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Abstract—Courcelle’s famous theorem from 1990 states that
any property of graphs definable in monadic second-order logic
(MSO2) can be decided in linear time on any class of graphs
of bounded tree-width, or in other words, MSO2 is fixed-
parameter tractable in linear time on any such class of graphs.
From a logical perspective, Courcelle’s theorem establishes a
sufficient condition, or an upper bound, for tractability of
MSO2-model checking.

Whereas such upper bounds on the complexity of logics have
received significant attention in the literature, almost nothing
is known about corresponding lower bounds. In this paper we
estbalish a strong lower bound for the complexity of monadic
second-order logic. In particular, we show that if C is any
class of graphs which is closed under taking sub-graphs and
whose tree-width is not bounded by a poly-logarithmic function
(in fact, logc n for some small c suffices) then MSO2-model
checking is intractable onC (under a suitable assumption from
complexity theory).

I. I NTRODUCTION

In 1990, Courcelle proved a fundamental result stating that
every property of graphs definable inmonadic second-order
logic with edge set quantification(MSO2), the extension of
first-order logic by quantification over sets of vertices and
edges, can be decided in linear time on any classC of graphs
of bounded tree-width. This theorem has important conse-
quences both in logic and in algorithm theory. In the theory
of efficient algorithms on graphs, it can often be used as a
simple way of establishing that a property can be solved in
linear time on graph classes of bounded tree-width. Besides
being of interest for specific algorithmic problems, results
such as Courcelle’s and similaralgorithmic meta-theorems
lead to a better understanding how far certain algorithmic
techniques, such as dynamic programming on bounded tree-
width graphs, range and establish general upper bounds for
the parameterized complexity of a wide range of problems.
See [4], [7] for recent surveys on algorithmic meta-theorems.

From a logical perspective, Courcelle’s theorem estab-
lishes a sufficient condition for tractability of MSO2 formula
evaluation on classes of graphs or structures: whatever
the classC may look like, if it has bounded tree-width,
then MSO2-model checking is tractable onC. An obvious
question is how tight the theorem actually is, i.e. whether
it can be extended to classes of unbounded tree-width and
if so, how large the tree-width of graphs in the class can
be in general. Given the considerable interest in Courcelle’s

theorem, and the far-reaching consequences that extensions
of this result to interesting classes of graphs of unbounded
tree-width would have, it is surprising that not much is
known about such limits for MSO2-model checking. To
fully understand the (parameterized) complexity of monadic
second-order logic with respect to particular classes of
graphs, we need to understand necessary conditions for
tractability as much as sufficient conditions; but for some
reason necessary conditions have so far not been studied in
much depth.

A first lower bound for the complexity of monadic second-
order logic appeared in [8] and has been extended in [6].
In these papers, it was shown that MSO2-model-checking
is not fixed-parameter tractable on any class of graphs
where a) the tree-width is strongly unbounded bylog28 n
(see Definition 1.1 below) and b) which areclosed under
colourings for a fixed setΓ of colours, i.e. ifG ∈ C and
G′ is obtained fromG by colouring some vertices or edges
by colours fromΓ, then G′ ∈ C. These papers establish
powerful logical and algorithmic tools for proving such
intractability results and we will resort to some of these
tools below. However, closure under colourings is a very
strong condition as it allows to “mark” bad sub-structures
in a graph.

In this paper we aim for a much stronger intractability
result for MSO2. To state the main result formally we first
need some notation.

Definition 1.1. The tree-width of a classC of graphs is
strongly unboundedby a functionf : N → N if there is
ε < 1 and a polynomialp(x) s.t. for all n ∈ N there is a
graph Gn ∈ C with

1) the tree-width ofGn is betweenn and p(n) and is not
bounded byf(|Gn|) and

2) givenn, Gn can be constructed in time2nε

.

The degree of the polynomialp is called thegap-degree
of C (with respect tof ). The tree-width ofC is strongly
unbounded poly-logarithmicallyif it is strongly unbounded
by logc n, for all c ≥ 1.

The main result of the paper is the following theorem.

