
Extended Computation Tree Logic

Roland Axelsson1, Matthew Hague2, Stephan Kreutzer2, Martin Lange3, and Markus
Latte1

1 Department of Computer Science, Ludwig-Maximilians-Universität Munich,
Email: {roland.axelsson,markus.latte}@ifi.lmu.de

2 Oxford University Computing Laboratory,
Email: {Matthew.Hague,stephan.kreutzer}@comlab.ox.ac.uk

3 Department of Elect. Engineering and Computer Science, University of Kassel, Germany,
Email: martin.lange@uni-kassel.de

Abstract. We introduce a generic extension of the popular branching-time logic
CTL which refines the temporal until and release operators with formal languages.
For instance, a language may determine the moments along a path that an until
property may be fulfilled. We consider several classes of languages leading to
logics with different expressive power and complexity, whose importance is mo-
tivated by their use in model checking, synthesis, abstract interpretation, etc. We
show that even with context-free languages on the until operator the logic still
allows for polynomial time model-checking despite the significant increase in ex-
pressive power. This makes the logic a promising candidate for applications in
verification. In addition, we analyse the complexity of satisfiability and compare
the expressive power of these logics to CTL∗ and extensions of PDL.

1 Introduction

Computation Tree Logic (CTL) is one of the main logical formalisms for program spec-
ification and verification. It appeals because of its intuitive syntax and its very reason-
able complexities: model checking is PTIME-complete [9] and satisfiability checking is
EXPTIME-complete [12]. However, its expressive power is low.

CTL can be embedded into richer formalisms like CTL∗ [13] or the modal µ-
calculus Lµ [22]. This transition comes at a price. For CTL∗ the model checking prob-
lem increases to PSPACE-complete [30] and satisfiability to 2EXPTIME-complete [14,
33]. Furthermore, CTL∗ cannot express regular properties like “something holds af-
ter an even number of steps”. The modal µ-calculus is capable of doing so, and its
complexities compare reasonably to CTL: satisfiability is also EXPTIME-complete, and
model checking sits between PTIME and NP∩coNP. However, it is much worse from a
pragmatic perspective since its syntax is notoriously unintuitive.

Common to all these (and many other) formalisms is a restriction of their expressive
power to at most regular properties. This follows since they can be embedded into (the
bisimulation-invariant) fragment of monadic second-order logic on graphs. This restric-
tion yields some nice properties — like the finite model property and decidability —
but implies that these logics cannot be used for certain specification purposes.

For example, specifying the correctness of a communication protocol that uses a
buffer requires a non-underflow property: an item cannot be removed when the buffer

is empty. The specification language must therefore be able to track the buffer’s size. If
the buffer is unbounded, as is usual in software, this property is non-regular and a reg-
ular logic is unsuitable. If the buffer is bounded, the property is regular but depends on
the actual buffer capacity, requiring a different formula for each size. This is unnatural
for verification purposes. The formulas are also likely to be complex as they essentially
have to hard-code numbers up to the buffer length. To express such properties natu-
rally one has to step beyond regularity and consider logics of corresponding expressive
power.

Also, consider program synthesis where, instead of verifying a program, one wants
to automatically generate a correct program (skeleton) from the specification. This prob-
lem is very much linked to satisfiability checking, except, if a model exists, one is cre-
ated and transformed into a program. This is known as controller synthesis and has been
done mainly based on satisfiability checking for the modal µ-calculus [4]. The finite
model property restricts the synthesization to finite state programs, i.e. hardware and
controllers, etc. In order to automatically synthesize software (e.g. recursive functions)
one has to consider non-regular logics.

Finally, consider the problem of verifying programs with infinite or very large state
spaces. A standard technique is to abstract the large state space into a smaller one [10].
This usually results in spurious traces which then have to be excluded in universal path
quantification on the small system. If the original system was infinite then the language
of spurious traces is typically non-regular and, again, a logic of suitable expressive
power is needed to increase precision [25].

In this paper we introduce a generic extension of CTL which provides a specifi-
cation formalism for such purposes. We refine the usual until operator (and its dual,
the release operator) with a formal language defining the moments at which the until
property can be fulfilled. This leads to a family of logics parametrised by a class of
formal languages. CTL is an ideal base logic because of its wide-spread use in actual
verification applications. Since automata easily allow for an unambiguous measure of
input size, we present the precise definition of our logics in terms of classes of automata
instead of formal languages. However, we do not promote the use of automata in tem-
poral formulas. For pragmatic considerations it may be sensible to allow more intuitive
descriptions of formal languages such as Backus-Naur-Form or regular expressions.

As a main result we extend CTL using context-free languages, significantly increas-
ing expressive power, while retaining polynomial time model-checking. Hence, we ob-
tain a good balance between expressiveness — as non-regular properties become ex-
pressible — and low model-checking complexity, which makes this logic very promis-
ing for applications in verification. We also study model-checking for the new logics
against infinite state systems represented by (visibly) pushdown automata, as they arise
in software model-checking, and obtain tractability results for these. For satisfiability
testing, equipping the path quantifiers with visibly pushdown languages retains decid-
ability. However, the complexity increases from EXPTIME for CTL to 3EXPTIME for this
new logic.

The paper is organised as follows. We formally introduce the logics and give an
example demonstrating their expressive power in Section 2. Section 3 discusses related
formalisms. Section 4 presents results on the expressive power of these logics, and

Section 5 and 6 contain results on the complexities of satisfiability and model checking.
Finally, Section 7 concludes with remarks on further work. Due to space restrictions this
paper contains no detailed proofs in its main part. A full version with all proof details
is available online at http://arxiv.org/abs/1006.3709.

