structure of the paper follows the list of contributions:

• We present an evaluation framework for queries with
aggregates (SUM, PROD, COUNT, MIN, MAX) on
pvc-tables, a representation system for probabilistic
data based on semirings and semimodules.

• We devise a technique for computing the exact proba-
bility distribution of query results based on a generic
compilation procedure of arbitrary semimodule and
semiring expressions into so-called decomposition trees,
for which the computation of the probability distribu-
tion can be done in polynomial time in the size of the
decomposition tree and of the distribution.

• We give a syntactic characterisation of a class of aggre-
gate queries that are tractable on tuple-independent
databases. Our query tractability result follows from
the observation that the semiring and semimodule ex-
pressions in the result of our tractable queries admit
polynomial size decomposition trees and polynomial
size probability distributions at their nodes.

• A prototype of our technique is incorporated into the
probabilistic database engine SPROUT.

• Extensive performance experiments using our own syn-
thetic datasets and TPC-H data are discussed.

Besides exact computation, decomposition trees also al-
low for approximate probability computation [18]. Due to
lack of space, we refer the reader to the MSc thesis of the
second author [9]. The pvc-tables can be extended to cope
with continuous probability distributions, similar to the ex-
tensions of pc-tables in the PIP system [12].

2. PRELIMINARIES

2.1 Induced Discrete Probability Space
Let S be a countable set and X be a finite set of S-valued

independent random variables. We denote by Px the discrete
probability distribution of a variable x ∈ X, and by Px[s]
the probability that x takes value s ∈ S; we often specify
Px by the set of pairs of unique values with their non-zero
probabilities, {(s, Px[s]) | s ∈ S and Px[s] > 0}. The size of
a probability distribution is the size of its set representation.

Definition 1. Let Ω = {ν : X → S} be the set of map-
pings from X into S. A probability mass function

Pr(ν) =
∏
x∈X

Px[ν(x)]

for every sample ν ∈ Ω, and a probability measure

Pr(E) =
∑
ν∈E

Pr(ν) for all E ⊆ Ω

define a probability space (Ω, 2Ω,Pr) that we call the proba-
bility space induced by X.



The probability distribution of the sum of two indepen-
dent random variables is the convolution of their individual
distributions [8]. For instance, given two random variables
x, y over positive integers, the probability that the sum of
the random variables equals to 4 is the sum of the probabil-
ities of x being 0 and y being 4, of x being 1 and y being 3,
and so on. The applicability of convolution to determine the
probability distribution of a function of independent random
variables is not limited to sums of integers:

Proposition 1. Given sets A,B,C, an A-valued random
variable x with probability distribution Px, a B-valued ran-
dom variable y with probability distribution Py, x indepen-
dent of y, and an operation • : A × B → C, the probability
distribution Px•y of the C-valued random variable z = x • y
is the convolution of Px and Py with respect to •:

Px•y[c] =
∑

(a,b)∈A×B:
c=a•b

Px[a]Py[b] for all c ∈ C (1)

Example 2. The formula for the probability PΦ∨Ψ of the
disjunction Φ∨Ψ of two independent Boolean random vari-
ables is a special case of Eq. (1):

PΦ∨Ψ[>] =
∑

(a,b)∈B×B:
>=a∨b

PΦ[a]PΨ[b]

= PΦ[>]PΨ[>] + PΦ[⊥]PΨ[>] + PΦ[>]PΨ[⊥]

= 1− (1− PΦ[>])(1− PΨ[>]) 2

Remark 1. The sum in Eq. (1) is invariant under the re-
striction to those a and b for which Px[a] > 0 and Py[b] > 0.
Hence, even if the cardinality of A×B is infinite, the convo-
lution is a finite sum whenever only finitely many elements
in A and B have non-zero probability. 2

2.2 Monoids, Semirings and Semimodule
Our representation system for probabilistic data is based

on the notions of monoid, semiring, and semimodule.

Definition 2. A monoid is a set M with an operation
+ : M ×M → M and a neutral element 0 ∈ M that satisfy
the following axioms for all m1,m2,m3 ∈M :

(m1 +m2) +m3 = m1 + (m2 +m3)

0 +m1 = m1 + 0 = m1

A monoid is commutative if m1 +m2 = m2 +m1.

Monoids naturally describe many aggregation operations.
Aggregation over a column of a relation fixes a domain of
values, usually R or N, and a binary operation. For instance,
the MIN of a column with values v1, · · · , vn ∈ R is

min(v1, · · · , vn) = min(v1,min(v2, · · ·min(vn−1, vn) · · · )).
The binary operation is commutative and associative, i.e.,
the value of the aggregation is invariant under the order in
which it is computed. Furthermore, each aggregation oper-
ation has a neutral element, i.e., a value that does not con-
tribute to the aggregation. For example, 0 ∈ R is the neutral
element for SUM, and ∞ is the neutral element for MIN.
These aggregations correspond to commutative monoids, in
particular: SUM = (N,+, 0), MIN = (N±∞,min,+∞), MAX
= (N±∞,max,−∞). COUNT is a special case of SUM. More
complicated aggregations (e.g., AVG) can conceptually be
composed from simpler ones (e.g., SUM and COUNT), but
their treatment is out of the scope of this paper.

Definition 3. A commutative semiring is a set S to-
gether with operations +, · : S×S → S and neutral elements
0, 1 ∈ S such that (S,+, 0) and (S, ·, 1) are commutative
monoids and the following holds for all s1, s2, s3 ∈ S:

s2 · (s2 + s3) = (s1 · s2) + (s1 · s3)

(s1 + s2) · s3 = (s1 · s3) + (s2 · s3)

0 · s1 = s1 · 0 = 0.

Commutative semirings are the canonical algebraic struc-
ture for tuple annotations [7]. Annotations from the Boolean
semiring yield set semantics, annotations from N correspond
to bag semantics, and annotations from the security semi-
ring can be used to constrain access to query results depend-
ing on access rights to database tuples that contributed to
the result [2]. The most general semirings are those gener-
ated over a set of variables. Intuitively, the carrier of such
semirings are syntactic expressions built from the variables
and the multiplication and sum symbols, where elements are
identified via the semiring laws. For example, given a set
X = {x1, x2, x3} of variables, the elements of the semiring
PosBool(X) are positive Boolean expressions, e.g. x1 + x2

or x1(x2 + x3). By the distributivity law in semirings, the
expressions x1(x2 + x3) and x1x2 + x1x3 are equal. A more
general freely generated semiring is the ring of polynomials
(also called free commutative algebra) over a set X of vari-
ables. Elements of generated semirings are called semiring
expressions which we denote by K throughout this paper.

Definition 4. Let (S,+S , 0S , ·S , 1S) be a commutative
semiring. An S-semimodule M consists of a commutative
monoid (M,+M , 0M ) and a binary operation ⊗ : S ×M →
M such that for all s1, s2 ∈ S and m1,m2 ∈M we have

s1 ⊗ (m1 +M m2) = s1 ⊗m1 +M s1 ⊗m2

(s1 +S s2)⊗m1 = s1 ⊗m1 +M s2 ⊗m1

(s1 ·S s2)⊗m1 = s1 ⊗ (s2 ⊗m1)

s1 ⊗ 0M = 0S ⊗m1 = 0M

1S ⊗m1 = m1.

We write S⊗M to denote a S-semimodule M , and write ·
for ·S and + for +S ,+M whenever the meaning is unam-
biguous. Semimodules combine monoids with semirings to
represent aggregation values conditioned on the value of a
semiring expression. Analogous to the case of semiring ex-
pressions that correspond to freely generated semirings, we
denote by semimodule expressions the elements of the K-
semimodule generated by a given monoid. The semimodules
we use frequently are N⊗N and B⊗N for MIN, MAX, SUM,
and PROD monoids. A semimodule B⊗N over SUM would
not have the intuitive semantics; this reflects the well-known
incompatibility of SUM aggregation with set semantics.

