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Motivation for approximation in databases

Approximate query evaluation in probabilistic databases
→ Exact query evaluation is #P-hard already for simple queries.

Approximate explanations of query answers in provenance
databases
→ Full explanations may have large size.

Sampling-based approximation for query evaluation in relational
databases
→ For aggregation queries in very large databases.



Given function f and space of problem instances C. Assume
complexity of f on C is too high.

How to approximate f on C?



Approach 1: Modify f.
Find function f ′ from nicer complexity class such that for all Φ ∈ C

(1− ε) · f (Φ) ≤ f ′(Φ) ≤ (1 + ε) · f (Φ)

Approach 2: Modify Φ.
Find ΦLower,ΦUpper from nicer problem class Ceasy ⊂ C such that

f (ΦLower) ≤ f (Φ) ≤ f (ΦUpper)

C
Ceasy
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In this talk . . .

C: Unate Boolean propositional formulas in DNF

f : Probability computation or model counting

Ceasy: Read-once formulas

Probability computation for arbitrary formulas is #P-hard

Probability computation for read-once formulas is in
PTIME



Annotated databases

Tuples are annotated with event (“lineage”) expressions
Here: Annotation with elements of the PosBool semiring

R
A E

1 x1
2 x2

S
A B E

1 1 >
1 2 >
2 2 >

T
B E

1 y1
2 y2

Queries map annotated databases to annotated databases. In
particular, for every query, one can construct an expression Φ

that is tightly connected to the query answer.
(TJ Green et al., Provenance Semirings, PODS 2007)

Q(A, B)← R(A), S(A, B), T (B)

A B E

1 1 x1y1
1 2 x1y2
2 2 x2y2

Q ← R(A), S(A, B), T (B)

E

() x1y1 ∨ x1y2 ∨ x2y2



Sandwich-bounds for event formulas

R
A E

1 x1
2 x2

S
A B E

1 1 >
1 2 >
2 2 >

T
B E

1 y1
2 y2

Q ← R(A),S(A,B),T (B)

Φ = x1y1 ∨ x1y2 ∨ x2y2

Find formulas ΦL,ΦU such that ΦL |= Φ |= ΦU

If ΦL,ΦU have „nicer“ properties than Φ, then they provide
convenient lower and upper bounds for Φ

For example, bound formulas in which every variable symbol
occurs only once: ΦL = x1(y1 ∨ y2), ΦU = (x1 ∨ x2)(y1 ∨ y2)



Application to provenance databases
R

A E

1 x1
2 x2

S
A B E

1 1 >
1 2 >
2 2 >

T
B E

1 y1
2 y2

Q ← R(A),S(A,B),T (B)

Φ = x1y1 ∨ x1y2 ∨ x2y2

x1(y1 ∨ y2) |= x1y1 ∨ x1y2 ∨ x2y2 |= (x1 ∨ x2)(y1 ∨ y2)

Lower bounds represent correct, yet not necessarily complete
explanations

Upper bounds represent complete, yet not necessarily correct
explanations

Idea: Choose bound formulas that admit small representation



Application to probabilistic databases

R
A E

1 x1
2 x2

S
A B E

1 1 >
1 2 >
2 2 >

T
B E

1 y1
2 y2

Q ← R(A), S(A, B), T (B)

Φ = x1y1 ∨ x1y2 ∨ x2y2
Possible world semantics (database instances D, interpretations I):

P(Q)
def
=

∑
D:Q(D) is true

P(D) =
∑
I:I|=Φ

P(I) def
= P(Φ)

Probability computation for general propositional formulas is #P-hard

Model bounds imply probability bounds:

ΦL |= Φ |= ΦU ⇒ P(ΦL) ≤ P(Φ) ≤ P(ΦU )

Idea: Choose bound formulas from a language that admits efficient probability
computation



Key challenges for model-based query approximation

1. Which languages of propositional formulas are useful?

2. How to define optimality of bounds?

3. How to compute optimal bounds efficiently?



Key challenges for model-based query approximation

1. Which languages of propositional formulas are useful?
I Read-once formulas or their DNF restrictions have size linear in the

number of variables (and hence the size of the database) and admit
linear time probability computation.

I The event of every tractable conjunctive query without self-joins is
equivalent to a read-once formula that can be computed in
polynomial time.

I More expressive languages? It is NP-hard to decide whether a
formula has an equivalent read-2 formula. For read-3 formulas,
probability computation is #P-hard.