2 Extended Computation Tree Logic

Let P = {p, q, . . .} be a countably infinite set of propositions and Σ be a finite set of
action names. A labeled transition system (LTS) is a T = (S,−→, `), where S is a set of
states,−→ ⊆ S×Σ×S and ` : S → 2P . We usually write s a−→ t instead of (s, a, t) ∈ −→.
A path is a maximal sequence of alternating states and actions π = s0, a1, s1, a2, s2, . . .,
s.t. si

ai+1−−−→ si+1 for all i ∈ N. We also write a path as s0
a1−−→ s1

a2−−→ s2 Maximal-
ity means that the path is either infinite or it ends in a state sn s.t. there are no a ∈ Σ
and t ∈ S with sn

a−→ t. In the latter case, the domain dom(π) of π is {0, . . . , n}. And
otherwise dom(π):=N.

We focus on automata classes between deterministic finite automata (DFA) and non-
deterministic pushdown automata (PDA), with the classes of nondeterministic finite au-
tomata (NFA), (non-)deterministic visibly pushdown automata (DVPA/VPA) [2] and
deterministic pushdown automata (DPDA) in between. Beyond PDA one is often faced
with undecidability. Note that some of these automata classes define the same class of
languages. However, translations from nondeterministic to deterministic automata usu-
ally involve an exponential blow-up. For complexity estimations it is therefore advisable
to consider such classes separately.

We call a class A of automata reasonable if it contains automata recognising Σ and
Σ∗ and is closed under equivalences, i.e. if A ∈ A and L(A) = L(B) and B is of the
same type then B ∈ A. L(A) denotes the language accepted by A.

Let A,B be two reasonable classes of finite-word automata over the alphabet Σ.
Formulas of Extended Computation Tree Logic over A and B (CTL[A,B]) are given
by the following grammar, where A ∈ A, B ∈ B and q ∈ P .

ϕ ::= q | ϕ ∨ ϕ | ¬ϕ | E(ϕUAϕ) | E(ϕRBϕ)

Formulas are interpreted over states of a transition system T = (S,−→, `) in the follow-
ing way.

– T , s |= q iff q ∈ `(s)
– T , s |= ϕ ∨ ψ iff T , s |= ϕ or T , s |= ψ
– T , s |= ¬ϕ iff T , s 6|= ϕ
– T , s |= E(ϕUAψ) iff there exists a path π = s0, a1, s1, . . . with s0 = s and ∃n ∈

dom(π) s.t. a1 . . . an ∈ L(A) and T , sn |= ψ and ∀i < n : T , si |= ϕ.
– T , s |= E(ϕRAψ) iff there exists a path π = s0, a1, s1, . . . with s0 = s and for all
n ∈ dom(π): a1 . . . an 6∈ L(A) or T , sn |= ψ or ∃i < n s.th. T , si |= ϕ.

As usual, further syntactical constructs, like other boolean operators, are introduced as
abbreviations. We define A(ϕUAψ) := ¬E(¬ϕRA¬ψ), A(ϕRAψ) := ¬E(¬ϕUA¬ψ), as
well as QFAϕ := Q(ttUAϕ), QGAϕ := Q(ffRAϕ) for Q ∈ {E, A}. For presentation,

we also use languages L instead of automata in the temporal operators. For instance,
EGLϕ is EGAϕ for someA with L(A) = L. This also allows us to easily define the orig-
inal CTL operators:QXϕ := QFΣϕ,Q(ϕUψ) := Q(ϕUΣ∗ψ),Q(ϕRψ) := Q(ϕRΣ∗ψ),
etc. The size of a formula ϕ is the number of its unique subformulas plus the sum of the
sizes of all automata in ϕ, with the usual measure of size of an automaton.

The distinction between A and B is motivated by the complexity analysis. For in-
stance, when model checking E(ϕUAψ) the existential quantifications over system paths
and runs of A commute and we can guess a path and an accepting run in a step-wise
fashion. On the other hand, when checking E(ϕRAψ) the existential quantification on
paths and universal quantification on runs (by R — “on all prefixes . . . ”) does not com-
mute unless we determiniseA, which is not always possible or may lead to exponential
costs.

However, A and B can also be the same and in this case we denote the logic by
CTL[A]. Equally, by EF[A], resp. EG[B] we denote the fragments of CTL[A,B] built
from atomic propositions, boolean operators and the temporal operators EFAϕ, resp.
EGBϕ only. Since the expressive power of the logic only depends on its class of lan-
guages rather than automata, we will write CTL[REG], CTL[VPL], CTL[CFL], etc.
to denote the logic over regular, visibly pushdown, and context-free languages, repre-
sented by any type of automaton. We close this section with a CTL[VPL] example
which demonstrates the buffer-underflow property discussed in the introduction.

Example. Consider a concurrent producer/consumer scenario over a shared buffer. If
the buffer is empty, the consumer process requests a new resource and halts until the
producer delivers a new one. Any parallel execution of these processes should obey
a non-underflow property (NBU): at any moment, the number of produce actions is
sufficient for the number of consumes.

