

A Dichotomy for Non-Repeating Queries with Negation in Probabilistic Databases

Robert Fink and Dan Olteanu

PODS, June 2014

The Main Result

Data complexity of any 1RA⁻ query Q on tuple-independent databases: Polynomial time if Q is hierarchical and #P-hard otherwise.

Query Language and Data Model

Relational algebra query language fragment 1RA⁻

- Included: Equi-joins, selections, projections, difference
- Excluded: Repeating relation symbols (self-joins), unions

Tuple-independent probabilistic model

- Each tuple associated with a fresh Boolean random variable x.
- P(x) is the probability that the tuple exists in the database.
- Simplest probabilistic model in the literature. Beyond this model, query tractability is quickly lost.

The Hierarchical Property for a Query Q

For every pair of distinct attribute equivalence classes [A], [B] there is no triple of relation symbols R, S, and T in Q such that • $R^{[A][\neg B]}$ has attributes in [A] and not in [B],

- $S^{[A][B]}$ has attributes in both [A] and [B], and
- $T^{[\neg A][B]}$ has attributes in [B] and not in [A].

Non-hierarchical queries	Hierarchical queries
$\pi_{\emptyset} [R(A) \bowtie S(A, B) \bowtie T(B)]$	$\pi_{\emptyset}ig[ig(oldsymbol{R}(oldsymbol{A})oxtimesoldsymbol{S}(oldsymbol{A},oldsymbol{B})ig)-T(oldsymbol{A},oldsymbol{B})ig]$
$\pi_{\emptyset}\Big[\pi_{B}(R(A) \bowtie S(A, B)) - T(B)\Big]$	$\pi_{\emptyset} \big[\big(\boldsymbol{R}(\boldsymbol{A}) \times \boldsymbol{T}(\boldsymbol{B}) \big) - \big(\boldsymbol{U}(\boldsymbol{A}) \times \boldsymbol{V}(\boldsymbol{B}) \big) \big]$

• Used by real-world large-scale probabilistic repositories, e.g., Google Knowledge Vault.

$|\pi_{\emptyset}| (M(A) \times N(B)) - [(R(A) \times T(B)) - (U(A) \times V(B))]|$ $\pi_{\emptyset} \left| T(B) - \pi_{B} (R(A) \bowtie S(A, B)) \right|$

The hierarchical property can be recognized in LOGSPACE.

The Hard Queries

Reduction from the #P-hard problem #SAT for positive 2DNF.

- Input formula and query: $\Psi = x_1y_1 \vee x_1y_2$, $Q = \pi_{\emptyset} \Big[R(A) \pi_A \big(T(B) \bowtie S(A, B) \big) \Big]$
- Construct database such that Ψ annotates Q's result:
 - $S(a, b, \phi)$: Clause a has variable b exactly when ϕ is true. • $R(a, \top)$ and $T(b, \neg b)$: *a* is a clause and *b* is a variable in Ψ .

R A Φ	<i>Τ</i> <i>Β</i> Φ	<u>S</u> Α Β Φ	$\frac{T \bowtie S}{A B \Phi}$	$\frac{\pi_{\mathcal{A}}(T \bowtie S)}{A \Phi}$	$\frac{R}{A}$	$\frac{\pi_{\mathcal{A}}(\mathcal{T}\bowtie \mathcal{S})}{\Phi}$
1 ∣ 2 ⊤	X ₁ ¬ X₁ <i>Y</i> ₁ ¬ Y ₁ <i>Y</i> ₂ ¬ Y ₂	1 x_1 1 y_1 ⊤ 1 y_2 ⊥ 0 x_1 ⊤	$\begin{array}{c} 1 x_1 \ \neg \mathbf{x_1} \\ 1 y_1 \ \neg \mathbf{y_1} \\ 1 y_2 \bot \\ 0 x_1 x_2 \end{array}$	$\begin{array}{c}1 \ \neg \mathbf{x_1} \lor \neg \mathbf{y_1} \\2 \ \neg \mathbf{x_1} \lor \neg \mathbf{y_2}\end{array}$	1 2	X 1 y 1 X 1 y 2
		$\begin{array}{c} 2 \ x_1 \ + \ 2 \ y_1 \ \perp \ 2 \ y_2 \ \top \end{array}$	$\begin{array}{c} 2 \ x_1 \ \neg \mathbf{x_1} \\ 2 \ y_1 \ \bot \\ 2 \ y_2 \ \neg \mathbf{y_2} \end{array}$			

There are 48 (!) minimal non-hierarchical query patterns.