2.3 Query Language
The query language under consideration is a restriction

of positive relational algebra extended by an operator $ for
aggregation and grouping. Given a relation R over schema
Σ, the operator $ in the query

$Ā;α1←AGG1(B1),...,αl←AGGl(Bl)
(R),

where (Ā ∪ {B1, . . . , Bl}) ⊆ Σ, groups by the attributes
Ā and takes the aggregations AGG1 to AGGl over the at-
tributes B1 to Bl respectively. The result has schema Ā ∪
{α1, . . . , αl}, where α1 to αl are aggregation attributes. We



Φ ::= x
∣∣ Φ + Φ

∣∣ Φ · Φ
∣∣ [α θ α]

∣∣ [Φ θΦ]
∣∣ s

α ::= Φ⊗m {+op Φ⊗m}
∣∣ m

op ::= min
∣∣ max

∣∣ count
∣∣ sum

∣∣ prod

θ ::= =
∣∣ 6= ∣∣ ≤ ∣∣ ≥ ∣∣ < ∣∣ >

x ::= A variable symbol x ∈ X

m ::= A value from an aggregation monoid M

s ::= A value from the semiring S

Figure 2: Grammar for semiring expressions Φ ∈ K
and semimodule expressions α ∈ (K ∪ S)⊗M .

consider SUM, PROD, COUNT, MAX, and MIN aggrega-
tions, and restrict the queries such that projection, union
and grouping are never applied to aggregation attributes.
This restriction simplifies query rewriting, but is not requi-
site for our query evaluation method. Out of the 22 TPC-H
queries, only query Q13 violates the restriction.

Definition 5. The query language Q considered in this
paper consists of queries that are built using the relational
operators δ, σ, π,×,∪, $ and satisfy the following constraints:

1. In πĀ(Q) and $Ā;α1←AGG1(B1),...,αl←AGGl(Bl)
(Q), the

attributes in Ā are not aggregation attributes.

2. In Q1∪Q2, the attributes of Q1 and Q2 are not aggre-
gation attributes.

Example 3. The TPC-H query Q1 has the structure
SELECT A,SUM(B) FROM R GROUP BY A which is equivalent
to $A;β←SUM(B)(R). TPC-H query Q2 has the structure
SELECT A FROM R WHERE B = (SELECT MIN(C) FROM S), or,
equivalently, πAσB=γ

(
R×$∅;γ←MIN(C)(S)

)
.

The query R ∪ $A;β←SUM(B)(S) is not in Q, since the
second union term is a relation with the aggregation at-
tribute β and hence violates constraint 2 in Def. 5. However,
πA(R) ∪ πAσβ≥5

(
$A;β←SUM(B)(S)

)
is a valid Q-query. 2

3. PVC-TABLES: A REPRESENTATION
SYSTEM FOR PROBABILISTIC DATA

In this section we introduce a succinct and complete repre-
sentation system for probabilistic data, which we call proba-
bilistic value-conditioned tables or pvc-tables for short. This
system is based on work in databases with provenance in-
formation [2, 7, 3]. The reason for using pvc-tables, as op-
posed to main-stream representation systems such as pc-
tables (and special cases such as tuple-independent or BID
tables) [21], is that pvc-tables fit naturally with aggregate
queries: answers to aggregate queries on pvc-tables or even
on pc-tables are representable as pvc-tables of size polyno-
mial in the size of the input tables, while they may require
an exponential overhead when represented as pc-tables [15].

Aggregation on pvc-tables is handled using a mixed repre-
sentation of tuple annotations and aggregated values using
the algebraic structures of semirings and semimodules.

Definition 6. A pvc-table T over a probability space Ω
induced by a set X of variables is a relation with an anno-
tation column Φ holding semiring expressions over X, and
where the tuple values can be constants or semimodule ex-
pressions over X. A pvc-database D = {T1, . . . , Tn} is a set
of pvc-tables over the same probability space Ω.

SB

sid shop Φ

1 M&S ⊥
2 M&S >
3 M&S ⊥
4 Gap ⊥
5 Gap >

(a)

SN,1

sid shop Φ

1 M&S 2
2 M&S 1
3 M&S 1
4 Gap 7
5 Gap 2

SN,2

sid shop Φ

1 M&S 0
2 M&S 1
3 M&S 3
4 Gap 7
5 Gap 2

(b)

Figure 3: Three possible worlds of pvc-table S in
Figure 1 under two different semirings: SB is anno-
tated with expressions from the Boolean semiring,
and SN,1 and SN,2 with integers.

The semantics of D is given by its possible worlds:{{
{ν(t) | t ∈ T1}, . . . , {ν(t) | t ∈ Tn}

} ∣∣∣ ν ∈ Ω
}
.

where the mapping ν is applied to all expressions in tuples t
and is identity for constants. Each mapping ν ∈ Ω defines
a possible world.

Columns that hold semimodule expressions are called ag-
gregation columns. Semimodule expressions over different
monoids can co-exist in a pvc-table. The annotation column
Φ hosts semiring expressions that are generated by the vari-
able set X, and conditional expressions representing com-
parisons of expressions and constants. The other columns
of a pvc-table host constants and semimodule expressions.
A grammar for such expressions is given in Figure 2. All
these types of expressions can occur in pvc-tables represent-
ing the result of aggregate queries; we show how to compute
these expressions for any Q-query in Section 4.

Example 4. Figure 1 shows six pvc-tables. The pvc-
table S has annotations from a semiring over the set X of
variables x1, . . . , x5. Figure 3 shows a few possible worlds
for this pvc-table for different semirings. First, consider val-
uations of the variables X into the Boolean semiring B. Pos-
sible world SB in Figure 3a has probability Px1 [⊥] · Px2 [>] ·
Px3 [⊥] · Px4 [⊥] · Px5 [>]. Since B has only the two elements
⊥,>, the number of possible worlds is 25. Secondly, con-
sider valuations of X into N. Figure 3b shows two possible
worlds, with respective probabilities Px1 [2] · Px2 [1] · Px3 [1] ·
Px4 [7] · Px5 [2] and Px1 [0] · Px2 [1] · Px3 [3] · Px4 [7] · Px5 [2]. 2

The pvc-tables PS, P1, P2, and Q1 in Figure 1 contain no
semimodule expressions and are in fact pc-tables [21], a sim-
pler representation system where tuple values are constants
and annotations are expressions from semirings generated
by a set of random variables. In pvc-tables, however, semi-
module expressions can appear as tuple values.

Example 5. Consider an aggregation AGG on the weight
column of relation P1 in Figure 1. The semimodule expres-
sion representing the aggregated value is α = z1 ⊗ 4 +AGG

z2⊗8 +AGG z3⊗7 +AGG z4⊗6, where the +AGG operator
depends on the particular aggregation monoid AGG. 2

We next look at the semantics of expressions under valu-
ations of variables; this will be extended to a probabilistic
interpretation in Section 5.
Semiring, Monoid, and Semimodule Homomorphism.
LetK be the semiring generated by X; the variables in X are
themselves elements of K, i.e. X ⊆ K. Given another semi-
ring S, a mapping ν : X→ S of the variables can be uniquely
extended to a semiring homomorphism ν : K → S that
“evaluates” semiring expressions from K to elements in S.



Database Semantics S Probability Distributions

Deterministic Set B Px[>] = 1 or Px[⊥] = 1
Deterministic Bag N ∃n ∈ N : Px[n] = 1
Probabilistic Set B Px[>], Px[⊥] ∈ [0, 1]
Probabilistic Bag N ∀n ∈ N : Px[n] ∈ [0, 1]

Table 1: Database semantics for different semirings
S and probability distributions.

