The Main Result

Data complexity of any 1 RA $^{-}$query Q on tuple-independent databases: Polynomial time if Q is hierarchical and \#P-hard otherwise.

Query Language and Data Model

Relational algebra query language fragment 1RA

- Included: Equi-joins, selections, projections, difference
- Excluded: Repeating relation symbols (self-joins), unions

Tuple-independent probabilistic model

- Each tuple associated with a fresh Boolean random variable x.
- $P(x)$ is the probability that the tuple exists in the database.
- Simplest probabilistic model in the literature.

Beyond this model, query tractability is quickly lost.

- Used by real-world large-scale probabilistic repositories, e.g., Google Knowledge Vault.

The Hard Queries

Reduction from the \#P-hard problem \#SAT for positive 2DNF.

- Input formula and query: $\psi=x_{1} y_{1} \vee x_{1} y_{2}, Q=\pi_{\square}\left[R(A)-\pi_{A}(T(B) \bowtie S(A, B))\right]$
- Construct database such that ψ annotates Q's result:
- $S(a, b, \phi)$: Clause a has variable b exactly when ϕ is true.
- $R(a, \top)$ and $T(b, \neg b)$: a is a clause and b is a variable in ψ.

R	T	S	$T \bowtie S$	$\pi_{A}(T \bowtie S)$	$R-\pi_{A}(T \bowtie S)$	
$A \Phi$	$B \quad \Phi$	$A B \Phi$	$A B \quad \Phi$	A \quad ¢	A	Ф
1 T	$\chi_{1} \neg \mathbf{x}_{1}$	$1 x_{1}$ T	$1 x_{1} \neg \mathbf{X}_{1}$	$1 \neg \mathbf{x}_{1} \vee \neg \mathbf{y}_{1}$	1	$\mathbf{x}_{1} \mathrm{y}_{1}$
2 T	$y_{1} \neg \mathbf{y}_{1}$	$1 y_{1} \top$	$1 y_{1} \neg \mathbf{y}_{1}$	$2 \neg \mathbf{x}_{1} \vee \neg \mathbf{y}_{2}$	2	$\mathrm{x}_{1} \mathrm{y}_{2}$
	$y_{2} \neg \mathbf{y}_{2}$	$1 y_{2} \perp$	$1 y_{2} \perp$			
		$2 x_{1}$ T	$2 x_{1} \neg \mathbf{x}_{1}$			
		$2 y_{1} \perp$	$2 y_{1} \perp$			
		$2 y_{2} \top$	$2 y_{2} \neg \mathrm{y}_{2}$			

There are 48 (!) minimal non-hierarchical query patterns.

- Binary trees with leaves $A, A B$, and B and inner nodes \bowtie or - .
- There is a database construction scheme for each pattern.

Each non-hierarchical query Q matches a pattern $\mathbf{P}_{\mathbf{x} \mathbf{y}}$:

- There is a total mapping from $\mathbf{P}_{\mathbf{x} . \mathbf{y}}$ to Q 's parse tree that
- is identity on inner nodes \bowtie and -,
- preserves ancestor-descendant relationships,
- maps leaves $A, B, A B$ to relations $R^{[A][\neg B]}$, $S^{[A][B]}$, $T^{[\neg A][B]}$.
- The match preserves the annotation of the query pattern:
Q and $\mathbf{P}_{\text {x.y }}$ have the same annotation for any input database.

The Hierarchical Property for a Query Q

For every pair of distinct attribute equivalence classes $[A],[B]$ there is no triple of relation symbols R, S, and T in Q such that

- $R^{[A][\neg B]}$ has attributes in $[A]$ and not in $[B]$,
- $S^{[A][B]}$ has attributes in both $[A]$ and $[B]$, and
- $T^{[\neg A][B]}$ has attributes in $[B]$ and not in $[A]$.

