DAG-width: Cops and Robbers on Directed Graphs

Paul Hunter Humboldt-University, Berlin

Joint work with Dietmar Berwanger, Anuj Dawar and Stephan Kreutzer

GAMES Workshop, 2005

• Tree-width introduced by Robertson and Seymour

- Tree decompositions provide for recursive algorithms
- Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

• Tree-width introduced by Robertson and Seymour

- Tree decompositions provide for recursive algorithms
- Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

• Tree-width introduced by Robertson and Seymour

- Tree decompositions provide for recursive algorithms
- Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

- Tree-width introduced by Robertson and Seymour
 - Tree decompositions provide for recursive algorithms
 - Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

- Tree-width introduced by Robertson and Seymour
 - Tree decompositions provide for recursive algorithms
 - Bounding tree-width gives polynomial time execution
- Directed tree-width by Johnson, Robertson, Seymour and Thomas
 - Not an obvious extension of tree-width
 - Complicated definition does not lend itself to algorithms

Aim

Overview

- Review tree-width
- Cops and robber game
- DAG-decompositions and DAG-width
- An algorithm for parity games
- Further work

Recall...

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width $\leq k$ if it can be covered by sub-graphs of size $\leq (k + 1)$ in a tree-like fashion.

Recall...

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width $\leq k$ if it can be covered by sub-graphs of size $\leq (k + 1)$ in a tree-like fashion.

Recall...

The tree-width of a graph measures its similarity to a tree.

A graph has tree-width $\leq k$ if it can be covered by sub-graphs of size $\leq (k + 1)$ in a tree-like fashion.

A tree decomposition of a graph \mathcal{G} is a tuple $(\mathcal{T}, (X_t)_{t \in V(\mathcal{T})})$ such that:

- \mathcal{T} is a tree
- X_t cover $V(\mathcal{G})$
- For every edge $(u, v) \in E(\mathcal{G})$, there is a $t \in V(\mathcal{T})$ with $\{u, v\} \subseteq X_t$
- For every t' on the path from t to t'', $X_t \cap X_{t''} \subseteq X_{t'}$

The width of a tree decomposition is $\max_{t \in V(t)} |X_t| - 1$. The tree-width of a graph is the minimal width of all its tree decompositions.

A tree decomposition of a graph G is a tuple $(\mathcal{T}, (X_t)_{t \in V(\mathcal{T})})$ such that:

- \mathcal{T} is a tree
- X_t cover $V(\mathcal{G})$
- For every edge $(u, v) \in E(\mathcal{G})$, there is a $t \in V(\mathcal{T})$ with $\{u, v\} \subseteq X_t$
- For every t' on the path from t to t'', $X_t \cap X_{t''} \subseteq X_{t'}$

The width of a tree decomposition is $\max_{t \in V(t)} |X_t| - 1$.

The tree-width of a graph is the minimal width of all its tree decompositions.

A tree decomposition of a graph G is a tuple $(\mathcal{T}, (X_t)_{t \in V(\mathcal{T})})$ such that:

- \mathcal{T} is a tree
- X_t cover $V(\mathcal{G})$
- For every edge $(u, v) \in E(\mathcal{G})$, there is a $t \in V(\mathcal{T})$ with $\{u, v\} \subseteq X_t$
- For every t' on the path from t to t'', $X_t \cap X_{t''} \subseteq X_{t'}$

The width of a tree decomposition is $\max_{t \in V(t)} |X_t| - 1$. The tree-width of a graph is the minimal width of all its tree decompositions.

A tree decomposition of a graph G is a tuple $(\mathcal{T}, (X_t)_{t \in V(\mathcal{T})})$ such that:

- \mathcal{T} is a tree
- X_t cover $V(\mathcal{G})$
- For every edge $(u, v) \in E(\mathcal{G})$, there is a $t \in V(\mathcal{T})$ with $\{u, v\} \subseteq X_t$
- For every t' on the path from t to t'', $X_t \cap X_{t''} \subseteq X_{t'}$

The width of a tree decomposition is $\max_{t \in V(t)} |X_t| - 1$. The tree-width of a graph is the minimal width of all its tree decompositions.

Theorem (Seymour and Thomas 1993)

 \mathcal{G} has tree-width $\leq k$ if, and only if k + 1 cops have a winning strategy

Question

What about directed graphs?

Theorem (Seymour and Thomas 1993)

 ${\mathcal G}$ has tree-width $\leq k$ if, and only if k+1 cops have a winning strategy

Question

What about directed graphs?