A similar construction holds for semimodule: For semimod-
ule expressions W and a monoid M, a mapping ν : X → S
is extended to a monoid homomorphism ν : W →M .

Example 6. Consider the semimodule expression

α = xy ⊗ 5 +min (x+ z)⊗ 10

over the semiring generated by X = {x, y, z} and the mo-
noid (N,+min,∞). The map ν : X → N evaluates variable
symbols to the semiring of positive integers and induces a
monoid homomorphism that maps α to positive integers.
For instance, the mapping ν : x 7→ 2, y 7→ 3, z 7→ 0 yields

ν(α) = ν(x)ν(y)⊗ 5 +min (ν(x) + ν(z))⊗ 10

= 6⊗ 5 +min 2⊗ 10 = 1⊗ 5 +min . . . +min 1⊗ 5+min

1⊗ 10 +min . . . +min 1⊗ 10 = 5 +min 10 = 5.

Similarly, the value of α in Example 5 depends on the par-
ticular target semiring S and the valuation of the variables.
For instance, α 7→ 24 for SUM aggregation and semiring
N with z1, z2 7→ 2 and z3, z4 7→ 0. Also, α 7→ 6 for MIN
aggregation and the Boolean semiring with z1 7→ ⊥ and
z2, z3, z4 7→ >. If all variables are mapped to 0S , the query
answer is 0M , i.e. 0 in case of SUM and +∞ for MIN. 2

Conditional Expressions have the form [αθβ], where α
and β are semimodule expressions for (possibly different)
aggregation monoids and semirings generated by X, and θ is
a binary relation. Such conditional expressions can appear
as tuple annotations in pvc-tables. Given a valuation ν :
X→ S and (semiring or semimodule) expressions Φ,Ψ, the
semantics of [ΦθΨ] is defined by extending ν via

ν([ΦθΨ]) =

{
1S , if ν(Φ) θ ν(Ψ)

0S , otherwise
(2)

Comparisons operators ≤,≥ for θ only make sense for
ordered carriers. In the light of Eq. (2), we can equivalently
see [ΦθΨ] as a binary operation S×S → S or M ×M → S.

Example 7. The annotations in the pvc-table Q2 in Fig-
ure 1 contain conditional expressions representing compar-
isons between semimodule expressions and a constant from
M and semiring expressions and the constant 0K . 2

Set vs. Bag Semantics. The pvc-tables system is generic
enough to encode both deterministic and probabilistic data-
bases with set and bag semantics. Table 1 summarises how
different choices for the semiring S and probability distribu-
tions for variables x ∈ X give rise to those semantics.

Under the Boolean semiring, annotation expressions are
evaluated to ⊥ or >, denoting tuples in or not in the data-
base instance, respectively. If in addition every variable
x ∈ X has either Px[⊥] = 1 or Px[>] = 1, then we have the
case of deterministic databases with set semantics, i.e. there
is exactly one possible world with non-zero probability.

For deterministic bag semantics, tuple annotations are
evaluated to N and represent tuple multiplicities and for

each variable x ∈ X there is exactly one n ∈ N for which
Px[n] = 1. For probabilistic databases with set semantics,
every answer tuple has a probability for being true or false,
while in the case of bag semantics, the pvc-table encodes a
probability distribution over the multiplicity of its tuples.

Existing representation systems for probabilistic data are
over the Boolean semiring, i.e., their semantics is set-based.
While this choice is justified in the absence of aggregation
(or for MIN/MAX), it is not for COUNT/SUM/PROD ag-
gregates, which require bag semantics. In the latter case,
we need a semiring for which there is a homomorphism into
N [2]. The set-based probabilistic database model is sub-
sumed by the probabilistic bag-based model: Every x ∈ X
is an N-valued random variable, yet the probability distri-
butions Px are non-zero only for 0, 1 ∈ N.

4. QUERY EVALUATION I: COMPUTING
THE TUPLES IN THE QUERY RESULT

Our approach to query evaluation of Q-queries on pvc-
tables has two logical steps: In the first step we compute
the tuples in the query result, and in the second step we
compute their probability distributions. We discuss the first
step in this section and the second step in the next section.

The tuples in the result of a query Q can have semimodule
expressions as values and semiring expressions as annota-
tions. The construction of such expressions can be done by
a query that can be statically inferred from Q [2]. Figure 4
gives a translation J·K of Q queries into SQL queries that
compute the tuples in the query results (we chose SQL here,
but the translation target can also be Q). The rewriting ac-
counts for joint and alternative use of data: Joint use of data
(as in join) corresponds to multiplication in the annotation
semiring and alternative use of data (as in union or projec-
tion) corresponds to summation in the annotation semiring.
Semimodule expressions are constructed for the aggregation
and grouping operator $. The translation of the opera-
tors rename, selection, projection, product, and union is the
same as for pc-tables [21]. In case of $, the translation
depends on the presence of group-by attributes. The trans-
lation uses the custom SQL operators

∑
AGG,

∑
K , ·K and

⊗ to construct annotation expressions.

Example 8. The query $∅;α←AGG(weight)(P1) from Ex-

ample 5 is rewritten into select
∑

AGG

(
R.Φ ⊗ R.weight

)
as α, 1K as Φ from ( select * from P1) R. The answer
to the rewritten query is one tuple of value α = z1⊗4 +AGG

z2 ⊗ 8 +AGG z3 ⊗ 7 +AGG z4 ⊗ 6. The annotation of this
tuple is the constant 1K , stating that the tuple 〈α〉 is the
query answer in all possible worlds. The evaluation of α
may however yield different outcomes in different worlds.

The query π∅σ5≤α
(
$∅;α←MIN(weight)(P1)

)
is rewritten to

select S.Φ · [5 ≤ S.α] as Φ from (select
∑

MIN

(
R.Φ ⊗

R.weight
)
as α, 1K as Φ from (select * from P1) R)

S. This Boolean query asks for the probability of the min-
imum weight of articles being larger than 5. The result
of this query is a single empty tuple with annotation Φ =
1K · [z1 ⊗ 4 +min z2 ⊗ 8 +min z3 ⊗ 7 +min z4 ⊗ 6 ≤ 5]. 2

As seen in the above example, for aggregation without
grouping the resulting semimodule value is annotated with
1K , i.e., it “exists” in every possible world. In case of group-
ing, the resulting tuples are additionally annotated with a
conditional expression to enforce that the group is not empty
and thus at least one tuple in the group has a annotation



JRK = select R.*, R.Φ from R

JδB←A(Q)K = select R.*, R.A as B, R.Φ as Φ from
(
JQK

)
R

JσAθB(Q)K = select R.*, R.Φ ·K [AθB] as Φ from
(
JQK

)
R

JπA1,...,An (Q)K = select R.A1, . . . , R.An,
∑

K

(
R.Φ

)
as Φ from

(
JQK

)
R group by R.A1, . . . , R.An

JQ1 ×Q2K = select R.*, S.*, R.Φ ·K S.Φ as Φ from
(
JQ1K

)
R,
(
JQ2K

)
S

JQ1 ∪Q2K = select R.*,
∑

K

(
R.Φ

)
as Φ from

(
select * from

(
JQ1K

)
union all select * from

(
JQ2K

))
R group by R.*

J$A1,...,An;α1←AGG1(B1),...,αl←AGGl(Bl)
(Q)K = select R.A1, . . . , R.An, Γ1 as α1, . . . ,Γl as αl,[(∑

K
R.Φ

)
6= 0K

]
as Φ from

(
JQK

)
R group by R.A1, . . . , R.An

J$∅;α1←AGG1(B1),...,αl←AGGl(Bl)
(Q)K = select Γ1 as α1, . . ., Γl as αl, 1K as Φ from