Theorem 1.2. Let C be a class of graphs closed under sub-
graphs, i.e.G ∈ C and H ⊆ G impliesH ∈ C.



1) If the tree-width ofC is strongly unbounded bylog28γ n,
where γ > 1 is larger than the gap-degree ofC,
then MC(MSO2, C) is not in XP, and hence not fixed-
parameter tractable, unlessSAT can be solved in sub-
exponential time2o(n).

2) If the tree-width ofC is strongly unbounded poly-
logarithmically thenMC(MSO2, C) is not in XP unless
all problems in the polynomial-time hierarchy can be
solved in sub-exponential time.

Here, MC(MSO2, C) refers to the parameterized model-
checking problem for MSO2 as defined below. We will give
a justification for the two conditions in Definition 1.1 below,
once we have sketched the main arguments of the proof.
To give an example, the theorem implies that the classC
of all (or all planar, bipartite, etc.) graphsG of tree-width
tw(G) ≤ log29 |G| does not have tractable MSO2 model-
checking unless SAT can be solved in sub-exponential time.
Related work. The result in this paper complements the
intractability result in [6] in that it refers to classes of graphs
closed under sub-graphs and does not require any colours,
a much more natural condition.

In [4, Conjecture 8.3], Grohe conjectures the following.
(The original conjecture is formulated in terms of branch-
width but this is equivalent to the formulation here.)

Conjecture (Grohe). Let C be a class of graphs that is
closed under taking sub-graphs. Suppose that the tree-width
of C is not poly-logarithmically bounded, that is, there is
no constantc such thattw(G) ≤ logc |G| for every G ∈
C. Then the model-checking problem ofMSO2 is not fixed
parameter tractable onC.

Clearly, with current technology there is no hope to prove
any such conjecture without relating it to assumptions in
complexity theory (as the conjecture implies P6= PSPACE).
In this sense our result only proves Grohe’s conjecture mod-
ulo complexity theoretical assumptions and the additional
conditions on strongly unboundedness necessitated by this.
On the other hand, our result is stronger than the conjecture
in that we only require a fixed log-power rather than polylog.

In [10], Makowsky and Marĩno study similar questions
in relation to classes of graphs closed under topological
minors (see below). They show that any such class must
have bounded tree-width for MSO2 model-checking to be
fpt. Closure under topological minors is a much stronger
condition simplifying the proof significantly. However, in
the same paper, the authors give examples for classes
of graphs of unbounded clique-width but with tractable
MSO1 model-checking. These examples can be adapted to
examples of classes of graphs which are closed under sub-
graphs, whose tree-width is only bounded logarithmically
(but which almost have logarithmic tree-width) and on which
MSO2 model-checking is tractable. This shows that in full
generality, our results can not be strengthend much beyond
the log28γ n bound postulated in our result.

Overview of the proof. Let us briefly sketch the main
idea of the proof. LetC be a class of graphs with tree-width
strongly unbounded bylogc n, for some suitablec.

We aim at reducing the propositional satisfiability problem
SAT to MC(MSO2, C). Towards this aim we will first
construct an MSO2-formulaϕ, depending only on a Turing-
machine deciding SAT, and then, given a SAT-instancew,
construct a graphGw ∈ C so thatGw |= ϕ if, and only
if, w is satisfiable. The idea is to encode the instancew
in the graphGw so that a) the instance can be decoded by
the MSO2-formula ϕ and b) the graphGw contains enough
structure so that the formulaϕ can simulate the run of a
Turing-machine deciding SAT on inputw.

Similar ideas in connection with tree-width have been
employed in the past and the usual approach is to use the
result, known as the excluded grid theorem (see e.g. [12]),
that there is a functionf : N → N such that every graph of
tree-widthf(k) contains ak × k-grid (as a minor, which is
good enough). Such a grid provides the structure we need
to simulate runs of Turing-machines in MSO2 and encoding
the SAT instancew in a grid can easily be done by deleting
certain edges (see Section V-C).

However, the best known bound for the functionf known
to date is exponential and as we are dealing with graphs of
tree-width only logarithmic in the number of vertices, the
grids we are guaranteed to find in this way are essentially
only of orderlog log |Gw| which is much too small for any
reduction to work.

