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Abstract

Fixed-point logics are logics with an explicit operator for forming fixed points
of definable mappings. They are particularly well suited for modelling recur-
sion in logical languages and consequently they have found applications in
various areas of theoretical computer science such as database theory, finite
model theory, and computer-aided verification.

The topic of this thesis is the study of fixed-point logics with respect to
their expressive power. Of particular interest are logics based on inflationary
fixed points and their comparison to least fixed-point logics.

The first part focuses on fixed-point extensions of first-order logic. In
the main result we show that inflationary and least fixed-point logic – the
extensions of first-order logic by least and inflationary fixed points – have
the same expressive power on all structures, i.e. LFP = IFP.

In the second part of this thesis, we study fixed-point extensions of modal
logic. Such logics are widely used in the field of computer-aided verification.
Again, the least fixed-point extension of modal logic, the modal µ-calculus,
is of particular interest and is among the best studied logics in this area.
The main contribution of the second part is the introduction and study of
the corresponding inflationary fixed-point logic. Contrary to the case of
first-order logic mentioned above, where least and inflationary fixed points
lead to equivalent logics, it is shown that in the context of modal logic,
inflationary fixed points are far more expressive than least fixed points. On
the other hand, they are algorithmically far more complex.

Besides the two main results, we study a variety of different fixed-point
logics and develop methods to compare their expressive power.

Finally, in the third part, we study fixed-point logics as query languages
for constraint databases. It is shown that already relatively simple logics
such as the transitive closure logic lead to undecidable query languages on
constraint databases. Therefore we consider suitable restrictions of fixed-
point logics to obtain tractable query languages, i.e. languages with polyno-
mial time evaluation.

A detailed overview of the results presented in this thesis can be found
in the second part of the introduction.

Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit der Untersuchung von Fix-
punktlogiken hinsichtlich ihrer Ausdrucksstärke. Der Schwerpunkt liegt da-
bei auf inflationären Fixpunktlogiken und ihrer Abgrenzung von Logiken,
die auf kleinsten Fixpunkten basieren. Im ersten Teil der Arbeit werden da-
zu die seit langem bekannten Fixpunkterweiterungen der Prädikatenlogik
untersucht. Das Hauptergebnis ist der Beweis, daß die Logiken LFP und
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IFP, also die Erweiterung der Prädikatenlogik um kleinste und inflationäre
Fixpunkte, die gleiche Ausdrucksstärke haben. Es gilt also LFP = IFP.

Im zweiten Teil der Arbeit stehen dann Fixpunkterweiterungen der Mo-
dallogik im Vordergrund, wie sie intensiv im Bereich der automatischen Ve-
rifikation studiert werden. Während der modale µ-Kalkül (Lµ), die Erwei-
terung der Modallogik um kleinste Fixpunkte, schon seit Anfang der 80er
Jahre eingehend untersucht wird, wird hier zum ersten Mal die entsprechen-
de inflationäre Logik, der modale Iterationskalkül (MIC), betrachtet. Es zeigt
sich, daß, im Gegensatz zum Fall der Prädikatenlogik, inflationäre Fixpunk-
te im modallogischen Kontext eine sehr viel größere Ausdrucksstärke bieten
als kleinste. MIC ist also sehr viel ausdrucksstärker als Lµ, allerdings im
Hinblick auf algorithmische Probleme auch erheblich komplexer.

Neben diesen beiden Hauptergebnissen werden in den ersten beiden Tei-
len der Arbeit noch weitere Arten von Fixpunktlogiken studiert und Metho-
den zum Vergleich ihrer Ausdrucksstärke entwickelt.

Im dritten und letzten Teil der Dissertation stehen sogenannte constraint
Datenbanken im Zentrum der Betrachtungen. Hierbei handelt es sich um ein
relativ neues Datenbankmodell, das sich besonders zur Speicherung geome-
trischer Daten eignet. Ähnlich wie bei relationalen Datenbanken können
auch hier Fixpunktlogiken als Grundlage von Abfragesprachen dienen. In
Teil III wird gezeigt, daß in diesem Bereich allerdings schon relativ einfache
Fixpunktlogiken, wie die transitive Hüllenlogik, unentscheidbare Sprachen
liefern. Anhand zweier auf kleinsten Fixpunkten basierenden Logiken wird
jedoch demonstriert, daß durch geeignete Definition der Logiken auch im
constraint Datenbankbereich algorithmisch handhabbare Abfragesprachen
mit Hilfe von Fixpunktlogiken definiert werden können.

Eine ausführlichere Darstellung der in dieser Dissertation präsentierten
Ergebnisse findet sich im zweiten Teil der Einleitung.
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Chapter 1

Introduction

Formal logics have played a crucial role in the development of theoretical
computer science. A feature that is pervasive to many diverse areas such
as database theory, computer-aided verification, or computational and de-
scriptive complexity theory are definitions by recursion or iteration.

Formalising recursive definitions in a logical language usually involves
some kind of fixed-point construction. This can be incorporated into the
logic in various ways. In second-order logic, recursion is modelled by quan-
tifying over the individual stages of the iteration process, whereas in infini-
tary logics, the same is simulated by infinitary disjunctions defining arbi-
trary recursion depths. Another way of modelling recursive definitions is to
incorporate an explicit operator for forming fixed points. Logics following
this approach are called fixed-point logics. In the various areas of computer
science where fixed-point logics have been deployed, a huge variety of such
logics has evolved. Regardless of how great the differences are elsewhere,
the fixed-point part of most logics is formed according to the same common
principle.

Consider a first-order formula ϕ(R,x) with a free second-order variable
R of arity k, and k free first-order variables x. On any structure A, such
a formula induces an operator Fϕ taking a set P ⊆ Ak to the set {a :
(A, P ) |= ϕ[a]}. Recursive definitions are now modelled by considering the
various kinds of fixed points such an operator may possess. Among these,
least fixed points play a fundamental role.

Least fixed points are usually incorporated into a logic as follows. If
ϕ is positive in R, the operator Fϕ is monotone – meaning that X ⊆ Y
implies Fϕ(X) ⊆ Fϕ(Y ). Monotone operators always have a least fixed
point lfp(Fϕ) :=

⋂
{X : Fϕ(X) = X} and therefore, on any structure A,

a first-order formula ϕ(R,x) positive in R naturally induces a set lfp(Fϕ).
This forms the basis of least fixed-point logic (LFP), an extension of first-
order logic (FO) equipped with an explicit construct [lfpR,x ϕ(R,x)], for ϕ
positive in R, defining the least fixed point of ϕ.

11



12 Chapter 1: Introduction

Least fixed-point definitions are numerous in mathematics. Typical ex-
amples include the definition of regular expressions over an alphabet, formed
by inductively closing the set of letters under concatenation, union, and the
star operation, but also the inductive definition of primitive recursive func-
tions, the syntax of first-order logic, or the definition of sub-groups generated
by a set of elements.

A different type of fixed points can be obtained by an explicit induction
process. Here, the formula ϕ(R,x) is used to build up the following sequence
(Rα)α∈Ord of sets, indexed by ordinals α.

R0 := ∅

Rα+1 := Rα ∪ {a : (A, Rα) |= ϕ(a)}

Rλ :=
⋃

ξ<λ

Rξ for limit ordinals λ.

As this sequence is increasing, it leads to a fixed pointR∞ := Rα for the least
ordinal α such that Rα = Rα+1. R∞ is called the inflationary fixed point of
ϕ and is used to form the inflationary fixed-point logic (IFP) as the extension
of FO by an operator [ifpR,x ϕ(R,x)](x) defining the inflationary fixed point
of ϕ. This fixed point of a formula exists independently of whether ϕ is
positive in R. However, due to a theorem by Knaster and Tarski, if ϕ is
positive in R, the inflationary and the least fixed point coincide. Thus,
LFP ⊆ IFP.

Following work in recursion theory on inductive definitions in arithmetic,
the first systematic study of such definitions on abstract structures occurred
in the 1970’s. Then, research was focused on least and inflationary fixed-
point inductions – called monotone and non-monotone inductions – on first-
order formulae. In particular, no explicit construct to form fixed points was
considered and therefore fixed points could not be negated. Nevertheless,
many fundamental methods in the theory of fixed-point logics date back to
the investigations done at that time. See [Mos74a] and [Acz77] for surveys
on the results and methods established by then.

In the 1980’s, fixed-point logics in the modern form arose independently
in various areas of computer science, e.g. in finite model theory with the in-
troduction of logics like least and inflationary fixed-point logic (see [EF99]),
in database theory with query languages such as Datalog and its various
extensions (see [AHV95]), or in computer-aided verification with specifica-
tion languages like LTL and CTL or the modal µ-calculus (see [CGP99] and
[AN01]). The main evolution over the cases studied in the 1970’s was the
introduction of explicit fixed-point constructions. For instance, least fixed-
point logic (LFP) has an operator [lfpR,x ϕ](x) to form the least fixed point
of ϕ, where ϕ is a formula in LFP positive in R. In particular, ϕ can again
contain fixed-point operators.

Due to the differences in scope and requirements relevant to the various
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areas, a huge variety of fixed-point logics has evolved. As there are different
types of fixed-point operators – they can be monotone, inflationary, or even
more general, they can be deterministic or not – and a variety of different
logics to which they can be attached to – such as first-order, modal, or Horn-
clause logic – there are many ways in which fixed-point logics can be tailored
to a particular area of application. We proceed with a brief introduction to
the three areas of theoretical computer science relevant to this thesis.

Finite Model Theory

When studying the model theory of finite structures, it soon becomes clear
that first-order logic loses the features like compactness and the Löwenheim-
Skolem property that constitute its distinguished role in infinite model the-
ory. For one, every finite model can be axiomatised up to isomorphism by a
single sentence of FO. On the other hand, many interesting classes of finite
structures cannot be defined in first-order logic. In this sense, FO is too
strong and too weak at the same time. As a consequence, in finite model
theory logics like second-order logic or finite variable fragments of infinitary
logic have played a prominent role. Another type of logics important to the
development of finite model theory are logics incorporating some kind of
fixed-point construct, primarily due to their relevance in descriptive com-
plexity theory. See [EF99], [Grä03], and [Imm98] for a detailed introduction
to finite model theory and descriptive complexity.

The subject of descriptive complexity theory is to classify computational
problems in terms of the descriptive resources required for their specification.
Although the equivalence between monadic second-order logic (MSO) and
tree or word automata established by Büchi, Thatcher, Wright, and Doner
[Büc60, TW68, Don70] can be seen as first results in this direction, the work
that initiated this line of research is Fagin’s theorem from 1974.

Theorem. [Fag74] A class of finite structures is definable in existential
second-order logic (Σ1

1) if, and only if, it is decidable in NP.

In this sense, Σ1
1 provides a logical characterisation of the complexity

class NP. Such results are usually referred to as capturing results, i.e. Σ1
1

captures NP. Results of this kind are interesting because they allow the
combination of the methods used in each of the individual areas and to gain
a deeper inside into the structure of problems definable in the logic and the
complexity class.

Similar to Fagin’s theorem, capturing results on ordered structures have
been established for all major complexity classes using variants of fixed-point
logics. In particular, Immerman [Imm86] and Vardi [Var82] showed that, on
finite ordered structures, least fixed-point logic (LFP) captures polynomial
time computations, in the sense that a class of finite ordered structures is
decidable in polynomial time if, and only if, it is definable in least fixed-point
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logic. Other complexity classes such as polynomial or logarithmic space
can also be characterised in this way, using different fixed-point constructs.
For instance, Pspace can be captured by partial fixed-point logic (PFP) –
the extension of first-order logic by partial fixed points – (see [AV89]) and
NLogspace by transitive-closure logic (TC) – the extension of FO by an
operator that forms the transitive closure of a definable graph (see [Imm88,

Imm87a]). These results raised the hope that a separation of complexity
classes could be achieved using methods from finite model theory. Many
of the so called capturing results rely on the availability of an ordering on
the structures. In particular, it is easily seen that on classes of unordered
structures, least fixed-point logic falls short of expressing all polynomial
time computable properties. It is therefore remarkable that a separation of
Pspace and Ptime would also follow from a separation of LFP and PFP

on classes of arbitrary finite structures. This was shown by Abiteboul and
Vianu in [AV91]. See also [Daw93, DLW95].

Theorem. [AV91] On arbitrary classes of finite structures, PFP equals LFP

if, and only if, Pspace equals Ptime.

Considerable efforts have been spent on exploring the properties of the
various fixed-point logics with the ultimate goal of providing a separation
of the corresponding complexity classes. On arbitrary classes of finite struc-
tures, separations of some of the fixed-point logics have been achieved. In
particular, it has been shown by Immerman [Imm81] that transitive-closure
logic is strictly contained in a logic called stratified fixed-point logic (SFP)
or, equivalently, stratified Datalog. A simpler proof of this fact, that
makes use of the game trees considered by Dahlhaus [Dah87], can be found
in [Gro97]. Game trees were also used by Kolaitis [Kol91] to show that strat-
ified fixed-point logic is strictly contained in least fixed-point logic on the
class of finite structures. He also showed that the strict inclusion extends
to infinite structures. However, the methods used rely on classes of un-
ordered structures and the proofs do not extend to classes of ordered finite
structures.

As noted above, least and inflationary fixed-point inductions have been
studied since the 1970’s, and already then the question of whether inflation-
ary fixed-point inductions are more expressive than least fixed-point induc-
tions was raised. Partial results in the direction of establishing the equiv-
alence between inflationary and least fixed-point inductions on classes of
structures equipped with a coding function were achieved in [HK75a, HK75b,

Mos74b, HM74]. In 1986, Gurevich and Shelah [GS86] proved that least and
inflationary fixed-point logic are equivalent on classes of finite structures.
However, the question of whether in general LFP equals IFP was still open.
For partial fixed-point logic, all that is known is that it contains IFP and, as
Pspace strictly contains NLogspace, TC is strictly contained in PFP too.

So far we presented results showing that complexity classes like Ptime
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and Pspace can be captured by fixed-point logics. However, for the non-
deterministic complexity classes between deterministic polynomial time and
space, no such characterisation by fixed-point logics had been given. This
gap was bridged by Abiteboul, Vianu, and Vardi [AVV97] with the introduc-
tion of the non-deterministic fixed-point logic NFP. It was shown that on
ordered structures, NFP captures NP. They also introduced a logic based
on alternating fixed points and proved that this logic captures alternating
polynomial time and thus Pspace on finite ordered structures. For these
logics, results similar to the aforementioned Abiteboul-Vianu theorem have
been established. In particular, a separation of any of them from IFP or
PFP on arbitrary classes of finite structures would show the corresponding
complexity classes apart.

In both logics, the non-determinism is on the formulae which are used
to define the induction stages and not on the choice of tuples included into
the fixed-point relation. Logics following the second approach, i.e. where the
choice is made on the tuples that are to be included into the fixed point, were
considered by Arvind and Biswas [AB87], and Gire and Hoang [GH98]. See
also [DR03] for a detailed study of these logics. The logic C-IFP introduced
by Gire and Hoang [GH98] was designed towards capturing polynomial time
computations. The idea is to restrict the choice of elements so that the logic’s
data complexity is in Ptime. However, in the general form considered in
[DR03], it still captures NP.

A different line along which the expressive power of the various fixed-
point logics can be explored is to study their bounded arity fragments. The
bounded arity fragments of a fixed-point logic L are obtained by allowing
only fixed-point variables of arity at most n, for some n < ω. The hierarchy
naturally obtained in this way within L is called the arity hierarchy of L. It
has been shown by Grohe [Gro96, Gro94] that on arbitrary finite structures,
the arity hierarchies of all fixed-point logics mentioned so far, except for the
non-deterministic logics capturing NP, are strict. In fact, he showed that
there are properties of finite structures definable in the arity k fragment of
transitive-closure logic that are not definable in the arity (k−1) fragment of
partial fixed-point logic.

On the other hand, it was shown by Imhof [Imh96b, Imh96a] that on
ordered structures, all of transitive-closure logic (TC) is contained in the
monadic fragment of PFP, i.e. the fragment where all fixed-point variables
are of arity one. Further, he proved that, again on ordered structures, deter-
ministic transitive-closure logic (DTC) is contained in the monadic fragment
of IFP. Finally, Grohe showed that DTC is contained in the ternary fragment
of LFP. It follows, that establishing the strictness of the arity hierarchy for
LFP or IFP would yield a separation of Logspace and Ptime. Conversely,
showing its collapse would separate Ptime from Pspace, as the arity hi-
erarchy for PFP is strict, even on classes of ordered structures (see, again,
[Imh96a]).
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Computer-Aided Verification

The main issue of computer-aided verification is to provide formal methods
for the validation of dynamic processes as those occurring e.g. in hard- or
software systems. To this end, the processes are modelled as transition
systems, which are directed, node and edge labelled graphs. Each individual
node in the system represents a particular state of the process, and an edge
between two nodes represents the transition between the two states of the
process. Logics, now, play the role of specification languages that are used
to formalise properties of the processes to be validated. There are various
ways in which modelling a process by a transition system can be done. As
a result, there usually is more than one transition system describing the
behaviour of a single hard- or software system. Obviously, specifications
should not distinguish between different models of the same process. This is
formalised by the notion of bisimulation (see Definition 9.4) which captures
a behavioural equivalence between processes. As already first-order logic
is undecidable and has Pspace-complete model checking, fixed-point logics
based on full FO are of limited use for verification purposes. Instead, logics
based on modal logic are used to define specification languages.

The most prominent fixed-point language studied in the area of verifica-
tion is the modal µ-calculus (Lµ). Introduced by Kozen [Koz83] in 1983, Lµ
extends basic modal logic by least fixed-point operators in the same way as
LFP extends FO. In particular, if ϕ(X) is a formula in Lµ, positive in X,
then µX.ϕ is also a formula in Lµ which defines the least fixed point of the
operator naturally induced by ϕ on a transition system. The importance of
the µ-calculus is based on its good balance between expressive power and
complexity. In particular, it enjoys a number of properties, e.g. decidability,
crucial to verification purposes. See [BS01] for an introductory paper and
[AN01] for a detailed study of the µ-calculus.

It was shown by Kozen and Parikh [KP84] that the µ-calculus is decidable
and later, in 1988, Kozen proved the finite model property [Koz88]. However,
the complexity of the decision procedure was still non-elementary. A first
elementary decision procedure for Lµ was given by Streett and Emerson in
[SE89]. Later the problem was shown to be Exptime-complete by Emerson
and Jutla [EJ88].

Further, it has been shown that model checking for Lµ is in NP∩co-NP,
even in UP∩co-UP [Jur98]. However, the only lower bound that was proven
is Ptime-hardness and it has been conjectured that the model checking
problem is in Ptime. The (deterministic) algorithms available so far are
all exponential in the number of alternations between least fixed-point op-
erators and negation symbols occurring in the formula. Thus, showing Lµ
model checking to be in Ptime could trivially be achieved by showing that
alternations in the formulae can be avoided. However, this hope is dashed
by results of Bradfield who proved that the alternation hierarchy for Lµ is
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strict. See [Bra98a, Bra98b] for details.

Other results link modal logics like ML and Lµ to first-order based logics.
Van Benthem proved in his thesis [vB76] that the properties of transitions
systems definable in ML are precisely the properties which are invariant un-
der bisimulations and definable in FO. Later, Rosen [Ros97] established the
finite model theory variant of the result. In this line of research, Janin and
Walukiewicz showed a close correspondence between the modal µ-calculus
and monadic second-order logic (MSO). They proved that the bisimulation
invariant properties of transition systems definable in MSO are precisely the
properties definable in Lµ. Whether this remains true in the restriction to
finite structures is still open.

Constraint Databases

The relational database model introduced by Codd [Cod70] has become the
standard model for current database systems. However, in recent years
new application areas have passed beyond the capabilities of this model.
Applications in data integration or the management of data on the web with
the need to integrate huge amounts of data from different sources that may
not obey to strict structural rules have led to the development of models for
semi-structured data. Among these, the XML database model is the most
prominent.

The growing interest in spatial databases and geographical information
systems with their need to store geometrical figures, naturally viewed as
infinite sets of points, has led to the introduction of new database models
capable of meeting the requirements posed by such applications. One such
model is the constraint database model introduced by Kanellakis, Kuper,
and Revesz [KKR95, KKR90].

Constraint databases are relational extensions of arbitrary, potentially
infinite structures A, called context structure, such that all database relations
are definable by quantifier-free first-order formulae over A. The formulae
defining the relations are called finite representations. The actual content of
a constraint database relation is manipulated by manipulating the formula
representing it. For instance, spatial data may be processed in a constraint
database by choosing the ordered field of reals A := (R, <,+, ·) as context
structure. The relations that are finitely representable over this structure
are precisely the semi-algebraic sets.

Since their introduction, a huge body of results and methods explor-
ing the power and limitations of constraint databases and query languages
has been established. Considerable efforts have been spent on proving col-
lapse results for first-order queries on constraint databases over so-called
o-minimal context structures, e.g. the ordered field of reals. Different kinds
of collapse results have been investigated. As constraint databases are es-
sentially infinite structures, the quantifiers present in first-order queries nat-
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urally range over the infinite universe. In various cases, however, the expres-
sive power of first-order logic does not decrease if quantification is restricted
to the active domain – the set of all elements contained in some database
relation – even if this domain should be finite. In such cases, we speak of a
natural-active collapse. Another type of collapse results deals with queries
invariant under certain transformations of the database, which is usually
referred to as genericity. See [PVV94] and [KV00] for more details on generic
queries.

A typical example of a generic collapse result is that over certain ordered
context structures, every first-order query that is invariant under order pre-
serving permutations, is equivalent to a query which only uses the database
relations and the order symbol, i.e. makes no use of other built-in predicates
like addition. This is called the order-generic collapse. For more details on
collapse results see [BST99, BST97, BST96, BDLW96, BDLW98] and [BL00] and
references therein. See also [Sch01, LS01], and in particular [Sch02], which,
among many other things, gives a survey of collapse results on constraint
databases.

When applied to spatial databases, one usually considers either con-
straint databases storing semi-algebraic sets, called polynomial constraint
databases, or semi-linear sets, known as linear constraint databases. Poly-
nomial constraint databases allow the storage of spatial information in a
natural way.

An important application for such databases are geographical informa-
tion systems (GIS) which are used to store geographic information, i.e. in-
formation about objects on or below the earth’s surface. Typically, such a
system contains spatial information, i.e. relations over the reals, in form of a
map with additional non-spatial or thematic information about the objects
on the map. The thematic information often comes from a finite or at least
countable domain, like the set of words over an alphabet. For instance, lo-
cal administrations provide town maps which list the historical usage of the
various sites in the town. Potential purchasers of properties can then use
these maps to assess the probability of having the site polluted with residual
waste, e.g. oil pollution caused by former industrial use.

Geographical information systems have numerous applications in geol-
ogy, environmental sciences, and geography and are becoming more and
more important in these areas. As the (practical) complexity of algorithms
manipulating semi-algebraic sets is too high and the accuracy achieved by
linear approximations to such kinds of data is usually sufficient, geographical
information systems often use semi-linear sets to store spatial information.

Essentially, the evaluation of first-order queries in the polynomial model
consists of quantifier-elimination in the theory of ordered real fields, for
which a non-deterministic exponential-time lower bound has been proved.
On the other hand, query evaluation on linear constraint databases can be
done efficiently.
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It is known that first-order logic lacks the power to define queries relying
on recursion. A prominent example is connectivity which is not expressible
in FO on almost all interesting classes of structures. This lack of expres-
sive power shows up on polynomial as well as linear constraint databases.
In finite model theory, a standard method to solve this problem is to con-
sider transitive closure or least fixed-point logic. Although such logics have
successfully been used in the context of dense-order constraint databases
(see [KKR90, GS97, GK99]), they are less suitable for the linear database
model, as they are neither closed nor decidable on this class of databa-
ses (see [KPSV96]). Logics extending FO by fixed-point constructs can be
found in [GK97] and [GK00]. Decidability and closure of these languages
was achieved by including certain stop conditions for the fixed-point induc-
tion. The language considered in [GK97] has Ptime data-complexity and
provides an example for a tractable query language. To the contrary, the
language considered by Geerts and Kuijpers in [GK00] provides an example
for an expressively complete language (see also [Gee01]). Another expressive
complete query language is introduced by Gyssens, Van den Bussche, and
Van Gucht in [GdBG97]. A detailed study of linear constraint databases and
queries can be found in [KLP00, Chapter 9].

Besides queries based on recursion there are other important queries that
are not first-order definable. In the context of linear databases, one such
query is the convex closure query. It is easily seen that any extension of
first-order logic that allows the definition of convex closures for arbitrary sets
results in a query language in which full multiplication becomes definable,
and which is therefore not closed. Vandeurzen et al. [VGG98, Van99] defined
a query language called PFOL which extends FO by a limited amount of
multiplication. They proved that in this language, the convex closure query
becomes definable for finite sets of points.

Vandeurzen also showed that there are PFOL-queries that define an
encoding and decoding of linear constraint databases by finite point sets.
This result allows the transfer of methods from finite databases to linear
constraint databases and has been utilised frequently in subsequent research.
It will also play a significant role in our investigations in Part III.

Contributions of this Thesis

In this thesis we study fixed-point logics in three different areas of computer
science. The first part is concerned with fixed-point extensions of first-order
logic, with the focus primarily on infinite structures. The second part deals
with fixed-point logics as used for verification purposes, i.e. logics based on
modal logic. Finally, in Part III we consider query languages for constraint
databases based on fixed-point constructs.
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Part I: Fixed-Point Extensions of First-Order Logic

In the first part we consider fixed-point extensions of first-order logic. As
mentioned above, fixed-point logics have played a crucial role in the devel-
opment of finite model theory and even more so in descriptive complexity
where they are used to provide logical characterisations of most major com-
plexity classes. In Chapter 6, we follow this line of research by introducing
the choice fixed-point logic (CFP) that allows the non-deterministic choice of
tuples with formulae of the form [cfpcR,x ϕ(R,x, c)]. The semantics is similar
to the standard semantics for IFP, with the difference that at each stage a
tuple of elements is chosen non-deterministically for the variables c. The
fixed point defined by such a formula consists of the union of all fixed points
reached by some sequence of choices made at the individual stages. It is
easily seen that the positive fragment of this logic, i.e. the fragment where
no fixed-point operator occurs in the scope of a negation symbol, captures
NP on arbitrary classes of finite structures and is therefore equivalent to
the other non-deterministic fixed-point logics informally discussed above.
Consequently, the full logic captures the polynomial-time hierarchy.

As noted above, Imhof [Imh96a] proved that on ordered structures deter-
ministic transitive closure logic (DTC) is contained in the monadic fragment
of IFP. Similarly, we will show containment of (non-deterministic) transitive-
closure logic (TC) in the monadic fragment of CFP. On unordered struc-
tures, one additional binary fixed-point operator is needed. We can even
strengthen the result by showing that the translation of TC into the monadic
fragment of CFP can be done so that the resulting formulae only need two
universal and no existential quantifiers.

In the preceding paragraphs, we discussed a variety of fixed-point logics,
e.g. logics based on least, inflationary, and partial fixed points. All these
logics can be studied on finite as well as infinite structures – with the ex-
ception of partial fixed points. The reason why partial fixed-point logic
does not extend to infinite structure is that the common semantics given
to this logic has no rule to define limit stages of the fixed-point induction.
As the sequence of stages induced by a partial fixed point is not necessarily
increasing, there is no straightforward way to define such a rule. A second
limitation of the common semantics is that it does not generalise to exten-
sions of other logics than FO, e.g. to modal logic. We give several examples
for this in Chapter 7 and 12.

In Chapter 7, an alternative semantics for partial fixed-point inductions
is defined that overcomes the first, and arguably also the second limitation.
By giving an explicit rule to define limit stages, we guarantee that PFP with
this semantics is well-defined on infinite structures. We show that on finite
structures, partial fixed-point logic with the new and the old semantics are
equivalent. Further, it is shown that PFP with the new semantics contains
IFP via the natural translation of formulae. Even more so, we will be able
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to demonstrate a property on infinite structures that is definable in PFP but
not in IFP. Thus, IFP is strictly contained in PFP.

To generalise the partial fixed-point semantics so that it can also be
affixed to other logics than FO, we give a new interpretation to what the
result of a sequence of stages defined by a partial fixed-point induction shall
be. We demonstrate its usefulness in Chapter 7, and study to some depth
the partial fixed-point extension of modal logic in Chapter 12.

The main contribution of this thesis can be found in Chapter 8 where we
address the problem of whether least and inflationary fixed-point logic are
equivalent. As explained above, the question was first raised in the 1970’s
in the context of monotone and non-monotone inductions over first-order
formulae, and has been open since then. A positive solution of this question
in the restriction to finite structures has been given by Gurevich and Shelah
in [GS86]. In Chapter 8 we give a positive answer to the general problem
by showing that for every IFP-formula there is a formula in LFP such that
both are equivalent on all structures.

Part II: Fixed-Point Extensions of Modal Logic

In Part II, we consider fixed-point extensions of modal logic. As mentioned
above, such logics are widely used in the area of verification. The modal
µ-calculus, the extension of modal logic by least fixed-points, is a very well-
studied logic in this field. However, so far no fixed-point constructs more
powerful than least fixed points have been considered in the context of modal
logics. Therefore, we start our investigations in this area by considering the
straightforward extension of modal logic by inflationary fixed points. We
call this logic the modal iteration calculus (MIC). Contrary to the results
established in Chapter 8, where it is proved that least and inflationary fixed
points in the context of first-order logic are equivalent, we will see that in
the context of modal logic, inflationary fixed points are far more expressive
and complex and various properties of Lµ fail for MIC. In particular, we
show that MIC has infinity axioms, i.e. the finite model property fails. Fur-
ther, we show that the satisfiability problem for MIC is undecidable, in fact
not even in the arithmetical hierarchy, whereas it is Exptime-complete for
Lµ. Regarding the model checking complexity, we show that it is Pspace-
complete for MIC, whereas it is in UP∩co-UP for Lµ, and potentially even
in Ptime.

We also investigate the type of languages definable in MIC and show
that there are languages that are not context-free but MIC-definable. As
every language definable in Lµ is regular, this gives another separation of
the two logics. Finally, for inflationary fixed points simultaneous inductions
are more powerful than inductions over a single formula. This also differs
from the µ-calculus, where simultaneous fixed points can be eliminated in
favour of nested inductions. Clearly, these results disqualify MIC as a logic
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for verification purposes.
In Chapter 12 we study partial fixed-point extensions of modal logic. We

first consider the common partial fixed-point semantics and demonstrate its
failure in this context. We continue by studying the alternative semantics
defined in Chapter 7. The resulting logic is called the modal partial iteration
calculus (MPC). We show that the unary trace equivalence problem, which
is known to be co-NP-complete, is definable in MPC. As this problem is
shown not to be definable in MIC (see Section 14.4), it follows that MPC is
a strict extension of the modal iteration calculus.

So far we have considered a variety of modal fixed-point logics. There
are various techniques that may be used to compare their expressive power.
Showing that one logic is at least as expressive as another can be done by giv-
ing an explicit translation of formulae of the first to formulae of the second.
Establishing separations between logics is often more involved. Usually, this
requires identifying a property expressible in one logic, and showing that
it is not expressible in the other. Many specialised techniques have been
developed for such proofs of inexpressibility. One may consider diagonalisa-
tion arguments similar to the one we use in Chapter 7 to separate PFP and
IFP. Such methods have also been used by Bradfield to establish that in-
creasing alternations of least and greatest fixed points in the µ-calculus yield
greater expressive power [Bra98a]. Another important method are variants
of Ehrenfeucht-Fräıssé games, for instance bisimulation games. One can also
relate logics to finite automata, allowing for the use of methods such as the
pumping lemma.

In Chapter 13 and 14, an alternative complexity measure for modal
properties of finite structures, called labelling index, is introduced. We will
use this measure to analyse the expressive power of various fixed-point logics,
in particular the modal logics introduced in Part II.

The notion of labelling index generalises the concept of the automaticity
of languages, introduced by Shallit and Breitbart in [SB96]. The idea is to
classify languages not in terms of the automata model or type of grammar
needed to accept the whole language, but in terms of the growth rates of
automata accepting the fragments of the language of words up to a fixed
length.

We aim at extending the concept of automaticity from words to modal
properties of arbitrary transition systems. This extension consists of two
somewhat independent parts. First, we introduce a measure of size or com-
plexity of transition systems, called their rank, that generalises the length
of a word. We then introduce an automata-like device that we call labelling
system. It is shown that every class of transition systems can be defined up
to a fixed rank by a labelling system.

For every class C of transition systems, the function that takes every
n ∈ ω to the size of the smallest labelling system, that accepts the subclass
of C of structures whose rank is at most n, is called the labelling index of C.
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By deriving a number of separation results from it, we demonstrate that
this is a useful measure for the complexity of classes of finite transition
systems. In particular, we will obtain separation results for the modal logics
introduced so far.

Further, we use the framework of labelling indices to analyse the relation-
ship between the monadic fragments of first-order based fixed-point logics
and the corresponding modal logics. As noted above, for least fixed points,
Janin and Walukiewicz [JW96] were able to show that precisely the bisimula-
tion invariant MSO-definable properties of transition systems are definable in
Lµ. Further, the bisimulation invariant properties of transition systems that
are definable in MSO and the monadic fragment of LFP coincide. This proves
that Lµ is also the bisimulation invariant fragment of monadic LFP. As ML

is the bisimulation invariant fragment of FO [vB76, Ros97], it is conceivable
that this correspondence between the monadic fragments of first-order fixed-
point logics and the corresponding modal logics can be extended to other
types of fixed points. This hope is dashed by results we obtain in Section
13.4 where we utilise the labelling index to show that there are bisimulation
invariant properties definable in monadic IFP that are not definable in MIC.

We also consider the relationship between the labelling index of a class C
and conventional time and space based notions of its complexity. Finally, we
determine the labelling index of the trace equivalence problem over specific
classes of structures and derive results about its expressibility in modal
logics.

As it turns out, the framework of labelling systems as described above is
smoother when applied to classes of acyclic structures than when cycles are
allowed. Therefore, we split the presentation in two parts and in Chapter
13 introduce the concept on the class of acyclic finite structures, i.e. those
bisimilar to finite trees, and generalise it to classes of arbitrary structures
in Chapter 14.

Part III: Fixed-Point Query Languages for Constraint Databases

In the third part of this thesis, we consider query languages for constraint
databases. Among the various possible context structures, the structure
(R, <,+) of the ordered real group is the most important. We have already
noted that first-order logic lacks the power to define a variety of interesting
queries. One such query is convex closure. A logic capable of defining con-
vex closure cannot be closed on the class of linear constraint databases (see
Theorem 16.4). Closure here means that the result of a query on a linear
constraint database has to be semi-linear again. As closure is an impor-
tant property of any constraint query language, we start our investigation
with the definition of a query language that extends first-order logic by a
restricted form of convex hull operator that retains the closure property (see
Section 16.3.1). It turns out that the expressive power of this language coin-
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cides with the expressive power of the query language PFOL introduced by
Vandeurzen et al. [Van99, VGG98]. As a result, the queries that encode and
decode a semi-linear set by a finite set of points, shown to be expressible in
PFOL, can also be expressed in the query language that we call FO(conv).

In Chapter 17 and 18, we study query languages based on fixed-point
logics. As we will see, fixed-point logics can be used for defining highly ex-
pressive but also tractable query languages. As an example of the former,
we show that transitive closure logic (TC) is expressively complete on the
class of linear constraint databases in the sense that every partially com-
putable query on such databases is definable in TC. However, care has to be
taken on what the partially computable query defined by a formula in TC

is. As on finite databases the result of a TC-formula is always computable,
the precise method used to compute it is irrelevant for the query defined by
this formula. On linear constraint databases, however, it is easily seen that
full arithmetic is TC-interpretable in a linear constraint database. Thus,
the result of a TC-query is not necessarily computable. Therefore, the par-
tially computable query defined by such a formula depends on the precise
operational semantics, i.e. evaluation method, given to TC – with some eval-
uation schemata the result of a given query might be computable whereas
other schemata may fail to do so. Therefore, we first define a suitable op-
erational semantics for TC (see Chapter 17) for which we are then able to
prove that precisely the partially computable queries on linear constraint
databases are TC-definable.

Finally, in Chapter 18, we show that fixed-point logics can also be used
to define tractable, yet expressive, query languages. We demonstrate this
by defining two languages based on least fixed points. The first extends
the query language FO(conv) defined in Section 16.3.1 by a least fixed-
point operator. The fixed point induction is not defined over sets of real
numbers, but over the regions in a decomposition of the input structure. For
practical applications, this means that the input map is decomposed into
meaningful parts, e.g. streets, houses, parks, and so on, and then the fixed
point induction runs over sets of these regions. In the theoretical framework
developed below, we take an arrangement of the input structure as basis
for this logic. Arrangements of semi-linear sets are presented in Section
16.2.2. It is shown that the resulting query language has polynomial time
data complexity and, moreover, is expressive enough to define all polynomial
time computable queries. In this sense, the language, called RegLFP(conv),
captures Ptime on the class of linear constraint databases.

We also introduce a second query language based on a least fixed-point
construct. This time, the fixed-point induction is not defined in terms of
a decomposition of the input. Instead, the fixed point is defined by two
formulae. One formula is used to define a finite set of points, and the other
defines an ordinary least fixed-point induction, with the restriction that only
tuples from the set defined by the other formula are included into the fixed
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point. This way, closure and decidability is retained. It is shown, that
this logic also has polynomial time data complexity and captures Ptime on
the class of linear constraint databases. Thus, the two logics introduced in
Chapter 18 are actually equivalent.
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Chapter 2

Preliminaries

In this chapter, we present the notation used in the sequel. We assume
familiarity with standard notions of mathematical logic and complexity the-
ory. An introduction to mathematical logic can be found in [EFT94]. Our
notation follows [Hod97], which, besides being a text book on model theory,
also serves as an excellent introduction to mathematical logic. For an intro-
duction to complexity theory we refer to [Pap94]. We also assume familiarity
with ordinal numbers and transfinite inductions as it can be found in any
text book on set theory. See e.g. [Jec97] or [Mos94].

We use small letters x, y, z, . . . , possibly subscripted, to denote first-order
variables and capital letters R,Q,X, Y,Z, . . . for second-order variables. Tu-
ples of variables are denoted as x. We often use tuples without being specific
about their length, which will then always be irrelevant or clear from the
context. If A is a set, we also write a ∈ Ak and in this case k is assumed to
be the arity of a.

Ordinal numbers will always be denoted by Greeks letters α, β, ξ, λ, . . . ,
where λ usually stands for a limit ordinal. We write Ord for the class of all
ordinals. For finite ordinals, i.e. integers, we use small letters like n,m, i, j, c
and k, where n and m usually denote variable, large integers, e.g. the size
of a finite structure, i and j are indices, and k and c are fixed, constant
elements, e.g. the arity of a tuple or relation.

If A is a set, then |A| denotes its cardinality and |A|+ the least infinite
cardinal strictly greater than |A|. Further, for any set B ⊆ A, Bc denotes
its complement in A.

Usually, structures are denoted by German letters A,B, . . . with uni-
verses A,B, . . . respectively. If ϕ is a formula, we write ϕ(x) to express that
the variables x occur among the free variables of ϕ. Note that ϕ may have
additional free variable besides the variables in x. For any tuple a from
A we write A |= ϕ(a) to express that ϕ is satisfied by the interpretation
(A, σ) that assigns to each variable xi in x := x1, . . . , xk the element ai
from a := a1, . . . , ak. We write ϕA, and sometimes also ϕ(A), for the set
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{a ∈ Ak : A |= ϕ(a)}. Similarly, if t is a tuple of terms, then t
A

denotes the
interpretation of t in A.

When writing formulae, we will often use an informal notation. In gen-
eral, the policy has been taken to present formulae as simple and under-
standable as possible. Whenever a choice had to be made between syntac-
tical correctness and readability, the latter has been chosen. However, it
will always be clear that there is an equivalent formula that is syntactically
correct.

We now list some notation that will frequently be used in the sequel.
We often write ∀x < z ϕ instead of ∀x(x < z → ϕ). Similarly, if R is
a second-order variable, we use expressions like ∀x ∈ R with the obvious
semantics. We also write R = ∅ or R = Q, where R and Q are second-order
variables, instead of ∀x¬Rx and ∀x(Rx ↔ Qx) respectively. As a final bit
of notation, if ϕ and ψ(x) are formulae and R is a second-order variable,
then ϕ(Ru/ψ(u)) denotes the formula obtained from ϕ by replacing every
occurrence of an atom Ru in ϕ by the formula ψ(u), where u is any tuple
of terms and ψ(u) stands for the formula ψ with the variables in x being
replaced by the corresponding terms in u.

At various places in this thesis we will use word structures Ww that
encode words of an alphabet as a structure.

2.1 Definition. Let Σ be a non-empty alphabet. For every word w ∈ Σ∗ of
length n, define the word structure

Ww := ({0, . . . , n− 1}, <, succ,min,max, (Pa)a∈Σ),

such that for each a ∈ Σ, the i-th letter wi of w is a if, and only if, i ∈ PWw
a .

Further, succ and < denote the natural successor and order relation on the
universe and min and max the minimal and maximal element.

Depending on the context, we sometimes consider word structures without
the successor relation and the constants min and max.
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Chapter 3

Least and Inflationary

Fixed-Point Logic

In this chapter, we introduce two fundamental fixed-point logics – least and
inflationary fixed-point logic – and present basic results about their expres-
sive power and model theory.

3.1 Definitions by Monotone Inductions

Consider the usual definition of regular expressions over an alphabet Σ.

3.1 Definition. Let Σ be an alphabet and Σ′ := Σ ∪̇ {), (, ·,∗ ,+}. The class
of regular expressions over Σ is defined as the least set RegΣ ⊆ (Σ′)∗ such
that

• Σ ⊆ RegΣ and

• with any u, v ∈ RegΣ, RegΣ also contains (u+ v), (u · v) and (u)∗.

Definitions of this kind occur frequently in mathematics. Among the
numerous other examples are the Fisher-Ladner closure of formulae, the
transitive closure of graphs, sub-groups induced by sets of elements, the
definition of first-order logic, and many more.

On a more abstract level, one can read the definition above as defin-
ing RegΣ as the least set closed under the operator FReg : Pow((Σ′)∗) →
Pow((Σ′)∗), which takes any set X ⊆ (Σ′)∗ to the set containing all ele-
ments from Σ and also all (u)∗, (u+ v), (u · v) for any pair u, v ∈ X. Similar
operators can be given for many other definitions of this form.

The important property that these operators share is that for all sets
X,Y such that X ⊆ Y also F (X) ⊆ F (Y ). Operators satisfying this prop-
erty are called monotone.
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3.2 Definition. Let A be a set and F : Pow(A) → Pow(A) be a function.
F is called monotone if for all X ⊆ Y ⊆ A, F (X) ⊆ F (Y ). A fixed point
P of F is any set P ⊆ A such that F (P ) = P . A least fixed point of F is a
fixed point that is contained in any other fixed point of F .

In the light of this definition, we can rephrase the example above and
define the set of regular expressions as the least set Reg closed under the
operator FReg, i.e. the least fixed point of FReg. The importance of the class
of monotone operators is based on the fact that they always have a unique
least fixed point. This is a special property of monotone operators as in
general, functions f : Pow(A) → Pow(A) do not need to have any fixed
points, let alone least fixed points.

However, monotone operators do have least fixed points and these can
be characterised in various ways.

3.3 Theorem (Knaster and Tarski). Let A be a set. Every monotone
function F : Pow(A)→ Pow(A) has a least and a greatest fixed point, written
as lfp(F ) and gfp(F ), which can be defined as

lfp(F ) :=
⋂
{X ⊆ A : F (X) = X} =

⋂
{X ⊆ A : F (X) ⊆ X},

and

gfp(F ) :=
⋃
{X ⊆ A : F (X) = X} =

⋃
{X ⊆ A : F (X) ⊇ X}.

The proof of this theorem is standard and therefore omitted. A conse-
quence of the Knaster-Tarski theorem is, that definitions such as the defini-
tion of regular expressions given above, define a unique set.

There is another common way of defining regular expressions, namely
by saying that the set RegΣ of regular expressions over an alphabet Σ is
inductively build up from the set of letters in Σ by iteratively applying the
following rules:

• If u ∈ RegΣ, then add the word (u)∗ to RegΣ.

• If u, v ∈ RegΣ, then add (u+ v) and (u · v) to RegΣ.

In general, this kind of definition starts with the empty set and then
iteratively applies an operator F until no further elements are added. The
result of such a process is called the inductive fixed point of F .

3.4 Definition. Let A be a set and F : Pow(A) → Pow(A) be a monotone
operator. Consider the sequence (Xα)α∈Ord of sets Xα ⊆ A defined as

X0 := ∅

Xα+1 := F (Xα)

Xλ :=
⋃

ξ<λ

Xξ for limit ordinals λ.
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As F is monotone, this sequence of sets is increasing, i.e. for all α ∈ Ord,
Xα ⊆ Xα+1, and therefore reaches a fixed point X∞, with X∞ := Xα for
the least ordinal α such that Xα = Xα+1. The fixed point X∞ is called the
inductive fixed point of F .

Often, these two kinds of definitions are used interchangeably. The fol-
lowing theorem due to Knaster and Tarski proves that they are equivalent
indeed, i.e. any least fixed point of a monotone operator can inductively be
built up by a sequence of sets as above. Again, the proof of the theorem is
omitted.

3.5 Theorem (Knaster-Tarski). Let A be a set. For every monotone
operator F : Pow(A) → Pow(A), the least and the inductive fixed point
coincide.

Similarly, the greatest fixed point of a monotone operator can also be
defined inductively by the following sequence of sets:

X0 := A

Xα+1 := F (Xα)

Xλ :=
⋂

ξ<λ

Xξ for limit ordinals λ.

Least and greatest fixed points are dual to each other. For every operator
F define the dual operator F d : X 7−→ F (Xc)c. If F is monotone, then F d

is also monotone and we have that

lfp(F ) = gfp(F d)c and gfp(F ) = lfp(F d)c.

3.2 Elementary Inductive Definitions

In this section we continue the study of definitions by monotone inductions
for such operators F that are first-order definable.

Let τ be a signature and A := (A, τ) be a τ -structure. Consider a first-
order formula ϕ(R,x) with k free variables x and a free relation symbol R
not occurring in τ . On the structure A, the formula ϕ induces an operator

Fϕ : Pow(Ak) −→ Pow(Ak)
R 7−→ {a : (A, R) |= ϕ[a]}.

In general, an operator induced by an arbitrary formula is not necessarily
monotone and it also need not have any fixed points. For instance, the
formula ϕ(R,x) := ¬∃y Ry defines on any structure A the operator Fϕ
taking the empty set to the universe A of A and all other sets to the empty
set. Thus, this operator has no fixed points.
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But even in the case where fixed points exist, there need not to be a
least fixed point and even if there is a least fixed point, it is not necessarily
reachable by an inductive sequence as in Definition 3.4.

However, if the formula is chosen such that the operator becomes mono-
tone, then there are always least and greatest fixed points. Unfortunately,
whether a first-order formula defines a monotone operator is undecidable.
One possible way to avoid this, is to restrict the class of admissible formulae
even further, namely to formulae which are positive in the free second-order
variable.

A simple induction on the structure of the formulae shows, that if ϕ(R,x)
is positive in the second-order variable R, then the operator induced by ϕ
is monotone in R.

3.6 Definition. Let A := (A, τ) be a structure and ϕ(R,x) be a first-order
formula positive in the free k-ary second-order variable R 6∈ τ . Let x be a free
k-tuple of first-order variables and let z list all free first-order variables of ϕ
other than those in x. For any interpretation b of the variables z we define
by transfinite induction for every ordinal α the stage Rα of the induction on
ϕ as follows.

R0 := ∅

Rα+1 := {a : (A, Rα) |= ϕ(a)}

Rλ :=
⋃

ξ<λ

Rξ for limit ordinals λ.

We also write ϕα for the α-th stage of the induction on ϕ. The closure
ordinal cl(ϕ) of ϕ on A is the least ordinal α such that ϕα = ϕα+1. Further,
define the closure ordinal of A as the least upper bound of all closure ordinals
of positive first-order formulae.

A set P ⊆ Ak is positive elementary inductively definable in A, or simply
inductive in A, if there is a first-order formula ϕ(R,x), positive in the free
k-ary relation symbol R, and a tuple b of elements from A interpreting the
free variables in ϕ other than x, such that P is the fixed point reached by
the induction on ϕ in (A, b). The elements in b are called the parameters of
the induction.

Finally, P is co-inductive if its complement in A is inductive and it is
hyperelementary if it is both, inductive and co-inductive.

We agree on the following notation that will be used in various places
later on.

Notation. Let (Rα)α∈Ord be an increasing sequence of sets. For any
α ∈ Ord, define R<α :=

⋃
ξ<αR

ξ. If the sequence (Rα)α∈Ord is the sequence
of stages induced by a formula ϕ on a structure A, we also write ϕ<α for
R<α. �
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As noted in the introduction, the concept of fixed-point logics dates back
to the study of inductive definitions in generalised recursion theory. The first
systematic study of inductive definitions on abstract structures, that is on
structures other than the arithmetic, can be found in Moschovakis’ book
Elementary Induction on Abstract Structures [Mos74a] from 1974. See also
[Acz77].

We continue the example from the previous section and show that the
set of regular expressions is inductive.

3.7 Example. Let Σ be an alphabet and let Γ be the disjoint union of Σ
and {), (, ·,+,∗ }. Consider the structure A := (Γ∗,Σ, ·, c(, c), c·, c+, c∗) over

the signature τreg := {Σ, ·, c(, c), c·, c+, c∗}, where ΣA is interpreted by the

set of letters in Σ, ·A is a binary function interpreted as the concatenation
of words, and, for a ∈ Γ\Σ, ca is a constant interpreted by the symbol a,
e.g. cA∗ is interpreted as the symbol ∗. Then the set RegΣ ⊆ Γ∗ is obtained
as the least fixed point of the formula ϕ(R,x) defined as

ϕ(R,x) := Σx ∨ ∃u∃v (Ru ∧Rv ∧ (x = c( · u · c) · c∗ ∨
x = c( · u · c· · v · c) ∨ x = c( · u · c+ · v · c)).

Note that, independent of the cardinality of Σ, the fixed point of ϕ on A is
reached at stage ω. This is due to the fact that ϕ is existential and will be
proved below.

We proceed by collecting some simple facts about the notions introduced
so far.

3.8 Proposition. Let A := (A, τ) be a structure.

(i) For every formula ϕ(R,x) positive in R, cl(ϕ) < |A|+.

(ii) Further, if ϕ is existential, then cl(ϕ) ≤ ω.

(iii) cl(A) ≤ |A|+.

Proof. Parts (i) and (iii) are trivial. Towards establishing Part (ii), sup-
pose there is an existential positive formula ϕ(R,x) such that cl(ϕ) > ω.
Without loss of generality, we assume that ϕ is in prenex normal form,
i.e. ϕ(x) := ∃z1 . . . ∃znψ(x, z). As cl(ϕ) > ω, there exists a tuple b in
ϕω+1\ϕω. Thus, (A, Rω) |= ϕ(b) and therefore there are elements a1 . . . an
such that (A, Rω) |= ψ(b, a1, . . . , an). As Rω :=

⋃
ξ<ω R

ξ, there is a stage

α < ω such that ai ∈ R
α for all i. But then, (A, Rα) |= ψ(b, a1, . . . , an) and

therefore b ∈ Rα+1 contradicting the assumption that b 6∈ Rω. �

We now present one of the most fundamental tools in the theory of induc-
tive definitions: the stage comparison relations. Introduced by Moschovakis
[Mos74a], they provide the central method to compare inductive definitions.



36 Chapter 3: Least and Inflationary Fixed-Point Logic

3.9 Definition (Stage Comparison Relations). Let ϕ(R,x) be a formula
positive in R and let a be a tuple of elements from A. The rank |a|ϕ of a
with respect to ϕ is defined as the least ordinal α such that a ∈ ϕα. If there
is no such ordinal, the rank of a is ∞.

The stage comparison relations ≤ϕ and ≺ϕ of ϕ are defined as

x ≤ϕ y ⇐⇒ x, y ∈ ϕ∞ and |x|ϕ ≤ |y|ϕ,

and
x ≺ϕ y ⇐⇒ x ∈ ϕ∞ and |x|ϕ < |y|ϕ,

where we allow |y|ϕ to be ∞.

The proof of the following lemma follows right from the definition.

3.10 Lemma. For all a,

a ∈ ϕ∞ if, and only if, a ≤ϕ a
if, and only if, (A, {u : u ≺ϕ a}) |= ϕ[a].

Thus, the fixed point of a formula ϕ can be recovered from its stage
comparison relations. The following theorem, due to Moschovakis, shows
that these relations are themselves inductive.

3.11 Theorem (Stage Comparison Theorem). Let ϕ(R,x) be a first-
order formula positive in R. Then ≤ϕ and ≺ϕ can be obtained as the fixed
point of positive inductions on first-order formulae.

A sketch of the proof will be presented in Section 3.3, where the corre-
sponding and more general theorem is established for least fixed-point logic.

There is a second definition of induction stages that is common in the
literature. Here the stages Rα are inductively defined by the rule

Rα := {a : (A, R<α) |= ϕ(a)}.

Obviously, the fixed points of the induction sequences defined by either rule
are identical and therefore one can use either to define inductive sets. Which
one to choose is a matter of style and preference.

The main difference between the two definitions is that in the definition
of stages as in 3.6, all elements enter the fixed point at successor stages,
i.e. there are no elements whose rank is a limit ordinal. In the alternative
definition, however, there might be such elements. In particular, according
to this definition, Stage 0 is not just the empty set but already contains the
elements that are in Stage 1 of our definition. More general, stage α in the
alternative definition corresponds to stage α+1 according to Definition 3.6.

