
SPROUT: Scalable Query Processing in Probabilistic Databases
Oxford University Computing Laboratory

http://www.comlab.ox.ac.uk/projects/SPROUT/

Selected publications on SPROUT:

Approximate Confidence Computation in Probabilistic Databases.
ICDE’10. D. Olteanu, J. Huang, and C. Koch.

Secondary-Storage Confidence Computation for Conjunctive Queries with Inequalities.
SIGMOD’09. D. Olteanu, J. Huang

SPROUT: Lazy vs. Eager Query Plans for Tuple-Independent Probabilistic Databases.
ICDE’09. D. Olteanu, J. Huang, C. Koch.

Using OBDDs for Efficient Query Evaluation on Probabilistic Databases.
SUM’08. D. Olteanu, J. Huang.

Key goals and contributions:
• discover tractable query&data (sub)instances: tractable inequality (<,≠) queries, database restrictions (e.g., functional dependencies, tuple independent),
• design scalable techniques for exact and approximate query evaluation: incremental lineage factorization, compilation into read-once functions, OBDDs,
• implement open-source query engine SPROUT as an extension of PostgreSQL backend: secondary-storage confidence computation, lazy/eager query plans.

Tractable conjunctive queries

For the class TQ of all tractable conjunctive queries without self-joins (hierarchical), query lineage
can be factorized into read-once functions for any tuple-independent probabilistic database.

Convex conjunctive queries with inequalities (<) admit OBDDs quadratic in the size of the query
lineage. This tractability result carries over to counting vertex covers in convex bipartite graphs.

aconf = optimized Karp-Luby FPRAS. d-tree = incremental lineage factorization.
SPROUT (here) = secondary-storage lineage factorization for hierarchical queries only.

Approximate evaluation for positive relational algebra

• Given a partial factorization (d-tree) and lower & upper bounds for
the probabilities of leaf DNFs, we can efficiently compute bounds for
the probability of the d-tree.

•The factorization is continued at promising leaves until the bounds on
the probability of the d-tree get tight enough.
• Memory-efficient version: only store the current root-to-leaf path; in
depth-first construction of the d-tree, before factorizing the current leaf,
we can decide locally whether the overall desired approximation can
still be met even if that leaf is closed (not factorized further).
• Underlying idea: after a certain depth in the d-tree, the approximation
introduced by discarding a leaf may be big locally, but it is insignificant
from a global perspective.
Example: Absolute error = .012.
We cannot stop: Upper – Lower =
.644 – .595 = .049 > 2*.012 = .024
We may close the current leaf (and
be pessimistic about the remaining
leaves): Upper’ – Lower =
.6173 – .595 = .0223 < .024.

Incremental Lineage Factorization

• Complete factorization in polynomial time
for tractable query & data instances.
• Partial factorization for hard instances
gives lower/upper bounds on probability.

Lazy vs. eager query plans for exact confidence computation of TQ queries

• Confidence computation done by an aggregation operator fully integrated into relational plans.
• Uses the query signature (in the brackets, e.g., [Cust Ord*]) to understand whether joins are
one/many-one/many and derive the number of passes over the lineage needed for computation.
• Left: Eager plan
(operator pushed down)

• Middle: Hybrid plan

• Right: Lazy plan
(operator done at the end)

F
e

b
ru

a
ry

2
0

1
0

,
D

a
n

O
lt
e

a
n
u