(
JQK

)
R

where Γi =

{∑
AGGi

(
R.Φ⊗ R.Bi

)
if AGGi = MIN,MAX,SUM,PROD∑

SUM

(
R.Φ⊗ 1

)
if AGGi = COUNT

Figure 4: Recursive algorithm J·K for rewriting a Q query to account for computation of semiring (K) and
semimodule expressions. We assume that R.*, S.* do not select column Φ.

different from 0K in a possible world. This has been exem-
plified in the introduction for the query Q2. However, this
conditional expression is not always necessary:

Example 9. Consider the query

Q′2 = πshopσP≤50$shop;P← MIN(price)[Q1]

similar to Q2 on the database in Figure 1. Under the Boo-
lean semiring K, the variables can take values ⊥ = 0K
and > = 1K . In a possible world with x1, x2, x3 7→ ⊥,
〈M&S〉 is not an answer since there is no supplier for the
shop M&S in the input instance S. Its annotation evaluates
to [∞ ≤ 50] · ⊥ = ⊥ · ⊥ = ⊥. Here, the conditional expres-
sion Ψ1 from Figure 1 would not be necessary, since it is
implied by the first conditional expression in the expression
Φ. In case of other monoids, such as MAX (as discussed in
the introduction), SUM, or COUNT, Ψ1 is necessary. 2

The constraints imposed on the query language Q by Def-
inition 5 simplify the rewriting J·K: Since projections and
unions are only done on non-aggregate columns, the rewrit-
ing rules for those operators can assume the input tuples to
be free of semimodule expressions.
Closure of pvc-tables under Q queries. Since pvc-tables
generalise pc-tables and the latter are complete in the sense
that any finite probability distribution over relational data-
bases can be represented using pc-tables [21], it follows that
pvc-tables also form a complete representation system. In
particular, they are closed under Q queries, in the sense that
for any input pvc-database, the result of any Q query can
be represented as a pvc-table. The pvc-tables representing
query results are also succinct (for a fixed Q query), since
the translation J·K only constructs SQL queries of size linear
in the size of the input Q queries and the evaluation of such
SQL queries is in polynomial time data complexity.

Theorem 1 (Completeness and Succinctness).

1. Any finite probability distribution over relational data-
base instances can be represented by pvc-databases.

2. Given a pvc-database D and a fixed Q query Q, the
query result JQK(D) can be represented as a pvc-table
with size polynomial in the size of D.

In particular, pvc-tables can be exponentially more succinct
than pc-tables. The key difference is that pvc-tables allow
for values and annotations to be intertwined in semimodule
expressions, which can encode exponentially many possible
outcomes of an aggregation in polynomial space. In pc-
tables, we would need to enumerate all these outcomes [15].

5. QUERY EVALUATION II: PROBABILITY
COMPUTATION BY DECOMPOSITION

This section presents a novel approach to computing prob-
ability distributions for query results on pvc-tables which is
equivalent to computing probability distributions of the re-
sults’ semiring and semimodule expressions. Our approach
is based on compiling expressions into a tractable form called
decomposition trees, for which distributions can be com-
puted efficiently. A key property of our approach is its gen-
erality, as it applies to different semirings and semimodules.
Expressions as Random Variables. We first show how
semiring and semimodule expressions — including condi-
tional expressions — in pvc-tables give rise to random vari-
ables. Let S be a countable semiring and M a monoid, X
a set of S-valued random variables, and Ω the probability
space induced by X; K and K ⊗M are the sets of semiring
and semimodule expressions over X. A semiring expression
Φ ∈ K can be seen as a random variable Φ : Ω → S by
letting Φ : ν 7→ ν(Φ) and with probability distribution

PΦ[s] = Pr
(
{ν ∈ Ω | ν(Φ)=s}

)
=

∑
ν∈Ω:
ν(Φ)=s

Pr(ν). (3)

A semimodule expression α ∈ K⊗M is a random variable
α : Ω → M with α : ν 7→ ν(α) and probability distribution
Pα defined similar to Eq. (3) for all m ∈M . If M is over R,
then α is an R-valued random variable. However, since the
random variables X and hence the probability space Ω are
countable, the set of values that α may take is countable.
Probability Distributions of Independent Expressions.
Two semiring or semimodule expressions are (syntactically)
independent if their sets of variables are disjoint; indepen-
dent expressions are independent random variables.

Example 10. Let X = {x, y, a, b, c}, M = N, Φ = x + y
and α = a(b+c)⊗10+c⊗20. Then Φ and α are independent
random variables since their sets of variables are disjoint. 2



⊔
c

⊕

⊗

a ⊗

⊕

b 1

1⊗ 10

1⊗ 20

c← 1

⊕

⊗

a ⊗

⊕

b 2

1⊗ 10

2⊗ 20

c← 2

Figure 5: A d-tree for α = a(b + c) ⊗ 10 + c ⊗ 20 over
the semimodule N ⊗ N. The node

⊔
c has one child

for every k ∈ N with non-zero probability for c ← k,
i.e. two childs for c = 1, 2 in the setting of Ex.12.
The thick (blue) part is a d-tree for the semiring
component a(b+ c) + c, where ⊗ is replaced by �.

The probability distribution of the sum or product of inde-
pendent expressions is given by their convolution (cf. Propo-
sition 1) with respect to the addition and multiplication op-
eration of the semiring and semimodule. Given independent
expressions Φ,Ψ ∈ K and α, β ∈ K ⊗M with probability
distributions PΦ, PΨ, Pα, Pβ , we have for all s ∈ S,m ∈M :

PΦ+Ψ[s] =
∑

s1,s2∈S:s1+s2=s

PΦ[s1] · PΨ[s2] (4)

PΦ·Ψ[s] =
∑

s1,s2∈S:s1·s2=s

PΦ[s1] · PΨ[s2] (5)

Pα+β [m] =
∑

m1,m2∈M :m1+m2=m

Pα[m1] · Pβ [m2] (6)

PΦ⊗α[m] =
∑

s1∈S,m1∈M :s1⊗m1=m

PΦ[s1] · Pα[m1] (7)

P[αθβ][s] =
∑

m1∈M,m2∈M :[m1θm2]=s

Pα[m1] · Pβ [m2] (8)

P[ΦθΨ][s] =
∑

s1∈S,s2∈S:[s1θs2]=s

PΦ[s1] · PΨ[s2] (9)

Following Remark 1, the sums in the above equations are
restricted to summands of non-zero probabilities.

Example 11. Let S and M be the semiring and the mo-
noid of natural numbers with standard addition and multi-
plication. Let Φ = x with Px = {(0, 0.3), (1, 0.3), (2, 0.4)},
and α = y ⊗ 5 be a semimodule expression with Py =
{(1, 0.4), (2, 0.4), (3, 0.2)}. Then α is a M -valued random
variable with Pα = {(5, 0.4), (10, 0.4), (15, 0.2)}. The prob-
ability distribution of Φ ⊗ α = x ⊗ (y ⊗ 5) = (x ·S y) ⊗ 5
is given by Eq.(7). For example, PΦ⊗α[10] = Px[1]Pα[10] +
Px[2]Pα[5]. The convolution is finite as the probability dis-
tributions are non-zero for finitely many elements. Further
possible outcomes for Φ ⊗ α are 0, 5, 15, 20, 30. In case of
the Boolean semiring, S=B, possible outcomes are 0 and 5
with PΦ⊗α[5] = Px[>]Py[>] and PΦ⊗α[0] = 1− PΦ⊗α[5]. 2

Partitioning into Mutually Exclusive Expressions.
Given an expression Φ and a variable x ∈ X that occurs in
Φ, the probability distribution of Φ can be expressed using
probability distributions of sub-expressions under valuations
of x. For any s′ ∈ S, we denote by Φ|x←s′ the expression
obtained from Φ by replacing every occurrence of x by s′.
Then the probability distribution of Φ can be partitioned by
the probability distributions of expressions Φ|x←s′ :

PΦ[s] =
∑
s′∈S

Px[s′] · PΦ|x←s′
[s]. (10)

⊔
x4

⊗

�

x5 �

y51 ⊕

z1 z5

1⊗ 10

x4 ← ⊥

⊕

⊗

⊕

z1 z5

⊕

⊗

y411⊗ 15

⊗

�

x5 y51

1⊗ 10

⊗

�

y43 z3

1⊗ 60

x4 ← >

Figure 6: D-tree for the semimodule expression
x4y41(z1+z5)⊗15+maxx4y43z3⊗60+maxx5y51(z1+z5)⊗10
(part of the annotation of tuple 〈Gap〉 in Figure 1e)
over the semimodule B⊗N. The thick (blue) part is a
d-tree for the semiring component of the expression,
where ⊗ is replaced by �.