If the buffer is realised in software it is reasonable to assume that it is unbounded,
and thus, the NBU property becomes non-regular. Let Σ = {p, c, r}, where p stands
for production of a buffer object, c for consume and r for request. Consider the VPL
L = {w ∈ Σ∗ | |w|c = |w|p and |v|c ≤ |v|p for all v ¹ w}, where ¹ denotes the
prefix relation. We express the requirements in CTL[VPL].

1. AGEXptt : “at any time it is possible to produce an object”
2. AGL(AXcff ∧ EXrtt): “whenever the buffer is empty, it is impossible to consume

and possible to request”
3. AGL(EXctt ∧ AXrff): “whenever the buffer is non-empty it is possible to consume

and impossible to request”
4. EFEGc∗ff: “at some point there is a consume-only path”

Combining the first three properties yields a specification of the scenario described
above and states that a request can only be made if the buffer is empty. For the third
properly, recall that VPL are closed under complement [2]. Every satisfying model
gives a raw implementation of the main characteristics of the system. Note that if it is
always possible to produce and possible to consume iff the buffer is not empty, then
a straight-forward model with self-loops p, c and r does not satisfy the specification.
Instead, we require a model with infinitely many different p transitions. If we strengthen
the specification by adding the fourth formula, it becomes unsatisfiable.

3 Related Formalisms

Several suggestions to integrate formal languages into temporal logics have been made
so far. The goal is usually to extend the expressive power of a logic whilst retaining its
intuitive syntax. The most classic example is Propositional Dynamic Logic (PDL) [17]
which extends Modal Logic with regular expressions.

Similar extensions — sometimes using finite automata instead of regular expres-
sions — of Temporal Logics have been investigated a long time ago. The main purpose
has usually been the aim to increase the expressive power of seemingly weak specifi-
cation formalisms in order to obtain at least ω-regular expressivity, but no efforts have
been made at that point in order to go beyond that. This also explains why such exten-
sions were mainly based on LTL [37, 34, 23, 20], i.e. not leaving the world of linear-time
formalisms.

The need for extensions beyond the use of pure temporal operators is also witnessed
by the industry-standard Property Specification Language (PSL) [1] and its predecessor
ForSpec [3]. However, ForSpec is a linear-time formalism and here we are concerned
with branching-time. PSL does contain branching-time operators but they have been
introduced for backwards-compatibility only.

On the other hand, some effort has been made with regards to extensions of branch-
ing-time logics like CTL [5, 7, 27]. These all refine the temporal operators of this logic
with regular languages in some form.

Thus, while much effort has been put into regular extensions of standard temporal
logics, little is known about extensions using richer classes of formal languages. We are
only aware of extensions of PDL by context-free languages [19] or visibly pushdown
languages [26]. The main yardstick for measuring the expressive power of CTL[A,B]
will be therefore be PDL and one of its variants, namely PDL with the ∆-construct and
tests, ∆PDL?[A], [17, 31]. Note: for a class A of automata, CTL[A] is a logic using
such automata on finite words only, whereas ∆PDL?[A] uses those and their Büchi-
variants on infinite words. In the following we will use some of the known results about
∆PDL?[A]. For a detailed technical definition of its syntax and semantics, we refer to
the literature on this logic [18].

There are also temporal logics which obtain higher expressive power through other
means. These are usually extensions of Lµ like the Modal Iteration Calculus [11] which
uses inflationary fixpoint constructs or Higher-Order Fixpoint Logic [35] which uses
higher-order predicate transformers. While most regular extensions of standard tempo-
ral logics like CTL and LTL can easily be embedded into Lµ, little is known about the
relationship between richer extensions of these logics.

4 Expressivity and Model Theory

We write L ≤f L′ with f ∈ {lin, exp} to state that for every formula ϕ ∈ L there is an
equivalent ψ ∈ L′ with at most a linear or exponential (respectively) blow up in size.
We use L �f L′ to denote that such a translation exists, but there are formulas of L′
which are not equivalent to any formula in L. Also, we write L ≡f L′ if L ≤f L′ and
L′ ≤f L. We will drop the index if a potential blow-up is of no concern.

CTL∗

∆PDL?[REG]

∆PDL?[VPL]

∆PDL?[DCFL]

PDL[REG]

PDL[VPL]

PDL[CFL]

PDL[DCFL]

EF[REG]

EF[VPL]

EF[CFL]

EF[DCFL]

EF

CTL[REG]

CTL[VPL]

CTL[CFL]

CTL[DCFL]

CTL

EG[REG]

EG[VPL]

EG[CFL]

EG[DCFL]

EG

Lµ

∆PDL?[CFL]

Fig. 1. The expressive power of Extended Computation Tree Logic.

A detailed picture of the expressivity results regarding the most important CTL[A]
logics is given in Fig. 1. A (dashed) line moving upwards indicates (strict) inclusion
w.r.t. expressive power. A horizontal continuous line states expressive equivalence. The
following proposition collects some simple observations.

Proposition 4.1. 1. For all A,B: CTL �lin CTL[A,B].
2. For all A,A′,B,B′: if A ≤ A′ and B ≤ B′ then CTL[A,B] ≤ CTL[A’,B’].

CTL[A] extends PDL[A] since the latter is just a syntactic variation of the EF[A]
fragment. On the other hand, CTL[A] can — in certain cases — be embedded into
PDL[A]’s extension ∆PDL?[A]. This, however, requires a transformation from au-
tomata on finite words to automata on infinite words which shows that these two for-
malisms are conceptually different.