The alternative definition is sometimes more convenient when proving
results about fixed point inductions, as the rank of the elements coincides
with their height in the well-ordering defined by ≺ϕ. However, we will stick
to Definition 3.6, as it seems to be more common in the literature. The only
exception to this is Chapter 8, where the alternative rule is applied.
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3.3 Least and Monotone Fixed-Point Logic

In the previous section, we studied inductive definitions—relations defined
by iteratively applying a first-order formula. In computer science, logics are
often considered in the tradition of query or programming languages. Here,
one is interested in nesting inductive definitions, i.e. to be able to use the
fixed point built up by a formula to define another fixed point. This gives
rise to the first of our inductive logics, the monotone fixed-point logic.

3.12 Definition (Monotone Fixed-Point Logic). Monotone fixed-point
logic (MFP) is defined as the extension of first-order logic by the following
formula building rule. If ϕ(R,x) is a formula with free first-order variables
x := x1, . . . , xk and a free second-order variable R of arity k such that the
corresponding operator Fϕ is monotone on all structures, then

ψ := [lfpR,x ϕ](t)

is also a formula, where t is a tuple of terms of the same length as x. The
free variables of ψ are the variables occurring in t and the free variables of
ϕ other than x.

Let A be a structure providing an interpretation of the free variables of
ϕ except for x. Then for any tuple t of terms, A |= [lfpR,x ϕ](t) if, and only

if, t
A
∈ lfp(Fϕ).

As explained above, the least fixed point of any monotone operator F
always exists. Therefore the semantics of the monotone fixed-point logic
is well defined. However, the property of a formula to define an operator
monotone on all structures is undecidable and therefore the logic has an
undecidable syntax.

To avoid this, one considers syntactical restrictions of MFP which guar-
antee monotonicity of the corresponding operators. The most important
such restriction is to allow only formulae in the fixed-point rule, which are
positive in the relation variable R. This leads to the definition of least
fixed-point logic.

3.13 Definition (Least Fixed-Point Logic (LFP)). Least fixed-point
logic (LFP) is defined as the extension of first-order logic by the following
formula building rule. If ϕ(R,x) is a formula with free first-order variables
x := x1, . . . , xk and a free second-order variable R of arity k such that ϕ is
positive in R, then

ψ := [lfpR,x ϕ](t)

is also a formula, where t is a tuple of terms of the same length as x. The
free variables of ψ are the variables occurring in t and the free variables z
of ϕ other than x. The variables in z are called the parameters of ψ.
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Let A be a structure providing an interpretation of the free variables of
ϕ except for x. Then for any tuple t of terms, A |= [lfpR,x ϕ](t) if, and only

if, t
A
∈ lfp(Fϕ).

Clearly, LFP ⊆ MFP. Further, the theorem by Knaster and Tarski ap-
plies to least and monotone fixed-point logic. Thus the fixed points can also
be defined by an inductive sequence of stages. Finally, the notion of closure
ordinals of formulae and structures can easily be adopted to this framework
too.

A fragment of LFP that is of particular interest to various areas of com-
puter science is monadic least fixed-point logic.

3.14 Definition. Monadic least fixed-point logic (M-LFP) is defined as the
fragment of LFP where all fixed-point variables are monadic, i.e. of arity
one.

We proceed by presenting several examples that demonstrate the use of
least fixed-point logic.

3.15 Example. • Let G := (V,E) be a graph. The transitive closure1

of E is defined by the formula [lfpR,x,y Exy ∨ ∃z(Rxz ∧ Rzy)](x, y).
More general, if ϕ(x, y) is a formula and A a structure, the transitive
closure of the relation ϕA defined by ϕ on A is defined by

[lfpR,x,y ϕ(x, y) ∨ ∃z(R(x, z) ∧Rzy)](u, v).

• Let A := (A,<) be an ordered structure. The formula

[lfpR,x∀y(y < x→ Ry)](x)

defines the well-founded part of <. The individual stages Rα contain
all elements of height less than α.

• Finally, we show that every regular language is definable in LFP. Let
A := (Q,Σ, q0, δ, F ) be a deterministic finite automaton with a finite
set Q of states, a set F ⊆ Q of final states, and the transition function
δ. As Q is finite, we can quantify over a variable xq for each q ∈ Q
such that all these variables denote distinct elements.2 Therefore, we
use notation like ∃q ∈ F ϕ(q) to express that ϕ is satisfied by one of
the variables xq denoting a final state.

1The transitive closure of a binary relation is formally defined in Definition 4.1.
2Note that his requires structures of size at least |Q|. However, there are only finitely

many words of length less than |Q| and thus the set of words of length less than |Q| which
are accepted by A is definable by a first-order formula.
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Thus prepared, it is easily seen that the formula

∃qf ∈ F [lfpR,x,q





(x = min ∧
∨
a∈Σ(Pax ∧ q = δ(q0, a))

∨(∃y∃q′ succ(y) = x ∧Ryq′ ∧
∨
a∈Σ(Pax ∧ q = δ(a, q′))



](max, qf )

is satisfied by a word structure Ww := (W,<,min,max, succ, (Qa)a∈Σ)
if, and only if, w is accepted by A.

In Example 3.17 below, we will see that the regular languages are even
definable in monadic LFP.

3.3.1 Simultaneous Inductions

We now introduce the concept of simultaneous inductions. As the name
suggests, simultaneous inductions allow us to build up simultaneously the
fixed points of more than one formula. As we will see, for most fixed-point
logics we consider here, this does not increase the expressive power and thus,
strictly speaking, is not necessary. However, it often helps to present formu-
lae in a more readable way and makes them easier to understand. Therefore,
we will make extensive use of simultaneous formulae in the sequel. The def-
inition of simultaneous inductions is presented in terms of the inductive
definition of stages leading to the least fixed point and not in terms of least
fixed points directly. As we have seen, the two concepts are equivalent and
choosing one is merely a matter of style and preference.

3.16 Definition (Simultaneous least fixed-point logic). Let R1, . . . , Rk
be relation symbols of arities ri, respectively. Simultaneous formulae are
formulae of the form ψ(x) := [lfp Ri : S](x), where

S :=






R1x1 ← ϕ1(R1, . . . , Rk, x1)
...

Rkxk ← ϕk(R1, . . . , Rk, xk)

is a system of LFP-formulae positive in all variables Ri. On a structure A,
a formula ϕi in S induces an operator

Fϕi
: Pow(Ar1)× · · · × Pow(Ark) −→ Pow(Ari)

(R1, . . . , Rk) 7−→ {a : (A, R1, . . . , Rk) |= ϕi[a]}.

The stages Sα of an induction on such a system S of formulae are k-tuples
of sets (Rα1 , . . . , R

α
k ) defined as

R0
i := ∅

Rα+1
i := Fϕi

(Rα1 , . . . , R
α
k )

Rλi :=
⋃

ξ<λ

Rξ for limit ordinals λ.
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For every structure A := (A, τ) and any tuple a from A, A |= ψ[a] if, and
only if, a ∈ R∞

i , where R∞
i denotes the i-th component of the simultaneous

fixed point of S.
Let S-LFP denote the class of LFP-formulae with simultaneous induc-

tions.

The following example demonstrates the use of simultaneous fixed-point
formulae.

3.17 Example. Consider again the simulation of deterministic finite au-
tomata by formulae in LFP as presented in Example 3.15. We show that this
simulation can also be done in simultaneous monadic least fixed-point logic.
Let A := (Q,Σ, q0, δ, F ) be a deterministic finite automaton and consider the
formula ϕ := [lfp Qf : S](max), where S is defined as the system containing
a rule

Qqx ← (x = min ∧
∨
a∈Σ,q=δ(q0,a)

Pax) ∨

(∃y succ(y) = x ∧
∨
q=δ(q′,a)(Qq′y ∧ Pax))

for every state q ∈ Q and the additional rule Qfx←
∨
q∈F Qqx. It is easily

seen that on every word structure Ww := (W,<,min,max, succ, (Pa)a∈Σ)
the fixed point Q∞

q of the simultaneous induction on S contains precisely the
positions in the word w to which the automaton A assigns the state q. Thus,
Ww |= ϕ if, and only if, w is accepted by A.

We show now that allowing simultaneous fixed points does not increase
the expressive power of LFP, i.e. S-LFP = LFP.

3.18 Lemma. For any system S of formulae in LFP, positive in their free
fixed-point variables, [lfp Ri : S](t) is equivalent to a formula in LFP (with-
out simultaneous inductions).

Proof. Let

S :=






R1x1 ← ϕ1(R1, . . . , Rk, x1)
...

Rk−1xk−1 ← ϕk−1(R1, . . . , Rk, xk−1)
Rkxk ← ϕk(R1, . . . , Rk, xk)

be a system of formulae in LFP. Then [lfp R1 : S] is equivalent to the
formula [lfp R1 : T ], where

T :=






R1x1 ← ϕ1(R1, . . . , Rk−1, Rku/[lfpRk,xk
ϕk](u), x1)

...
Rk−1xk−1 ← ϕk−1(R1, . . . , Rk−1, Rku/[lfpRk,xk

ϕk](u), xk).

Thus, the new system T is obtained from S by removing the rule for Rk and
substituting in the formulae ϕ1 to ϕk−1 every occurrence of an atom Ru by
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the least fixed point of ϕk. The correctness of this construction – sometimes
referred to as the Bekič-principle – follows from the monotonicity of the
involved operators. We omit the proof of this result and refer to [AN01,

Lemma 1.4.2 on Page 27] instead. �

The next theorem follows immediately by induction on the structure of
the formulae using the preceding lemma.

3.19 Theorem. Simultaneous least fixed-point logic and least fixed-point
logic are equivalent, i.e. S-LFP = LFP.

Note that the translation of simultaneous LFP-formulae to simple formu-
lae does not increase the arity of the involved fixed-point variables nor does it
increase the number of alternations between fixed-point operators and nega-
tion. It does, however, affect the nesting depth of the fixed-point operators.
As a consequence, the formula given in Example 3.17 above is equivalent to
a formula in M-LFP without simultaneous inductions. Thus, every regular
language is definable in M-LFP and therefore MSO – the monadic fragment
of second-order logic – and M-LFP are equivalent on words.

In Section 3.4 we present a different proof of the theorem where the
nesting depth of the formulae does not increase. The price we pay is that the
arity of the involved fixed-point variables increases. Therefore, for logics like
the modal µ-calculus, defined in Chapter 10, which only allow monadic fixed-
point inductions, we have to use the method here to eliminate simultaneous
inductions.

3.3.2 Alternation and Nesting in Least Fixed-Point Logic

In this section, we aim at identifying potential sources of complexity for
least fixed-point formulae. The first is the nesting depth, which measures
the number of fixed-point operators in an LFP-formula nested inside each
other.

The second is the alternation depth. The alternation depth is not based
on the number of nested fixed points, but on the number of alternations
between negation symbols and fixed-point operators.

It turns out, that for least fixed-point logic, not nesting but alternation
of fixed points is the source of expressive power and evaluation complexity.

3.20 Theorem (Transitivity Theorem). Let ϕ(R,Q, x) and ψ(R,Q, y)
be first-order formulae positive in R and Q such that no free first-order
variable of ψ is bound in χ := [lfpR,x ϕ(Qu/[lfpQ,yψ](u))](x). Then χ is
equivalent to a formula with only one application of an lfp-operator.

See [Mos74a, Theorem 1C.3] for a proof of the theorem. The presentation
given here follows [EF99, Lemma 8.2.6 on Page 182]. The next corollary follows
by induction on the number of fixed-point operators.
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3.21 Corollary. Every formula ϕ ∈ LFP in which all fixed-point operators
occur only positively is equivalent to a formula with only one application of
a fixed-point operator.

We show now that using fixed points negatively, i.e. allowing alterna-
tions between negation symbols and fixed-point operators, does increase the
expressive power.

There are various definitions of the alternation hierarchy for LFP in the
literature. Our presentation is based on the definition given in [Niw86]. See
also [Bra98a] and references therein.

3.22 Definition (Defining formulae). Let ϕ ∈ LFP be a formula in LFP

and let ϕ1, . . . , ϕk be the sub-formulae of ϕ of the form [lfpRi,xψi](ti). ϕi is
called the defining formula of Ri in ϕ. We usually omit the reference to ϕ
when it is clear from the context.

We now define a partial order, the so-called dependency order ⊑ϕ, on
the fixed-point variables in a formula ϕ ∈ LFP such that X ⊑ϕ Y if the
induction on Y depends on the current stage of the induction on X.

3.23 Definition (Dependency order). Let ϕ ∈ LFP be a formula such
that no fixed-point variable is bound twice in it and let R1, . . . , Rk be the
fixed-point variables occurring in ϕ. For all i, let ϕi be the defining formula
of Ri. Ri depends directly on Rj in ϕ, in terms Rj ⊑

1
ϕ Ri, if Rj occurs free

in ϕi. Define ⊑ϕ as the transitive closure of ⊑1
ϕ and say Ri depends on Rj

in ϕ just in case that Rj ⊑ϕ Ri.

Based on this dependency relation for the fixed point variables in a for-
mula, we can now define the alternation and nesting-depth hierarchy of LFP.

3.24 Definition (Alternation and nesting-depth hierarchy). Let ϕ ∈
LFP be a formula such that no fixed-point variable is bound twice in it and
let R1, . . . , Rk be the fixed-point variables occurring in ϕ.

(i) The nesting-depth of ϕ is defined as the maximal cardinality of a subset
of {R1, . . . , Rk} linearly ordered by ⊑ϕ.

(ii) The alternation-depth of ϕ is defined as the maximal cardinality of
a subset M of {R1, . . . , Rk}, linearly ordered by ⊑ϕ, such that, in
addition, for all Ri, Rj ∈ M if Ri is a direct predecessor of Rj in M
with respect to ⊑ϕ then the defining formula ϕj of Rj occurs negative
in the defining formula ϕi of Ri.

The n-th level of the alternation hierarchy (LFPan)n∈ω of LFP is defined as
the class of formulae in LFP of alternation-depth at most n. Analogously,
the n-th level of the nesting depth hierarchy (LFPdn)n∈ω of LFP consists of
all formulae of LFP with nesting-depth at most n. A formula ϕ ∈ LFP is
called alternation free if it is contained in LFPa1.
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Note that the definition of nesting and alternation depth does not simply
count the number of nested fixed points or the number of alternations on a
purely syntactical basis. It also takes into account, whether the nested fixed
points really depend on each other.

Obviously, the nesting-depth hierarchy is finer than the alternation hier-
archy in the sense that a formula with alternation depth n also has nesting-
depth at least n. Using simple diagonalisation arguments like the one in
Chapter 7 below, it can be shown that in general the nesting-depth hierar-
chy is strict, i.e. there is no constant k < ω such that every LFP formula is
equivalent to a formula with only k nested fixed points.

On the other hand, Theorem 3.20 implies that for LFP the nesting-depth
hierarchy collapses to the alternation hierarchy. An immediate consequence
of this is, that in general the alternation hierarchy is strict for LFP. (See
[Mos74a, Chapter5] but also [Bra98a] for proofs of this.)

3.25 Theorem. The alternation hierarchy for LFP is strict.

The proof of this theorem uses a diagonalisation argument which relies
on structures being infinite. And indeed, it has been shown by Immerman
[Imm86] that on finite structures, the nesting depth and therefore also the
alternation hierarchy collapses for LFP. A proof of the theorem can also be
found in Section 8.1.

3.26 Theorem. On finite structures, every formula in LFP is equivalent to
a formula with at most one occurrence of an lfp-operator.

3.3.3 Comparing the Stages

We close the section by stating the LFP version of the Stage Comparison
Theorem 3.11.

3.27 Theorem (Stage Comparison Theorem for LFP). Let ϕ(R,x) be
a LFP-formula positive in R. Then the stage comparison relations ≤ϕ and
≺ϕ are definable in LFP.

Consider the system S of formulae defined as

S :=

{
x ≤ y ← ϕ(x,Ru/u ≺ y) ∧ ϕ(y,Ru/u ≺ y)
x ≺ y ← x ≤ x ∧ ¬ϕ(y,Ru/¬(x ≺ u ∨ x ≤ u)),

where ϕ(x,Ru/u ≺ y) is obtained from ϕ by replacing each atom of the form
Ru by u ≺ y. We claim that on any structure A, the simultaneous fixed
point (≤∞,≺∞) of the induction of S on A contains precisely the stage
comparison relations ≤ϕ and ≺ϕ on A.

The proof of this is rather technical and therefore omitted. Note that
the result also follows from Theorem 8.7 below.
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Least fixed-point logic extends first-order logic by an operator to define
the least fixed point of operators induced by positive formulae. Clearly, this
concept is not limited to first-order logic and other logical formalisms can
be similarly extended by least fixed-point constructs. We will see another
example of this in Chapter 10, where we consider the modal µ-calculus, a
fixed point logic based on modal logic.

3.4 Inflationary Fixed-Point Logic

Least fixed-point logic is a powerful and important logic. However, the re-
striction to positive formulae allowed inside the fixed-point operators limits
the logic to monotone inductions. To overcome this restriction, several al-
ternative fixed-point concepts have been introduced. In this section, we
consider the inflationary fixed-point logic, which extends FO by inflationary
fixed points in the same way as LFP extends FO by least fixed points. This
logic is not limited to monotone operators and in some sense is the simplest
non-monotone fixed-point logic. We will consider even stronger logics in
later chapters.

3.28 Definition. Let A be a set and F : Pow(A)→ Pow(A) be a function.
F is inflationary if for all X ⊆ A, X ⊆ F (X). F is inductive if the sequence
Xα inductively defined by

X0 := ∅

Xα+1 := F (Xα)

Xλ :=
⋃

ξ<λ

Xξ for limit ordinals λ

is increasing, i.e. for all α, Xα ⊆ Xα+1. Obviously, any inflationary func-
tion F is inductive and on any set A, the sequence (Xα)α∈Ord must reach a
fixed point X∞ := Xα for the least α such that Xα = Xα+1. The inflation-
ary fixed point of F is defined as the fixed point X∞ of the sequence of sets
induced by F .

Clearly, any monotone or inflationary function is inductive but there are
inductive functions which are neither monotone nor inflationary. Further,
monotone functions need not to be inflationary and conversely, inflation-
ary functions are not necessarily monotone. The following example demon-
strates this.

3.29 Example. Consider A := ω, the set of finite ordinals.

(i) The function F1 taking the empty set to {0}, each singleton {n} to
{n+1}, and all other sets to ∅ is inductive but neither monotone nor
inflationary.
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(ii) The function F2 taking any set X ⊆ A to the empty set is obviously
monotone but not inflationary.

(iii) The function F3 taking {0} to {0, 1, 2}, {0, 1} to {0, 1}, and all other
sets to itself is inflationary but not monotone.

(iv) Finally, the function F4 taking any set X 6= ∅ to ∅ and ∅ to {0} is
neither monotone, nor inflationary, nor inductive.

As the example demonstrates, monotone, inflationary, and inductive
functions are different concepts. However, when it comes to fixed-point
logics based on these concepts, the difference between inductive and infla-
tionary operators vanishes.

3.30 Definition (Inflationary Fixed-Point Logic). Inflationary fixed-
point logic (IFP) is defined as the extension of first-order logic by the fol-
lowing formula building rule. If ϕ(R,x) is a formula with free first-order
variables x := x1, . . . , xk and a free second-order variable R of arity k, then

ψ := [ifpR,x ϕ](t)

is also a formula, where t is a tuple of terms of the same length as x. The
free variables of ψ are the variables occurring in t and the free variables of
ϕ other than x.

Let A be a structure with universe A providing an interpretation of the
free variables of ϕ except for x. Obviously, the operator Iϕ defined as

Iϕ(R) := R ∪ Fϕ(R) = {a ∈ Ak : a ∈ R or (A, R) |= ϕ[a]}

is inflationary and thus has an inflationary fixed point R∞. For any tuple t
of terms, A |= [ifpR,x ϕ](t) if, and only if, t

A
∈ R∞.

Again, the monadic fragment of IFP is of particular interest.

3.31 Definition (M-IFP). Monadic inflationary fixed-point logic (M-IFP)
is defined as the fragment of IFP where all fixed-point variables are monadic,
i.e. of arity one.

A question that naturally arises is whether we indeed have defined some-
thing new, i.e. whether LFP and IFP are different. Obviously, LFP ⊆ IFP as
the least fixed point of a monotone operator is also the inductive and hence
the inflationary fixed point. In Chapter 8 we will see that the converse also
holds, i.e. that the two logics are actually equivalent. Showing this, however,
requires some more effort.

In spite of LFP and IFP being equivalent, least and inflationary induc-
tions have rather different properties and inflationary inductions are gener-
ally more expressive. We demonstrate this by an example.
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3.32 Example. Let Σ := {a, b, d} be an alphabet and consider the class W
of word structures Ww := (W,<,Pa, Pb, Pd) such that w ∈ (a ∪ b)∗d(a ∪ b)∗.
The class C ⊆ W of structures representing words w := vdv, for some
v ∈ (a ∪ b)∗, is definable in M-IFP but not in M-LFP.

Clearly, the language represented by C is not regular and thus not defin-
able in MSO. As M-LFP ⊆ MSO, it follows that C is not M-LFP-definable.
However, it is defined in M-IFP by the formula ϕ := ∀x 6= d [ifpR,x ψ](x),
with

ψ :=
∃x1 6∈ R ∧ ∀y < x1Ry ∧ ∃x2 6∈ R ∧ ∀y(d < y < x2 → Ry) ∧

Pax1 ↔ Pax2 ∧ Pbx1 ↔ Pbx2 ∧ x = x1 ∨ x = x2),

where, to simplify notation, d is used as a constant that denotes the unique
letter labelled by d.

On a word w = w1dw2 the formula simultaneously scans the sub words
w1 and w2 from the left to the right. At each stage, the first line of ψ
defines the two positions x1, x2 in w1 and w2 respectively, which have not
yet been read but such that all positions to the left of x1, x2 have already been
considered.

The second part of ψ ensures that x1 and x2 are added to R if, and only
if, they are labelled by the same letter.

Obviously, for every word w = w1dw2 such that Ww ∈ C, the formula
eventually adds all positions except d to the fixed point and thus Ww |= ϕ.
Conversely, if Ww |= ϕ, then w must be of the form vdv and thus Ww ∈ C.

Note how the formula uses the conjunction x1 6∈ R ∧ ∀y < x1Ry to say
that x1 is not yet contained in the fixed point but will enter in the next
step. This is a general technique for inflationary fixed-point logic that will
be applied at various places in the sequel. In general, if ϕ(R,x) is a formula
defining a fixed-point induction, then for any given stage Rα, the formula
¬Rx ∧ ϕ(R,x) defines the tuples x ∈ Rα+1 − Rα. In a limited form, this
gives the formula access to the individual stages of the fixed-point induction,
something that is impossible in least fixed-point logic.

Besides this more technical advantage of inflationary inductions, it turns
out that it is often easier to formalise properties in IFP than in LFP. The
main advantage of LFP, however, is that it allows a simpler evaluation. In
particular for least fixed-point formulae with a limited number of alterna-
tions between fixed-point operators and negation the (practical) evaluation
complexity is much better than for IFP.

We will see numerous further examples showing that least and inflation-
ary fixed point inductions have very different properties. And indeed, if the
fixed-point inductions are not considered in the context of full first-order
logic but on restricted variants of FO, for instance modal logic, then in-
flationary fixed points turn out to be far more expressive than least fixed
points. This will further be explored in Part II.
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Simultaneous fixed points. As with least fixed-point logic, we also
allow simultaneous inductions in IFP, and again these do not increase the
expressive power. The proof, however, is completely different as for LFP.
As the formulae used to build up the fixed points are no longer monotone,
simultaneous fixed points cannot be pushed inside each other. Examples for
the failure of the Bekič-principle for inflationary inductions can easily be
found. See also Section 11.4.

3.33 Theorem. Simultaneous inflationary fixed-point logic (S-IFP) and in-
flationary fixed-point logic (IFP) have the same expressive power.

Proof. The proof is by induction on the structure of formulae in S-IFP. In
the main step, let ϕ := [ifp Ri : S](t) be a formula, where

S :=






R1x1 ← ϕ1(R1, . . . , Rk, x1)
...

Rkxk ← ϕk(R1, . . . , Rk, xk)

is a system of formulae in IFP. Without loss of generality, we assume that
all Ri are of the same arity r and all xi are of the form x1, . . . , xr. Let x be a
(r+1)-tuple of variables and R be a r+1-ary relation symbol not occurring
in any of the ϕi.

The idea is that instead of having k distinct fixed-point variables R1, . . . ,
Rk we only take one, of enhanced arity, and use markers 1, . . . , k in its last
component so that at each stage α, the projection of Rα on those tuples,
where the last component is i, is just the stage Rαi . For this, consider the
formula ϑ := ∃1 . . . ∃k (

∧
1≤i6=j≤k i 6= j) ∧ [ifpR,x ψ(R,x)](t

′
), where t

′
:= ti

and

ψ(R,x) :=

k∨

i=1

xr+1 = i ∧ ϕi(x,Rju1 . . . ur/Ru1 . . . urj).

Let A be a structure with at least k elements. We claim that for all i ∈
{1, . . . , k}, all a ∈ Ar, and all α ∈ Ord,

a ∈ (Sα)i ⇐⇒ (a, i) ∈ Rα.

The claim is easily proved by induction on α. Thus, ϕ and ϑ are equivalent
on structures with at least k elements. On structures with less than k
elements, the theorem is trivial as the fixed point defined by ϕ is already
definable in first-order logic. �

Alternation and Nesting in Inflationary Fixed-Point Logic. In
Section 3.3.2 we studied the impact of alternation and nesting of fixed points
on the expressive power of LFP. As we have seen, nested positive least fixed
points can always be eliminated in favour of a single fixed point. On the other
hand, alternation between negation and fixed points can not be eliminated.
We show now, that the situation for IFP is rather different.
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3.34 Theorem. Every IFP-formula is equivalent to a formula where nega-
tion occurs only in front of atoms. In particular, the alternation hierarchy3

for IFP collapses.

Proof. The theorem is proved by induction on the structure of the formulae.
For the case of ifp-operators, note that a formula ¬[ifpR,x ϕ](t) is equivalent
to the simultaneous fixed point [ifp Q : S](t) of the system

S :=

{
Rx ← ϕ(R,x)

Qx ← ∀y (ϕ(R, y)→ Ry) ∧ ¬Rx.

On structures with at least two elements this is equivalent to the inflationary
fixed point of a single formula whereas on structures with only one element,
IFP collapses to FO anyway and the theorem is trivial. �

As with LFP, simple diagonalisation arguments as used in Chapter 7
show that the nesting depth hierarchy for IFP does not collapse in general.

3.35 Proposition. The nesting-depth hierarchy for IFP is strict.

In Chapter 8, we will establish a tight correspondence between the LFP-
alternation hierarchy and the IFP nesting-depth hierarchy by showing that
for all structures A either both hierarchies collapse on A or both are strict.
See Theorem 8.8 and Corollary 8.9 for a proof.

However, the normal form proved for LFP on finite structures, also holds
true for IFP. See [Imm86] for a proof of this theorem, which can also be
found in Section 8.1.

3.36 Theorem. On finite structures, every formula in IFP is equivalent to
a formula with at most one fixed-point operator.

Inflationary Stage Comparison. We close the section by stating the
stage comparison theorem for IFP. Recall the definition of the relations
≺ϕ and ≤ϕ for positive formulae ϕ (see Definition 3.9). Clearly, the same
definition also applies for formulae ϕ which are not required to be positive
in their fixed-point variables. In this case, the induction stages refer to the
inflationary instead of the least fixed-point induction.

We have already seen how the stage comparison relations of a least fixed-
point induction can be defined in LFP. We now prove the analogous theorem
for inflationary fixed-point logic. As it turns out, defining the stage compari-
son relations for an inflationary induction is even simpler than the analogous
definition for LFP.

3The definition of the alternation and nesting-depth hierarchy for IFP is analogous to
Definition 3.24.
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3.37 Theorem. For every formula ϕ(R,x) ∈ IFP the stage comparison
relations ≺ϕ and ≤ϕ are definable in IFP.

Proof. W.l.o.g. we assume that ϕ is of the form Rx ∨ ϕ′. We claim that
the relations ≤ϕ and ≺ϕ can be obtained as the simultaneous fixed point of
the following system S of formulae:

S :=

{
x ≤ y ←− ϕ(x,Ru/u ≺ y) ∧ ϕ(y,Ru/u ≺ y)
x ≺ y ←− ϕ(x,Ru/u ≺ x) ∧ ¬ϕ(y,Ru/u ≺ x).

Here, ϕ(x,Ru/u ≺ y) means that every occurrence of an atom Ru in ϕ, for
some tuple of terms u, is replaced by the new atom u ≺ y.

For every ordinal α, let ≤α and ≺α denote the relations ≤ and ≺ at stage
α of the induction on S and let ≤<α and ≺<α be the union of all stages less
than α, i.e. ≤<α=

⋃
β<α ≤

β and ≺<α=
⋃
β<α ≺

β. We prove by induction

that for all α and all pairs (a, b),

• (a, b) ∈≤α if, and only if, |b|ϕ ≤ α and |a|ϕ ≤ |b|ϕ and

• (a, b) ∈≺α if, and only if, |a|ϕ ≤ α and |a|ϕ < |b|ϕ.

From this, the theorem follows immediately. Let α be an ordinal and
suppose that for all β < α the claim has been proved, i.e. (a, b) ∈≤<α if,
and only if, |a|ϕ ≤ |b|ϕ < α and likewise for ≺<α.

Suppose b is a tuple of elements of rank ξ ≤ α. Then, the set {u : u ≺<α

b} contains precisely the elements of rank less than ξ. Thus, ϕ(y,Ru/u ≺ y)
is satisfied by b. Set y := b. A tuple a satisfies ϕ(x,Ru/u ≺ y) if, and only
if, the rank of a is at most ξ and therefore |a|ϕ ≤ |b|ϕ.

On the other hand, if the rank of b is greater than α, then {u : u ≺<α b}
is just ϕ<α and therefore ϕ(y,Ru/u ≺ y) is not satisfied by b. This proves
the induction hypothesis for the first item above.

For ≺, let a be a tuple of elements of rank ξ ≤ α. Again, {u : u ≺<α a}
contains all elements of rank less than ξ and therefore ϕ(x,Ru/u ≺ x) is
satisfied by a. Obviously, if we set x := a, then ¬ϕ(y,Ru/u ≺ x) is satisfied
by those tuples b whose rank is greater than ξ and therefore greater than
the rank of a. Finally, if a is a tuple of rank greater than α, it does not
satisfy ϕ(x,Ru/u ≺ x). This proves the second item above and, with it, the
claim.

Thus, the stage comparison relations ≤ϕ and ≺ϕ are defined by the
IFP-formulae [ifp ≤ : S](x, y) and [ifp ≺ : S](x, y) respectively. �

Note that the formula defining the non-strict stage comparison relation
≤ depends on the fixed-point variable ≺ and therefore on the induction on
≺. However, the second formula, defining ≺, does not use the variable ≤.
Therefore, the strict relation ≺ can be defined by the inflationary fixed-point
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of the second formula without any need to simultaneously define ≤. This
will be used in Chapter 8 below.

Right from the definition, the syntax of IFP is much more liberal than the
syntax of LFP and as we have seen above, the two logics have rather different
properties in terms of alternation and nesting depth but also in various other
aspects. Nevertheless, we will show below that they are actually equivalent.
In this sense, IFP is the simplest fixed-point logic which extends LFP towards
non-monotone inductions. We discuss various more expressive logics below.

3.5 Inductive Fixed Points and Second-Order Logic

In this section we compare least and inflationary fixed-point logic with
second-order logic. A first hint how to link LFP with SO was already given
in Theorem 3.3 above. There, the least fixed point of a monotone operator
F on a set A was defined as

lfp(F ) :=
⋂
{X ⊆ A : F (X) = X} =

⋂
{X ⊆ A : F (X) ⊆ X}.

It follows immediately, that LFP ⊆ SO, as every formula ϕ ∈ LFP can
be converted into an equivalent SO-formula ϕ′ by iteratively replacing sub-
formulae of the kind [lfpR,x ψ](u) by ∀R ((∀xψ(R,x)→ Rx)→ Ru).

3.38 Proposition. Every formula ϕ ∈ LFP is equivalent to a formula ψ
in second-order logic. Further, if k is the maximal arity of a fixed-point
variable in ϕ, then ψ can be chosen so that all second-order variables in ψ
are at most k-ary. In particular, monadic least fixed-point logic (M-LFP) is
contained in monadic second-order logic (MSO).

For inflationary fixed points there is no such second-order characterisa-
tion and indeed it can be shown that monadic inflationary fixed-point logic
(M-IFP) is not contained in MSO. This follows immediately from Example
3.32, where we have seen that the language w · d · w ⊆ (a ∪ b)∗d(a ∪ b)∗ is
definable in M-IFP. As this is not a regular language it is not definable in
MSO.

Using results from descriptive and computational complexity theory, it
can easily be shown that in the restriction to finite structures, IFP ⊆ ∆1

0,
i.e. every least fixed-point formula is equivalent over finite structures to
both, an universal and an existential second-order formula. For this, note
that every class of structures definable in IFP is in Ptime and thus in NP

as well as co-NP (see Chapter 5). As every class of structures decidable in
NP is definable in Σ1

1 it follows that IFP ⊆ Σ1
1 and likewise for co-NP and

Π1
1.

The result can also be established by a direct argument, without the
help of descriptive complexity theory. See [DG02] for details.

On infinite structures, the Σ1
1 bound fails and we are only able to prove

the following result. See again [DG02] for details.
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3.39 Theorem. Every formula in IFP is equivalent to a formula in ∆1
2,

i.e. equivalent to both, a formula in Σ1
2 and Π1

2.

In general, the result cannot be improved any further as IFP is not
contained in ∆1

1: On the structure (ω,<) every Π1
1 formula is equivalent

to a formula in LFP (see [Mos74a]). As LFP is closed under negation, this
implies that every formula in Σ1

1 ∪ Π1
1 is equivalent to a formula in LFP.

Finally, Σ1
1 6= Π1

1 and therefore ∆1
1 ( Σ1

1 and IFP 6⊆ ∆1
1 (see [Kle55]).

Combining this with the following theorem establishing the Löwenheim-
Skolem-property for IFP, we are able to give a precise bound for the complex-
ity of the satisfiability problem for IFP, i.e. the complexity of the problem
to decide for a given IFP-formula whether it is satisfiable. The following
theorem is well known in the theory of fixed-point logics and its proof is
therefore omitted. See [Flu95] and also [Grä02].

3.40 Theorem (Löwenheim-Skolem Property). Inflationary fixed-point
logic has the Löwenheim-Skolem Property, i.e. every satisfiable IFP-formula
has a finite or countable model.

The following corollary follows immediately.

3.41 Corollary. The satisfiability problem Sat(IFP) for IFP is in Σ1
2, the

second level of the analytical hierarchy. Further, Sat(IFP) is not in ∆1
1 and

therefore not in Σ1
1, i.e. it is not in the first level of the analytical hierarchy.

In particular, Sat(IFP) is not arithmetical.

Proof. Let ϕ be a formula in IFP. By Theorem 3.39, it is equivalent to a
formula ψ in Σ1

2 and, by Theorem 3.40 above, if ϕ is satisfiable then it has
a countable model. Thus, there is a sentence χ ∈ Σ1

2 saying that there is a
countable structure which is a model of ψ. Clearly, χ is true in (N, <,+, ·)
if, and only if, ϕ is satisfiable.

Towards the lower bound, we have seen that IFP is not contained in
∆1

1 and consequently neither in Σ1
1 nor in Π1

1. A direct proof showing that
Sat(IFP) is not arithmetical can be found in Section 11.1 below. �

In Chapter 8, we will show that LFP and IFP are equivalent. Thus the
complexity bounds for Sat(IFP) apply to LFP also.
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Chapter 4

Other Fixed-Point Logics

4.1 Fragments of Least Fixed-Point Logic

For many practical applications, the fixed-point logics introduced so far are
already much too powerful and complex. Therefore, a variety of logics have
been introduced which are weaker than LFP in terms of expressive power
and complexity. We now present some of these logics, which will be used
later.

4.1.1 Transitive Closure Logics

In many applications, inductive processes are used to find paths in graphs.
Examples are navigation systems, trying to find connections between cities,
or routing systems, that find paths through a network. Applications like
this are quite common and essentially the complexity classes Logspace

and NLogspace consist of problems of this kind. It is therefore natural to
study an extension of first-order logic by operators so that such problems
become definable. A closer look at the anatomy of the examples shows,
that the essential operation common to all these problems is to form the
transitive closure of a graph.

4.1 Definition (Transitive Closure). Let A be a set and let for some
k, E ⊆ Ak × Ak be a binary relation on k-tuples of elements from A. The
transitive closure TC(E) of E is defined as the least set TC(E) ⊆ Ak × Ak

such that

• E ⊆ TC(E) and

• for any a, b, c ∈ Ak, if (a, b) ∈ TC(E) and (b, c) ∈ TC(E) then also
(a, c) ∈ TC(E).

The deterministic transitive closure (DTC(E)) of E is defined as the transi-
tive closure of the relation

Ed := {(a, b) ∈ E : for all c such that (a, c) ∈ E, b = c}.

53
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We now introduce (deterministic) transitive closure logic ((D)TC), ob-
tained from FO by adding operators for defining the (deterministic) transi-
tive closure of definable graphs.

4.2 Definition (TC and DTC). Transitive closure-logic (TC) is defined
as the extension of first-order logic by the following formula building rule.
If x and y are tuples of variables of the same arity and ϕ(x, y) is a formula
such that x, y are among its free variables, then ψ := [tcx,y ϕ](t, t

′
) is also a

formula, where t, t
′
are tuples of terms of the same arity as x and y. The

free variables of ψ are the free variables in t and t
′
and the variables free in

ϕ other than x and y.
The semantics of TC is defined inductively. Let ψ(x, y) := [tcx,y ϕ](x, y)

be a formula in TC and let k be the arity of x. On any structure A providing
an interpretation of the free variables of ϕ except for x and y, ϕ defines a
binary relation ϕA := {(a, b) : A |= ϕ(a, b)} on k-tuples of elements. Now,
A |= ψ(a, b) if, and only if, (a, b) ∈ TC(ϕA).

Analogously, the deterministic transitive-closure logic (DTC) is defined
as the extension of FO by formulae of the form [dtcx,yϕ](t, t

′
) defining the

deterministic transitive-closure of the graph defined by ϕ.

Clearly, every formula [dtcx,yϕ(x, y)](t, t
′
) is equivalent to the TC-formula

[tcx,y ϕ(x, y) ∧ ∀z(ϕ(x, z)→ z = y)](t, t
′
)

Thus, DTC ⊆ TC. In Example 3.15, we have seen that the transitive closure
of a relation defined by a formula ϕ(x, y) is definable in LFP by

[lfpR,x,y ϕ(x, y) ∨ ∃z(Rxz ∧Rzy)](u, v).1

It immediately follows that TC ⊆ LFP. Examples of TC-formulae can be
found in Chapter 17, where we show that TC is expressive complete on the
class of linear constraint databases.

4.1.2 Existential and Stratified Fixed-Point Logic

In this section we consider a hierarchy of logics inside LFP that originates
from database theory. The study of fixed-point logics in database theory
has concentrated on fixed-point extensions of conjunctive queries, which
correspond, in the notation of first-order logic, to existential positive first-
order formulae. Positive, here, means that no negation at all occurs in the
formulae.

One of the best known fixed-point logics in this context is the query
language Datalog, which extends conjunctive queries by least fixed-points.

1Without proof we remark that the converse is also true, i.e. every formula in LFP

of the form [lfpR,xϕ0(x) ∨ ∃z ∈ Rϕ1(x, z)](x), where R does not occur in ϕ0 and ϕ1, is
equivalent to a formula in TC. See e.g. [EF99, Proposition 8.7.1, page 235-236].
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There are various definitions of Datalog depending on whether or not
they allow the negation of input predicates (the relations present in the
structure). Here, we consider the variant where the negation of relation
symbols from the signature of the structure is allowed. To keep consistent
with the notation used for the other fixed-point logics, we do not present
the syntax of Datalog as common in database theory but consider the
corresponding first-order based fixed-point logic, the existential fixed-point
logic.

4.3 Definition (Existential least fixed-point logic). Existential least
fixed-point logic (E-LFP) is defined as the restriction of LFP to formulae
without universal quantifiers and with negation allowed only in front of
atoms which are not built up from fixed-point variables.

The following proposition lists some simple properties of existential least
fixed-point logic. The simple proofs are omitted. See [Gro97] for more on
E-LFP. Further information can also be found in [EF99].

4.4 Proposition. • Existential least fixed-point logic is closed under ex-
tensions, i.e. if A ⊆ B is a substructure of B and ϕ ∈ E-LFP a sentence
such that A |= ϕ, then also B |= ϕ.

• The closure ordinal of an E-LFP-formula is at most ω.

• FO 6⊆ E-LFP.

As the proposition shows, E-LFP does not contain first-order logic. As
both, DTC and TC do contain FO, it follows immediately that TC 6⊆ E-LFP.
The converse, i.e. E-LFP 6⊆ TC has been proved by Immerman [Imm81].

4.5 Proposition. In terms of expressive power, TC and E-LFP are incom-
parable, i.e. neither TC ⊆ E-LFP nor E-LFP ⊆ TC.

We now introduce a logic that extends E-LFP such that again all of first-
order logic becomes definable. The logic – stratified fixed-point logic – also
has an analogue in database theory, namely stratified Datalog.

Stratified Datalog has been defined as an extension of Datalog to
allow some restricted form of negation. The idea is that once a Datalog-
formula is completely evaluated, the relation defined by it may be used in
other Datalog-programs just like an ordinary relation from the structure.
In particular, it can be used negatively without the need to ever recompute
it in the evaluation of the formula using it.

Therefore, a formula or program in stratified Datalog is built up in
stages, the strata, where in each stratum, the formula may use – positively
and negatively – the fixed-point relations built up in the lower but not the
variables defined in higher strata.

As with Datalog, we do not consider stratified Datalog directly but
present a first-order based fixed-point logic equivalent to it.
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4.6 Definition (Stratified fixed-point logic). Define SFP1 as existential
fixed-point logic and SFPi+1 as the class of existential fixed-point formulae
which may use literals of the form ψ(x), where, for some l ≤ i, ψ is a SFPl
formula without free fixed-point variables. Note that these formulae may
occur under the scope of negation symbols.

Stratified fixed-point logic is defined as the union SFP :=
⋃
i∈ω SFPi of

all SFPi.

We now list some properties of stratified fixed-point logic.

4.7 Proposition. • On all structures, the closure ordinal of every SFP-
formula is at most ω.

• TC ( SFP.

• SFP ( LFP.

Clearly, SFP is contained in LFP and it has been shown by Kolaitis [Kol91]

that this inclusion is strict. Further, we already mentioned that there are
properties definable in E-LFP but not in TC. Thus we get the following
relations between TC, SFP, and LFP.

4.8 Proposition. TC ( SFP ( LFP and also E-LFP ( SFP ( LFP. Fur-
ther, E-LFP and TC are incomparable.

With TC,E-LFP, and SFP, we introduced several fixed-point logics that
bridged the gap between first-order and least fixed-point logic. In the next
section, we go beyond LFP and consider a logic whose expressive power
presumably exceeds that of LFP and IFP.

4.2 Partial Fixed-Point Logic

In this section, we introduce partial fixed-point logic (PFP), which in some
sense is the most general fixed-point extension of first-order logic. The
syntax of PFP is defined as for inflationary fixed-point logic, except that we
write pfp for the fixed-point operator.

4.1 Definition (Syntax of Partial Fixed-Point Logic). Partial fixed-
point logic (PFP) is defined as the extension of first-order logic by the fol-
lowing formula building rule. If ϕ(R,x) is a formula with free first-order
variables x := x1, . . . , xk and a free second-order variable R of arity k, then

ψ := [pfpR,x ϕ](t)

is also a formula, where t is a tuple of terms of the same length as x. The
free variables of ψ are the variables occurring in t and the free variables of
ϕ other than x.
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Partial fixed-point logic originates from finite model theory where it has
been introduced as a logic capable of defining properties beyond Ptime.
And indeed, it has been shown that PFP captures Pspace on finite ordered
structures. (See Chapter 5 for details.) However, one effect of the exclusive
focus on finite models is that the common semantics of PFP is limited to
finite structures and does not extend to arbitrary structures. As we are also
interested in the study of fixed-point logics on potentially infinite structures,
we will define an alternative semantics for PFP in Section 7.1. This semantics
will be equivalent to the standard semantics on finite structures but does
generalise to infinite structures. For now, we present the standard definition
of the partial fixed-point semantics as it is common in finite model theory.

4.9 Definition (Finite Model Semantics). Let ψ := [pfpR,x ϕ](t) be a
formula and let A be a finite structure with universe A, providing an in-
terpretation of the free variables of ϕ other than x. Consider the following
sequence of stages induced by ϕ on A.

R0 := ∅

Rα+1 := Fϕ(Rα)

As there are no restrictions on ϕ, this sequence may not reach a fixed point.
In this case, ψ is equivalent on A to false. Otherwise, i.e. if the sequence
becomes stationary and reaches a fixed point R∞, then for any tuple a ∈ A,

A |= [pfpR,x ϕ](a) if, and only if, a ∈ R∞.

The following example demonstrates the potential power of partial fixed-
point logic.

4.10 Example. Consider the formula ϕ over the signature τ := {<} defined
as

ϕ(x) := [pfpR,x
∀xRx ∨ (∃y ¬Ry ∧ ∀z < y Rz ∧
(x = y ∨ (x > y ∧Rx)))

](x).

Let A := (A,<) be a finite ordered structure and let n := |A| be its cardinal-
ity. Any subset B ⊆ A can naturally be interpreted as the binary encoding
of an integer between 0 and 2n–1. In the sequence of stages, ϕ defines an
enumeration of all binary strings of length at most n. At the end of the in-
duction, R contains the encoding of the number 2n–1, i.e. R∞ = A. Thus,
on any finite ordering A, the formula ϕ simply defines the universe of A and
is equivalent to true. But before that, it runs through an exponential number
of stages.

As in inflationary fixed-point logic, we allow simultaneous inductions
and again these can always be eliminated in favour of simple inductions.

4.11 Theorem. Simultaneous partial fixed-point logic and partial fixed-point
logic have the same expressive power.
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The negation normal form proved for IFP in Theorem 3.34 holds true for
PFP also. Thus, the alternation hierarchy collapses for PFP.

4.12 Theorem. Every PFP-formula is equivalent to a formula where nega-
tion occurs only in front of atoms.

Further, similar to LFP and IFP, every partial fixed-point formula is
equivalent on finite structures to a formula with only one fixed-point oper-
ator. See [EF99] for a proof of this theorem.

4.13 Theorem. Every formula ψ ∈ PFP is equivalent to a formula with
only one application of a fixed-point operator.

Clearly, on finite structures, every IFP formula is equivalent to a for-
mula in PFP. As the example demonstrates, there are partial fixed-point
inductions of exponential length, whereas every inflationary fixed-point in-
duction must reach its fixed point after a polynomial number of stages. This
makes partial fixed-point logic potentially more powerful than inflationary
fixed-point logic. However, although the fixed point of a partial fixed-point
induction might need an exponential number of stages to be reached, it is
still of polynomial size. Therefore, it might be possible to define the same
fixed point with a number of stages polynomial in the size of the structure.
As we will see below, the question whether IFP = PFP is closely related to
a major open problem in complexity theory, namely whether Ptime equals
Pspace.

The potential power of PFP is based on the fact that elements contained
in some stage of the fixed point induction need not to be in later stages also.
A consequence of this is that there no longer is a unique stage at which an
element enters the fixed point. Therefore, for partial fixed-point inductions,
the stage comparison method does not apply, depriving us of one of the most
fundamental tools for analysing fixed point inductions.



Chapter 5

Descriptive Complexity

In the preceding chapters, we have seen a variety of fixed-point logics and
established a number of results about their relationship in terms of expressive
power. However, so far we have said nothing about their complexity, i.e. the
complexity of evaluating a formula from a particular logic.

There are various different questions that arise in connection with logics
and complexity, e.g. whether two formulae of a logic are equivalent, whether
one implies the other, or whether a formula is satisfiable, i.e. has a model.
All these questions can be reduced to each other wherefore usually only the
satisfiability problem is considered.

5.1 Definition. The satisfiability problem (Sat(L)) for a logic L is defined
as the problem of deciding for a given formula ϕ ∈ L whether ϕ has a model.

For instance, Corollary 3.41 shows that the satisfiability problem for in-
flationary fixed-point logic is in the second level of the analytical hierarchy
but not in the first. Another important question is the complexity of evalu-
ating a given formula ϕ in a structure A. This is referred to as the evaluation
or model checking problem for the logic L.

Whereas the satisfiability problem makes sense for finite as well as infinite
structures, the evaluation problem is a problem of finite model theory. We
can measure its complexity in three different ways.

5.2 Definition. Let L be a logic. The evaluation or model checking prob-
lem for L is defined as the problem of deciding for a given finite structure A

and a sentence ϕ ∈ L whether A |= ϕ.

• The data complexity of this problem is defined as the amount of re-
sources (e.g. time, space, or number of processors) needed to decide
this problem for a fixed formula ϕ. In particular, the complexity is
measured only in the size of the structure.

• The expression complexity of the problem is defined as the amount of
resources needed to decide the problem for a fixed structure A. The
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complexity is measured only in the size or structural complexity of the
formula.

• Finally, if both, the structure and the formula is part of the input, we
speak of the combined complexity of the problem. Here, the complexity
is measured both in the size of the structure and the formula.

In a slight abuse of notation, we speak about the evaluation problem of a
logic L whenever we consider its data complexity and call it model checking
problem when referring to combined complexity.

When considering data complexity, we fix a formula and let the struc-
tures vary. This corresponds to the complexity analysis of programs or
algorithms, where for a fixed program, i.e. Turing-machine, the complexity
is measured in terms of the size of the input. This leads to results like
the algorithm being a polynomial time algorithm meaning that the class of
words accepted by the Turing-machine can be decided in time polynomial
in the input size.

It also makes sense to ask the other way round: Given a class of struc-
tures whose membership problem is in a particular complexity class, say, in
polynomial time, can it be defined in the given logic. Or is it even true that
all problems decidable in the complexity class can be defined in this logic.

In a situation like this, where a logic L can express all problems decidable
in a complexity class C and where further the evaluation problem of this
logic is in C itself, we say that L captures C. This is a desirable situation as
it means that the logic provides a logical characterisation of the problems
in C. However, there is a subtle point worth mentioning. When we talk
about Turing-machines accepting an input, we always think about the input
given as a word on the machine’s input tape. On the other hand, when
speaking about models of a formula, we usually do not think about words
but about more complex structures like graphs, databases and so on. The
crucial difference is that the representation of a structure by a word on
the input tape implicitly defines an ordering on the structure, even if the
structure itself is unordered. Thus, the Turing-machine always works on
(representations of) ordered structures, whereas the logic has to deal with
unordered structures also.

This is a major obstacle when proving capturing results for certain logics.
For instance, it has been shown by Immerman and Vardi [Imm86, Var82]

that least fixed-point logic captures Ptime on the class of finite ordered
structures. However, no such capturing result is known for Ptime on the
class of all finite structures.

Encoding the input on a Turing-tape will also be the main problem we
have to deal with in Chapter 18, where we prove capturing results on classes
of constraint databases, a model for infinite databases.

In the next section, we consider the complexity of the evaluation problem
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for formulae in the various logics we considered so far. In the section there-
after, we mention several capturing results known for these logics. None of
the results is novel to this thesis. Therefore, we only sketch the proofs or
give no proofs at all. For more details and full proofs we refer to [EF99],
[Imm98] and references therein.

5.1 Evaluation Complexity of Fixed-Point Formu-

lae

In this section, we consider the evaluation complexity of fixed-point logics.
We start the analysis with first-order logic. Clearly, if the formula and thus
the number of quantifiers is fixed, the evaluation of a first-order formula can
be done in Logspace: We just need one pointer to the structure for each
of the variables in the formula. As the number of quantifiers is fixed, this
results in a constant number of pointers and therefore the evaluation can be
done in logarithmic space.1

Now consider a formula ψ(x) := [lfpR,x ϕ(R,x)](x), where R is a k-ary
relation variable. To evaluate this formula, we repeatedly have to evaluate
ϕ on the different stages of the induction. Now, if A is a finite structure of
size n, then there are no more than nk stages. Therefore, if the evaluation
complexity of ϕ is bound by a polynomial nl, the whole cost of evaluating
ψ is bound by nk · nl = nk+l. By induction on the number of fixed-point
operators, we get that every formula in LFP or IFP can be evaluated in
polynomially many steps. This establishes the following theorem.

5.3 Theorem. The evaluation problem of least and inflationary fixed-point
logic is in Ptime.

Obviously, the complexity bounds hold also true for the fragments of
LFP we mentioned in Section 4.1. However, for TC and DTC we can actually
prove better bounds.

Consider a formula ψ := [tcx,y ϕ(x, y)](t, s). Evaluating such a formula
boils down to finding a path from t to s in the graph defined by ϕ. This, of
course, can be done in non-deterministic logarithmic space, provided that
ϕ can be evaluated in NLogspace also. By induction on the number of
tc-operators it follows, that the evaluation complexity of TC-formulae is in
NLogspace. Consequently, if the graph defined by ϕ is deterministic and
ϕ can be evaluated in Logspace, then the evaluation problem for [dtcx,y ϕ]
is in Logspace also.

1Actually, the data complexity of FO is even less, namely in AC0 – the class of problems
that can be solved by a family of circuits of constant depth and arbitrary fan-in. AC0 is
a complexity class at the bottom end of the hierarchy of complexity classes and is strictly
contained in Logspace.
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5.4 Theorem. The evaluation problem for TC is in NLogspace. For DTC,
the evaluation problem is in Logspace.

Finally, we consider partial fixed-point logic. In PFP, there is no poly-
nomial bound on the number of stages a formula can take to define its
fixed point. However, each individual stage is still of polynomial size and
can therefore be stored within polynomial space. This yields the following
result.

5.5 Theorem. The evaluation problem for PFP is in Pspace.

We now turn towards establishing lower bounds for the complexity of
the evaluation problem of the logics considered above.

