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Abstract—Courcelle’s famous theorem from 1990 states that theorem, and the far-reaching consequences that extsnsion
any property of graphs definable in monadic second-order logic  of this result to interesting classes of graphs of unbounded
(MSO2) can be decided in linear time on any class of graphs  yeq_width would have, it is surprising that not much is

of bounded tree-width, or in other words, MSO; is fixed- L .
parameter tractable in linear time on any such class of graphs. Known about such limits for MS©model checking. To

From a logical perspective, Courcelle’s theorem establishes a fully understand the (parameterized) complexity of mooadi
sufficient condition, or an upper bound, for tractability of second-order logic with respect to particular classes of

MSO2-model checking. _ _ graphs, we need to understand necessary conditions for
Whereas such upper bounds on the complexity of logics have  tractapility as much as sufficient conditions; but for some

received significant attention in the literature, almost nothing . .
is known about corresponding lower bounds. In this paper we reason necessary conditions have so far not been studied in

estbalish a strong lower bound for the complexity of monadic ~much depth.
second-order logic. In particular, we show that if C is any A first lower bound for the complexity of monadic second-

class of graphs which is closed under taking sub-graphs and order logic appeared in [8] and has been extended lin [6].

whose tree-width is not bounded by a poly-logarithmic function ; _ ;
(in fact, log®n for some small ¢ suffices) then MSQ-model In these papers, it was shown that MS@odel-checking

checking is intractable onC (under a suitable assumption from IS not fixed-parameter tractable on any class 0f28graphs
complexity theory). where a) the tree-width is strongly unbounded by~ n

(see Definitiod 1.1 below) and b) which actbsed under

colouringsfor a fixed setl" of colours, i.e. ifG € C and

G’ is obtained fromG by colouring some vertices or edges
In 1990, Courcelle proved a fundamental result stating thaby colours fromI", then G’ € C. These papers establish

every property of graphs definableimonadic second-order powerful logical and algorithmic tools for proving such

logic with edge set quantificatiofMSO,), the extension of intractability results and we will resort to some of these

first-order logic by quantification over sets of vertices andtools below. However, closure under colourings is a very

edges, can be decided in linear time on any alaségraphs  strong condition as it allows to “mark” bad sub-structures

of bounded tree-width. This theorem has important consein a graph.

quences both in logic and in algorithm theory. In the theory |n this paper we aim for a much stronger intractability

of efficient algorithms on graphs, it can often be used as @esult for MSQ. To state the main result formally we first
simple way of establishing that a property can be solved itheed some notation.

linear time on graph classes of bounded tree-width. Besides ) )

being of interest for specific algorithmic problems, result Definition 1.1. The tree-width of a clasg of graphs is
such as Courcelle’s and similatgorithmic meta-theorems Strongly unboundedy a functionf : N — N if there is
lead to a better understanding how far certain algorithmi¢ < 1 and a polynomialp(z) s.t. for alln € N there is a
techniques, such as dynamic programming on bounded tre€faph G, € C with

width graphs, range and establish general upper bounds forl) the tree-width of7,, is betweem and p(n) and is not
the parameterized complexity of a wide range of problems.  bounded byf(|G,|) and

See|[4], [7] for recent surveys on algorithmic meta-the@em 2) givenn, G,, can be constructed in timg"".

From a logical perspective, Courcelle’s theorem estab-l-he degree of the polynomial is called thegap-degree
lishes a sufficient condition for tractability of MSGormula of C (with respect tof). The tree-width ofC is strongly

evaluation on classes_ of Q“'f‘PhS or structures: Whatevqfnbounded poly-logarithmicallif it is strongly unbounded
the classC may look like, if it has bounded tree-width, by log®n, for all ¢ > 1.

then MSQ-model checking is tractable af. An obvious
guestion is how tight the theorem actually is, i.e. whetherThe main result of the paper is the following theorem.
!t can be extended to clasges of unboundgd tree-width atheorem 1.2. LetC be a class of graphs closed under sub-
if so, how large the tree-width of graphs in the class can

be in general. Given the considerable interest in Courselle graphs, i.e.G: € C and i C ¢ implies H € C.

I. INTRODUCTION



1) If the tree-width ot is strongly unbounded byg®*” n, Overview of the proof. Let us briefly sketch the main
where v > 1 is larger than the gap-degree df, idea of the proof. Let be a class of graphs with tree-width
thenMC(MSO,, C) is not in XP, and hence not fixed- strongly unbounded bjog® n, for some suitable.
parameter tractable, unlesSAT can be solved in sub- We aim at reducing the propositional satisfiability problem
exponential time2°(™), SAT to MC(MSQ,,C). Towards this aim we will first

2) If the tree-width ofC is strongly unbounded poly- construct an MS@formulap, depending only on a Turing-
logarithmically thenMC(MSO., C) is not in XP unless machine deciding SAT, and then, given a SAT-instance
all problems in the polynomial-time hierarchy can be construct a graplz,, € C so thatG,, = ¢ if, and only
solved in sub-exponential time. if, w is satisfiable. The idea is to encode the instance

in the graphGG,, so that a) the instance can be decoded by

Here, MQMSO,,C) refers to the parameterized model- X )
checking problem for MS®as defined below. We will give the MSQ-formula o and b) the graph_ﬂw contains enough
structure so that the formula can simulate the run of a

a justification for the two cond|t|ops in Definition 1.1 below }l’uring—machine deciding SAT on input,
once we have sketched the main arguments of the proof. .. ~. =~ . : . . .
Similar ideas in connection with tree-width have been

To give an example, the theorem implies that the class | in th h | hi h
of all (or all planar, bipartite, etc.) graphs of tree-width employed in the past and the usual approacn s to use the
' ’ : result, known as the excluded grid theorem (see e.d. [12]),

tw(G) < log* |G| does not have tractable MSGnodel- . -
checking unless SAT can be solved in sub-exponential timet.hat there is a functiorf : N — N such that every graph of

. : tree-width f (k) contains ak x k-grid (as a minor, which is
Related work. The result in this paper complements the ood enough). Such a grid provides the structure we need
intractability result in [6] in that it refers to classes ahghs 9 gn)- gnad p

; to simulate runs of Turing-machines in Mg@nd encoding
closed under sub-graphs and does not require any colour, . . . . :
" e SAT instancev in a grid can easily be done by deleting
a much more natural condition.

