DAG-width and Parity Games

Paul Hunter Humboldt University, Berlin

Joint work with Dietmar Berwanger, Anuj Dawar and Stephan Kreutzer

STACS, February 2006

Tree-width introduced by Robertson and Seymour

- Tree decompositions provide for recursive algorithms
- Bounding tree-width gives polynomial time execution

©Madlantern Art

Problem

Tree-width ignores direction

Tree-width introduced by Robertson and Seymour

- Tree decompositions provide for recursive algorithms
- Bounding tree-width gives polynomial time execution

©Madlantern Art

Problem

Tree-width ignores direction

Tree-width introduced by Robertson and Seymour

- Tree decompositions provide for recursive algorithms
- Bounding tree-width gives polynomial time execution

©Madlantern Art

Problem

Tree-width ignores direction

Directed tree-width by Johnson, Robertson, Seymour and Thomas

- Not an obvious extension of tree-width
- Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is algorithmically useful.

Directed tree-width by Johnson, Robertson, Seymour and Thomas

- Not an obvious extension of tree-width
- Complicated definition does not lend itself to algorithms

Aim

Find a natural extension of tree-width to directed graphs that is algorithmically useful.

Directed tree-width by Johnson, Robertson, Seymour and Thomas

- Not an obvious extension of tree-width
- Complicated definition does not lend itself to algorithms

Aim

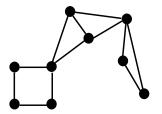
Find a natural extension of tree-width to directed graphs that is algorithmically useful.

Overview

- Review tree-width
- Cops and robber game
- DAG-decompositions and DAG-width
- An algorithm for parity games
- Further work

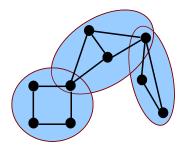
The tree-width of a graph measures its similarity to a tree.

A graph has tree-width $\leq k$ if it can be covered by sub-graphs of size $\leq (k + 1)$ in a tree-like fashion.



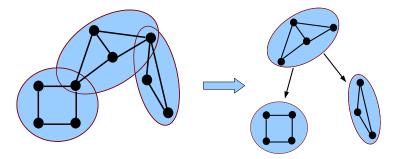
The tree-width of a graph measures its similarity to a tree.

A graph has tree-width $\leq k$ if it can be covered by sub-graphs of size $\leq (k + 1)$ in a tree-like fashion.



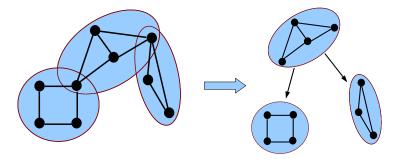
The tree-width of a graph measures its similarity to a tree.

A graph has tree-width $\leq k$ if it can be covered by sub-graphs of size $\leq (k + 1)$ in a tree-like fashion.



The tree-width of a graph measures its similarity to a tree.

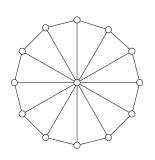
A graph has tree-width $\leq k$ if it can be covered by sub-graphs of size $\leq (k + 1)$ in a tree-like fashion.



k Cops

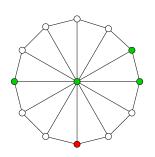
k Cops

Robber

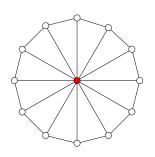


• Players: Cop and robber

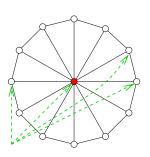
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: (r, C) → (r', C')
 Cops choose C', then robber chooses
 r' such that there is a path from r to
 r' in G \ (C ∩ C').
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



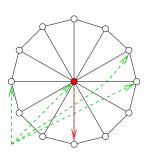
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: (r, C) → (r', C')
 Cops choose C', then robber chooses
 r' such that there is a path from r to
 r' in G \ (C ∩ C').
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