5.2 Logics Capturing Complexity Classes

In the previous section, we established upper bounds for the evaluation
complexity of various fixed-point logics. It can easily be shown that these
complexity bounds are strict, e.g. there are formulae in LFP whose evalua-
tion problem is Ptime-complete. However, we aim at even stronger results,
namely that not only there are formulae in LFP whose evaluation problem
is complete for Ptime, but that for every class of finite ordered structures,
which can be decided in polynomial time, there is a formula in LFP defining
it. In a situation like this, we say that the logic (LFP) captures the complex-
ity class (Ptime) on the class of finite ordered structures. We will see, that
for all logics we mentioned above, such capturing results can be established.

5.6 Definition. A logic L captures a complexity class C on a class S of
structures if for every vocabulary τ

• and every sentence ϕ ∈ L[τ ], the problem of deciding for a structure
A ∈ S whether A |= ϕ is in C and

• for every class K ⊆ S of τ -structures whose membership problem is in
C there is a sentence in L[τ ] such that for all τ -structures A ∈ S

A ∈ K if, and only if, A |= ϕ.

It has been shown that for the class S of finite ordered structures all
major complexity classes can be captured by natural extensions of first-
order logic.

5.7 Theorem. On the class of finite ordered structures,

• DTC captures Logspace, [Imm87b]

• TC captures NLogspace, [Imm88, Imm87b]
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• LFP and IFP capture Ptime, [Imm86, Var82]

• Σ1
1, i.e. the existential fragment of second order logic, captures NP

[Fag74], and

• PFP captures Pspace [AV89].

The various capturing results can all be proved along the same line by
simulating the run of a Turing-machine on a structure. We only sketch the
proofs here. See [EF99] and [Imm98] for full proofs. An adaptation of the
method can be found in Chapter 18, where we establish a capturing result
for Ptime on the class of constraint databases.

As mentioned above, Turing-machines do not directly work on struc-
tures but on their encoding on an input tape. Therefore, to simulate the
run of a Turing-machine on a structure, we need three separate formulae:
The first defines an encoding of the input structure by a word. The second
formula defines the start configuration of the Turing-machine on this encod-
ing. Finally, the third formula defines the transition relation between two
configurations. This done, one can use the fixed-point construct present in
the logic, i.e. the transitive-closure or fixed-point operator, to simulate the
sequence of configurations the Turing-machine takes on (the encoding of)
the structure. In the case of Σ1

1 one existentially quantifies this sequence of
configurations.

The different computational power present in the various fixed-point
constructs determines the class of problems for which the run of a Turing-
machine can be simulated.

An immediate consequence of the theorem above is, that one way of
separating the complexity classes mentioned there, is to separate the cor-
responding logics on finite ordered structures. However, a number of prop-
erties of finite ordered structures make them hard to attack by standard
techniques used to prove non-expressibility results.

It would therefore be interesting if a separation of complexity classes
could also be derived from a separation of logics on classes of arbitrary
rather than ordered finite structures. Abiteboul and Vianu showed that for
polynomial time and space, this can indeed be done. They proved that a
separation of IFP and PFP on arbitrary finite structures would be sufficient
to separate Ptime and Pspace.

5.8 Theorem. Inflationary and partial fixed-point logic are equivalent on
finite structures if, and only if, Ptime equals Pspace.

For a proof of this theorem see [AV91]. See also [DLW95, Daw93].
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Chapter 6

Fixed-Point Logics with

Choice

We have already seen a variety of fixed-point logics with various degrees
of expressiveness. In terms of complexity and expressive power on finite
ordered structures, these logics provide precise characterisations of com-
plexity classes such as polynomial time or space and deterministic or non-
deterministic logarithmic space. However, there is still a huge gap between
Ptime and Pspace with important complexity classes such as NP or the
polynomial-time hierarchy. In this section, we close this gap by defining a
fixed-point logic whose fragments in terms of alternation depth capture the
levels of the polynomial-time hierarchy. In particular, the positive fragment
of the logic captures NP.

There are different attempts to capture the non-deterministic behaviour
of NP by logics. The first and most important logic is Σ1

1, the existential
fragment of second-order logic. By Fagin’s theorem, we know that Σ1

1 cap-
tures NP on the class of all finite structures. However, Σ1

1 is a second-order
logic and does not fit well into the uniform framework of fixed-point logics.
In particular, methods such as stage comparison and other methods unique
to fixed-point logics do not apply to Σ1

1. Therefore, attempts have been made
to capture NP by fixed-point logics. In general, there are two different lines
along which such logics can be defined. The first is the so-called formula
non-determinism in contrast to what is called data non-determinism.

Fixed-point logics based on formula non-determinism have been consid-
ered by Abiteboul, Vardi, and Vianu in [AVV97]. Here, the inflationary
fixed-point is defined by two formulae. At each stage, a non-deterministic
choice is made on the formula to be used for defining the next stage. The
resulting relation is defined as the union of all fixed points reached by the
various possible choices. The fragment of this logic, where only positive ap-
plications of fixed-point operators are allowed, is shown to capture NP on
finite ordered structures. Similarly, a logic called alternating fixed-point logic
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(AFP) is defined which chooses the formulae not only on a non-deterministic
basis but uses alternating choice. It is shown that this logic captures alter-
nating polynomial time, and thus Pspace. See also [DG02] for more details
on these logics.

In contrast to the formula non-determinism, where the choice is made on
the formulae used to define the stages, in data non-determinism there is only
one formula that defines the fixed point but the choice is made on the ele-
ments to be added during the fixed-point induction. There are two different
approaches towards fixed-point logics implementing data non-determinism.
The first is the logic NIO introduced by Arvind and Biswas in [AB87]. The
syntax of NIO is as of IFP except that the fixed-point operator is written
as nio. Semantically, at each stage of the fixed-point induction induced by
a formula [nioR,x ϕ], exactly one tuple of the set of tuples satisfying ϕ is
chosen and added to the fixed point.

The second logic of this kind is C-IFP, where the fixed point is defined by
an induction on two formulae ϕ and ψ. At each stage, the second formula
defines a set of which non-deterministically one tuple is chosen. Based on
this choice, the first formula defines the next stage of the induction.

The power of both logics lies in the non-deterministic choice of tuples.
In this way, a distinction between otherwise indistinguishable elements, for
instance automorphic elements, is possible. In particular, this can be used
to define a linear order on an unordered structure. It can also be used to
guess arbitrary sets or to model the non-deterministic choice made by a
non-deterministic Turing-machine. This is used to show that both logics
capture NP, even on the class of arbitrary, potentially unordered, finite
structures. See [DR03] for precise definitions and various further results on
the two logics.

Both logics have in common, that they resolve the non-determinism of
nested formulae only at the outermost level, i.e. on top of the syntax tree.
This makes it possible to allow closure under negation while staying inside
NP. In fact, it has been shown in [DR03] that negated fixed points can be
eliminated in these logics.

6.1 Choice Fixed-Point Logic

In this section we introduce another fixed-point logic utilising data non-
determinism. Contrary to the two logics mentioned above, the non-determi-
nism here is resolved at each fixed-point operator. Therefore, the fragment of
the logic capturing NP is closed under negation if, and only if, NP = co-NP.

6.1 Note. In this chapter we only consider finite structures. Most of the
results extend to infinite structures but if unbounded choice on infinite struc-
tures is allowed, effects that are not topic of this work have to be considered.

We now give precise definitions and present some straightforward results.
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6.2 Definition (Syntax of CFP). The logic CFP is defined as the exten-
sion of first-order logic by the following formula building rule. If ϕ(R,x, c)
is a formula with a free l-ary second-order variable R, a free l-tuple of
first-order variables x, and a tuple of free variables c distinct from x, then
ψ := [cfpcR,xϕ](t) is also a formula in CFP, where t is a l-tuple of terms.
Note that the tuples x and c might differ in their length.

The semantics of the formulae is defined inductively, with the semantics
of the cfp-rule being as follows. Essentially, [cfp ϕ] defines the inflationary
fixed-point of ϕ, but, in addition, at each step an arbitrary tuple of elements
is chosen for c. This makes the logic non-deterministic and – as we will see
– substantially increases its expressive power.

6.3 Definition (Semantics of CFP). Let ψ := [cfpcR,xϕ(R,x, c)](t) be
a formula in CFP and let A be a structure with universe A. Further, let
ν = (aα)α∈Ord, aα ∈ A

k, be a sequence of tuples from A of the same length
as c. We inductively define the ν-relativised fixed point of ϕ as follows:

R0
ν := ∅

Rα+1
ν := Rαν ∪ {a : (A, Rαν ) |= ϕ[a, aα+1]}

Rλν :=
⋃
ξ<λR

ξ
ν , for limit ordinals λ

For the least ordinal α such that Rαν = Rα+1
ν , we call Rαν the ν-relativised

fixed point of ϕ and denote it as F∞
ϕ (ν). The inflationary fixed-point with

choice, in terms F∞
ϕ , of ϕ is defined as

F∞
ϕ := {a :

there is a sequence ν := (aα)α∈Ord, aα ∈ A
k,

such that a ∈ F∞
ϕ (ν)

}.

Now, A |= [cfpcR,xϕ(R,x, c)](t) if, and only if, t ∈ F∞
ϕ .

We present some examples to get acquainted with CFP.

6.4 Example. • Let A be a finite structure with universe A. Consider
the formula ϕ defined as

∃x [cfpc1,c2R,x,y

(c1 6= c2 ∧ “c1 6∈ R ∧ c2 6∈ R” ∧ x = c1 ∧ y = c2) ∨
(∀x∃y(Rxy ∨Ryx) ∧ x = y)

](x, x).

where “c1 6∈ R ∧ c2 6∈ R” is an abbreviation for ¬∃z(Rc1z ∨ Rzc1 ∨
Rc2z ∨Rzc2) stating that neither c1 nor c2 occur in some tuple in R.

We claim that A |= ϕ if, and only if, |A| is even. For this, consider the
sequence of stages induced by ϕ for some choice of elements. At each
stage, the two elements chosen for c1 and c2 are added to R, provided
that they are different and have not been chosen before. This process
continues until no pair of elements is left to be chosen. If |A| is even,
then R contains all elements and thus the conjunct ∀x∃y(Rxy ∨Ryx)
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in the second line becomes true and all pairs (x, x) are added to R.
Otherwise, i.e. if |A| is odd, the induction stops. Thus, independent
of the choice of elements, a pair (x, x) occurs in the fixed point if, and
only if, |A| is even.

• The second example demonstrates how an ordering of a structure A

can be defined in CFP. For this, let C be a class of ordered structures
defined by a sentence ϕ in IFP. We claim that the class

C≤ := {A : there is a linear order ≤ on A and (A,≤) ∈ C}

is definable in CFP by the (simultaneous) formula

∃x [cfpc Q :
Rxy ← ¬Rcc ∧ y = c ∧ (Rxx ∨ x = c)
Qx ← ∀xRxx ∧ ϕ(u ≤ v/Ruv)

](x).

Clearly, the formula is equivalent to a formula without simultaneous
inductions. Consider the sequence of stages induced by the formula for
a particular choice of elements. Provided that the element chosen for
c at a particular stage had not been chosen before, the rule ¬Rcc∧y =
c ∧ (Rxx ∨ x = c) adds all pairs (x, c) to R such that either x occurs
in R – and is thus smaller than c in the ordering built up in R –
or x = c. In this way, a linear order is defined in R. As soon as
the order is total, i.e. all x occur in R and ∀xRxx becomes true, Q
becomes non-empty if, and only if, the formula ϕ evaluates to true,
where all references in ϕ to the ordering ≤ are replaced by references
to R.

As the example demonstrates, the class Even of structures of even car-
dinality is definable in CFP. As it is known not to be definable in PFP, it
follows that on arbitrary structures, CFP is not contained in PFP.

6.5 Corollary. CFP 6⊆ PFP.

In the definition of CFP, we allowed the tuple c to be of arbitrary length.
Another natural way of defining the logic is to restrict c to a single variable.
That is, at each stage not a tuple but only a single element is chosen. We
call this logic CFP′ and show that both ways of defining CFP are equivalent.

6.6 Lemma. On finite structures, CFP and CFP′ are equally expressive.

Proof. Clearly, every CFP′-formula is equivalent to a formula in CFP.
The converse is proved by induction on the structure of the formula. As
Example 6.4 above demonstrates, a linear order on the structure is definable
in CFP′ and therefore we can restrict attention to ordered structures. The
only interesting case are formulae [cfpcR,xϕ](t), where ϕ is already a CFP′-
formula. We simulate the choice of a k-tuple c by a sequence of k steps of
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a CFP′-formula. In each step, one of the components of c is guessed and
stored in the fixed-point relation.

W.l.o.g. we assume that |A| ≥ k. Let l be the arity of x and let P be a
(2l+1)-ary fixed-point variable. We define a formula ψ(P, x, s, i) such that
ψ defines the following sequence of stages Pα. The induction on P consists
of blocks, each containing k + 1 stages. In each block, one individual stage
of the induction on ϕ is simulated. The tuple s contains the number of the
stage in the induction on ϕ and is invariant within each block. In the first
k stages 1 ≤ i ≤ k of each block, tuples (c, x, s, i) are added to P where c is
the element chosen in this stage and x are arbitrary. elements. Thus, after
k stages a k-tuple c has been chosen and stored in the first components
of the tuples added in this block. In the last step, all (x, s, (k + 1)) are
added to P such that x satisfies ϕ(x, c) where all atoms Ru are replaced by
∃v < sR(u, v, (k + 1))).

The formula χ := ∃s [cfpcP,x,s,i ψ](t, s, k+1) implements this idea, where
ψ is defined as

P = ∅ ∧ s = 0 ∧ i = 0 ∧
∧k
j=0 xj = c ∨

P 6= ∅ ∧ “∃s′ maximal in P” ∧ “∃i′ maximal in P s′ ”∧
i′ < k → (i = i′ + 1 ∧ s = s′ ∧ x0 = c) ∧

i′ = k → (i = k + 1 ∧ s′ = s ∧ ∃c
∧k
j=1(∃xPxsj ∧ cj = x0) ∧

ϕ(x, c,Ru/∃v < s′P (u, v, (k + 1)))) ∧

i′ = k + 1 → (s = s′ + 1 ∧ i = 0 ∧ x0 = c).

Here, “∃s′ maximal in P” means that s′ is the greatest tuple such that there
are x and i with (x, s′, i) ∈ R. Analogously, ∃i′“maximal in P s′ ” means
that i′ is the supremum of all i such that (x, s′, i) ∈ R for some x.

A straightforward induction on the stages shows that for all stages α
of the induction on ϕ, if s is the α-th tuple in the ordering, then for all a,
a ∈ Rα if, and only if, there is some v ≤ s such that (a, v, (k+1)) ∈ Pα·(k+1).
This finishes the proof of the lemma. �

As the previous lemma shows, in terms of expressive power, it makes no
difference whether we allow a single element or a whole tuple to be chosen
at each step.

6.1.1 Simplifying the First-Order Quantifier Structure

We show next that first-order quantifiers can be eliminated in CFP using the
choice construct. Obviously, every formula ∃xϕ(x, y) ∈ CFP is equivalent to
[cfpcRϕ(c, y)](y), where R is a 0-ary relation symbol. As universal quantifiers
can be eliminated using negation and existential quantification, the following
corollary follows immediately.
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6.7 Corollary. Every formula in CFP is equivalent to a quantifier-free for-
mula.

However, we are mainly interested in fragments of CFP which limit the
number of alternations between fixed-point operators and negation. Thus,
eliminating universal quantification by introducing further negations is not
satisfactory.

On ordered structures where the order is given by a successor function
with constants n and m for the minimal and maximal element, universal
quantification can easily be eliminated using that ∀xϕ(x, y) is equivalent to

[cfpcR,x(x = n ∧ ϕ(x, y)) ∨ (Rc ∧ x = succ(c) ∧ ϕ(x, y))](m). (6.1)

On unordered structures, or structures where the ordering is not given by
a successor function, we can still define an ordering as in Example 6.4.
However, the construction used universal quantification and also defined an
order and not a successor relation. Whereas the formula given there can
easily be modified so that it defines the successor and not an order relation,
we will not be able to eliminate all universal quantifiers. However, for many
applications, showing that there is a small constant k such every formula in
a logic is equivalent to one with less than k quantifiers is as good as showing
that every formula is equivalent to a quantifier-free formula.

For CFP, such a constant k indeed exists, in fact: k = 2. For this, let
ϕ(x) be a formula in CFP. We shall convert ϕ into an equivalent formula
with only two universal quantifiers. To increase readability, we present the
following formulae as simultaneous fixed-point formulae but they can easily
be transformed into simple formulae using one additional existential quan-
tifier. Consider the formula

ψ := [cfp R : T ](x)

where T is a system of formulae defined as

T :=

{
Sxy ← ¬Scc ∧ y = c ∧ (ϕmax(x) ∨ x = c))
Rx ← ∃n∃mϕcomp(n,m) ∧ ϕ′(x).

Here ϕ′(x) is the formula obtained from ϕ by first eliminating all universal
quantifiers in ϕ as indicated by the formula (6.1) above (using a successor
function succ) and then replacing every atom (succ(u) = v) by Suv∧u 6= v.
The auxiliary formulae ϕmax(x) and ϕcomp are defined as follows: ϕmax(x)
is defined as ϕmax := (Sxx∧∀y¬Sxy) and is true for x at a particular stage
of the induction on S if x is the maximal element in the fragment of the
successor relation built up in S so far. Finally, the formula

ϕcomp(n,m) := ∀x(Sxx ∧ (x 6= n→ ¬Sxn) ∧ (x 6= m→ ¬Smx))
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tests whether the successor relation in S is complete and in this case defines
n and m to be the minimal and maximal element of this relation.

The formula ψ simultaneously builds up the fixed points of two formulae
in the relations S and R. In S, a successor relation is defined as follows.
At each stage, it is checked whether c is already contained in S and in case
that not, the pairs (c, c) and (x, c) are added to S, where x is the maximal
element in the relation build up so far. The addition of (c, c) is necessary
as it allows to check whether an element x does not occur in S by using the
atom ¬Sxx instead of involving an additional universal quantifier.

For R, the formula ϕcomp first checks whether the fixed point of S has
been reached. In this case, n and m are defined to be the minimal and
maximal element in S and the formula ϕ′ is evaluated. Thus, the fixed point
of R contains all elements that satisfy ϕ′. As ϕ′ and ϕ are equivalent, R∞

contains the elements satisfying ϕ. Note that in ϕ′ every atom (succ(u) = v)
is replaced by Suv ∧ u 6= v. The conjunct ¬u = v is necessary as S was
constructed to be reflexive.

By construction of ϕ′, the formula ψ only contains two universal quan-
tifiers. Combining this with the elimination of existential quantifiers as
indicated above, the next theorem follows immediately.

6.8 Theorem. Every formula in CFP is equivalent to a formula with only
two universal and no existential quantifiers. Further, if ϕ is a formula with
k alternations between cfp-operators and negation such that the outermost
fixed point is positive, then ϕ is equivalent to a formula with the same alter-
nation structure using only two quantifiers, both universal.

Note, however, that with each eliminated quantifier we introduce another
fixed-point operator. So, complexity-wise we gain nothing. However, when
proving that a certain property is not definable in CFP, it might be helpful
to know that we can do with only two quantifiers.

6.1.2 Choice Fixed-Point and Second-Order Logic

We now study the connection between CFP and second-order logic. In par-
ticular, we show that there is a close correspondence between the levels of
the alternation hierarchy for CFP – see Definition 3.24 – and the levels of
the quantifier-alternation hierarchy for second-order logic.

6.9 Lemma. Σ1
1 is equivalent to the positive fragment of CFP, i.e. the class

of formulae in CFP where no fixed-point operator occurs negatively.

Proof. The proof of both directions is by induction on the structure of the
formulae. Towards the forth direction, let X be a k-ary relation symbol and
let ψ := ∃Xϕ(X) be a formula such that ϕ is in CFP. We claim that ψ is
equivalent to the formula

ϕ(∅) ∨ ∃x∃y x1 6= y ∧ [cfpcR,x,y
(cc1 6∈ X ∧ x = c ∧ y = x1) ∨
(cc1 ∈ X ∧ ϕ(Xu/Ruu1))

](x, y),
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where c := c1, . . . , ck is a tuple of variables and cc1 denotes the tuple
c1, . . . , ck, c1. Here, ϕ(∅) denotes the formula obtained from ϕ by replacing
every atom Xu by false.

The first disjunct, ϕ(∅), becomes true if ϕ holds for X being empty.
The induction induced by the second disjunct can be split into two parts.
First, a non-empty set X is guessed and built up inductively. This is done
by adding at each stage a tuple (c, c1) to R. As soon as a tuple is chosen
for c a second time, the first part of the induction is finished and the set X
built up in R is used to check whether ϕ is satisfied.

If ϕ holds for this set, all possible tuples are added to the fixed point.
Otherwise, nothing is added. In either case, no further tuples are added in
successive stages and the fixed point is reached. Thus, a tuple (x, y) with
y 6= x1 occurs in the fixed point if, and only if, ϕ holds for some X 6= ∅.

For the converse, let ψ := [cfpcR,xϕ](x) be a formula such that ϕ is in
Σ1

1. Let c be l-ary and x be k-ary. To see that ψ is equivalent to a formula
in Σ1

1, let O,C, S be relation symbols, where O and S are 2k-ary and C is
(k + l)-ary. Consider the formula ϑ informally defined as

∃O “O is a linear order on k-tuples” ∧
∃C “C is a function from k-tuples to l-tuples” ∧
∃S (∀xS0x↔ ∃cC0c ∧ ϕ(x, c,∅)) ∧ ∀s∀s′(s = s′ + 1→

(∀x(Ssx↔ (Xs′x ∨ ∃cCsc ∧ ϕ(x, c,Ru/Xs′u))))).

On any finite structure A of size n, the induction on ϕ must reach its fixed
point after at most nk steps. Thus, the number of each stage can be identified
with a k-tuple of elements.

The formula ϑ first defines in O an order on the k-tuples. The functional
relation C then associates with each stage α, coded by a k-tuple s, the l-
tuple of elements chosen for c at this stage. Finally, the 2k-ary relation S
stores for each number s, corresponding to a stage α, the elements contained
in the α-th stage of the induction on ϕ assuming the choice of elements made
in C. From this, the fixed point of ϕ can easily be defined. �

The following corollaries follow immediately.

6.10 Corollary. CFP and SO are equivalent.

Let CFPk denote the k-th level of the alternation hierarchy for CFP and
let CFP+

k be the class of formulae in CFPk where the outermost fixed points
occur positive. Let CFP¬

k denote the class of CFP-formulae ϕ such that
¬ϕ ∈ CFP+

k , i.e. where the outermost fixed points are negative.

6.11 Corollary. • CFP+
k captures Σ1

k, the k-th level of the polynomial-
time hierarchy.

• CFP¬
k captures Π1

k, the universal k-th level of the polynomial-time hi-
erarchy.
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• In this sense, CFP captures PH on the class of finite structures. In
particular, CFP+

1 captures NP on arbitrary finite structures and CFP¬
1

captures co-NP.

6.1.3 Arity-Restricted CFP and Transitive-Closure Logic

We now consider fragments of CFP+
1 based on the arity of the involved fixed-

point operators. In particular, we show that every formula in transitive-
closure logic is equivalent to a formula in monadic CFP+

1 . Let M-CFP+
1

denote this fragment of CFP+
1 , i.e. the class of formulae in CFP+

1 where all
fixed-point variables are unary.

6.12 Theorem. On finite ordered structures, every formula in TC is equiv-
alent to a formula in M-CFP1.

Proof. It is known that on finite ordered structures, every TC formula is
equivalent to a formula χ := [tcx,y ϕ(x, y)](u, v) with first-order kernel ϕ.
(See e.g. [Imm98] and [EF99].) We claim that χ is equivalent to a formula in
M-CFP+

1 .
The proof is an adaptation of Imhof’s proof that on finite ordered struc-

tures, DTC is contained in M-IFP (see [Imh96a]). We only sketch the idea
here and note the differences between the two cases.

On any ordered structure A with universe A of size n, a set P ⊆ A can
be seen as representing a binary string p := p0 . . . pn−1, where pi = 1 if the
i-th element of the ordering on A is in P , and pi = 0 otherwise. Further,
every element of A has a bit representation that only uses log n bits. Thus,
a tuple a := a1 . . . ak can be encoded by a binary string of length k · log n and
it can be represented by a set P ⊆ A, provided that k · log n < n. Similarly,
any sequence of tuples a1, . . . , ak can be represented by a set P ⊆ A, again
provided that the representation does not use too many bits. Thus, if the
tuples ai are l-ary then a set P can represent a sequence of length ⌊ n

l·k·logn⌋.
It has been shown by Imhof that there are formulae in M-IFP that code

and decode a sequence in a relation, i.e. there are formulae that, given a
tuple a define a set P representing the tuple, and given a set P representing
a sequence a1 . . . ak obtain ak from it. Further, there is a formula in M-IFP

that, given a set P representing a1 . . . ak and given a tuple b, defines the
set representing the sequence a1 . . . akb. He used this to show that the
deterministic path defined by a formula in DTC can be encoded by a set P ,
provided that the length of the path is bounded as above. As the length of a
path defined by an arbitrary DTC-formula ϕ with two k-tuples of variables
can be of length nk, it may not be representable in one set. Therefore, Imhof
used nested fixed points, so that the inner fixed point only defines fragments
of the path of length m := ⌊ n

l·k·logn⌋ and the next fixed point contains the
sequence a1 . . . ak of tuples, such that the distance of ai and ai+1 on the
path defined by ϕ is m. By iterating this construction he proved that ϕ
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is equivalent to a formula in M-IFP. Further details can also be found in
[Gro94] and [Gro96], where a similar construction is used to show that DTC

is contained in binary LFP on ordered structures.
For TC the construction fails as there no longer is a single path that has

to be computed. Instead, a TC formula ψ := [tcx,y ϕ(x, y)](x, y) computes
a tree where every node corresponds to a tuple x ∈ Ak and has a successor
for each tuple y such that A |= ϕ[x, y]. The whole tree, of course, can no
longer be represented by nested monadic fixed points.

In CFP, we do not have to store the whole tree in the fixed-point variables
but we can non-deterministically guess a path in the tree and compute this.
As the path is again polynomially bounded, it follows that it can be stored
with nested fixed points as indicated above.

There is a subtle point to be made regarding the moment when the non-
determinism of the fixed-point induction is resolved. We demonstrate this
by two nested fixed points computing a path of length at most m2. A first
approach would be to let the outer fixed point evaluate the inner first. This
done, it non-deterministically chooses a pair (u, v) satisfying the inner fixed
point formula, i.e. a pair connected by a path of length at most m. However,
as the non-determinism in the inner fixed point is resolved immediately,
i.e. the fixed point defined is the union of all strings representing a path of
length m between two tuples, there would be no way to collect the right
tuples from it. The fixed point might well be the whole universe as for all
bit positions there might be a string representation of a path where this bit
is set to 1. Thus, this approach fails.

However, if the outer fixed point first guesses a tuple (u, v) and then
presents it to the inner fixed point as parameter, the inner fixed point
can non-deterministically check whether there is a path between the two
of length at most m. Here, resolving the non-determinism is not critical, as
the inner fixed point now consists of the union of all paths between u and
v. If the inner fixed point reports success, i.e. existence of a path between
u and v, in a unique way - as it was done frequently in the examples above
- taking the union of all paths is not a problem. �

Combining this result with Theorem 6.8 above, we immediately get the
following corollary.

6.13 Corollary. On finite ordered structures where the order is given by
a successor relation with constants for the minimal and maximal element,
every formula in TC is equivalent to a quantifier-free formula in M-CFP1.

As noted in in Chapter 5, TC captures NLogspace on ordered struc-
tures. Further, by Corollary 6.11, CFP1 captures NP. Thus, we immediately
get the following result.

6.14 Corollary. On finite ordered structures, if M-CFP1 6= CFP, then
NLogspace 6= NP.
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Proof. Suppose M-CFP1 6= CFP. Then there is a problem definable in CFP

which is not definable in M-CFP1. As CFP is contained in PH, there is a
problem in PH which is not in NLogspace. But, as NLogspace is closed
under complementation, if NLogspace = NP then also NLogspace = PH,
a contradiction. �

6.2 Fixed-Point Logics with Alternating Choice

In the previous section, we considered an extension of inflationary fixed-point
logic by non-deterministic choice of elements. Clearly, a similar construct
can be added to PFP, resulting in a logic capturing Pspace on arbitrary
structures. Further, instead of non-deterministic choice, we can also allow
the alternating choice of elements. In this case, a fixed point induction is no
longer a sequence of stages but a tree. The straightforward implementation
of this idea leads to a logic (ACFP) that captures alternating polynomial
time on arbitrary finite structures.

6.15 Theorem. ACFP captures APtime and thus Pspace on arbitrary
classes of finite structures.

As APtime = Pspace, the extension of PFP by a choice construct and
ACFP are equivalent and both capture Pspace.
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Chapter 7

A General Semantics for

Partial Fixed-Point Logic

In the preceding chapters we have seen a variety of fixed-point logics. All
these logics can be studied on finite as well as infinite structures. The only
exception to this rule is partial fixed-point logic. To see this, consider again
the definition of stages of a partial fixed-point induction as in Definition 4.9.

R0 := ∅

Rα+1 := Fϕ(Rα) = {a : (A, Rα) |= ϕ[a]}

Clearly, on an infinite structure A the sequence of stages induced by ϕ may
not become cyclic on the first ω stages, i.e. the fixed point of ϕ may not be
reached after finitely many steps. What is missing is a rule for limit stages.
Clearly, defining the limit stages as the union of all lower stages as it was
done for IFP is not reasonable, as the sequence of stages induced by ϕ is not
necessarily increasing (see Example 4.10).

In this chapter we aim at extending the semantics of PFP to infinite
structures by giving an explicit rule for the definition of limit stages. We
justify the choice of the rule by showing that a) on finite structures both
definitions for PFP are equivalent and b) under the new semantics, PFP now
contains IFP on all rather than just finite structures. In fact, we will even
be able to show that partial fixed-point logic is strictly more expressive than
inflationary fixed-point logic by exhibiting a property on infinite structures
that is definable in PFP but not in IFP.

Besides the extension to infinite structures, there is another limitation
of the standard PFP semantics. As noted in the introduction, there are
several parameters along which fixed-point logics can be varied. One is the
choice of the fixed-point construct. Another is the logic to which the fixed-
point operators are affixed. All the fixed-point constructs considered so far
can be attached to first-order but also to other logics like modal logic and
these extensions give rise to well-defined and natural logics – again with the

77
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exception of partial fixed points. In particular, we will demonstrate below
that on strings or trees, if the partial fixed point of a formula in modal
logic is non-empty then the induction leading to it is actually inflationary
(see Lemma 12.3). As a consequence, on trees or strings, inductions of
exponential length are impossible. Clearly, this is unnatural for a partial
fixed-point logic. Therefore, a second issue addressed by the new semantics
is the generalisation to logical frameworks other than first-order logic.

The following example gives further evidence for the weakness of the
common partial fixed-point semantics in connection with modal logic and
also motivates the definition of the alternative semantics. Let MPC denote
the straightforward extension of modal logic by a partial fixed-point oper-
ator. More details on modal logic and MPC can be found in Part II, in
particular in Chapter 9 and 12.

Trace Equivalence and Modal Partial Fixed-Point Logic. Consider
the following problem, known as the unary trace- or language equivalence
problem. It is formally defined in Definition 12.9 below.

The input is a directed, rooted graph consisting of a number of disjoint
subgraphs rooted at successors of a unique root v. The root is labelled by
the proposition symbol w and is not reachable from any other node in the
graph. In each of the subgraphs, some nodes are marked as final states –
coloured by a colour f – whereas the other nodes are not coloured at all.

Two subgraphs rooted at successors of the root are trace equivalent, if,
for each n < ω, whenever in one of the graphs there is a path of length n
from the root to a final state such a path also exists in the other graph.

We aim at showing that the class C of structures, such that all subgraphs
rooted at successors of the root are trace equivalent, is definable in MPC. A
simple idea to formalise the trace equivalence problem is as follows. Consider
the formula ψ defined as

ψ := pfp Z :






X ← (f ∧ ¬Y ) ∨ ♦X
Y ← f
Z ← (w ∧ ♦X ∧ ♦¬X) ∨ Z.

In the first stage, X contains all final states, i.e. those labelled by f . In
the successive stages, all elements are selected, which have a successor in
X. Thus, the stage Xn contains precisely the elements from which there
is a path of length n − 1 to a final state. The variable Y is only used to
ensure that the final states are added to X only once at the beginning, so
that the induction is not started over and over again. Now, the root of the
structure is included into Z if, for some n, in one subgraph there is a path of
length n from its root to a final state but not in the other. Obviously, once
the root is added to Z, it stays in forever. Thus, ψ is true at the root if,
and only if, the subgraphs rooted at its successors are not trace equivalent.
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However, if at least one of the sub-structures is cyclic, the induction on X
never becomes stationary and thus, by definition, the fixed point is empty.
To avoid this, we have to think about some way to ensure that the induction
process becomes stationary, although the only information we are interested
in, namely whether the root eventually occurs in Z, is independent of this.

This suggests a different way of defining partial fixed-point inductions.
Consider the sequence of induction stages defined by ψ. Clearly, this se-
quence must eventually become cyclic. Now consider the set of elements
that occur in all stages of this cycle and take this as the fixed point de-
fined.1 Applying this idea to the example above, we get that the fixed point
of X becomes empty (unless there are self loops), the fixed point of Y con-
tains all final states, and the fixed point of Z contains the root just in case
there are two successors of it which are not trace equivalent. Thus, the
formula ¬ψ is true in K, v if, and only if, K, v ∈ C. This motivates an
alternative semantics for partial fixed-point logic based on this idea.

7.1 An Alternative Semantics for Partial Fixed-

Point Logic

We now give a formal definition of the general semantics for partial fixed-
point logic.

7.1 Definition (General Semantics). Let ψ := [pfpR,x ϕ](t) be a formula
in PFP and let A be a structure with universe A providing an interpretation
of all free variables of ϕ that are not in x. Consider the following sequence
of stages induced by ϕ on A.

R0 := ∅

Rα+1 := Fϕ(Rα) = {a : (A, Rα) |= ϕ[a]}

Rλ := final((Rα)α<λ) for limit ordinals λ,

where final((Rα)α<λ) is defined as the set of tuples a such that there is some
β < λ and a ∈ Rγ for all β < γ < λ.

Obviously, the sequence (Rα)α∈Ord must eventually become cyclic. Let
β2 be minimal such that Rβ1 = Rβ2 for some β1 < β2. Then, for any tuple
a ∈ A,

A |= [pfpR,x ϕ](a) if, and only if, a ∈ Rγ for all β1 ≤ γ < β2.

1Note that this set is not necessarily a fixed point of the operator induced by the
formula. Nevertheless, we use this terminology to keep consistent with the other fixed-
point logics.
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We also allow simultaneous inductions and again the same proof as for
Theorem 3.33 shows that this does not increase the expressive power.

7.2 Theorem. Under the general semantics, every formula in PFP with
simultaneous inductions is equivalent to a formula without simultaneous in-
ductions.

According to the definition, the fixed point of a formula ϕ is defined
as the set of elements which occur in every stage of the first cycle in the
sequence of stages induced by ϕ. Note that this is not equivalent to saying
that the fixed point consists of those elements a such that there is a stage
β and a occurs in all stages greater than β. For example, consider the
structure A := ({0, 1, 2, 3}) and a formula defining an operator which takes
∅ 7→ {0, 1}, {0, 1} 7→ {0, 2} and {0, 2} 7→ {0, 1}. Further, it takes {0} 7→ {2}
and {2} to itself. The operator induces the following induction stages Rα:
For all 0 < n < ω, Rn = {0, 1} if n is odd and Rn = {0, 2} if n is even.
Thus, the partial fixed point according to Definition 7.1 is {0}. However,
Rω = {0} and for all α > ω, Rα = {2}. Therefore, defining the fixed point
as the set of elements which are contained in all stages greater than some β
yields a different set than the partial fixed point as defined above. We could
also have used this definition as the basis to define a semantics for PFP. But,
this would imply that there are structures with four elements and formulae
whose fixed point on these structures is reached only after infinitely many
stages – a concept that is not very natural.

The semantics given in Definition 7.1 extends the common semantics in
two ways, namely by introducing a rule for the limit stages of the fixed-point
induction and by giving a different meaning to what the result obtained from
the induction actually is. These two extensions are somewhat independent.
In particular, we could just have considered the rule for the limit stages
and define the fixed point in the usual way by saying that whenever the
transfinite induction reaches a fixed point, we take this as the result of the
induction and otherwise define it to be empty.

Conversely, we could have focused on the alternative way to define the
fixed point and forget about the extension to transfinite inductions. It is
easily seen that the proofs of Lemma 7.3 and Theorem 7.4, where we show
that PFP with either of the two semantics is equivalent on finite structures,
extend to transfinite inductions. Thus, whether we extend PFP by the rule
for transfinite inductions and keep the old fixed-point definition or use the
new fixed-point rule is irrelevant for the expressive power of the resulting
logic. However, the new fixed-point rule also allows extensions of logics like
modal logic and is therefore more general than the old definition.

We prove next, that in the restriction to finite structures, PFP with the
semantics in Definition 4.9 and PFP with the semantics in Definition 7.1 are
equivalent.



Section 7.1: An Alternative Semantics for Partial Fixed-Point Logic 81

Notation. To distinguish between the two semantics, we denote PFP

under the finite model semantics as PFPfin and write the operator as pfpf.
We write PFPgen and pfpg whenever we speak about the general semantics.
Further, if ϕ is any formula in PFP, we write fin(ϕ) to denote the formula
under the finite model semantics and gen(ϕ) for the general semantics. �

We first prove a technical lemma that establishes the main step in the
proof of the theorem below.

7.3 Lemma. Let A be a structure. For every formula ϕ(R,x) in PFPgen

there is a formula fixed-pointϕ(R,x) such that for any stage Rα of the induc-
tion of ϕ on A and all a ∈ A, (A, Rα) |= fixed-pointϕ[a] if, and only if, there

is a minimal ordinal γ such that there is some β < γ with Rα = Rγ = Rβ

and a ∈
⋂
β<ξ≤γ R

ξ.
Further, if A is finite and ϕ is a formula in PFPfin, then fin(fixed-pointϕ)

and gen(fixed-pointϕ) are equivalent.

Proof. Without loss of generality we assume that for no α > 0 the stage
Rα of the induction on ϕ becomes empty. For, every formula [pfpR,x ϕ](x)
is equivalent to ∃0∃1 0 6= 1 ∧ [pfpR′,x,t (t = 0 ∧ ϕ) ∨ (t = 1)](x, 0).

Consider the formula

fixed-pointϕ(R,x) := is-cycle ∧min-cycle ∧ elem-on-cycle(x)

where the sub-formulae is-cycle,min-cycle, and elem-on-cycle(x) are defined
as follows. The formula is-cycle(R) := [pfp Y : S](x), where

S :=






Xx ← (X = ∅ ∧ ϕ(R,x)) ∨ (X 6= ∅ ∧X 6= R ∧ ϕ(X,x))∨
(X 6= ∅ ∧X = R ∧Rx)

Y ← Y ∨ (Y = ∅ ∧X = R)

is true for an interpretation Rα of the relation variable R if there is some
γ > α such that Rα = Rγ , i.e. if Rα is contained in a cycle. For this, consider
the induction stages induced by the system S. The relation X is initialised
to the stage Rα+1 and then runs through the stages Rβ for β > α. If it
reaches a stage γ with Rγ = Rα, the induction becomes stationary and for
all ξ > γ, Rξ = Rα. In this case, the 0-ary relation Y becomes true. As the
rule for Y is inflationary, it stays true forever. Thus the fixed point of S is
reached and the formula is-cycle(R) becomes true. On the other hand, if
there is no stage γ > α with Rγ = Rα then Y will never become true and
is-cycle(R) evaluates to false.

Suppose is-cycle becomes true for a stage R := Rα and suppose that α is
the least such stage. As shown above, this implies that R is part of a cycle,
i.e. there is some stage γ > α with Rγ = Rα. However, this does not rule
out the possibility that there are stages β1, β2 with α < β1 < β2 < γ such
that Rβ1 = Rβ2 but Rα 6= Rβ1. In this case, the fixed point of the induction



82 Chapter 7: A General Semantics for Partial Fixed-Point Logic

on ϕ will not consist of the elements on the cycle between α and γ but of
the elements on another cycle contained in it. Now consider the formula
min-cycle := ¬[pfp Y : T ], with

T :=






X ← (X = ∅ ∧ ϕ(R,x)) ∨ (X 6= ∅ ∧X 6= R ∧ ϕ(X,x)) ∨
(X 6= ∅ ∧X = R ∧Xx)

Y ← Y ∨ (X 6= R ∧X 6= ∅ ∧ [pfp Z ′ : T ′])

and

T ′ :=






Z ← (Z = ∅ ∧ ϕ(X,x)) ∨ (Z 6= ∅ ∧ ϕ(Z, x) ∧ Z 6= X) ∨
(Z = R ∧ Zx)

Z ′ ← Z = X

Suppose R is interpreted by a stage Rα such that there is some γ > α with
Rγ = Rα. We claim that min-cycle becomes true for this interpretation of
R if there are no β1, β2 such that α < β1 < β2 < γ. For this, consider
the induction stages of the system T . The rule for X is the same as in the
system S. Thus, X is initialised to Rα+1, then runs through the stages Rγ

with γ > α. If Rγ = Rα for some γ then the induction becomes stationary
and X∞ = Rγ . Now consider the induction on the 0-ary relation Y . Y
becomes true if at some stage ξ such that Xξ 6= ∅ and Xξ 6= Rα the
formula [pfp Z ′ : T ] becomes true. In the induction on T ′, Z is initialised
to Xξ+1 and then runs trough all stages Xβ , β > ξ. As soon as Z equals R,
the induction becomes stationary. Now, the relation Z ′ becomes true if at
some stage Z = X. In this case, there are β1, β2 with α < β1 < β2 < γ such
that Rβ1 = Rβ2. Clearly, if there is no such cycle, then Z ′ stays false.

Thus, the variable Y becomes true in the induction on T if, and only if,
there is a cycle between Rβ1 and Rβ2. This proves the claim.

Finally, we define elem-on-cycle(x) := [pfp Y : U ](x) with

U :=






Xx ← (X = ∅ ∧ ϕ(R,x)) ∨ (X 6= ∅ ∧X 6= R ∧ ϕ(X,x)) ∨
(X = R ∧Rx) ∨

Y x ← (Y = ∅ ∧Rx) ∨ (Y 6= ∅ ∧ Y x ∧Xx)

Suppose R is interpreted by a stage α such that is-cycle and min-cycle
hold true for Rα. Let γ > α be the least ordinal greater than α such that
Rγ = Rα. We claim that elem-on-cycle becomes true for a tuple a if, and
only if, a ∈ Rξ for all α ≤ ξ ≤ γ. Consider the induction stages induced
by U . Again, the rule for X is as before, i.e. X is initialised to Rα, runs
through all stages Rξ with α < ξ < γ and becomes stationary once it has
reached Rγ .

Now consider the induction on Y . At the beginning, Y is initialised
to Rα. At each stage X goes through, the intersection between X and Y
defines the next stage for Y . Thus at the end, Y contains all elements which
are contained in any stage Rξ with α < ξ < γ.
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This shows that if R is interpreted by Rγ for the least γ such that there
is some α < γ with Rα = Rγ , then the formula fixed-pointϕ(R,x) defines all
elements contained in any stage of the cycle. In all other cases, fixed-pointϕ
defines the empty set.

What is left to be shown is that on finite structures A, fin(fixed-pointϕ)
and gen(fixed-pointϕ) are equivalent. This is clear if R is interpreted byRα as
above, as then all inductions become stationary. If R is interpreted by some
stage Rα such for no γ > α, Rγ = Rα, then the formula is-cycle becomes
false under both semantics and both, fin(fixed-pointϕ) and gen(fixed-pointϕ)
define the empty set. �

We are now ready to prove the equivalence of the two partial fixed-point
semantics defined above.

7.4 Theorem. On finite structures, PFPfin and PFPgen are equivalent,
i.e. every formula under the finite model semantics is equivalent to a formula
under the general semantics and vice versa.

Proof. The forth direction follows easily by induction on the structure of
the formula. In the main step, let ψ := [pfpfR,x ϕ(R,x)](t) be a formula in
PFPfin. It is equivalent to

ψg := [pfpg Q :
Rx ← ϕg(R,x)
Qx ← ∀x(ϕg(R,x)↔ Rx) ∧Rx

](t),

where ϕg is a PFPgen-formula equivalent to ϕ. By induction, such a formula
always exists. Assume first that on a structure A a fixed point of ϕ is
reached at some stage α. In this case, ∀x(ϕ(R,x) ↔ Rx) becomes true at
stage α and Qα+1 = Rα. Thus, the fixed point of Q is R∞ and ψ and ψg

are equivalent.
Now assume that the fixed point of ϕ does not exist. Then, at no stage,

∀x(ϕg(R,x)↔ Rx) becomes true and ψg defines the empty set.
The other direction is also proved by induction on the structure of the

formulae. In the main step, assume that ψ := [pfpgR,x ϕ(R,x)](t) is a formula

under the general semantics. By induction, ϕ is equivalent to a formula ϕf

in PFPfin. Then, ψ is equivalent to

ψf := [pfpf Q :
Rx ← (Q = ∅ ∧ ϕf (R,x))
Qx ← Qx ∨ (Q = ∅ ∧ fixed-point(ϕf )(R,x))

](t).

By Lemma 7.3, the formula fixed-point(ϕf )(R) can be chosen from PFPfin.

Thus, as ϕf ∈ PFPfin, we get that ψf is itself a formula in PFPfin. To see
that ψ and ψf are equivalent consider the sequence of stages induced by ψf .
As long as Q is empty, R runs through all stages induced by ϕf . Now let
β be the least ordinal such that there is some α > β with Rα = Rβ. Then,
Lemma 7.3 implies that fixed-point(ϕf ) defines the set of tuples contained
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in all stages of the cycle. Thus, in the next stage, Qβ+1 contains the fixed
point of ϕ. If this is not empty, then R becomes empty at the next stage, Q
does not change anymore, and therefore the fixed point has been reached.

Should the fixed point of ϕ be empty, then Q remains empty. However,
in this case, there is no stage γ such that Rγ = Rγ+1 and therefore ψf

defines the empty set. �

The theorem allows us to transfer the results on PFPfin mentioned in Sec-
tion 4.2 and Chapter 5 to PFPgen, in particular the theorems by Abiteboul,
Vianu, Immerman, and Vardi.

7.5 Corollary.

(i) PFPgen captures Pspace on ordered structures.

(ii) PFPgen and IFP are equivalent on finite structures if, and only if,
Ptime = Pspace.

(iii) Every PFPgen formula is equivalent on finite structures to a formula
with only one application of a fixed-point operator.

Proof. The corollary follows immediately from the fact that every formula
in PFPfin is equivalent to a formula with only one fixed-point operator and
that the translation to PFPgen-formulae as presented in the proof of Theorem
7.4 does not increase the number of fixed-point operators. �

Using a diagonalisation argument as in Section 7.2 below, it is clear that
for any fixed-point logic like LFP, IFP, or PFP, the nesting-depth hierarchy
must in general be strict, i.e. allowing the nesting of fixed-point operators
does strictly increase the expressive power. Thus, Part (iii) of the preceding
corollary fails on infinite structures. We close the section by establishing
a negation normal form for PFPgen-formulae, i.e. the alternation between
fixed points and negation does not provide more expressive power than just
nesting fixed-points.

7.6 Theorem. Every PFPgen formula is equivalent to one where negation
occurs only in front of atoms.

Proof. Let ψ(t) := ¬[pfpR,xϕ(R,x)](t) be a formula in PFP. Obviously, it
is equivalent to the formula

ψ′(t) := ∃0 6= 1 [pfp Q :
Pxy ← y = 1 ∨ (y = 0 ∧ [pfpR,xϕ](x))

Qx ← P 6= ∅ ∧ ¬Px0
](t),

where 0, 1 are variables not occurring in ϕ. The theorem now follows imme-
diately by induction on the structure of the formulae. �
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7.2 Separating Partial and Inflationary Fixed-Point

Logic

We now prove the main result of this chapter, the separation of PFPgen and
IFP. As we are not considering the finite model semantics anymore, we
simply write PFP and pfp instead of PFPgen and pfpg.

Clearly, every formula in IFP is equivalent to a formula in PFP. To
demonstrate a property that is definable in PFP but not in IFP we show
that the truth predicate for IFP-formulae – which clearly is not definable in
IFP – can be defined in PFP on some classes of infinite structures.

7.2.1 Acceptable Structures, Coding, and Diagonalisation

First, we present a class of structures called acceptable (see [Mos74a, Chapter

5]). These structures are particularly well suited to be used with diagonali-
sation arguments.

7.7 Definition. Let A be an infinite set. A coding scheme on A is a triple
(N ,≤, <>), with N ⊆ A, such that the structure (N ,≤) is isomorphic to
(ω,≤) and <> is an injective map from

⋃
n<ω A

n into A. The image a of
a1, . . . , an under <> is called the code of a1, . . . , an.

With each coding scheme we associate the following decoding relations:

(i) seq(x), which is true for x if, and only if, x = 〈x1, . . . , xn〉 is the code
of some sequence x1, . . . , xn.

(ii) lh(x) = n, if x is the code of a sequence of length n.

(iii) q(x, i) = xi, if x = 〈x1, . . . , xn〉 and n ≥ i. We write (x)i = a for
seq(x) ∧ q(x, i) = a.

The numbers 0, 1, . . . refer to the corresponding elements in N . For
convenience, we write lh and q functional. But note that they are relations.
In particular, lh(x) and q(x, i) are undefined if x does not code a sequence.

An elementary coding scheme C on a structure A is a coding scheme on
its universe where the relations N ,≤, seq, lh, and q are elementary, i.e.,
first-order definable.

A structure A admitting an elementary coding scheme is called accept-
able. We call A quasi-acceptable if there exists an acceptable expansion A′

of A by a finite set of PFP-definable relations.

Observe that quasi-acceptable structures are those which admit an PFP-
definable coding scheme, i.e. one where the relations <, seq, lh, and q are
PFP-definable. See [Mos74a, Chapter 5] for more on elementary and inductive
coding schemes.

We now present a way of encoding formulae by elements of acceptable
structures. Let τ := τrel ∪̇ τconst be the disjoint union of a finite set τrel :=
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{P1, . . . , Pl} of relation symbols and a finite set τconst := {c1, . . . , cm} of
constant symbols. Fix an acceptable τ -structure A.

W.l.o.g. we agree on the following conventions about the structure of
IFP-formulae ϕ.

• No fixed-point variable is bound twice in the same formula.

• The involved fixed-point variables Ri are numbered from 1 to the num-
ber k of fixed-point operators occurring in the formula. Let ϕi and
ϕj be the formulae defining the fixed point inductions on Ri and Rj
respectively. Then, for no i < j ≤ k, ϕi is a sub-formula of ϕj .

• All formulae are of the form [ifpR1,x1
ϕ1](x1).

• We only allow ∨ and ∃ in the formulae whereas ∧ and ∀ are forbidden.

• All fixed-point operators are of the form [ifpR,xRx∨ϕ(R,x)], i.e. the
operators are syntactically made inflationary.

• Finally, we assume that in formulae [ifpR,xi1
,...,xik

ϕ], atoms involving
the fixed-point variable R may only be used in the form Rxi1, . . . , xik .

Clearly, any IFP-formula can be brought into this form. The actual
encoding of formulae is based on a function ||ϕ|| taking formulae or terms
in IFP[τ ] to elements of N . Let c,var, . . . denote arbitrary but fixed and
distinct elements of N . The function is inductively defined as follows.

||ci|| := 〈c, i〉 ci ∈ τconst

||xi|| := 〈var, i〉
||Pia|| := 〈rel, i, 〈||a||〉〉 Pi ∈ τRel

||ϕ1 ∨ ϕ2|| := 〈or, ||ϕ1||, ||ϕ2||〉
||¬ϕ|| := 〈neg, ||ϕ||〉
||∃xiϕ|| := 〈exists, i, ||ϕ||〉
||Ria|| := 〈fp-var, i, 〈||a||〉〉 for fixed-point variables Ri

|| [ifpRi,x ϕ](a)|| := 〈fp-op, i, 〈||a||〉〉

Here 〈||a||〉 is an abbreviation for 〈||a1||, . . . , ||ak||〉 where k is the arity of
a. In this encoding of formulae, sub-formulae involving fixed-point variables
are only coded by the number of the involved fixed-point variable but no
code of the formula defining it is stored. The next definition deals with this.

7.8 Definition. Let ϕ be a formula in IFP[τ ] and let the fixed-point opera-
tors occurring in it be [ifpR1,x1

ϕ1], . . . , [ifpRk,xk
ϕk]. The ϕi are called the

defining formulae of ϕ and each individual ϕi is called the defining formula
of the fixed-point variable Ri.

The function code taking formulae to their codes in N is defined as

code : IFP[τ ] −→ N
ϕ 7−→ 〈||ϕ1||, . . . , ||ϕk||〉,
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where ϕ1, . . . , ϕk are the defining formulae of ϕ.

Below, we will use encodings of formulae to show that there are relations
on acceptable structures which are PFP but not IFP-definable. We first fix
some notation that will be used in the sequel.

7.9 Definition. Let ϕ(x) be a formula with free variables x := xi1 , . . . , xik
for some k. The code a of a sequence matches ϕ, if lh(a) ≥ ij for all
1 ≤ j ≤ k.

We write a |= ϕ, if a matches ϕ and ϕ is true in A under the variable
assignment

β : xi 7−→

{
(a)i for all 1 ≤ i ≤ lh(a)

0 otherwise.

If c is the code of ϕ we also write a |= c for a |= ϕ.

We state the following lemma whose proof is technical but not very
difficult.