In [4, Conjecture 8.3], Grohe conjectures the following. certain edges (see Section V-C). .
. . . : However, the best known bound for the functipiknown
(The original conjecture is formulated in terms of branch-

width but this is equivalent to the formulation here.) to d"’“‘? 'S exponenua} anq as we are dealing W|th_graphs of
) ~tree-width only logarithmic in the number of vertices, the

Conjecture (Grohe). Let C be a class of graphs that is grids we are guaranteed to find in this way are essentially

closed under taking sub-graphs. Suppose that the tredxwidtony of orderlog log |G, | which is much too small for any

of C is not poly-logarithmically bounded, that is, there is rgquction to work.

no constantc such thattw(G) < log® |G| for every G e Instead of using grids, therefore, we will use a new
C. Then the model-checking problemMBQ; is not fixed  stryctural characterisation of tree-width developed bpdRe
parameter tractable o and Wood|[11] and made algorithmic in [6] which replaces

Clearly, with current technology there is no hope to provegrids by grid-like minors It was shown in[[11] that any
any such conjecture without relating it to assumptions ingraph contains a grid-like minor of order polynomial in its
complexity theory (as the conjecture impliesAPPSPACE). tree-width and in[6] it was shown that these are computable
In this sense our result only proves Grohe’s conjecture modin polynomial time. The main problem with grid-like minors
ulo complexity theoretical assumptions and the additionals that a) they can resemble cliques rather than grids and b)
conditions on strongly unboundedness necessitated by thithey do not occur as minors of the graph itself but only of
On the other hand, our result is stronger than the conjecturthe intersection graph of sets of pairwise disjoint patle® (s
in that we only require a fixed log-power rather than polylog.Section Il for details). As indicated above, we would like to

In [10], Makowsky and Mafio study similar questions encode a SAT-instance in a grid by deleting certain edges.
in relation to classes of graphs closed under topologicaBut as grid-like minors only occur as minors of intersection
minors (see below). They show that any such class mugraphs, deleting an edge in a graphhas no predictable
have bounded tree-width for MSOmodel-checking to be implication for the grid-like minor which makes encoding
fpt. Closure under topological minors is a much strongerSAT-instances using grid-like minors extremely difficult.
condition simplifying the proof significantly. However, in  Therefore, instead of encoding SAT-instances in grid-
the same paper, the authors give examples for classdi&e minors directly, we will impose a labelling of the
of graphs of unbounded clique-width but with tractable grid-like minor externally. For this, given a SAT-instance
MSO; model-checking. These examples can be adapted te := w;...w; and a graphG of sufficiently high tree-
examples of classes of graphs which are closed under sulvidth, we construct a tred” C G which has a special
graphs, whose tree-width is only bounded logarithmicallystructure so that there is an M&@rmula defining a linear
(but which almost have logarithmic tree-width) and on whichorder on trees of this structure. Furthermore, this pdgicu
MSO, model-checking is tractable. This shows that in full structure of the tree allows us to encode the letigrs sub-
generality, our results can not be strengthend much beyonlees of " containing some of the leaves (we will call these
the log®®” n bound postulated in our result. single crossegencoding0) and double crossegencoding



1)). Hence, the order imposed @ntogether with the ability

to encode letters allows us to encode the SAT-instande

T. We will then show thatZ also contains a grid-like minor

which is attached to the tre€ so that the word encoded

in T" can be transferred to a unique labelling of the grid-

like minor. Hence, we will use this external tree to encode Figure 1. Elementary x 6-wall.
the SAT-instance and the grid-like minor as the structure we

need to simulate the run of a Turing-machine on the encoded

input. The treel’ together with the grld-llke minor attached of the paper. Fina”y, in Sectiomv we present the |ogica|
to it is called alabelled tree-ordered wehnd is illustrated  aspects of the paper. We conclude in Sectioh VI.
in Figure[2.

Finally, as we assume that the claSsof graphs we [1. PRELIMINARIES

\(,)vrct)jr:relg vlvsebdgisgrsugge; S:’ab'ﬁraanpgznctg'siflzgg:hesdntree' We use standard notation from graph theory and refer
the MSGQ,-formula which degodzs the encoded SAT—insta?ncet0 [2] for details. All graphs in this paper are simple and

; . . undirected. We writd”(G) and E(G) for the set of vertices
and simulates the run of a TM on it was fixed-parameter,

. . ... —and edges of a grapti and assumé’/(G) N E(G) = 2.
tractable, then we could solve SAT in sub-exponential t|meWe letdeg, (v) denote the degree of vertexin G. A path

On strongly unbounded tree-width. Let us give some p c ¢ in a graphG is a connected acyclic sub-graph in
justification for the two conditions in Definition 1.1. Thesir  \hich degp(v) < 2 for everyv € V(P).

condition is a consequence of the fact that we prove our main Tree-width is a global connectivity measure of graphs that
result by reducing an NP-hard problem to MSO;,C).  was introduced by Robertson and Seymour in their graph
Without this condition there could simply be too few graphs pinor series. Essentially, it associates to each gr@ph

of high tree-w_idth inC to define a reduction. To give numbertw(G) € N measuring how similar a graph is to
an example, fix a constant and let H, be the graph peing a tree. We will not need the precise definition in this
constructed from the: x n-grid by replacing every edge paper and therefore refer the reader to [2] for a definition
by a path on2m vertices, wheren = n2. The resulting  of tree-width.

graph hasO(2V") vertices and tree-widthh. Now let

¢ = {H, : n = 2¥i > 0} and letC be the sub-
graph closure ofC’. If ¢ > 29, then the tree-width of

is unbounded byog®’ n but not strongly unbounded by this
function, while being closed under taking subgraphs. To se
this, take a graphfl,, € C’, for somen = 2¥, i > 2. Many natural classes of graphs, for instance series-hrall
Any sub-graphH C H, is either acyclic, and therefore graphs, are found to have bounded tree-width.

has tree-widthl, or it contains a path of Iengt?%. Thus,
H,, does not contain any sub-graph C H,, of tree-width
2t < tw(H) < p(2%) such thattw(H) > log® |H|, for any

Definition 2.1. Let f : N — N be a function andC be
a class of graphs. The tree-width 6fis bounded byf if
tw(G) < f(|G)) for all G € C. C hasbounded tree-widtfif
gs tree-width is bounded by a constant.