Theorem 4.2. 1. For all A: PDL[A] ≡lin EF[A].
2. For all A,B: EF[A] �lin CTL[A,B].
3. For all A,B: CTL[A,B] ≤lin ∆PDL?[A ∪ B], if B is a class of deterministic

automata.
4. ∆PDL?[PDA] ≡lin ∆PDL?[DPDA].

Note that CFL does not admit deterministic automata. Hence, part 3 is not applicable
in that case. If for some classes A,B the inclusion in part 3 holds, then it must be
strict. This is because fairness is not expressible in CTL[A] regardless of what A is, as
demonstrated by the following.

Theorem 4.3. The CTL∗-formula EGFq expressing fairness is not equivalent to any
CTL[A, B] formula, for any A, B.

Fairness can be expressed by ∆Afair, where Afair is the standard Büchi automaton
over some alphabet containing a test predicate q? that recognises the language of all
infinite paths on which infinitely many states satisfy q.

Corollary 4.4. 1. For all A,B: CTL∗ 6≤ CTL[A,B].
2. There are no A,B such that any CTL[A,B] is equivalent to the ∆PDL?[REG]

formula ∆Afair.

At least in the case of CFLs, the premise to part 3 of Thm. 4.2 cannot be dropped.
Indeed, the formula EGLp is not expressible as a ∆PDL?[CFL]-formula where L is the
language of palindromes.

Theorem 4.5. CTL[CFL] 6≤ ∆PDL?[CFL].

Finally, we provide some model-theoretic results which will also allow us to sepa-
rate some of the logics with respect to expressive power. Not surprisingly, CTL[REG]
has the finite model property which is a consequence of its embedding into the logic
∆PDL?[REG]. It is not hard to bound the size of such a model given that∆PDL?[REG]
has the small model property of exponential size.

Proposition 4.6. Every satisfiable CTL[REG] formula has a finite model. In fact, ev-
ery satisfiable CTL[NFA,DFA], resp. CTL[NFA,NFA] formula has a model of at most
exponential, resp. double exponential size.

We show now that the bound for CTL[NFA] cannot be improved.

Theorem 4.7. There is a sequence of satisfiable CTL[NFA]-formulas (ψn)n∈N such
that the size of any model of ψn is at least doubly exponential in |ψn|.

The next theorem provides information about the type of models we can expect.
This is useful for synthesis purposes.

Theorem 4.8. 1. There is a satisfiable CTL[VPL] formula which does not have a
finite model.

2. There is a satisfiable CTL[DCFL] formula which has no pushdown system as a
model.

3. Every satisfiable CTL[VPL] formula has a visibly pushdown system as a model.

Proof (Sketch of Part 3). The satisfiability problem for CTL[VPL] can be translated
into that of a non-deterministic Büchi visibly pushdown tree automaton (VPTA). An
unrolling of this automaton does not necessarily lead to the claimed visibly pushdown
system. First, such a system might admit paths which violate the Büchi condition.
And secondly, the lack of determinism combines successors of different transitions
undesirably. However, Thm. 4.2 Part 3 states that CTL[VPL] can be translated into
∆PDL?[VPL] whose satisfiability problem reduces to the emptiness problem for stair-
parity VPTA [26]. There exists an exponential reduction from stair-parity VPTA to
parity tree automata (PTA) which preserves satisfiability. The emptiness test is con-
structive in the sense that for every PTA accepting a non-empty language there exists a
finite transition system which satisfies this PTA. This system can be translated back into
a visibly pushdown system satisfying the given CTL[VPL]- or ∆PDL?[VPL]-formula.
Implementing this idea, however, requires some care and is technically involved. ut

Putting Thm. 4.5, Prop. 4.6 and Thm. 4.8 together we obtain the following separa-
tions. Note that the first three inequalities of the corollary can also be obtained from
language theoretical observations.

Corollary 4.9. CTL[REG] � CTL[VPL] � CTL[DCFL] � CTL[CFL].

5 Satisfiability

In this section we study the complexity of the satisfiability problem for a variety of
CTL[A,B] logics. The presented lower and upper bounds, as shown in Fig. 2, also
yield sharp bounds for EF[] and CTL[].

Theorem 5.1. The satisfiability problems for CTL[DPDA,] and for CTL[, DPDA]
are undecidable.

Proof. Harel et al. [19] show that PDL over regular programs with the one additional
language L:={anban | n ∈ N} is undecidable. Since L ∈ DCFL ⊇ REG, the logic
EF[DPDA] is undecidable and hence so is CTL[DPDA,]. As for the second claim, the
undecidable intersection problem of two DPDA, say A and B, can be reduced to the
satisfiability problem of the CTL[, DPDA]-formula AFAAXff ∧ AFBAXff. Note that
a single state with no outgoing transitions still has outgoing paths labeled with ε. This
formula is therefore only satisfiable if L(A) ∩ L(B) 6= ∅. ut
Theorem 5.2. The upper bounds for the satisfiability problem are as in Fig. 2.

Proof. By Thm. 4.2(3), CTL[A, B] can be translated into ∆PDL?[A∪B] with a blow-
up that is determined by the worst-case complexity of transforming an arbitrary A-
automaton into a deterministic one. The claim follows using that REG ⊆ VPL and that
the satisfiability problem for ∆PDL?[REG] is in EXPTIME [15] and for ∆PDL?[VPL]
is in 2EXPTIME [26]. ut

The hardness results are more technically involved.