Instead of using grids, therefore, we will use a new
structural characterisation of tree-width developed by Reed
and Wood [11] and made algorithmic in [6] which replaces
grids by grid-like minors. It was shown in [11] that any
graph contains a grid-like minor of order polynomial in its
tree-width and in [6] it was shown that these are computable
in polynomial time. The main problem with grid-like minors
is that a) they can resemble cliques rather than grids and b)
they do not occur as minors of the graph itself but only of
the intersection graph of sets of pairwise disjoint paths (see
Section II for details). As indicated above, we would like to
encode a SAT-instancew in a grid by deleting certain edges.
But as grid-like minors only occur as minors of intersection
graphs, deleting an edge in a graphG has no predictable
implication for the grid-like minor which makes encoding
SAT-instances using grid-like minors extremely difficult.

Therefore, instead of encoding SAT-instances in grid-
like minors directly, we will impose a labelling of the
grid-like minor externally. For this, given a SAT-instance
w := w1 . . . wl and a graphG of sufficiently high tree-
width, we construct a treeT ⊆ G which has a special
structure so that there is an MSO2-formula defining a linear
order on trees of this structure. Furthermore, this particular
structure of the tree allows us to encode the letterswi in sub-
trees ofT containing some of the leaves (we will call these
single crosses(encoding0) and double crosses(encoding
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1)). Hence, the order imposed onT together with the ability
to encode letters allows us to encode the SAT-instancew in
T . We will then show thatG also contains a grid-like minor
which is attached to the treeT so that the word encoded
in T can be transferred to a unique labelling of the grid-
like minor. Hence, we will use this external tree to encode
the SAT-instance and the grid-like minor as the structure we
need to simulate the run of a Turing-machine on the encoded
input. The treeT together with the grid-like minor attached
to it is called alabelled tree-ordered weband is illustrated
in Figure 2.

Finally, as we assume that the classC of graphs we
work in is closed under sub-graphs, this labelled tree-
ordered web occurs as a graph inC. Hence, if evaluating
the MSO2-formula which decodes the encoded SAT-instance
and simulates the run of a TM on it was fixed-parameter
tractable, then we could solve SAT in sub-exponential time.

On strongly unbounded tree-width. Let us give some
justification for the two conditions in Definition 1.1. The first
condition is a consequence of the fact that we prove our main
result by reducing an NP-hard problem to MC(MSO2, C).
Without this condition there could simply be too few graphs
of high tree-width in C to define a reduction. To give
an example, fix a constantc and let Hn be the graph
constructed from then × n-grid by replacing every edge
by a path on2

c√n

m
vertices, wherem = n2. The resulting

graph hasO(2
c
√

n) vertices and tree-widthn. Now let
C′ := {Hn : n = 22i

, i > 0} and let C be the sub-
graph closure ofC′. If c > 29, then the tree-width ofC
is unbounded bylog29 n but not strongly unbounded by this
function, while being closed under taking subgraphs. To see
this, take a graphHn ∈ C′, for somen = 22i

, i > 2.
Any sub-graphH ⊆ Hn is either acyclic, and therefore
has tree-width1, or it contains a path of length2

c√n

m
. Thus,

Hn does not contain any sub-graphH ⊆ Hn of tree-width
2i ≤ tw(H) ≤ p(2i) such thattw(H) > logc |H|, for any
fixed polynomialp. It follows that if we wanted to useC
for a reduction as outlined above, there wouldn’t be enough
graphs of large tree-width to reduce to: given an instance of
SAT of length2i for an i that is not close to a power of
2, we would have no chance in identifying a graph inC to
perform a reduction in polynomial time. Therefore, as long
as we have to rely on reductions to prove results as in this
paper, a condition similar to Condition1 seems necessary.
The second condition is necessary to prevent artificial cases
where constructing a graph in the classC is already so
expensive that any reduction would take too much time.

Organisation. The paper is organised as follows. In Sec-
tion II we recall notation and concepts from graph theory.
We recall monadic second-order logic in Section III. In Sec-
tion IV we define the labelled tree-ordered webs discussed
above and show that every graph of sufficient tree-width
contains such a structure. This is the main technical part

Figure 1. Elementary4× 6-wall.

of the paper. Finally, in Section V we present the logical
aspects of the paper. We conclude in Section VI.