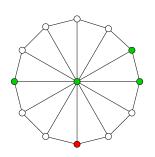
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: (r, C) → (r', C')
 Cops choose C', then robber chooses
 r' such that there is a path from r to
 r' in G \ (C ∩ C').
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



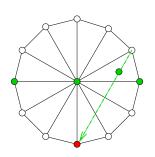
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: (r, C) → (r', C') Cops choose C', then robber chooses r' such that there is a path from r to r' in G \ (C ∩ C').
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



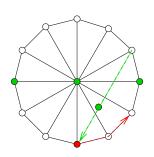
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



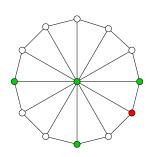
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



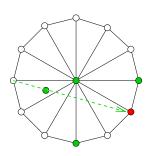
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



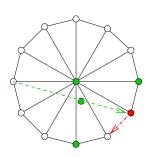
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



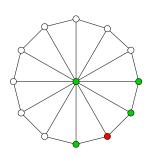
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



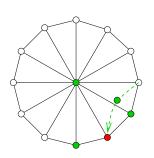
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



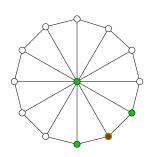
- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.

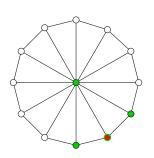


- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.

 Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.



- Players: Cop and robber
- **Positions:** (r, C), where $r \in V$ and $C \subseteq V$ with $|C| \leq k$
- Initial position: (r₀, ∅), where r₀ ∈ V is chosen by the robber
- Round of a play: $(r, C) \rightarrow (r', C')$ Cops choose C', then robber chooses r' such that there is a path from r to r' in $G \setminus (C \cap C')$.
- Winning Conditions: Cops win if position (r, C) with r ∈ C is reached; otherwise the robber wins.

Cops, robbers and tree-width

Theorem (Seymour and Thomas 1993)

 ${\mathcal G}$ has tree-width $\leq k$ if, and only if k+1 cops have a winning strategy

Question

What about directed graphs?

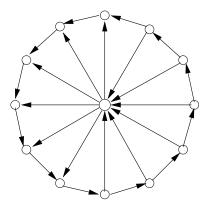
Cops, robbers and tree-width

Theorem (Seymour and Thomas 1993)

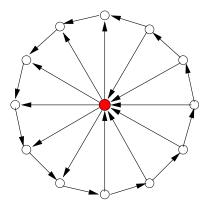
 ${\mathcal G}$ has tree-width $\leq k$ if, and only if k+1 cops have a winning strategy

Question

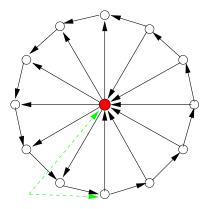
What about directed graphs?