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(\mathcal{G}) \leq game-width(\mathcal{G}) \leq tree-width(\mathcal{G})
- game-width $(\mathcal{G}) = 1$ iff \mathcal{G} is a DAG
- game-width of directed union is maximum width of components
- game-width is **not** preserved under edge reversal

Problem

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(\mathcal{G}) \leq game-width(\mathcal{G}) \leq tree-width(\mathcal{G})
- game-width $(\mathcal{G}) = 1$ iff \mathcal{G} is a DAG
- game-width of directed union is maximum width of components
- game-width is **not** preserved under edge reversal

Problem

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(\mathcal{G}) \leq game-width(\mathcal{G}) \leq tree-width(\mathcal{G})
- game-width $(\mathcal{G}) = 1$ iff \mathcal{G} is a DAG
- game-width of directed union is maximum width of components
- game-width is not preserved under edge reversal

Problem

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(\mathcal{G}) \leq game-width(\mathcal{G}) \leq tree-width(\mathcal{G})
- game-width $(\mathcal{G}) = 1$ iff \mathcal{G} is a DAG
- game-width of directed union is maximum width of components
- game-width is not preserved under edge reversal

Problem

Let game-width(G) be the minimal number of cops required to catch a robber on G.

- directed tree-width(\mathcal{G}) \leq game-width(\mathcal{G}) \leq tree-width(\mathcal{G})
- game-width $(\mathcal{G}) = 1$ iff \mathcal{G} is a DAG
- game-width of directed union is maximum width of components
- game-width is **not** preserved under edge reversal

Problem

Another observation...

In a tree decomposition, an edge only leaves a subtree through its connection with the rest of the tree $% \left({{{\left[{{{C_{1}}} \right]}_{i}}}_{i}} \right)$

The DAG-width of a directed graph measures its similarity to a DAG.

The DAG-width of a directed graph measures its similarity to a DAG.

The DAG-width of a directed graph measures its similarity to a DAG.

The DAG-width of a directed graph measures its similarity to a DAG.

The DAG-width of a directed graph measures its similarity to a DAG.

Guarding

Definition

If \mathcal{G} is a directed graph, $W, X \subseteq V(\mathcal{G})$, we say X guards W if every edge which leaves W ends in X.

Guarding

Definition

If \mathcal{G} is a directed graph, $W, X \subseteq V(\mathcal{G})$, we say X guards W if every edge which leaves W ends in X.

DAG-decompositions and DAG-width

A DAG-decomposition of a directed graph \mathcal{G} is a tuple $(\mathcal{D}, (X_d)_{d \in V(\mathcal{D})})$ such that:

- $\bullet \ \mathcal{D}$ is a DAG
- X_d cover $V(\mathcal{G})$
- For every d' on the path from d to d'' $(d \leq_{\mathcal{D}} d' \leq_{\mathcal{D}} d'')$, $X_d \cap X_{d''} \subseteq X_{d'}$
- For every $(c, d) \in E(\mathcal{D})$, $X_c \cap X_d$ guards $\left(\bigcup_{d \preceq_{\mathcal{D}} d'} X_{d'}\right) \setminus X_c$. If d is a root of \mathcal{D} , we replace X_c with \emptyset .

The width of a DAG-decomposition is $\max_{d \in V(D)} |X_d|$. The DAG-width of a directed graph is the minimal width of all its DAG-decompositions.

DAG-decompositions and DAG-width

A DAG-decomposition of a directed graph \mathcal{G} is a tuple $(\mathcal{D}, (X_d)_{d \in V(\mathcal{D})})$ such that:

- $\bullet \ \mathcal{D}$ is a DAG
- X_d cover $V(\mathcal{G})$
- For every d' on the path from d to d'' $(d \leq_{\mathcal{D}} d' \leq_{\mathcal{D}} d'')$, $X_d \cap X_{d''} \subseteq X_{d'}$

• For every $(c, d) \in E(\mathcal{D})$, $X_c \cap X_d$ guards $\left(\bigcup_{d \preceq_{\mathcal{D}} d'} X_{d'}\right) \setminus X_c$. If d is a root of \mathcal{D} , we replace X_c with \emptyset .

The width of a DAG-decomposition is $\max_{d \in V(D)} |X_d|$. The DAG-width of a directed graph is the minimal width of all its DAG-decompositions.

DAG-decompositions and DAG-width

A DAG-decomposition of a directed graph \mathcal{G} is a tuple $(\mathcal{D}, (X_d)_{d \in V(\mathcal{D})})$ such that:

- $\bullet \ \mathcal{D}$ is a DAG
- X_d cover $V(\mathcal{G})$
- For every d' on the path from d to d'' $(d \leq_{\mathcal{D}} d' \leq_{\mathcal{D}} d'')$, $X_d \cap X_{d''} \subseteq X_{d'}$

• For every $(c, d) \in E(\mathcal{D})$, $X_c \cap X_d$ guards $\left(\bigcup_{d \preceq_{\mathcal{D}} d'} X_{d'}\right) \setminus X_c$. If d is a root of \mathcal{D} , we replace X_c with \emptyset .