II. PRELIMINARIES

We use standard notation from graph theory and refer
to [2] for details. All graphs in this paper are simple and
undirected. We writeV (G) andE(G) for the set of vertices
and edges of a graphG and assumeV (G) ∩ E(G) = ∅.
We let degG(v) denote the degree of vertexv in G. A path
P ⊆ G in a graphG is a connected acyclic sub-graph in
which degP (v) ≤ 2 for everyv ∈ V (P ).

Tree-width is a global connectivity measure of graphs that
was introduced by Robertson and Seymour in their graph
minor series. Essentially, it associates to each graphG a
numbertw(G) ∈ N measuring how similar a graph is to
being a tree. We will not need the precise definition in this
paper and therefore refer the reader to [2] for a definition
of tree-width.

Definition 2.1. Let f : N → N be a function andC be
a class of graphs. The tree-width ofC is bounded byf if
tw(G) ≤ f(|G|) for all G ∈ C. C hasbounded tree-widthif
its tree-width is bounded by a constant.

Many natural classes of graphs, for instance series-parallel
graphs, are found to have bounded tree-width.

Definition 2.2. A sub-division of a graph H is a graph
H ′ obtained fromH by iteratively replacing some edges by
paths of length2. The original vertices ofH in H ′ are called
the nails of H in H ′. If a graph G contains a sub-division
of H, we call H a topological minorof G.

Definition 2.3. Let n,m > 0 be integers. Anelementary
n×m-wall is a graph as indicated in Figure 1. Ann×m-
wall is a sub-division of an elementaryn × m-wall. The
nails of a wall are the vertices of the elementary wall it is
obtained from by sub-dividing edges.

We will always think of the vertices of a wall as being
numbered in a way that(1, 1) is the vertex in the “bottom-
left corner”. The “bottom-row” of ann × m-matrix is then
the row1.

Let P andQ each be a set of disjoint paths of a graphG.
We denote byI(P,Q) the intersection graphof P andQ
defined as the bipartite graph with vertex setP ∪Q and an
edge between two vertices if and only if the corresponding
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paths intersect. The following definition is adapted from
Reed and Wood’s [11] definition of agrid-like minor:

Definition 2.4. Let P and Q be each a set of disjoint
paths in a graphG. (P,Q) is called atopological grid-like
minor of orderℓ in G if I(P,Q) contains a sub-division
of the complete graphKℓ. The nails of (P,Q) are the
paths corresponding to the nails of the sub-division ofKℓ

in I(P,Q).

III. M ONADIC SECOND-ORDER LOGIC

In this section we briefly recall the definition of monadic
second-order logic. As we are mainly interested in graphs
we only introduce MSO2 on graphs.

The class of formulas ofmonadic second-order logic with
edge set quantification, denoted MSO2, is defined as the
extension of first-order logic by quantification over sets of
edges and sets of vertices. However, for the purpose of this
paper it is more convenient to define it formally as monadic
second-order logic onincidence structures.

Signatures and Structures.A signatureσ is a finite set of
relation symbolsR each of arityar(R). A σ-structureA
consists of auniverseU(A) and for eachR ∈ σ an ar(R)-
ary relationR(A) ⊆ (U(A))ar(R).

Incidence Structures. The signatureσgraph of incidence
structures is defined asσgraph := {V,E,∈}, where V,E
are unary and∈ is a binary relation symbol. We will
always use∈ in infix notation and writev ∈A e instead
of (v, e) ∈ ∈(A). With any graphG we associate aσgraph-
structureA := G(G), its incidence structure, with universe
U(A) := V (G)∪̇E(G) andV (A) := V (G), E(A) := E(G)
andv ∈A e if v ∈ V (G), e ∈ E(G) andv ande are incident
in G. We will not usually distinguish between a graphG and
its incidence structure.

