Strategy Improvement for Parity Games: A combinatorial perspective

Paul Hunter

InfoSys seminar Oxford University Computing Laboratory

28 October 2008

Theorem

The strategy improvement algorithm for parity games is a bottom-antipodal sink-finding algorithm on an acyclic unique sink orientation of the strategy hypercube.

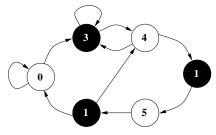
Theorem

The strategy improvement algorithm for parity games is a bottom-antipodal sink-finding algorithm on an acyclic unique sink orientation of the strategy hypercube.

Ubiquitous in formal verification

Polynomially equivalent to modal μ -calculus model checking

Parity Games: Example



Played by two players: Player 0 $(\exists ve)$ and Player 1 $(\forall dam)$ on a (finite) directed graph with priorities on vertices.

Players take turns moving a token around the graph and the winner is determined by the parity of the largest priority seen infinitely often.

A parity game is a tuple (V, V_0, V_1, E, χ) where:

- V_0 and V_1 partition V,
- (V, E) is a directed graph,
- $\chi: V \to \mathsf{P} \subset \omega$ is a priority function

A play is a (possibly infinite) path in (V, E)

$$\pi = v_1 v_2 \cdots$$

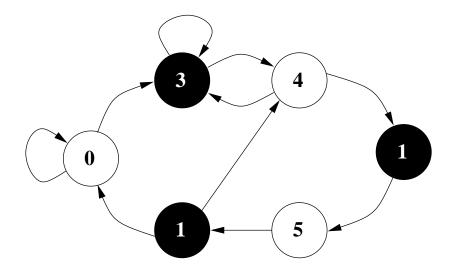
A play is winning for Player *i* iff $\limsup \chi(v_n) = i \mod 2$

A strategy for Player *i* is a function $\sigma: V^*V_i \rightarrow V$.

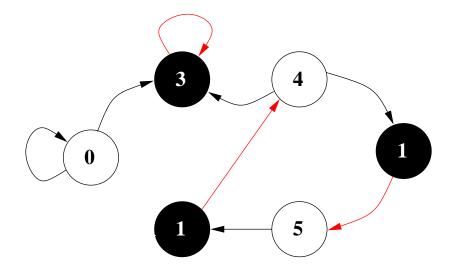
A positional (or memoryless) strategy for Player *i* is a function $\sigma: V_i \rightarrow V$

A strategy is winning if all plays consistent with that strategy are winning

Parity Games: Strategies



Parity Games: Strategies



Theorem (Memoryless determinacy)

From every vertex, one player has a memoryless winning strategy

Open Problem

Are parity games in P?

Theorem (Memoryless determinacy)

From every vertex, one player has a memoryless winning strategy

Open Problem

Are parity games in P?

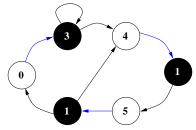
Theorem

The strategy improvement algorithm for parity games is a bottom-antipodal sink-finding algorithm on an acyclic unique sink orientation of the strategy hypercube.

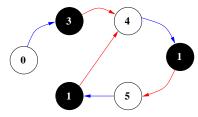
Introduced by Vöge and Jurdziński in 2000.

Basic principle:

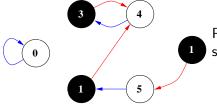
- Define a measure for strategies
- Start with a random strategy
- Sompute the measure for the current strategy
- Make improvements to the strategy based on the measure
- Repeat steps 3 and 4 until no improvements can be made
- Ocompute winning sets based on optimal strategies



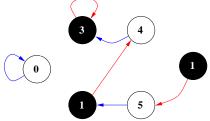
Given a strategy for Player 0 and a vertex, a valuation represents the "best" counterstrategy for Player 1 from that vertex.



Given a strategy for Player 0 and a vertex, a valuation represents the "best" counterstrategy for Player 1 from that vertex.



Player 0 then chooses "best" successor from each vertex



Player 0 then chooses "best" successor from each vertex

The strategy changes are local and independent

The valuation is easy to compute (O(|V||E|))

Problem

How many iterations does this algorithm perform?

The strategy changes are local and independent

The valuation is easy to compute (O(|V||E|))

Problem

How many iterations does this algorithm perform?

Theorem

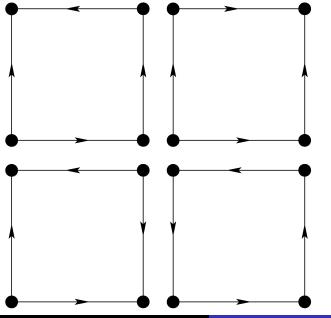
The strategy improvement algorithm for parity games is a bottom-antipodal sink-finding algorithm on an acyclic unique sink orientation of the strategy hypercube.