Theorem 5.3. 1. CTL[DFA, NFA] and CTL[, DVPA] are 2EXPTIME-hard.
2. CTL[DVPA, NFA] and CTL[, DVPA ∪ NFA] are 3EXPTIME-hard.

Corollary 5.4. The lower bounds for the satisfiability problem are as in Fig. 2.

Proof. As CTL is EXPTIME-hard [12], so is CTL[,]. The 2EXPTIME lower bound for
PDL[DVPA] [26] is also a lower bound for CTL[DVPA,] due to Thm. 4.2. Finally,
Thm. 5.3 and Prop. 4.1(2) complete the picture. ut

In the remaining part of this section we sketch the proof of Thm. 5.3. For each of the
four lower bounds, we reduce from the word problem of an alternating Turing machine
T with an exponentially or doubly exponentially, resp., space bound. These problems
are 2EXPTIME-hard and 3EXPTIME-hard [8], respectively.

A run of such a machine can be depicted as a tree. Every node stands for a con-
figuration — that is, for simplicity, a bounded sequence of cells. An universal choice
corresponds to a binary branching node, and an existential choice to an unary node. We
aim to construct a CTL[,]-formula ϕ such that each of its tree-like models resembles
a tree expressing a successful run of T on a given input. Thereto, the configurations are
linearized — an edge becomes a chain of edges, in the intended model, and a node rep-
resents a single cell. The content of each cell is encoded as a proposition. However, the
linearization separates neighboring cells of consecutive configurations. Between these

DFA NFA DVPA VPA DPDA, PDA

DFA, NFA EXPTIME 2EXPTIME 2EXPTIME 3EXPTIME undec.
DVPA, VPA 2EXPTIME 3EXPTIME 2EXPTIME 3EXPTIME undec.
DPDA, PDA undec. undec. undec. undec. undec.

Fig. 2. The time complexities of checking satisfiability for a CTL[A,B] formula. Entries denote
completeness results. The rows contain different values for A as the results are independent of
whether or not the automata from this class are deterministic.

cells, certain constraints have to hold. So, the actual challenge for the reduction is that ϕ
must bridge this exponential or doubly exponential, resp., gap while be of a polynomial
size in n, i.e. in the input size to T .

We sketch the construction for CTL[DFA, NFA]. The exponential space bound can
be controlled by a binary counter. Hence, the constraint applies only to consecutive
positions with the same counter value. To bridge between two such positions, we use a
proof obligation of the form AUA for a NFA A. In a tree model, we say that a node has
a proof obligation for an AU-formula iff that formula is forced to hold at an ancestor but
is not yet satisfied along the path to the said node. The key idea is that we can replace
A by an equivalent automaton D without changing the models of ϕ. In our setting, D
is the deterministic automaton resulting from the powerset-construction [28]. In other
words, we simulate an exponentially sized automaton. Here, the mentioned obligation
reflects the value of the counter and the expected content of a cell.

One of the building blocks of ϕ programs the obligation with the current value
of the counter. Thereto, we encode the counter as a chain of labels in the model, say
(bitbi

i)1≤i≤n where bi ∈ B is the value of the ith bit. The automaton A contains
states qb

i for all 1 ≤ i ≤ n and b ∈ B. Initially, it is ensured that D is in the state
{qb

i | 1 ≤ i ≤ n, b ∈ B}. Informally, this set holds all possibilities for the values of
each bit. In A, any qb

i has self-loops for any label except for bit¬b
i . Hence, a traversal

of a chain eliminates invalid bit assignments from the subset and bringsD into the state
{qbi

i | 1 ≤ i ≤ n} which characterizes the counter for which the chain stands. Finally
for matching, a similar construction separates proof obligations depending on whether
or not they match the counter: unmatched obligations will be satisfied trivially, and
matching ones are ensured to be satisfied only if the expected cell is the current one.

For the other parts involving DVPA, again, the constructed formula ϕ shall imitate
a successful tree of T on the input. The space bound can be controlled by a counter
with appropriate domain. The constraints between cells of consecutive configurations,
however, are implemented differently. We use a deterministic VPA to push all cells
along the whole branch of the run on the stack — configuration by configuration. At
the end, we successively take the cells from the stack and branch. Along each branch,
we use the counter to remove exponential or doubly exponential, resp., many elements
from stack to access the cell at the same position in the previous configuration. So, as
a main component of ϕ we use either AUAAXff or AGAff for some VPA A. In the case
of a doubly exponential counter, the technique explained for CTL[DFA, NFA] can be
applied. But this time, a proof obligation expresses a bit number and its value.

6 Model Checking

In this section we consider model-checking of CTL[A, B] against finite and infinite
transition systems, obtained as the transition graphs of (visibly) pushdown automata.
Note that undecidability is quickly obtained beyond that. For instance model checking
the genuine CTL fragment EF is undecidable over the class of Petri nets, and for EG
model checking becomes undecidable of the class of Very Basic Parallel Processes [16].

6.1 Finite State Systems

The following table summarises the complexities of model checking CTL[A,B] in finite
transition systems in terms of completeness. Surprisingly, despite its greatly increased
expressive power compared to CTL, CTL[PDA,DPDA] remains in PTIME. In general, it
is the class B which determines the complexity. The table therefore only contains one
row (A) and several columns (B). Note that PDA covers everything down to DFA while
DPDA covers DVPA and DFA.

DPDA NFA VPA PDA

PDA PTIME PSPACE EXPTIME undec.