Monadic Second-Order Logic(MSO2). MSO2 is the ex-
tension of first-order logic by quantification over sets of
elements (which can be vertices or edges). That is, in
addition to first-order variables, which we will denote by
small lettersx, y, ..., there are variablesX,Y, ... ranging over
sets of elements. Formulas of MSO2[σ] are then build up
inductively by the rules for first-order logic FO[σ] with the
following additional rules: ifX is a second-order variable
and ϕ ∈ MSO2[σ∪̇{X}], then ∃Xϕ ∈ MSO2[σ] and
∀Xϕ ∈ MSO2[σ] with the obvious semantics where, e.g., a
formula ∃Xϕ is true in aσ-structureG if there is a subset
X ′ ⊆ U(G) such thatϕ is true in G if the variableX is
interpreted byX ′. We write G |= ϕ to indicate thatϕ is
true in G.

If ϕ(x) is a formula with a free first-order variablex and
G is a structure, we writeϕ(G) for the set{v ∈ U(G) :
G |= ϕ[v]}. See [9] for more on MSO2.

To give an example, the following MSO2-formula

∃C1∃C2∃C3∀x
∨3

i=1 x ∈ Ci ∧
∀x∀y

(

(x, y) ∈ E →
∧

1≤i≤3 ¬(x ∈ Ci ∧ y ∈ Ci)
)

is true in a graphG if, and only if, G is 3-colourable.

Model Checking.Themodel checking problemMC(MSO2)
for MSO2 is defined as the problem, given a structure
G and a formulaϕ ∈ MSO2, to decide if G |= ϕ. In
[13], Vardi proved that MC(MSO2) is PSPACE-complete.
However the hardness result crucially uses the fact that
the formula is part of the input (and in fact holds on
a fixed two-element structure), whereas we are primarily
interested in the complexity of checking a fixed formula
expressing a graph property in a given input graph. We
therefore study model-checking problems in the framework
of parameterized complexity(see [3] for background on
parameterized complexity).

Definition 3.1. Let C be a class ofσ-structures. Theparam-
eterized model-checking problem MC(MSO2, C) for MSO2

on C is defined as the problem to decide, givenG ∈ C and
ϕ ∈ MSO2[σ], if G |= ϕ. Theparameteris k := |ϕ|.

MC(MSO2, C) is fixed-parameter tractable(fpt), if for all
G ∈ C and ϕ ∈ MSO2[σ], G |= ϕ can be decided in time
f(k) · |G|c, for some computable functionf and c ∈ N,
wherek := |ϕ| is the parameter. The problem is in the class
XP, if it can be decided in time|G|f(k).

An important aspect of parameterized complexity is that
it is invariant under syntactic variations of the logic, i.e. if
L andL′ are equivalent in the sense that formulas of one
logic can effectively be translated into equivalent formulas
of the other logic, thenL is fpt on a classC if, and only
if, L′ is fpt on C. The corresponding statement is false for
classical complexity.

As, for instance, the NP-complete problem3-
Colourability is definable in MSO2, MC(MSO2, GRAPHS),
the model-checking problem for MSO2 on the class of all
graphs, is not fixed-parameter tractable unlessP = NP.
However, Courcelle proved that if we restrict the class of
admissible input graphs, then we can obtain much better
results.

Theorem 3.2 ([1]). MC(MSO2, C) is fixed-parameter
tractable, with parameter|ϕ| + tw(G), on any classC of
graphs of tree-width bounded by a constant.

IV. L ABELLED TREE-ORDEREDWEBS

The goal of this section is to prove the main algorithmic
aspects of this paper. As indicated in the introduction, we
aim at encoding instancesw of an NP-hard problemP , i.e.w
is a word over the alphabet{0, 1}, in graphs of large enough
tree-width. The core algorithmic problem is to identify a
structure so that there is a polynomialp such that given a
word w of lengthm and a graph of tree-width at leastp(m),
G contains such a structure encodingw as a sub-graph. The
structure we are after, which we calllabelled tree-ordered
webs, is indicated in Figure 2. Starting with a certain graph
provided in [6] that contains a grid-like minor of large order,
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Figure 2. A labelled tree-ordered web encoding010.

we incrementally modify it in the sub-sections below, adding
more and more structure to it, until we obtain a sub-graph
encodingw in a way that is recognisable by an MSO2-
formula; and once this is done we can guess in MSO2 an
accepting run of a Turing-machine deciding the problemP
on inputw. Due to lack of space, some proofs are omitted
in this extended abstract.