Definition 2.2. A sub-divisionof a graph H is a graph
H'’ obtained fromH by iteratively replacing some edges by
paths of lengtt2. The original vertices off in H' are called

fixed polynomialp. It follows that if we wanted to us€ h s of I in H'. If he tai b-divisi
for a reduction as outlined above, there wouldn’t be enougﬁ enails o n A1 a graph & contains a sub-civision
Qf H, we call H a topological minorof G.

graphs of large tree-width to reduce to: given an instance o
SAT of length?2¢ for an i that is not close to a power of
2, we would have no chance in identifying a graphCirio
perform a reduction in polynomial time. Therefore, as long
as we have to rely on reductions to prove results as in thi
paper, a condition similar to Conditioh seems necessary.
The second condition is necessary to prevent artificialas
where constructing a graph in the claSsis already so We will always think of the vertices of a wall as being
expensive that any reduction would take too much time. numbered in a way thal, 1) is the vertex in the “bottom-
Organisation. The paper is organised as follows. In Sec-left corner”. The “bottom-row” of am x m-matrix is then
tion|ll/we recall notation and concepts from graph theory.the row 1.

We recall monadic second-order logic in Section Ill. In Sec- Let P andQ each be a set of disjoint paths of a gragh
tion[IV]we define the labelled tree-ordered webs discussetiVe denote byZ(P, Q) the intersection graphof P and Q
above and show that every graph of sufficient tree-widthdefined as the bipartite graph with vertex U Q and an
contains such a structure. This is the main technical pantdge between two vertices if and only if the corresponding

Definition 2.3. Let n,m > 0 be integers. Arelementary
n x m-wall is a graph as indicated in Figurel 1. Am x m-
wall is a sub-division of an elementany x m-wall. The
nails of a wall are the vertices of the elementary wall it is
eobtained from by sub-dividing edges.



paths intersect. The following definition is adapted from is true in a graphG if, and only if, G is 3-colourable.
Reed and Wood's [11] definition of grid-like minor. Model Checking.The model checking problemlC(MSO,)

Definition 2.4. Let P and Q be each a set of disjoint for MSQ, is defined as the problem, given a structure
paths in a graph. (P, Q) is called atopological grid-like G and a formulay € MSQ;, to decide if G [= ¢. In
minor of order? in G if Z(P, Q) contains a sub-division [13], Vardi proved that MEMSO;) is PsPACEcomplete.
of the complete graphk,. The nails of (P, Q) are the However the hardness result crucially uses the fact that

paths corresponding to the nails of the sub-divisionsof ~ the formula is part of the input (and in fact holds on
in Z(P, Q). a fixed two-element structure), whereas we are primarily

interested in the complexity of checking a fixed formula

I1l. M ONADIC SECOND-ORDERLOGIC expressing a graph property in a given input graph. We

In this section we brleﬂy recall the definition of monadic therefore Study mode|_checking prob]ems in the framework
second-order logic. As we are mainly interested in graphgf parameterized complexitgsee [3] for background on

we only introduce MS@ on graphs. parameterized complexity).
The class of formulas ahonadic second-order logic with

edge set quantificationdenoted MSQ, is defined as the Deflpltlon 3.1. LetC bg a class obr-structures. Theparam-
extension of first-order logic by quantification over sets ofétérized model-checking problem NIKISO;, C) for MSO,
edges and sets of vertices. However, for the purpose of thign C is defined as the problem to decide, givére C and
paper it is more convenient to define it formally as monadic? € MSQ:[0], if G |= ¢. Theparameteis & := [,|.

second-order logic omcidence structures MC(MSO,, C) is fixed-parameter tractablépt), if for all
Signatures and StructuresA signatureo is a finite set of G € C andp € MSQ;[0], G |= ¢ can be decided in time
relation symbolsR each of arityar(R). A o-structureA  f(k) - |G|¢, for some computable functioffi and ¢ € N,
consists of auniverselU (A) and for eachR € o anar(R)-  wherek := |¢| is the parameter. The problem is in the class
ary relationR(A) C (U(A))> (). XP, if it can be decided in timéG|/*).

Incidence Structures. The signatureogmpn Of incidence An important aspect of parameterized complexity is that
structures is defined asyapn := {V,E, €}, whereV, E it is invariant under syntactic variations of the logic,. iie
are unary ande is a binary relation symbol. We will £ and £’ are equivalent in the sense that formulas of one
always usec in infix notation and writev €4 e instead logic can effectively be translated into equivalent forasul
of (v,e) € €(A). With any graphG we associate agapr-  Of the other logic, thenC is fpt on a clas< if, and only
structureA := G(G), its incidence structurewith universe if, L' is fpt onC. The corresponding statement is false for
U(A) :=V(G)UE(G) andV (A) := V(G), E(A) := E(G)  classical complexity.

andv €4 e if v € V(G),e € E(G) andv ande are incident As, for instance, the NP-complete problens-
in G. We will not usually distinguish between a graghand ~ Colourability is definable in MSQ MC(MSO,, GRAPHS),
its incidence structure. the model-checking problem for MSQbn the class of all

Monadic Second-Order Logi¢MSQ,). MSO, is the ex- graphs, is not fixed-parameter t_ractable u_nléSs: NP.
tension of first-order logic by quantification over sets of However, Courcelle proved that if we restrict the class of
elements (which can be vertices or edges). That is, iedmissible input graphs, then we can obtain much better

addition to first-order variables, which we will denote by results.