Theorem 6.1. Model checking of finite state systems against CTL[PDA,DPDA] is in
PTIME, CTL[PDA,VPA] is in EXPTIME, and CTL[PDA,NFA] is in PSPACE.

Proof (Sketch). To obtain a PTIME algorithm for CTL[PDA,DPDA] we observe that —
as for plain CTL — we can model check a CTL[A,B] formula bottom-up for any A
and B. Starting with the atomic propositions one computes for all subformulas the set
of satisfying states, then regards the subformula as a proposition. Hence, it suffices to
give algorithms for E(xUAy) and E(xRBy) for propositions x and y.

We prove the case for E(xUAy) by reduction to non-emptiness of PDA which is well-
known to be solvable in PTIME. Let T =(S,−→, `) be an LTS andA=(Q,Σ, Γ, δ, q0, F).
We construct for every s ∈ S a PDA AT =(Q× S, Σ, Γ, δ′, (q0, s), F ′), where

F ′:={(q, s) | q ∈ F and y ∈ `(s)} and

δ′((q, s), a, γ):={(q′, s′) | q′ ∈ δ(q, a, γ) and s a−→ s′ and x ∈ `(s)}.

Clearly, if L(AT) 6= ∅ then there exist simultaneously a word w ∈ L(A) and a path
π in T starting at s and labeled with w, s.t. x holds everywhere along π except for the
last state in which y holds. Note that this takes time O(|S| · |A| · |T |).

The same upper bound can be achieved for ER-formulas. However, they require the
automaton to be deterministic. This is due to the quantifier alternation in the release
operator, as discussed in Sect. 2.

We show containment in PTIME by a reduction to the problem of model checking
a fixed LTL formula on a PDS. Let T and A be defined as above except that A is
deterministic. We construct a PDS TA = (Q × S ∪ {g, b}, Γ,∆, `′), where `′ extends
` by `′(b) = dead for a fresh proposition dead. Intuitively, g represents “good” and

b “bad” states, i.e. dead-end states, in which E(xRAy) has been fulfilled or violated,
respectively. Furthermore, ∆ contains the following transition rules:

((q, s), γ) ↪→

(g, ε) if x ∈ `′(s) and (q ∈ F implies y ∈ `′(s))
(b, ε) if q ∈ F and y /∈ `′(s)
((q′, s′), w) if none of the above match and there ex. a ∈ Σ, s.t.

s
a−→ s′ and (q′, w) ∈ δ(q, a, γ) for some γ ∈ Γ,w ∈ Γ ∗

Note that |TA| = O(|T | · |A|). Now consider the LTL formula Fdead. It is not hard
to show that s 6|=T E(xRAy) iff ((q0, s), ε) |=TA Fdead. The fact that model checking
a fixed LTL formula over a PDS is in PTIME [6] completes the proof.

To show that CTL[PDA,NFA] is in PSPACE we reduce E(xRBy) to the problem of
checking a fixed LTL formula against a determinisation of the NFA B. This is a repeated
reachability problem over the product of a Büchi automaton and a determinisation of
the NFA. Since we can determinise by a subset construction, we can use Savitch’s
algorithm [29] and an on-the-fly computation of the edge relation. Because Savitch’s
algorithm requires logarithmic space over an exponential graph, the complete algorithm
runs in PSPACE.

Using the fact that every VPA can be determinised at a possibly exponentially
cost [2], we obtain an algorithm for CTL[PDA,VPA]. ut

We now consider the lower bounds.

Theorem 6.2. For fixed finite state transition systems of size 1, model checking for
EF[VPA] is PTIME-hard, EG[NFA] is PSPACE-hard, EG[VPA] is EXPTIME-hard, and
EG[PDA] is undecidable.

Proof (Sketch). It is known that model checking CTL is PTIME-complete. Thus, the
model checking problems for all logics between CTL and CTL[CFL] are PTIME-hard.
However, for EF[VPL] it is already possible to strengthen the result and prove PTIME-
hardness of the expression complexity, i.e. the complexity of model checking on a fixed
transition system. The key ingredient is the fact that the emptiness problem for VPA is
PTIME-hard.1

Model checking the fragment EG[A] is harder, namely PSPACE-hard for the class
REG already. The proof is by a reduction from the n-tiling problem [32] resembling
the halting problem of a nondeterministic linear-space bounded Turing Machine. Two
aspects are worth noting. First, this result — as opposed to the one for the fragment
EF[A] — heavily depends on the fact that A is a class of nondeterministic automata.
For A = DFA for instance, there is no such lower bound unless PSPACE = PTIME. The
other aspect is that the formulas constructed in this reduction are of the form EGAff,
no boolean operators, no multiple temporal operators, and no atomic propositions are
needed.

The principle is that tilings can be represented by infinite words over the alphabet
of all tiles. Unsuccessful tilings must have a finite prefix that cannot be extended to be-
come successful. We construct an automatonA which recognises unsuccessful prefixes.

1 This can be proved in just the same way as PTIME-hardness of the emptiness problem for PDA.

Every possible tiling is represented by a path in a one-state transition system with uni-
versal transition relation. This state satisfies the formula EGAff iff a successful tiling is
possible.

However, if we increase the language class to CFL we are able to encode an unde-
cidable tiling problem. The octant tiling problem asks for a successful tiling of the plane
which has successively longer rows [32]. Since the length of the rows is unbounded, we
need non-determinism and the unbounded memory of a PDA to recognise unsuccessful
prefixes.