Non-hierarchical queries Hierarchical queries
$\pi_{\emptyset}[R(A) \bowtie S(A, B) \bowtie T(B)]$
$\pi_{\emptyset}\left[\pi_{B}(R(A) \bowtie S(A, B))-T(B)\right]$
$\pi_{\emptyset}\left[T(B)-\pi_{B}(R(A) \bowtie S(A, B))\right]$
$\pi_{\emptyset}[(R(A) \bowtie S(A, B))-T(A, B)]$
$\pi_{\emptyset}\left[\pi_{B}(R(A) \bowtie S(A, B))-T(B)\right]$
$\pi_{\emptyset}\left[T(B)-\pi_{B}(R(A) \bowtie S(A, B))\right]$
$\pi_{\emptyset}[(R(A) \times T(B))-(U(A) \times V(B))]$

The hierarchical property can be recognized in LOGSPACE.

The Evaluation Algorithm for Hierarchical Queries

- For any database D, the probability $P_{Q(D)}$ of a 1 RA ${ }^{-}$query Q is the probability P_{ψ} of the query annotation ψ.

$$
\begin{aligned}
& Q=\pi_{0}(R(A) \times T(B))-(U(A) \times V(B)) \quad \frac{R}{A \phi} \frac{T}{B \phi} \frac{U}{A \phi} \frac{V}{B \phi} \frac{R \bowtie T}{A B \Phi} \frac{R \bowtie T-U \bowtie V}{A B \quad \Phi}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{llll}
2 & 1 & r_{2} t_{1} & 21 \\
r_{2} t_{1} & \left(u_{2} v_{1}\right)
\end{array} \\
& 22 \mathbf{r}_{\mathbf{2}} \mathbf{t}_{\mathbf{2}} 22 \mathbf{r}_{\mathbf{2}} \mathbf{t}_{2} \neg\left(\mathbf{u}_{2} \mathbf{v}_{\mathbf{2}}\right)
\end{aligned}
$$

- Translate query Q into equivalent RC^{\exists} : A disjunction of disjunction-free existential relational calculus queries.

- RC-hierarchical: For each quantifier $\exists_{X}(Q)$, every relation symbol in Q has variable X.
- \exists-consistent: All disjuncts have the same nesting order of $\exists \mathrm{s}$.
- Compile query annotation into OBDD

```
\(\psi=\underbrace{\left(r_{1} u_{1} \vee r_{2} \neg u_{2}\right) \wedge\left(t_{1} \vee t_{2}\right)}_{v_{1}} \vee \underbrace{\left(r_{1} \vee r_{2}\right) \wedge\left(t_{1} v_{1} \vee t_{2} \vee v_{2}\right)}_{v_{2}}\).
```

- RC-hierarchical: Each disjunct gives rise to a poly-size OBDD.
- \exists-consistent: All OBDDs have compatible variable orders.
- The OBDD width grows exponentially with the number of disjuncts, while its height stays linear in the database size.

Dichotomies Beyond 1RA

Some known dichotomies

- Conjunctive queries w/o self-joins, unions of conjunctive queries [Dalvi \& Suciu 2004-2010], quantified queries [F.\&O.\& Rath 2011]

Full relational algebra

- seems unattainable since it is undecidable whether the union of two equivalent queries, one hard and one tractable, is tractable. Non-repeating relational algebra $=1$ RA $^{-}+$union.
- Hierarchical property not enough.
- $\pi_{\varnothing}\left[\left(R(A) \bowtie S_{1}(A, B) \cup T(B) \bowtie S_{2}(A, B)\right)-S(A, B)\right]$ is hard, though it is equivalent to a union of two hierarchical 1 RA $^{-}$queries.

Non-repeating relational calculus

- $S(x, y) \wedge \neg R(x)$ is tractable, $S(x, y) \wedge(R(x) \vee T(y))$ is hard. Both are non-repeatable, yet not expressible in 1 RA $^{-}$.
- Possible (though expensive) approach: Translate to RC^{\exists} and check RC-hierarchical and \exists-consistency.