An orientation of a hypercube is an acyclic unique sink orientation (AUSO) if

- it is acyclic
- every sub-hypercube has a unique sink

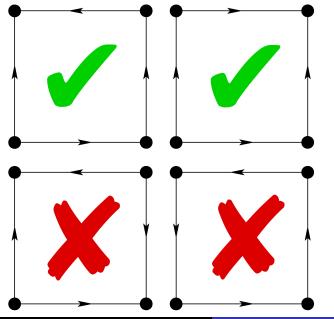
AUSOs are also known as completely unimodal pseudo-boolean functions

AUSOs: Examples (2 dimensions)



Paul Hunter Strategy Improvement for Parity Games

AUSOs: Examples (2 dimensions)



Paul Hunter Strategy Improvement for Parity Games

Common combinatorial structure with elegant properties

Theorem (Williamson Hoke 88)

- An acyclic orientation is an AUSO iff every 2-dimensional subcube is an AUSO
- **2** AUSOs satisfy the Hirsch conjecture
- S The vector of improving directions of any AUSO is a bijection

Common problem for AUSOs: *Find the (global) sink by making local queries*

Cornerstone problem of the complexity class PLS

Open problem

Can we find the sink of an AUSO with polynomially many queries?

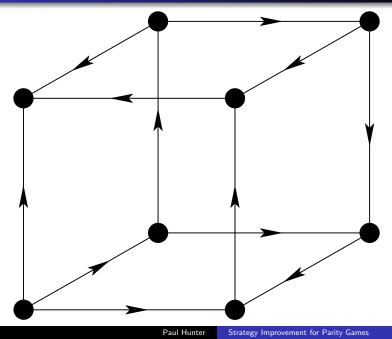
Common problem for AUSOs: *Find the (global) sink by making local queries*

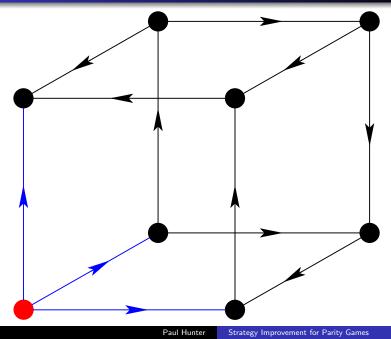
Cornerstone problem of the complexity class PLS

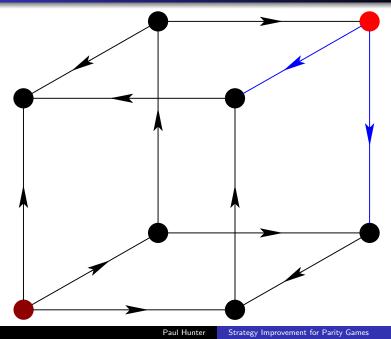
Open problem

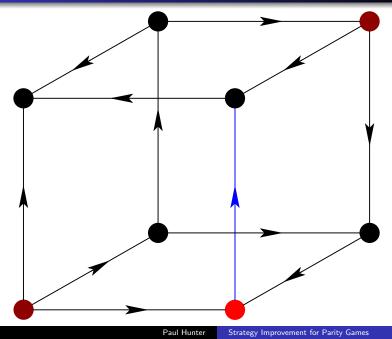
Can we find the sink of an AUSO with polynomially many queries?

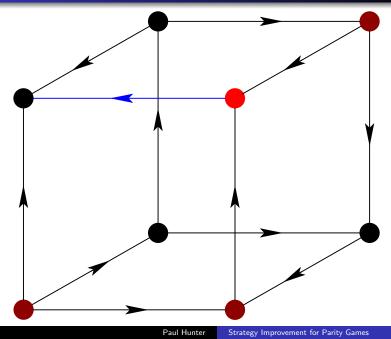
AUSOs: Finding the sink

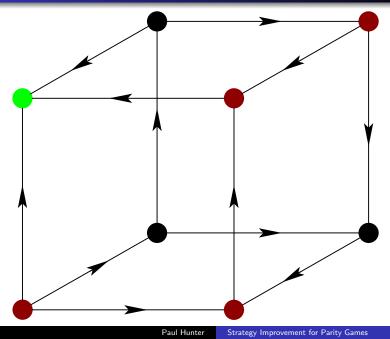












Theorem

The strategy improvement algorithm for parity games is a bottom-antipodal sink-finding algorithm on an acyclic unique sink orientation of the strategy hypercube.

Can assume every vertex in the arena of a parity game has out-degree $\ensuremath{2}$

Positional strategies for Player 0 are then vectors in $\{0,1\}^n$ where $n = |V_0|$, that is, vertices of a hypercube

Edges of the hypercube connect strategies which differ at only one vertex

The orientation is defined by the local valuation: an edge from σ to σ' if it is "better" for Player 0 to switch at the specified vertex

Theorem (Vöge and Jurdziński 2000)

The local valuation induces an AUSO on the strategy hypercube

Corollary

The strategy improvement algorithm for parity games is a bottom-antipodal sink-finding algorithm on an acyclic unique sink orientation of the strategy hypercube.

The orientation is defined by the local valuation: an edge from σ to σ' if it is "better" for Player 0 to switch at the specified vertex

Theorem (Vöge and Jurdziński 2000)

The local valuation induces an AUSO on the strategy hypercube

Corollary

The strategy improvement algorithm for parity games is a bottom-antipodal sink-finding algorithm on an acyclic unique sink orientation of the strategy hypercube. Improve bounds:

Mansour and Singh (1999): Bottom-antipodal takes at most $2^n/n$ steps

Szabó and Welzl (2001): Fibonacci see-saw takes at most $O(1.61^n)$ steps

Schurr and Szabó (2005): There exist AUSOs such that bottom-antipodal takes $O(2^{n/2})$ steps

Question

Is every AUSO realizable as the oriented strategy hypercube of a parity game?

Improve bounds on the number of iterations necessary for the strategy improvement algorithm

Classify AUSOs defined by parity games and restricted classes of parity games