7.10 Lemma. There is a PFP-formula formula(x) that is true for all c
which are valid codes of IFP-formulae.

7.2.2 Separating Partial and Inflationary Fixed-Point Logic

In this section, we show that partial fixed-point logic is strictly more expres-
sive than inflationary fixed-point logic. Fix an acceptable structure A with
universe A.

7.11 Definition. The relation SatIFP ⊆ A
2 is defined as

SatIFP := {(c, a) : c is the code of an IFP[τ ]-formula ϕ and a |= ϕ}.

A simple diagonalisation argument establishes the next lemma.

7.12 Lemma. SatIFP is not definable in IFP.

Proof. Suppose, SatIFP was definable in IFP. Then the relation R(x) :=
¬SatIFP(x, 〈x〉) would also be definable in IFP, by a formula ϕ(x) say. Let c
be the code of ϕ. Thus, as ϕ defines R, for all x, R(x) ⇐⇒ SatIFP(c, 〈x〉)
but, by definition of R, for all x, R(x) ⇐⇒ ¬SatIFP(x, 〈x〉). For x = c we
get a contradiction. �

We show now that SatIFP is definable in PFP. For this, we inductively
build up a ternary relation R(c, i, a) ⊆ A3 such that (c, i, a) ∈ R if, and only
if, c is the code of a formula ϕ ∈ IFP[τ ] with defining formulae ϕ1, . . . , ϕk,
i is an element of {1, . . . , k}, and a is the code of a variable assignment
matching the free variables in ϕi such that

(A, stage(c, 1), . . . , stage(c, k)), a |= ϕi,
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i.e. ϕi is true under the variable assignment a where all the fixed-point
relations Rj are interpreted by the sets stage(c, j) defined as

stage(c, j) := {a : a is encoded by a and (c, j, a) ∈ R}.

This relation will be built up by a partial fixed-point induction such that
the following invariance property is preserved.

7.13 Invariance Property.

• For all c, i, a, if (c, i, a) ∈ R then c is the code of a formula ϕ ∈ IFP[τ ],
with defining formulae ϕ1, . . . , ϕk, i is an element of {1, . . . , k}, and a
is the code of a variable assignment matching the free variables in ϕ
such that

(A, stage(c, 1), . . . , stage(c, k)), a |= ϕi,

i.e. ϕi is true under the variable assignment a where all free fixed-point
relations Rj are interpreted by the sets stage(c, j).

• Let α be a stage of the induction on R and let i and c be as above.
Consider the induction on Ri induced by ϕi(x,Ri, R1, . . . , Ri−1), where
for 1 ≤ j < i, the variables Rj are interpreted by stage(c, j). Then

there is a stage Rβi such that Rβi = stage(c, i), i.e.

Rβi = {a : a is encoded by a and (c, i, a) ∈ Rα}.

Before presenting a formula defining R, we need two auxiliary formulae
first-order and fpr. The formula first-order(R, c, i, a) assumes that the in-
variance property in 7.13 is satisfied by R. In this case, it defines the set of
all (c, i, a) such that a |= ϕi, under the assumption that all free fixed-point
variables Rj of ϕi are interpreted by stage(c, j) and for all sub-formulae of ϕi
of the form [ifpRl,xl

ϕl] the fixed point defined by this formula is stage(c, l).
Obviously, these assumptions are too optimistic for all i, as the second as-
sumption will generally be true only for some, but not for all i. However,
first-order will be used in a formula defining the relation R described above
and there it will be guaranteed that it is only used for values of i for which
both assumptions are satisfied.

In the following, we treat variables t, t1, . . . as boolean variables, i.e. the
only values they can take are 0 and 1, and we use expressions like t = t1∨ t2
with the obvious semantics. We also use notation like “c=̂ϕc1∨ϕc2” meaning
that c is the code of a formula ϕ := ϕ1 ∨ ϕ2 and c1, c2 are the codes of the



Section 7.2: Separating Partial and Inflationary Fixed-Point Logic 89

sub-formulae.

first-order(c, i, a) :=
[pfpQ,c,a,t “c=̂∃xjϕc′” ∧ ((∃a′Qc′a′1 ∧ ∀i 6= j (a)i = (a′)i ∧ t = 1) ∨

(∀a′ (∀i 6= j (a)i = (a′)i)→ Qc′a′0) ∧ t = 0))∨
“c=̂ϕc1 ∨ ϕc2” ∧ (∃t1∃t2(Qc1at1 ∧Qc2at2 ∧ t = t1 ∨ t2) ∨
“c=̂¬ϕc′” ∧ (∃t′Qc′at′ ∧ t = ¬t′) ∨
“c=̂Pixi1 . . . xik” ∧ (t↔ Pi(a)i1 . . . (a)ik ) ∨
“c=̂Rix” ∧ (t↔ Rcia) ∨
“c=̂[ifpRi,x ϕi]” ∧ (t↔ Rcia)

]((c)i, a, 1)

To ease notation, the cases where constants occur in the atomic formulae
have not been made explicit. Constants can be treated in the same way as
variables. The correctness of the construction is proved in the following
lemma.

7.14 Lemma. Let R be a ternary relation satisfying the invariance property
in 7.13. Then, for all c, i, a, such that c is the code of a formula ϕ with
defining sub-formulae ϕ1, . . . , ϕk and i ∈ {1, . . . , k},

(A, R) |= first-order(c, i, a) if, and only if, a |= ϕi,

where all free fixed-point variables Rj and all sub-formulae of the form
[ifpRj ,xj

ϕj ] are interpreted by the sets stage(R, j).

Proof. The lemma is proved by induction on the structure of ϕ. As the
argument is fairly standard, we do not present the full proof here but refer
to [Mos74a, Chapter 5] for details. In its induction stages, the formula builds
up a ternary relation Q such that if (c, a, t) ∈ Q then t = 1 and c |= a or
t = 0 and c 6|= a. We demonstrate the idea by proving the case for existential
quantification.

Suppose c is the code of a formula ϕ := ∃xjϕc′ and c′ is the code of
ϕc′ . There are three cases to be considered. In the first two cases, the truth
value for the sub-formula ϕc′ has already been computed.

Suppose, ∃xjϕc′ is true. Then there is (the code a′ of) a variable assign-
ment that agrees with a on all positions except j such that a′ |= ϕc′ . In this
case, (∃a′Qc′a′1 ∧ ∀i 6= j (a)i = (a′)i) is satisfied and the triple (c, a, 1) is
added to Q.

Now suppose ∃xjϕc′ is not satisfied. Then a′ 6|= ϕc′ for all (codes a′ of)
truth assignments which agree with a on all positions except j. Thus, for all
such a′ the triple (c, a′, 0) is contained in Q and therefore ∀a′ (∀i 6= j (a)i =
(a′)i)→ Qc′a′0 is satisfied and the triple (c, a, 0) is added to Q.

Finally, in the third case, the truth value for ϕc′ has not yet been deter-
mined and therefore nothing is added to Q for c.

Note how the truth of sub-formulae involving fixed point relations is
directly taken from the relation R. �
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We also need a formula fpr(R, c, i) that is true for c and i if stage(c, i)
is the fixed point of the induction on ϕi where all free fixed-point variables
Rj of ϕi are interpreted by stage(c, j).

fpr(R, c, i) := ∀a(first-order(R, c, i, a) → R(c, i, a)).

Clearly, under the same assumptions as in Lemma 7.14, (A, R) |= fpr(c, i) if,
and only if, stage(c, i) is the fixed-point of ϕi. We are now ready to define
the main formula.

compute(c, a) := formula(c) ∧
[pfpR,c,i,a (∃l 1 ≤ l ≤ lh(c) ∧ ¬fpr(R, c, l) ∧

∀j (l < j ≤ lh(c)→ fpr(R, c, j)) ∧
((i = l ∧ first-order(c, i, a)) ∨ (i < l ∧Rcia))) ∨
(∀l ∈ {1, . . . , lh(c)} fpr(R, c, j)) ∧Rcia

](c, 1, a).

As discussed in Lemma 7.10, formula(c) is true for all codes c of formulae
in IFP. Recall the way a formula ϕ is coded by c := 〈||ϕ1||, . . . , ||ϕk||〉. The
formula compute first defines the unique l such that the fixed points of all
ϕj with j > l are already computed in R but the induction on ϕl has not
yet reached its fixed point. For this l, first-order(c, l, a) is evaluated, i.e. the
next stage of the induction on ϕj is computed. Further, all triples (c, j, a)
such that j < l are kept in R, i.e. the current stages of the induction on
ϕj with j < l are left untouched. On the other hand, all triples (c, j, a) for
j > l are removed from R, i.e. the fixed-point induction on the formulae ϕj ,
which might depend on Rl, are set back to the empty set.

Thus, in the end there will be no such l as all fixed points are already
computed. In this case the relation R is left unchanged and thus the fixed
point of compute has been reached. This proves the following lemma.

7.15 Lemma. SatIFP is definable in PFP.

The proof of the next theorem and its corollary is now immediate.

7.16 Theorem. PFP is more expressive than IFP on acceptable structures.

7.17 Corollary. PFP is more expressive than IFP on all structures in which
an acceptable structure is PFP-interpretable.

Among the structures in which an acceptable structure is PFP-interpre-
table are (ω,<) and (R, <,+) and all expansions of it, e.g. the ordered field
of reals. Examples of structures not interpretable in an acceptable structure
are structures over the empty signature or a signature containing constant
symbols only, but also the real line (R, <).



Chapter 8

Expressive Equivalence of

Least and Inflationary

Fixed-Point Logic

In this section, we establish the equivalence of least and inflationary fixed-
point logic. As noted above, in the restriction to finite structures, the equiv-
alence has already been proved by Gurevich and Shelah [GS86]. We first
present their proof and explain where its extension to infinite structures
fails.

8.1 Equivalence on Finite Structures

Consider again the proof of Theorem 3.37. As shown there, the stage com-
parison relations of any IFP-formula1 ϕ(R,x) are definable by the formulae
[ifp ≤ : S](x, y) and [ifp ≺ : S](x, y) respectively, where S is the system of
formulae defined as

S :=

{
x ≤ y ←− ϕ(x,Ru/u ≺ y) ∧ ϕ(y,Ru/u ≺ y)
x ≺ y ←− ϕ(x,Ru/u ≺ x) ∧ ¬ϕ(y,Ru/u ≺ x).

Now suppose ϕ(R,x) is itself an LFP-formula but not necessarily positive in
R. It was shown by Gurevich and Shelah, that in restriction to finite struc-
tures, the stage comparison relations for the inflationary induction on ϕ are
definable in LFP. As the inflationary fixed point can easily be obtained from
the stage comparison relations (see Lemma 3.10), this shows that on finite
structures, every inflationary fixed point of an LFP-formula can be obtained
as a least fixed point also. By induction on the number of ifp-operators in
the formulae, the equivalence of IFP and LFP follows immediately.

1Recall our convention that ϕ is supposed to be of the form Rx ∨ ϕ′(R,x).
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The following lemma and its proof demonstrate how the stage compar-
ison relations for an arbitrary LFP-formula ϕ(R,x) can be defined in LFP.
See also the original paper [GS86].

8.1 Lemma. On finite structures, the stage comparison relations ≤ϕ and
≺ϕ of any formula ϕ(R,x) ∈ LFP, not necessarily positive in R, are LFP-
definable.

Proof. To prove the lemma we convert the system S above to an equivalent
system T of formulae, which are positive in their free fixed-point variables.
W.l.o.g. we assume that ϕ is of the form Rx∨ϕ′. The problem to be solved is
that if every atom Ru in ϕ is replaced by a new atom involving ≺, then at all
places where R is used negatively, also the new relation ≺ is used negatively.
Therefore, we have to come up with a definition of the complement Rc of R
by a formula positive in ≺ and ≤.

For this, let A be a finite structure of size n. Clearly, if k is the arity of
R, then there is some m ≤ nk such that the induction of ϕ on A reaches its
fixed point at stage m. Consider the sequence of stages (Rα)α≤m induced
by ϕ on A. Let ≤ϕ and ≺ϕ be the stage comparison relations of ϕ. For
every stage Rα, with m ≥ α > 0, there is a tuple z whose rank is precisely
α, i.e. z ∈ Rα − Rα−1. For any such tuple z, {u : u ≤ϕ z} = Rα and
{u : z ≺ϕ u} = (Rα)c. This is used to define an induction process, positive
in ≤ and ≺, defining the relations ≤ϕ and ≺ϕ.

Let ϕ(y,Ru/u ≤ z,¬Ru/z ≺ u) be the formula obtained from ϕ by
replacing every positive occurrence of an atom Ru by u ≤ z and every
negative occurrence by z ≺ u. Suppose the relations ≤ and ≺ are defined
up to some stage β ≥ 1, i.e. x ≤ y if, and only if, |x| ≤ |y| ≤ β and likewise
for ≺. Then the formula

ψ≤(≤,≺, x, y) := ∃z(z ≺ y ∧ ϕ(x,Ru/u ≤ z,¬Ru/z ≺ u) ∧
ϕ(y,Ru/u ≤ z,¬Ru/z ≺ u)),

becomes true for those pairs (x, y) such that 1 ≤ |y|ϕ ≤ β+1 and |x|ϕ ≤ |y|ϕ.
For all tuples y of rank 1 ≤ ξ ≤ β + 1, we can take some z of rank ξ − 1
such that y satisfies ϕ(y,Ru/u ≤ z,¬Ru/z ≺ u). Clearly, ϕ(x,Ru/u ≤
z,¬Ru/z ≺ u) is then satisfied by those tuples x whose rank is at most ξ.

Analogously, the formula

ψ≺(≤,≺, x, y) := ∃z(z ≤ z ∧ ϕ(x,Ru/u ≤ z,¬Ru/z ≺ u) ∧
¬ϕ(y,Ru/¬z ≺ u,¬Ru/¬u ≤ z)),

becomes true for those pairs (x, y) such that |x|ϕ ≤ β+1 and |x|ϕ < |y|ϕ. To
see this, let z be a tuple such that z ≤ z becomes true. Thus, the rank ξ of z
is at most β. Now, for such a tuple z, u ≤ z defines the stage Rξ and z ≺ u
defines its complement. Thus, ϕ(x,Ru/u ≤ z,¬Ru/z ≺ u) is satisfied by all
tuples x of rank at most ξ + 1. Further, ¬ϕ(y,Ru/¬z ≺ u,¬Ru/¬u ≤ z)
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is satisfied by those y whose rank is greater than ξ + 1. Thus, as for every
rank up to β we can find tuples z of precisely this rank, the claim is proved.

So far, we have defined formulae that, given some stage β ≥ 1, define
the next stage of the induction on the stage comparison relations ≤ and ≺.
What is left to be done is to get the process started, i.e. to define the stage
comparison relations for those pairs (x, y) where x is of rank 0 (for ≺) or
both, x and y are of rank 0 (for ≤). This, of course, can easily be defined
by the formula ϕ(x,∅)∧ϕ(y,∅) for ≤ and ϕ(x,∅)∧¬ϕ(y,∅) for ≺, where
ϕ(x,∅) means that every occurrence of an atom Ru is replaced by a formula
equivalent to false.

Thus, if T is the system of formulae defined as

T :=

{
x ≤ y ←− (ϕ(x,∅) ∧ ϕ(y,∅)) ∨ ψ≤(x, y)
x ≺ y ←− (ϕ(x,∅) ∧ ¬ϕ(y,∅)) ∨ ψ≺(x, y)

then [lfp ≤ : T ](x, y) defines ≤ϕ and [lfp ≺ : T ](x, y) defines ≺ϕ. �

Using that a ∈ ϕ∞ if, and only if, a ≤ϕ a (see Lemma 3.10), the next
theorem follows immediately by induction on the number of fixed-point op-
erators in the IFP-formulae.

8.2 Theorem (Gurevich-Shelah [GS86]). For every formula in IFP there
is an LFP-formula equivalent to it on all finite structures.

Another consequence of the lemma is the normal form Theorem proved
by Immerman for IFP and LFP on finite structures.

8.3 Theorem (Immerman [Imm86]). On finite structures, every formula
in LFP is equivalent to a formula with at most one occurrence of an lfp-
operator.

Sketch. If ≤ and ≺ are the stage comparison relations for ϕ on a finite
structure, then the formula

ϕmax(x) := x ≤ x ∧ ∀z(z ≤ x ∨ ¬ϕ(z,Ru/¬x ≺ u,¬Ru/¬u ≤ x))

defines the elements of maximal rank in the fixed point of ϕ. Now, a formula
ψ(x) := ¬[lfpR,x ϕ](x) in LFP is equivalent to the formula

∀y¬ϕ(y,∅) ∨ ∃z(ϕmax(z) ∧ z ≺ x).

If the fixed point of ϕ is empty, then the first disjunct becomes true for all tu-
ples. Otherwise, i.e. if the fixed point of ϕ is not empty, then ∃z(ϕmax(z)∧z ≺
x)) defines a tuple z of maximal rank with respect to the stage comparison
relation for ϕ. Clearly, the complement of ϕ’s fixed point is just the set of
elements of rank greater than the rank of z. �
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We now aim at extending the equivalence of IFP and LFP to arbitrary,
not necessarily finite structures. If A is an infinite structure, the sequence
of stages induced by an LFP-formula ϕ(R,x) on A is no longer guaranteed
to be finite. The formulae used in the proof above still define the correct
stage comparison relations up to stage ω, i.e. for all finite stages. However,
at stage ω - and all other infinite limit stages also - it is no longer true that
there is a tuple z of rank less than ω such that u ≤ z defines R<ω. For, each
such tuple z is itself of finite rank β < ω and therefore u ≤ z defines the
stage Rβ ( Rω. Thus, to extend the result to infinite structures, we have to
treat the limit stages differently.

8.2 Equivalence in the General Case

In this section we aim at establishing the equivalence of IFP and LFP on
arbitrary structures. Towards this, let ϕ′(R,x) be in LFP, not necessarily
positive in R, and consider the formula ϕ := Rx ∨ ϕ′(x). Clearly, ϕ and ϕ′

have the same inflationary fixed point. Fix ϕ for the rest of the section.

Notation. Let ψ1(x), ψ2(x) be formulae, which may or may not contain
the relation symbol R, such that x and R have the same arity. We write
ϕ(x,Ru/ψ1(u),¬Ru/ψ2(u)) to denote the formula obtained from ϕ by re-
placing each positive occurrence of atoms of the form Ru, for some tuple u
of terms, by ψ1(u) and each negative occurrence of atoms of the form Ru by
¬ψ2(u). Clearly, the formula is positive both in ψ1 and ψ2 and thus positive
in R if ψ1 and ψ2 are. �

We aim at defining the stage comparison relation ≺ϕ for ϕ in LFP.
Consider again the proof of the Stage Comparison Theorem 3.37. We showed
that ≺ϕ can be defined by the inflationary fixed point of the formula

ϕ′(≺, x, y) := ϕ(x,Ru/u ≺ x,¬Ru/¬u ≺ x) ∧
¬ϕ(y,Ru/u ≺ x,¬Ru/¬u ≺ x),

where ≺ is a second-order variable of appropriate arity. To turn this into
a formula in LFP we have to replace the formula ¬u ≺ x by a definition
positive in ≺. Essentially, we define a second formula ϑ(≪, x, y), with free
second-order variables ≪ and ≺, such that ϑ is negative in ≺ and if ≺ is
interpreted by a given stage ≺α, for some ordinal α, then the least fixed
point ≪∞ of ϑ is just ≺α. We can then use [lfp≪,x,yϑ] negatively to get the
desired positive definition of ≺.

Unfortunately, by definition, the relation defined by such a formula must
increase with increasing stages ≺α. On the other hand, as ϑ is supposed to
be negative – and therefore antitone – in ≺, the relation defined by ϑ must
decrease with increasing stages ≺α. Thus, in general, we cannot hope for
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such a formula to exist. Instead we will use a formula defining a slightly
different relation. But it might be helpful to keep the original idea in mind.

Consider the following formula

χ(x, y) := [lfp≺,x,y χ
′(x, y)](x, y),

where
χ′(x, y) := ϕ(x,Ru/u ≺ x,¬Ru/¬u⊳ x) ∧

∀u(u ≺ x ∨ ¬u⊳ x) ∧
¬ϕ(y,Ru/u⊳ x,¬Ru/¬u ≺ x)

and
x⊳ y := [lfp≪,x,y ϑ(≪, x, y)](x, y)

where

ϑ(x, y) := ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x}) ∧
¬∃u(u ≺ x ∧ ¬(u≪ x ∧ u≪ y)) ∧
¬ϕ(y,Ru/u ≺ x,¬Ru/¬(u≪ x ∧ u≪ y)).

Obviously, the formula χ′ is positive in ≺ and is itself a formula in LFP.
Thus the least fixed point of χ′ exists. We claim that this fixed point defines
the stage comparison relation ≺ϕ of ϕ. Before proving this we first have to
establish some facts about the sub-formula ϑ. Recall from the beginning of
this section that ϕ is supposed to be of the form Rx∨ϕ′. This is important
for the proofs below as it ensures that whenever a tuple x satisfies ϕ at a
stage α, it satisfies ϕ at all higher stages also.

8.4 Lemma. Consider the fixed-point induction on ϑ where ≺ is interpreted
by ≺<α, i.e. x ≺ y if, and only if, x ∈ ϕ<α and |x|ϕ < |y|ϕ.

(i) If x ∈ ϕα or y ∈ ϕα, then (x, y) ∈ ϑ∞ if, and only if, |x|ϕ < |y|ϕ.

(ii) For all y such that |y|ϕ > α there is an x such that |x|ϕ = α and
(x, y) ∈ ϑ∞.

(iii) If the fixed-point of ≺ has already been reached, i.e. if ≺α=≺<α, then
ϑ∞ =≺α.

Proof. Throughout this proof, the variable ≺ will always be interpreted by
the set ≺<α. Therefore we will sometimes drop the index and write ≺ for
≺<α.

1. We prove by induction on β that for all β < α, (x, y) ∈ ϑβ, i.e.

(A,≺<α,≪<β) |= ϑ(x, y), if, and only if, x ∈ ϕβ and |x|ϕ < |y|ϕ.

Again we omit the index most of the times and write ≪ for ≪<β.

Suppose that for all γ < β the claim has been proved. We distinguish
between the case where x ∈ ϕβ and x 6∈ ϕβ.
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• Suppose x ∈ ϕβ . We show that (A,≺<α,≪<β) |= ϑ(x, y), if, and
only if, |x|ϕ < |y|ϕ.

By induction hypothesis, if x ∈ ϕβ then for all u, u ≪ x if,
and only if, |u|ϕ < |x|ϕ and, as β < α, ¬u ≺ x if, and only if,
|u|ϕ ≥ |x|ϕ. Thus,

(A,≺<α,≪<β) |= ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x}).

Now consider y. If |y|ϕ > |x|ϕ, then ¬(u ≪ x ∧ u ≪ y) reduces
to ¬u ≪ x. As β < α, ¬u ≪<β x is equivalent to ¬u ≺<α x.
Therefore there is no u satisfying (u ≺ x∧¬(u≪ x∧u≪ y)) and
the second conjunct in ϑ is satisfied. Further, y does not satisfy
ϕ(y,Ru/u ≺ x,¬Ru/¬(u≪ x∧u≪ y)) as otherwise |y|ϕ ≤ |x|ϕ.
Thus, (x, y) ∈ ϑβ.

On the other hand, if |y|ϕ < |x|ϕ, then (u ≪ x ∧ u ≪ y) in the
second conjunct reduces to u ≺ y and thus there is a u satisfying
u ≺ x ∧ ¬(u≪ x ∧ u≪ y)), u := y for instance.

Finally, suppose |x|ϕ = |y|ϕ. By the same argument as above we
get that in this case

(A,≺<α,≪<β) |= ϕ(y,Ru/u ≺ x,¬Ru/¬(u≪ x ∧ u≪ y))

and thus ϑ is not satisfied.

• Suppose x 6∈ ϕβ . We show that ϕ(x,Ru/u ≪ x,¬Ru/¬u ≺ x)
is not satisfied. By induction hypothesis, u ≪ x defines the set
M := ϕ<β . Clearly, as x 6∈ ϕβ ,

A 6|= ϕ(x,Ru/u ∈M,¬Ru/u ∈M c).

Now consider the set N := {u : ¬u ≺ x}. As x 6∈ ϕβ, we get
M c ⊇ N , where M c denotes the complement of M .

By monotonicity of ϕ in M and M c it follows that

(A,≺<α,≪<β) 6|= ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x}.

We get that for any pair (x, y), (A,≺<α,≪<β) |= ϑ(x, y) if, and only
if, x ∈ ϕβ and |x|ϕ < |y|ϕ.

2. Part 1 implies that (x, y) ∈ ϑ<α if, and only if, x ∈ ϕ<α and |x|ϕ <
|y|ϕ. Thus, ≪<α=≺<α. Now consider the next induction step. Again
we distinguish between x ∈ ϕα and x 6∈ ϕα.

• Suppose x ∈ ϕα. Obviously,

(A,≺<α,≪<α) |= ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x).
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If |y|ϕ ≥ |x|ϕ, then (u ≪ x ∧ u ≪ y) reduces to u ≺ x and thus
(A,≺<α,≪<α) |= ¬ϕ(y,Ru/u ≺ x,¬Ru/¬(u ≪ x ∧ u ≪ y)) if,
and only if, |y|ϕ > |x|ϕ.

Now suppose |y|ϕ < |x|ϕ. Then |y|ϕ < α and there is an u
satisfying u ≺ x ∧ ¬(u ≪ x ∧ u ≪ y), again y being itself a
witness for this. Thus ϑ(x, y) is not satisfied.

• Now assume x 6∈ ϕα. Then

(A,≺<α,≪<α) 6|= ϕ(x,Ru/u≪ x,¬Ru/¬u ≺ x})

as u≪ x defines the set u ∈ ϕ<α and ¬u ≺ x its complement.

It follows, that ϑα contains all pairs (x, y) such that x ∈ ϕα and
|x|ϕ < |y|ϕ. This proves Part (ii) because if there is a tuple y of rank
greater than α there must also be a tuple x of rank exactly α and this
pair would be in ϑα.

Further, if the fixed point of ≺ has already been reached, i.e. ≺α=≺<α,
then there are no tuples x of rank exactly α. In this case, all tuples
(x, y) ∈ ϑα already occur in ϑ<α and the fixed point of ϑ has been
reached. This proves Part (iii) of the lemma. Thus, from now on, we
assume that ≺<α(≺α.

3. We show now that at no stage γ > α can a pair (x, y) with x, y ∈ ϕα

and |y|ϕ ≤ |x|ϕ enter the fixed point. Towards a contradiction let γ be
the smallest such stage and let (x, y) be as described. Then the same
argument as in the first item of Step 1 yields a contradiction.

4. What is left to be shown is that for no x 6∈ ϕα and y ∈ ϕα the
pair (x, y) enters the fixed point at some higher stage. Towards a
contradiction, let γ be the least such stage, i.e. the least stage such
that there is a pair (x, y) ∈ ϑγ with x 6∈ ϕα and y ∈ ϕα. In particular,
(A,≺<α,≪<γ) |= ϑ(x, y).

Now, as x 6∈ ϕα, u ≺ x defines just ϕ<α and, as γ was chosen minimal,
we get that ¬(u ≪ x ∧ u ≪ y) defines the set of tuples u such that
|u|ϕ ≥ |y|ϕ. Thus, if |y|ϕ < α then there is a tuple u satisfying
u ≺ x ∧ ¬(u ≪ x ∧ u ≪ y) and thus ϑ is not satisfied by (x, y).
On the other hand, if |y|ϕ = α, then (A,≺<α,≪<α) |= ϕ(y,Ru/u ≺
x,¬Ru/¬(u≪ x ∧ u≪ y)) and again ϑ is not satisfied.

This finishes the proof of the lemma. �

We now prove a technical lemma which will establish the induction step
in the proof that the fixed point of χ′ defines ≺ϕ.

8.5 Lemma. Let ≺<α be the strict stage comparison relation up to stage α,
i.e., x ≺<α y if, and only if, x ∈ ϕ<α and |x|ϕ < |y|ϕ.

Then (A,≺<α) |= χ′(x, y), if, and only if, x ∈ ϕα and |x|ϕ < |y|ϕ.
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Proof. We distinguish between the cases where x ∈ ϕα and x 6∈ ϕα.

• Suppose x ∈ ϕα. By assumption, u ≺<α x defines the set {u : |u|ϕ <
|x|ϕ} and, by Part (i) of Lemma 8.4, ¬u ⊳ x defines its complement.
Thus, (A,≺<α) |= ϕ(x,Ru/u ≺ x,¬Ru/¬u ⊳ x) and all u satisfy
u ≺ x ∨ ¬u⊳ x.

Now, (A,≺<α) |= ¬ϕ(y,Ru/u⊳x,¬Ru/¬u ≺ x) if, and only if, |y|ϕ >
|x|ϕ.

Thus, (A,≺<α) |= χ′(x, y) if, and only if, |y|ϕ > |x|ϕ.

• Suppose x 6∈ ϕα. Then u ≺ x defines the set {u : u ∈ ϕ<α}. If
ϕ<α = ϕα, i.e. if the fixed point of ϕ has been reached, then, by
Part (iii) of Lemma 8.4, we get ⊳ =≺ and (A,≺<α) 6|= ϕ(x,Ru/u ≺
x,¬Ru/¬u⊳ x) and therefore χ′ is not satisfied.

Otherwise, i.e. if ϕ<α ( ϕα, then, by Part (ii) of Lemma 8.4, there is
a tuple a of rank α with a⊳x. Thus, the conjunct ∀u(u ≺ x∨¬u⊳x)
is not satisfied as a⊳ x but a 6≺ x.

This finishes the proof of the lemma. �

As corollary we get that the relation ≺ϕ is definable in LFP.

8.6 Corollary. Let ϕ(R,x) be a formula in LFP. Then the stage comparison
relation ≺ϕ of the inflationary fixed point of ϕ is definable in LFP.

Proof. A simple induction on the stages using the previous lemma shows
that ≺ϕ is defined by the formula χ above.

The equivalence of LFP and IFP follows immediately.

8.7 Theorem. For every formula in IFP there is an equivalent formula in
LFP.

Proof. By Corollary 8.6, for every ϕ(R,x) ∈ LFP the relation ≺ϕ is definable
in LFP. Thus, for all x, x ∈ ϕ∞ if, and only if, A |= ϕ(x,Ru/χ(u, x)), where
χ is the formula defining ≺ϕ. Thus, the inflationary fixed point of an LFP-
formula can be defined in LFP.

For arbitrary formulae ϕ ∈ IFP, the theorem follows by induction on
the number of inflationary fixed points in ϕ converting them to least fixed
points from the inside out.

The theorem shows that also on infinite structures, least and inflationary
fixed-point logic have the same expressive power. But, contrary to the case
of finite structures where the translation of IFP-formulae to equivalent LFP-
formulae does not alter the fixed-point structure, in the general case their
structure in terms of alternations between lfp-operators and negation and
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the nesting depth of fixed-point operators becomes more complicated. It
might be possible to reduce the increase in the number of alternations of
the resulting LFP-formulae. However, we will show below that an increase
in the number of alternations cannot be avoided.

8.8 Theorem. For every n ≥ 0,

LFPan ⊆ IFPdn ⊆ LFPa3n

Proof. Let ϕ ∈ LFPan be a formula with alternation depth n. It is known
that nested lfp-operators which all occur positively can be contracted to
a single lfp-operator increasing the arity. Thus, every formula in LFPan is
equivalent to a formula with n nested fixed-points. By Theorem 3.34 above,
this formula again is equivalent to an IFP formula with nesting depth n.

Towards the second containment, note that using the method of Theorem
8.7 to convert an IFP-formula to an equivalent LFP-formula, the translation
of each individual ifp-operator at most triples the alternation depth. The
theorem now follows by induction. �

We immediately get the following corollaries.

8.9 Corollary. For any structure, the alternation depth hierarchy for LFP

collapses if, and only if, the nesting depth hierarchy for IFP collapses.

The corollary implies that for every structure A, either both the nesting
and the alternation depth hierarchy collapse on A for LFP and IFP, or we
get the following diagram.

Alternation Nesting

LFP strict collapse
IFP collapse strict

It is open whether there are infinite structures on which the alternation
and nesting depth hierarchies for LFP and IFP collapse but where LFP is
still more expressive than FO.

An example of a class of structures where the hierarchies are strict is the
class of acceptable structures (see Definition 7.7).

8.10 Corollary. Let A be acceptable. Then the nesting depth hierarchy for
IFP is strict. The same holds, if A is not acceptable but allows the definition
of a coding scheme in IFP.

Proof. This follows immediately from Corollary 8.9 and the results of
Moschovakis [Mos74a] and Bradfield [Bra98a] on the alternation hierarchy of
LFP on acceptable structures. See Theorem 3.25. �
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8.3 Open Problems

In the preceding section we established the equivalence of least and infla-
tionary fixed-point logic. The proof was by giving an explicit transformation
of inflationary into least fixed-point formulae. As we have seen, this trans-
formation increases the complexity and alternation depth of the resulting
formulae significantly, i.e. exponentially. It would be interesting to know
whether the exponential blow up in the number of fixed-point operators is
necessary or whether the proof can be simplified to a linear increase in the
alternation depth.

Another open problem concerns the arity of the involved fixed-point
operators. The transformation of an ifp-operator into an lfp-operator as
given above doubles the arity of the fixed-point relation. Whether this
increase in arity can be avoided is an important open problem. Note that
giving a positive answer to this question on finite ordered structures would
separate Ptime from Logspace. For, it was shown by Grohe and Imhof
[Gro94, Imh96a], that on finite ordered structures, deterministic transitive-
closure logic DTC, which captures Logspace, is contained in binary LFP

and monadic IFP. As LFP captures Ptime, a positive answer for some k ≥ 2
to the problem on finite ordered structures would imply DTC ( LFP and
therefore Logspace 6= Ptime.
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Chapter 9

Modal Logics and

Bisimulation

The central issue in the area of verification are formal methods for verifying
that a given process, e.g. a hard- or software system, meets certain criteria or
specifications. Typically, the processes are modelled by transition systems,
which essentially are directed, edge and node labelled graphs. A node in a
transition system represents a state in which the process can get and the
edge relation models the transition between states the process can take.

Logics now serve as the basis of specification languages. The criteria
or specifications the process is supposed to satisfy are formalised in the
logic. Testing whether the process meets the criteria boils down to checking
whether the transition system modelling the process satisfies the formula
corresponding to the specification.

For this purpose, logics like LFP based on first-order logic are much too
powerful. For one, all these logics have an undecidable satisfiability problem
and their model checking complexity is far too high. One the other hand,
they are able to express properties of the transition system which are not
reflected in the process the system models. An important requirement for
specification languages is that they should not be able to distinguish between
different models describing the same process, i.e. model the same behaviour.
The standard notion used to describe behavioural equivalence of processes is
the so-called bisimulation, which will be described in some detail in Section
9.2. Thus, no specification language should be able to distinguish between
bisimilar models. First-order logics and all its extensions, however, do not
respect bisimulation in this sense and thus do not form a suitable basis upon
which specification languages can be built.

Therefore, instead of first-order logic, a much weaker logic, the so-called
modal logic, is used and extensions of modal logic form the basis for impor-
tant specification languages such as LTL, CTL, and the µ-calculus. Modal
logic is the topic of Section 9.3 and much of this second part of the thesis is
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devoted to the study of fixed-point extensions of modal logic.

9.1 Transition Systems

Transition systems are directed, edge and node labelled graphs.

9.1 Definition (Transition system). Fix a set A of actions and a set P
of atomic propositions. A transition system for A and P, also called Kripke
structure, is a structure K := (V, (Ea)a∈A, (p)p∈P) with universe V , binary
relations Ea ⊆ V ×V for each a ∈ A, and monadic relations p ⊆ V for each
atomic proposition p ∈ P.

We do not notationally distinguish between atomic propositions and
their interpretations. Like processes, which always have an initial state,
transition systems are always considered with a distinguished node, called
the root of the system. We write K, v for a transition system K with distin-
guished node v.

The following example demonstrates the use of transition systems for
the modelling of processes. This will serve as a running example on which
the various notions presented later are motivated.

9.2 Example. Consider a print server managing one printer for two dif-
ferent users. Before a user can print a file, he first has to send a request
message to the server. If the server has not received a request from the other
user before or has finished printing the other user’s file, the first user can
send his file which is then printed. If a printer request arrives at the server
while it is printing a file, the request is scheduled and processed after the file
has been printed. For simplicity, we assume that no user can send a request
while he is printing a file. Figure 9.1 shows a transition system modelling the
print server described here. The label Ri stands for User i having requested
the printer and Pi stands for User i printing a file.

The next definition collects some frequently used notions about transi-
tion systems.

9.3 Definition. (i) A transition system K, v is connected if for every
node u, there is a path in K from v to u.

(ii) Let K be a transition system with universe V. A node v ∈ V is well-
founded if no infinite path in K starts at v.

(iii) The height h(v) of a well-founded node v ∈ V is defined as the least
strict upper bound of the height of its children. In particular, leaves
are of height 0.

(iv) A transition system K with distinguished node v is well-founded if v is
well-founded. If K, v is well-founded, its height is defined as the height
of v.
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idle

P1 R1 R2 P2

R1, R2 R2, R1

P1, R2 P2 P1 P2, R1

R2 P1, R2 R1, R2 R1

R2, R1 P2, R1

Figure 9.1: Transition system modelling the print server described in Ex-
ample 9.2.

(v) A transition system is called a tree, if

• for every state v, there is at most one state u, and at most one
action a such that (u, v) ∈ Ea,

• there is exactly one state r, called the root of the tree, for which
there is no state having a transition to r, and

• every state is reachable from the root r.

In almost all areas of logic, there are notions telling us whether two
structures are “the same” with respect to the requirements needed in the
particular area. For first-order model theory, this is usually the isomor-
phism of structures. Sometimes a weaker notion is used, the back and forth
equivalence, which corresponds to elementary equivalence.

As mentioned above, transition systems are used to model the behaviour
of processes for the purpose of verification. In this context, isomorphism
and elementary equivalence are far too strong to capture behavioural equiv-
alence. Reconsider Example 9.2 and Figure 9.1. There are two distinct
nodes in the transition system with label just P1. This corresponds to the
situation where User 1 is printing a file and there is no request from User 2.
From both nodes the idle state and a state labelled by R2 can be reached
in one step. And, again, from the two nodes labelled R2, states with the
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same labelling can be reached on both sides. In the server process modelled
by this transition system, the two nodes labelled by P1 correspond to the
same state of the process and are in this sense equivalent. The transition
system where one of these two nodes is removed and all edges going into it
are redirected to the other node, should fall into the same equivalence class
as the given one. However, the two systems obtained in this way are neither
isomorphic nor elementary equivalent.

Therefore, a weaker notion of equivalence between transition systems, or
between nodes of transition systems is used, the so called bisimulation.

9.2 Bisimulation

Bisimulation is a notion of behavioural equivalence for transition systems
and no reasonable modal logic can distinguish between two systems that are
bisimulation equivalent.

9.4 Definition (Bisimulation). Given two transition systems K, v and
K′, v′, with distinguished states v and v′ respectively, we say that K, v is
bisimulation equivalent, or shorter bisimilar, to K′, v′, in terms K, v ∼
K′, v′, if there is a relation Z ⊆ V × V ′ between the states of K and the
states of K′ such that

1. (v, v′) ∈ Z,

2. for every atomic proposition p ∈ P and every pair (u, u′) ∈ Z, u ∈ pK

if, and only if, u′ ∈ pK
′

,

3. for every (u, u′) ∈ Z, and every w ∈ V such that (u,w) ∈ EK
a , there is

a w′ ∈ V ′ with (u′, w′) ∈ EK′

a and (w,w′) ∈ Z, and conversely

4. for every (u, u′) ∈ Z, and every w′ ∈ V ′ such that (u′, w′) ∈ EK′

a , there
is a w ∈ V with (u,w) ∈ EK

a and (w,w′) ∈ Z.

A class C of transition systems is closed under bisimulation, if for all K, v ∼
K′, v′, whenever K, v ∈ C then also K′, v′ ∈ C.

As an example, consider again the transition system in Figure 9.1. It is
easily seen, that the two nodes labelled P1 are bisimilar. In fact, any two
nodes carrying the same label are bisimilar.

By definition, bisimulation only “looks forward” in a transition system,
i.e. whether two nodes are bisimilar depends only on the part of the transi-
tion system reachable from one of the nodes. For, if there is a bisimulation
Z between K, v and K′, v′, then the relation Z ′ obtained from Z by remov-
ing all pairs (u,w) from Z where u or w is not reachable from v and v′

respectively, still satisfies the conditions in Definition 9.4. This also meets
our intuition of bisimulation as notion of behavioural equivalence between
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processes. Processes that only differ in states that they will never be in
should still be considered equivalent. For instance, the nodes v and v′ in the
transition systems K and K′ defined as

b

b bP P

v Q

K, v :

b

b

b

Q

Qv′

P

K′, v′ :

are bisimilar.

The next proposition concerns a property of bisimulations that is of
particular importance to the study of modal logics.

9.5 Proposition. For every transition system K, and any state v in K,
there is a tree T with root r – called the unravelling of K, v – such that
K, v ∼ T , r.

One consequence of this is that any logic that respects bisimulation,
i.e. cannot distinguish between bisimilar structures, has the tree model prop-
erty: Every satisfiable formula of this logic has a model that is a tree. This
is a useful and important property of such logics, since many problems allow
more efficient algorithms for trees than for arbitrary transition systems.

In general, a transition system may have many pairwise bisimilar nodes.
However, there are situations where it is convenient to work with systems
in which no two different nodes are bisimilar. It can easily be shown that
every transition system K is bisimilar to such a structure, which is called
the quotient K/∼ of K under bisimulation.

9.6 Definition (Quotient under bisimulation). Let K := (V, (Ea)a∈A,
(p)p∈P) be a transition system over a set A of actions and a set P of propo-
sition symbols. For every node v ∈ V let [v] := {v′ : K, v ∼ K, v′} be the set
of nodes bisimilar to v.

The quotient K/∼ of K under bisimulation is defined as the structure
K/∼ := (V/∼, (Ea/∼)a∈A, (p/∼)p∈P), where

• V/∼ := {[v] : v ∈ V },

• Ea/∼ := {([u], [v]) : (u, v) ∈ EK
a } for every a ∈ A, and

• p/∼ := {[v] : v ∈ pK} for every p ∈ P.

9.7 Proposition. Every transition system K, v is bisimilar to its quotient
K/∼, [v] under bisimulation.
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9.3 Modal Logic

In this section we introduce propositional modal logic which will be the
basis for various fixed-point logics presented in later chapters. All these
logics respect bisimulations and therefore have the tree model property.

9.8 Definition (Syntax of modal logic). Fix a set A of actions and a set
P of proposition symbols. The formulae of modal logic (ML) are inductively
defined as follows.

• false , true ∈ ML and for every proposition symbol p ∈ P, p is a formula
in ML.

• If ϕ,ψ ∈ ML, then also (ϕ ∧ ψ), (ϕ ∨ ψ) and ¬ψ are formulae in ML.

• If ϕ is a formula in ML and a ∈ A is an action, then 〈a〉ψ and [a]ψ
are also formulae in ML. If there is only one action in A, we simply
write � and ♦ for [a] and 〈a〉, respectively.

The next definition presents the semantics of modal logic.

9.9 Definition (Semantics of modal logic). The formulae of ML are
evaluated on transition systems at a particular state. Given a formula ψ
and a transition system K with state v, we write K, v |= ψ to express that
the formula ψ holds in K at state v. We also write [[ψ]]K to denote the set
of states v, where K, v |= ψ.

• In the case of atomic propositions, i.e. where ψ := p, we define [[p]]K :=
pK.

• Boolean connectives are treated in the natural way, e.g. [[ϕ1 ∨ ϕ2]]
K =

[[ϕ1]]
K ∪ [[ϕ2]]

K.

• Finally, to define the semantics of the modal operators, we put

[[〈a〉ψ]]K :=

{
v :

there exists a state w such that
(v,w) ∈ Ea and w ∈ [[ψ]]K

}

and

[[[a]ψ]]K :=

{
v :

for all w such that (v,w) ∈ Ea,
we have w ∈ [[ψ]]K

}
.

〈a〉 and [a] can be seen as existential and universal quantifiers ‘along a-
transitions’.

As an example for a formula in modal logic consider

ϕ := idle ∧ ♦(R1 ∧ ♦(P1 ∧ ♦idle))
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expressing that, in the print server modelled by the transition system in
Figure 9.1, it is possible that the server is idle, User 1 requests the printer,
prints his file and the server becomes idle again.

As mentioned above, modal logic respects bisimulation in the sense that
bisimilar structures are indistinguishable by ML-formulae. Logics respecting
bisimulations in this way are called bisimulation invariant.

9.10 Definition. A logic L is bisimulation invariant, if for every formula
ϕ ∈ L and any pair K, v and K′, v′ of transition systems, K, v |= ϕ if, and
only if, K′, v′ |= ϕ.

The next proposition relates modal logic to bisimulation.

9.11 Proposition. Modal logic is invariant under bisimulation. The con-
verse is not true, i.e. there are transition systems K, v and K′, v′ which are
not bisimilar but have the same ML-theory.

In common terminology, logics that are invariant under bisimulation are
called modal logics. There is an extension of modal logic – infinitary modal
logic – which precisely characterises bisimulation.

9.12 Definition (Infinitary modal logic). Infinitary modal logic (ML∞)
is defined as the extension of ML by the following formula building rule: If
Φ is a set of formulae in ML∞ then

∧
Φ and

∨
Φ are also formulae in ML∞

with the natural semantics.

In [vB83], van Benthem proved that equivalence in infinitary modal logic
corresponds to bisimulation equivalence.

9.13 Proposition. Two transition systems K, v and K′, v′ are bisimilar if,
and only if, they satisfy the same formulae in ML∞.

We proceed by listing some properties that are of interest for algorithmic
and complexity issues.

9.14 Definition. Let L be a logic interpreted over transition systems.

• L has the tree model property, if every satisfiable formula in L has a
tree model.

• L has the finite model property, if every satisfiable formula has a finite
model.

As every transition system is bisimilar to a tree, any logic that is invariant
under bisimulation automatically has the tree model property.

9.15 Proposition. Modal logic ML has the tree model property and the
finite model property. Even more, it can be shown that every satisfiable
ML-formula has a model that is a finite tree.
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As mentioned above, modal logic is invariant under bisimulation. It is
also clear that ML is contained in first-order logic. It has been shown by
van Benthem [vB76], that modal logic is not only contained in FO, but that
every property of transition systems that is closed under bisimulation and
definable in first-order logic is also definable in modal logic.

9.16 Definition. Let L,L′ be logics. L is the bisimulation invariant frag-
ment of L′ if every formula of L is equivalent to a formula of L′ and further,
every class C of transition systems that is closed under bisimulation and de-
finable in L′ is also definable in L.

The following proposition is due to van Benthem [vB76]. The finite model
theory version of it is due to Rosen [Ros97].

9.17 Proposition. Modal logic is the bisimulation invariant fragment of
first-order logic.
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The Modal µ-Calculus

In this chapter we consider the extension of modal logic by an operator to
form least fixed points. This logic, the modal µ-calculus (Lµ), extends ML

in the same way as LFP extends FO.

10.1 Definition (Modal µ-calculus). The modal µ-calculus (Lµ) extends
basic modal logic by the following rule. If ϕ(X) is a formula of Lµ, and
positive in its free propositional variable X, then µX.ϕ and νX.ϕ are also
formulae of Lµ.

On any transition system K, v with universe V providing an interpreta-
tion of all propositional variables in ϕ except for X, the formula ϕ induces
an operator Fϕ taking a set X ⊆ V of nodes to the set [[ϕ]]K,X := {u ∈ V :
(K,X), u |= ϕ}.

As ϕ is positive in X, this operator is monotone and has a least fixed
point lfp(Fϕ) and a greatest fixed point gfp(Fϕ). Now, define [[µX.ϕ]]K :=
lfp(Fϕ) and [[νX.ϕ]]K := gfp(Fϕ).

Clearly, the Knaster-Tarski Theorem (Theorem 3.5) applies to Lµ and
thus the least fixed point can be built up inductively by the sequence

X0 := ∅

Xα+1 := Fϕ(Xα)

Xλ :=
⋃

ξ<λ

Xξ for limit ordinals λ

of stages. The inductive definition of greatest fixed points is analogous.
As mentioned in Section 3.1, least and greatest fixed points are dual to

each other. Consequently, for any formula ϕ, the formula νX.ϕ is equivalent
to ¬µX.¬ϕ(¬X), where ϕ(¬X) denotes the formula obtained from ϕ by
replacing all occurrences of X with ¬X.

10.2 Example. On any transition system K with universe V , the formula
ϕ := µX.�X defines the well-founded part of K, i.e. the set of those elements

111
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v ∈ V from which no infinite path starts. For this, note that in stage α of
the induction on �X, Xα contains exactly the elements of height less than
α.

We continue Example 9.2 and formalise some specifications in the modal
µ-calculus.

10.3 Example. Consider again the print server in Example 9.2.

• The formula idle ∧�(reachable(idle)), where

reachable(ϕ) := µX.ϕ ∨ ♦X,

expresses that if the server is idle then whatever happens in the next
step it is possible for the server to become idle again. Here, reachable(ϕ)
is true for all nodes v from which a node where ϕ holds can be reached.

• The formula
∧
i=1,2 everywhere(Ri → µX.Pi ∨�X), where

everywhere(ϕ) := νY.ϕ ∧�Y,

expresses that whenever a user sends a printer request, he eventually
has his file printed. Here, the formula everywhere(ϕ) is true at those
nodes v such that every path starting at v consists exclusively of nodes
where ϕ holds. The sub-formula µX.Pi ∨ �X becomes true at those
nodes v, where every path starting at v eventually reaches a node where
Pi holds.

• Finally, we combine the formulae everywhere and reachable and ex-
tend the specification in the first item. The formula

idle ∧ everywhere(reachable(idle))

expresses that from every state in which the server can get, the idle
state is reachable, i.e. no user action whatsoever can crash the server.

It is often useful to consider Lµ-formulae in a certain normal form, called
guarded normal form.

10.1 Definition. A µ-calculus formula is guarded, if all propositional vari-
ables that are bound by and thus occur in the scope of a fixed-point operator
are also in the scope of a next-modality that is itself in the scope of the
fixed-point operator.

It was shown in [KVW00] that every µ-calculus formula is equivalent to
a guarded formula.
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Simultaneous fixed points. As for least fixed-point logic, we allow si-
multaneous inductions in Lµ. Simultaneous Lµ-formulae are of the form
(µXi : S), where S is a system

S :=






X1 ← ϕ1(X1, . . . ,Xk)
...

Xk ← ϕk(X1, . . . ,Xk)

of rules such that the ϕi are positive in all Xj . On a transition system
K with universe V , the system S of formulae induces an operator FS :
Pow(V )k → Pow(V )k taking a tuple X := (X1, . . . ,Xk) ∈ Pow(V )k to the
tuple (Fϕ1

(X), . . . , Fϕk
(X)), where Fϕi

is the operator induced by ϕi defined
as

Fϕi
: Pow(V )k −→ Pow(V )

X 7−→ [[ϕi]]
(K,X).

Since the ϕi are positive in the variables X , this operator is monotone and
has a least fixed point (X∞

1 , . . . ,X∞
k ). We put [[(µXi : S)]](K,X) := X∞

i and
likewise for (νXi : S).

In Lemma 3.18, we proved that simultaneous inductions in least fixed-
point logic can be eliminated in favour of simple inductions. The proof of
this lemma did not use any property special to first-order or least fixed-point
logic and can literally be applied to the µ-calculus.

10.4 Theorem. In the modal µ-calculus, simultaneous inductions can be
eliminated, i.e. Lµ has the same expressive power with and without simulta-
neous inductions.

We now state, without proofs, a number of results about the modal
µ-calculus.

10.5 Proposition. • On classes of structures of bounded cardinality,
Lµ ⊆ ML∞. Thus, Lµ is invariant under bisimulation. (See Lemma
11.2 below.)

• As Lµ ⊆ ML∞ it has the tree model property. By a result of Kozen
[Koz88], it also has the finite model property but, contrary to ML, not
every satisfiable Lµ-formula has a finite tree model.

The next proposition is due to Bradfield [Bra98a, Bra98b].

10.6 Proposition. The alternation hierarchy for the modal µ-calculus is
strict, i.e. increasing number of alternations between least and greatest fixed
points result in greater expressive power.

We now turn towards the complexity of the algorithmic problems con-
nected with Lµ.
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10.7 Proposition. • The satisfiability problem for the modal µ-calculus
is Exptime-complete [EJ88].

• The model checking problem for Lµ is in NP ∩ co-NP. In fact, the
result can even be strengthened to UP ∩ co-UP [Jur98].

The proposition states an UP ∩ co-UP bound for the complexity of
the model checking problem for Lµ. However, this bound is only an upper
bound and it is conceivable that model checking can be done in polynomial
time. Finally, we relate Lµ to the monadic fragments of least fixed-point
and second-order logic.

10.8 Proposition. • Clearly, Lµ ⊆ M-LFP ⊆ MSO. The converse is
also true, in the sense that every MSO-definable class of transition
systems that is closed under bisimulation is definable in Lµ. Thus, Lµ
is the bisimulation invariant fragment of MSO [JW96].

• As a consequence of the Janin-Walukiewicz theorem, the class of lan-
guages definable in Lµ is precisely the class of regular languages.

As the proposition states, the modal µ-calculus is the bisimulation invariant
fragment of monadic second-order logic. However, the method used to prove
this relies heavily on the fact that every transition system is bisimilar to a –
potentially infinite – tree. Whether the theorem also holds in the restriction
to finite models is one of the major open problems in this area.

The Higher Dimensional µ-Calculus. We briefly present the higher
dimensional µ-calculus introduced by Martin Otto [Ott99]. As noted above,
the modal µ-calculus characterises precisely the class of regular languages.
It follows immediately, that it falls short of expressing all polynomial time
decidable languages. On reason for its limited power is the restriction to
monadic inductions, i.e. fixed-point inductions defining subsets of the uni-
verse.