2. How to define optimality of bounds?

3. How to compute optimal bounds efficiently?
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Key challenges for model-based query approximation

1. Which languages of propositional formulas are useful?
I Read-once formulas

2. How to define optimality of bounds?
I Let L′ and L be two languages of propositional formulas and

Φ ∈ L. Formula ΦL ∈ L′ is a lower bound for Φ with respect to L′,
if

ΦL |= Φ (i.e.M(ΦL) ⊆M(Φ)).

If in addition there is no formula Φ′L ∈ L
′ such that

M(ΦL) ⊂M(Φ′L) ⊆M(Φ)

then ΦL is a greatest lower bound for Φ with respect to L′. Least
upper bounds are defined analogously.

3. How to compute optimal bounds efficiently?
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1. Which languages of propositional formulas are useful?
I Read-once formulas

2. How to define optimality of bounds?
I Greatest lower bounds and least upper bounds w.r.t. a language

3. How to compute optimal bounds efficiently?
I Semantic definition is not very useful
I Seek equivalent syntactic definitions of optimal bounds
I Find algorithms to compute those bounds



Key challenges for model-based query approximation

1. Which languages of propositional formulas are useful?
I Read-once formulas

2. How to define optimality of bounds?
I Greatest lower bounds and least upper bounds w.r.t. a language

3. How to compute optimal bounds efficiently?
I Seek equivalent syntactic characterisation of optimal bounds



Syntactic characterisation of optimal iDNF lower
bounds

iDNF = class of read-once DNF formulas

Consider monotone/unate input formulas, since non-trivial
approximation of general formulas is NP-hard

Starting point: Generic characterisation of lower bounds:
ΦL is a lower bound of Φ if and only if ΦL is obtainable by
removing clauses from Φ or adding literals to its clauses.

Example: Φ = x1y1 ∨ x1y2 ∨ x2y2

Lower bounds: x1y1, x1y1 ∨ x2y2, x1y1y2, . . .

Optimal iDNF lower bounds: x1y2, x1y1 ∨ x2y2

Non-iDNF lower bounds: x1y1 ∨ x1y2, . . .
Non-optimal iDNF lower bounds: x1y1, x2y2, . . .

Syntactic characterisation of optimal lower iDNF bounds:

1. (Lower bound) ΦL contains a subset of the clauses of Φ

2. (Maximality) No further clause from Φ can be added to ΦL
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Syntactic characterisation of optimal iDNF lower
bounds

Theorem: The semantic and syntactic characterisations of
optimal iDNF lower bounds are equivalent.

How many optimal lower bounds exist for a given formula?
Exponentially many!

Φ = (x1y1 ∨ x1y2) ∨ · · · ∨ (xny2n−1 ∨ xny2n)

has 3n variables, 2n clauses and 2n iDNF greatest lower bounds.

Polynomial enumeration of all optimal lower bounds is thus not
possible. Next best thing: Polynomial delay

Optimal lower bounds correspond to maximal independent sets
in the clause dependency graph of the input formula

There exist algorithms for polynomial-delay enumeration of
maximal independet sets (e.g. Johnson&Yannakakis, 1988)



How good or bad can the optimal lower bound be?

The bounds are optimal with respect to model inclusion and the
iDNF class of formulas.

However, they are also incomparable w.r.t. their models

But they can be compared w.r.t. probabilities.

Is there a way to efficiently find an iDNF lower bound that is good
in terms of its probability?



How good or bad can the optimal lower bound be?

The bounds are optimal with respect to model inclusion and the
iDNF class of formulas.

However, they are also incomparable w.r.t. their models

But they can be compared w.r.t. probabilities.

Is there a way to efficiently find an iDNF lower bound that is good
in terms of its probability?

Let Φ be a k -partite unate DNF formula. There exists a polynomial
time algorithm that constructs an iDNF greatest lower bound ΦL for
Φ such that P(Φopt

L ) ≤ k · P(ΦL), where Φopt
L is the iDNF greatest

lower bound for Φ with the highest probability amongst all of Φ’s
iDNF greatest lower bounds.



How good or bad can the optimal lower bound be?

The bounds are optimal with respect to model inclusion and the
iDNF class of formulas.

However, they are also incomparable w.r.t. their models

But they can be compared w.r.t. probabilities.

Is there a way to efficiently find an iDNF lower bound that is good
in terms of its probability?