Decomposition Trees (d-trees) are a normal form for
semiring and semimodule expressions. We next define them
and show how to compile arbitrary expressions into d-trees.

Definition 7. Let M be a monoid and K be a semiring
generated by an S-valued set X of variables and constants
from S. A decomposition tree, or d-tree, is a tree, where
each inner node is one of ⊕, �, ⊗,

⊔
, or [θ] and each leaf

node is a variable in X or a constant in S, M , or S ⊗M .
The five types of inner nodes have the following meaning.

1. A node ⊕ with children representing Φ and Ψ repre-
sents the expression Φ + Ψ, where Φ and Ψ are independent
expressions in K, or K ⊗M respectively.

2. A node � with children representing Φ and Ψ repre-
sents the expression Φ · Ψ, where Φ and Ψ are independent
semiring expressions in K.

3. A node ⊗ with children representing Φ and α repre-
sents the expression Φ⊗ α, where Φ and α are independent
expressions in K and K ⊗M , respectively.

4. A node [θ] with children representing Φ and Ψ repre-
sents the expression [ΦθΨ], where Φ and Ψ are independent
expressions in K or K ⊗M .

5. Given a variable x ∈ X, an inner node
⊔
x with children

representing Φ|x←s1 , . . . , Φ|x←sn for all those si ∈ S with
Px[si] 6= 0 represents the expression Φ.

Just like semiring or semimodule expressions, d-trees rep-
resent probability distributions. Direct implementations of
Eq. (4) through (10) are efficient procedures to compute the
probability distribution at any inner node of a d-tree, given
the probability distributions at its children: Eq. (4) and (6)
apply to ⊕ nodes, Eq. (5) applies to � nodes, Eq. (7) applies
to ⊗ nodes, Eqs. (8), (9) apply to [θ], and Eq. (10) applies
to
⊔
x nodes. For leaves, we only have the trivial cases of

a variable x with probability distribution Px, of constant
s ∈ S or m ∈ M with distribution {(s, 1)} and {(m, 1)},
and of constant semimodule expressions of the form s ⊗m
with probability distribution {(s ⊗m, 1)}. The probability
distribution of the entire d-tree is the distribution of its root
and can be computed bottom-up in one pass over the d-tree.

Example 12. Consider the d-tree from Figure 5 in which
it is assumed that each variable x ∈ {a, b, c} has non-zero
probabilities px and p̄x = 1 − px for values 1 and 2, re-
spectively. We first compute the probability distribution
for the left branch of the d-tree under the aggregation mo-
noid SUM. The distributions are: {(1, pb), (2, p̄b)} for b,



{(1, 1)} for 1, {(2, pb), (3, p̄b)} for b⊕ 1, {(10, 1)} for 1⊗ 10,
{(20, pb), (30, p̄b)} for (b ⊕ 1) ⊗ 10, {(1, pa), (2, p̄a)} for a,
{(20, papb), (30, pap̄b), (40, p̄apb), (60, p̄ap̄b)} for a(b+1)⊗10,
{(20, 1)} for 1⊗20, {(40, papb), (50, pap̄b), (60, p̄apb), (80, p̄ap̄b)}
for a(b+ 1)⊗ 10 + 1⊗ 20, and finally

{(40, papbpc), (50, pap̄bpc), (60, p̄apbpc), (80, p̄ap̄bpc)}
for the entire left branch. For the right branch one obtains

{(70, papbp̄c), (80, pap̄bp̄c), (100, p̄apbp̄c), (120, p̄ap̄bp̄c)}.
The probability distribution of the entire d-tree is then:

{(40, papbpc), (50, pap̄bpc), (60, p̄apbpc), (70, papbp̄c),

(80, p̄ap̄bpc + pap̄bp̄c), (100, p̄apbp̄c), (120, p̄ap̄bp̄c)}
In case of MIN aggregation, the distribution for both bran-
ches as well as for the entire d-tree is {(10, 1)}. In case of
the Boolean semiring and MIN aggregation, the distribution
for the left branch (c ← ⊥) is {(10, papbp̄c), (∞, pap̄bp̄c +
p̄apbp̄c+p̄ap̄bp̄c)}, for the right branch (c← >) is {(10, papc),
(20, p̄apc)}, and for the overall d-tree {(10, papbp̄c + papc),
(20, p̄apc), (∞, pap̄bp̄c + p̄apbp̄c + p̄ap̄bp̄c)}. 2

We now turn to analysing the complexity of computing
the probability distribution for a given d-tree. Since d-trees
are binary, the distribution of a convolution node can be
computed in time linear in each of the sizes of the distribu-
tions of the children according to Eq.(1). The distribution
of a

⊔
-node is computed in time linear in the number of its

children and their probability distributions. This implies:

Theorem 2. The probability distribution Pd of a d-tree d
whose nodes have probability distributions p1, . . . , pn can be
computed in time O(

∏ |pi|).

For the SUM monoid, the size of Pd can be exponential in
the number n of leaves, since there may be exponentially
many distinct sums out of n numbers. We analyse two
classes of d-trees for which we can obtain a better upper
bound on the time complexity of computing Pd.

Firstly, observe that the sum of two elements in the MIN
or MAX monoid is one of the elements itself (e.g. a +min b
is either a or b). This implies that the size of the proba-
bility distribution of a semimodule expression α is bounded
by the number of monoid values occurring at the leaves of
d. Moreover, if α’s variables are N-valued, α’s probabil-
ity distribution is unaltered under the following reduction
of its variables to B-valued variables: Px[⊥] = Px[0] and
Px[>] = 1− Px[⊥]. Hence, one may equivalently consider a
d-tree for B-valued variables obtained from this reduction:

Proposition 2. Given a semimodule expression α over
MIN or MAX, the distribution Pα can be computed in time
linear in the size of α’s d-tree in which all variables are
considered by their reduction to B-valued variables.

Secondly, we analyse SUM aggregation. Evaluating a
SUM expression

∑
xi ⊗mi in which all xi are independent

variables is hard [19]. Yet, instances in which the values
mi are constrained are tractable: we say that a semimodule
expression

∑
φi⊗mi over the SUM monoid N is m-bounded

if there is a constant m ∈ N such that ∀i : 0 ≤ mi ≤ m. Ag-
gregation over rationals from a bounded set can be regarded
as bounded if the number of decimal places is fixed, e.g. for
currencies with 2 decimal places.

Compile (Expression Φ)
begin

if Φ has no variables then
return Φ

if ∃ independent Φ1,Φ2 s.t. Φ1 + Φ2 = Φ then
return Compile(Φ1) ⊕ Compile(Φ2)

if ∃ independent Φ1,Φ2 s.t. Φ1 · Φ2 = Φ then
return Compile(Φ1) � Compile(Φ2)

if ∃ independent Φ1,Φ2 s.t. Φ1 ⊗ Φ2 = Φ then
return Compile(Φ1) ⊗ Compile(Φ2)

if ∃ independent Φ1,Φ2 s.t. [Φ1θΦ2] = Φ then
return Compile(Φ1) [θ] Compile(Φ2)

Choose variable x ∈ X occurring in Φ
return

⊔
x (∀s ∈ S, Px[s] 6= 0: Compile(Φs))

Algorithm 1: Compilation of semimodule or semi-
ring expressions into d-trees.