small lettersr, v, ..., there are variableX, Y ... ranging OVer  Theorem 3.2 ([1]). MC(MSO,,C) is fixed-parameter
sets of elements. Formulas of M§@] are then build up  yractable, with parametety| + tw(G), on any classC of

induct_ively by_ Fhe rules for_ first_-order logic F& with t_he graphs of tree-width bounded by a constant.
following additional rules: ifX is a second-order variable

and ¢ € MSO;[cU{X}], then 3Xp € MSO,[o] and IV. LABELLED TREE-ORDEREDWEBS
VX € MSO; o] with the obvious semantics where, e.g., a The goal of this section is to prove the main algorithmic

fotmula X Is true in a'a-strucFureG_ if there IS a sub.set aspects of this paper. As indicated in the introduction, we
X' < u(G) suc/h thatp IS true in G it t_he_varlabIeX IS" " aim at encoding instancesof an NP-hard problen®, i.e.w
mterpreted byX'. We write G |= ¢ to indicate thatp is is a word over the alphab¢0, 1}, in graphs of large enough
true in . . ' : tree-width. The core algorithmic problem is to identify a
I.f plz) is a formula W'.th a free first-order variableand structure so that there is a polynomjalsuch that given a
G is a structure, we writep(G) for the set{v € U(G) : word w of lengthm and a graph of tree-width at legstm),
G.’; g[izle}.aﬁeeiggn]];?er Thoerf‘o(l)lrc])vwnngMQGIormula G contains such a structure encodingas a sub-graph. The
' structure we are after, which we cddlbelled tree-ordered

3C13C53CsVx Vf’zl xeC; A webs is indicated in Figure 2. Starting with a certain graph
Vavy((z,y) € E — Nicicz (€ Ciny € Cy)) provided in [6] that contains a grid-like minor of large orde



Definition 4.5. A full sub-treeof a treeT" is a connected
component of’ — e, for some edge € E(T'). A tree-web
W= (G,T,A,P,Q) is niceif
1) G has no vertex of degreg
2) if P = (vg,...,v) is a good path withyy € A, then
vy does not lie on any other path,
3) every full sub-tree of” with at least2 vertices contains
at least2 good vertices.
4) every leaf ofl" is good, and
5) the neighbour of every leaf @f in T" is good.

Figure 2.

A labelled tree-ordered web encodiitp.

Note that the last two conditions are implied by the
third one. The proof of Lemma 4.7 below is based on the
combinatorial Lemma 4.6. They imply that we may assume

we incrementally modify it in the sub-sections below, addin X LS
pv.l.o.g. that any given tree-web is nice.

more and more structure to it, until we obtain a sub-grap
encodingw in a way that is recognisable by an MSO |Lemma 4.6. Let G := K}, be a clique onk vertices and
formula; and once this is done we can guess in M3@  assume at most edges ofG are coloured red and the rest
accepting run of a Turing-machine deciding the problBm are coloured blue. Thef¥ contains a blue clique? of size
on inputw. Due to lack of space, some proofs are omittedUg/gj that can be found in polynomial time.

in this extended abstract. )
Lemma 4.7. Given a tree-web)V of order ¢, one can

. ] , .
A. Tree-Webs colnstruct.a nice tree we_m/ of order at least|¢/3] with
W' C W in polynomial time.

Definition 4.1. A treeT is sub-cubicif its maximum degree
is at most3. A setA C V(T) is calledflat if every vertex

v € A has degree at mogtin 7.

Next, we would like to identify a unique root for a tree-web:

Definition 4.8. A tree-web(G, T, A, P, Q) admits a defin-

The notion of aree-web defined below, is central to this able rooff it contains exactly one vertexe V(T) of_degree
o . ] ) . .3 such that two components @f—r are single vertices and
work; in the subsequent sections, we will refine this notion

to finally obtain the structure that we need. the third contains at least one edge.

Lemma 4.9. Given a nice tree-weV = (G,T, A, P, Q)
with at least3 good vertices, one can construct a sub-
tree-webW' = (G',T",A’,P', Q') of the same order in
polynomial time such thay)’ admits a definable root and
|4’ = |Al/3.

Definition 4.2. A tree-webof order / is a tuple W =
(G, T,A,P,Q), so that

1) T is a sub-cubic tree,

2) (P, Q) is a topological grid-like minor of order’?
whose nails are paths from, . ) )

3) G=TUJPUJQ s a graph of maximum degrek B. Trees admitting a definable ordering

4) T only intersects with nails ofP, Q), In this section we show how to prune a given rooted free

5) the paths fronfP that are nails are either disjoint from with maximum degree, so that there is an MS&formula

T or intersectT in exactly one endpoint, and
6) A=V(I)NV(JP)isflatinT.
The vertices ofA are called thegood vertices of)V. The

(not depending orT") which at each branching node of the
tree distinguishes between the left and the right sub-tree.
Assume we are given a sub-cubic tfEevith a rootr and a

set X of vertices of the tree marked g®odand we would

like to retain as many good vertices as possible. Throughout
In caseall the nails in? are good and hence, intersect this section,X will always denote the set of good vertices;

with T, i.e. |A| = (2, we call the structure &ll tree-web  and we assuméeg,(r) = 1. We use the following notation:

The following lemma is an almost immediate consequence , | , ¢ V(T) then the children of are all neighbours

of the main algorithmic result in [6]. of v not on the unique path from to r.

o A leaf of T is a node of degreé in T', exceptr.

paths inP that start at a vertex ir4 are calledgoodpaths.

Lemma 4.3. There is a constant and a polynomial-time i o :
algorithm that given a graph@' of tree-width at least/!* « A vertex is calledeafyif it has a leaf as a neighbour.

finds either ary x ¢-wall or a full tree-web of order in G. « A branching vertexof 7' is a node of degreg in 7.
« A proper branching verteis a branching vertex that is

not leafy.
We call a leaf agood leaf if it is a good vertex.
An artificial leaf is a leaf ofT" that is not a good leaf.