The situation is better for VPA. When used in EF-operators, visibly pushdown lan-
guages are not worse than regular languages, even for nondeterministic automata. This
even extends to the whole of all context-free languages.

In EG-operators VPA increase the complexity of the model checking problem even
further in comparison to NFA to EXPTIME. We reduce from the halting problem for
alternating linear-space bounded Turing machines. An accepting computation of the
machine can be considered a finite tree. We encode a depth-first search of the tree as a
word and construct a VPA A accepting all the words that do not represent an accepting
computation. As in previous proofs, one then takes a one-state transition system with
universal transition relation and formula EGAff. ut

6.2 Visibly Pushdown Systems

We consider model checking over an infinite transition system represented by a visibly
pushdown automaton. The following summarises the complexity results in terms of
completeness.

DFA,DVPA NFA,VPA DPDA

DFA . . . VPA EXPTIME 2EXPTIME undec.

Theorem 6.3. Model checking visibly pushdown systems against CTL[VPA,DVPA] is
in EXPTIME, whereas against CTL[VPA,VPA] it is in 2EXPTIME.

Proof (sketch). To obtain the first result, we follow the game approach hinted at in
Section 2 (hence the restriction to DVPA). We reduce the model checking problem
to a Büchi game played over a PDS, which is essentially the product of the formula
(including its automata) and the model. That is, for example, from a state (s, ϕ1 ∧ ϕ2)
the opponent can move to (s, ϕ1) or (s, ϕ2) — the strategy is to pick the subformula
that is not satisfied. The stack alphabet is also a product of the model stack and the
formula VPA stack. For a temporal operator augmented with a VPA, the formula VPA
component is set to ⊥ to mark its bottom of stack. Then the automaton is simulated
step-wise with the model. At each step the appropriate player can decide whether to
attempt to satisfy a subformula, or continue simulating a path and run. Since deciding
these games is EXPTIME [36], we get the required result. The second result follows by
determinisation of the VPA. ut
Theorem 6.4. Model checking visibly pushdown systems against CTL[DFA] is hard
for EXPTIME, EG[NFA] is hard for 2EXPTIME, and EF[DPDA] and EG[DPDA] are un-
decidable.

Proof (sketch). EXPTIME-hardness follows immediately from the EXPTIME-hardness of
CTL over pushdown systems [21] and that CTL is insensitive to the transition labels.

2EXPTIME-hardness is similar to Bozzelli’s 2EXPTIME-hardness for CTL∗ [24]. This
is an intricate encoding of the runs of an alternating EXPSPACE Turing machine. The
difficulty lies in checking the consistency of a guessed work tape of exponential length.
We are able to replace the required CTL∗ subformula with a formula of the form EGA,
giving us the result.

The undecidability results are via encodings of a two counter machine. Intuitively,
the visibly pushdown system simulates the machine, keeping one counter in its stack. It
outputs the operations on the second counter (appropriately marked to meet the visibly
condition) and the DPDA checks for consistency. In this way we can simulate two
counters. ut

6.3 Pushdown Systems

For pushdown systems we have the following complexity-theoretic completeness re-
sults.

DFA NFA DVPA

DFA/ NFA EXPTIME 2EXPTIME undec.

Theorem 6.5. Model checking pushdown systems against CTL[NFA,DFA] is in EXP-
TIME, against CTL[NFA,NFA] it is in 2EXPTIME, against EF[DVPA] and EG[DVPA] it
is undecidable.

Proof (sketch). The decidability results are similar to the case of visibly pushdown
systems; we simply drop the visibly restriction. The lower bounds which do not follow
from the results on VPA can be obtained by a reduction from two counter machines. ut

7 Conclusion and Further Work

To the best of our knowledge, this is the first work considering a parametric extension
of CTL by arbitrary classes of formal languages characterising the complexities of satis-
fiability and model checking as well as the expressive power and model-theoretic prop-
erties of the resulting logics in accordance to the classes of languages. The results show
that some of the logics, in particular CTL[VPL] may be useful in program verification
because of the combination of an intuitive syntax with reasonably low complexities of
the corresponding decision problems.

Some questions still remain to be answered. First, it is open whether the relation-
ships are strict between logics which are connected by solid vertical lines in Fig. 1.
Moreover, the presented separations are rather coarse. Hence, it is desirable to have a
generic approach to separate logics, e.g. CTL[A] � CTL[B] whenever A is a “reason-
able” subset of B.

It is an obvious task for further work to consider CTL∗ or CTL+ as the base for
similar extensions, and to characterise the expressive power and the complexities of the
resulting logics.

References

1. Inc. Accellera Organization. Formal semantics of Accellera property specification language,
2004. In Appendix B of http://www.eda.org/vfv/docs/PSL-v1.1.pdf.

2. R. Alur and P. Madhusudan. Visibly pushdown languages. In Proc. 36th Ann. ACM Symp.
on Theory of Computing, STOC’04, pages 202–211, 2004.

3. R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver, S. Mador-Haim,
E. Singerman, A. Tiemeyer, M. Y. Vardi, and Y. Zbar. The ForSpec temporal logic: A new
temporal property specification language. In Proc. 8th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, TACAS’02, volume 2280 of LNCS, pages 296–311,
Grenoble, France, 2002. Springer.

4. A. Arnold, A. Vincent, and I. Walukiewicz. Games for synthesis of controllers with partial
observation. Theor. Comput. Sci., 303(1):7–34, 2003.