Proposition 3. Let α =
∑n
i=1 φi⊗mi be an m-bounded

semimodule expression over the SUM monoid N where each
φi is a product of variables and all variables have non-zero
probability only for 0S and 1S. The probability distribution
Pd of a d-tree d for α can be computed in time O(n2m2d).

Note that every φi may only evaluate to 0S or 1S and hence
the sum is bounded by the product of the number of terms,
n and m; the product n ·m is thus an upper bound for the
size of the probability distribution at each node. In partic-
ular, COUNT aggregation corresponds to mi = 1 for all i.
Then the resulting probability distribution has at most size
n and can be computed in time O(n2d). In a d-tree that
contains semimodule expressions α, β over different aggre-
gation monoids, the complexity of the sub-trees of α and β
is each according to Propositions 2 and 3.
Compiling Expressions into d-trees.
Algorithm 1 sketches the construction of a d-tree for an in-
put expression Φ by repeatedly applying six decomposition
rules. The obtained d-tree is equivalent to the input expres-
sion, i.e., they have the same probability distribution.

The first four rules check whether the input expression
can be partitioned and decomposed into two independent
expressions Φ1 and Φ2. In the first rule, Φ1 and Φ2 are
either both semimodule or both semiring expressions; in the
second rule, they are semiring expressions. In the third rule,
Φ1 is a semiring, and Φ2 is a semimodule expression.

In order to find independent decompositions in polynomial
time, expressions are analysed at a syntactic level: We at-
tempt the first rule only if Φ is a sum and partition it by the
connected components in its clause-dependency graph. In
addition to such syntactic manipulations, the decomposition
in the second and third rules uses known polynomial-time
algorithms to recognise read-once expressions, i.e., expres-
sions where each variable occurs once, and hence factorise
expressions based on algebraic rewritings such as the asso-
ciativity and commutativity laws, e.g., [6, 18]. In particular,
this approach allows to factor expressions into complex sub-
expressions and not only into one variable and the residual.

The last rule decomposes Φ into sub-expressions Φs, for
each s ∈ S. As explained for Eq. (10), each expression Φs
is obtained in linear time by replacing x with the constant
s in Φ. Many heuristics have been proposed for choosing
the variable x, since good choices can make the difference
between polynomial and exponential size decision diagrams
(such as ordered binary decision diagrams, d-DNNFs, or d-



trees). In our implementation, we choose a variable with
most occurrences [18].

Remark 2. The requirement that the underlying algebraic
structures be commutative and associative is crucial for struc-
tural decomposition: without these properties, expression de-
composition would be constrained to the fixed order defined
by the order of symbols and the nesting of the expression.

Example 13. Figure 5 depicts a d-tree for the semimod-
ule expression Φ = a(b+ c)⊗ 10 + c⊗ 20. Φ cannot be split
into independent sub-expressions since variable c occurs in
both summands. We choose to eliminate variable c to cre-
ate mutually exclusive events. (This is a good choice since
it leads to independent sub-expressions.) We thus create a
node

⊔
c with as many children as valuations of c that have

non-zero probability. Consider the case c ← 1 and hence
Φ|c←1 = a(b + 1) ⊗ 10 + 1 ⊗ 20. This corresponds to the
left branch in the d-tree, and can be decomposed using the
first rule into its independent summands a(b + 1) ⊗ 10 and
1⊗ 20. The former expression can be decomposed using the
third rule into independent expressions a and (b + 1) ⊗ 10.
The procedure continues until we completely decompose the
expressions into variables and semimodule constants.

Figure 6 shows a d-tree for the semimodule expression in
the first conditional expression in the annotation Φ of the
result tuple 〈Gap〉 in Figure 1e over the semimodule B⊗N:

x4y41(z1 + z5)⊗ 15 + x4y43z3 ⊗ 60 + x5y51(z1 + z5)⊗ 10

It cannot be partitioned into independent sub-expressions.
Choosing variable x4 in the last rule, we create a node

⊔
x4

.

Its left child Φ|x4←⊥ = x5y51(z1 + z5) ⊗ 10 can be decom-
posed using the third rule into x5y51(z1+z5) and 1⊗10. The
former is a read-once expression, on which the second rule
can be applied twice to decompose it into x5 and the rest,
then the rest into y51 and z1 + z5. The latter is decomposed
using the first rule into z1 and z5. The right child

Φ|x4←> = y41(z1 + z5)⊗ 15 + y43z3 ⊗ 60 + x5y51(z1 + z5)⊗ 10

can be decomposed using a sequence of the first three rules
that exploit the independence of sub-expressions.

By construction of query results using J·K, the semiring
expression in the second conditional expression in Φ is pre-
cisely the semiring part of the above semimodule expression:

x4y41(z1 + z5) + x4y43z3 + x5y51(z1 + z5),

We can thus use the very same compilation steps as above,
with the simplification that only the first two rules, which
work on semirings, need be applied. The d-tree is the same
as for the semimodule expression, but where ⊗ nodes are re-
placed by � and without semimodule expressions at leaves.
Figure 6 shows this d-tree with thick (blue) edges. 2

Proposition 4. For any semimodule or semiring expres-
sion Φ, Algorithm 1 constructs a d-tree d such that PΦ = Pd.

By virtue of this equivalence, we can compute the probabil-
ity distribution of any expression by first compiling it into
a d-tree d and then computing its probability distribution
Pd. The algorithm is complete since the last rule is always
applicable until all variables are evaluated. However, ex-
clusive application of this rule is not desirable: compiling
arbitrary expressions by applying the last rule only can lead
to d-trees of size exponential in the number of variables.
This limitation seems necessary: if we could compile any

expression Φ into a d-tree in polynomial time, then hard
problems such as satisfiability, tautology, and even proba-
bility computation can be solved in polynomial time for Φ.
In practice, however, this rule can be quite effective, as we
show in the experiments. In case we need only apply the
first four rules, the compilation finishes in polynomial time.
This is already known for semiring expressions occurring in
the results of tractable relational algebra queries without
repeating symbols [18]. In Section 6, we define a fragment
of our query language Q consisting of tractable queries that
only create expressions compilable using the first four rules.
We finish this section with two observations about our com-
pilation approach, which cannot be presented at length due
to space constraints.
Pruning Conditional Expressions. The evaluation of
[αθβ]-expressions can be considerably improved by employ-
ing pruning rules that prove parts of α or β redundant. Con-
sider the expression Φ = [αθβ] = [x ⊗ 10 +min y ⊗ 20 ≤ 15]
which can be decomposed into sub-expressions α and β. The
probability PΦ[1S ] = 1−Px[0S ] is independent of y; indeed,
when computing Pα one may safely ignore computing Pα[20]
since it cannot contribute to PΦ[1S ] in the convolution of [θ].
Equivalently, we may replace Φ with a simpler yet equivalent
expression in which redundant terms are pruned. Examples
of pruning rules are (similar and symmetric cases omitted):

MIN :

[∑
i

Φi ⊗mi ≤ m
]
≡
[ ∑
i:mi≤m

Φi ⊗mi ≤ m
]

SUM :

[∑
i

Φi ⊗mi ≤ m
]
≡ 1S if

∑
i

mi ≤ m

Pruning is particularly effective when the probability distri-
butions of α and β have exponential size, such as in case
of the SUM monoid; there, early pruning can avoid the full
materialisation of such probability distributions.
Compiling Joint Probability Distributions. A tuple
in the result of an aggregate query in Q may have several
semimodule expressions and be annotated with a conditional
expression; in such cases we are interested in finding the
joint probability distribution of these expressions. This can
be accomplished by compiling the expressions into a sin-
gle d-tree by applying mutex decomposition until some of
the expressions become independent; the joint probability
distribution of two independent random variables is simply
their product. For instance, given integer variables a, b, c
with non-zero probabilities for 1,2 only, the mutex decom-
position on a decomposes the joint expression 〈a + b, a · c〉
into two branches 〈1+b, 1·c〉 and 〈2+b, 2·c〉. In each branch,
the two expressions are independent and can be considered
separately. For example, the probability for the value 〈3, 2〉
can be worked out to be Pa[2]Pb[1]Pc[1] + Pa[1]Pb[2]Pc[2].

