Probabilistic Data Formalisms

Real-world applications model probabilistic data using a plet different formalisms, e.g.,

- Bayesian networks are a natural fit for managing expert knowledge, where the probabilistic relationship between input random variables, which are observable quantities, unknown parameters, or hypotheses, exhibits conditional independence.
- Examples from the UCI machine learning repository at http://archive.ics.uci.edu/ml/datasets.html
- The pc-tables are relations extended with a special column that encodes the uncertainty of the records using probabilistic events.
- NELL tables at http://rtw.ml.cmu.edu/rtw/ consist of records extracted from hundreds of millions of web pages.
- Google Squared tables aggregate unstructured, possibly contradictory information representing answers to keyword search queries.
- Finite State Transducers (FSTs) are stochastic automata used by optical character recognition programs, such as those powering **Google Books**, to capture probability distributions over all possible strings that could be represented in a given image.
- Examples at http://hazy.cs.wisc.edu/hazy/staccato/

They support probabilistic processing to varying degrees:

- The pc-tables formalism supports select-project-join queries whose answers can be represented as pc-tables. as implemented by the MayBMS/SPROUT query engine
- Bayesian networks support inference queries that ask for the conditional probability of an event given another event. as implemented by the SMILE Bayesian inference engine
- FSTs support selection queries that ask for the probability that a certain string occurs in their possible runs. as implemented by the Staccato system

They admit a common interpretation via the possible worlds semantics:

- pc-tables represent finite probability distributions over sets of possible tables.
- Bayesian networks represent finite probability distributions over sets of correlated observations.
- FSTs represent finite probability distributions over sets of possible strings represented in an image.

Integration System for Probabilistic Data

Dan Olteanu and Lampros Papageorgiou and Sebastiaan J. van Schaik

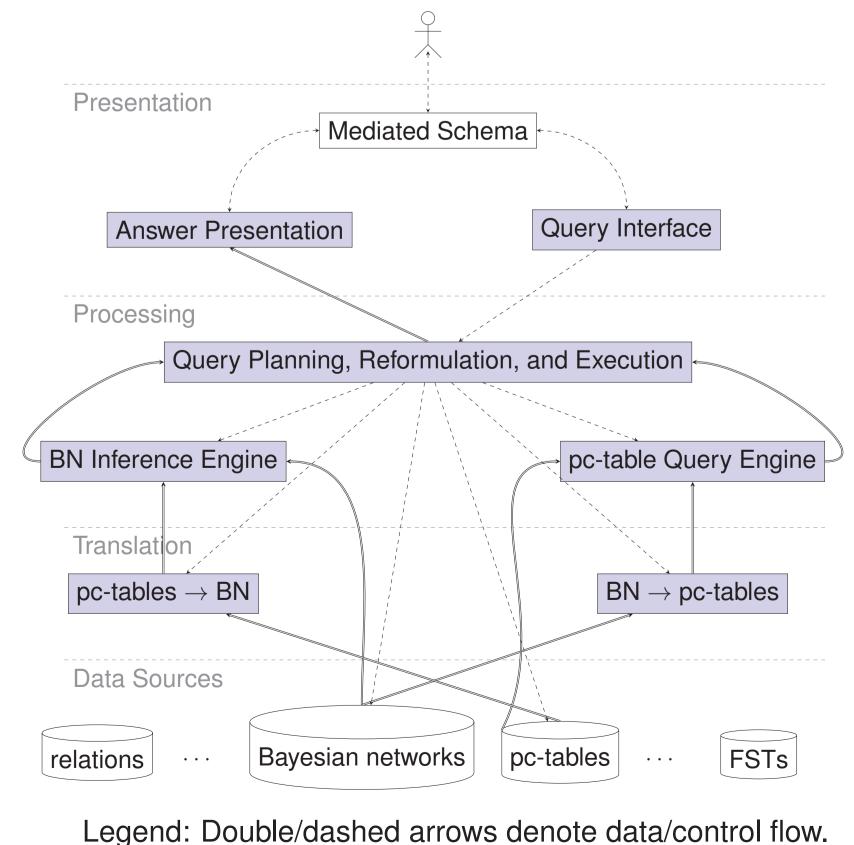
Department of Computer Science, University of Oxford, Oxford, OX1 3QD, UK

