
LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Online Quantitative Verification:
Capabilities and Challenges

Radu Calinescu

Computing Laboratory, University of Oxford



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Outline

1 Introduction
Motivation
Approach

2 Background
Quantitative verification with PRISM
Autonomic computing policies

3 Framework
Self-* system development
Policy implementation

4 Challenges

5 Summary



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Quantitative verification

Formal technique for establishing quantitative properties of
systems that exhibit probabilistic or real-time behaviour
• probability of system being up ≥ 99.9% of the time
• expected length of request queue for a disk drive

true/false

precise mathematical
model of real-world

system

formal specification
of quantitative

system properties exhaustive
analysis

probability

expected value



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Quantitative verification

Formal technique for establishing quantitative properties of
systems that exhibit probabilistic or real-time behaviour
• probability of system being up ≥ 99.9% of the time
• expected length of request queue for a disk drive

true/false

precise mathematical
model of real-world

system

formal specification
of quantitative

system properties exhaustive
analysis

probability

expected value



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Online quantitative verification

Verification of required/desirable quantitative properties is
performed at runtime
• analysed model selected based on actual system state
• verification results used to adjust system configuration

true/false

parameterised family
of finite-state
system models

required/desirable
quantitative

system properties

exhaustive
analysis

probability

expected value

running system instance

system
reconfiguration



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Predictable system adaptiveness

(IT) systems required to self-adapt in predictable ways to
rapid changes in their workload, environment and objectives

• guaranteed levels of performance and dependability
• compliance with strict constrains

. . . properties that are traditionally established using (offline)
quantitative verification



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Predictable system adaptiveness

(IT) systems required to self-adapt in predictable ways to
rapid changes in their workload, environment and objectives

• context awareness
• synthesis of reconfiguration “policies” from high-level,

multi-objective goals

. . . properties that are traditionally established using (offline)
quantitative verification



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Approach

Integrate existing quantitative verification tool (PRISM) into
the standard autonomic computing architecture



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Approach

Integrate existing quantitative verification tool (PRISM) into
the standard autonomic computing architecture



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

The probabilistic model checker PRISM

Developed by the Oxford Quantitative Analysis and
Verification Group

Supports multiple types of probabilistic models
• discrete-time Markov chains
• continuous-time Markov chains
• Markov decision processes

plus extensions of these models with costs and rewards

Used to analyse systems from a wide range of application
domains



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Discrete-/continuous-time Markov chains

DTMC = (S, sinit,P, L)

labelling function, L : S → 2AP

transition probability matrix, P :S×S→ [0, 1]

initial state, sinit ∈ S
finite set of states

CTMC = (S, sinit,R, L)

transition rate matrix, R :S×S→R+



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Discrete-/continuous-time Markov chains

DTMC = (S, sinit,P, L)

labelling function, L : S → 2AP

transition probability matrix, P :S×S→ [0, 1]

initial state, sinit ∈ S
finite set of states

CTMC = (S, sinit,R, L)

transition rate matrix, R :S×S→R+



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example: dynamic power management

Service provider (SP)

Power manager (PM)

0 ≤ q ≤ Qmax

Request queue (RQ)

Service
requester

State
information

State-transition
commands

idle busysleep

sp=0 sp=1 sp=2



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example: dynamic power management

Service provider (SP)

Power manager (PM)

0 ≤ q ≤ Qmax

Request queue (RQ)

Service
requester

State
information

State-transition
commands

idle busysleep

sp=0 sp=1 sp=2



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example: dynamic power management

Service provider (SP)

Power manager (PM)

0 ≤ q ≤ Qmax

Request queue (RQ)

Service
requester

State
information

State-transition
commands

idle busysleep

sp=0 sp=1 sp=2



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example: dynamic power management

Service provider (SP)

Power manager (PM)

0 ≤ q ≤ Qmax

Request queue (RQ)

Service
requester

State
information

State-transition
commands

idle busysleep

sp=0 sp=1 sp=2



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Cost/reward extensions

DTMC = (S, sinit,P, L)

labelling function, L : S → 2AP

transition probability matrix, P :S×S→ [0, 1]

initial state, sinit ∈ S
finite set of states

CTMC = (S, sinit,R, L)

transition rate matrix, R :S×S→R+

reward structure=(ρ, r)

state reward function, ρ :S→R+

transition reward function, r :S×S→R+



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example: power utilisation

Service provider (SP)

Power manager (PM)

0 ≤ q ≤ Qmax

Request queue (RQ)

Service
requester

State
information

State-transition
commands

idle busysleep

sp=0 sp=1 sp=2



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*

CSL—Continuous Stochastic Logic for CTMCs*

* augmented with costs/rewards



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*

CSL—Continuous Stochastic Logic for CTMCs*

* augmented with costs/rewards



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Quantitative property specification

PCTL—Probabilistic Computational Tree Logic for DTMCs*

CSL—Continuous Stochastic Logic for CTMCs*

* augmented with costs/rewards



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example: power use; request queue length

Service provider (SP)

Power manager (PM)

0 ≤ q ≤ Qmax

Request queue (RQ)

Service
requester

State
information

State-transition
commands

idle busysleep

sp=0 sp=1 sp=2



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

The “knowledge” module

Knowledge=(S, C, f )

state (“read-only” system parameters)

operational model, f : S × C → S

configuration (modifiable system parameters)



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Utility-function autonomic policies

Knowledge=(S, C, f )

state (“read-only” system parameters)

operational model, f : S × C → S

configuration (modifiable system parameters)