6. TRACTABLE QUERY EVALUATION
This section describes the classes Qind and Qhie of tract-

able relational algebra queries with aggregation. The char-
acterisation uses as building blocks queries that return tuple-
independent relations and queries reminiscent of hierarchi-
cal queries [21]. Class Qhie uses Qind as a building block,
i.e. Qind ⊂ Qhie. Our tractability result follows from the
discussion in this section:

Theorem 3 (Tractable Queries).
Every query in Qhie has polynomial-time data complexity.



The characterisation is based on a generalisation of the hi-
erarchical property for non-repeating conjunctive queries [21].
A query Q is non-repeating if every base relation occurs at
most once in Q; in this section we assume all queries to be
non-repeating. Given a query Q = πĀσφ

(
Q1 × · · · × Qn

)
and an attribute A, we denote by A∗ the set of attributes
in Q that are transitively equated with A in φ; at(A∗) de-
notes the subset of the relation symbols Q1, · · · , Qn in which
an attribute from A∗ appears. A non-repeating query Q =
πĀσφ

(
Q1×· · ·×Qn

)
is hierarchical if for each two of its vari-

ables A,B that are not in Ā and are not equated with a con-
stant, it holds that at(A∗)∩ at(B∗) = ∅ or at(A∗) ⊇ at(B∗)
or at(A∗) ⊆ at(B∗). Given a query of the above form, an
attribute A is a root attribute if every relation Q1, . . . , Qn
contains some attribute from A∗.

Definitions 8 and 9 rely on the following notions and as-
sumptions. Every relation that does not contain semimod-
ule expressions and whose tuples are annotated with dis-
tinct variable symbols with given probability distributions
is called tuple-independent. We allow MIN and MAX aggre-
gation as well as bounded SUM and COUNT aggregation,
see Proposition 3. Additionally, we assume that for every
aggregation monoid M occurring in a query, the constant
0M does not occur in the database.

We assume that in a selection σφ, φ is a conjunction of
(1) equality predicates of the form A=B or A=c where A
and B are non-aggregation attributes and c is a constant,
and (2) θ-comparisons αθβ, αθc, or αθA where α and β are
aggregation attributes and A is a non-aggregation attribute.

We give separate recursive definitions of the classes Qind

of queries whose result tuples are pairwise independent, and
Qhie whose result tuples may be correlated.

Definition 8 (Class Qind).

1. Every tuple-independent relation is a Qind-query.

2. Let Q1, . . . , Qn ∈ Qind, and Q̃i = $Āi;γi←AGGi(Ci)
(Qi).

Then the following are Qind-queries:

(a) Q = πĀσφ(Q̃1), such that γ1 6∈ Ā
(b) Q = πĀσφ(Q1 × · · · ×Qn), such that Q is hierar-

chical and all attributes in Ā are root variables

(c) Q = π∅σγ1θγ2
(
Q̃1 × Q̃2

)
, such that Ā1 = Ā2 = ∅.

Concerning the queries under 8.2, first observe that the
tuples in the result of Q̃i are pairwise independent and that
the expressions γi have the form γi =

∑
AGG xi ⊗ vi where

the xi are independent random variables; the annotation of
each tuple in Q̃i is Φ = 1K in case of Āi = ∅ and a sum Φ =∑
xj over the annotations of the tuples participating to this

group, otherwise. Consider the case 8.2(a): The selection σφ
may compare γ1 with a constant c to yield the annotation
Φt = Φ · [γ1θc]. Under the assumption that the constant 0M
is not in the database, it can be shown that for any valuation
ν ∈ Ω it holds that ν(Φ) = 0S if and only if ν(γ1) = 0M ,
i.e. the correlation of the distributions of Φ and γ1 is in-
dependent of the data. Starting from this observation, it
follows that the probability distribution of Φt = Φ · [γ1θc]
can by expressed by considering the probabilities of Φ and
[γ1θc] separately: For instance, for MIN aggregation and θ
is ≤: PΦt [0S ] = P[γ1≤c][0S ] and PΦt [1S ] = P[γ≤c][1S ]. For
MIN aggregation and θ is ≥: PΦt [0S ] = PΦ[0S ]+P[γ1≥c][0S ]
and PΦt [1S ] = PΦ[1S ] + P[γ≥c][1S ] − 1. Similar results are
obtained for MAX and SUM aggregation. Since the result-
ing tuples are again independent, the final projection πĀ

creates as annotations sums of independent expressions; fur-
thermore, as γ1 6∈ Ā, the only expressions in result tuples
are the annotation expressions.

For 8.2(b), it is known that non-repeating hierarchical
queries are tractable on tuple-independent relations [21];
since in addition all variables in the projection list are root
variables, the result is tuple-independent. In 8.2(c), the con-
ditional expression obtained for the result tuple compares
two tractable and independent semimodule expressions.

Secondly, we define Qhie as follows.

Definition 9 (Class Qhie).
The following are Qhie-queries:

1. Q = πĀ$Ā;γ←AGG(C)

[
σψ(Q1 × · · · ×Qn)

]
if Q1, . . . , Qn ∈ Qind,
and πĀσψ(Q1 × · · · ×Qn) is hierarchical

2. Q = πĀσφ(Q1 × · · · ×Qn) if Q1, . . . , Qn ∈ Qind, and
Q is hierarchical.

Queries in 9.2 are the well-known non-repeating hierarchi-
cal queries [21]. For queries in 9.1, first consider the query
Q′ = πĀσψ(Q1 × · · · × Qn) which is by assumption hierar-
chical. It follows that, given a tuple t ∈ Q′, its annotation
Φ =

∑
φi is a read-once expression [17, 21]; moreover, Φ

can be compiled into a d-tree whose size is bounded by the
number of its variables. By Propositions 2 and 3, computing
the probability distribution of such a d-tree – and thus the
probability distribution of Φ – can be done in time polyno-
mial in the size of Φ. By Proposition 1, the size of the input
annotation is polynomial in the size of the input database,
hence query evaluation is in polynomial-time.

Now consider the query Q (9.1). Aggregation yields ex-
pressions of the form α =

∑
AGG φi⊗vi where as above each

φi is a product of variables; since the query is non-repeating,
each product has exactly n variables, one from each relation.
The aggregated data values vi are all from the same rela-
tion and can hence be associated with the variables from
that relation. The expression α can be compiled into the
same d-tree as Φ, except that instead of the leaves for the
variables x from the aggregated relation, it has leaves of the
form x⊗ v. The following example illustrates this idea.