5. I. Beer, S. Ben-David, and A. Landver. On-the-fly model checking of RCTL formulas. In
Proc. 10th Int. Conf. on Computer Aided Verification, CAV’98, volume 1427 of LNCS, pages
184–194. Springer, 1998.

6. A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown automata: Ap-
plication to model-checking. In Proc. 8th Int. Conf. on Concurrency Theory, CONCUR’97,
volume 1243 of LNCS, pages 135–150. Springer, 1997.

7. T. Brázdil and I. Cerná. Model checking of regCTL. Computers and Artificial Intelligence,
25(1), 2006.

8. Ashok K. Chandra, Dexter C. Kozen, and Larry J.Stockmeyer. Alternation. Journal of the
ACM, 28(1):114–133, 1981.

9. E. M. Clarke and E. A. Emerson. Synthesis of synchronization skeletons for branching
time temporal logic. In Logics of Programs: Workshop, volume 131 of LNCS, pages 52–71,
Yorktown Heights, New York, 1981. Springer.

10. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refinement for symbolic model checking. Journal of the ACM, 50(5):752–794, 2003.

11. A. Dawar, E. Grädel, and S. Kreutzer. Inflationary fixed points in modal logics. ACM
Transactions on Computational Logic, 5(2):282–315, 2004.

12. E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness in the temporal
logic of branching time. Journal of Computer and System Sciences, 30:1–24, 1985.

13. E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited: On branching
versus linear time temporal logic. Journal of the ACM, 33(1):151–178, 1986.

14. E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics of programs.
SIAM Journal on Computing, 29(1):132–158, 2000.

15. E.A. Emerson and C.S. Jutla. The complexity of tree automata and logics of programs. In
Foundations of Computer Science, Annual IEEE Symposium on, pages 328–337, 1988.

16. J. Esparza. Decidability of model-checking for infinite-state concurrent systems. Acta Infor-
matica, 34:85–107, 1997.

17. M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular programs. Journal of
Computer and System Sciences, 18(2):194–211, 1979.

18. D. Harel, D. Kozen, and J. Tiuryn. Dynamic Logic. MIT Press, 2000.
19. D. Harel, A. Pnueli, and J. Stavi. Propositional dynamic logic of nonregular programs. Jour-

nal of Computer and System Sciences, 26(2):222–243, 1983.
20. J. G. Henriksen and P. S. Thiagarajan. Dynamic linear time temporal logic. Annals of Pure

and Applied Logic, 96(1–3):187–207, 1999.
21. I. Walukiewicz. Model checking ctl properties of pushdown systems. In FSTTCS, pages

127–138, 2000.
22. D. Kozen. Results on the propositional µ-calculus. TCS, 27:333–354, 1983.

23. O. Kupferman, N. Piterman, and M. Y. Vardi. Extended temporal logic revisited. In Proc.
12th Int. Conf. on Concurrency Theory, CONCUR’01, volume 2154 of LNCS, pages 519–535.
Springer, 2001.

24. L. Bozzelli. Complexity results on branching-time pushdown model checking. Theor. Com-
put. Sci., 379(1-2):286–297, 2007.

25. M. Lange and M. Latte. A CTL-based logic for program abstractions. In Proc. 17th Work-
shop on Logic, Language, Information and Computation, WoLLIC’10, volume 6188 of LNAI,
pages 19–33. Springer, 2010.

26. C. Löding, C. Lutz, and O. Serre. Propositional dynamic logic with recursive programs. J.
Log. Algebr. Program., 73(1-2):51–69, 2007.

27. R. Mateescu, P. T. Monteiro, E. Dumas, and H. de Jong. Computation tree regular logic for
genetic regulatory networks. In Proc. 6th Int. Conf. on Automated Technology for Verification
and Analysis, ATVA’08, volume 5311 of LNCS, pages 48–63. Springer, 2008.

28. M. O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal,
2(3):115–125, 1959.

29. W. J. Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of Computer and System Sciences, 4:177–192, 1970.

30. A. P. Sistla and E. M. Clarke. The complexity of propositional linear temporal logics. Journal
of the Association for Computing Machinery, 32(3):733–749, 1985.

31. R. S. Streett. Propositional dynamic logic of looping and converse is elementarily decidable.
Information and Control, 54(1/2):121–141, 1982.

32. P. van Emde Boas. The convenience of tilings. In A. Sorbi, editor, Complexity, Logic, and
Recursion Theory, volume 187 of Lecture notes in pure and applied mathematics, pages
331–363. Marcel Dekker, Inc., 1997.

33. M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for modal logics of pro-
grams. In Proc. 17th Symp. on Theory of Computing, STOC’85, pages 240–251, Baltimore,
USA, 1985. ACM.

34. M. Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, 1994.

35. M. Viswanathan and R. Viswanathan. A higher order modal fixed point logic. In Proc. 15th
Int. Conf. on Concurrency Theory, CONCUR’04, volume 3170 of LNCS, pages 512–528.
Springer, 2004.

36. I. Walukiewicz. Pushdown processes: Games and model-checking. Information and Compu-
tation, 164(2):234–263, 2001.

37. P. Wolper. Temporal logic can be more expressive. In SFCS ’81: Proceedings of the 22nd
Annual Symposium on Foundations of Computer Science, pages 340–348, Washington, DC,
USA, 1981. IEEE Computer Society.