Given a utility function

utility : S × C → R+,

adjust the configurable system parameters such as to
maximise the system utility “at all times”

for s0 ∈ S, find c ∈ C s.t. c = argmax utility(f (s0,x),x)
x ∈ C



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example: multi-objective utility function

utility =
n∑

i=1

wiobjectivei



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Self-* system development

Markov
chain

Knowledge
module

model
transformation

Legacy
component
adaptors

autonomic
manager

configuration Configured
autonomic
manager

Manageable
components

adaptor
deployment

Self-*
system

policy
specification

component
discovery

Generation Deployment Exploitation

automated
step

manual
stepKey computer-assisted

step

model-driven
generation



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Self-* system development

Markov
chain

Knowledge
module

model
transformation

Legacy
component
adaptors

autonomic
manager

configuration Configured
autonomic
manager

Manageable
components

adaptor
deployment

Self-*
system

policy
specification

component
discovery

Generation Deployment Exploitation

automated
step

manual
stepKey computer-assisted

step

model-driven
generation

PRISM discrete-/continuous-time Markov chain
- available from the formal verification of the system
- newly developed



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Self-* system development

Markov
chain

Knowledge
module

model
transformation

Legacy
component
adaptors

autonomic
manager

configuration Configured
autonomic
manager

Manageable
components

adaptor
deployment

Self-*
system

policy
specification

component
discovery

Generation Deployment Exploitation

automated
step

manual
stepKey computer-assisted

step

model-driven
generation

Automated transformation, except for the partition of
the Markov chain parameters into state and configuration



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Self-* system development

Markov
chain

Knowledge
module

model
transformation

Legacy
component
adaptors

autonomic
manager

configuration Configured
autonomic
manager

Manageable
components

adaptor
deployment

Self-*
system

policy
specification

component
discovery

Generation Deployment Exploitation

automated
step

manual
stepKey computer-assisted

step

model-driven
generation

Off-the-shelf tools (XSLT engine, data type generator)
used to generate most adaptor code



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Self-* system development

Markov
chain

Knowledge
module

model
transformation

Legacy
component
adaptors

autonomic
manager

configuration Configured
autonomic
manager

Manageable
components

adaptor
deployment

Self-*
system

policy
specification

component
discovery

Generation Deployment Exploitation

automated
step

manual
stepKey computer-assisted

step

model-driven
generation

Knowledge module supplied at runtime to autonomic
manager instance



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Self-* system development

Markov
chain

Knowledge
module

model
transformation

Legacy
component
adaptors

autonomic
manager

configuration Configured
autonomic
manager

Manageable
components

adaptor
deployment

Self-*
system

policy
specification

component
discovery

Generation Deployment Exploitation

automated
step

manual
stepKey computer-assisted

step

model-driven
generation

Adaptor deployment leads to automatic component
discovery by the autonomic manager



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Self-* system development

Markov
chain

Knowledge
module

model
transformation

Legacy
component
adaptors

autonomic
manager

configuration Configured
autonomic
manager

Manageable
components

adaptor
deployment

Self-*
system

policy
specification

component
discovery

Generation Deployment Exploitation

automated
step

manual
stepKey computer-assisted

step

model-driven
generation

Utility-function policy specified by system administrator
- multi-objective utility function defined in terms of

cost/reward structures from the PRISM Markov chain

utility function example



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Policy implementation

Periodically and/or when the autonomic manager is notified
about system changes:

1 foreach component c in the policy scope do
2 extract parameterised model of c from the knowledge module
3 get state parameters of c from the manageability adaptors
4 evaluate quantitative properties used in the utility function
5 choose configuration parameters that maximise the utility of c



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example: dynamic power management



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Example 2: cluster availability management

Multi-objective utility function:
1 achieve target availability in the presence of failures

and variations in the number of requested servers
2 minimise number of allocated servers



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Challenges: inherited from offline verification

State-space explosion
• new model checking techniques still needed

Expert knowledge required to produce "good" models
• more models should be built as part of the system

development process



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Challenges: specific to online verification

Model checkers not typically intended for online use
• use command-line interfaces (lower-level APIs better)

Prohibitive analysis time
• pre-compute/cache analysis results; hybrid approaches

Local optima (unless all possible configurations verified)
• offline assessment to ensure solution is effective

Utility-function definition
• close to natural language property/utility specification?



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Summary

Increasing need for IT systems to adapt in predictable, dependable
ways to changes in their state, objectives and environment

Quantitative verification reached a level of maturity that enables its
online use to achieve such adaptiveness in certain scenarios

Interesting research work required to address challenges posed
by online quantitative verification



LACL Seminar
16 March 2009

R. Calinescu
(University of

Oxford)

Introduction
Motivation

Approach

Background
Quantitative
verification with
PRISM

Autonomic
computing policies

Framework
Self-* system
development

Policy
implementation

Challenges

Summary

Thank you

Questions?

Further reading

R. Calinescu – General-Purpose Autonomic Computing, In: M. Denko et al.,
Autonomic Computing and Networking, Springer, April 2009, pp. 3–29.

R. Calinescu and M. Kwiatkowska – Using Quantitative Analysis to Implement
Autonomic IT Systems, Proc. 31st Intl. Conf. Software Eng. (ICSE 2009).


	Introduction
	Motivation
	Approach

	Background
	Quantitative verification with PRISM
	Autonomic computing policies

	Framework
	Self-* system development
	Policy implementation

	Challenges
	Summary