Definition 4.4. A sub-tree-web of a tree-wedV =
(G, T,A,P,Q)isatree-webV’ = (G',T", A', P, Q") with o
G’ C @G. In this case, we writéV’ C W. o



o Letv € V(T) be a vertex with childu € V(T') and
e = {v,u}. The sub-treel;, of T rooted atu is the
component ofl’ — e containingu. The extended sub-
tree of u is defined asl, U e. N N N N 12 N

« SUBTREE(v) denotes the extended sub-tree of ite @ + @ >q+q¢ >qf +q5 > (5)§ +q5
child of v, where we number the children arbitrarily. 1-8

« NBV(T,v) : next (i.e. closest) branching vertex ¢ain a3 - (( 5 )3 +33) @
T,; or the leaf ofT, if T, is a path; is defined only if 2 2
v has degred in T,,. > = (a1 +q)*.

e gx(T) :=[X NV(T)| is the number of good vertices Let v, R. Ty, andT, be defined as in the algorithm. Define
in T'. We omit the index x if it is clear from context. ¢y := g(R—v), q1 := g(T1 —v), ¢2 := 9(T»), ¢ := q1 + @2,

andq' := g(T). First, note that if suffices to show > ¢3

since this implies

If q,q1,q2 are non-negative integers with= ¢; + ¢ and
q1 < q2, we haveg, = 3¢ andq = (1 — j3)g, for some
B > 1. Hence, we obtain with Inequality (1)

(SN
Wi
wlno

Wl
Wl

Definition 4.10. Let (7', r) be a rooted sub-cubic tree;

« two verticesu,v € V(T') are topological neighbour
they are linked by a path whose inner vertices all have  ¢(T") = gy +¢' > qo + ¢° > (g0 + q)% = g(T)
degree2 in T . ) .

« a branching vertex is calledproperly markedf it has DY Inequality (2). Consider the fg)llowmg cases.

a leaf or a leafy vertex as a topological neighbour in (i) If 7} is a path, theg’ > q+qgs > q§ by Inequality (2).
the sub-tree rooted at; and _ Similarly, if Ty is a path, ther > ¢} + > > ¢%.

o T is called properly markedf every branching vertex

2
3

, (i) Otherwise, letT], and T3 be defined as in Step 2 of
of T is properly marked. the algorithm and let), := ¢(T%) and g}, := g(T7,).
Furthermore, letP be the path fromu to v excluding

We now define a pruning algorithrRRUNE(T', ) which,
u andv and letqp := g(P). Using Inequality(2) twice

given a rooted sub-cubic tre@’, ) outputs a treg7T”,r)

that is properly marked. more, we obtain

Algorithm PRUNE(T, 7). 0 =qp+dotd>aqr+ (L9034 5
Input. sub-cubic rooted tre€T’, ) with deg,(r) = 1. e ( 22 ) °
Output.  a properly marked sub-cubic rooted treg/, ). > (%1)% +q3 > q3

If T is a simple path than returii. Otherwise, letv :=
NBV(T,r), R be the path from to v, T} := SUBTREE (v),

and T3 := SUBTREE?(U) with g(Th) < g(T2). . Once we have a properly marked tree, it is possible to
1) Ifone of 7y, T; is a path, say;, return the tree obtained mark |eft and right sub-trees in a proper way using parity
from 7" by replacingTs; by PRUNE(T;_;). considerations, as follows.
2) Otherwise, letu; := NBV(T},v). Let Ty; :=
SUBTREE (7%, u1) and Ty := SUBTRER (T}, u;) with Definition 4.12. Let (7,r) be a sub-cubic tree rooted at
g(Ty1) < g(Ti2). Let T/ be the tree obtained from, ~ Vvertexr of degreel and X a set of good vertices that lies
by Cutting Ty, down to a Sing|e edge and rep|acing flatin 7. We say the 11,1[:)'6117 T,X) admits a definable order
Ty by T/, := PRUNE(T}2,uy). Finally, return7” as if for all branching verticesy with extended sub-tre€s :=
the union ofR, T}, andT} := PRUNET}). SUBTREE(v), for i = 1,2, exactly one of the following is
true. Along with the following conditions we will label some

a

Lemma 4.11. Let (7,r) be a rooted sub-cubic tree and ¢ p_trees aseft and others asight

X CV(T). T contains a properly marked sub-tré€ such
that gx (T") > gx(T)3. Furthermore,T” can be computed
in polynomial time on inputT’,r).

Proof.Let T" := PRUNET, ). We claim that(7”, r) fulfills

the requirements of the lemma. We prove the claim by
induction on the orden := |T'| of T. If T is a path there

is nothing to show. Otherwise, the fact tHEt is properly
marked is immediate from our recursive construction by
induction. It remains to bound the number of good vertices
that remain after the pruning. We first observe that for all

B>3
(57) +oi=1. &

1) At least one of}, 715 is a single edge, say;. If T5 is

also a single edge, thel; and T, are incomparable;
otherwiseT} is left andT5 is right.

2) Exactly one off’, T, is a simple path, sa¥;. ThenT;

is left andT5 is right.

3) Letwu; be the next proper branching vertex Bf if one

exists; otherwise let; be the leaf off}; that is farthest
away fromwv. Let P; be the path connecting and u;

in T;. We defingy; to be the number of vertices an
that are good or leafy. We require that exactly one of
g1, g2 is odd, sayg;; then T} is left andT5 is right.

The canonical ordex of (T, r) is defined as follows. Let
x #y € V(T) and letv be the common ancestor of y.



Thenz < y if and only ifz is in the left sub-tree of and
y in the right.

Lemma 4.13.Let (T, r) be a sub-cubic tree rooted at vertex
r of degreel and X C V(T') a given set of good vertices
that lies flat in7. T contains a sub-tred” and a setX’ C

X NT with [X'| > |X|3/2 such that(T”,r, X') admits a
definable order andX” is totally ordered by the canonical
order <. Furthermore, T’ can be computed in polynomial
time.

Finally, we can relate our construction to MSMy
the following lemma; its proof is immediate from Defini-

tion[4.12:

Lemma 4.14.Let (7, r) be a sub-cubic tree and C V(T')
such that(T, r, X) admits a definable ordering. L&MSO,-
formulasyr(v) andpx (v) defining the root of" and the set
X, respectively, be given. Then there is BISO,-formula
w<(x,y) which defines the canonical ordet.

C. Tree-Ordered Webs

In this section we show how to prune the tréeof a
given nice full tree-weld G, T, A, P, Q), so that there is an
MSO,-formula which can detect the nodes Bfin G and

at each branqhmg node of the tree dlstlngwshes_between We will show next how to encode a word
the left and right sub-tree. We use the same notion of a

topological neighbouras in the previous section, only that
now we consider degrees @, not in T"; this does make an
important difference, since good vertices have degreel’
but degree3 in G. Additionally, we call a vertex € V(G)
special inG if it has degreel or has degred and isnot

properly marked, i.e. does not have a leaf or a leafy vertex

as a topological neighbour. We denote §yecG) the set
of special vertices irG.