Idea: Sort clauses be descending probability and greedily pick in
this order to construct an iDNF lower bound.



Syntactic characterisation of optimal iDNF upper
bounds

Starting point: Generic characterisation of upper bounds:
ΦU is an upper bound of Φ if and only if ΦU is obtainable by
adding clauses to Φ or removing literals from its clauses.

Idea for syntactic and algorithmic treatment: Start with the most
general upper bound x1 ∨ · · · ∨ xn and refine it until it gets
optimal.



Syntactic characterisation of optimal iDNF upper
bounds

Example: How to find upper bounds for x1y1 ∨ x1y2 ∨ x2y2?

Φ =

ΦU =

x1y1 ∨ x1y2 ∨ x2y2

x1 ∨ x2 ∨ y1 ∨ y2

x1y1 ∨ x1y2 ∨ x2y2

x1y1 x2∨ ∨ y2

∨

x1y1 ∨ x1y2 ∨ x2y2

x1 x2y2∨

x1y1 ∨ x1y2 ∨ x2y2

y1 ∨ x1y2 ∨ x2



Syntactic characterisation of optimal iDNF upper
bounds

Example: How to find upper bounds for x1y1 ∨ x1y2 ∨ x2y2?

Φ =

ΦU =

x1y1 ∨ x1y2 ∨ x2y2

x1 ∨ x2 ∨ y1 ∨ y2

x1y1 implies both x1 and y1

which can be merged.

x1y1 ∨ x1y2 ∨ x2y2

x1y1 x2∨ ∨ y2

∨

x1y1 ∨ x1y2 ∨ x2y2

x1 x2y2∨

x1y1 ∨ x1y2 ∨ x2y2

y1 ∨ x1y2 ∨ x2



Syntactic characterisation of optimal iDNF upper
bounds

Example: How to find upper bounds for x1y1 ∨ x1y2 ∨ x2y2?

Φ =

ΦU =

x1y1 ∨ x1y2 ∨ x2y2

x1 ∨ x2 ∨ y1 ∨ y2

x2 is not necessary and can
be removed.

x1y1 ∨ x1y2 ∨ x2y2

x1y1 x2∨ ∨ y2

∨

x1y1 ∨ x1y2 ∨ x2y2

x1 x2y2∨
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y1 ∨ x1y2 ∨ x2



Syntactic characterisation of optimal iDNF upper
bounds

Example: How to find upper bounds for x1y1 ∨ x1y2 ∨ x2y2?

Φ =

ΦU =

x1y1 ∨ x1y2 ∨ x2y2

x1 ∨ x2 ∨ y1 ∨ y2

No non-necessary clauses.
No clause can be extended
by x2.

x1y1 ∨ x1y2 ∨ x2y2

x1y1

x2∨ ∨

y2∨

x1y1 ∨ x1y2 ∨ x2y2

x1 x2y2∨

x1y1 ∨ x1y2 ∨ x2y2

y1 ∨ x1y2 ∨ x2
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Syntactic characterisation of optimal iDNF upper
bounds

Ingredients to syntactic definition of optimal upper bounds:

Every clause in Φ implies a clause in ΦU

Every clause in ΦU must be implied by one clause in Φ

exclusively

No unnecessary clauses in ΦU

No clause in ΦU can be extended by a variable from Φ while
preserving the above conditions

Φ =

ΦU =

x1y1 ∨ x1y2 ∨ x2y2

x1 ∨ x2 ∨ y1 ∨ y2

x1y1 ∨ x1y2 ∨ x2y2

x1y1 y2∨



Syntactic characterisation of optimal iDNF upper
bounds

Theorem: The semantic and syntactic characterisations of
optimal iDNF upper bounds are equivalent.

How many optimal upper bounds exist for a given formula?
Exponentially many!

Φ = (x1y1 ∨ x1y2) ∨ · · · ∨ (xny2n−1 ∨ xny2n)

has 3n variables, 2n clauses and 3n iDNF greatest upper bounds.

Polynomial enumeration of all optimal upper bounds is thus not
possible. Next best thing: Polynomial delay
We present two algorithms in the paper:

1. Enumeration of all optimal iDNF upper bounds.
2. Enumeration with polynomial delay of all optimal iDNF upper

bounds that preserve the variables of the input formula.