In [Ott99], Otto introduced an extension of Lµ in which fixed-point in-
ductions over relations of higher arity are possible. We refrain from giving
a formal definition of this logic as we will not use individual formulae. See
[Ott99] for details. The key property of Lωµ that makes it interesting to us is
that all polynomial time decidable classes of finite transition systems that
are closed under bisimulation are definable in it. As the evaluation problem
for Lωµ is itself in polynomial time, this gives a precise characterisation of
bisimulation invariant Ptime.

10.9 Theorem. Lωµ captures bisimulation invariant Ptime, i.e. every class
of finite transition systems that is definable in Lωµ is decidable in Ptime and,
conversely, every class of transition systems that is closed under bisimulation
and decidable in Ptime can be defined by a formula of Lωµ .



Chapter 11

The Modal Iteration

Calculus

In the previous chapter, we introduced the modal µ-calculus, the least fixed-
point extension of ML. We proceed by studying the extension of modal logic
by inflationary fixed points. The resulting logic, the modal iteration calcu-
lus (MIC), is propositional modal logic (ML), augmented with simultaneous
inflationary fixed points.

11.1 Definition (Syntax and semantics of MIC). The modal iteration
calculus (MIC) extends propositional modal logic by the following rule. If
ϕ1, . . . , ϕk are formulae of MIC, and X1, . . . ,Xk are propositional variables,
then

S :=






X1 ← ϕ1(X1, . . . ,Xk)
...

Xk ← ϕk(X1, . . . ,Xk)

is a system of rules, and (ifp Xi : S) is a formula of MIC. If S consists
of a single rule X ← ϕ we simplify the notation and write (ifp X ← ϕ)
instead of (ifp X : X ← ϕ). Let 1MIC denote the fragment of MIC without
simultaneous inductions, i.e. where inductions are allowed only over systems
with one rule only.

On every transition system K, the system S defines, for each ordinal α,
a tuple X

α
:= (Xα

1 , . . . ,X
α
k ) of sets of states, via the following inflationary

induction (for i = 1, . . . , k).

X0
i := ∅,

Xα+1
i := Xα

i ∪ [[ϕi]]
(K,X

α
),

Xλ
i :=

⋃

ξ<λ

Xξ
i for limit ordinals λ.
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(Xα
1 , . . . ,X

α
k ) is called the stage α of the inflationary induction of S

on K. As the stages are increasing, this induction reaches a fixed point
(X∞

1 , . . . ,X∞
k ). Now we put [[(ifpXi : S)]]K := X∞

i .

Various examples of MIC-formulae will be given below. The following
lemma relates MIC to the modal logics introduced so far.

11.2 Lemma. Lµ ⊆ MIC. Further, MIC ⊆ ML∞ on every class of structures
of bounded cardinality.

Proof. Clearly, if X occurs only positively in ψ, then µX.ψ ≡ ifp X ← ψ.
Hence Lµ ⊆ MIC. Towards establishing the containment of MIC in ML∞, let
(ifp X : ϕ(X)) be a formula in MIC. To simplify notation, we only consider
simple inductions. The case for simultaneous inductions is analogous.

For every ordinal α, we inductively define a formula ψα ∈ ML∞ which,
over any transition system, defines the stage α of the induction on ϕ.

ψ0 := false ,
ψα+1 := ψα ∨ ϕ(X/ψα),
ψλ :=

∨
ξ<λ ψ

ξ for limit ordinals λ.

Here, ϕ(X/ψα) is obtained from ϕ by replacing every occurrence of X in ϕ
by ψα. As closure ordinals are bounded on classes of structures of bounded
cardinality, the claim follows immediately. �

A consequence of the lemma is that MIC is indeed a modal logic, i.e. in-
variant under bisimulation.

11.3 Corollary. MIC is invariant under bisimulation and has the tree model
property.

Note that on classes of structures of unbounded cardinality, Lµ and MIC

are not contained in ML∞. For instance, we have shown above that well-
foundedness is expressed by the Lµ-formula µX.�X, but is known not to
be expressible in ML∞.

We now demonstrate that MIC is strictly more expressive than Lµ. Recall
that every formula of Lµ can be translated into a formula of monadic second-
order logic (MSO). Moreover, it is a well-known classical result that the
only languages of finite words expressible in MSO are the regular languages
[Büc60]. Here, finite words w are represented by transition systems as follows.

11.4 Definition. Let Σ be a non-empty finite alphabet. For every word
w ∈ Σ∗, define a transition system Tw := (V := {0, . . . , |w| − 1}, E, (a)a∈Σ)
with root 0, where E is the successor relation truncated at |w| − 1 and aTw

contains all n ∈ V such that at position n, w contains the letter a.

We aim at showing that there are languages definable in MIC which are
not regular. For this, we first introduce some auxiliary formulae.
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11.5 Proposition. Let ϕ be a formula in MIC and K be a transition system
with universe V .

• The formula everywhere(ϕ) := ¬(ifp X ← ¬ϕ∨♦X) is true at a node
v ∈ V if ϕ holds at every node reachable from it.

• The formula somewhere(ϕ) := (ifp X ← ϕ ∨ ♦X) is true at a node
v ∈ V if there is some node u reachable from v where ϕ holds true.

• Finally, the formula nowhere(ϕ) := ¬somewhere(ϕ) is true at a node
v if there is no node reachable from it where ϕ holds true.

The proposition follows easily by induction on the stages. The formulae
introduced in the proposition will frequently be used in the sequel. At
various places, they will be used with a formula ϕ which itself contains a
fixed-point operator binding X. Without further notice, we assume that in
these cases the fixed-point variables are renamed appropriately. We are now
ready to prove that MIC is strictly more expressive than Lµ.

11.6 Proposition. There is a language that is expressible in MIC but not
in MSO.

Proof. We claim that the language L := {anbm : n ≤ m} is definable in
MIC. As it is not regular it is not definable in monadic second-order logic.
Towards establishing the claim, we first consider the formula

π(X) = (ifp Y ← ♦(b ∧ ¬X) ∨ ♦(a ∧X ∧ Y ))

which actually is equivalent to a Lµ-formula. On every word w := w0 · · ·wn−1

in {a, b}∗ and X ⊆ {0, . . . , n − 1}, the formula is true if the word w starts
with a (possibly empty) a-sequence inside X followed by a b outside X. Now
the formula (ifp X ← (a∧π(X))∨(b∧�X)) defines inside a∗b∗ the language
L. As a∗b∗ is definable in Lµ we can take the conjunction of this definition
with the above formula to obtain a definition of L which works on all words
in {a, b}∗. �

The following corollary is an immediate consequence of the proposition.

11.7 Corollary. MIC is strictly more expressive than Lµ, i.e. Lµ ( MIC.

In the previous section, we mentioned that, as for LFP, the alternation
hierarchy for the modal µ-calculus is strict whereas it was shown in Part
I that for inflationary fixed-point logic the alternation hierarchy collapses.
We show now that this also holds true for the modal iteration calculus.

11.8 Theorem. Every formula in MIC is equivalent to a formula where
negation occurs only in front of the atoms.
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Proof. Let ϕ := ¬(ifp Xi : S) be any formula in MIC. We claim that
ϕ is equivalent to the formula ψ := (ifp Y : S′), where S′ is obtained
from S by adding the rule Y ← everywhere(

∧k
i=1(ϕi → Xi)) ∧ ¬Xi. Here,

the X1, . . . ,Xk are all fixed-point variables for which a rule exists in S.
Towards establishing the claim, consider the induction stages induced by S′

on a structure K. Obviously, the stages of the variables X1, . . . ,Xk are the
same as in the induction on S. Now let v be a node in K. If, at some stage
α, on all nodes reachable from v the conjunct

∧k
i=1(ϕi → Xi) becomes true,

then this implies that the fixed point of the induction on S has been reached
in the part of K reachable from v. Therefore, v is added to Y if, and only
if, v does not occur in the fixed point of Xi. This proves the claim. �

We now investigate on the algorithmic properties of MIC. We consider
the satisfiability problem first and proceed then to the model checking com-
plexity.

11.1 The Satisfiability Problem for MIC

In this section we prove that the satisfiability problem for MIC is undecidable
in a very strong sense. Given that MIC is invariant under bisimulation, we
can restrict attention to trees. In particular, we will only consider well-
founded trees. Recall from Definition 9.3 above that the height h(v) of a
node v in a well-founded tree T was defined as the least strict upper bound
of the heights of its children. For any node v in a tree T , we write T (v) for
the subtree of T with root v. We first show that the nodes of finite height
and the nodes of height ω are definable in MIC.

11.9 Lemma. Let S be the system

X ← �false ∨ (�X ∧ ♦¬Y )

Y ← X.

On every tree T , [[ifp X : S]]T = [[ifp Y : S]]T = {v : h(v) < ω}.

Proof. By induction we see that for each i < ω, Xi = {v : h(v) < i} and
Y i = Xi−1 = {v : h(v) < i− 1}. As a consequence, Xω = Y ω = {v : h(v) <
ω}. One further iteration shows that Xω+1 = Y ω+1 = Xω. �

With the system S exhibited in Lemma 11.9 we obtain the formulae

finite-height := (ifp X : S)

and
ω-height := ¬finite-height ∧�finite-height

which define, respectively, the nodes of finite height and the nodes of height
ω. Note that ω-height is a satisfiable formula all of whose models are infinite.
This immediately implies the following proposition.
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11.10 Proposition. MIC does not have the finite model property.

We next show that the satisfiability problem for MIC is undecidable.
In fact MIC interprets full arithmetic on the heights of nodes. To prove
this, we first define some auxiliary formulae that will be used frequently
throughout this chapter. We always assume that the underlying structure
is a well-founded tree.

• Recall from above the formula everywhere(ϕ). The formula is true at
a node v if ϕ holds at all nodes of the subtree T (v).

• Dually, the formula somewhere(ϕ) states that ϕ holds somewhere in
the subtree of the current node v.

• We say that a set X (in a tree T ) encodes the ordinal α if X =
{v : h(v) < α}. Let ordinal(X) be the conjunction of the formula
everywhere(X → �X) with

¬ifp Z :






Y ← �Y
Z ← somewhere(¬Y ∧�Y ∧X) ∧

somewhere(¬Y ∧�Y ∧ ¬X).

It expresses that X encodes some ordinal. Indeed everywhere(X →
�X) says that with each node v ∈ X, the entire subtree rooted at
v is contained in X. The second conjunct performs an inflationary
induction which, at each stage β + 1, adds to Y all nodes of height
β and adds to Z all nodes u of height greater than β just in case
that both, X and its complement, contain nodes from Tu of height β.
Hence, at the end of the induction the root of the tree will not be
contained in Z if, and only if, X does not distinguish between nodes
of the same height. Together the two conjuncts imply that X contains
all nodes up to some height.

• The formula

number(X) := ordinal(X) ∧ somewhere(finite-height ∧ ¬X)

says that X encodes a finite number n < ω (inside a tree of height
greater than n).

We now show that addition and multiplication of natural numbers en-
coded by sets of nodes as described above can be defined in MIC.

11.11 Lemma. Let T be a well-founded tree of height ω. There exist for-
mulae plus(S, T ) and times(S, T ) of MIC such that, whenever the sets S and
T encode in T the natural numbers s and t, then [[plus(S, T )]]T encodes s+t,
and [[times(S, T )]]T encodes s · t.
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Proof. Define the formula plus(S, T ) as

plus(S, T ) := ifp Y :






X ← �X
Y ← S ∨ (�Y ∧ somewhere(X) ∧

everywhere(X → T )).

Obviously, at each stage n, we have Xn = {v : h(v) < n}. We claim that
for each n, Y n+1 = {v : h(v) < s + min(n, t)}. For n = 0 this is clear as
the conjunct somewhere(X) prevents the Y -rule from being active at the
first stage. For n > 0 the inclusion Xn ⊆ T is true if, and only if, n ≤ t.
Hence, we have Y n+1 = {v : h(v) < s + n} in the case that n ≤ t and
Y n+1 = Y n = · · · = Y t+1 otherwise. To express multiplication define

times(S, T ) := ifp Y :

{
X ← �X
Y ← plus(Y, S) ∧ everywhere(�X → T ).

We claim that Y n = {v : h(v) < s · min(n, t)}. This is trivially true for
n = 0. If it is true for n < t, then Y n+1 = {v : h(v) < sn+ s} = {v : h(v) <
s(n + 1)}. Finally for n ≥ t, �Xn defines {v : h(v) < n + 1} which is not
contained in T = {v : h(v) < t}, hence Y n+1 = Y n = · · · = Y t. �

An immediate consequence of the lemma is the following corollary.

11.12 Corollary. For every polynomial f(x1, . . . , xr) with coefficients in
the natural numbers there exists a formula ψf (X1, . . . ,Xr) ∈ MIC such that
for every tree T of height ω and all sets S1, . . . , Sr encoding natural numbers
s1, . . . , sr < ω

[[ψf (S1, . . . , Sr)]]
T = {v : h(v) < f(s1, . . . , sr)}.

Proof. The proof is by induction on f .

• ψ0 := false.

• ψ1 := �false.

• ψxi
:= Xi.

• ψf+g := plus[S/ψf , T/ψg], i.e. the formula obtained by replacing in
plus(S, T ) the variables S and T by ψf and ψg respectively.

• ψf ·g := times[S/ψf , T/ψg].

�

The corollary establishes the main step in the proof of the following theo-
rem showing that for every first-order sentence in the language of arithmetic,
there is a MIC-formula that is satisfiable if, and only if, the FO-sentence is
true in the arithmetic.



Section 11.1: The Satisfiability Problem for MIC 121

11.13 Theorem. For every first-order sentence ψ in the vocabulary {+, ·, 0,
1}, there exists a formula ψ∗ ∈ MIC such that ψ is true in the standard model
(N,+, ·, 0, 1) of arithmetic if, and only if, ψ∗ is satisfiable.

Proof. The proof is by induction on the structure of the first-order formulae
ψ. We have to show that for each such formula ψ(y1, . . . , yr) there exists a
MIC-formula ψ∗(Y1, . . . , Yr) such that on rooted trees T , w of height ω and
for all sets S1, . . . , Sr that encode numbers s1, . . . , sr on T we have that
(N,+, ·, 0, 1) |= ψ(s1, . . . , sr) if, and only if, T , w |= ψ∗(S1, . . . , Sr).

• We have already seen that there exists a MIC-axiom ω-height axioma-
tising the models that are bisimilar to a tree of height ω.

• Further, we can express set equalities X = Y by everywhere(X ↔ Y )
and we know how to represent polynomials by MIC-formulae. Thus,
for every atomic first-order formula ψ over the arithmetic there is a
MIC-formula that, for any given interpretation of the free variables, is
true at the root of the tree T if, and only if, ψ is true in the arithmetic.

• The case of Boolean combinations is trivial.

• What remains is to translate quantifiers.

Let ψ be a formula of the form ψ(y) := ∃xϕ(x, y). By induction
hypothesis, there is a formula ϕ∗(X,Y ) corresponding to ϕ(x, y). Now
consider

ψ∗(Y ) := ifp Z :

{
X ← �X

Z ← ϕ∗(X,Y ) ∧ number(X).

In its induction stages, X enumerates all natural numbers, i.e. all sets
{v : h(v) < n} for some n. Now, the root w of T is added to Z if
ϕ∗ is satisfied for some value of X, i.e. for some natural number n
encoded by X. Note that the conjunct number(X) is needed for the
final stage of X, i.e. when X contains the whole tree and therefore
does not encode a finite number anymore.

This finishes the proof of the theorem. �

The following corollary is now immediate.

11.14 Corollary. The satisfiability problem for MIC is undecidable. In fact,
it is not even in the arithmetical hierarchy. It is, however, in Σ1

2, the second
level of the analytical hierarchy.

Containment of Sat(MIC) in Σ1
2 is an immediate consequence of Corol-

lary 3.41, where the corresponding bound was proved for IFP. The proof
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given above appears to rely crucially on the use of simultaneous induc-
tions. Indeed, we will show below that the formula constructed in the proof
of Lemma 11.9 cannot be expressed without simultaneous inductions (see
Theorem 11.21). However, in Section 11.4 we prove that, nevertheless, first-
order arithmetic can be reduced to the satisfiability problem for 1MIC.

11.2 The Model Checking Problem for MIC

Recall that the model checking problem for the µ-calculus is in UP∩ co-UP

(see Proposition 10.7), and is conjectured by some to be solvable in polyno-
mial time. We show now that, provided Pspace 6= NP, MIC is algorithmi-
cally much more complicated.

First, observe that the naive bottom-up evaluation algorithm for MIC-
formulae uses polynomial time with respect to the size of the input structure,
and polynomial space (and exponential time) with respect to the length of
the formula. Let K be a transition system with n nodes and m edges. The
size ||K|| of appropriate encodings of K as an input for a model checking
algorithm is O(n+m). It is easily seen that the extension [[ϕ]]K of a formula
ϕ ∈ ML on a finite transition system K can be computed in time O(|ϕ| ·
||K||). Further, any inflationary induction ifp Xi : [X1 ← ϕ1, . . . ,Xk ← ϕk]
reaches a fixed point on K after at most kn iterations. Hence, the bottom-up
evaluation of a MIC-formula ψ on K with d nested simultaneous inflationary
fixed points, each of width k, needs at most O((kn)d) basic evaluation steps.
For each fixed point variable occurring in the formula, 2n bits of workspace
are needed to record the current value and the last value of the induction.
This gives the following complexity results.

11.15 Proposition. Let ψ be a MIC-formula of nesting depth d with simul-
taneous inductions of width at most k. On any transition system K with n
nodes, ψ can be evaluated in time O((kn)d · |ψ| · ||K||) and space O(|ψ| · n).

In terms of common complexity classes the results can be stated as fol-
lows.

11.16 Theorem. (1) With respect to combined complexity, the model-
checking problem for MIC on finite structures is in Pspace.

(2) For any fixed formula ψ ∈ MIC, the model-checking problem for ψ on
finite structures is solvable in polynomial time and linear space.

We prove next that, contrary to the case of the µ-calculus, the complexity
results obtained by this naive algorithm cannot be improved significantly.

11.17 Theorem. There are transition systems K, such that the model
checking problem for MIC on K is Pspace-complete, even for MIC-formulae
without simultaneous inductions.
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Proof. The proof is by reduction from QBF (the evaluation problem for
quantified Boolean formulae). For MIC with simultaneous inductions, this
is trivial: Let K be the transition system consisting just of a single point
v. With every quantified Boolean formula ψ we associate a MIC-formula
ψ∗ such that ψ is valid if, and only if, K, v |= ψ∗. For this, we introduce a
fixed-point variable for each propositional variable X in the QBF-formula
ψ. The truth values of the variables in ψ are represented by the truth value
of X on the node v in K, i.e. an interpretation of a QBF-variable X by true
corresponds to the interpretation of the fixed-point variable by {v}.

For the translation, we first eliminate the universal quantifiers in ψ in
favour of negations and existential quantifiers. Then we inductively replace
all sub-formulae ϕ(Y ) := ∃Xϑ(X,Y ) by inflationary fixed points

ϕ∗(Y ) := ifp Z :

{
X ← true

Z ← ϑ∗(X,Y ).

We have to show that, for any interpretation of Y , we have (K, Y ), v |=
ϕ∗(Y ) if, and only if, ϕ(Y ) is true. For this, consider the stages induced by
ϕ∗. Clearly, X0 = ∅ and X1 = {v}. Hence, v is included in Z1 if ϕ(0, Y )
holds, and in Z2 if ϕ(1, Y ) is true. Thus, ϕ∗ holds at v if, and only if, ϕ is
true.

For MIC without simultaneous fixed points, the construction is somewhat
more complicated. Let K be the transition system consisting of two points
0,1, the atomic proposition p = {1} and the complete transition relation
{0, 1} × {0, 1}.

Let α(X) := ¬X ∧ (p → ♦X). Further, let ϕ[X/α(X)] denote the for-
mula obtained from ϕ by replacing every free occurrence of X by α(X). The
transformation from QBF-formulae ψ to MIC-formulae ψ∗ without simulta-
neous fixed points is inductively defined as follows.

(1) For ψ := X we set ψ∗ := (p ∧X) ∨ (¬p ∧ ♦X),

(2) (¬ψ)∗ := ¬ψ∗ and (ψ ◦ ϕ)∗ := ψ∗ ◦ ϕ∗ for ◦ ∈ {∧,∨},

(3) for ψ := ∀Xϕ we put ψ∗ := �(ifp X ← α(X) ∧ ϕ∗[X/α(X)]).

(4) Existential quantifiers are eliminated in favour of negation and univer-
sal quantification.

In this translation, the truth value true of a propositional variable is
represented by any subset of {0, 1} that contains the node 1. We claim that
for any QBF-formula ψ, any interpretation Y for the free variables of ψ
represented by Y

∗
, we have

[[ψ∗]](K,Y
∗

) =

{
{0, 1} if ψ(Y ) is true

∅ if ψ(Y ) is false .

The proof is by induction on the structure of ψ.
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(1) For ψ := X and for Boolean combinations of formulae the verification
of the claim is straightforward.

(2) Let ψ := ∀Xϕ(X,Y ). Note that [[α(X)]](K,X) = {0} for X = ∅ and
[[α(X)]](K,X) = {1} for X = {0}. Thus, the first induction step of

ϑ := (ifpX ← α(X)∧ϕ∗[X/α(X)]) producesX1 = {0}∩[[ϕ∗(0)]](K,Y
∗

),
which, by induction, is {0} if ϕ(0, Y ) evaluates to true and X1 = ∅

otherwise. If the value X1 = {0} was produced, then the second

iteration step produces X2 = X1 ∪ ({1} ∩ [[ϕ∗(1)]](K,Y
∗

)). Thus,

[[ψ∗]](K,Y
∗

) =






∅ if ¬ϕ(0, Y )

{0} if ϕ(0, Y ) ∧ ¬ϕ(1, Y )

{0, 1} if ϕ(0, Y ) ∧ ϕ(1, Y ).

As required, in the first two cases the formula �(ifpX ← α(X) ∧
ϕ∗[X/α(X)]) is false at both states, and in the last case it is globally
true.

Finally note that in both cases, i.e. whether simultaneous inductions are
allowed or forbidden, the formula ψ∗ can be computed in linear time from
ψ. This immediately implies the theorem. �

As the theorem shows, the model checking complexity of MIC is much
higher than for the µ-calculus and for practical applications in verification
it might already be too complex.

We now turn towards establishing some expressibility results on the class
of languages definable in MIC.

11.3 Languages and MIC

In Proposition 11.6 we already saw a language that was not regular but
definable in MIC. In this section we show that not only non-regular languages
but also languages that are not even context-free can be defined in MIC.

11.18 Theorem. There is a language definable in MIC that is not context-
free.

Proof. Consider the language L over the alphabet {a, b, c, d} defined as

L = {cwdwd : w ∈ {a, b}∗}.

Using pumping arguments it is easily verified that L is not a context-free
language. To see that it is definable in MIC, first note that the formula

α := c ∧�nowhere(c) ∧ somewhere(d ∧�somewhere(d)) ∧
everywhere[(d ∧�somewhere(d))→ �everywhere(d→ �nowhere(d))]
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defines the set of strings {cxdyd : x, y ∈ {a, b}∗}. Now, the desired formula
is the conjunction of α with the formula

ϕ := ¬ifp X ← (¬c ∧ (�X ∨ d)) ∨ (c ∧ somewhere(ψ))

where ψ is the formula

¬X ∧�X ∧ ((b ∧ somewhere(a ∧�X ∧ ¬X))∨

(a ∧ somewhere(b ∧�X ∧ ¬X)) ∨

(c ∧ somewhere((a ∨ b) ∧�X ∧ ¬X)) ∨

((a ∨ b) ∧ somewhere(d ∧�X ∧ ¬X))).

To see that this defines the language L, note that in evaluating the outer
most fixed point in the definition of ϕ on a string cxdyd, with x, y ∈ {a, b}∗,
the stage Xi contains the suffix of x and y, respectively, of length n − 1.
At the first stage, the sub-formula (�X ∨ d) ensures that the two letters
labelled by d are included. Further, in the next stage, the last element of
each of x and y is included, and inductively, �X guarantees that the last
element not yet included in X (in either x or y) is added.

Finally, the first letter in the word, labelled c, is included in X if, and
only if, the formula ψ is true of some element, at some stage i. But, ψ is true
at an element at stage i if, and only if, it is the (i + 1)st element from the
right in x and it is different from the corresponding element of y. Therefore,
the first letter in the word is included in the fixed point if, and only if, the
strings x and y differ at some point. Hence, as desired, ϕ ∧ α defines the
language L. Note, that the first two lines in ψ deal with the cases where the
words x and y differ in the letter at a certain position whereas the last two
lines take care of x and y being of different length. �

We can also add the observation that the formula constructed in the
proof of the theorem does not involve any simultaneous inductions, and
therefore there are non-context-free languages definable in 1MIC.

To place the expressive power of MIC in the Chomsky hierarchy, we note
that every language definable in MIC can be defined by a context-sensitive
grammar. This follows from the observation made in Section 11.2 that any
class of finite structures defined by a formula of MIC is decidable in linear
space, and the result that all languages decidable by nondeterministic linear
space machines are definable by context-sensitive grammars.

Finally, we mention another expressibility result for MIC that was proved
in [DGK01].

11.19 Theorem. Every language that can be decided in Dtime(O(n)) can
be defined in MIC.
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11.4 Simple Inductions

In the previous sections we have seen a couple of expressibility results for
MIC. Many of these made use of simultaneous inductions and we remarked
at several places that the formulae used there could not be defined in 1MIC.
In this section we investigate on the relationship between simple and simul-
taneous inductions in the modal iteration calculus.

It is easy to see that the equivalence µXY.(ψ,ϕ) ≡ µX.ψ(X,µY.ϕ(X,Y ))
used to show that simultaneous inductions in the µ-calculus can be elimi-
nated fails in both directions when we take inflationary instead of least fixed
points. However, it still is conceivable that simultaneous inductions could be
eliminated by more complicated techniques. We show here that this is not
the case, i.e. simultaneous inflationary inductions provide more expressive
power than simple ones. However, we have seen in Section 11.2 that the
model checking problem was Pspace-complete even for formulae without
simultaneous inductions. In the second part of this section we show that,
similar to MIC, the satisfiability problem for formulae without simultaneous
inductions is still undecidable and not in the arithmetical hierarchy.

11.4.1 Simple vs. Simultaneous Inductions

In this section we show that MIC is strictly more expressive than 1MIC.
For this, we identify a property that is definable in MIC with simultaneous
inductions but not without. We first give an informal presentation of the
problem. It is formally defined below.

Consider the family (Tα)α≤ω of trees inductively defined as follows. Let
T0 be a tree consisting of a single node only. For α > 0, define Tα as the
tree consisting of a root vα and for each β < α a successor vβ of vα which is
the root of a tree Tβ. See Figure 11.1.

By construction, the height of a tree Tα is just α. We will prove below,
that for every formula ϕ in 1MIC that is true at the root vω of Tω, there
is a finite number n < ω such that ϕ is also true at the root of every tree
Tβ with β > n. Thus, 1MIC cannot distinguish between trees of finite and
infinite height.

The intuitive reason for this is as follows. Consider the next figure illus-
trating the definition of the trees Tα.

Suppose ϕ is of the form ifp X : ψ(X), where ψ is in ML, and Tω, vω |= ϕ.
At the first stage where the root vω is included into the fixed point of ψ,
this happens because the successors of the root satisfy some criteria that
ψ recognises. Now, if ψ contains a sub-formula ♦ϑ satisfied by Tω, vω then
there must be a subtree Tn satisfying ϑ. As Tn is also a subtree of the tree
Tn+1, the tree Tn+1 and in fact all Tm with m > n satisfy ♦ϑ. Similarly,
if a formula �ϑ holds at vω, then it also holds at all Tm. Thus, for each
sub-formula ϑ of ψ there is some fixed n < ω such that ϑ holds at all Tm
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•
vn+1

T0 Tn

Tn+1 :

•
vω

T0 Tn

Tω :

Figure 11.1: Illustration of the trees Tn+1 and Tω.

with m > n. Letting k be the maximum of these n, we get that ψ also holds
at all Tm, vm with m ≥ k and thus ϕ is true for Tm also.

To present the formal argument for the intuition given here, it is more
convenient to work on ordinals instead of trees. For any ordinal α, let Oα
denote the structure ({β : β ≤ α}, >). That is, the elements of the structure
are all ordinals less than or equal to α, and there is an edge from β to γ if
β > γ. The ordinal α is the maximal ordinal in the set, and we refer to it
as the root of the structure Oα. Note that Oα is bisimilar to the tree Tα
defined above.

For a formula ϕ, we write Oα |= ϕ as shorthand for Oα, α |= ϕ. It is
easily seen that for any ordinal β ≤ α, Oα, β |= ϕ if, and only if, Oβ |= ϕ.
This is because the elements reachable by >-paths from β are exactly the
ordinals below β, since > is transitive. As a final bit of notation, if X is
any atomic proposition on Oα, we write Oα, β |= ϕ(X−) to denote that
Oα, β |= ϕ(X − {β}).

We begin with a few observations about the evaluation of inductive for-
mulae on the structures Oα, which will be useful in the proof of the following
lemma. First, we note that in Oβ , the maximum closure ordinal of any in-
duction is β + 1. This can be proved by a straightforward induction on the
ordinals. One consequence is that if Oα, β |= (ifp X ← ψ), then β ∈ Xβ+1.
Furthermore, since the truth of a formula ϕ at β can only depend on ele-
ments γ ≤ β, we have that for any sets X and Y , if X∩(β+1) = Y ∩(β+1),
then Oα, β |= ϕ(X) if, and only if, Oα, β |= ϕ(Y ).

11.20 Lemma. Let ϕ be a formula of 1MIC. If X1, . . . ,Xk ⊆ ω are atomic
propositions such that Oω |= ϕ(X1, . . . ,Xk), then there is a finite N such
that for all n > N , Oω, n |= ϕ(X−

1 , . . . ,X
−
k ).

Proof. Note that, by the hypothesis of the lemma, ω 6∈ Xi for any i. As
we are now working in a fixed structure Oω, we will say a formula ϕ holds
(or is true) at α, to mean that Oω, α |= ϕ, which is the case if, and only
if, Oα |= ϕ. The lemma is proved by induction on the nesting depth d of
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ifp-operators.
Basis: If d = 0, the formula contains no occurrences of the ifp-operator,
and is therefore equivalent to a formula of ML, where all negations are at the
atoms. A simple induction on the structure of the formula then establishes
the result.

• Any atomic formula Xi is false at ω by hypothesis, and, by definition,
for all n, Oω, n 6|= X−

i . Therefore the claim holds for all atoms.

• For negated atoms the dual argument holds, i.e. any formula ¬Xi is
true at ω and for all n, Oω, n |= ¬X

−
i .

• The case of the Boolean connectives ∧ and ∨ is trivial.

• If ϕ is ♦ψ, then it is clear that Oω |= ϕ if, and only if, there is an
N < ω such that ON |= ψ if, and only if, for all n > N , Oω, n |= ♦ψ

and therefore Oω, n |= ϕ(X
−
).

• Similarly, if ϕ is �ψ, Oω |= ϕ if, and only if, for all n, Oω, n |= ψ if,

and only if, for all n < ω, Oω, n |= �ψ(X
−
).

Induction step: If ϕ is a formula with depth d+1 of nesting of ifp operators,
then it is a Boolean combination of formulae ϑi, each of which either has
depth at most d, is of the form ifp X ← ψ, where ψ is a formula of depth
at most d, or is of the form ♦ψ or �ψ, where ψ has depth at most d + 1.
We assume that negations are always pushed inside modalities.

Clearly, if the claim holds for formulae ϑi and ϑj , then it also holds for
ϑi ∧ ϑj and ϑi ∨ ϑj, just by taking N to be the maximum of Ni and Nj ,
which witness the claim for the two formulae. Thus, it suffices to prove the
claim for the following four cases.

(1) ϑ := ♦ψ. If Oω |= ϑ, then there is an N < ω such that Oω,N |= ψ,

and therefore, for all n > N , Oω, n |= ϑ(X
−
).

(2) ϑ := �ψ. If Oω |= �ψ, then for all n, Oω, n |= ψ and therefore

Oω, n |= ϑ(X
−
).

(3) ϑ := (ifp X ← ψ). Suppose Oω |= ϑ. Then, there is a stage α
such that ω 6∈ Xα and Oω |= ψ(X1, . . . ,Xk,X

α), i.e. ω ∈ Xα+1. By
induction hypothesis, there is an N such that for all n > N , Oω, n |=
ψ(X−

1 , . . . ,X
−
k ,X

α−). Now, for each such n, if n is in stage Xα of
the induction on ψ(X−

1 , . . . ,X
−
k ), then, by the inflationary semantics,

Oω, n |= (ifp X ← ψ)(X−
1 , . . . ,X

−
k ), and we are done.

So, suppose n is not in stage Xα of the induction of ψ(X−
1 , . . . ,X

−
k ).

However, sinceX−
i ∩ n = Xi∩ n, it follows that stage α of the induction

of ψ(X−
1 , . . . ,X

−
k ) on On is exactly Xα− ∩ (n + 1). Thus, Oω, n |=

ψ(X−
1 , . . . ,X

−
k ,X

α−) implies Oω, n |= (ifp X ← ψ)(X−
1 , . . . ,X

−
k ).



Section 11.4: Simple Inductions 129

(4) ϑ := ¬(ifp X ← ψ). Suppose Oω |= ϑ. We have to show that
there is some N < ω such that for all n > N , Oω, n |= ϑ. Towards
a contradiction, assume that there are infinitely many n such that
Oω, n |= (ifp X ← ψ)(X−

1 , . . . ,X
−
k ). Since Oω |= ¬(ifp X ← ψ), it is

the case that Oω |= ¬ψ(X1, . . . ,Xk,X
ω), and therefore, by induction

hypothesis, there is an N < ω such that

for all n > N,Oω, n |= ¬ψ(X−
1 , . . . ,X

−
k ,X

ω−). (∗)

Note that in any Oβ , the closure ordinal of any induction is at most
β + 1. Hence, for any β < N , Oω, β |= ψ(X1, . . . ,Xk,X

ω) if, and
only if, Oω, β |= ψ(X1, . . . ,Xk,X

N ). As, by assumption, there are
infinitely many n such that Oω, n |= (ifp X ← ψ)(X−

1 , . . . ,X
−
k ), there

are infinitely many such greater than N . For each of these, there must
be a least finite ordinal an such that Oω, n |= ψ(X−

1 , . . . ,X
−
k ,X

an).
We distinguish two cases:

(a) There is a finite ordinal α that is the upper bound of all such
an. In this case, we can show that there is a finite bound on the
elements satisfying (ifp X ← ψ)(X−

1 , . . . ,X
−
k ), from which the

claim follows. To establish the finite bound, we show by induction
on the stages, that each stage Xβ contains only nodes up to some
finite height. Clearly, this is the case for β = 0, as Xβ is empty.
Inductively, if Xβ is bounded in height, then there is a formula of
ML defining the set (see Lemma 11.2). Substituting this formula
for X in ψ, we obtain a formula ψ′ equivalent to ψ(Xβ), with ifp
nesting depth d. Therefore, by the main induction hypothesis,
since Oω |= ¬ψ

′(X1, . . . ,Xk), there is an M such that Oω, n |=
¬ψ′(X−

1 , . . . ,X
−
k ) for all n > M . It follows that for all n >

M , n 6∈ Xβ+1. This implies that there is a finite bound on
the height of the elements in Xα, contradicting the assumption
that there are infinitely many n such that Oω, n |= (ifp X ←
ψ)(X−

1 , . . . ,X
−
k ).

(b) There is no finite bound on the stages an. Thus, for any finite
stage α there is some an > α such that n 6∈ Xan and Oω, n |=
ψ(X−

1 , . . . ,X
−
k ,X

an). Choose α and an such that an > N . Let
c be the minimal node such that c 6∈ Xan but c ∈ Xβ for some
β > an. Clearly, for every node m < an, m ∈ X

an if, and only if,
m ∈ Xω. It follows that c ≥ an and thus c > N . Further, as c
was chosen minimal,

{m : m < c} ∩Xan = {m : m < c} ∩Xω,

i.e. on the set of nodes reachable but different from c the fixed
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point of X is reached at stage an. Therefore,

Oω, c |= ψ(X−
1 , . . . ,X

−
k ,X

an) if, and only if,
Oω, c |= ψ(X−

1 , . . . ,X
−
k ,X

ω−).

As c ≥ an > N and, by (∗), Oω, c 6|= ψ(X−
1 , . . . ,X

−
k ,X

ω−) we get
that c 6∈ Xβ for some β > an, contradicting the assumption.

This finishes the proof of the lemma. �

Recall that any structure Oα is bisimulation equivalent to a well-founded
tree of height α. It is a straightforward consequence of the lemma that the
formula finite-height defined in Section 11.1 is not equivalent to any formula
of 1MIC. We hence have established the following separation result.

11.21 Theorem. MIC is strictly more powerful than 1MIC.

While the separation given in Theorem 11.21 is proved on an infinite
structure, the proof of Lemma 11.20 actually shows that the separation
holds even when we restrict ourselves to finite structures. For, consider the
collection of finite structures On, n < ω. The construction in Lemma 11.20
shows that for any formula ϕ of 1MIC, the set {n : On |= ϕ} is either finite
or co-finite. Now, consider the formula η defined as

η := ifp Y :

{
X ← ��X

Y ← ¬X ∧�X.

It can be verified that On |= η if, and only if, n is even. Hence, η is not
equivalent to any formula of 1MIC.

The notation 1MIC was chosen, naturally, to suggest that we can define,
for any natural number k, the fragment kMIC consisting of those formulae
of MIC in which no ifp operation is defined over a system with more than k
simultaneous formulae. The natural question that arises is whether increas-
ing k gives rise to a hierarchy of increasing expressive power. We do not, at
the moment, know of a method to settle this question one way or the other.

11.4.2 Infinity Axioms and the Satisfiability Problem

We have seen above that simple inductions in MIC provide less expressive
power than simultaneous inductions. We show now that even without si-
multaneous inductions the finite model property fails and the satisfiability
problem remains undecidable, in fact not even arithmetical.

Essentially, we use the same method as in Section 11.1 to reduce the
decision problem for the first-order theory of arithmetic to Sat(1MIC). The
proofs there relied crucially on simultaneous inductions on two variables
X and Y and we have seen above that the formulae used there are not
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equivalent to any formulae of 1MIC. Instead, we use the following trick to
simulate the simultaneous induction. Let T be a tree of height ω as used
in Section 11.1. To simulate an induction on two variables we recursively
make two copies of the successors of each node in T and label the root of
one of the copies by the proposition a and the root of the other by b. Let
T ′ be this new tree. Thus, every node in T ′ of finite height is labelled by a
or b and the height of each of these nodes u equals the length of the longest
path entirely labelled by a’s from a successor of u to a leaf which, again, is
the same as the length of the longest path entirely labelled by b’s from a
successor of u to a leaf. On this model, we can simulate the simultaneous
induction on two variables X and Y by an induction on one variable Z by
letting Z contain all copies of nodes contained in X which are labelled by a
and all copies of nodes contained in Y labelled by b.

We now turn to the axiomatisation of this tree model. Besides the propo-
sition symbols a and b already mentioned there are two other propositions,
namely w, with which only the root is labelled, and s, labelling only the
direct successors of the root. As in Section 11.1, we restrict attention to
well-founded tree models, i.e. tree models of the formula µX.�X.

We first define a formula label ensuring that its models are labelled as
described above. Let the formula label be defined as

label := w ∧ ¬a ∧ ¬b ∧ ¬s ∧�s ∧��everywhere(¬s) ∧
�everywhere(¬w ∧ (a ∨ b) ∧ ¬(a ∧ b)),

where everywhere is defined as in Section 11.1 as everywhere(ϕ) := ifp X ←
ϕ ∧�X.

11.22 Proposition. In any model T , v of label the root and only the root
v is labelled by w, all direct successors of v, and only those, are labelled by
s, and all nodes reachable but different from v are either labelled by a or by
b but not by both.

The next step is to ensure that the models we are going to describe are
of height ω. Towards this end, we first introduce some notation.

11.23 Definition. A node labelled by a is called an a-node. An a-path
between two nodes is a path between them consisting only of a-nodes. Finally,
we inductively define the a-height α of an a-node u as follows.

• The a-height of leaves labelled by a is defined to be 0.

• For all other a-nodes, their a-height is defined as the least strict upper
bound of all β such that β is the a-height of a successor of u labelled
by a.

The notion of b-nodes, b-paths, and the b-height of a node is defined analo-
gously.
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Let the formula ϑ be defined as

ϑ := (b ∧�(b→ X)) ∨ (a ∧�(a→ X)).

A simple induction on the stages establishes the following lemma.

11.24 Lemma. Let T be a tree. Then, for all α, the α-th stage Xα of the
induction on ϑ contains exactly the nodes of a- or b-height less than α.

Consider the formula

infinity := label ∧ everywhere(♦a↔ ♦b) ∧ inf ∧ ¬ifp X ← ϕ,

where
inf := ¬ifp X ← (b ∧ ♦b ∧�(b→ �false)) ∨ ϕ.

and
ϕ := ϑ ∨ (w ∧�(b→ X) ∧ ♦(a ∧ ¬X)) ∨

(w ∧�(a→ X) ∧ ♦(b ∧ ¬X)).

11.25 Lemma. Let T , v |= label ∧ everywhere(♦a ↔ ♦b) and let γa :=
sup{α : α is the a-height of a direct successor of v} and γb := sup{α : α is
the b-height of direct successor of v}.

(i) T , v |= ¬ifp X ← ϕ if, and only if, γa = γb.

(ii) T , v |= inf if, and only if, γa and γb are finite and γa + 1 = γb or both
are infinite and γa = γb.

Proof.

(i) For Part (i), we show that the root v satisfies ifp X ← ϕ if, and only
if, there is a b-successor of v whose b-height is greater than the a-height
of any a-successor of v or vice versa.

Towards the forth direction, suppose T , v |= ifp X ← ϕ. Thus, there
is a stage α such that (T ,Xα), v |= ϕ. As T is a model of the formula
label above, this implies

(T ,Xα), v |= (w ∧�(b→ X) ∧ ♦(a ∧ ¬X)) ∨
(w ∧�(a→ X) ∧ ♦(b ∧ ¬X)).

Suppose (T ,Xα), v |= (w ∧ �(b → X) ∧ ♦(a ∧ ¬X)). Thus, using
Lemma 11.24, all b-successors of v are of height less than α, whereas
there is at least one a-successor whose height is greater than or equal
to α. The case where (T ,Xα), v |= (w ∧ �(a → X) ∧ ♦(b ∧ ¬X)) is
analogous.

For the converse, if v has a b-successor whose b-height α is greater
than the a-height of any a-successor, then at stage α, X<α contains
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all a-successors but not all b-successors of v. Thus, v would be in Xα.
The case where there is an a-successor of v whose a-height is greater
than the b-height of any b-successor of v is analogous.

Thus we have shown that the root v satisfies ifp X ← ϕ if, and only if,
there is a b-successor of v whose b-height is greater than the a-height
of any a-successor of v or vice versa. This proves the first part of the
lemma.

(ii) To establish Part (ii), we first prove by induction on the finite stages,
that for all 0 < n < ω, Xn contains exactly the a-nodes of height less
than n and the b-nodes of height less than or equal to n. For the case
of nodes labelled by a this follows immediately from Lemma 11.24 as
the additional disjuncts only affect b-nodes (and the root v).

Let n = 1. Obviously, X1 contains all b-nodes of height 0 and all
b-nodes satisfying ♦true ∧��false. Clearly, such a node u must be of
height 1, as it only has leaves as successors. As T is a model of the
formula label, this means that u must have a b-successor and thus is
of b-height 1.

For the induction step assume the claim has already been proved for all
n′ < n. An argument as in the proof of Part (i) above shows that Xn

contains all b-nodes of b-height less than or equal to n. This finishes
the induction.

Now consider the stage ω. We have seen that Xω contains all nodes of
finite a- or b-height and the same argument as in Lemma 11.24 shows
that for all α ≥ ω, Xα contains all nodes of a- or b-height less than α.

Now suppose that the root v of the tree occurs in X∞. There must be a
stage α+1 such that v occurs in Xα+1 but not in Xα, i.e. (T ,Xα), v |=
(w∧�(b→ X)∧♦(a∧¬X))∨ (w∧�(a→ X)∧♦(b∧¬X)). Suppose
that (T ,Xα), v |= (w ∧ �(b → X) ∧ ♦(a ∧ ¬X)). Thus, there is an
a-successor of v whose a-height is greater than the b-height of any b-
successor. If α is infinite, this means that γa > γb. If α is finite, this
means that all b-successors of v are of height less than or equal to α
whereas there is an a-successor of v of height greater than or equal to
α. This implies that γa + 1 > γb.

On the other hand, if (T ,Xα), v |= (w ∧�(a→ X)∧♦(b∧¬X)), this
implies that γb > γa if α is infinite and γb > γa + 1 otherwise.

This proves that if T , v |= inf then γa and γb are finite and γa + 1 =
γb or both are infinite and γa = γb. The converse direction follows
immediately.

�

A simple consequence of the lemma is the following corollary.
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11.26 Corollary. For every tree T and node v, if T , v |= infinity then the
height of v is infinite. Thus, 1MIC does not have the finite model property.

To finish the axiomatisation of the intended model, we have to ensure
that the models of our formula not just have infinite height but height exactly
ω and further, that for all nodes of finite height, all of their successors are
of the same height.

To formalise that the tree has height exactly ω we say that the root is of
infinite height but none of its successors is. For this let infs := inf[w/s, b/(b∧
¬s), a/(a ∧ ¬s)] be the result of replacing in the formula inf above each w
by s, each b by (b ∧ ¬s), and each a by (a ∧ ¬s). Analogously, define
ϕs := ϕ[w/s, b/(b ∧ ¬s), a/(a ∧ ¬s)]. Then a similar argument as in Lemma
11.25 shows the following.

11.27 Lemma. Let the formula ω-height be defined as

ω-height := infinity ∧�¬(infs ∧ ¬ifp X ← ϕs).

Then for any tree T with root v, if T , v |= ω-height then the height of v is
infinite but the height of all successors of v is finite. Thus, the height of v
is exactly ω.

Finally, we formalise that for all nodes of finite height all of their suc-
cessors are of the same height.

11.28 Lemma. Consider the formula ψ defined as

ψ := ¬ifp X ← (¬w ∧�X) ∨ (w ∧ ifp Y ← ♦Y ∨ (¬w ∧ ♦X ∧ ♦¬X)).

Let T , v |= ω-height ∧ ψ be a tree. Then, for all nodes u of finite height
all direct successors of u are of the same height.

Proof. As T , v |= ω-height, no node of finite height is labelled by w. A
simple induction on the stages proves that at stage n ∈ ω, Xn contains all
nodes of height less than n. Now assume that at some stage n the root v
is included into X, i.e. v satisfies ifp Y ← ♦Y ∨ (¬w ∧ ♦X ∧ ♦¬X). Thus
there is a node u whose height is greater than n but has a successor in Xn,
i.e. one whose height is less than n, and a successor not in Xn, i.e. one whose
height is greater than or equal to n.

Conversely, if there is a node u of some finite height n which has a
successor of height less than n− 1, then ♦X ∧ ♦¬X becomes true at stage
n− 1 and the root v is included into Xn.

Together, we get that T , v |= ψ if, and only if, for all nodes u of finite
height, all of its successors are of the same height.

We now turn to the reduction of the decision problem for the first-order
theory of arithmetic to the satisfiability problem for 1MIC. In the remainder
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of this section we only consider models of the formula ω-height ∧ ψ. As in
Section 11.1, we code natural numbers by sets of nodes of certain height.
The difference is, that here a number n ∈ ω is coded by the set of nodes u
of height less than or equal to n. In particular, the number 0 is not coded
by the empty set but by the set of leaves. To simplify the presentation,
we do not work on the first-order theory of arithmetic directly but on the
first-order theory of the following structure.

11.29 Definition. Let N′ := (N,+, ·, 0, 1) be the structure over the universeN, where the constants 0N′

, 1N′

and the function +N′

are interpreted as in the
standard model N of arithmetic, and ·N

′

is interpreted as follows: s ·N
′

t := 0
if s = 0 or t = 0, and otherwise s ·N

′

t := s ·N (t+ 1).

Clearly, the first order theories of N and N′ can be reduced to each other.
Thus reducing the decision problem for the theory of N′ to Sat(1MIC) shows
this problem to be undecidable.

Given the encoding of natural numbers explained above, consider the
formula plus(S, T ) defined as

plus(S, T ) := (�(b→ ψ+) ∧ ¬everywhere(T ↔ �false) ∧
¬everywhere(S ↔ �false)) ∨

�false ∨ (everywhere(T ↔ �false) ∧ S) ∨
(everywhere(S ↔ �false) ∧ T )

where ψ+ is defined as

ψ+ := ifp X ← (a ∧�(a→ X)) ∨ (b ∧ S) ∨
(b ∧�(b→ X) ∧ everywhere(�♦(a ∧X)→ T )).

11.30 Lemma. If S and T encode natural numbers s and t as described
above, then plus(S, T ) encodes the sum s+ t.

Proof. Let s and t be the natural numbers coded by the sets S and T
respectively. Assume s, t > 0 and consider the sub-formula ψ+. We claim
that at stage i > 0, Xi contains all a-nodes of height less than i and all
b-nodes of height at most min{s + i − 1, s + t − 1}. For a-nodes, this is
trivial. The claim for the b-nodes is proved by induction on the stages i > 0.

• Clearly, X1 contains exactly the b-nodes contained in S and thus, as
t ≥ 1, only nodes of height at most s+ t− 1.

• Now assume that for 0 < i < t the claim has been proved, i.e. Xi

contains all a-nodes of height less than i and all b-nodes of height at
most s+(i− 1). Therefore, the sub-formula everywhere(�♦(a∧X)→
T ) is globally true and all b-nodes of height at most s+ i are included
into Xi+1, as they satisfy b ∧�(b→ X).
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• Now suppose i = t. Thus, Xi contains all a-nodes of height less than
t. Clearly, the sub-formula b ∧ �(b → X) is true only for b-nodes of
height at most s+ (t− 1) + 1. Let u be a node of height exactly s+ t
and thus, as s ≥ 1, greater than i. Then there is a node of height
t + 1 in the subtree rooted at u which satisfies �♦(a ∧ X) but not
T . Therefore, everywhere(�♦(a ∧X) → T ) is false at u and u is not
included into Xi+1.

• The same argument shows that at no higher stage, a b-node of height
greater than s+ t−1 can be added to the fixed-point. This proves the
claim.

Now consider the formula plus(S, T ). By assumption, s, t > 0 and therefore
the formulae ¬everywhere(T ↔ �false) and ¬everywhere(S ↔ �false) are
true for all nodes except for the leaves. Further, we have seen that the
sub-formula �(b → ψ+) becomes true for all nodes whose b-successors are
of height less than or equal to s+ t− 1 and, as we are working in models of
the formula ω-height ∧ ψ, for all nodes of height less than or equal to s+ t.

Now suppose s = 0. Then ¬everywhere(S ↔ �false) is false for all nodes
except for the leaves. Thus, �false ∨ everywhere(S ↔ �false) ∧ T defines
all nodes contained in T and plus(S, T ) defines the set of nodes representing
the sum 0 + t = t. The case where t = 0 is analogous. This finishes the
proof.

We now turn to the formalisation of multiplication in 1MIC. For this,
consider the formula

times(S, T ) := �false ∨ (¬everywhere(S ↔ �false) ∧
¬everywhere(T ↔ �false) ∧�(b→ ψ∗)),

where

ψ∗ := ifp X ← (a ∧�(a→ X) ∨ (b ∧ plus(�(b→ X), S) ∧
everywhere(�♦(a ∧X))→ T )).

11.31 Lemma. If S and T encode natural numbers s and t as described
above, then times(S, T ) encodes the product s · (t + 1) if s, t > 0 and 0
otherwise.

Proof. First, suppose that s or t equals 0. In this case, one of the sub-
formulae ¬everywhere(S ↔ �false) or ¬everywhere(T ↔ �false) becomes
false on all nodes except the leaves and therefore the formula times(S, T ) is
true only on the leaves and encodes the result 0.

Now suppose s, t > 0 and consider the induction on X in the sub-formula
ψ∗. We claim that at stage i > 0, Xi contains all a-nodes of height less than
i and all b-nodes of height at most min{i · s + i − 1, t · s + t − 1}. For the
a-nodes, the claim is obvious. Now consider a node labelled by b.
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• In the first stage, X1 contains all b-nodes satisfying plus(�(b→ X), S).
As X0 is empty, �(b → X) is true only at the leaves and thus the
formula plus evaluates to S.

• Now assume the claim has been proved for stage i. If i < t, then
Xi contains a-nodes of height less than i < t. Thus, the sub-formula
everywhere(�♦(a ∧ X)) → T ) is true for all nodes. By induction
hypothesis, Xi contains exactly the b-nodes of height less than or equal
to i·s+i−1 and therefore �(b→ X) becomes true at all nodes of height
at most i · s + i. By Lemma 11.30, the formula plus(�(b → X), S) is
then true for all nodes of height (i · s+ i+ s) = (i+ 1) · s+ (i+ 1)− 1.

• Now suppose i = t. Xi contains exactly all a-nodes of height less than
t and all b-nodes of height at most t · s + t− 1. Let u be any b-node
not in Xi, i.e. of height greater than t · s+ t− 1. Then there is a node
of height t+1 in the subtree rooted at u satisfying �♦(a∧X) but not
T . Thus, the formula everywhere(�♦(a ∧X)→ T ) is false at u and u
is not added to the fixed-point. The same argument, of course, holds
for all stages i > t and thus, in restriction to the b-nodes, the fixed
point of X has been reached. This finishes the proof of the claim.

Now consider the formula times. By assumption, s, t > 0 and therefore the
sub-formulae ¬everywhere(S ↔ �false) and ¬everywhere(T ↔ �false) are
both true for all nodes except the leaves. Thus, times(S, T ) becomes true
for all leaves – as they satisfy �false – and for all nodes whose b-successors
satisfy ψ∗, i.e. are of height ((t+1) ·s−1). Together, times(S, T ) represents
(t+ 1) · s.