The width of a DAG-decomposition is $\max_{d \in V(D)} |X_d|$. The DAG-width of a directed graph is the minimal width of all its DAG-decompositions.

Results

Theorem

 ${\cal G}$ has DAG-width k if and only if k cops have a monotone winning strategy on ${\cal G}$

A monotone strategy is one where every vertex is visited by a cop at most once.

Theorem (Complexity Issues)

• For fixed k, deciding if \mathcal{G} has DAG-width $\leq k$ is in PTIME

• Given \mathcal{G} and k, deciding if \mathcal{G} has DAG-width $\leq k$ is NP-complete

Results

Theorem

 ${\cal G}$ has DAG-width k if and only if k cops have a monotone winning strategy on ${\cal G}$

A monotone strategy is one where every vertex is visited by a cop at most once.

Theorem (Complexity Issues)

- For fixed k, deciding if \mathcal{G} has DAG-width $\leq k$ is in PTIME
- Given \mathcal{G} and k, deciding if \mathcal{G} has DAG-width $\leq k$ is NP-complete

More results...

• Results from game-width carry over to DAG-width

- ▶ $\mathsf{dtw}(\mathcal{G}) \leq \mathsf{game-width}(\mathcal{G}) \leq \mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{tw}(\mathcal{G})$
- Directed unions
- $\mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{entanglement}(\mathcal{G}) + 1$
- DAG-width(G) \leq directed path-width(G)

Theorem

Parity games on graphs of bounded DAG-width can be decided in polynomial time

More results...

- Results from game-width carry over to DAG-width
 - ▶ $\mathsf{dtw}(\mathcal{G}) \leq \mathsf{game-width}(\mathcal{G}) \leq \mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{tw}(\mathcal{G})$
 - Directed unions
- $\mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{entanglement}(\mathcal{G}) + 1$
- $\mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{directed path-width}(\mathcal{G})$

Theorem

Parity games on graphs of bounded DAG-width can be decided in polynomial time

More results...

- Results from game-width carry over to DAG-width
 - ▶ $\mathsf{dtw}(\mathcal{G}) \leq \mathsf{game-width}(\mathcal{G}) \leq \mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{tw}(\mathcal{G})$
 - Directed unions
- $\mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{entanglement}(\mathcal{G}) + 1$
- $\mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{directed path-width}(\mathcal{G})$

Theorem

Parity games on graphs of bounded DAG-width can be decided in polynomial time

- An edge (or node) of a tree decomposition separates the graph
 Positional strategies can then be represented as functions from th
 - interface to itself (border)
- Compute borders in a bottom-up manner

- An edge (or node) of a tree decomposition separates the graph
- Positional strategies can then be represented as functions from the interface to itself (border)
- Compute borders in a bottom-up manner

- An edge (or node) of a tree decomposition separates the graph
- Positional strategies can then be represented as functions from the interface to itself (border)
- Compute borders in a bottom-up manner

- An edge (or node) of a tree decomposition separates the graph
- Positional strategies can then be represented as functions from the interface to itself (border)
- Ompute borders in a bottom-up manner

- Interface covers edges leaving sub-DAG
- Problem 1: Handling edges entering sub-DAG
- Problem 2: Adding vertices to frontiers

- Interface covers edges leaving sub-DAG
- Problem 1: Handling edges entering sub-DAG
 Solution: Use functions from sub-DAG to interface (frontie)
- Problem 2: Adding vertices to frontiers

- Interface covers edges leaving sub-DAG
- Problem 1: Handling edges entering sub-DAG
 - Solution: Use functions from sub-DAG to interface (frontier)
- Problem 2: Adding vertices to frontiers

- Interface covers edges leaving sub-DAG
- Problem 1: Handling edges entering sub-DAG
 - Solution: Use functions from sub-DAG to interface (frontier)

• Problem 2: Adding vertices to frontiers

- Interface covers edges leaving sub-DAG
- Problem 1: Handling edges entering sub-DAG
 - Solution: Use functions from sub-DAG to interface (frontier)
- Problem 2: Adding vertices to frontiers

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming results on bounded tree-width and entanglement.
- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle's theorem?

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming results on bounded tree-width and entanglement.
- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle's theorem?

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming results on bounded tree-width and entanglement.
- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle's theorem?

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming results on bounded tree-width and entanglement.
- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle's theorem?