Definition 4.15. A tree-ordered welnf order ¢ is a tuple
(G, T,r, A, P, Q) such that
1) (G, T,A,P,Q) is a tree-web of ordef admitting the
definable rootr,
2) Ais the set of vertices of degr8dn G not in spe¢G)
but having a topological neighbour in spé&e),
3) T is contained in a component ¢f — spe¢G),
4) (T,r, A) admits a definable order.

Lemma 4.16. There exists a constamrtsuch that if\W, =
(Go, Ty, Ao, Po, Qo) is a given nice full tree-web of order,
then there exists a tree-wély = (G, T, A, P, Q) with W C
W, and a vertexr € V(G) such that(G,T,r, A, P, Q) is
a tree-ordered web of ordef with |A| > 15¢; furthermore,
YW can be computed in polynomial time.

A main ingredient of the proof of Lemma 4/16 is the

>p- >t
(a) (b)
Figure 3. A (a) single and a (b) double cross.

We also observe that if the number of the leaves of the tree
is large enough, we can just keep the good paths starting at
the leaves; and otherwise, the number of proper branching
vertices is small and we do not need to cut away too many
good paths.

The proof of the following lemma is immediate from
Definition[4.15, Lemma 4.14, and the fact that the special
verticessped¢G) can easily be defined:

Lemma 4.17. Given a tree-ordered webW
(G, T,r,A,P,Q), there exist MSOy-formulas ¢r(x),
vr(x), pa(z), vpo(z), and p<(x,y), defining the tree
T, its root r, the set of good verticedl, the vertices of
the grid-like minor, i.e.V(JP U lJQ), and the canonical
order <7, respectively.

D. Labelling Tree-Ordered Webs

wy ... w, € {0,1}* in a tree-ordered web of ordet. We
first need the following simple combinatorial lemma.

Lemma 4.18. Let G be a directed graph o vertices with
maximum outdegreé. ThenG contains an independent set

of size [ﬁw which can be computed in polynomial time.

A single crosss a sub-cubic tree with four leaves having
the shape depicted in Fig] 3 (a);dmuble crossis a sub-
cubic tree with five leaves having the shape depicted in
Fig.[3 (b) (where the dashed lines indicate paths). The-right
most vertex of each cross, as drawn in Fig. 3, is called the
baseof the cross.

Definition 4.19. A labelled tree-ordered web of ordéand
lengthk is a tupleW := (G, T,r, A, P, Q, X, C) where
1) ((G-CYUuX,T,r, A, P, Q) is a tree-ordered web of
order ¢,
2) the rootr does not have a leafy vertex as a topological
neighbour,
3) C is a set of disjoint single and double crosses,
4) X =T nNC is the set of bases of the crosse<Irand

lies flat in T,
5) |C] = |X]| = |A] =k,
6) if X = {x1,...,2x} and A = {vy,...,v;} then

21 <7 v <7 w2 <7 - <7 Tk ST Ve

observation that Definition 4.12 allows us to cut a good pattiThe wordencoded by is w := wy ... wy € {0, 1}* with
and make it an artificial leaf without destroying the defimabl w; := 0 if z; is the base of a single cross @ and w;
order. Hence, we can cut away about every second good pathif x; is the base of a double cross 6f. W is called
to ensure that vertices of the tree do not landspecG). configurableif C' consists only of double crosses.



A labelled tree-ordered web encoding the wdrth is
indicated in Figuré 2.

Lemma 4.20. For ¢ > 3, let W = (G,T,r, A, P,Q) be
a given tree-ordered web of ordex/ with |A| > 30¢.
There exists a configurable labelled tree-ordered wgb=
G, AP, QX' C") of order ¢ and length? with
G’ C @ that can be computed in polynomial time.

the general result. For this, we first recall the well-known
fact that MSQ is intractable on coloured walls. Recall that
from the results of the previous section, given a wardnd
a graphG of large enough tree-width, we construct either a
wall encodingw or a labelled tree-ordered web encoding
For either outcome we will define an MSé@nterpretation
of coloured walls in these structures which will allow us to
transfer the intractability results from coloured wallstiese
structures and hence to the general case of Theorem 1.2.

%A, MSO;,-Interpretations
We first recall briefly the concepts of interpretations (see

e.g. [5]).

Definition 5.1. Let o and 7 be signatures and leX be a
tuple of monadic second-order variables. Aterpretation
of 7 in o with parametersX is a tuple ® := (@vand,
univ(2), o~ (2,Y), (9R(T))rer) Of MSO,[0UX]-formulas,
where the arity ofz in pr(Z) is ar(R), such that for all
o-structures A and assignmenty” C U(A) to X with
(A,Y) | ¢vaid» ¢~ defines an equivalence relation on

Proof sketch.First, note that any good path € P can be
easily transformed to a double cross by destroying at mo
7 good paths. Consider a digrafhhaving a vertex.p for
each good path irP and a directed edge fromp to up

if turning P into a double cross destroy?d. The maximum
out-degree of this digraph is8 and hence, by Lemma 4/18,
there exists a sety C A of size at Ieasﬂ%' > 2¢ of good
vertices, so that the vertices Ththat correspond to the good
paths starting aty build an independent set iPR.