The following corollary shows that the evaluation of polynomials in the
structure N′ can be reduced to the evaluation of 1MIC formulae.

11.32 Corollary. For every polynomial f(x1, . . . , xr) over N′ with coeffi-
cients in the natural numbers there exists a formula ψf (X1, . . . ,Xr) ∈ 1MIC

such that for every tree T , v |= ω-height∧ψ and all sets S1, . . . , Sr encoding
numbers s1, . . . , sr ∈ ω

[[ψf (S1, . . . , Sr)]]
T = {v : h(v) ≤ fN′

(s1, . . . , sr)},

where fN′

(s1, . . . , sr) denotes the result of f in N′.

Proof. The proof is by induction on f .

• ψ0 := �false.

• ψ1 := ��false.

• ψx := X.
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• ψf+g := plus[S/ψf , T/ψg], i.e. the formula obtained by replacing in
plus(S, T ) the variables S and T by ψf and ψg, respectively.

• ψf ·g := times[S/ψf , T/ψg].

11.33 Theorem. For every FO-sentence ψ in the vocabulary {+, ·, 0, 1} of
arithmetic, there exists a formula ψ∗ ∈ 1MIC such that ψ is true in N′ if,
and only if, ψ∗ is satisfiable.

Proof. By induction on formulae ψ(x) ∈ FO[+, ·, 0, 1] we construct a formula
ψ∗(x) ∈ 1MIC such that for all n ∈ ω with encodings N , ψ(n) is true in N′

if, and only if, ψ∗(N) is true at the root v of any model T , v of the formula
ω-height ∧ ψ above.

We have already seen how to transform polynomials over N′ and equality
x = y can be expressed by everywhere(X ↔ Y ). What remains is to trans-
late quantifiers. Let ψ(y) := ∃xϕ(x, y1, . . . , yk) be a formula in FO[+, ·, 0, 1].
By induction we get a corresponding formula ϕ∗(X,Y1, . . . , Yk) in 1MIC. Let

ψ∗(Y ) := w ∧ ifp X ← (¬w ∧�X) ∨ (w ∧ ϕ∗(X/¬w ∧�X)).

Let T , v be any model of ω-height ∧ ψ. We claim that for all numbers n
encoded by sets N , ψ(y) is true in N′ if, and only if, T , v |= ψ∗(N). A
simple induction on the stages proves that at stage i < ω, Xi contains all
a and b-nodes of height less than i. Further, X∞ contains the root v if at
some stage X, the formula ϕ∗ becomes true at the root where the variable
X has been replaced by ¬w ∧ �X, i.e. at each stage i, the variable X in
ϕ∗ is interpreted by the set of nodes of height ≤ i. Thus, in the course of
the induction, ϕ∗ is evaluated for all sets encoding natural numbers and, by
induction hypothesis, becomes true at the root if, and only if, for at least
one i ∈ N, ϕ(i, n), and thus ψ(n), becomes true. This proves the claim and
finishes the proof of the theorem.

11.34 Corollary. The satisfiability problem for 1MIC is undecidable. In
fact, it is not even in the arithmetical hierarchy.

11.5 Comparison of Least and Inflationary Fixed-

Point Inductions

In Chapter 8 we studied extensions of first-order logic by least and inflation-
ary fixed-point operators. As we have seen, the two logics are equivalent in
expressive power yet differ in various other aspects.

The results about the modal iteration calculus reported in the previous
sections clearly show that in the context of modal logic, least and infla-
tionary fixed-point inductions have rather different properties. Whereas the
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modal µ-calculus enjoys desirable algorithmical properties such as exponen-
tial time satisfiability testing and an NP∩co-NP model checking problem,
the corresponding problems for MIC are highly undecidable and Pspace-
complete, respectively. On the other hand, MIC has much more expressive
power than Lµ.

This raises the question, what the essential properties of logics are that
make the translation of inflationary into least fixed points possible. We will
try to shed light on this question by considering various fragments of LFP

and IFP which generalise the modal least and inflationary fixed-point logic.

Essentially, modal fixed-point logics are restricted in two ways. Firstly,
the underlying modal logic allows only a very restricted form of quantifica-
tion, namely quantification along edges in the graph, and it does not have
free first-order variables which might be used to mark distant parts of the
graph. Secondly, the fixed-point part is effectively restricted to monadic
inductions, i.e. inductions over sets. Thus, fragments of LFP and IFP with
expressive power somewhere between the modal and full fixed-point logics
can be formed by allowing first-order variables and more powerful quanti-
fiers in the underlying logic or by allowing fixed-point inductions of higher
arity.

Extending the Underlying Logic

Natural candidates for the first approach are fixed-point extensions of the
guarded fragment of FO. The guarded fragment was introduced by Andréka,
van Benthem, and Németi in [AvBN98] as a fragment of FO to explain
the good algorithmic properties of modal logic. A least fixed-point logic
(µGF) based on the guarded fragment has been considered by Grädel and
Walukiewicz in [GW99].

Unfortunately, inflationary fixed points do not fit well into the guarded
fragment: Clearly, IFP is contained in second-order logic (SO). The cor-
responding guarded second-order logic (GSO) has been studied by Grädel,
Hirsch, and Otto in [GHO02]. They showed that on words, GSO collapses to
MSO and thus the only languages that are definable in GSO are the regular
languages. As already MIC can define non-regular languages any reasonable
definition of a guarded inflationary fixed-point logic iGF would no longer be
contained in GSO and thus leave the realms of guarded logics.

So instead of guarded logics, we may consider the monadic fixed-point
logics M-LFP and M-IFP, i.e. allow arbitrary first-order formulae but restrict
the fixed-point part to monadic inductions. An immediate consequence of
the Knaster-Tarski Theorem 3.3 is that M-LFP is contained in MSO. Thus
again, all M-LFP-definable languages are regular whereas already in MIC

and therefore also in M-IFP there are non-regular languages definable. Thus
in the restriction to monadic inductions, inflationary fixed points are more
expressive than least fixed points.
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Extending the Fixed-Point Part

Following the second approach mentioned above, there are two possibilities:
allowing fixed-point inductions of higher arity while keeping modal logic as
underlying formalism or considering full first-order logic but restricting the
fixed-point relations to some fixed arity.

A variant of the modal µ-calculus - the higher dimensional µ-calculus
(Lωµ) - which allows inductions of higher arity has been introduced in [Ott99]

by Martin Otto to define a logic that captures bisimulation-invariant Ptime,
i.e. every property of transition systems that is invariant under bisimulation
and decidable in polynomial time is definable in Lωµ. He also showed that Lωµ
is the bisimulation invariant fragment of LFP. It is clear that the analogous
higher dimensional inflationary fixed-point logic, a logic that we might call
MICω, is still contained in IFP and therefore, by Theorem 8.7, in LFP. As
any property definable in MICω is bisimulation invariant, this implies that
Lωµ and MICω are equivalent.

Finally, we briefly consider the fixed arity fragments of LFP and IFP.
Let LFPk and IFPk denote the fragments where all fixed-point variables are
of arity at most k. We have already seen that in the arity one fragments,
i.e. M-LFP and M-IFP, inflationary fixed points are more expressive than
least fixed points. However, M-IFP is contained in LFP2, i.e. LFP with binary
fixed-point variables. In fact, using the stage comparison method, it is easily
seen that every formula in IFPk is equivalent to a formula in LFP2k.1 It seems
unlikely, that this increase in arity of the involved fixed-point variables can
be avoided. Therefore we put forth the following conjecture.

11.35 Conjecture. For every k < ω, LFPk � IFPk.

Note that an answer to this question on finite ordered structures is closely
related to important open questions in complexity theory, namely the equiv-
alence of the complexity classes Logspace and Ptime.2 Figure 11.2 gives
a summary of what we have seen in the preceding paragraphs.

The results hint at a possible reason why MIC and Lµ are so different,
namely not so much the fact that both are modal logics but that both are
effectively monadic logics. By defining those elements that are not yet in
the fixed point but will enter in the next stage, inflationary inductions gain
some access to the ordinals indexing the stages and with it are capable of a
limited amount of counting. This technique has frequently been employed

1Note, however, that this translation introduces an unbounded number of parameters,
i.e. free variables y in sub-formulae [lfpR,xϕ(R, x, y)](x) other than x. Thus, the resulting
LFP-formulae are not of bounded width.

2It was shown by Grohe and Imhof [Gro94, Imh96a], that on finite ordered structures,
deterministic transitive-closure logic DTC, which captures Logspace, is contained in LFP2

and M-IFP. As LFP captures Ptime, a positive answer for some k ≥ 2 to the conjecture
on finite ordered structures would imply Logspace 6= Ptime.
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fixed points:
monadic arity-restricted unrestricted

ML Lµ � MIC Lωµ = MICω

GF µGF � iGF

FO M-LFP � M-IFP LFPk
?

� IFPk LFP = IFP

Figure 11.2: Least vs. inflationary fixed points.

throughout this chapter and many results about MIC have been proved by
expressibility results involving counting.

11.6 Perspectives and Open Problems

A line of research active in recent years relates fixed-point logics to infinite
two-player games. In particular the relation between least fixed-point logics
– such as the modal µ-calculus – and parity games has proved very fruitful
and indeed, many competitive evaluation methods currently available for
such logics are based on model-checking games. See [GTW02] for a recent
text on this subject.

However, so far the game based approach has primarily focused on logics
like Lµ, LTL, and CTL as used in the area of verification. In particular,
model checking games for inflationary fixed-point logics like MIC have not
been considered so far.

For various reasons, it would be interesting to define such a game for
IFP and MIC. Although the model-checking problem for MIC is known to be
Pspace-complete, one might be able to obtain game-based model-checking
algorithms for MIC with reasonable running time in practise.

Also, by showing that the winner of a game for inflationary fixed-point
logics is definable in LFP, we would get a completely different proof for
the equivalence of LFP and IFP than the one given in Section 8.2. In this
way, the equivalence proof is split into two parts, namely the combinatorial
problem of defining a game for IFP and the logical problem of defining the
winner of such a game in LFP. This might help to produce a less technical
proof for the equivalence of the two logics. However, the constructive and
explicit translation of IFP-formulae into LFP-formulae would obviously be
lost in this approach.
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Chapter 12

The Modal Partial Iteration

Calculus

Recall the different semantics we gave to partial fixed-point logic in Chapter
7. We continue the study of partial fixed-point inductions in the context
of modal logic. In particular, we will introduce a modal partial fixed-point
logic and study its properties. We first define the syntax and comment on
the semantics later.

12.1 Definition (Syntax of MPC). The modal partial iteration calculus
(MPC) extends modal logic by the following rule. If ϕ1, . . . , ϕk are formulae
of MPC, and X1, . . . ,Xk are propositional variables, then

S :=






X1 ← ϕ1(X1, . . . ,Xk)
...

Xk ← ϕk(X1, . . . ,Xk)

is a system of rules, and (pfp Xi : S) is a formula of MPC. If S consists
of a single rule X ← ϕ we simplify the notation and write (pfp X ← ϕ)
instead of (pfp X : X ← ϕ).

We now turn towards a semantics for MPC.

12.1 Semantics for Modal Partial Fixed-Point In-

ductions

The first semantics for partial fixed-point logic considered in Part I was a
semantics that arose in the area of finite model theory. We argued that
the finite model semantics is not satisfactory as it is a) restricted to finite
models and b) does not generalise as easily to other logical formalisms as
the alternative semantics. The following example gives further justification
to this claim.
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Consider MPC under the finite model semantics: On any finite transition
system K with universe V , a formula ψ := (pfp Xi : S) as above, defines
for every ordinal α a tuple X

α
:= (Xα

1 , . . . ,X
α
k ) of sets, via the following

induction rules.

X0
i := ∅

Xα+1
i := [[ϕi]]

(K,X
α
)

If there is a stage α such that X
α

= X
α+1

, then [[ψ]]K = Xα
i . It is easily

seen that this straightforward adaptation of the finite model semantics to
the context of modal logic is not closed under bisimulation. For, consider
the formula

ψ := pfp X :

{
X ← w ∨ (�false ∧ ¬Y ) ∨ ♦X
Y ← �false

and the induction it defines on the transition system K, w := w → •. Obvi-
ously, X1 contains both nodes, and all other stages only contain w. There-
fore, the fixed point defined by ψ is the set {w}.

Now consider the transition system K′, w′ := w → • • ↔ • → •.
Clearly, the two transition systems K, w and K′, w′ are bisimilar, as the new
nodes in K′ are not reachable from w′. But, in K′, the stage X2 contains not
only the node labelled by w, but also the node in the middle of the second
component. Further, X3 contains, besides w, also the left node in the new
component and in the process of the fixed-point induction, these two sets
alternate. Thus, there is no stage α where Xα = Xα+1 and the fixed point
defined by ψ on K′, w′ is empty.

Invariance under bisimulation is considered a defining feature of modal
logics, wherefore this definition of a modal partial fixed-point semantics is
not satisfactory.

To establish invariance under bisimulation, we modify the semantics as
follows.

12.2 Definition. Let K be a transition system with universe V and let S
be a system of rules. Consider again the sequence of tuples X

α
as defined

above. For every node v ∈ V, let Kv be the subgraph of K induced by the set
Vv of nodes reachable from v. We put K, v |= (pfp Xi : S) if, and only if,
there is a stage α such that Xα

i ∩ Vv = Xα+1
i ∩ Vv and v ∈ Xα

i .

In this definition, whether a node v is in the fixed point defined by ψ
depends only on the part of the transition system reachable from it. With
this modification, closure under bisimulation is again established. However,
this semantics is also not satisfactory, as the following lemma demonstrates.

12.3 Lemma. Let ψ := (pfp X : ϕ) be a formula in MPC under the
semantics of Definition 12.2. On any string Tw of length n, if the fixed
point of ψ on Tw is not empty, then it is reached within n steps.
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Proof. The proof is by induction on the length n of the string. The claim
is trivial for n = 1. Now assume the claim has been established for all
0 < m < n and let Tw, v be a string of length n. Towards a contradiction,
suppose that the fixed point of ψ on Tw exists but is not reached within
n stages, i.e. Xn 6= Xn+1. By induction hypothesis, after n − 1 stages the
fixed point of the substring rooted at the successor of the root v has been
reached. Thus, as Xn 6= Xn+1 either v ∈ Xn −Xn+1 or v ∈ Xn+1 −Xn.

First suppose that v ∈ Xn but v 6∈ Xn+1. Let U be the set of nodes
reachable from the successor of v. By induction hypothesis, in the restriction
to the nodes of U , the fixed point of ϕ is reached within n − 1 steps and
therefore Xn−1 ∩ U = Xn ∩ U = Xn+1 ∩ U . Now, by assumption, v ∈ Xn

but v 6∈ Xn+1. It follows that v 6∈ Xn−1 and thus Xn+1 = Xn−1 6= Xn. As
ϕ is deterministic, the fixed point of ϕ does not exist on K, contradicting
the assumption.

The case where v 6∈ Xn is analogous. �

A consequence of the proof is that on all strings where the fixed point
of a formula (pfp X : ϕ) exists, it is actually reached by an inflationary
induction. Although this does not necessarily imply that MIC and MPC

under this semantics are equivalent on strings, it shows that this is not what
one would intuitively expect from a partial fixed-point semantics.

We now turn towards the alternative semantics for partial fixed-point
logic as introduced in Chapter 7.

12.4 Definition (Semantics of MPC). Let S be a system of rules defined
as

S :=






X1 ← ϕ1(X1, . . . ,Xk)
...

Xk ← ϕk(X1, . . . ,Xk)

and let ψ := (pfp Xi : S) be a formula in MPC. On any transition system
K with universe V, the system S induces a sequence of stages defined as

X0
i := ∅,

Xα+1
i := [[ϕi]]

(K,X
α
)

Xλ
i := final((Xα

i )α<λ) for limit ordinals λ,

where final((Xα
i )α<λ) denotes the set of elements u ∈ V such that there is a

β < λ with u ∈ Xξ
i for all β < ξ < λ.

For every node u ∈ K define Ku as the subgraph of K induced by the
set Vu of nodes reachable from u. Obviously, for every u ∈ V , the sequence
(Uα)α∈Ord, with Uα := Xα

i ∩ Vu, must eventually become cyclic. Let β2 be
minimal such that Uβ1 = Uβ2 for some β1 < β2. We put

K, u |= ψ if, and only if, u ∈ U ξ for all β1 ≤ ξ < β2.
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As before, the problem whether a node u occurs in the fixed point of ψ
is resolved only in terms of the part of K reachable from u. Although this
might look unsatisfactory, it can in general not be avoided: Unlike inductive
fixed points, partial fixed points do not always exist. Thus, a rule has to
be agreed on for deciding when a stage of the induction is to be taken as
the fixed point defined. Due to invariance under bisimulation this decision
cannot be made on a global level, as the fixed point of a node cannot depend
on parts of the transition system unreachable from it.

However, in restriction to finite transition systems, we can indeed impose
a global condition for the partial fixed point of a formula. For this, let for
each u ∈ V, mu and nu be minimal such that mu < nu and Xmu ∩ Vu =
Xnu ∩ Vu, where Vu is the set of nodes reachable from u. Now let m be the
maximum of all such mu and n be the product n :=

∏
u∈V (nu−mu). Then,

Xm
i = Xm+n

i and for all u ∈ V,

K, u |= ψ if, and only if, u ∈ Xξ
i for all m ≤ ξ ≤ m+ n.

This proves the following lemma.

12.5 Lemma. Let ψ := (pfp Xi : S) be as in Definition 12.4 and X
α

be the
sequence of stages induced by ψ on a finite transition system K with universe

V . Let α be minimal such that there is a β < α and X
β

= X
α
. Then for all

u ∈ V , K, u |= ψ if, and only if, u ∈ Xξ
i for all β ≤ ξ ≤ α.

Thus, for finite transition systems, we can take the straightforward adap-
tation of the partial fixed-point semantics in Chapter 7 as semantics for MPC.
However, on infinite transition systems, this is not possible as there are ex-
amples where the lemma fails, i.e. there are infinite transition systems where
the fixed point defined as in Definition 12.4 and the global fixed point as
discussed above result in different sets. Without going into details, consider
the transition system K defined as

1

K : 0 3

2

and a formula that, for finite ordinals, defines a sequence of stages alternat-
ing between {0, 1} and {0, 2} and on the stage containing only 0 defines the
stage {3} which repeats itself. On K, the fixed point of the formula contains
just {0}. However, if K is conjoint with a transition system on which the
fixed point of the formula is only reached after infinitely many stages, the
fixed point under the global semantics would no longer be {0} but {3}.
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From now on, let MPC denote the modal partial fixed-point logic under
the semantics defined in Definition 12.4. We proceed by showing that MPC

is contained in ML∞ and thus is indeed a modal logic.

12.6 Lemma. On classes of structures of bounded cardinality, MPC ⊆
ML∞.

Proof. The proof is by induction on the structure of the formulae. We only
consider the fixed-point rule, the other cases being trivial. Let (pfp X :
ϕ(X)) be a formula in MPC. For simplicity, we only give the proof for
simple inductions. The general case is analogous.

For every ordinal α, we give a formula ψα ∈ ML∞ defining, over any
transition system, the stage α of the induction on ϕ. The formulae ψα are
inductively defined as follows.

ψ0 := false ,
ψα+1 := ϕ(X/ψα),
ψλ :=

∨
α<λ

∧
α<ξ<λ ψ

ξ for limit ordinals λ.

Here, ϕ(X/ψα) is obtained from ϕ by replacing every occurrence of X in ϕ
by ψα. Obviously, for every transition system K with universe V and every
node u ∈ V , K, u |= ψα if, and only if, u ∈ Xα.

What is left to be done is to give a formula defining the partial fixed
point of ϕ. For this, note that if C is a class of structures such that the
cardinality of every structure K ∈ C is bounded by the cardinal ρ, then the
partial fixed point of ϕ on any structure in C must be reached within at
most λ = 2ρ stages. Thus, the fixed point of ϕ on any structure in C can be
defined by the formula

ϑ :=
∨

0≤β<α<λ(everywhere(ψα ↔ ψβ) ∧
∧
β≤ξ≤α ψ

ξ ∧∧
0≤β′<α′<α ¬everywhere(ψα

′

↔ ψβ
′

)),

where everywhere(ϕ) is a ML∞-formula equivalent to the formula defined in
Proposition 11.5.

Let K ∈ C be a transition system with universe V , u be a node in V, and
U be the set of elements reachable from u. At the node u, ϑ expresses that
there are stages β < α ≤ λ such that U ∩Xβ = U ∩Xα, u is contained in
all stages Xξ where β ≤ ξ ≤ α, and there is no ordinal α′ < α such that
for some β′ < α′, U ∩ Xα′

= U ∩ Xβ′

, i.e. α is the least stage where the
induction on ϕ becomes cyclic.

It follows that for every K ∈ C with universe V and every u ∈ V ,

K, u |= ϑ if, and only if, K, u |= (pfp X : ϕ).

�

The following corollary follows immediately.
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12.7 Corollary. MPC is closed under bisimulation and has the tree model
property.

We now give some examples for MPC-formulae. The first example demon-
strates that on strings, MPC-inductions of exponential length are possible.
Note the difference to Lemma 12.3, where it was proved that with the se-
mantics from Definition 12.2 such inductions are impossible.

12.8 Example. Let Tn be a string of length n such that the root of Tn is
labelled by w and all other nodes are unlabelled. Consider the formula ψ
defined as

ψ := pfp X :
(w ∧X) ∨ (X ∧ somewhere(¬X)) ∨
(¬X ∧�everywhere(X))).

On any string Tn, ψ enumerates in its stages every subset of nodes from
Tn. However, once the root v of Tn, labelled by w, is added to X, it stays
in forever. Thus, the fixed point of ψ on Tn is just {v}. But before it is
reached, an exponential number of stages is defined.

We present a more complicated example in the next section, where it is
shown that the trace equivalence problem on unary alphabets is definable
in MPC.

12.2 Expressive Power and Complexity

We first give a formal definition of the trace equivalence problem.

12.9 Definition (Trace equivalence problem). Let Σ be an alphabet,
i.e. a non-empty set of proposition symbols. Further, let F be a proposition
symbol not in Σ.

Let K, v be a finite rooted transition system. The set T (K) of traces in
K is defined as the set of words w ∈ Σ∗ such that there is a path labelled by
w in K from v to a node in FK. Two transition systems K, v and K′, v′ are
trace equivalent, if T (K) = T (K′).

The trace equivalence problem (TE) is defined as the decision problem
of the class

TEΣ :=

{
K, v :

K, v is finite and for all u,w such that v → u and
v → w,K, u and K, w are trace equivalent

}
.

The unary trace equivalence problem is defined as the trace equivalence
problem over unary alphabets, i.e. alphabets Σ with |Σ| = 1.

The acyclic trace equivalence problem is defined as the subclass of TE
where all structures are acyclic.

We show now that unary trace equivalence is definable in MPC.
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12.10 Theorem. Unary trace equivalence on arbitrary finite graphs is de-
finable in MPC.

Proof. Let ψ be the formula defined as

pfp Z :






X ← (F ∧ ¬Y ) ∨ ♦X

Y ← F

Z ← (♦X ∧ ♦¬X) ∨ Z.

Clearly, X1 contains all nodes contained in F and in the successive stages,
Xn contains all nodes from which a path of length n−1 leads to a node in
F . Further, Z contains all nodes from which two paths of different length
lead to a node in F . In particular, the fixed point of Z contains the root of
a transition system K, v if, and only if, K, v 6∈ TE . Thus, K, v |= ¬ψ if, and
only if, K, v ∈ TE . �

In Section 14.4, we will prove that unary trace equivalence in not defin-
able in MIC. Also, it is known that the problem is co-NP-complete (see
[GJ79, A10.1 page 265]). Finally, it is easily seen that MIC ⊆ MPC. From
this, the following corollary follows immediately.

12.11 Corollary. (i) MIC is strictly contained in MPC.

(ii) MPC is not contained in Lωµ, provided that Ptime 6= NP.

(iii) There are NP-complete problems definable in MPC.

We now aim at establishing complexity bounds for the computational
problems for MPC. As MIC ⊆ MPC, the undecidability of the satisfiability
problem for MIC applies to MPC as well. Thus, we immediately get the
following theorem.

12.12 Theorem. The satisfiability problem for MPC is undecidable, it is
not even in the arithmetical hierarchy.

Finally, we show that model checking for MPC is Pspace-complete.

12.13 Theorem. The model-checking problem for MPC is complete for
Pspace.

Proof. In Section 11.2, we have already seen that the model checking
problem for MIC is Pspace-complete (Theorem 11.17). From this, Pspace-
hardness for MPC model checking follows immediately.

To show membership in Pspace, note that every stage of an induction
on (pfp X : ϕ) requires only a linear amount of space. Let K be a transition
system with n nodes. To compute the partial fixed point of ϕ, compute the
first 2n stages. Clearly, after that many stages, the induction must be cyclic.



150 Chapter 12: The Modal Partial Iteration Calculus

Now proceed as follows. First, make three copies U, V,W of the stage X(2n).
The first copy, U, is left untouched in the following computation. In the
space consumed by the second copy, V, the induction is continued, i.e. the
next induction stages are computed. At each step, the elements that are
not in the current stage of V are removed from the third copy, W. As soon
as V equals X(2n), which is stored in U, the computation is stopped. Now,
W contains precisely those elements, which occur in every stage of the cycle
and therefore contains the fixed point of the induction on ϕ.

For this, space is needed to store three stages of the induction on ϕ,
i.e. space for three subsets of the universe. Further, some space is needed
for the computation of ϕ on every stage. A simple induction on the number
of fixed-point operators in a MPC-formula establishes the claim. �



Chapter 13

Labelling Indices on Acyclic

Transition Systems

In the preceding chapters we introduced a variety of modal fixed-point logics.
There are various techniques that may be used to compare their expressive
power. Showing that one logic is at least as expressive as another can often
be done by giving an explicit translation of formulae of the first to formulae
of the second. Trivial examples of this are the inclusion of LFP in IFP and
of Lµ in MIC. A more complicated example is given in the translation of
IFP into LFP in Chapter 8.

Establishing separations between logics is often more involved. This re-
quires identifying a property expressible in one logic and showing that it is
not expressible in the other. Many specialised techniques have been devel-
oped for such proofs of inexpressibility: One may consider diagonalisation
arguments similar to the one we used in Chapter 7 to separate PFP and
IFP. Such methods have also been used by Bradfield to establish that in-
creasing alternations of least and greatest fixed points in the µ-calculus yield
greater expressive power [Bra98a]. Another important method are variants
of Ehrenfeucht-Fräıssé games, for instance bisimulation games. One can also
relate logics to finite automata, allowing for the use of methods such as the
pumping lemma.

In this chapter, an alternative complexity measure for modal properties
of finite structures, called the labelling index of the property, is introduced.
We will use this measure to analyse the expressive power of various fixed-
point logics considered so far, including the modal logics introduced in the
previous chapters. An extended abstract of the results reported in this and
the following chapter appeared in [DK02].

The notion of labelling index generalises the concept of the automaticity
of languages, introduced by Shallit and Breitbart in [SB96]. The idea is to
classify languages not in terms of the automata model or type of grammar
needed to accept the whole language but in terms of the growth rates of
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automata accepting the fragments of the language of words up to a fixed
length.

13.1 Definition (Automaticity). Let Σ be a non-empty alphabet and L ⊆
Σ∗ be a language over Σ. For every n < ω let L≤n be the fragment of L
containing all words in L of length at most n, i.e.

L≤n := {w ∈ L : |w| ≤ n}.

Clearly, for every n < ω there is a deterministic finite automaton An that
agrees with L on all words of length at most n, i.e. accepts a word w of
length at most n if, and only if, w ∈ L≤n. The automaticity of L is defined
as the function f : ω → ω that assigns to each n < ω the number of states
in a minimal deterministic automaton that accepts a word of length at most
n if, and only if, it is in L≤n.

Obviously, the regular languages are precisely the languages with con-
stant automaticity. Further, every language L has at most exponential au-
tomaticity. For this, simply let the automata An accepting L≤n have one
state for each prefix of a word in Σn.

The language L := {cwdwd : w ∈ {a, b}∗} over the alphabet {a, b, c, d}
proved in Section 11.3 to be definable in MIC has exponential automaticity.
For, suppose there was for some n < ω a deterministic automaton An which

accepts L≤n but has less than 2
n−3

2 states. Let w := cvdvd be a word of

length n. Clearly, there are 2
n−3

2 different words cv. As there are less than

2
n−3

2 nodes in An, there must be two different words cv1 and cv2 such that
An, starting from its initial state, ends in the same state when reading cv1
and cv2. Thus, An accepts cv1dv1d if, and only if, it accepts cv2dv1d, a
contradiction to An accepting L≤n.

The example demonstrates, that the concept of automaticity on words
is not helpful in analysing the expressive power of the modal fixed-point
logics introduced so far. The languages definable in Lµ all have constant,
i.e. minimal, automaticity, whereas the languages definable in MIC already
might have exponential, and thus maximal, automaticity.

In the next two chapters, we aim at extending the concept of automatic-
ity from words to modal properties of arbitrary transition systems. This
extension consists of two somewhat independent parts. First, we introduce
a measure of size or complexity of transition systems, called their rank , that
generalises the length of a word. We then introduce an automata-like de-
vice that we call labelling system. It is shown that every class of transition
systems can be defined up to a fixed rank by a labelling system.

For every class C of transition systems, the function that takes every
n < ω to the size of a smallest labelling system, that agrees with C on all
structures of rank at most n, is called the labelling index of C.
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By deriving a number of separation results from it, we demonstrate that
this is a useful measure for the complexity of classes of finite transition
systems. In particular, we will obtain separation results for the modal logics
introduced so far.

We also consider the relationship between the labelling index of a class C
and conventional time and space based notions of its complexity. Finally, we
investigate the labelling index of the trace equivalence problem over specific
classes of structures and derive results about its expressibility in modal
logics.

Conceptually, the labelling index is a notion on finite structures. There-
fore we agree on the following proviso.

Proviso. All structures in the following two chapters are finite. �

As it turns out, the framework of labelling systems as described above
is smoother when applied to classes of acyclic structures than if cycles are
allowed. Therefore, we first introduce the concepts on the class of acyclic
finite structures, i.e. those bisimilar to finite trees, and generalise it to classes
of arbitrary structures in the next chapter.

13.1 The Rank of Trees

The framework we are going to describe consists of two somewhat indepen-
dent parts, namely the definition of a measure of finite structures, called
the rank of the structure, and the definition of labelling systems accepting
classes of structures up to a given rank. We first define the rank of acyclic
structures, which, in this case, simply is the height of a tree or, in the case
of acyclic structures which are no trees, the height of the trees bisimilar to
it.

13.2 Definition. Let K be an acyclic transition system with root v. The
rank of K, v, in terms rank(K, v) or simply rank(K) if v is understood, is
defined as h(v) + 1, i.e. the rank is one plus the height h(v) of v in K, or
equivalently, the height of a tree bisimilar to K, v plus one.

We are only interested in modal, i.e. bisimulation invariant properties of
structures. As any acyclic structure is bisimilar to a tree of the same rank,
we can restrict attention to trees.

The key feature that makes the height of a tree interesting for the further
investigations is, that it also binds the length of least and inflationary fixed-
point inductions. We make this precise in the following lemma.

13.3 Lemma. Let kMIC denote the class of formulae in MIC where every
system of formulae defining a fixed-point induction has at most k rules. For
any tree T with root v,

k · rank(T ) = clkMIC(T ),
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where clkMIC(T ) denotes the supremum of all α such that there is a system
S of at most k formulae for which α is the least ordinal with Sα = Sα+1.

Proof. Recall that the rank of a tree is simply its height plus one. Clearly,
there is a MIC-induction of length precisely k · rank(T ), e.g. take the system
Sk containing for each 0 ≤ i ≤ k − 1 a rule Xi ← �(

∧k−1
j=0 Xj) ∧

∧i−1
j=0Xj .

Then, for all α, Xk·α+i
i contains the nodes of height less than α.

The proof of the converse is by induction on the height of T . For trees
of height 0, i.e. consisting of one node only, the closure ordinal of any kMIC-
formula must be at most k. For, in each stage of the induction on a system
with k rules, the single node in the tree must be added to at least one of the
k variables defined by S.

Now assume the height of T is n > 1. By bisimulation invariance,
whether a node u enters the fixed point of S at some stage depends only on
the subtree rooted at u and not on the other nodes in T not reachable from
it. Thus, by induction hypothesis, we get that the fixed point of S restricted
to the successors of the root v of T must be reached within at most k(n−1)
steps. Consequently, the fixed point of S on T is reached in at most k · n
steps. �

The lemma also gives a justification to the definition of the rank of a
tree as its height plus one.

13.2 Labelling Systems

We are now ready to describe the second part of the framework of labelling
indices, the labelling systems. There is a close correspondence between la-
belling systems and bottom-up tree automata. In fact, on acyclic structures,
labelling systems are nothing else than bottom-up tree automata. However,
as we are interested in a generalisation to arbitrary structures later on, we
introduce labelling systems in full generality. Note that, contrary to the rest
of this chapter, the structures considered here may have cycles!

13.4 Definition. A labelling system L is a quintuple L := (Q,A,P, δ,F),
where

• Q is a finite set of labels,

• A is a finite set of actions,

• P is a finite set of proposition symbols,

• F ⊆ Q is a set of accepting labels, and

• δ is a total function δ : 2Q×A × 2P → Q, the transition function.
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For every transition system K := (V, (Ea)a∈A, (p)p∈P) and node v ∈ V ,
the labelling system L accepts K, v, in terms K, v |= L, if, and only if, there
is a function f : V → Q such that f(v) ∈ F and for each u ∈ V ,

f(u) = δ(Succ(u),Prop(u))

where

Succ(u) := {(f(u′), a) : a ∈ A and (u, u′) ∈ EK
a } and

Prop(u) := {p : p ∈ P and u ∈ pK}.

The class of transition systems defined or accepted by L is defined as the
class C of all transition systems K, v such that K, v |= L.

Note that, as δ is functional, labelling systems are deterministic de-
vices. And indeed, on well-founded trees, they are equivalent to determin-
istic bottom-up tree automata. On the other hand, if the structures may
contain cycles, some form of nondeterminism is present as acceptance is de-
fined in terms of the existence of a labelling. Thus, for a given structure
and a given labelling system, there may be more than one labelling function
witnessing the fact that L accepts K, v.

The class of structures accepted by a labelling system is not necessarily
closed under bisimulation. This can be seen in the following simple example.

13.5 Example. Consider the labelling system L = (Q,A,P, δ,F) given by

• Q = {qeven, qodd},

• A = {a} and P = ∅,

• F = {qeven} and where

• the function δ is given by the rules δ(∅) = qeven, δ({(qeven, a)}) = qodd,
δ({qodd, a}) = qeven and δ({(qeven, a), (qodd, a)}) = qeven, where we have
dropped the second argument of δ as it is always ∅.

This labelling system accepts a simple cycle if, and only if, it is of even
length.

As we are interested in labelling systems that define bisimulation-closed
classes of structures, we consider the following definition.

13.6 Definition. A labelling system L is ∼-consistent, if for all transition
systems K, v, whenever K, v |= L then there is a labelling f witnessing this
such that for all u, u′, if K, u ∼ K, u′ then f(u) = f(u′).

Another natural condition is obtained by requiring the class of structures
defined by L to be closed under bisimulation.
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13.7 Definition. A labelling system L is ∼-invariant if, whenever K, v |= L
and K, v ∼ K′, v′ then K′, v′ |= L.

As it happens, these two definitions are equivalent for the structures that
are of interest to our investigations.

13.8 Lemma. On connected structures, a labelling system is ∼-consistent
if, and only if, it is ∼-invariant.

Proof. Suppose L = (Q,A,P, δ,F) is ∼-consistent. We show that L is
∼-invariant. Let K, v be a transition system such that K, v |= L and let
f : V → Q be a labelling witnessing this, such that f(u) = f(u′) whenever
K, u ∼ K, u′. For every structure K′ with universe V ′ such that K′, v′ ∼ K, v
define a labelling f ′ : V ′ → Q by f ′(u′) := f(u) where u ∈ V is a node such
that K′, u′ ∼ K, u. It is easily verified that f ′ is a labelling witnessing that
K′, v′ |= L.

Towards the converse, suppose L = (Q,A,P, δ,F) is ∼-invariant and
K, v |= L. Consider the quotient K/∼ of K under ∼ as defined in Definition
9.6. Since K/∼, [v] ∼ K, v, we have, by the ∼-invariance of L, that K/∼, [v] |=
L. Let f be a labelling that witnesses this and define f ′ : V → Q by
f ′(u) = f([u]). It is clear that f ′ is a valid labelling of K, v, and it satisfies
the condition that if K, u ∼ K, u′ then f(u) = f(u′). �

As we have seen, ∼-consistent labelling systems define∼-invariant classes
of structures. However, not every bisimulation-closed class C of structures
is definable by a labelling system. But, as we shall see below, C is defined
by a family of systems. In order to define the family we use the rank of a
structure as a measure of its size.

13.9 Definition. A bisimulation closed class C of structures is accepted
by a family L := {Ln : n < ω} of labelling systems if for every transition
system K, v of rank n, K, v ∈ C if, and only if, K, v |= Lm for all m ≥ n. C
is called the class of structures defined by L.

Every bisimulation closed class of transition systems can be accepted
by a family of labelling systems as follows. For this, note that the rank1 is
trivially bounded by the size of the transition system and that there are only
finitely many bisimulation equivalence classes of structures of size at most
n. Taking a state for each such class yields the desired labelling system.

13.10 Lemma. Let C be a bisimulation closed class of finite structures.
For every n there is a ∼-consistent labelling system Ln such that for any
structure K with rank(K) ≤ n, Ln accepts K if, and only if, K ∈ C.

1So far, we have only defined the rank of acyclic structures. The rank of arbitrary
structures will be defined in Chapter 14 below. For now, it suffices to know that the rank
is bounded by the number of elements in the structure.
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Proof. For a fixed n, there are only finitely many bisimulation equivalence
classes. We obtain a labelling system by taking a state for each bisimulation
class of a structure of rank at most n and defining, for sets M ⊆ Q×A and
P ⊆ P, δ(M,P ) to be the bisimulation class of the structure consisting of
a root labelled by the propositions in P , which has for each (q, a) ∈ M an
a-successor such that the structure rooted at this successor is in the bisimu-
lation class represented by q. Define F as the set of states representing the
bisimulation class of a structure in C. The lemma now follows immediately.

�

We close the section by relating labelling systems to other automata
models on graphs considered in the literature.

Connection between Labelling Systems and Automata. Automata
models on graphs have been investigated by several authors before. The
usual way to define such automata is in terms of tiling systems (see [Tho91,

Tho94]). A tiling system consists of a set Q of states and a set of finite
graphs - called tiles - labelled by states from Q. A graph G is accepted by
a tiling system if it can be labelled by states from Q such that the resulting
labelled graph can entirely be covered by overlapping tiles.

By definition, tiling and labelling systems seem closely related and indeed
we could rephrase the definitions above in terms of tiling systems. But
there are subtle differences. Labelling systems are by definition deterministic
whereas tiling systems are usually assumed non-deterministic. Further, the
label a node gets in a run of a labelling system depends only on its successors
and not on its predecessors. Whereas this is a natural requirement for
devices defining bisimulation invariant properties, this would be unusual
and artificial for tiling systems. Finally, the notion of accepting states is
alien to tiling systems.

Therefore we refrained from calling our devices automata or tiling sys-
tems but used the term labelling system instead.

13.3 Labelling Indices of Modal Logics

In this section, we aim at establishing upper and lower bounds on the la-
belling index of classes of acyclic structures definable in modal logics such
as ML and its various fixed-point extensions. As noted above, we focus ex-
clusively on classes of acyclic structures. The case where structures may
contain cycles is studied in the next chapter.

13.3.1 Modal Logic and the Modal µ-Calculus

It follows immediately from the results of Thatcher and Wright [TW68] and
Doner [Don70] that any class of trees definable in MSO can be accepted
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by a deterministic bottom-up tree automata. As on trees, tree automata
and labelling systems are equivalent, this implies that any bisimulation-
closed class of trees which is definable in MSO can be accepted by one fixed
labelling system, independent of the rank of the structures within this class.
This proves the following theorem.

13.11 Theorem. Any bisimulation-closed class of acyclic structures defin-
able in MSO or the modal µ-calculus has constant labelling index.

The following corollary is immediate.

13.12 Corollary. Any bisimulation-closed class of acyclic structures defin-
able in modal logic has constant labelling index.

Of course, the constant labelling index of ML-definable classes of tran-
sition systems is not limited to acyclic structures but applies to arbitrary
structures as well.

However, we shall see below, that the constant bound on the labelling
index of Lµ-definable classes of acyclic transition systems does not extend
to arbitrary structures. See Section 14.3 for details. We now turn to the
labelling index of classes of structures definable in the modal iteration cal-
culus.

13.3.2 The Modal Iteration Calculus

The aim of this section is to show that every class of acyclic transition
systems definable in MIC has at most exponential labelling index. Moreover,
there are classes of structures definable in MIC that have an exponential
lower bound on their labelling index.

Let ϕ be a formula in MIC and let Φ be the set of sub-formulae of ϕ. Fur-
ther, let X1, . . . ,Xk be the fixed-point variables occurring in ϕ. W.l.o.g. we
assume that no fixed-point variable is bound twice in ϕ and if i < j then
either Xj does not occur free in the formula defining Xi in ϕ or Xi and Xj

are bound together in a simultaneous induction.

Let ı := i1, . . . , ik be a tuple of finite ordinals. If ψ is a sub-formula of

ϕ and K, v is a transition system, we write (K,X
ı
), v |= ψ to indicate that

ψ holds at the node v if each free fixed-point variable Xj in ψ is interpreted

by the stage X
ij
j of the induction on K.

13.13 Definition (ϕ-types). For every transition system K, v of rank n
we define the ϕ-type of K, v as the function f : {0, . . . , k · n}k → 2Φ such

that for every formula ψ ∈ Φ, ψ occurs in f(ı) if, and only if, (K,X
ı
), v |= ψ

and further, if Xj is bound by a sub-formula of ψ, then ij = kn.

A function f : {0, . . . , k · n}k → 2Φ is a ϕ-type if it is a ϕ-type of a
transition system.
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We use the notion of ϕ-types to define for each formula ϕ ∈ MIC a family
of labelling systems accepting precisely those acyclic structures which satisfy
ϕ.

13.14 Definition. Let ϕ be a formula in MIC. For every n ∈ ω define the
labelling system Lϕ(n) := (Q,A,P, δ,F) as follows.

• Q consists of all ϕ-types of acyclic structures K, v of rank at most n.

• For sets M ⊆ Q × A and P ⊆ P define δ(M,P ) as the ϕ-type of a
transition system K, v where

(i) at the root v, exactly the propositions in P are true,

(ii) for each pair (q′, a) ∈M there is an a-successor of v whose ϕ-type
is q′, and

(iii) v has no further successors.

• Finally, F ⊆ Q is the set of labels q such that ϕ ∈ q(k · n).

13.15 Lemma. For every formula ϕ ∈ MIC, every structure K, v of rank
n, and every m ≥ n, Lϕ(m) accepts K, v if, and only if, K, v |= ϕ.

Proof. Let K, v be an acyclic structure of rank n and let m ≥ n. By
Lemma 13.3, on K, v, the closure ordinal of any fixed-point induction of a
sub-formula of ϕ is at most kn.

Suppose K, v |= ϕ. We construct a labelling f witnessing that L :=
Lϕ(m) accepts K, v. For every node u ∈ K reachable from v let f(u) be the
ϕ-type of K, u. It is an immediate consequence of the definition of ϕ-types
and the labelling systems Lϕ(m) that this labelling is consistent with the
transition function, i.e is a labelling indeed. As K, v |= ϕ, it follows that
ϕ ∈ f(v)(k · n) and thus L accepts K, v.

Towards the converse, let f be a labelling witnessing that K, v |= L. Let
V be the universe of K. We claim that for all u ∈ V , if q := f(u) is the
ϕ-type f assigns to u, then for all ı ∈ {0, . . . , k ·m}k and all ψ ∈ Φ we have

ψ ∈ q(ı) if, and only if, (K,X
ı
), u |= ψ.

The claim is proved simultaneously for all nodes by induction on the
lexicographical ordering on ı and the structure of the formulae ψ ∈ q(ı).

• The case of atomic formulae p ∈ P follows immediately from Part (i)
of Definition 13.14.

• The case of Boolean connectives is trivial.

• Now suppose ψ := 〈a〉ϑ. If u is a leaf, then ψ must be false at u. By
definition of the transition function, in particular Part (iii), q is the
ϕ-type of a transition system S, v′, such that v′ has no successor. It
follows that ψ 6∈ q(ı).
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Suppose u is no leaf. Let M ⊆ Q×A be such that (q′, a) ∈M if, and
only if, there is an a-successor of u labelled by q′. By definition, q is the
ϕ-type of some transition system S, s such that for each (q′, a) ∈ M ,
there is an a successor of s in S whose ϕ-type is q′. Now, if ψ ∈ q(ı),
then there must be a pair (q′, a) ∈M such that ϑ ∈ q′(ı). Let u′ be an
a-successor of u whose label is q′. By induction on the structure of the

formulae, this implies that (K,X
ı
), u′ |= ϑ and thus (K,X

ı
), u |= ψ.

Conversely, if (K,X
ı
), u |= ψ, then there is some a-successor u′ of u

such that (K,X
ı
), u′ |= ϑ. Let q′ be the label of u′. By induction on

the structure of the formulae, this implies that ϑ ∈ q′(ı) and therefore
ψ ∈ q(ı).

• The case for ψ := [a]ϑ ∈ Φ is analogous.

• Now, let ψ := Xj be an atom where Xj is one of the fixed-point
variables occurring in ϕ. Suppose Xj is bound in a system S that also
binds Xr1 , . . . ,Xrl .

If ı = 0, then, since X0
j = ∅ for all j, (K,X

ı
), u 6|= Xj and also, as q

is a ϕ-type of some transition system, Xj 6∈ q(ı).

If ı > 0 then, since q is the ϕ-type of some transition system, this im-
plies that there is a tuple ı′ < ı which agrees with ı on all positions ex-
cept j, r1, . . . , rl, such that ϕj ∈ q(ı

′), where ϕj is the defining formula

of Xj. By induction on the stages, this implies that (K,X
ı′
), u |= ϕj

and therefore (K,X
ı
), u |= Xj by the inflationary semantics of the

ifp-operator.

The converse is analogous.

• Finally, suppose ψ := (ifp Xr1 : S), where

S :=






Xr1 ← ϕr1(Xr1 , . . . ,Xrl)
...

Xrl ← ϕrl(Xr1 , . . . ,Xrl)

is a system of formulae, and ψ ∈ q(ı). W.l.o.g. assume that r1 < r2 <
· · · < rl. By the definition of ϕ-types, for all 1 ≤ j ≤ l, irj = km, as
the variables Xr1 , . . . ,Xrl are bound by ψ. Further, q is the ϕ-type of

some transition system and therefore there is a sequence of stages X
ı′

such that

– ij = i′j , for all j 6= rs, where 1 ≤ s ≤ l,

– i′rs < irs for all 1 ≤ s ≤ l, and

– ϕr1 ∈ q(ı
′).
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Thus ı′ < ı and, by induction on the stages, we get that (K,X
ı′
), u |=

ϕr1 and therefore (K,X
ı
), u |= ψ.

Again, the converse is analogous.

We have shown that for all nodes u labelled by f(u) = q, all ψ ∈ Φ, and all
ı ∈ {0, . . . , k ·m}k,

ψ ∈ q(ı) if, and only if, (K,X
ı
), u |= ψ.

Since L accepts K, v we have that ϕ ∈ f(v)(k · n) and therefore K, v |= ϕ.
This finishes the proof of the lemma. �

The following theorem follows immediately.

13.16 Theorem. MIC has exponential labelling index on acyclic structures
in the sense that every MIC definable class of acyclic transition systems has
at most exponential labelling index and there are classes of structures which
are definable in MIC but have an exponential lower bound on their labelling
index.

Proof. In Lemma 13.15 we have proved that the family of labelling systems
in Definition 13.14 defined for a formula ϕ accepts the class of all transition
systems satisfying ϕ. Clearly, for every n, the size of Lϕ(n) is exponential
in n. From this, the upper bound follows immediately.

The lower bound follows from the fact that automaticity and labelling
index coincide on classes of words. As we have seen, there are languages
with an exponential automaticity definable in MIC. �

As ML-formulae can be seen as MIC-formulae without any fixed-point
operators, the number of ϕ-types for a ML-formula ϕ depends only on ϕ
and is therefore constant. Thus, the proof of the lemma above also yields a
direct proof for Corollary 13.12.

13.3.3 Higher Dimensional µ-Calculus

Recall from Chapter 10 the definition of the higher dimensional µ-calculus.
By Theorem 10.9, this logic characterises precisely the class of bisimulation
invariant properties decidable in polynomial time. Thus, the bisimulation
relation itself is definable and therefore the class C of transition systems
K, v where all successors of the root v are bisimilar. Obviously, the number
of pairwise non bisimilar trees of height at most n is non-elementary in n.
This is clear for n = 0 and, by induction, for n > 0 we get that there are
(n−1)-fold exponentially many trees of height n−1 which are pairwise not
bisimilar. Thus, as the root of a tree of height at most n may have any set
of trees of height at most n−1 rooted at its successors, we get that there
are n-fold exponentially many trees of height at most n which are pairwise
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not bisimilar. Thus the class C has a non-elementary labelling index. This
proves the following lemma.

13.17 Lemma. There are classes of structures definable in Lωµ which have
a non-elementary labelling index.

The next corollary follows immediately.

13.18 Corollary. MIC is a strict subset of Lωµ.

13.4 Monadic Inflationary Fixed-Point Logic

In the previous section we showed that there is a close correspondence be-
tween modal fixed-point logics and particular labelling indices. We will show
that this correspondence does not extend to monadic fixed-point extensions
of first-order logic. In particular we will show that for any elementary func-
tion f there is a class of transition systems definable in monadic inflationary
fixed-point logic whose labelling index dominates f .

The properties we are going to construct, that are definable in M-IFP

and have high labelling index, are based on the use of trees to encode inte-
gers in a number of ways of increasing complexity. To be precise, for each
natural number k, we inductively define an equivalence relation ≃k on trees
as follows.

13.19 Definition. For any two trees T and S with root t and s resp., write

• T ≃0 S just in case that T and S have the same height and

• T ≃k+1 S just in case the set of ≃k-equivalence classes of the subtrees
rooted at the children of t is the same as the set of ≃k-equivalence
classes of the subtrees rooted at the children of s.

By abuse of notation, we will also think of these relations as relations on
the nodes of a tree T . In this case, by u ≃k v we mean Tu ≃k Tv where Tu
and Tv are the trees rooted at u and v respectively.

13.20 Lemma. The number of distinct ≃k equivalence classes of trees of
height n+ k or less is k-fold exponential in n.

Proof. The proof is by induction on k. Clearly, the number of ≃0 equiva-
lence classes of trees of height n or less is n. Furthermore, let N be the set
of ≃k-equivalence classes of trees of height at most n+ k. For every subset
M of N , we can construct a tree TM of height at most n+ k + 1 consisting
of a root v and for each class C in M a tree T ∈ C rooted at a successor of
v. For every M1,M2 ⊆ N such that M1 6= M2, the trees TM1

and TM2
are

≃k+1-inequivalent. Thus, there are 2|N | different ≃k+1-equivalence classes.
�
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We use this to prove the next theorem, which shows that there is no
elementary upper bound on the labelling index of classes of trees definable
in M-IFP.

13.21 Theorem. For every elementary function f , there is a property with
labelling index Ω(f) definable in M-IFP.

Proof. We first show by induction on k that the equivalence relation ≃k is
definable by a formula ϑ(u, v) ∈ M-IFP.
Basis. Let ψ(x) be defined as

ψ(x;u, v) := [ifpX,x ((x 6= u ∧ x 6= v ∧ ∀y (Exy → Xy)) ∨
(x = u ∧ ∀y (Euy → Xy) ∧ ∃y (Evy ∧ ¬Xy)) ∨
(x = v ∧ ∀y (Evy → Xy) ∧ ∃y (Euy ∧ ¬Xy)))](x).

and define ϑ0(u, v) := ∀x (x = u ∨ x = v → ¬ψ(x)). Clearly, in each stage
α, Xα contains all nodes of height less than α other than u and v and one
of these just in case they are of different height.
Induction Step. The definition of the relation given in Definition 13.19 actu-
ally shows that ϑk+1 is obtained by a first-order formula from the relations
≃k.

By Lemma 13.20 there is a k such that the number of ≃k-equivalence
classes is Ω(f). Consider the class Ck of trees defined by T ∈ Ck if, and only
if, for any pair u, v of children of the root, u ≃k v. It is easy to see that
this class is bisimulation-closed, M-IFP-definable, and its labelling index is
bounded from below by the number of distinct ≃k equivalence classes. �

It follows from this that there are bisimulation invariant properties de-
finable in M-IFP that are not definable in MIC. This contrasts with Lµ
whose expressive power coincides precisely with the bisimulation invariant
fragment of M-LFP. The result also dashes hopes of characterising MIC as
the bisimulation-invariant fragment of a natural predicate logic.

13.22 Corollary. MIC is strictly contained in the bisimulation invariant
fragment of M-IFP, even if simultaneous inductions are not allowed in M-IFP.
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Chapter 14

Labelling Indices on

Arbitrary Transition Systems

In the previous chapter, we considered the labelling index of classes of acyclic
structures. It was shown that on such structures, the framework of labelling
indices provided a uniform method to show inexpressibility results for var-
ious fixed-point extensions of modal logic as well as for the bisimulation
invariant fragments of first-order based logics. In this chapter, we aim at
extending this framework to arbitrary classes of transition systems, i.e. sys-
tems that may contain cycles.