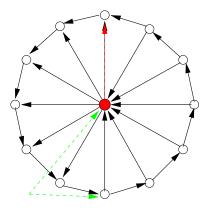
Problem



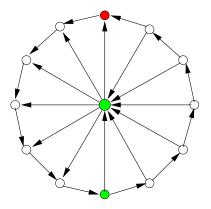
Problem



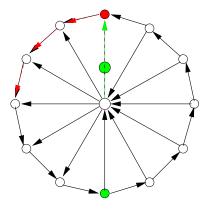
Problem



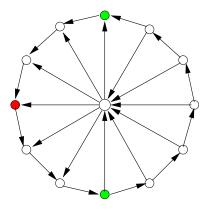
Problem



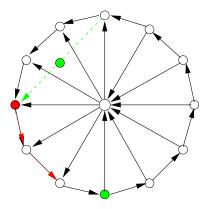
Problem



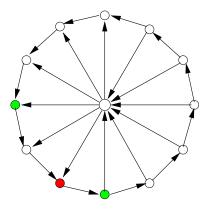
Problem



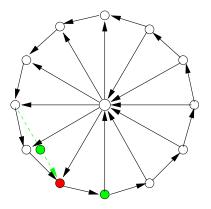
Problem



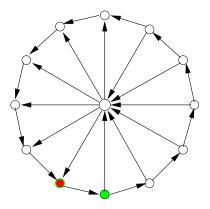
Problem



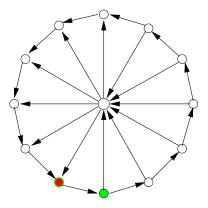
Problem



Problem



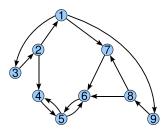
Problem



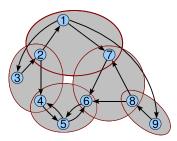
Problem

Paul Hunter (H	J-Berlin
----------------	----------

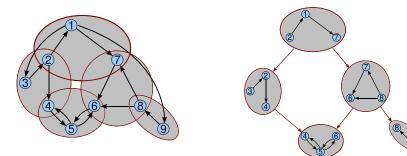
The DAG-width of a directed graph measures its similarity to a DAG.



The DAG-width of a directed graph measures its similarity to a DAG.



The DAG-width of a directed graph measures its similarity to a DAG.



The DAG-width of a directed graph measures its similarity to a DAG.



DAG-decompositions and DAG-width

A DAG-decomposition of a directed graph \mathcal{G} is a tuple $(\mathcal{D}, (X_d)_{d \in V(\mathcal{D})})$ such that:

- $\bullet \ \mathcal{D}$ is a DAG
- X_d cover $V(\mathcal{G})$
- For every d' on the path from d to d'' $(d \leq_{\mathcal{D}} d' \leq_{\mathcal{D}} d'')$, $X_d \cap X_{d''} \subseteq X_{d'}$

• For every $(c, d) \in E(\mathcal{D})$, $X_c \cap X_d$ guards $\left(\bigcup_{d \leq \mathcal{D} d'} X_{d'}\right) \setminus X_c$. If d is a root of \mathcal{D} , we replace X_c with \emptyset .

The width of a DAG-decomposition is $\max_{d \in V(D)} |X_d|$. The DAG-width of a directed graph is the minimal width of all its DAG-decompositions.

Results

Theorem

 ${\cal G}$ has DAG-width k if and only if k cops have a monotone winning strategy on ${\cal G}$

A monotone strategy is one where every vertex is visited by a cop at most once.

Theorem (Complexity Issues)

• For fixed k, deciding if G has DAG-width $\leq k$ is in PTIME

• Given \mathcal{G} and k, deciding if \mathcal{G} has DAG-width $\leq k$ is NP-hard

Results

Theorem

 ${\cal G}$ has DAG-width k if and only if k cops have a monotone winning strategy on ${\cal G}$

A monotone strategy is one where every vertex is visited by a cop at most once.

Theorem (Complexity Issues)

- For fixed k, deciding if \mathcal{G} has DAG-width $\leq k$ is in PTIME
- Given \mathcal{G} and k, deciding if \mathcal{G} has DAG-width $\leq k$ is NP-hard

More results...

- $\mathsf{dtw}(\mathcal{G}) \leq \mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{tw}(\mathcal{G})$
- DAG-width(\mathcal{G}) = 1 iff \mathcal{G} is acyclic
- DAG-width is not preserved under edge reversal

Theorem

Parity games on graphs of bounded DAG-width can be decided in polynomial time

More results...

- $\mathsf{dtw}(\mathcal{G}) \leq \mathsf{DAG-width}(\mathcal{G}) \leq \mathsf{tw}(\mathcal{G})$
- DAG-width(\mathcal{G}) = 1 iff \mathcal{G} is acyclic
- DAG-width is not preserved under edge reversal

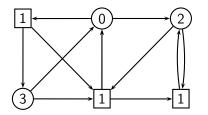
Theorem

Parity games on graphs of bounded DAG-width can be decided in polynomial time

- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

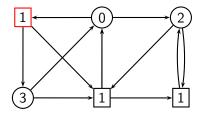
Winner is determined by minimum priority seen infinitely often



- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

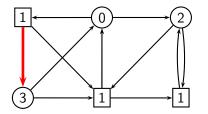
Winner is determined by minimum priority seen infinitely often



- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

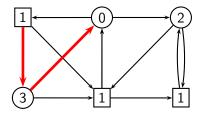
Winner is determined by minimum priority seen infinitely often



- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

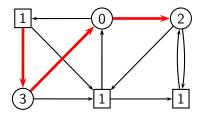
Winner is determined by minimum priority seen infinitely often



- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

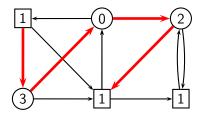
Winner is determined by minimum priority seen infinitely often



- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

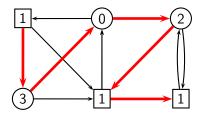
Winner is determined by minimum priority seen infinitely often



- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

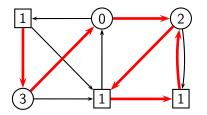
Winner is determined by minimum priority seen infinitely often



- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

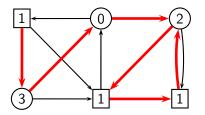
Winner is determined by minimum priority seen infinitely often



- **Players**: *Player 0* and *Player 1* **Arena**: (V, E, V_0, V_1, Ω) , where
 - (V, E) is a directed graph
 - V_0 and V_1 partition V
 - $\Omega: V \to \mathbb{N}$ priority function

Players move a token around the graph for possibly infinitely many moves

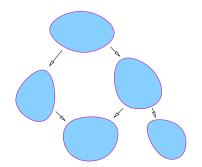
Winner is determined by minimum priority seen infinitely often



Polynomial-time equivalent to μ -calculus model checking

Decidable in $\mathrm{NP}\cap\mathrm{co}\text{-}\mathrm{NP}$

Decidability in **PTIME** an open problem

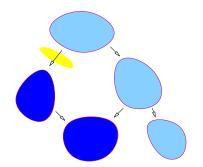


O Compute DAG-Decomposition

Use structure to succinctly represent all plays in subgraphs

result_f(U, v) is all possible outcomes when Player 0 plays f from v in U

Output Compute result f(U, v) bottom-up

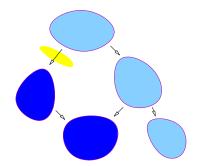


O Compute DAG-Decomposition

Use structure to succinctly represent all plays in subgraphs

result_f(U, v) is all possible outcomes when Player 0 plays f from v in U

Compute result_f(U, v) bottom-up

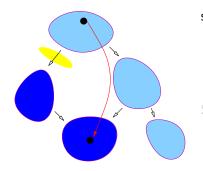


O Compute DAG-Decomposition

Use structure to succinctly represent all plays in subgraphs

result_f(U, v) is all possible outcomes when Player 0 plays f from v in U

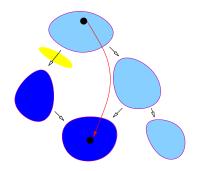
Outputs Compute result f(U, v) bottom-up



- Cannot "forget" vertices
- Exponential number of strategies generated

Solutions:

- Consider functions from sub-DAG to border
- Compute feasible outcomes



- Cannot "forget" vertices
- Exponential number of strategies generated

Solutions:

- Consider functions from sub-DAG to border
- Compute feasible outcomes

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming other results such as bounded tree-width.
- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle's theorem?

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming other results such as bounded tree-width.
- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle's theorem?

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming other results such as bounded tree-width.
- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle's theorem?

- Introduced a natural extension of tree-width to directed graphs.
- Provided a polynomial-time algorithm for parity games on graphs of bounded DAG-width – subsuming other results such as bounded tree-width.
- Are monotone strategies sufficient?
- Generalisation of havens, brambles, minors, separators?
- Generalisation of Courcelle's theorem?