A. Tree-Webs

Definition 4.1. A treeT is sub-cubicif its maximum degree
is at most3. A setA ⊆ V (T ) is called flat if every vertex
v ∈ A has degree at most2 in T .

The notion of atree-web, defined below, is central to this
work; in the subsequent sections, we will refine this notion
to finally obtain the structure that we need.

Definition 4.2. A tree-web of order ℓ is a tuple W =
(G,T,A,P,Q), so that

1) T is a sub-cubic tree,
2) (P,Q) is a topological grid-like minor of orderℓ2

whose nails are paths fromP,
3) G = T ∪

⋃

P ∪
⋃

Q is a graph of maximum degree4,
4) T only intersects with nails of(P,Q),
5) the paths fromP that are nails are either disjoint from

T or intersectT in exactly one endpoint, and
6) A = V (T ) ∩ V (

⋃

P) is flat in T .

The vertices ofA are called thegood vertices ofW. The
paths inP that start at a vertex inA are calledgoodpaths.

In caseall the nails inP are good and hence, intersect
with T , i.e. |A| = ℓ2, we call the structure afull tree-web.
The following lemma is an almost immediate consequence
of the main algorithmic result in [6].

Lemma 4.3. There is a constantc and a polynomial-time
algorithm that given a graphG of tree-width at leastcℓ14

finds either anℓ× ℓ-wall or a full tree-web of orderℓ in G.

Definition 4.4. A sub-tree-web of a tree-webW =
(G,T,A,P,Q) is a tree-webW ′ = (G′, T ′, A′,P ′,Q′) with
G′ ⊆ G. In this case, we writeW ′ ⊆ W.

Definition 4.5. A full sub-treeof a treeT is a connected
component ofT − e, for some edgee ∈ E(T ). A tree-web
W = (G,T,A,P,Q) is nice if

1) G has no vertex of degree1,
2) if P = (v0, . . . , vk) is a good path withv0 ∈ A, then

v1 does not lie on any other path,
3) every full sub-tree ofT with at least2 vertices contains

at least2 good vertices.
4) every leaf ofT is good, and
5) the neighbour of every leaf ofT in T is good.

Note that the last two conditions are implied by the
third one. The proof of Lemma 4.7 below is based on the
combinatorial Lemma 4.6. They imply that we may assume
w.l.o.g. that any given tree-web is nice.

Lemma 4.6. Let G := Kk be a clique onk vertices and
assume at mostk edges ofG are coloured red and the rest
are coloured blue. ThenG contains a blue cliqueH of size
⌊k/3⌋ that can be found in polynomial time.

Lemma 4.7. Given a tree-webW of order ℓ, one can
construct a nice tree-webW ′ of order at least⌊ℓ/3⌋ with
W ′ ⊆ W in polynomial time.

Next, we would like to identify a unique root for a tree-web:

Definition 4.8. A tree-web(G,T,A,P,Q) admits a defin-
able rootif it contains exactly one vertexr ∈ V (T ) of degree
3 such that two components ofG−r are single vertices and
the third contains at least one edge.

Lemma 4.9. Given a nice tree-webW = (G,T,A,P,Q)
with at least 3 good vertices, one can construct a sub-
tree-webW ′ = (G′, T ′, A′,P ′,Q′) of the same order in
polynomial time such thatW ′ admits a definable root and
|A′| ≥ |A|/3.

B. Trees admitting a definable ordering

In this section we show how to prune a given rooted treeT
with maximum degree3, so that there is an MSO2-formula
(not depending onT ) which at each branching node of the
tree distinguishes between the left and the right sub-tree.
Assume we are given a sub-cubic treeT with a rootr and a
setX of vertices of the tree marked asgoodand we would
like to retain as many good vertices as possible. Throughout
this section,X will always denote the set of good vertices;
and we assumedegT (r) = 1. We use the following notation:

• If v ∈ V (T ) then the children ofv are all neighbours
of v not on the unique path fromv to r.