As we will see, this extension to cyclic structures requires some changes.
Whereas the definition of labelling systems was already given in full gen-
erality and extends without changes, there is no longer a straightforward
definition of rank on cyclic systems. As transition systems with cycles are
not well-founded, the height of the nodes in such a system is no longer de-
fined. Instead we have to come up with a more involved measure to extend
the notion of rank from trees to arbitrary systems.

14.1 The Rank of Arbitrary Structures

In order to have a meaningful measure of the growth rate of labelling sys-
tems, we need a measure of the size of finite transitions systems that gen-
eralises the length of a string and the height of a tree. Consider again the
results on labelling indices of classes of trees definable in modal logics. The
property of the height of a tree that was of interest for us there was that
it bounds the length of any fixed-point induction that can be defined in Lµ
or MIC. If there is any hope of extending the results proved for trees, then
the new definition of rank on cyclic structures should also be such that it
bounds the closure ordinals of formulae in these logics.

As mentioned above, there is no canonical candidate for a definition of
rank on arbitrary structures. We present two different definitions and show

165
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that both methods are equivalent. We can therefore refer to the rank of
a structure without being specific about which of the two definitions we
actually use.

The first definition is based on the length of the longest path through
the transition system.

14.1 Definition (path rank). The path rank of a structure K, v is defined
as the length of the longest non-repeating sequence u1, . . . , un of nodes in K
such that for all 1 ≤ i < n the node ui+1 is reachable from ui.

It is easy to see, that on trees, the path rank is just one plus the height
of the tree. We now introduce another combinatorial characterisation of the
rank, which makes clear the way in which it generalises the height of a tree
or, equivalently, the length of the longest path in an acyclic structure. We
first make the following observation, whose proof is trivial.

14.2 Lemma. If K is strongly connected, its path rank is equal to the number
of nodes in K.

We use this to define the following characterisation of the rank of a
structure.

14.3 Definition. The block decomposition of a structure K is the acyclic
graph G = (V,E) whose nodes are the strongly connected components of K
and where (s, t) ∈ E if, and only if, for some u ∈ s and some v ∈ t, there is
an action a such that u

a
−→ v.

For each node s of G, we write weight(s) for the number of nodes u of
K such that u ∈ s.

The rank of a node s of G is defined inductively by

rank (s) = weight(s) + max{rank (t) | (s, t) ∈ E}.

The block rank of a rooted finite transition system K, v is defined as the
rank of the block containing v in the block decomposition of K.

The previous definition offered another measure for the rank of a struc-
ture, which was purely combinatorial. The advantage of it is that for any
given structure K, v, its block rank can easily be determined.

The following proposition, whose proof is trivial, shows that the two
definitions of rank are equivalent.

14.4 Proposition. The block rank of K, v is equal to its path rank.

Henceforth, we refer to the rank of a structure K, v without being specific
about which notion of rank we use. We now aim at establishing that the
rank of a structure indeed bounds the closure ordinals of MIC-formulae. For
this, it is convenient to first define another notion of rank that is directly
based on closure ordinals.
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14.5 Definition. The induction rank of a rooted finite transition system
K, v is the largest n such that there is a MIC-formula (ifp X : ψ) for which
v ∈ Xn but v 6∈ Xm for all m < n.

We can observe the following analogon to Lemma 13.3.

14.6 Lemma. Let kMIC denote the class of formulae in MIC where every
system of formulae defining a fixed-point induction has at most k rules. Let
K be a structure with distinguished node v and let p be its path rank. Then

clkMIC(K) ≤ k · p,

where clkMIC(K) denotes the supremum of all α such that there is a system
S of at most k formulae for which α is the least ordinal with Sα = Sα+1.

Proof. Suppose S is a system of at most k formulae defining variables
X1, . . . ,Xk. On every structure K, v such that there is an induction on S
of length n, we construct a non-repeating sequence u1 . . . um of states1in K,
where m := ⌈nk ⌉, such that every ui+1 is reachable from ui.

For this, consider the induction stages Xi
j induced by S, where 1 ≤ j ≤ k

and 0 ≤ i ≤ n. Clearly, for every stage i > 0 there must be a state u and a
variable Xj such that u ∈ Xi

j but u 6∈ Xi−1
j . We inductively define for every

such state u and set Xj a dependency tree T (u,Xj) as follows. If i = 1, the
tree consists of a single node labelled by u and Xj . If i > 1, then there must
be an element v, reachable from u, and a set Xl such that v ∈ Xi−1

l −Xi−2
l .

Otherwise, u would already be contained in Xj at some earlier stage. Now,
the dependency tree for u and Xj consists of a node labelled by u and Xj

and for each such v a successor which is the root of the dependency tree
T (v,Xl) for v and Xl.

A simple induction shows that the dependency tree for every state u and
set Xj such that u ∈ Xi

l − Xi−1
l is of height exactly i−1. Now consider

the dependency tree T := T (u,Xj) for a state u and set Xj such that
u ∈ Xn

j − Xn−1
j , where n is the closure ordinal of the induction on S.

Clearly, no path in T can contain more than one node labelled by the same
pair (v,Xl), for some v and Xl. Therefore, for every state v in K and every
path P in T , there are at most k nodes labelled by (v,Xl) for some l. Let
P ⊆ T be a path in T of maximal length, i.e. length n. As P cannot contain
more than k nodes labelled by the same state v in K, it follows that there are
at least m := ⌈nk ⌉ nodes which are labelled by different states from K. Let
(u1, . . . , um) be the sequence of these states in decreasing order with respect
to their height in T . By construction of the dependency tree, every ui+1 is
reachable from ui. Thus, we have constructed a non-repeating sequence of
length m where every node is reachable from its predecessor.

1In this proof we refer to the nodes in K as states to distinguish them from the nodes
of a tree that will be defined later on.
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By definition of the path rank, m must be less than or equal to p. As
n ≤ k · ⌈nk ⌉ = k ·m ≤ k · p, the lemma is proved. �

While the path rank of a structure K, v provides a combinatorial measure
that bounds its induction rank, it is not an exact characterisation. Nor
can we expect it to be exact because it is clear that the induction rank is
invariant under bisimulation while the path rank is not. It may therefore be
more appropriate to consider the path rank, not of a structure K, but of its
quotient under bisimulation K/∼. With this, we do indeed get the required
converse to Lemma 14.6.

14.7 Lemma. If the path rank of K/∼ is n, there is a formula ϕ(X), positive
in X whose closure ordinal on K is n.

Proof. Suppose there is a non-repeating sequence (u1, . . . , un) witnessing
that the path rank of K/∼ is n. Since, by definition of K/∼, the nodes ui are
pairwise not bisimilar, we can write modal formulae ϕ1, . . . , ϕn such that ui
is the unique element of K satisfying ϕi.

Now consider the formula

ψ := (ifp X : ϕ1 ∨
n∨

i=2

(ϕi ∧ somewhere(X ∧ ϕi−1))),

where somewhere(ϕ) is the formula (ifp Y : ϕ∨♦Y ) as defined in Proposition
11.5. Obviously, the closure ordinal of ψ is n. �

An immediate consequence of the proofs of Lemma 14.6 and 14.7 is that
it does not matter whether we define the induction rank of a structure in
terms of MIC or Lµ.

14.2 The Labelling Index of Modal Logics

In this section, we aim at extending the bounds on the labelling indices for
modal logics from trees to the general setting. We start our investigation
with the modal iteration calculus. On trees, we proved an exponential upper
bound for the labelling index of classes of trees definable in MIC. Considering
again the proof for this result, it becomes clear that at no point it was used
that the underlying transition system was a tree. Thus, the proof extends
literally to the case of arbitrary transition systems.

14.8 Theorem. Every class of transition systems that is definable in MIC

has at most exponential labelling index.

Clearly, as ML-formulae are just MIC-formulae without fixed points, we
get the following corollary.
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14.9 Corollary. Every class of transition systems definable in ML has con-
stant automaticity.

In Section 13.3.3 and 13.4 we proved a non-elementary lower bound for
classes of trees definable in M-IFP or Lωµ. Clearly, this also gives a lower
bound on arbitrary structures.

14.10 Theorem. (i) There are classes of transition systems definable in
Lωµ which have a non-elementary labelling index.

(ii) There is no elementary upper bound for the labelling index of M-IFP-
definable classes of transition systems.

Note the difference between the two statements of the Theorem. Whereas
for Lωµ there is a single formula whose labelling index is not bound by any
elementary function, the only statement about M-IFP we can show is that
there is no elementary function dominating the labelling index of all M-IFP-
formulae. It is an open problem whether the labelling index of any individual
M-IFP-formula can be bound by an elementary function.

14.3 The Modal µ-Calculus

We now turn towards the labelling index of Lµ-definable classes of transition
systems. We first show that on classes of arbitrary structures, the constant
labelling index for Lµ does no longer hold true. For instance, it can easily
be seen, using pumping arguments, that to express reachability, constant
size labelling systems are not sufficient.

14.11 Lemma. There is a Lµ-definable class C of structures that has a
linear lower bound on its labelling index.

Proof. Let C be the class of transition systems such that there is a node
labelled by the proposition p and is reachable from the root. We claim that C
has linear labelling index. Clearly, C can be accepted by a family of labelling
systems of linear size. Simply take a label to recognise nodes labelled by p
and then, for each i ∈ {1, . . . , n}, a label qi to remember that a node labelled
p has been seen within i steps from the current position. Further, take an
error label for nodes from which no node labelled p can be reached.

On the other hand, each family of labelling systems accepting C must
have at least linear size. Assume otherwise and suppose that for some n > 2
there is a labelling system L of size less than n − 1 accepting the class
Cn of structures from C of rank at most n. Consider the structure K :=
({0, . . . , n− 1}, E, P ) with E := {(i, i+1) : 0 ≤ i < n− 1} and p := {n− 1}.
Obviously, K, 0 ∈ Cn and thus K, 0 is accepted by L. As there are less than
n − 1 labels, there must be two different nodes u < v in K labelled by the
same label q in L. But then the same labelling also witnesses that the system



170 Chapter 14: Labelling Indices on Arbitrary Transition Systems

K′ := ({0, . . . , v}, E′, P ′), where E′ := {(i, i + 1) : 0 ≤ i < v} ∪ {(v, u + 1)}
and P ′ := ∅, would be accepted by L. As K′, 0 6∈ C we get a contradiction.

�

This also shows that various ML extensions like LTL, CTL, or CTL∗

have non-constant labelling index, as they can express reachability.

We now turn towards establishing upper bounds for the labelling index
of Lµ-definable classes of transition systems.

The main difference between Lµ and the fixed-point logics considered
above is monotonicity. This has a major impact on the definition of labelling
systems accepting Lµ definable classes of structures.

Consider the labelling systems for MIC-formulae ϕ as defined above. In
each node u of the structures, we remembered for the sub-formulae of ϕ
every tuple (i1, . . . , ik) of induction stages where the sub-formula becomes
true at u. As Lµ-formulae are monotone, if a sub-formula is true at a tuple
of stages (i1, . . . , ik) it will also be true at all higher stages of µ and all lower
stages of ν-operators. Thus, if we only had one fixed-point operator, say
µX, it would suffice to mark each node u of the structure by the number of
the stage at which it is included into the fixed point of X and to give it a
special label if it is not included at all. We would thus only have linearly
many labels in the labelling system.

But monotonicity also helps if there are more than one fixed-point oper-
ator. The reason is that if a formula is true at a node u and a tuple of stages
ı, then it is also true at u if all or some of its free fixed-point variables are
interpreted by their respective fixed points. With this, it turns out to be
sufficient to consider in each node u of the transition system only those tu-
ples ı of stages where at most one fixed-point induction has not yet reached
its fixed point. As there are only polynomially many such tuples we get a
polynomial upper bound on the size of the labelling systems. We now give
a detailed proof of this fact, implementing these ideas.

14.12 Definition. Let ϕ ∈ Lµ be a formula in guarded normal form (see
Definition 10.1) with fixed-point variables X1, . . . ,Xk that are bound by sub-
formulae µXi.ϕi or νXi.ϕi. Let Φ be the set of sub-formulae of ϕ and let
P ⊆ P be a set of propositions.

A function q : Φ → {0, . . . , n + 1,⊥}k, where ⊥ is an abbreviation for
n+ 2, is locally P -consistent, if the following conditions hold for all ψ ∈ Φ.
We write q(ψ)i to denote the i-th component of the image of a formula ψ.

• If ψ := p, then for all i, q(ψ)i := 0 if p ∈ P and q(ψ) = ⊥ otherwise.

• Conversely, if ψ := ¬p, then for all i, q(ψ)i := ⊥ if p ∈ P and q(ψ) = 0
otherwise.

• For all i, q(ψ1 ∨ ψ2)i := min{q(ψ1)i, q(ψ2)i}.
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• For all i, q(ψ1 ∧ ψ2)i := max{q(ψ1)i, q(ψ2)i}.

• If ψ := λiXi.ϕi, with λi ∈ {µ, ν}, then for all j,

q(ψ)j :=






n+ 1 j = i, λi = µ and q(ϕi)i 6= ⊥

0 j = i, λi = ν and q(ϕi)i = 0

q(ϕi) j < i

⊥ otherwise.

• If ψ := Xi and Xi is a variable bound by a µ-operator, then for all j,

q(Xi)j :=






q(ϕi)j + 1 if j = i and q(ϕi)i 6= ⊥

0 if j > i and q(ϕi)i 6= ⊥

⊥ otherwise.

• If ψ := Xi and Xi is a variable bound by a ν-operator, then for all j,

q(Xi)j :=

{
0 if j ≥ i and q(ϕi)i 6= ⊥

⊥ otherwise.

A function q is locally consistent if it is locally P -consistent for some
P ⊆ P. Let Q be the set of all locally consistent functions q : Φ→ {0, . . . , n+
1,⊥}k and let M ⊆ Q×A. A function q ∈ Q is globally (M,P )-consistent,
if it is locally P -consistent and further the following conditions holds:

• If ψ := 〈a〉ψ′, then for all i, q(ψ)i := min({⊥} ∪ {q′(ψ′)i : (q′, a) ∈
M}).

• If ψ := [a]ψ′, then for all i, q(ψ)i := max({0}∪{q′(ψ′)i : (q′, a) ∈M}).

The function is globally consistent, if it is globally (M,P )-consistent for
some pair (M,P ).

Globally consistent functions will play the same role for Lµ as ϕ-types
played for MIC. We first establish some facts about (M,P )-consistent func-
tions.

14.13 Proposition. (i) For every pair (M,P ) as in the definition above,
there is exactly one function that is globally (M,P )-consistent.

(ii) For 1 ≤ i ≤ k, let ϕi be the sub-formulae of ϕ defining fixed points,
i.e. the formulae λiXi.ϕi occur in ϕ where λi ∈ {ν, µ}. For all i such
that λi = ν, all formulae ψ ∈ Φ, and all globally consistent functions
f , either (f(ψ))i = 0 or (f(ψ))i = ⊥.
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Proof. For Part (i), recall that the formula ϕ is in guarded normal form.
This implies that the definition is not cyclic, i.e. the labels of the formulae
ϕi, µXi.ϕi, and νXi.ϕi do not depend on the labels of the defined variable
Xi. As all rules are deterministic, the label of each formula must be well
defined.

Part (ii) can easily be proved by induction on the structure. �

We are now ready to define the labelling systems for Lµ-formulae.

14.14 Definition. Let ϕ ∈ Lµ be a formula with fixed-point variables
X1, . . . ,Xk that are bound by sub-formulae µXi.ϕi or νXi.ϕi. Let Φ be
the set of sub-formulae of ϕ.

For every n < ω define the labelling system Lϕ(n) as follows.

• Q is defined as the set of all globally consistent functions q : Φ →
{0, . . . , n+ 1,⊥}k.

• A is the set of actions and P the set of proposition symbols in the
signature.

• For each M ⊆ Q×A and P ⊆ P define δ(M,P ) as the function q that
is globally (M,P )-consistent.

• Finally, define F := {q ∈ Q : q(ϕ)1 6= ⊥}.

Proposition 14.13 above implies that the definition of Lϕ is well-defined.
We now prove the correctness of the definition. The proof is split into two
separate lemmata.

14.15 Lemma. Let K, v be a transition system of rank at most n and let
ϕ and Lϕ(n) be as in Definition 14.14 above. If Lϕ(n) accepts K, v, then
K, v |= ϕ.

Proof. Let f be a ∼-consistent labelling witnessing that Lϕ accepts K, u.
Let X1, . . . ,Xk be the fixed-point variables occurring in ϕ. We first fix some
notation. We write X̃m

i for the stage m of the induction on ϕi in which all
free variables of ϕi other than Xi are interpreted by their respective fixed
points. Consequently, X̃∞

i denotes the fixed point of Xi in the induction on
ϕi where all free variables are interpreted by their fixed points.

We claim that for all nodes u ∈ V , all i ≤ k, and all formulae ψ ∈ Φ, if
(f(u)(ψ))i = m 6= ⊥, then

• K, u |= ψ(X̃m
i ), if Xi is bound by a µ-operator, and

• K, u |= ψ(X̃∞
i ), if Xi is bound by a ν-operator.
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Clearly, this implies the lemma as by definition of acceptance, the root
v must be labelled by a label in F and these labels all map ϕ to something
different from ⊥.

The claim is proved simultaneously for all nodes by induction on the
labels f(u)(ψ) and for each such label by induction on the structure of the
formulae. Let q := f(u) be the label assigned to the node u. Further, let P
be the set of propositions true at u and let M be the set of pairs (q′, a) such
that a ∈ A and there is an a-successor u′ of u with f(u′) = q′. Now assume
ψ ∈ Φ is a formula and q(ψ) = m 6= ⊥.

• Suppose ψ := p and let i ≤ k. By definition, if q is the label assigned
to u by f , and q(p)i 6= ⊥, then this implies that p ∈ P and thus
K, u |= ψ.

• The case ψ := ¬p is analogous.

• The case for Boolean connectives and next-modalities are obvious.

• Let ψ := λXi.ϕi for λ ∈ {µ, ν}. Suppose first that λ = µ and consider
some j < i. By definition of δ, if q(ψ)j = m 6= ⊥, then q(ψ)j =
q(ϕi)j . By induction on the structure of the formulae, this implies
that (K, X̃m

j ), u |= ϕi. Recall the convention that (K, X̃m
j ), u |= ϕi

means that ϕi holds at the node u if Xj is interpreted by its m-th
stage and all other free variables are interpreted by their fixed points.
In particular, this implies that u occurs in the fixed point of Xi and
thus (K, X̃m

j ), u |= ψ.

Now suppose j = i. By definition, q(ψ)i 6= ⊥ implies q(ψ)i = n + 1
and q(ϕi)i = m 6= ⊥. By induction on the stages, this implies that
(K, X̃m

i ), u |= ϕi and therefore also (K, X̃m
i ), u |= ψ.

The case where λ = ν is analogous.

• Finally, suppose ψ := Xi. Assume first that Xi is bound by a µ-
operator. If q(ψ) 6= ⊥, then, by definition, q(ϕi)i = m 6= ⊥ and
q(ψ)i = m+1. Thus, by induction on the stages, (K, X̃m

i ), u |= ϕi and
therefore (K, X̃m+1

i ), u |= Xi.

Now consider some j > i. By definition, q(ψ)j := 0. We have to
show that (K, X̃0

j ), u |= Xi. Recall that this means that Xi is true at
the node u under the interpretation of Xj by its 0-th stage and where
all other fixed point variables, including Xi, are interpreted by their
respective fixed points. As proved in the preceding paragraph, u occurs
in the fixed point of Xi. From this, the claim follows immediately.

Now suppose Xi is bound by a ν-operator. By definition, q(Xi)j 6= ⊥
implies q(Xi)j = 0. As Xi is bound by a greatest fixed-point operator,
X0
i contains the whole universe and therefore Xi holds true at u.



174 Chapter 14: Labelling Indices on Arbitrary Transition Systems

This proves the claim and thus the lemma. �

We now turn to the converse direction.

14.16 Lemma. Let K, v be a transition system of rank no more than n.
Let ϕ be a formula and Lϕ(n) be the corresponding labelling system. Then
K, v |= ϕ implies that Lϕ accepts K, v.

Proof. Let X1, . . . ,Xk be the fixed-point variables occurring in ϕ and let
X∞

1 , . . . ,X∞
k be their fixed-points on K, i.e. X∞

i is the fixed point of the
induction on ϕi where all variables other than Xi occurring free in ϕi are
interpreted by their fixed points.

For each node u define a function qu : Φ → {0, . . . , n + 1,⊥} as follows.
Let ψ ∈ Φ be a sub-formula. For all i such that ψ is not a sub-formula of
ϕi define q(ψ)i := ⊥. Otherwise consider the stages of the induction on ϕi
where again all free variables of ϕi other than Xi are interpreted by their
fixed points. If, for some m, ψ becomes true at u at stage Xm

i , take the
smallest such m and define q(ψ)i := m if ϕi is bound by a µ-operator and
define q(ψ)i = 0 if it is bound by a ν-operator. Otherwise define q(ψ)i := ⊥.

It is now a simple observation that the function f : V → Q assigning to
each node u ∈ V the function qu is a ∼-consistent labelling witnessing that
Lϕ accepts K, v. �

The following theorem is an immediate consequence of the preceding two
lemmata.

14.17 Theorem. Every class of transition systems definable in Lµ has at
most polynomial labelling index.

Together with Lemma 14.11, the theorem implies that the µ-calculus has
a polynomial labelling index in the sense that every Lµ definable property
has polynomial labelling index and there are Lµ-definable properties with a
linear lower bound on the labelling index. Note, however, that there still is
a gap between the polynomial upper and the linear lower bound. Whether
the labelling index of any Lµ-formula can be bound by a fixed polynomial,
is linear for instance, or whether for any polynomial there is a formula in
Lµ whose labelling index exceeds the polynomial, is still an open problem.

Another consequence of the proof is that if a Lµ-formula does not use
any µ-operators, the class of structures defined by it has constant labelling
index.

14.4 Labelling Index and Complexity

In this section we study the relationship between the labelling index of a
class of structures and its complexity in terms of conventional complexity
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measures such as time and space. We begin by contrasting the labelling in-
dex with the usual notion of computational complexity in terms of machine
time measured as a function of the size of the structure. We demonstrate
that the two measures are not really comparable by exhibiting a class of
structures that is decidable in polynomial time but has non-elementary la-
belling index and an NP-complete problem that has exponential labelling
index.

The first of these is the class of finite trees T such that if tu and tv are
subtrees rooted at a successor of the root, then tu ∼ tv. As shown in Section
13.3.3, there is no elementary bound on the automaticity of this class, but
as it is definable in Lωµ , it is decidable in time polynomial in the size of the
tree. This yields the following result.

14.18 Proposition. There is a polynomial time decidable class of transition
systems with non-elementary labelling index.

In contrast, we can construct an NP-complete problem of much lower
labelling index. We obtain this by encoding propositional satisfiability as a
class of structures S closed under bisimulation, and demonstrate that it is
accepted by an exponential family of labelling systems.

14.19 Theorem. There are NP-complete problems with exponential la-
belling index.

Proof. Let ϕ be a propositional formula formed from the propositional
variables V1, . . . , Vn using the Boolean operations ∧, ∨ and ¬. We define
an encoding of ϕ as a transition system Tϕ in the vocabulary with a single
action a and propositional vocabulary {∧,∨,¬, V,Count}. Tϕ is inductively
defined as follows.

• If ϕ is a variable Vi, then Tϕ consists of a root labelled V which is
connected to a chain of length i of nodes labelled Count. Further,
there is an edge from the root to itself.

• If ϕ is ψ1 ∧ ψ2, Tϕ consists of a root labelled ∧ with two successors
which are roots of Tψ1

and Tψ2
. The rule for ψ1 ∨ ψ2 is similar.

• If ϕ is ¬ψ, Tϕ consists of a root labelled ¬ with a single successor
which is the root of Tψ.

Now, the class of structures S is defined as

S := {K : K ∼ Tϕ for a satisfiable formula ϕ}.

It is immediate from the definition that S is bisimulation closed and NP-
completeness follows from the obvious reduction. We now demonstrate an
exponential family of labelling systems that accepts S.
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Let TAn denote the set of possible truth assignments to the variables
{V1, . . . , Vn}. Obviously, the size of TAn is 2n. We define a labelling system
Ln as follows. The set Q of states is defined as {0, 1} × TAn ∪ {Ci : 1 ≤
i ≤ n} ∪ {Fail}.

Let M ⊆ Q×A and P ⊆ P be given. The transition function δ(M,P )
is defined as follows.

• If P := {Count}, then δ(M,P ) = Ci+1, provided that for all (q, a) ∈
M , q = Ci.

• Let P := {V }. Suppose there is some i such that there is a pair
(Ci, a) ∈M and for no j 6= i a pair (Cj , a) occurs in M . Let T ∈ TAn
be a truth assignment and let t be the truth value assigned to Vi by T .
If there is some pair (q, a) ∈ M such that q := (t, T ) and for no pair
(q′, a) ∈M , q′ := (t′, T ′) with t 6= t′ or T 6= T ′, then δ(M,P ) := (t, T ).

• If P := {∧}, then δ(M,P ) := (1, T ) if for all (q, a) ∈ M , q = (1, T ).
If there is a pair (q, a) ∈ M with q := (0, T ) and for all (q, a) ∈ M ,
either q := (0, T ) or q := (1, T ), then δ(M,P ) := (0, T ).

• The rule for P := {∨} is analogous.

• Finally, if P := {¬}, then δ(M,P ) := (1, T ) provided that for all
(q, a) ∈ M , q := (0, T ), and δ(M,P ) := (0, T ) provided that for all
(q, a) ∈M , q := (1, T ).

• In all other cases, δ(M,P ) = {Fail}.

Finally, the set F of accepting states is the set {1}×TAn. It is now immediate
from the construction that Ln accepts a transition system K of rank at most
n if, and only if, K ∈ S. �

In Definitions 13.6 and 13.7, we imposed restrictions on labelling systems
to guarantee that the class of structures defined is closed under bisimulation.
An alternative is to allow arbitrary labelling systems, but change the notion
of acceptance of a structure to guarantee that the class of structures is
closed. For instance, we could say that K, v |= L if, and only if, there is a
labelling f of the universe V which labels any pair of bisimilar points by the
same state. It turns out that this makes labelling systems potentially more
powerful. Indeed, we can then construct a single labelling system accepting
the NP-complete class of structures defined in Theorem 14.19. On the other
hand, it is open whether the exponential bound in Theorem 14.19 can be
lowered.
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14.5 The Trace-Equivalence Problem

In this section, we apply our methods to a particular problem that is of in-
terest to verification – the trace-equivalence problem. We determine exactly
the labelling index of a number of variations of the problem and thereby
derive results about their expressibility in various modal fixed-point logics.

Recall the definition of the trace equivalence problem as presented in
Definition 12.9.

14.20 Definition (Trace equivalence problem). Let Σ be an alphabet,
i.e. a non-empty set of proposition symbols. Further, let F be a proposition
symbol not in Σ.

Let K, v be a finite rooted transition system. The set T (K) of traces in
K is defined as the set of words w ∈ Σ∗ such that there is a path labelled by
w in K from v to a node in FK. Two transition systems K, v and K′, v′ are
trace equivalent, if T (K) = T (K′).

The trace equivalence problem (TE) is defined as the decision problem
of the class

TEΣ :=

{
K, v :

K, v is finite and for all u,w such that v → u and
v → w,K, u and K, w are trace equivalent

}
.

The unary trace equivalence problem is defined as the trace equivalence
problem over unary alphabets, i.e. alphabets Σ with |Σ| = 1.

The acyclic trace equivalence problem is defined as the subclass of TE
where all structures are acyclic.

We now aim at establishing the labelling index of several variants of the
trace equivalence problem. We start with the simplest case, the unary trace
equivalence problem over acyclic structures.

14.21 Theorem. On acyclic structures, unary trace equivalence has expo-
nential labelling index.

Proof. Let T be an instance of the unary acyclic trace equivalence problem
and let Tu and Tv be two subtrees rooted at successors of T . Let n be the
height of T . It is easily seen that if Tu and Tv are not trace equivalent, then
there must be some l ≤ n such that in one of Tu,Tv there is a path of length
l from the root to a node labelled by F but not in the other.

Now, for each tree Tu rooted at a successor of the root of T define
TR(Tu) := {n : there is a path of length l ≤ n from u to a node labelled by
F}. Thus, T ∈ TEΣ if, and only if, for every pair u and v of successors of
the root, TR(Tu) = TR(Tv).

To establish an upper bound for the labelling index, consider the family
of labelling systems Ln defined as follows. Let A := {E} be the set of
actions and P := {F} be the set of propositions. For every n < ω define
Ln := (Qn,A,P, δn, Fn), where
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• Qn := Pow({a}≤n)× {e, n},

• Fn := {(P, x) ∈ Q : x = e}, and

• for every M := {(P1, x1), . . . , (Pk, xk)} ⊆ Q×A and P ⊆ P define

δ(M,P )n := ({al : al−1 ∈ Pi for some i} ∪ {a : if F ∈ P}, x),

where x = e if Pi = Pj for all i, j and x = n otherwise.

It is now easily seen that the root of a tree T of height at most n gets a
label (P, e) in the labelling system Ln if, and only if, all its successors are
trace equivalent. As |Qn| = 2 · 2n, it follows that there is an exponential
upper bound for the labelling index of the unary acyclic trace equivalence
problem.

Towards establishing a lower bound, suppose that for some n there is a
labelling system L with less than 2n−1 states accepting all trees T ∈ TE of
height at most n. As there are 2n−1 trees of height at most n − 1 which
are pairwise not trace equivalent, it follows that there are two trees T1 and
T2 which are not trace equivalent but whose root is labelled by the same
state in L. Thus, the tree T consisting of a root with two copies of T1 as
successors is accepted by L if, and only if, the tree T ′ consisting of a root
with one copy of T1 and one copy of T2 as successors is accepted by L. As
T ∈ TE but T ′ 6∈ TE we get a contradiction. �

We now consider the binary trace equivalence problem over acyclic struc-
tures. Again for any pair of trees of height n which are not trace equivalent
there is a string of length at most n witnessing this. But now, as the al-
phabet is binary, there are 2n different strings of length at most n. Thus,
the same proof as above only with the modification that the state set of
the labelling system Ln is now Qn := Pow({a, b}≤n) establishes the double
exponential upper and lower bound for the binary acyclic trace equivalence
problem.

14.22 Theorem. On acyclic structures, binary trace equivalence has a dou-
ble exponential labelling index.

Finally, we turn towards the labelling index of the unary trace equiva-
lence problem over arbitrary structures. In particular, we aim at proving a
double exponential upper and lower bound for this problem.

14.23 Theorem. On arbitrary structures, unary trace equivalence has a
double exponential labelling index.

Proof. Essentially, the theorem is proved along the same line as the Theo-
rems 14.21 and 14.22 above. The only difference is that there no longer is a
linear bound on the length of the string witnessing that two structures are
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not trace equivalent. Instead, we show that if two structures of rank at most
n are not trace equivalent, then there must be a string of length at most 2n

separating them. The result is based on a construction from [SM73].

In the proof of Theorem 6.1 in that paper, Stockmeyer and Meyer give a
Logspace-reduction from 3CNF2 to the trace equivalence problem for unary
structures, or, equivalently, the language equivalence problem for automata
over unary alphabets. The idea is to code truth assignments for propositional
variables X1, . . . ,Xn by numbers and define for every formula ϕ in 3CNF an
automaton that accepts a word of length k if, and only if, k codes a truth
assignment that satisfies ϕ.

Clearly, for any truth assignment T to the variables X1, . . . ,Xn there is
a propositional formula ϕT that is uniquely satisfied by T and whose size
is linearly bounded by n. By the construction we get an automaton that
accepts a word of length k if, and only if, k encodes T . As the reduction
is in Logspace, the size of the automaton is polynomially bounded by the
size of ϕT and thus by n. Therefore, the rank of any such automaton viewed
as a graph is also polynomially bounded by n.

Now, for any set S of truth assignments to the variables X1, . . . ,Xn,
define the automaton AS consisting of a root and for each assignment T
in S a copy of the automaton AT rooted at a successor of the root. By
Proposition 14.4, the rank of AS is also polynomially bounded in n. Now,
by construction of AS , the automaton accepts a string of length k + 1 if,
and only if, k encodes a truth assignment in S.

Clearly, there are 22n

sets of truth assignments to n variables and there-
fore 22n

automata of rank n + 1 which are pairwise not trace equivalent.
Now, the proof of the double exponential lower and upper bound on the
labelling of the trace equivalence problem for unary structures follows along
the same line as the proofs of the Theorems 14.21 and 14.22. �

Combining the results in the preceding theorems with the bounds on the
labelling indices proved above, we immediately get the following corollary.

14.24 Corollary. (i) Unary trace equivalence on acyclic structures is not
definable in Lµ.

(ii) Binary trace equivalence on acyclic structures as well as unary trace
equivalence on arbitrary structures are not definable in MIC.

As unary trace equivalence on acyclic structures is definable in MIC, this
provides another example of a property separating MIC and Lµ. Moreover,
we have proved in Theorem 12.10 that unary trace equivalence on arbitrary
structures is definable in MPC. Thus, the double exponential lower bound
for this problem immediately implies a separation of MIC and MPC.

23CNF is the class of propositional formulae in conjunctive normal form where every
disjunct consists of at most 3 literals.
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14.25 Corollary. MIC is strictly contained in MPC.

Finally, we compare the results against the computational complexity
of these variants of the trace equivalence problem. The problem on acyclic
structures (whether unary or binary) is decidable in polynomial time. The
unary trace equivalence problem on arbitrary structures is co-NP-complete,
while the general trace equivalence problem is Pspace-complete. Thus, the
following corollary is immediate.

14.26 Corollary. MPC is not contained in Lωµ, and thus not in IFP, pro-
vided that NP is different from Ptime.
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Chapter 15

Constraint Databases

Constraint databases have been introduced by Kanellakis, Kuper, and Re-
vesz [KKR90, KKR95] in 1990 as a possible model for infinite databases. As a
motivating example, consider a database storing simple geometrical objects,
like rectangles or circles. In a relational database, a rectangle would typically
be stored in a relation containing the coordinates of two diagonal corners.
Similarly, a circle would be stored by the coordinates of its centre and the
radius. Now, a user who wants to know whether two particular objects in
the database intersect, first must know the type of the objects, i.e. rectangles
or circles, then has to query the coordinates, and finally use some algorithm
to determine whether they intersect.

It would be more convenient if the database system allowed the user to
work with the objects as if they were rectangles or circles, i.e. infinite sets
of points in the plane. The details of how they are actually stored in the
database should be hidden. Further, the user should be allowed to use build
in predicates like addition or multiplication, so that querying the database
for the intersection of some stored object with a specified area becomes
possible.

With this in mind, Kanellakis, Kuper, and Revesz introduced the con-
straint database model as a general database model where such requirements
are met.

15.1 The Constraint Database Model

In the constraint database model, databases are expansions of a fixed struc-
ture A, the so-called context structure, by a finite set of potentially infinite
database relations. The context structure, e.g. A := (R, <,+, ·), provides
the built in predicates on its universe. Clearly, although the active domain
might be infinite, the relations have to be finitely representable so that
they can be manipulated by a computer system. In the constraint database
framework, first-order logic is used as formalism to represent infinite rela-
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tions. This is made precise in the following definition.

15.1 Definition. Let τ be a signature and A := (A, τ) be an arbitrary τ -
structure with universe A. A k-ary relation R ⊆ Ak is finitely representable
over A if there is a quantifier-free first-order formula ϕR(x) ∈ FO[τ ], with k
free variables, such that for all a ∈ Ak

A |= ϕ[a] if, and only if, a ∈ R.

The formula ϕR is called the finite representation of R over A. Finitely
representable relations are also called constraint relations. Note that the
formula ϕR is allowed to use parameters from A.

One might be tempted to ask why only quantifier-free formulae are al-
lowed as representations. We will come back to this question at the end of
Section 15.2 where we have all the terminology at hand to answer it. We
now give a precise definition of the constraint database model.

15.2 Definition. Let σ and τ be disjoint signatures such that σ is rela-
tional and let A := (A, τ) be an arbitrary τ -structure with universe A. A
σ-database over A is a σ-expansion B of A, in terms B := (A, σ).

The database is called finite, if the interpretation of all relations from σ
in B is finite. It is called finitely representable or σ-constraint database if
for all relations R ∈ σ the interpretation RB in B is finitely representable
over A. In this case, a set Φ := {ϕR : R ∈ σ}, where the formulae ϕR are
finite representations of RB, is called a representation of B.

If a concrete representation Φ of B is important we sometimes write
B := (A,Φ) to define B. The structure A is called the context or back-
ground structure.

Finally, the class of constraint databases over A is denoted as CDB(A)
and CDR(A) denotes the class of constraint relations over A.

Note that the representations of constraint relations are not necessarily
unique, i.e. a relation can be represented by many different but equivalent
formulae. Another subtle point in the definition of finite representations is
the use of parameters. This becomes clear if we consider uncountable uni-
verses, the reals for instance. Obviously, a formula with arbitrary, i.e. tran-
scendental parameters is no longer a finite representation. Thus, with such
context structures, the set of elements allowed for parameters is usually
restricted. This will be further explored later on.

The choice of the context structure depends on but also determines the
application area in which the databases may be used. We now list some con-
text structures typically considered in the constraint database framework.

• Dense order constraint databases are constraint databases over the
real line (R, <). This class of databases is very well studied and en-
joys a number of desirable properties, mainly because many questions
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about dense order constraint databases can be reduced to questions
about finite databases via a back-and-forth translation of databases
and queries using suitable interpretations. See [BST96, GK99, Kre99b]

for instance.

• Another important context structure is the real ordered group (R, <
,+). The relations representable in this database model are precisely
the semi-linear sets. Linear constraint databases have been studied
intensively in the literature, as they provide an adequate model for
spatial databases and geographical information systems.

Two different linear constraint database models have been studied.
In the first model, the set of parameters allowed in the formulae is
restricted to the integers, or the rationals, which gives the same set of
representable relations. This is sometimes referred to as the Z-linear
database model. In the second model, real algebraic parameters are
allowed. It is more general than the first and consequently also more
complicated. As rational coefficients are sufficient for the applications
we have in mind, we only consider the first model and agree that
linear constraint relations are represented by formulae over (R, <,+)
with integer coefficients only. This will be discussed in more depth in
Chapter 16.

• Polynomial constraint databases are constraint databases over the or-
dered field of reals (R, <,+, ·). In this database model, arbitrary semi-
algebraic sets can be represented, making it a powerful model for all
sorts of applications involving spatial information. However, contrary
to the linear database model, the (practical) complexity of algorithms
manipulating semi-algebraic sets is usually too high. Therefore, most
current applications of spatial databases or geographical information
systems use linear approximations to the spatial data and therefore
effectively work in a linear database model.

Figure 15.1 shows an example of a rather simple database in the polyno-
mial constraint database model. Note that effectively a constraint database
is an infinite structure and has to be seen as such. The details of finite
representations are hidden by the database management system (DBMS)
implementing a constraint database model. Thus, the user works on an infi-
nite database and the DBMS has to take care of translating the user actions
on the database to actions operating on the representations. This issue will
be of particular importance in the next section where we consider constraint
queries.

In practical applications, constraint databases are often many-sorted.
For instance, a geographical information system usually contains spatial
information in form of an area map but also non-spatial or thematic in-
formation, for instance, names of buildings or streets, or the population
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Figure 15.1: Constraint database defined by ϕ(x, y) := (x− 2)2 +(y− 6)2 ≤
1 ∨ (x− 1)2 + (y − 6)2 ≤ 1 ∨ (x− 3)2 + (y − 6)2 ≤ 1 ∨ (x− 2)2 + (y − 7)2 ≤
1 ∨ (y ≥ 6− 3x ∧ y ≤ 6 ∧ y ≥ −6 + 3x)

of an electoral district. Thus, the database relations will contain tuples
(x, y; z1, . . . , zk) where only x and y range over the infinite universe, e.g. R,
and the variables z contain the thematic information and range over a finite
or at least countable set.

For theoretical research, this makes no difference as the tuples can also
be seen as tuples in Rk+2. In practise however, the complexity of many
algorithms manipulating spatial databases depend heavily on the dimen-
sion of the involved relations. Here, knowing that the spatial part is only
binary may help to speed up query processing and database manipulation
significantly.

In this work, we only consider theoretical aspects of constraint databases,
and therefore do not take thematic information into account. Instead, we
focus on single-sorted databases where all involved variables range of the
infinite universe.

15.2 Constraint Queries

In this section we address the problem of querying constraint databases. As
already noted above, the details of finite representations are hidden by the
database management system. Consequently, queries on such a database
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system can be formulated as if working on an infinite database. Therefore,
queries have to be considered on two different levels of abstraction, namely
on the conceptual level as functions from structures to relations, and on the
physical level as functions from representations of constraint databases to
representations of constraint relations.

Obviously, the two notions of queries do not necessarily coincide. There-
fore, one usually imposes two restrictions to constraint queries, namely con-
sistency and closure. Consistency means that the result of a query on two
different representations of the same database always yields the same re-
lation, although not necessarily the same representation of it. As we only
consider queries defined by logical formulae, this criterion is trivially met
and we agree that all queries have to be consistent in this sense. However,
the second criterion, closure, will be important later on and is therefore
formally defined in the next definition.

15.3 Definition. Let A be a structure and σ a relational signature. A
database query Q is a mapping from constraint databases over A to relations
over A. This mapping may be partial, i.e. undefined for some databases. The
query is closed, if for any constraint database B ∈ CDB(A) such that the
result of Q on B is defined, Q(B) is representable over A. A constraint
query is a closed database query.

By definition, queries are abstract functions from structures to relations.
In practise, however, they are usually specified by means of a query language.
We will consider various query languages which all have in common that they
are based on first-order logic. Therefore we start our exploration on query
languages with FO.

15.4 Definition. Let A be a context structure and σ a relational signature.
A first-order formula ϕ(x) ∈ FO[τ ∪ σ] with k free variables x defines the
k-ary query

Qϕ : CDB(A) −→ CDR(A)
B 7−→ {a ∈ Ak : B |= ϕ[a]}.

Often, we write ϕ(B) instead of Qϕ(B).

There are context structures where first-order logic does not provide a
closed query language. For instance, on databases over (N, <) the formula
ϕ(x, y) := ∃=1z x < z < y expresses that x and y have distance 2. It is easily
seen that there is no quantifier-free formula over (N, <) expressing this. We
now introduce a property of context structures that guarantees closure of
first-order queries.

15.5 Definition. A complete theory T over a signature τ admits quantifier
elimination if for every first-order formula ϕ(x) ∈ FO[τ ] there is a quantifier-
free formula ϕ′(x) ∈ FO[τ ] such that T |= ∀x(ϕ↔ ϕ′).



188 Chapter 15: Constraint Databases

A structure A admits quantifier elimination, if its theory Th(A) does.
The quantifier elimination is called effective, if there is an effective method
to compute an equivalent quantifier-free formula from a given formula ϕ.

The following proposition shows that precisely in constraint databases
over structures admitting quantifier elimination first-order logic provides a
closed query language.

15.6 Proposition. Let A be a τ -structure. A admits quantifier elimination
if, and only if, every first-order formula is closed on the class of constraint
databases over A.

Proof. Suppose A admits quantifier elimination. Let B := (A,Φ) ∈
CDB(A) be a σ-constraint database, where Φ is the set of formulae ϕR
representing the database relations R ∈ σ in B.

For any given ϕ ∈ FO[τ ∪ σ] consider the formula ϕ′ obtained from ϕ by
replacing every atom Ru, for R ∈ σ, by ϕR(x/u). It is easily seen that B |=
∀x(ϕ↔ ϕ′). As ϕ′ is a pure FO[τ ] formula, there is a quantifier-free formula
ψ ∈ FO[τ ] equivalent to ϕ′. Thus, ψ is a quantifier-free representation of
Qϕ(B). The opposite direction is trivial. �

As the proposition shows, quantifier elimination is a necessary and suf-
ficient condition for first-order logic to be closed on a class of constraint
databases. Further requirements that are usually imposed on a context
structure are that the quantifier-elimination procedure is effective and also
that the context structure itself is recursive, so that containment of a tuple
in a relation is decidable.

As proved above, on recursive context structures with effective quantifier
elimination, first-order logic yields a decidable and closed query language.
To measure the complexity of its evaluation problem, we first have to agree
on a measure of size for the databases. Clearly, algorithms operating on
constraint databases get the finite representation as input. As there is no
canonical representation associated with a constraint database, we agree
that whenever we speak about such a database we have a particular repre-
sentation in mind. The size of the database is then measured in terms of
this representation.

15.7 Definition. The size |B| of a constraint database B is defined as the
sum of the lengths of all formulae occurring in the representation of B.

With this definition of size, we can now turn towards establishing com-
plexity bounds for problems related to constraint queries. There are various
different methods to measure the complexity of evaluation problems.

15.8 Definition. Let A be a context structure and L be a query language
over A.
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• The evaluation problem for a query formula ϕ ∈ L and a database B

over A is defined as the problem of finding a finite representation of
Qϕ(B).

• The recognition problem for ϕ and B is defined as the problem of
checking whether a given tuple a is in Qϕ(B).

Recall that in Chapter 5, we only considered the evaluation problem for
logics on finite structures. This was because for finite relational databases,
the two problems are essentially equivalent. If the recognition problem can
be solved, then the evaluation problem can also be solved, simply by apply-
ing the recognition problem to all possible tuples. However, in the context
of constraint databases, this approach obviously fails as the relations are
no longer finite. Solving the evaluation problem boils down to computing
a representation of the answer – something that is not always possible for
query languages which are not closed. On the other hand, solving the recog-
nition problem corresponds to evaluating boolean queries for which closure
is trivially given.

15.9 Definition. Let A be a context structure and L be a query language.
The complexity of the evaluation problem can be measured in three different
ways.

• For a fixed query formula ϕ ∈ L, the data complexity of the query Qϕ
is defined as the amount of resources (e.g. time, space, or number of
processors) needed to evaluate the function that takes a representation
Φ of a database B to a representation of the answer relation Qϕ(B).

• For a fixed constraint database B over A, the query complexity of B

is defined as the amount of resources needed to evaluate the function
taking a query formula ϕ to the representation of the answer relation
Qϕ(B).

• If both, the database and the query, are part of the input, we speak of
the combined complexity. It is defined as the complexity of the function
taking the pair (Qϕ,B) to Qϕ(B).

In the sequel, we will mostly consider the data complexity of the evalu-
ation problem and only rarely comment on the other complexity measures.

Why only quantifier-free representations? In Definition 15.1, finite
representations of constraint relations were defined as quantifier-free formu-
lae. One effect of this was, that the class of possible context structures had
to be restricted to structures admitting effective quantifier elimination.

Another possibility is to allow arbitrary first-order formulae as represen-
tations and in fact there are authors who treat constraint databases in this
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way. With this definition, first-order query evaluation becomes trivial: We
only have to substitute in the query the atoms involving database relations
by the formulae defining them in the database. As first-order logic is an
important query language, it sounds promising that query evaluation is so
efficient. However, this approach raises some issues.

One problem is, that although evaluating a query is simple, display-
ing the result in a reasonable way might not. This is trivially seen when
considering constraint databases over the arithmetic and boolean first-order
queries. As explained above, evaluating such a formula, i.e. computing a
representation of the answer, is trivial. However, giving the output in form
of a yes/no answer instead of by a complicated formula describing it, is
undecidable.

But even for decidable context structures, the simple approach is not
satisfactory. Consider for instance polynomial constraint databases. Clearly,
the user wants to view the result of a query on such a database as a semi-
algebraic point set on his monitor and not as a first-order formula describing
this set. But displaying a the set of points represented by an arbitrary first-
order formula is a complex and non-trivial task and essentially boils down to
computing a quantifier-free formulae equivalent to it. In this sense, nothing
is gained by full first-order representations.



Chapter 16

The Linear Constraint

Database Model

Linear constraint databases are constraint databases over the real ordered
group (R, <,+). With their ability to store semi-linear sets, they form
an appropriate model for spatial databases. An important application for
such kind of databases are Geographical Information Systems (GIS) which
are used to store geographical information, i.e. information about objects
on or below the earth’s surface. Typically, such a system contains spatial
information, i.e. relations over the reals, in form of a map with additional
non-spatial or thematic information about the objects in the map. The
thematic information often comes from a finite or at least countable domain.
For instance, local administrations provide maps of their town which list
the historical usage of the various sites in the town. Potential purchasers of
properties can then use these maps to asses the probability of having the site
polluted with residual waste, e.g. oil pollution caused by former industrial
usage.

Geographical information systems have numerous applications in geol-
ogy, environmental sciences, or geography and become more and more im-
portant in these areas. As the (practical) complexity of algorithms manip-
ulating semi-algebraic sets is too high and the accuracy achieved by linear
approximations to such kind of data is usually sufficient, geographical infor-
mation systems often use semi-linear sets to store spatial information.

In this chapter we study the linear constraint database model. We first
present some structural properties of relations definable in this model. We
then consider first-order logic as a linear constraint query language and
demonstrate its deficiency in expressing several interesting queries. This
leads to the definition of an extension of first-order logic in which these
queries can be formalised. It will later be used as the basis for introducing
fixed-point logics capable of defining precisely those closed queries on linear
constraint databases that computable in polynomial time. The chapter is
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closed with the presentation of a second extension of first-order logic, called
PFOL, which has been introduced by Vandeurzen et al. in [VGG98, Van99].
For this logic, it has been shown that there is a finite representation of semi-
linear sets in terms of finite point sets such that the encoding and decoding
can be defined in PFOL. This will frequently be used in the subsequent
chapters.

16.1 Linear Constraint Databases

We first give a precise definition of linear constraint databases.

16.1 Definition. The class of linear constraint databases is defined as the
class of constraint databases over the context structure A := (R, <,+). The
formulae representing linear constraint relations are allowed to use integer
parameters.

By definition, linear constraint relations are represented by quantifier-
free formulae over the signature {=, <,+}. W.l.o.g. we can assume that the
formulae representing the relations are in disjunctive normal form, i.e. of the
form

∨
i

∧
j ϕij , where the ϕij are atoms p(x) > 0, p(x) = 0 or p(x) < 0 for

polynomials p(x) := a0 +
∑k

l=1 aixi. Here, the ai are parameters from N.
As already noted above, allowing arbitrary real numbers as parameters is
senseless, as then the formulae are no longer finite representations. There-
fore, the set of elements from which the parameters may be chosen must be
restricted to numbers which have a finite presentation.

In the literature, two different models of linear constraint databases have
been considered. In the first model, sometimes called A-linear constraint
database model , the parameters ai may be arbitrary real algebraic coeffi-
cients whereas in the second model, sometimes called Z-linear constraint
database model, only integer coefficients are allowed.

The restriction to integer coefficients seems rather restrictive. However,
allowing rational coefficients in the formulae yields the same class of rep-
resentable relations, as every equality a0 +

∑k
i=1 aixi = 0 with rational

coefficients ai can be transformed to an equality with integer coefficients by
multiplication with the least common denominator.

Throughout the remaining chapters, we will only consider linear con-
straint databases with integer coefficients, as rational slopes are sufficient
for almost all applications of linear constraint databases. Further, we are
only interested in the spatial information stored in a database and do not
consider the additional thematic information. Finally, as common in the
literature on spatial constraint databases, we only consider databases with
one spatial relation S. This simplifies the notation, but all results reported
below extend to databases with more than one spatial relation.
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16.2 Semi-Linear Sets

16.2.1 Structural Properties

In this section, we present some structural properties of linear constraint
relations. It is obvious that the class of linear constraint relations coincides
with the well known class of semi-linear sets, inductively defined by the
following rules.

• For every linear inequality p(x) > 0, the set {a ∈ Rk : p(a) > 0} is a
semi-linear set.

• If R,R′ ⊆ Rk are semi-linear, then so is R ∩R′, R ∪R′, and Rk −R.

We recall some standard notions from geometry that will be used later on.

16.2 Definition. Let P ⊆ Rd be a set of points.

• The affine support or affine hull of P is defined as the smallest affine
subspace of Rd containing P .

• The dimension of P is defined as the maximal value d such that P
contains a d-dimensional open hypercube. The dimension of the empty
set is defined as −1.

• The convex hull of P is defined as

conv(P ) := {x : ∃p1, . . . , pn ∈ P, n ∈ N,∃a1, . . . , an ∈ R≥0,
Σaipi = x, Σai = 1}.

We define the open convex hull of P as the interior of conv(P ) with
respect to its affine support. It is formally defined as

openconv(P) := {x : ∃p1, . . . , pn ∈ P, n ∈ N,∃a1, . . . , an ∈ R,
ai > 0, Σaipi = x, Σai = 1}.

• A polyhedron in Rd is the intersection of finitely many open or closed
halfspaces1. It is bounded, if it is entirely contained in some d-
dimensional hypercube of edge length l ∈ R≥0. A bounded polyhedron
is called a polytope.

Recall from above that a linear constraint relation S is defined by a
quantifier-free formula. W.l.o.g. we can think of this formula as being in
disjunctive normal form, i.e. of the form ϕS :=

∨
i

∧
j ϕij , where each ϕij

1Usually, polyhedra in Rd are defined as the intersection of finitely many closed half-
spaces in Rd. For our purposes it is more convenient to allow the intersection with open

halfspaces also.
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is a linear inequality, defining a halfspace, or a linear equation, defining a
hyperplane.

Thus, each conjunct in ϕi :=
∧
ϕij defines a polyhedron and the relation

S consists of a union of polyhedra.

In the following paragraphs we will study decompositions of semi-linear
sets into a finite number of subsets satisfying some regularity conditions.
For this, we often speak about the interior of subsets or of subsets being
open. This is always meant with respect to the sets affine support. We
agree on the following proviso.

Proviso. Whenever we speak about the interior of a set or a set being
open, this is always with respect to its affine support. �

16.2.2 Arrangements

Let S be a semi-linear subset of Rd. We present a method to decompose
the space Rd into finitely many partitions, i.e. convex, connected, and dis-
joint sets, such that the set S ⊆ Rk can be composed from a subset of
these partitions. The presentation follows [Ede87]. See also [GO97, Zie95] for
details.