Example 14. Consider the database in Figure 1 and the
query Q = $∅;α←SUM(price)

(
σshop=′M&S′(S) 1 PS

)
which is

of type 1 inQhie. In this example, the query Q′ considered in
the explanation above is Q′ = π∅σshop=′M&S′(S) 1 PS; the
annotation of its result tuple is x1y11+x1y12+x2y21+x2y22+
x3y33+x3y34 which is equivalent to the read-once expression
x1(y11 + y12) + x2(y21 + y22) + x3(y33 + y34). According to
the rewriting rules J·K in Figure 4, the annotation of the
result of Q is (x1y11) ⊗ 10 + (x1y12) ⊗ 50 + (x2y21) ⊗ 11 +
(x2y22)⊗60+(x3y33)⊗15+(x3y34)⊗40. Associating the price
values with the annotation variables yij of their relation, one
obtains a read-once expression equivalent to the one above,
except that the leaves with yij variables are now semimodule
expressions yij ⊗ vi: x1(y11 ⊗ 10 + y12 ⊗ 50) + x2(y21 ⊗ 11 +
y22 ⊗ 60) + x3(y33 ⊗ 15 + y34 ⊗ 40). 2

Ré et al. consider queries $∅;γ←AGG(C)σφ(R1 × · · · ×Rn)
in which π∅σφ(R1 × · · · × Rn) is hierarchical [19]; these are
subsumed by Qhie. For such queries involving aggregation
without grouping, the neutral element of the aggregation
monoid may safely be in the database without jeopardising
query tractability, because the annotation the query result
is always 1K and hence the correlation of the distributions of
1K and γ is trivial, see also the discussion after Definition 8.
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Figure 7: Experiment A: Varying the constant c for
different aggregation monoids and comparison oper-
ators θ. #v=25, L=200, R=0, #cl=3, #l=3, maxv=200.

7. EXPERIMENTAL EVALUATION
We have assessed our query evaluation technique in two

scenarios: randomly generated expressions and aggregate
queries on TPC-H data. The results give positive evidence
for the feasibility of query evaluation using our technique.

The experiments were performed on a virtual machine
with Intel Xeon X5650 Quad 2.67GHz/4GB/64bit running
Linux 2.6.35-25/gcc4.4.5. Our algorithms for event con-
struction and probability computation are implemented in
C. They are integrated in the SPROUT query engine, which
is an extension of PostgreSQL8.3.3. We run each experi-
ment multiple times and report average wall-clock execution
times and estimated standard deviation (vertical axis in all
figures) while neglecting the slowest and fastest runs.

7.1 Experiments on Synthetic Data
We conducted an analysis of the qualitative behaviour of

our technique for randomly generated semiring expressions
over Boolean random variables of the two forms[

L∑
AGGL

Φi ⊗ vi θ
R∑

AGGR

Ψj ⊗ wj
]
,

[
L∑

AGGL

Φi ⊗ vi θ c
]

(11)

with the following parameters: L (R) is the number of semi-
module terms on the left (right) of the comparison operator
θ, AGGL and AGGR are the aggregation monoids on each
side. The second form corresponds to R=0. Values vi, wj
are from [0,maxv] and the expression contains #v distinct
variables. Each Φi has #cl clauses and each of them has
#l positive literals. In each experiment, we randomly gen-
erate #runs different expressions of form Eq.(11) according
to the parameters specified in the respective figures.
Experiment A explores the effect of constant c on the eval-
uation of an expression with L=200 terms on the left side
compared with c on the right side. Figure 7 depicts the
run time for different aggregation and comparison opera-
tors. Let us analyse MIN. Values vi are drawn from [0, 200].
For small c, our pruning techniques ensure that only terms
with values smaller than c are considered by convolution op-
erators in the d-tree. For the operator ≤, we thus need to
compute the probability that any of these terms is present
(i.e., its semiring expression evaluates to true); for the op-
erator ≥, we compute the probability that none of these

terms is present; for the operator =, we compute the proba-
bility that none of these terms is present and at least a term
with monoid value c is present. The computation becomes
slower when increasing c, and after c = 200, all terms need
to be considered, hence the run time converges to a constant
value. The behaviour of MAX mirrors that of MIN.

Evaluating COUNT for a constant c effectively amounts to
computing the probability that (at most, at least, or exactly)(
L
c

)
terms are present. The binomial coefficient is trivial for

c = 1 and c = L = 200 and bell-shaped in between. Since
we consider three clauses per term (#cl = 3), this experi-
ment evaluates COUNT DISTINCT on top of a conjunctive
query. The case of SUM is equivalent to COUNT with the
horizontal axis scaled by factor maxv/2 = 100. This is to be
expected in the limit #runs→∞ since the aggregation val-
ues are drawn uniformly from [0,maxv] with expected value
maxv/2. We also considered Experiment A with L = 100
terms and the other parameters unaltered. The qualitative
behaviour remained unchanged and the run time halved.
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(a) C: L=90, R=0, #cl=2,
#l=2, maxv=5, c=3, θ is =,
#runs=40, AGGL=MIN.
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Figure 8: Experiments C and B: Varying the num-
ber of terms and variables.

Experiment B (Figure 8b) investigates the effect of vary-
ing the number of terms while keeping the number of vari-
ables constant. The initial increase in run time is due to
the cost of partitioning into mutex expressions, which even-
tually saturates to linear growth for larger expressions once
all variables have been considered for partitioning. This
experiment mimics answering increasingly complex queries
on a database of constant size; this produces increasingly
larger expressions, yet with a constant number of variables.
We repeated the above experiments (not in the figure) for
the remaining comparison operators θ ∈ {≤,≥} and for pa-
rameters maxv = 5, c = 3 and obtained similar results.
Experiment C mirrors Experiment B: Fix the size of the
expression and vary the number of its distinct variables. It
is known from #SAT analysis that such a setup exhibits
an easy/hard/easy phase transition, see Figure 8a. For our
algorithm, the transition is understood by its limiting cases:
For few variables, expressions can quickly be decomposed
into mutex expressions. Conversely, expressions separate
into independent sub-expressions in case of many variables
since it is likely that different clauses are independent. The
large standard deviation in the hard regime suggests that
the run time is sensitive to the particular distribution of
variables within the expression. In case θ is ≥ or ≤, the
runtime improves but follows a similar pattern.
Experiment D visualises a phase transition similar to that
of Experiment C (Figure 9). We explain for Figure 9a:
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Figure 11: Experiment F: Queries on TPC-H Data.
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Figure 9: Experiment D: Varying the number of
literals per clause (a) and of clauses per term (b).
#v=25, L=100, R=0, maxv=5, c=3, #runs=20, θ is ≤.
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Figure 10: Experiment E: Expressions with differ-
ent left/right aggregations. #v=25, #cl=2, #l=2,
maxv=200, c=100, #runs=10, θ is ≤.

When keeping the number of variables and terms constant
while increasing the arity of clauses, the problem becomes
easy for small and large clauses, and hard in between.
Experiment E investigates the behaviour of expressions
with different aggregation operators on each side (Figure
10). We analyse the case

∑
MAX ≤

∑
SUM. When increasing

the number of terms on the left/MAX side (left figure), it
becomes more likely that the maximum value on the left
side is larger than the sum on the right side; hence more
terms have to be compiled. When increasing the number of
terms on the right/SUM side (right figure), already a few
mutex decomposition steps satisfy enough clauses to make
the sum larger than the maximum on the left side, i.e. the
compilation is faster with increasing number of SUM terms.

7.2 Queries on TPC-H
We consider tuple-independent TPC-H 2.14.0 databases

of scales up to 1GB, and two TPC-H queries. The query
Q1 reports the amount of business that was billed, shipped,
and returned (only the COUNT aggregate is selected). The
query Q2 is a join of five relations and with a nested ag-
gregate query, which asks for suppliers with minimum cost
for an order for a given part in a given region. For each

query, we compared the execution times (1) on a determin-
istic database (Q0) without expression or probability com-
putation, (2) of the computation of the expressions (J·K), and
(3) of probability computation for the result tuples (P (·)).
Experiment F compares the runtime for Q0, [·], and P (·)
(Figure 11). The overhead of expression computation and
probability computation is polynomial, because the TPC-H
dataset scales up the amount of tuples while keeping tuple
correlations (i.e. the number of tuples directly related via
joins within a group) constant. The performance difference
between Q1 and Q2 is due to the selectivity of the queries:
The size of the annotation expressions as a measure for the
number of tuples contributing to Q1’s answer is 1200 times
larger than the size of Q2’s annotations.
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