LetY := {y1,...,y2¢} be a subset of exactB¢ vertices
of Yy such thaty; <7 yo <pr --- <7 yor. We define
X" :={y;|iis odds and A" := {y; |i is ever}. We trans-
form every good path starting at a vertexi into a double 5, ,;,(A).
cross and remove all the paths that get destroyedCLéte

the set of double crosses we obtain this way. The rest of th\e/:v _Fk(])r an interpretatio® we will denoteypyaig by ‘PVT(“F’(@)'
proof follows easily. O ith any interpretatior® we associate a map takingoa

structured andY C U(A) such that4,Y) = ¢yaig to ar-
structureH with universeU (H) := ouni(A, Y)|,_ (47 =
{[v]~ : (AY) E ¢univ(v)} where[v]. denotes the equiv-
alence class ofy under ¢ (A,Y). For R € 7 of arity
r = ar(R) we defineR(H) := {([a1],...,[a.]) : (A,Y)
er(a,...,a)}.

i ) Furthermore, any interpretatid® also defines a transla-
Prgof.Slncer does not have a 'Ieafy vertex as a topological; . MSO, []-formulasy to MSO,[o]-formulas®© () by
neighbour, the crosses are distinguishable frotdence, we replacing occurrences of relatior® € by their defining

can easily obtain an MS@formula pc(z) to identify the ¢, 135, € © in the usual way (see [5] for details) so
vertices in the crosses and then apply Lemmal4.17 to Obtal{hat the following lemma holds.

our result. From now on we will always let = 7 := ograpn and
therefore speak about interpretations without any refaren
to specific signatures.

Definition 4.22. If W is a labelled tree-ordered web of order
¢* and length? encoding a wordy = w; . .. w,, we say that
W encodesw with powerd.

Theorem 4.23 sums up the algorithmic part of this work:

Lemma 4.21. Given a labelled tree-ordered webV =
(G, T,r,A,P,Q, X, C), there exisMSO,-formulasyr(x),
r(z), 0a(x), ox (), 9 (x), ppo(r), andp<(z,y) defin-
ing T, r, A, X, C, PU Q, and the canonical ordeKr,
respectively.

The definition below is needed in Section V:

Lemma 5.2 (Interpretation Lemma)Let © be an MSO;-
interpretation with parametersy. For any ogmapn-structure
A and assignment” C U(A) to X s.t. (A,Y) = ¢vaid(©),
and anyMSO;,-sentencep we have©(A4,Y) = ¢ if, and
only if, (A,Y) = O(yp).

B. MSO, on Coloured Elementary Walls

Theorem 4.23.Let a wordw = w;...w, € {0,1}*, a
graph G, and an integerd be given. There is a constant

¢, so that if the tree-width o7 is at leastc(!*d then G
contains either arv® x ¢“-wall or a labelled tree-ordered
web W that encodesv with powerd. Furthermore, either
outcome can be computed in polynomial time.

V. PARAMETERIZED INTRACTABILITY OF MSO, MODEL
CHECKING

Definition 5.3. The signatures,, of coloured walls is de-
fined asowal := {V, E, €,Cy,C1 }, whereV, E, Cy, C, are
unary relation symbols and is a binary relation symbol. A
owan-Structure W is a coloured elementary x (-wall if its
ograph-reductW sy, i ¢y is an elementaryx-wall according
to Definition[2.3.W encodes a wordy := w; ... w, € "
with powerd if I > n? and if {vy,; : 1 < i <[} are the

In this section we prove Theorem 1.2. We first show thevertices on the bottom row then ; € Cy if w; = 0 and
intractability of MSG, on walls and then lift this to show v;; € C; if w; =1, forall 1 <i<n,andCynNC; = g.

8



The following theorem is part of the folklore.

Theorem 5.4. For d > 2 let 20, be the class of coloured
elementary walls encoding words with poweér Then
MC(MSOs, 25,) is not in XP unless” = NP.

The theorem follows immediately from the following
lemma, whose proof is standard.

Lemma 5.5. Let M be a non-deterministia“-time bounded
Turing-machine. There is a formula,; € MSO, such that
for all words w € >*, if W is a coloured elementary wall
encodingw with powerd, thenWV = ¢y, if, and only if, M
acceptsw. Furthermore, the formula,,; can be constructed
effectively fromM . The same holds it/ is an alternating
Turing-machine with a bounded number of alternations, a
they are used to define the polynomial-time hierarchy.

C. MSO, on Uncoloured Walls
The previous paragraph stated the intractability of MSO

on coloured elementary walls. As one possible outcome o

Section IV we get an uncoloured wdll’, not necessarily
elementary,
will encode a wordw in W by taking a suitable sub-graph
W’ C W as follows.

Let w := wy,...,w, € {0,1}* be a word of lengthn,
let d > 1 and letm := n? + 2. The aim is to encode in
a wall W of order at leastn x m. Letwvy,...,v,,—1 be the
nails (see_2.3) on the bottom-roR C W of W and, for
0<i<m-—1,let P, C R be the sub-path connecting
andwv; 1. Let W/ C W be the wall obtained fronW/ by
deleting the internal vertices df, and for eachl <i < n
such thatw; = 0 the internal vertices of’;. All other paths
remain unchanged. We say thHat’ encodesw with power
d. The reason we deletg, but notP,,_; is that this defines
a unique ordering on the bottom-row, the left-most path i

of sufficient size. In the absence of colours we

S

web W = (G,T,r, A, P,Q,X,C) encoding a wordw of
length¢ with powerd. The actual formulas will not depend
on W in any form.

By Lemmal[4.21, there exist MSGormulas or(z),
Pr(x), pa(z), px (), pc(x), opq(x), andp< (z, y) defin-
ing T, r, A, X, C, PU Q, and the canonical ordet,
respectively. Essentially, we now have formulas which, on
G as above, define the labelled tree-ordered Web

What is left to do is to define formulas which generate a
wall from the grid-like minor(P, Q) so that the bottom-row
of the wall is connected to the vertices ih= {vy,..., v}
in the correct order, wheré is the length of the wordo.
This is by far the most complex part of the interpretation.
But fortunately we can adapt formulas defined in [8] for this
Spurpos;e. The actual formulas are very long and tedious. We
therefore refrain from repeating them here and refer the ful
version of [8] at http://arxiv.org/abs/0904.1302.

Let k := ¢%; by Definition/4.19 we know thaZ (P, Q)
?ontains a sub-division of(;2, so that/ of its nails are
paths fromP that start at the vertices; <p --- <p
vy, of A. We can consider a subgraph of this,> sub-
division to obtain ak x k-wall in Z(P,Q), so that the
first ¢ nails of the bottom row of the wall are adjacent
to A. Suitably adapting the formulas defined in [8], we
obtain formulasyyaid, Yunivs ©~, v, e, and g needed
for the interpretation®. What is left to do is to define
the colouring. However, it is easily seen that there are
MSO,-formulasyy, (), p¢, (), usingpc, px, pa andp~
from Lemmal 4.21, so that foX := {zy,...,z,}, with
r1 <7 vy < w2 < wp < v, v € 9, (G) I xS
adjacent to a single cross ande ¢ (G) if z; is adjacent
to a double cross i6'. From this, formulasoc, (z, P, Q, A)
and ¢¢, (z, P,Q, A) defining the correct colouring of the
wall W’ can be easily defined. This concludes the proof of

the theorem. O

deleted but the right-most is not, needed to read the wor

w in the correct order. The following is now easily seen.