th	0	a	of

□gora's Capabilities

Queryable uniform interface to heterogeneous probabilistic data

- provides uniform interface = mediated relational schema Each local source is registered to the system with a relational schema that becomes part of the mediated schema.
- pc-tables export a relational schema without the events column.
- Bayesian networks export a relational schema consisting of one attribute per node.
- FSTs export schemas with one attribute.
- integrates data available in different probabilistic formalisms
- enables expressive querying across them select-project-join queries
- exact/approximate probability computation aggregate ▶ a new GIVEN clause that allows to formulate conditionals.
- provides a query evaluation mechanism over the mediated schema Strategy 1: Use different engines to evaluate subqueries natively supported by the formalisms of the input data sources. Translate intermediate results to pc-tables and complete the evaluation.
- Strategy 2: Offline translation of all input data sources into either the pc-tables or Bayesian networks, followed by evaluation using either a query or an inference engine.
- provides transformations of sources to existing formalisms followed by evaluation using a single query/inference engine.
- pc-tables, Bayesian networks, and FSTs are complete representation systems but of incomparable succinctness.
- exponential-time translations between the formalisms polynomial-time translations of Bayesian networks and FSTs into pc-tables with event definitions



Demonstration Scenario: Medical Data

Query: probability of a pregnant woman suffering from a left breast tumour, given that she also suffers from hypothyroidism.

SELECT conf() FROM Hypothyroid H, Breast_cancer B WHERE B.tumour='true' AND B.breast='left' AND H.tumour='true' AND H.pregnant='true' GIVEN B.age=H.age AND H.hypothyroid='primary'

Data sources: Bayesian networks Hypothyroid and Breast_cancer.

Strategy 1: purely Bayesian evaluation. Phrase the SQL query as a sum of inference queries:

> $\sum (P(B.tumor = true \land B.breast = left \land H.tumor = true \land H.pregnant = true |$ $(B.age = H.age \land H.hypothyroid = primary)))$

For a given value x for age, we have the inference query:

 $P(B.tumor = true \land B.breast = left \land H.tumor = true \land H.pregnant = true |$ $(B.age = x \land H.age = x \land H.hypothyroid = primary))$

 $P(B.tumor = true \land B.breast = left | B.age = x) *$

Resolve the GIVEN clause using the conditional probability formula:

 $P(A \mid B)$

Strategy 3: hybrid evaluation assuming Breast_cancer is a pc-table.

- Split the query into the subqueries over each of Hypothyroid and Breast_cancer.
- **For each value of** *x* **for** age **we have the inference query over** Hypothyroid:

- Rewrite the subquery over Breast_cancer by resolving the GIVEN clause: CREATE TABLE T_1 AS SELECT B.age, conf() AS p1 FROM Breast_cancer B WHERE B.tumor='true' AND B.breast='left' GROUP BY B.age CREATE TABLE T_2 AS SELECT B.age, conf() as p2 FROM Breast_cancer B GROUP BY B.age

where $P_B(age)$ denotes P_B for the tuple (age, P_B) in T_3 .

DEPARTMENT OF COMPUTER SCIENCE

Since the two Bayesian networks are independent, we can regroup as follows:

 $P(\text{H.tumor} = \text{true} \land \text{H.pregnant} = \text{true} | (\text{H.age} = x \land \text{H.hypothyroid} = \text{primary}))$

Strategy 2: evaluation using pc-tables translations of Bayesian networks.

$$)=rac{P(A\,\wedge\,B)}{P(B)}$$

 $\forall x : P_H(x) = P(H.tumor = true \land H.pregnant = true | H.age = x \land H.hypothyroid = primary)$

CREATE TABLE T_3 AS SELECT T_1 .age, p1/p2 AS P_B FROM T_1 , T_2 WHERE T_1 .age = T_2 .age

The query answer is obtained by joining the independent intermediate results: $\sum P_B(age) * P_H(age)$