Let ϕS be the formula defining the set S. Let G(S) := {g1, . . . , gn} be
the set of atoms, i.e. linear (in)equalities, occurring in ϕS . Consider the set
of hyperplanes

H(S) := {h :
h is an equation from G(S) or there is some in-
equality g ∈ G(S) and h is obtained by replacing
in g the inequality by equality.

}

See Figure 16.1 and 16.2 for a spatial relation and the corresponding set of
hyperplanes.

Note that two atoms p(x) > 0 and p(x) < 0 occurring in ϕS correspond
to the same equality p(x) = 0 in H(S). Thus, the size m := |H(S)| of H(S)
might be less than the number of different atoms in ϕS .

For every h := Σaixi = b ∈ H(S), we define the set of points being above,
on, or below h, so that a point p := (p1, . . . , pd) is above h if Σaipi > b, on h
if Σaipi = b, and below h if Σaipi < b. Let h− denote the set of points below
h and h+ the set of points above h. Clearly, any two points on the same
side of all hyperplanes in H(S) are either both contained in or both outside
of S. To see this, recall that the hyperplanes in H(S) arise from the atoms
in ϕS . Points on the same side of a hyperplane h cannot be separated by
the corresponding atom. Clearly, if the points cannot be separated by the
atoms in ϕS , then the boolean combination of the atoms cannot separate
them either.
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Figure 16.1: Example of a spatial relation S.

Figure 16.2: Set of hyperplanes induced by S.

Let p be a point in Rd. The position vi(p) with respect to hi ∈ H(S) is
defined as

vi(p) :=






+1 if p ∈ h+
i,

0 if p ∈ hi,
−1 if p ∈ h−i.

The position of a point with respect to H(S) is determined by the vector
(v1(p), . . . , vm(p)), called the position vector of p, and any two points sharing
the same position vector are inseparable by ϕS .

We call a set containing all points sharing the same position vector a face
and the dissection of Rd into faces induced by the set H(S) of hyperplanes



196 Chapter 16: The Linear Constraint Database Model

an arrangement A(S). This dissection of Rd into faces is a partition of Rd
with the property that every face is either contained in or disjoint to S. See
Figure 16.3 for the decomposition of the database shown above.

l1

l2

l3
l4

l5

l6

l7

l8

l9

p1

p2

p3

e1

e2

e3

e4

e5

e6

e7

Figure 16.3: Arrangement A(S).

The dimension of a face in the decomposition is defined as the dimension
of its affine support. Thus, in the example above, there are seven two-
dimensional faces e1 to e7, nine one-dimensional faces l1 to l9, and three
zero-dimensional faces p1 to p3. As usual, we call zero-dimensional faces
vertices.

Two faces f and g are incident, if f is of dimension one less than g and
it is contained in the boundary of g or, conversely, g is of dimension one less
than f and it is contained in the boundary of f .

Typically, arrangements are stored in a data structure like the incidence
graph. The incidence graph contains a vertex for every face in the arrange-
ment as well as two additional vertices, one representing a virtual (−1)-
dimensional face, denoted by ∅, which is incident to every 0-dimensional
face, and one vertex representing a (d+ 1)-dimensional face, written as
A(S), incident to every d-dimensional face. We call the last two vertices
improper and the other vertices proper. Each proper vertex v stores the
position vector of the points contained in the corresponding face f as well
as two lists of directed edges, one containing edges pointing at the vertices
whose face is incident to f and one containing edges pointing at the vertices
whose face f is incident to. Figure 16.4 shows the incidence graph for the
part of the arrangement of Figure 16.3 containing the faces around p2.

As every vertex stores the position vector of the corresponding face, a
conjunction of atoms defining the face can easily be obtained from H(S) and
the incidence graph for A(S). Also the incidence relation can be efficiently
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A(S)

. . . e5 e4 e3 e7 . . .

. . . l1 l2 l7 l8 . . .

. . . p2 . . .

∅

Figure 16.4: Part of the incidence graph for A(S).

decided.

It is known, that an arrangement for a set of n hyperplanes in Rd can
be computed in time O(nd). See Theorem 7.6 in [Ede87]. Besides the known
sequential algorithms, attempts have been made to define parallel algorithms
for computing arrangements [ABB96, Goo93], leading to algorithms running
in parallel time O(log n) using a polynomial number of processors on a
CREW PRAM (See [Goo93]).

Since the number of hyperplanes in H(S) is always less than or equal
to the number of atoms in the representation of the database, the following
theorem is immediate.

16.3 Theorem. Let B := ((R, <,+), S) be a linear constraint database.
The arrangement A(S) can be computed in polynomial time with respect to
the size of the representation of B.

16.3 First-Order Logic as Linear Constraint Query

Language

In this section we consider first-order logic as query language for linear
constraint databases. The linear constraint database model is among the
most important constraint models considered so far in the literature. Con-
sequently, a lot is already known about the properties and weaknesses of



198 Chapter 16: The Linear Constraint Database Model

first-order queries on linear constraint databases. As for finite databases,
first-order logic fails to express queries relying on recursion, connectivity for
instance. However, whereas on finite databases most queries of daily use
are expressible in FO, or, equivalently, SQL, the situation is different in the
constraint framework. It has been shown that also queries like defining the
convex closure of points, defining their affine support, testing whether points
are collinear, and many others are not expressible in FO. See [KLP00, chapter

4 and 9] and references therein for results on the expressive power of FO.
Besides first-order queries using order and addition, several authors con-

sidered queries which may also use multiplication. Therefore they refer to
FO[<,+] as FO+Lin and to FO[<,+, ·] as FO+Poly. As we do not con-
sider multiplication at all it is not necessary to make this distinction.

We first mention some queries not definable in first-order logic.

16.4 Theorem. Let B := (A, S) be a constraint database such that S con-
tains only finitely many points. The following queries on linear constraint
databases are not definable in first-order logic.

(1) Define the convex hull of the points in S.

(2) Define the affine support of the points in S.

Proof. We prove (1) first by showing that with the definability of convex clo-
sure multiplication becomes definable also. The definition of multiplication
by convex closure is demonstrated in Figure 16.5.

y

zx

y−1 ( zy , y−1)

Figure 16.5: Defining multiplication by convex closure.

The relation mult(x, y, z), true for x, y, and z if x · y = z, can be defined
as follows. W.l.o.g. we assume that x, y, and z are positive. Consider the
points (0, y) and (z, 0) in the plane. The convex closure of these points is
the line segment as shown in Figure 16.5. The point on the line segment
having (y− 1) as second coordinate has the first coordinate z

y . Now, if
(x, y−1) ∈ conv{(0, y), (z, 0)}, then x = z

y and x · y = z.
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Thus, if the convex closure was definable in first-order logic, then every
semi-algebraic set would be definable in FO with order and addition and
thus be semi-linear. As it is known that there are semi-algebraic sets which
are not semi-linear, we get a contradiction.

The same proof also establishes (2) as the convex hull is a subset of the
affine support. �

The theorem shows that plain first-order logic is too weak to define
various important queries on linear constraint databases. We now consider
an extension of FO which allows the definition of the convex hull of finite
point sets. As the proof of Theorem 16.4 shows, we can not hope for full
definability of convex hulls.

16.3.1 Extending First-Order Logic by Convex Hulls

In this section we define an extension of first-order logic on semi-linear da-
tabases such that with each definable finite set of points also its convex hull
becomes definable.

16.5 Definition. Let xi, x
′
i, y, and z be sequences of distinct variables such

that |xi| = |x
′
i| = |y| = l for some l. The logic FO(conv) is defined as the

extension of first-order logic by the following rules:

(i) If ϕ ∈ FO(conv) is a formula with free variables {x1, . . . , xk, z} then
ψ := [convx1,...,xk

ϕ](y, z) is also a formula, with free variables {y, z}.

(ii) If ϕ ∈ FO(conv) is a formula with free variables {x1, x
′
1, . . . , xk, x

′
k, z}

then ψ := [uconvx1,x′1,...,xk ,x
′

k
ϕ](y, z) is also a formula, with free vari-

ables {y, z}.

The semantics of the additional operators is defined as follows. Let B be
the input database and ψ := [convx1,...,xk

ϕ](y, z) be a formula in FO(conv).
Let ϕB be the result of evaluating the formula ϕ in B. If ϕB is infinite,
then ψB := ∅. Otherwise,

ψB := {(a, b) : a ∈
⋃
{conv{a1, . . . , ak} : B |= ϕ[a1, . . . , ak, b]}},

where conv{a1, . . . , ak} denotes the interior (with respect to the affine sup-
port) of the convex closure of {a1, . . . , ak}.

The semantics of the uconv operator is defined similarly. The motivation
for it is, that every set defined by the conv operator is bounded. To overcome
this restriction, the uconv operator is designed to handle “points at infinity”.
Let ψ := [uconvx1,x′1,...,xk,x

′

k
ϕ](y, z) be a formula and let B be the input

database. Again, if ϕB is infinite, then ψB := ∅. Otherwise,

ϕB := {(a, b) :
there are a1, a

′
1, . . . , ak, a

′
k such that

B |= ϕ[a1, a
′
1, . . . , ak, a

′
k, b] and a ∈ conv(

⋃k
i=1 line(ai, a

′
i))
},
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where line(ai, a
′
i) := {x : (∃b ∈ R≥0) such that x = ai + b(a′i − ai)} defines

the half line with origin ai going through a′i.

Intuitively, each pair (ai, a
′
i) represents two points, the point ai and the

point “reached” when starting at ai and going in the direction of a′i to
infinite distance. Now uconv returns the union of the open convex closure
(with respect to its affine support) of the 2k points represented by each tuple
((ai,1, a

′
i,1), . . . , (ai,k, a

′
i,k)).

Note that the condition on the formula ϕ to define a finite set is purely
semantical. Since finiteness of a semi-linear set is first-order definable -
e.g. by the formula finite(ϕ) stating that there are ε, δ > 0 such that the
Manhattan-distance between any two points in ϕB is greater than ε and each
point in ϕB is contained in a hypercube of edge length δ - this condition
can also be ensured on a syntactical level, giving the language an effective
syntax.

We now present an example of a query definable in FO(conv).

16.6 Example. Let ϕ(x) be a formula defining a finite set. The query

multϕ(x, y, z) := {(a, b, c) : a satisfies ϕ and a · b = c}

is definable in FO(conv). We give an explicit formula only for the case where
x, y, z ≥ 0. The other cases are analogous.

Let x1, x
′
1 and x2, x

′
2 be pairs of variables and let ψ(x1, x

′
1, x2, x

′
2;x) :=

(x1, x
′
1) = (0, 0) ∧ (x2, x

′
2) = (1, x) be a formula defining for each x the pair

of points (0, 0) and (1, x) in R2. Then

ψ(x, y, z) := [uconvx1,x′1,x2,x′2
ϕ(x) ∧ ψ](y, z;x)

defines the query multϕ. The uconv operator defines - for the parameter x -
the half line with origin (0, 0) and slope x. Thus the point (y, z) is on this
line if, and only if, x · y = z.

16.7 Note. The example shows that atoms of the form x ·ϕ y = z can be
expressed in FO(conv), with the semantics that x satisfies ϕ and x · y = z,
where ϕ is required to define a finite set. From now on, we allow atoms of
this form in FO(conv)-formulae.

We first show that FO(conv) is a closed linear constraint query language.
We also establish an upper bound on the complexity of the query evaluation
problem.

16.8 Theorem. FO(conv) is closed and has Ptime data-complexity.

Proof. Closure of the conv-operator follows from the finiteness of the sets,
of which the convex closure is taken. Ptime data-complexity can easily be
established by induction on the structure of the queries. �
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Extensions of first-order logic on linear constraint databases have ex-
tensively been studied in the literature. In the next section we introduce
another such extension, called PFOL, for which several interesting queries
have been shown to be expressible.

16.3.2 Extending First-Order Logic by Multiplication

In this section we present a query language called PFOL, an extension of
FO+Lin by a restricted form of multiplication. The language has been
introduced by Vandeurzen et al. in [VGG98]. See also [Van99] for a detailed
study of its properties.

In PFOL, there are two different kinds of variables, real variables and so-
called product variables. A PFOL program consists of a sequence of formulae
(ϕ1(x), . . . , ϕk(x);ϕ(x)), where each ϕi is required to define a finite set Di ⊂R. The formulae are allowed to use multiplication between variables x·p, but
at least p must be a product variable. All product variables must be bound
at some point by a quantifier of the following form. In ϕi the quantifiers for
the product variables are of the form ∃p ∈ Dj , for some j < i. In ϕ all Di

may be used to guard the variable.

Essentially, the formulae ϕi successively define a sequence of finite sets
and then at least one factor of every multiplication in ϕ is restricted to
one of these sets. In the original definition of PFOL there were also terms
t =

√
|p|. We do not take this term building rule into account and allow

only multiplication. Note that the square root operator strictly increases the
expressive power of the language. Therefore we call the language considered
here restricted PFOL.

It is known that convex closure can be defined in restricted PFOL. Con-
versely, in Example 16.6 we already saw that multiplication with one factor
bounded by a finite set can be defined in FO(conv). Thus, the proof of the
following theorem is immediate.

16.9 Theorem. Restricted PFOL = FO(conv).

The previous theorem implies that the results on expressiveness proved
for PFOL carry over to FO(conv).

In the next section we will show how finite representations of semi-linear
sets can be defined in PFOL. This result, which has been obtained by Van-
deurzen et al. in [VGG98], will frequently be used throughout the remaining
chapters.

16.3.3 Finite Representations of Semi-Linear Sets

In this section, we aim at defining a representation of semi-linear sets S
by a finite set of points, such that the set S can be recovered from its
representation. Further, encoding and decoding is PFOL-definable.
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Recall again the discussion of arrangements of semi-linear sets S ⊆ Rd
in Section 16.2.2. An arrangement A(S) of S is a partition of Rd into
finitely many regions, the faces, such that for each face R either R ⊆ S or
R ∩ S = ∅. By construction, an arrangement consists of faces of different
dimension. Besides the faces of maximal dimension, i.e. the dimension of
S, there are also faces of lower dimension. In particular, the arrangement
contains zero-dimensional faces, i.e. individual points.

Consider again Figure 16.3 which shows the arrangement of the example
in Section 16.2.2. Obviously, the face e7 can be obtained from the zero-
dimensional faces p1, p2, and p3 by taking the interior of their convex hull.

This is a general phenomenon of arrangements, i.e. every bounded face
can be defined by the convex hull of points in the arrangement. However,
faces can be fairly complex themselves and there is not necessarily a fixed
number k, depending only on the dimension d of the underlying space Rd,
such that any face in the arrangement of a semi-linear set S ⊆ Rd can
be obtained from the open convex hull of no more than k points in the
arrangement.

Here we are mainly interested in a decomposition of semi-linear sets
S ⊆ Rd into a finite set Senc ⊆ Rk of points, such that S can be recovered
from Senc and both, the encoding of S into Senc and the decoding of Senc

into S is definable in restricted PFOL.
It has been shown in [Van99] that such a decomposition exists indeed.

16.10 Theorem. For every d < ω, there are PFOL-formulae code and
decode such that on every semi-linear set S ⊆ Rd code defines a finite
relation Senc ⊆ R(d+1)2 and on every finite set D ⊆ R(d+1)2 decode defines
a set T ⊆ Rd such that

(decode ◦ code)(S) = S.

A detailed construction of the decomposition and the formulae defining
it can be found in [VGG98] and also in [Van99, Section 5.3.1].
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Complete Query Languages

In this chapter we consider the fixed-point logics introduced in Part I as
candidates for linear constraint query languages. The main result of this
section is to show that transitive-closure logic is expressive complete on
the class of linear constraint databases in the sense that every partially
computable query is definable in TC.

However, care has to be taken on what the partially computable query
defined by a formula in TC is meant to be. Whereas on finite databases
the result of a TC-formula is always computable, the precise method used
to compute it is irrelevant for the query defined by this formula. On linear
constraint databases, however, it is easily seen that the arithmetic is TC-
interpretable in a linear constraint database. Thus, the result of a TC-query
no longer needs to be computable. Therefore, the partially computable query
defined by such a formula depends on the precise operational semantics,
i.e. evaluation method, given to TC as with some evaluation schemata the
result of a particular query might be computable whereas others may fail to
do so.

Formally, the standard model-theoretical semantics for a fixed-point logic
L as presented in Part I can be defined as a function

mod : ϕ ∈ L 7−→ (modϕ : (A, σ) −→ Pow(A∗))

taking formulae ϕ ∈ L to functions modϕ which map a constraint database
B := (A, σ) to the set of tuples satisfying ϕ on B. In the constraint database
setting, the problem arises that the functions modϕ may not be computable
or the result may not be representable over A. For instance, on any linear
constraint database B the formula

ϕ(n) := [dtcx,y y = x+ 1](0, n)

defines the set of natural numbers. As this set is not representable over
A := (R, <,+), this shows that already deterministic transitive-closure logic
yields a query language which is not closed in the sense of Definition 15.3.

203
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Further, it is clear that multiplication and thus full arithmetic is definable
by DTC-formulae over linear constraint databases. This shows that even
for DTC, the functions modϕ above may not even be arithmetical and the
results may not be finitely representable.

As the example demonstrates, on linear constraint databases there are
queries in DTC whose result according to the model-theoretical semantics
is not computable, independent of the particular evaluation scheme used.
However, there might also be queries such that their result can be computed
by one evaluation scheme but not by another. For instance, consider the
query [tcx,yy = x + 1](0, 10). A naive evaluation scheme would begin the
evaluation by first computing the transitive closure of the formula y = x+1.
This done, it would check whether the pair (0, 10) occurs in it. As the
transitive closure of y = x+1 is infinite, the evaluation procedure would fail
to compute the correct answer. A more clever evaluation scheme, however,
would start at 0 and keep adding 1 to it until 10 is reached.

Thus, in the constraint database setting, statements like TC capturing
the class of partially computable queries can only be made with reference
to a fixed operational semantics.

Therefore we equip the fixed-point logics with an operational semantics
that assigns to every formula of the logic a partially recursive function taking
constraint databases to constraint relations.

17.1 Operational Semantics for Fixed-Point Log-

ics

Throughout this section, let CDB denote the class of linear constraint da-
tabases and CRel the class of finitely representable relations over (R, <,+).
We do not distinguish between finitely representable relations and their rep-
resenting formulae and denote both by CRel. Whether the relation or the
formula is meant, will always be clear from the context.

17.1 Definition. For a given logic L, an operational semantics opL is
defined as a total recursive function

opL : ϕ ∈ L 7−→ (opϕ : CDB −→ CRel)

mapping formulae ϕ ∈ L to partially computable functions opϕ which take
constraint databases over (R, <,+) to representations of finitely representa-
ble relations over (R, <,+).

For any ϕ ∈ L let modϕ(B) denote the set of elements defined by ϕ
under the model-theoretical semantics for L. An operational semantics opL

for L is consistent with the model-theoretical semantics if, and only if, for
all formulae ϕ and all databases B such that opϕ(B) is defined, modϕ(B) =
opϕ(B).
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We now define an operational semantics for transitive-closure logic. This
operational semantics closely resembles the usual definition of the model-
theoretical semantics.

17.2 Definition (Operational semantics for TC). For each formula
ϕ ∈ TC we define a function opϕ : CDB −→ CRel by induction on the
structure of ϕ. Fix a quantifier elimination procedure for (R, <,+), i.e. an
evaluation scheme for first-order queries.

• If ϕ ∈ FO, define opϕ(B) := ϕ′, where ϕ′ is obtained from ϕ by
first substituting each occurrence of a database relation symbol by the
formula defining the relation in B and then eliminating the quantifiers
using the quantifier elimination method fixed above.

• If ϕ := ϕ1 ∧ ϕ2, define opϕ(B) as ((opϕ1
(B)) ∧ (opϕ2

(B)). For other
the boolean connectives, the function opϕ is analogously defined.

• If ϕ := ∃xϕ1, define opϕ(B) as the result of applying the quantifier-
elimination method fixed above to ∃x(opϕ1

(B)).

• Now suppose that ϕ is of the form ϕ := [tcx,y ψ(x, y)](u, v). Recall
that we allowed the use of integers as constants in the formulae. Let I
be the indices of constants among u := u1, . . . , un, i.e., ui is a constant
if, and only if, i ∈ I. We inductively define formulae σi, i ∈ ω, as
follows.

(i) σ0 := opψ(B)(x, y) ∧
∧
i∈I ui = xi.

(ii) σi+1 := σi(x, y) ∨ ∃x
′ (σi(x, x

′) ∧ opψ(B)(x′, y)).

If there is no j ∈ ω such that σj and σj+1 are equivalent in B, then
opϕ(B) is undefined. Otherwise let i be the smallest natural number
such that σi and σi+1 are equivalent and define opϕ(B) as the result
of applying the quantifier elimination method to the formula

∃x∃y ((u = x) ∧ (y = v) ∧ σi(x, y)).

Finally, define the operational semantics opTC for TC as the function taking
formulae ϕ to opϕ.

Observe the difference in the way the formula σ0 is defined between this
operational semantics and the standard way to define the model-theoretical
semantics as outlined in Definition 4.1. The conjunct

∧
i∈I(ui = xi) reduces

the computation of the transitive closure to the computation of all tuples
which are reachable from tuples with some fixed components. Thus, by
letting constants occur in the tuple u one gets some control over the process
of building up the transitive closure. However limited this control might
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seem, we will show below that it is enough to allow the definition of arbitrary
partially computable queries over databases from CDB, whereas it seems
unlikely that this is also possible without this modification.

It is now an easy observation that the model-theoretical and the opera-
tional semantics for TC are consistent.

17.3 Proposition. The operational semantics of Definition 17.2 is consis-
tent with the model-theoretical semantics of TC.

17.2 Expressive Completeness of Transitive Clo-

sure Logic

We now turn to the definability of partially computable queries by formulae
of TC.

17.4 Definition. A partially computable query Q is defined by a formula
ϕ ∈ TC if for all databases B, Q(B) is defined if, and only if, opϕ(B) is
defined and in this case Q(B) = opϕ(B).

We show now that all partially computable functions on constraint data-
bases over (R, <,+) can be defined in TC. The proof runs along the following
line. We first show that the logic PFOL as defined in Section 16.3.2 above
is contained in TC. This enables us to use the results on PFOL-definable
finite representations discussed in Section 16.3.3. We then show that the run
of Turing-machines on such finite representations can be simulated in TC.
The main issue addressed in the proof is not to show that transitive-closure
logic is expressive enough but to guarantee that the various tc-operators
used in the formulae are actually terminating in cases where the query to
be simulated is defined on a database.

Recall that PFOL was defined as an extension of FO by a restricted form
of multiplication. Precisely, the logic allows the use of atoms x ·p = y, where
p is a so-called product variable. These product variables have to be bound
by a quantifier ∃p ∈ ϕp or ∀p ∈ ϕp, where ϕp(x) must be a formula defining
a finite set. The semantics of a quantifier Qp ∈ ϕp is the semantics of Q
relativised to the set defined by ϕp.

To show that PFOL ⊆ TC it suffices to prove that atoms x · p = y are
definable in TC by a formula whose evaluation always terminates.

We claim that atoms of this form can be defined by a TC-formula mult
provided that the formula ϕp defines a set of rational numbers. In all cases
where we use PFOL formulae below this will always be true. The formula
mult makes use of two auxiliary formulae ϕnd(p, n, d), expressing that n
and d are the numerator and denominator of the rational number p, and
ϕim(a, b, c), which defines a · b = c, provided that b is an integer.

By the discussion above, we may use quantifiers ∃p ∈ ϕp in our formulae,
where ϕp is the unique formula binding p in the PFOL formula.
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The formula ϕim is defined as

ϕψim(x, y, z) := [tcx,y,z;x′,y′,z′
x = x′ ∧ y′ = y − 1∧
z′ = z + x ∧ 0 ≤ y ∧ ψ(y)

](x, y, 0, x, 0, z).

It is parameterised by the formula ψ which will be replaced by a concrete
formula whenever we use ϕim below. The idea is, that ψ bounds the possible
values for y from above, whereas the conjunct 0 ≤ y bounds y from below.
Thus, if there exists a number c such that ψ is not satisfied for any c′ >
c, then the evaluation of ϕim is guaranteed to terminate. We abbreviate
ϕψim(a, b, c) as a ·ψi b = c.

We now give the definition of the formula mult which makes use of a
formula ϕnd defined below. Let mult be defined as

mult(x, p, y) := ∃d∃n ϕnd(p, n, d) ∧ (x ·ϕn

i n = y ·ϕd

i d),

where x ·ϕn

i n = y ·ϕd

i d is an abbreviation for ∃z(x ·ϕn

i n = z ∧ z = y ·ϕd

i d),
and the formulae ϕn and ϕd are defined as ϕn(x) := ∃d∃p ∈ ϕp ϕnd(p, x, d)
and ϕd(x) := ∃n∃p ∈ ϕp ϕnd(p, n, x).

Finally, to define ϕnd we assume a formula γ(i, j, i′, j′) defining a Gödel
enumeration of pairs (i, j) of natural numbers. Using this, we can set

ϕnd(p, n, d) := ϕp(p) ∧ d ·
ϕp

i p = n ∧
[tcx,y,x′,y′¬x = y ·

ϕp

i p ∧ γ(x, y, x′, y′) ](1, 0, n, d),

where ϕp is the formula binding p in the PFOL formula.
Recall that the operational semantics above guarantees that the evalua-

tion of the TC operator starts with the pair 0, 1. The conjunct ¬x = y ·
ϕp

i p
ensures that it terminates once a pair n, d of numerator and denominator for
p is reached. Thus ϕnd defines exactly one pair n, d for each p. As the formula
is used only for product variables, it defines a finite set. This ensures that the
formulae ϕn and ϕd above also define finite sets. Thus, for product variables
p, mult(x, p, y) terminates and defines the set {(a, b, c) : a·b = c and b ∈ ϕp}.

The proof of the following lemma is now straightforward.

17.5 Lemma. Every PFOL formula, where all product variables are bound
by formulae defining sets of rationals, is equivalent to a formula in TC whose
evaluation always terminates.

Recall from Section 16.3.3 the definition of an encoding of semi-linear
sets by finite point sets. In Theorem 16.10, we showed that there are
PFOL queries code and decode, such that for a given databases B := ((R, <
,+), SB), where S is k-ary, code defines a finite set Senc ⊆ R(k+1)2 of (k+1)-
tuples of points in Rk+1, and SB can be recovered from this finite encoding
Senc by a formula decode, i.e. S = {a : (R, <,+) |= decode(Senc)}.

As, by definition, all parameters occurring in the formulae defining the
database relations are rational, and therefore also all points in the encoding
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have rational coordinates, Lemma 17.5 implies that such a finite encoding
of the database relation can be defined in TC.

We now turn to the simulation of the run of a Turing-machine M :=
(Q,Σ := {0, 1}, q0, δ, {qf}) computing a given query. Here, Q is the set of
states of M , Σ is the alphabet, q0 the initial state, and qf the unique halting
state. δ is a set of rules of the form (q, a) → (q′, a′,m), where q, q′ ∈ Q,
a, a′ ∈ Σ, and m ∈ {−1, 1, 0}. Such a rule states that if M is in state q and
the head scans a position labelled a then M replaces a by a′, goes into state
q′ and moves the head according to m to the left, to the right, or not at all.

W.l.o.g. we can assume that M operates on an encoding of the input
database as defined above. Further, we assume that the machine halts with
the head scanning the first position on the tape.

A configuration of M will be encoded as a tuple (xl, xr, t, s), where xl
and xr are natural numbers encoding the tape content, 0 ≤ t ∈ N denotes
the step counter, and s contains the current state of the Turing-machine. A
tape content a0a1 . . . an is encoded as follows. Let 0 ≤ p ≤ n be the current
head position. The inscription a0 . . . ap−1 of the tape to the left of p is coded

inversely in xl, i.e. as ap−1 . . . a0, by xl := Σp−1
i=0 2i · ap−1−i. The inscription

ap . . . an of the tape to the right of p is coded in xr by xr := Σn−p
i=0 2i · ap+i.

As the machine only uses finitely many positions on the tape and all cells
which have not been visited by the machine are defined to be 0, we can also
think of xr as the infinite sum Σ∞

i=02
i · ap+i.

The run of M will be simulated by the formula ϕM . We use bold
face letters q0,qf , . . . ,a,m to denote fixed constants of the Turing-machine,
e.g. states q0, symbols a of the alphabet, or m ∈ {−1, 0, 1}.

ϕM := ∃t∃x [TC xl,xr,t,s;

x′
l
,x′r,t′,s′

(
(t = −1 ∧ init) ∨
(t ≥ 0 ∧ s 6= qf ∧ compute)

)
](
−1,−1,−1,−1;

x, t,qf , 0
).

The formulae init and compute are defined such that

(1) init(x′l, x
′
r, t

′, s′) becomes true for the tuple x′l, x
′
r, t

′, s′ coding the input
configuration, i.e. x′l = 0, x′r codes the input, s′ = q0, i.e. the machine
is in the initial state, and, finally, t′ = 0.

(2) compute(xl, xr, t, s;x
′
l, x

′
r, t

′, s′) becomes true for a pair of tuples, if
the x′l, x

′
r, t

′, s′ codes the successor configuration of the configuration
coded in xl, xr, t, s.

The conjunct s 6= qf is needed to terminate the evaluation of the formula
once the machine reaches the final state qf .

We now turn to the definition of the formula compute. For this, we
first need three auxiliary formulae move-righta, move-lefta, and don’t-movea,
with free variables {xl, xr, x

′
l, x

′
r}, which define the transition from the tape

content coded in (xl, xr) to the new tape content (x′l, x
′
r) where the machine

writes the symbol a and moves to the right, to the left or not at all.
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(i) move-right is defined as

move-righta := x′l = 2xl + a ∧ x′r = xr div 2.

Consider the following situation:

xl︷ ︸︸ ︷
| | | | | | | | | | | | | | | | | | | | | |

xl︷ ︸︸ ︷
b | | | | | | | | | | | | | | | | | | | | | | | | | |

where the head scans the symbol b, the tape to the left is coded in
xl, and the tape to the right containing b is coded in xr. As the head
moves to the right, the pair (x′l, x

′
r) must code the new tape content

as follows.

x′
l︷ ︸︸ ︷

| | | | | | | | | | | | | | | | | | | | | |a |

x′
l︷ ︸︸ ︷

| | | | | | | | | | | | | | | | | | | | | | | | |

Thus, the position containing the b must be removed from the right
side coded in xr and x′r respectively, it must be added to the left side
coded in xl and x′l respectively, and, the symbol b must be replaced
by a. This is done by setting x′r to xr div 2, i.e. removing the position
entirely, and setting x′l to 2xl+a. It is easily seen that integer division
by two is definable using the formula ϕim above. The same ideas are
used in the next two formulae taking care of the head moving to the
left or not moving at all.

(ii) don’t-move is defined as

don’t-movea := x′l = xl ∧ x
′
r = (xr div 2) · 2 + a.

(iii) move-left is defined as

move-lefta := x′l = xl div 2∧ x′r = ((xr div 2) · 2 + a) · 2 + (xl mod 2).

We are now ready to state the definition of the formula compute.

compute := t′ = t+ 1 ∧ ∃c (c = xr mod 2) ∧∨
(q,a)→(q′,a′,m)∈δs = q ∧ s′ = q′ ∧ c = a ∧ p′ = p+ m∧

((m = 1 ∧move-righta′)∨
(m = 0 ∧ don’t-movea′)∨
(m = −1 ∧move-lefta′)).

We now turn to the definition of the formula init. Again some auxil-
iary formulae are needed. Recall from above that there is a formula enc
which defines a representation enc(S) ⊆ Rk(k+1) of the input S ⊆ Rk by a
finite set of tuples of points. We use this to define the initial configuration
by letting the Turing-tape contain this set enc(S). To simplify notation,
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we assume an encoding S′ := enc(S) of the input S by a finite set of nat-
ural numbers, i.e. the tuples of points reduce to 1-tuples of points in R1

and, further, the coordinates of this “points” are natural numbers. Observe
that such an encoding does not correspond to any possible input relation S
but the extension to points and tuples of higher dimension and to rational
coordinates is straightforward. We comment on this below.

The formula init is defined as

init(x′l, x
′
r, t

′, s′) := t′ = 0 ∧ s′ = q0 ∧ x
′
l = 0 ∧ start(x′r),

with start being defined as

start(x) := ∃p = max(S′)∧

[tcp,x;p′,x′





(
p = x = −1 ∧ p′ = min(S′)∧

append(1, p′, x′)

)
∨

(
p ∈ S′ ∧ p′ ∈ S′ ∧ p′ = succ(p)∧

append(x, p′, x′)

)



](−1,−1, x′, p).

Here the formulae max, min, and succ are defined with respect to the
lexicographical ordering of the points in the encoding S′ and the formula
append(x′, p′, x) defines x′ to code the tape inscription obtained from the
inscription coded in x with the bit representation of p′ being appended to
the end. It is defined as

append := ∃c x′ = c+ x ∧

[tcx,y,x′,y′

(
x′ = x div 2 ∧ y′ = 2 · y ∧
(x > 0 ∧ ∃p̂ ∈ S′ x ≤ p̂)

)
](x, p′, 0, c).

The tc-operator is used to shift the bit representation of the point p′ as
many bits to the right as needed for the representation of x. The result is
stored in the variable c. Then it simply adds x to c and gets the desired bit
representation in x′. The part that might cause confusion is the conjunct
(∃p̂ ∈ S′ x ≤ p̂). It is unnecessary for the computation of x′ but guarantees
that the evaluation of the formula terminates. This is achieved by bounding
the values for x by the largest point in the encoding S′. As S′ is finite, the
process of building up the transitive closure must be finite as well.

As mentioned above, the case that the encoding S′ is unary does not
happen for any actual input relation. Also it is unlikely, that the points in the
encoding all have natural coordinates. But the formula can easily - although
with a massive overhead in notation - be extended to rational numbers and
encodings of higher arity. Termination of the evaluation process is also
guaranteed for the general case, as all the computations needed to encode
the input can be bounded by the values of points in the finite set S′.

Finally, we have to decode the result of the computation. For this we
can use the PFOL-formula decode mentioned above. Further, we need some
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preprocessing to decode the output of the machine given in one single num-
ber x into tuples of points. But the inductions involved can all be bounded
by the number x coding the output of the Turing machine.

Now, the proof of the following lemma is straightforward.

17.6 Lemma. Let f be a query on constraint databases over (R, <,+) and
let M be a Turing-machine computing it. Let fϕ := opϕM

be the function as-
signed by the operational semantics to the formula ϕM as constructed above.
Then, for each database B := ((R, <,+), σ),

(i) M halts on input B if, and only if, fϕ(B) is defined, and

(ii) fϕ(B) defines the same set of elements as represented by the output of
M on B.

Thus we have shown the following theorem.

17.7 Theorem. Under the operational semantics defined above, the lin-
ear constraint queries definable in transitive-closure logic are precisely the
partially computable queries on constraint databases over (R, <,+).

The proof of the theorem also yields a negative answer to further decid-
ability questions. For instance, one might ask whether it is decidable for a
given TC-formula ϕ and a first-order formula ψ if for all databases B such
that opϕ(B) is defined opψ(B) ⊆ opϕ(B). Using the proof given above, it is
an easy exercise to reduce the halting problem for Turing machines to this
question, thus proving it undecidable.

17.8 Corollary. Let ϕ be a TC-formula and ψ ∈ FO. It is undecidable,
whether for all databases B ∈ CDB(R, <,+) such that opϕ(B) is defined,

opψ(B) ⊆ opϕ(B).

In the following sections we consider other fixed-point logics and the
classes of queries definable in them. We begin with stratified and least
fixed-point logic.

17.3 Completeness of SFP and LFP

Clearly, SFP is more expressive than TC. Thus, Theorem 17.7 generalises
to SFP and LFP in the sense that each partially computable query can be
defined in these logics. However, a bit care has to be taken on whether the
formulae terminate in the cases where the query is computable.

Let ϕ := [tcx,yψ(x, y)](u, v) be a TC-formula. Then ϕ can inductively be
translated to the equivalent SFP-formula ϕ∗ := [sfpR,x,yψ

∗(x, y)∨∃z Rxz ∧
ψ∗(z, y)](u, v). However, under the standard operational semantics, this for-
mula might not terminate although, given the operational semantics above,
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the TC-formula does. To avoid this we recursively translate ϕ to ϕ∗ :=
[sfpR,x,y(x = u∧ψ∗(x, y))∨∃z(Rxz∧ψ∗(z, y))](u, v). This closely resembles
the operational semantics we used for TC and thus guarantees termination
of the formulae.

17.4 Existential Fixed-Point Logic

In the previous sections we have seen that TC, SFP, and LFP all are expres-
sive complete for linear constraint databases. Regarding existential fixed-
point logic (E-LFP), it can easily be shown that this logic is much weaker
than the other three. In fact, there are even first-order definable queries
that are not expressible in existential fixed-point logic. An example is the
boolean query that is true for all databases which are bounded, i.e. where
there is a number c such that there is no point in the database with an
coordinate greater than c. This can easily be expressed in first-order logic.
As it is known that FO ∩ E-LFP is exactly the class of positive existential
first-order formulae and that these formulae are preserved under extensions
of the structure, it is easily seen that this query cannot be expressed in
existential fixed-point logic.

17.5 Dense Linear Orders

In this section we consider dense linear order databases, e.g. constraint data-
bases over (R, <,+). Fixed-point logics on this class of databases have been
studied in [BST99, GK99, Kre99b] where it is shown that questions about
fixed-point queries on dense order databases can be reduced to the corre-
sponding questions on finite databases. In [GK99] it is shown that for each
dense linear order database B there is a finite ordered database inv(B) with
universe B, called the invariant of B, such that

• there is a function π̂ from finite subsets S ⊆ B to LFP-formulae over
(R, <,+) and

• for each LFP-formula ϕ on B there is a LFP-formula ϕ′ on inv(B)

with the property that if S = ϕ′(inv(B)) is the result of the evaluation of ϕ′

in the invariant of B and P := {a : (R, <,+) |= π̂(S)} is the set of elements
satisfying the formula π̂(S), then

R = ϕ(B),

where ϕ(B) denotes the set of tuples satisfying ϕ in B.
Now, as on finite ordered structures, SFP and LFP are equivalent, it

follows that the formula ϕ′ on the finite ordered database is equivalent to a
formula ϕ∗ in stratified fixed-point logic. To obtain a stratified fixed-point
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formula equivalent to the original query ϕ we have to transform ϕ∗ back to
a formula over B. It follows immediately from the results proved in [GK99]

that there is a stratified fixed-point formula ψ over B defining the relation
R as above. Thus we have shown the following theorem.

17.9 Theorem. Stratified fixed-point logic and least fixed-point logic have
the same expressive power on the class of finitely representable structures
over the real line (R, <). Further, TC is less expressive than SFP provided
that NLogspace is different from Ptime.
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Chapter 18

Tractable Query Languages

In the previous chapter, we have seen that transitive-closure logic provides an
expressive complete query language for linear constraint databases. In this
chapter, now, we present two tractable yet still expressive query languages.
They are obtained by extending the logic FO(conv) defined in Section 16.3.1
by least fixed-point constructs. The resulting logics can be shown to ex-
press precisely those closed linear constraint queries which are computable
in Ptime, i.e. the logics capture Ptime on the class of linear constraint
databases.

18.1 The Logic RegLFP(conv)

Let S ⊆ Rd be a semi-linear set. Recall the definition of arrangements A(S)
from Section 16.2.2. Arrangements are dissections of Rd into finitely many
disjoint regions, i.e. connected subsets of Rd, such that for each region R
either R ∩ S = ∅ or R ⊆ S. Thus, the input relation S can be written as
a finite union of regions in its arrangement. Further, it was shown that for
any fixed dimension, arrangements of semi-linear sets can be computed in
polynomial time.

In this section we consider a query language which has access to the set
of regions in an arrangement of the input database. This gives the logic a
limited access to the representation of the database and, with it, increases
its expressive power. Precisely, we consider a fixed-point logic where the
fixed-point induction is defined over the finite set of regions. The semantics
of the logic is defined in terms of certain two-sorted structures, called region
extensions. Let B := ((R, <,+), S) be a database and let A(S) be the set
of regions in an arrangement of S. The logic then has separate variables and
quantifiers for the reals and the set of regions.

We now give the formal definitions.

18.1 Definition (Region extensions). Let B := ((R, <,+), S) be a linear
constraint database, where S is a d-ary relation, and let A(S) be the set of

215
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regions in an arrangement of S. The structure B gives rise to a two-sorted
structure BReg := ((R, <,+), S;Reg, adj), called the region extension of B,
with sorts R and Reg := A(S) and the adjacency relation adj ⊆ Reg × Reg,
where two regions are adjacent if there is a point p in one of them such
that every ε-neighbourhood of p has a non-empty intersection with the other
region.

The dimension of a region is defined as the dimension of its affine sup-
port, i.e. the dimension of the smallest affine subspace it is contained in. It
is known that the number of regions in the arrangement is bounded poly-
nomially in the size of the representation of S. As arrangements can be
computed in polynomial time, the region extension of a given database is
polynomial time computable also.

We now define the logic RegLFP(conv) which is FO(conv) augmented
with a least fixed-point operator on the set of regions in the region extension.
There are three different types of variables, so-called element-, region-, and
set variables. Element variables will be interpreted by real numbers and
region variables by regions in the region extension of the database. Set
variables are equipped with a pair (k, l) ∈ N2 of arities. A set variable of
arity (k, l) is interpreted by subsets M ⊆ Regk × Rl, such that for every
R ∈ Regk the set {x : (R,x) ∈M} is finitely representable.

18.2 Definition. The logic RegLFP(conv) is defined on region extensions
as the extension of FO(conv) by a least fixed-point operator. Precisely, the
logic extends FO(conv) by the following rules.

• If R is a region variable and x is a sequence of element variables, then
Rx is a formula.

• If ϕ is a formula and R a region variable, then ∃Rϕ is also a formula.

• If M is a set variable of arity (k, l), R := R1, . . . , Rk is a sequence of
region variables, and x := x1, . . . , xl is a sequence of element variables,
then MRx is a formula.

• Let x := x1, . . . , xl be a tuple of element variables, R := R1, . . . , Rk
be a tuple of region variables, and M a free (k, l)-ary set variable. If
ϕ(M,R, x) is a formula such that M occurs only positively in ϕ, then
[tlfpM,R,x ϕ](R,x) is a formula.

• If ϕ(x) is a formula and x, y, z are element variables, then x ·ϕ y = z
is a formula.

RegLFP(conv)-queries are defined by RegLFP(conv)-formulae without free
region or set variables.
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The semantics of the new rules is defined as follows. An atom Rx states
that the point x is contained in the region R. An atom MRx is satisfied if
the tuple (R,x) is contained in M . A formula ∃Rϕ is true if there is a region
R ∈ Reg satisfying ϕ. The semantics of conv, uconv, and ·ϕ is defined as in
the previous section.

Finally, let M be a (k, l)-ary set variable, R := R1, . . . , Rk be a sequence
of region variables, x := x1, . . . , xl be a sequence of element variables, and
ϕ(M,R, x) be a formula positive in M . The result of the formula ψ :=
[tlfpM,R,xϕ](R,x) evaluated in a database B is defined as the least fixed-
point of the function fϕ defined as

fϕ : Pow(Regk ×Rl) −→ Pow(Regk ×Rl)
M 7−→ {(R, a) ∈ Regk ×Rl : (∃y (R, y) ∈M ∧ (R, a) ∈M) ∨

(¬∃y(R, y) ∈M ∧B |= ϕ(M,R, a))}.

Clearly, the function is monotone and thus its least fixed-point exists and
can be computed inductively in time polynomially in the number of regions
and thus also in the size of the database.

Intuitively, we can think of the stages of the fixed-point induction as a
set of tuples R of regions, where for each R there is a formula ϕR(x) attached
to it defining a set of points in Rl. Once a tuple of regions is contained in
some stage of the fixed-point induction, the formula attached to it cannot
be changed anymore. This is ensured by the first disjunct in the definition
of fϕ.

Note that the definition of the logic does not use any features particular
to arrangements. All that is needed is a partition of the underlying spaceRd into a set of regions which respect the database relation S. Further,
this set of regions should be computable in polynomial time in the size of
the database. Therefore, in practical applications, a decomposition into
regions that is better suited for the particular application area can be used.
For instance, a CAD system might use a decomposition where the regions
consist of the intersections of lines and the part of the lines in between.

We now give an example motivating the definition of the fixed-point
operator.

18.3 Example. Consider a road map with cities and the roads connecting
them. Typically, such maps contain information about the distance between
any two adjacent cities directly connected by a road. In this set-up, a useful
decomposition of the input into regions is to have a region for each city, one
for each section of a road between two cities, and regions for the other parts
of the map.

Suppose we plan to travel from one city to another and want to know the
distance between these two cities. Let the constants s, t denote the regions of
the source and target city and assume a formula dist(C,C ′, d), stating that
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C and C ′ are regions of adjacent cities and d is the distance between both.
Then the formula

ϕ(x) := [tlfpM,C1,C2,d dist(C1, C2, d) ∨ (∃C ∃d1 ∃d2 M(C1, C, d1) ∧
dist(C,C2, d2) ∧ d = d1 + d2) ](s, t, x)

defines the distance between the two cities. Here the real variable d in the
fixed-point induction is used to sum up the distances.

We proceed by establishing an upper bound on the data complexity of
the evaluation problem for RegLFP(conv)-formulae. Let ψ := [tlfpM,R,xϕ]
be a formula. Intuitively, we take a semi-naive evaluation strategy. Each
tuple R of regions in the interpretation of the set variableM has a quantifier-
free formula ϕR(x) attached to it, with free element variables x. Once such
a tuple R is added to M , the attached formula cannot be changed in the
successive steps. This is enforced by the first disjunct in the definition of fϕ.
By induction on the structure of the formula we get that for each tuple R of
regions, the sub-formula ϕ can be evaluated in polynomial time. As there
are only polynomially many regions and in every stage of the fixed point
induction at least on tuple of regions must be added to M, it follows that
the fixed point of ϕ can be computed in polynomial time. This establishes
the following theorem.

18.4 Theorem. RegLFP(conv) is closed and has Ptime data complexity.

The theorem gives an upper bound for the evaluation complexity of
RegLFP(conv). We now turn towards establishing lower bounds. Precisely,
we aim at showing that the logic is expressive enough to capture all polyno-
mial time computable queries on linear constraint databases. The proof of
this follows the usual line by showing that the run of a Turing-machine on a
linear constraint database can be simulated by a formula of the logic, pro-
vided that the running time of the machine is polynomially bounded. In the
simulation, positions on the Turing-tape and time steps will be represented
by tuples of region variables. However, there are cases where there are not
enough regions to represent every position on the Turing-tape used by the
Turing-machine. Therefore we have to adopt the following restriction.

18.5 Definition. A linear constraint database B has the small coordinate
property if the absolute values of the coordinates of points contained in a
0-dimensional region are bounded by 2O(n), where n is the number of regions
in the region extension of B.

An example of a database violating this definition is one that contains
only very few regions but which are far away from the origin 0̄. In such
a case there are not enough regions to define a binary representation of
coordinates of points in the database. However, usually this restriction is
never a problem.
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18.6 Theorem. RegLFP(conv) captures Ptime on the class of linear con-
straint databases having the small coordinate property.

Proof. We take the usual approach to show capturing results by coding the
runs of Turing-machines. See [EF99] and [Imm98] for details. In the approach
taken in finite model theory, configurations of Turing-machines are coded by
sets of elements from the finite universe. A fixed-point induction is then used
to build up the sequence of configurations constituting the run of the Turing-
machine. As in RegLFP(conv) the fixed-point induction is defined over sets
of regions, we use set and region variables to code configurations of Turing-
machines. These variables will only range over point regions, i.e. regions
of dimension 0. Clearly, this can be enforced by the formulae but to ease
notation we will never do this explicitly. Instead, we agree that unless
said otherwise, all region variables range over the set of point regions. As
such regions only contain a single point, the lexicographical order on the
coordinates of these points induces a total order on the set of point regions.
Thus, this set is isomorphic to ({0, . . . , n − 1}, <) for some n. We use this
to encode configurations as common in finite model theory.

Let Q be a Ptime-query and let M be a Turing-machine computing Q.
There is a fixed k ∈ N, such that the running time of M can be bounded by
nk, where n is the number of point regions in the input structure. We aim
at defining a RegLFP(conv)-formula ϕM coding the run of the machine. In
the sequel, capital letters denote set variables and small letter denote region
variables. Element variables are not used in the proof. The configurations
of the machine are encoded as follows. Essentially, there are set variables
Xq(t1, . . . , tk) for each q ∈ Q, stating that the machine is in state q at time t,
a variable Ya(t, p1, . . . , pk) for each a ∈ Σ stating that at time t the position
p on the Turing-tape contains an a and, finally, a variable Z(t, p) stating
that at time t the head position is p.

Since we model the run of the Turing-machine by a least fixed-point
computation, we have to encode the configurations of the machine in one
single relation only. Thus we use a 2k+2-ary relation C(r, a, p, t) interpreted
as follows. C contains all tuples (r, a, p, t) such that

• r = 0, a denotes a state q ∈ Q of M and Xqt,

• r = 1, a denotes a symbol of the alphabet and Ya(t, p), or

• r = 2, a = 0 and Z(t, p) holds true.

Essentially, the formula ϕM consists of three parts: the first defines the start
configuration, the second the run of the machine, and the third decodes the
output.

An input database B := (R, <,+, S) is coded on the Turing-tape as
follows. The relation S is encoded by storing the regions of the region
extensions of B and specifying, which regions are subsets of S. Any bounded
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region can be identified by the coordinates of its vertices. Thus the bounded
part of the relation S is stored by first writing down the coordinates of the
points in the point regions and then specifying for each 1 ≤ i ≤ d + 1 and
each i-tuple of points whether their open convex hull is contained in the
relation. The following figure demonstrates this.

1st point︷ ︸︸ ︷
|p1

1|p
1
2| . . . |p

1
d| | . . .

m-th point︷ ︸︸ ︷
|pm1 |p

m
2 | . . . |p

m
d |︸ ︷︷ ︸

Point set

# |d0
1|d

0
2| . . . |d

0
m|︸ ︷︷ ︸

Dimension 0

. . . |dd1|d
d
2| . . . |d

d
md+1 |︸ ︷︷ ︸

Dimension d

An entry pij denotes the bit representation of the j-th coordinate of the
i-th point. Each coordinate consumes n bits on the tape. Here, the small
coordinate property is needed as otherwise it is not guaranteed that there are
enough bits, i.e. regions, to store the representation. The points on the tape
are ordered according to the order induced by the lexicographical ordering
of the coordinates. An entry dij equals 1 if the open convex hull of the j-th
i-tuple of points is entirely contained in the input relation. Otherwise it is
0. The unbounded regions can be coded similarly. Instead of the vertices
identifying the bounded regions, we use half lines delimiting the unbounded
regions. These are represented by two points as indicated by the uconv-
operator.

Using this representation we can easily define ϕStart. The only subtle
part is the encoding of the bit representation of the point’s coordinates.
Given an integer a, a formula ψ(R) which is satisfied by the i-th region
if, and only if, the i-th bit of a is true can be defined using a least fixed-
point induction enumerating all regions and tagging them with 1 if the
corresponding bit is 1.

The second formula, ϕCompute(r, a, t, p), coding the run of the Turing
machine, can be defined as in finite model theory. For each time step t,
ϕCompute(r, a, t, p) defines the configuration after the t-th computation step.
See [Grä03] and [EF99] for details.

We assume that the output of the Turing-machine is given in the same
form as the encoding of the input. A formula decoding this output can
easily be defined using an application of the tlfp operator to decode the
bit representation of the point’s coordinates and then using the conv and
uconv operator to compute the interior of the region represented by a tuple
of points. �

18.2 Finitary Fixed-Point Logic

The query language introduced in the previous section depends on a spe-
cific decomposition of the input database. Thus, its usability relies on the
existence of a decomposition which can easily be understood by the user.
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Although this is the case in some application areas, it will be a problem in
others. In this section we present a way to overcome this dependency on a
specific, intuitive decomposition.

We already mentioned that finiteness of a semi-linear set is first-order
definable. Thus, we may use a formula finite(ϕ), which, given a formula ϕ,
evaluates to true if, and only if, the set defined by ϕ is finite.

18.7 Definition. Finitary Fixed-Point Logic (FFP) is defined as the exten-
sion of FO(conv) by the following fixed-point construct. If x := x1, . . . , xk
and z := z1, . . . , zl are sequences of first-order variables, R is a (k + l)-ary
second-order variable, ϕ(x) and ψ(R,x, z) are formulae, such that R does
not occur in ϕ and only positively in ψ, then [flfpR,x(ϕ,ψ)](u, v) is a for-
mula with free variables {u, v}, where u, v are sequences of variables of arity
k and l.

The semantics of a formula χ := [flfpR,x(ϕ,ψ)](u, v) is defined as the
least fixed-point of the function

fχ : Pow(Rk+l) −→ Pow(Rk+l)
R 7−→ {(x, z) : (∃y (x, y) ∈ R ∧ (x, z) ∈ R) ∨

((¬∃y (x, y) ∈ R) ∧B |=

(
finite(ϕ) ∧ ϕ(x) ∧
ψ(R,x, z)))

)
},

where B is the input database. Intuitively, the formula ϕ serves as a guard,
ensuring that the fixed-point induction runs over the finite set defined by ϕ
only. As before, the variables z can be used to attach some information to
a tuple x contained in an induction stage.

Regarding the expressive power of this language, one can easily show
that the languages RegLFP(conv) and FFP are equivalent. The expressive
power of this construction relies on the fact that an encoding of the input
database by a finite set of points can be defined in RegFO(conv). Using
this encoding one can replace the fixed-point induction on the regions by a
fixed-point induction on the finite representation.

Thus, FFP captures Ptime on the class of linear constraint databases.

18.8 Theorem. (i) FFP captures Ptime on the class of linear constraint
databases having the small coordinate property.

(ii) RegLFP(conv) and FFP have the same expressive power on the class
of linear constraint databases.
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