The Evaluation Algorithm for Hierarchical Queries

• For any database D, the probability $P_{Q(D)}$ of a 1RA⁻ query Q is the probability P_{Ψ} of the query annotation Ψ .

	R	Т	U	V	$R \bowtie T$	$R \bowtie T - U \bowtie V$
$\mathcal{Q} = \pi_{\emptyset} (\mathcal{R}(\mathcal{A}) \times \mathcal{T}(\mathcal{B})) - (\mathcal{U}(\mathcal{A}) \times \mathcal{V}(\mathcal{B}))$	ΑΦ	ΒΦ	ΑΦ	ΒΦ	ΑΒΦ	ΑΒΦ
	1 r ₁	1 t ₁	1 u ₁	1 v ₁	1 1 r ₁ t ₁	1 1 $r_1 t_1 \neg (u_1 v_1)$
	2 r ₂	2 t ₂	2 u ₂	2 v ₂	1 2 r₁t₂	1 2 $r_1 t_2 \neg (u_1 v_2)$
					21 r₂t₁	2 1 $r_2 t_1 \neg (u_2 v_1)$
					2 2 r ₂ t ₂	2 2 $r_2 t_2 \neg (u_2 v_2)$

• Translate query Q into equivalent RC^{\exists} : A disjunction of disjunction-free existential relational calculus queries.

$$Q_{RC} = \underbrace{\exists_A (R(A) \land \neg U(A)) \land \exists_B T(B)}_{Q_1} \lor \underbrace{\exists_A R(A) \land \exists_B (T(B) \land \neg V(B))}_{Q_2}.$$

• **RC-hierarchical**: For each quantifier $\exists_X(Q)$, every relation symbol in Q has variable X.

- There is a database construction scheme for each pattern.
- Each non-hierarchical query Q matches a pattern $P_{x,y}$:
- There is a total mapping from $P_{x,y}$ to Q's parse tree that
 - is identity on inner nodes \bowtie and -,
 - preserves ancestor-descendant relationships,
 - maps leaves A, B, AB to relations $R^{[A][\neg B]}, S^{[A][B]}, T^{[\neg A][B]}$.
- The match preserves the annotation of the query pattern: Q and $P_{x,y}$ have the same annotation for any input database.

- \exists -consistent: All disjuncts have the same nesting order of \exists s.
- Compile query annotation into OBDD

 $\Psi = (r_1 \neg u_1 \lor r_2 \neg u_2) \land (t_1 \lor t_2)$

- **RC-hierarchical**: Each disjunct gives rise to a poly-size OBDD. • The OBDD width grows exponentially with the number of
 - disjuncts, while its height stays linear in the database size.

Some known dichotomies

Conjunctive queries w/o self-joins, unions of conjunctive queries [Dalvi & Suciu 2004-2010], quantified queries [F.&O.& Rath 2011]

Full relational algebra

• seems unattainable since it is undecidable whether the union of two equivalent queries, one hard and one tractable, is tractable. Non-repeating relational algebra = $1RA^{-}$ + union.

• Hierarchical property not enough.

• $\pi_{\emptyset}[(R(A) \bowtie S_1(A, B) \cup T(B) \bowtie S_2(A, B)) - S(A, B)]$ is hard, though it is equivalent to a union of two hierarchical 1RA⁻ queries.

Non-repeating relational calculus

• $S(x, y) \wedge \neg R(x)$ is tractable, $S(x, y) \wedge (R(x) \vee T(y))$ is hard. Both are non-repeatable, yet not expressible in 1RA⁻. • Possible (though expensive) approach: Translate to RC^{\exists} and check RC-hierarchical and \exists -consistency.