Theorem 5.6. There is arMSOs-interpretation® from oyq
in ograph such that if W is an uncoloured wall encoding
w € ¥* with powerd then®(WW) is a coloured elementary
wall encodingw with powerd.

D. Defining Labelled Tree-Ordered Webs

E. Proof of Theorem 1.2.

In this section we complete the proof of Theorem 1.2. We
first prove Part 1.

Suppose, MOMSO,, C) € XP, i.e. there is a computable
function f : N — N such that giverG € C andp € MSO,
we can decideG = ¢ in time O(|G|7(#D). Let M be a
non-deterministic Turing-machine decidingiSin quadratic

The aim of this section is to show that we can define aime and lety,,; be the formula constructible from/ as

coloured elementary wall encoding a waidin a labelled
tree-ordered web encoding. The main result of this part
is the following theorem.

Theorem 5.7. There is anMSOs-interpretation® such that
if (G,T,r,A,P,Q,X,C) is a labelled tree-ordered web
encoding a wordw with powerd, then©(G) is a coloured
elementary wall encoding with powerd.

Proof.We will define the interpretation in a sequence of step

defined in Lemma 5.5.

Let ©, be the interpretation from the Theorém 5.6 and let
O, be the interpretation from Theorém 5.7. Defipg, :=
O1(pnm) and i, == O2(pnr).

Let w € {0,1}* be a word of which we want to decide
whetherw € SaT, let £ := |w| andt := 2¢(?8, wherec
is the constant from Theorem 4]23. As the treewidthCof
is strongly unbounded biog?®? n, there ares < 1 and a
golynomialp(n) of degree less thanm such thatC contains

and will illustrate the formulas by a labelled tree-ordereda graphG with tw(G) > 1og®®” |G| and t < tw(G) <



p(t) and G can be computed in timel“"; note that this classes of unbounded tree-width, but bounded ldyn,
implies that|G| < Qp(zcz%)ﬁ < 92lvl’ for somes < 1. might lead to interesting new results on the boundary of

By Theorem 4.23¢: either contains a) a wallV,, encoding  MSO:z-tractability. o
w with power2 as a subgraph or b) a labelled tree-ordered 'The resu'lt's reported in this paper refer to MSQe. MSO
web W = (H,T,r, A,P,Q, X, C) encodingw with power with quantification over sets of edges. For MSO without
2. Note that we need an encoding with powimbecause edge set qL_Jantification, referred to as MScan be shown
M needs|w|? space cells and computation steps to decidénat MSQ is tractable on any class of graphs of bounded
w € SAT. cligue width Again not much is known about MSQand

In casea), asC is closed under sub-graph/, € C and graph classes of unbounded clique-width and it would be

we can therefore decidd’,, = ¢!, in time |1V, |f(|¢;d\) < very interesting to establish similar results as in thisguap
Gk < (2|w|a)fwerf g 2%|90}w|)\w\6 :wzo(\wl) B} for the case of clique-width. This, however, is much more

difficult as there is no good obstruction similar to griddik

construction,iV,, if, and only if, M acceptsw if, .
= ou y pisw minors.

and only if, w € SAT.
In case b),H € C as H is a subgraph ofG. We REFERENCES
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. 2 5 2 - 2 8
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in time 2 . This shows Part/1. . [3] J. Flum and M. GroheParameterized Complexity Theory
To show Part 2, we use the same proof idea. Eet Springer, 2006, iSBN 3-54-029952-1.

be a language in the polynomial-time hierarchy andMét
be an alternating Turing-machine with bounded alternation [4] M. Grohe, “Logic, graphs, and algorithms,” ihogic and
decidingP in time n*. We use essentially the same proof as ~ Automata — History and Perspectives J.Flum, E.Gadel,
above but, given a word, we construct a grapliy which Bd. Amsterdam University Press, 2007.
contains a wall or a labelled tree-ordered web encoding [5] w. Hodges,A shorter model theory Cambridge University
with power k. The rest follows then as before. Press, 1997.

This concludes the proof of Theorem 1.2. It is easily seen . S
that the proof can be adapted to classes of graphs closetf! S: frr?qmtzerirzar&dir?t'rTatZ%ill'ituonfbr:waT]blt;S' gnd-lr|]lée ”r‘é“cr’rls’ 5;”9
under spanning s_ub-trees, i.e. edge deletion: insteadtiofta ﬁ]as?ymepgsiuem on ?)?sireteypc\)lgorict)h%sC(SSSEJOAMS. erlogic,
sub-graphs we simply delete all edges no longer needed and

make the MS@-formulas ignore isolated vertices. [7] S. Kreutzer, “Algorithmic meta-theoremsElectronic Collo-

. . quium on Computational Complexity (ECC@dl. TR09-147,
Corollary 5.8. If C is closed under spanning sub-graphs 20009.

and the tree-width o€ is strongly unbounded biog® n,
then MC(MSQ,,C) ¢ XP unless SAT can be solved in [8] —, “On_ thg parameterised intracta_bility of m_onadic second-
sub-exponential time. If the tree-width 6f is not poly- order logic,” inProc. of Computer Science Logic (CSEPO9.

logarithmically bounded thetMC(MSO,,C) ¢ XP unless

. S - [9] L. Libkin, Elements of Finite Model ThearySpringer, 2004.
all problems in the polynomial-time hierarchy can be solved

in sub-exponential time. [10] J. A. Makowsky and J. Maiiio, “Tree-width and the monadic
quantifier hierarchy, Theor. Comput. Scivol. 1, no. 303, pp.
VI. CONCLUSION 157-170, 2003.

We have presented a strong intractability result for MSO
on graph classes of unbounded tree-width. In comparison t
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