Optimal bounds with respect to arbitrary read-once
formulas

So far: iDNF bounds

Next best: Read-once bounds (that is, without the restriction to
DNF formulas)

We succeeded at finding optimal read-once k-partite bounds for
k-partite formulas

Those bounds are also optimal w.r.t. general read-once formulas.

Conjunctive queries without self-joins have k-partite formulas as
lineage



Optimal bounds with respect to arbitrary read-once
formulas

Query Q:-R(A),S(A,B),T (B) with event formula

Φ = x1y1z1∨x1y2z2∨x2y3z1∨x2y4z2 is no read-once formula

Find k-partite upper bounds by adding clauses to Φ such that it
factorises. There may be several choices for this expansion:

ΦU,1 = (x1 ∨ x2)[z1(y1 ∨ y3) ∨ z2(y2 ∨ y4)]

ΦU,2 = [x1(y1 ∨ y2) ∨ x2(y3 ∨ y4)](z1 ∨ z2)

Find k-partite lower bounds by removing clauses from Φ such
that it factorises.

ΦL,1 = (x1)[y1z1 ∨ y2z2)]

ΦL,2 = (x2)[y3z1 ∨ y4z2)]

· · ·



Characterising read-once formulas

A unate formula Φ is a read-once formula if and only if Φ is normal
and G(Φ) is P4-free. (Gurvich, 1991)

Examples:

xy + yz + xz is no read-once formula because its graph is not
normal

x1y1 ∨ x1y2 ∨ x2y1 is no read-once formula because its graph
contains a P4.

x1y1 ∨ x1y2 ∨ x2y1 ∨ x2y2 is a read-once formula because its
graph is normal and P4-free



Characterising k-partite read-once formulas

Lemma. In order to find optimal read-once bounds for a unate
k -partite formula Φ, it is sufficient to remove clauses from Φ or add

clauses to Φ.
(Note: This strategy will not find all optimal read-once bounds.)



Characterising k-partite read-once formulas

Lemma. Let B be the set of projection graphs of a unate k -partite
formula. The set of connected components of the bipartite graphs in
B are complete and pairwise aligned if and only if the formula

represented by B is a read-once formula.

Example: Φ1 = x1y1z1 ∨ x1y2z2 ∨ x2y3z1 ∨ x2y4z2 ∨ x3y5z3 ∨ x3y6z4

x3

x2

x1

y6

y5

y4

y3

y2

y1

z4

z3

z2

z1

x3

x2

x1

y6

y5

y4

y3

y2

y1

z4

z3

z2

z1

x3

x2

x1

y6

y5

y4

y3

y2

y1

z4

z3

z2

z1



Optimal bounds with respect to arbitrary read-once
formulas

We give an algorithm to enumerate some optimal read-once
upper bounds with polynomial delay. The problem of enumerating
all optimal read-once upper bounds with polynomial delay is still
open.

We give an algorithm to compute all optimal read-once lower
bounds. The problem of enumeration with polynomial delay is
open.

Excursion: “iDNF” is a hereditary property, but “read-once” is not.
Does this observation help to determine the complexity of finding
read-once lower bounds?



Approximation by queries

Idea: Rewrite a given (hard) query Q into bound queries QL and
QU such that their event formulas are read-once bounds for the
event of Q

Catch 1: Expressing the query for upper bounds requires a query
language that is able to express transitive closure

Catch 2: Removing edges to get lower bounds requires
non-deterministic choice, or a linear order on tuples

There are different upper and lower bounds for a given formula.
These choices correspond to different rewritings of Q.



Approximation with arbitrary precision

Model-based bounds do not provide precision guarantees

But they can be obtained quickly

Idea: Given a formula Φ, construct partial decision diagram
(“decomposition tree”) for Φ. Compute rough bounds for residual
formulas and propagate them through the diagram to obtain
overall probability bound.

Can yield multiplicative and additive approximation guarantees

See Olteanu, Huang, Koch, ICDE 2010.



Conclusion

Framework for model-based characterisation of optimal bounds
for propositional formulas

Applications: Probabilistic databases, provenance databases

Syntactic characterisations that are equivalent to model-based
definitions yet much easier to turn into algorithms

Open questions

The read-once results are so far only for k-partite formulas which
is great for conjunctive queries without self-joins. What happens
beyond k-partite approximations?

Bounds for non-DNF input formulas?

Complexity of obtaining read-once optimal lower bounds?

Connection to recent work on readability of query answers?
(Olteanu, Zavodny, ICDT 2012)



End. ?
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