• A leaf of T is a node of degree1 in T , exceptr.
• A vertex is calledleafy if it has a leaf as a neighbour.
• A branching vertexof T is a node of degree3 in T .
• A proper branching vertexis a branching vertex that is

not leafy.
• We call a leaf agood leaf, if it is a good vertex.
• An artificial leaf is a leaf ofT that is not a good leaf.
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• Let v ∈ V (T ) be a vertex with childu ∈ V (T ) and
e = {v, u}. The sub-treeTu of T rooted atu is the
component ofT − e containingu. The extended sub-
tree of u is defined asTu ∪ e.

• SUBTREEi(v) denotes the extended sub-tree of theith

child of v, where we number the children arbitrarily.
• NBV(T, v) : next (i.e. closest) branching vertex tov in

Tv; or the leaf ofTv if Tv is a path; is defined only if
v has degree1 in Tv.

• gX(T ) := |X ∩ V (T )| is the number of good vertices
in T . We omit the index·X if it is clear from context.

Definition 4.10. Let (T, r) be a rooted sub-cubic tree;

• two verticesu, v ∈ V (T ) are topological neighboursif
they are linked by a path whose inner vertices all have
degree2 in T ;

• a branching vertexv is calledproperly markedif it has
a leaf or a leafy vertex as a topological neighbour in
the sub-tree rooted atv; and

• T is called properly markedif every branching vertex
of T is properly marked.

We now define a pruning algorithmPRUNE(T, r) which,
given a rooted sub-cubic tree(T, r) outputs a tree(T ′, r)
that is properly marked.

Algorithm PRUNE(T, r).
Input. sub-cubic rooted tree(T, r) with degT (r) = 1.
Output. a properly marked sub-cubic rooted tree(T ′, r).

If T is a simple path than returnT . Otherwise, letv :=
NBV(T, r), R be the path fromr to v, T1 := SUBTREE1(v),
andT2 := SUBTREE2(v) with g(T1) ≤ g(T2).

1) If one ofT1, T2 is a path, sayTi, return the tree obtained
from T by replacingT3−i by PRUNE(T3−i).

2) Otherwise, let u1 := NBV(T1, v). Let T11 :=
SUBTREE1(T1, u1) andT12 := SUBTREE2(T1, u1) with
g(T11) ≤ g(T12). Let T ′

1 be the tree obtained fromT1

by cutting T11 down to a single edge and replacing
T12 by T ′

12 := PRUNE(T12, u1). Finally, returnT ′ as
the union ofR, T ′

1, andT ′
2 := PRUNE(T2).

Lemma 4.11. Let (T, r) be a rooted sub-cubic tree and
X ⊆ V (T ). T contains a properly marked sub-treeT ′ such
that gX(T ′) ≥ gX(T )

2

3 . Furthermore,T ′ can be computed
in polynomial time on input(T, r).

Proof.Let T ′ := PRUNE(T, r). We claim that(T ′, r) fulfills
the requirements of the lemma. We prove the claim by
induction on the ordern := |T | of T . If T is a path there
is nothing to show. Otherwise, the fact thatT ′ is properly
marked is immediate from our recursive construction by
induction. It remains to bound the number of good vertices
that remain after the pruning. We first observe that for all
β ≥ 1

2
(

1 − β

2

)
2

3

+ β
2

3 ≥ 1 . (1)

If q, q1, q2 are non-negative integers withq = q1 + q2 and
q1 ≤ q2, we haveq2 = βq and q1 = (1 − β)q, for some
β ≥ 1

2 . Hence, we obtain with Inequality (1)

q
2

3

1 + q2 ≥ q1 + q
2

3

2 ≥ q
2

3

1 + q
2

3

2 ≥ (
q1

2
)

2

3 + q
2

3

2

= q
2

3 · ((
1 − β

2
)

2

3 + β
2

3 )

≥ q
2

3 = (q1 + q2)
2

3 .

(2)

Let v, R. T1, andT2 be defined as in the algorithm. Define
q0 := g(R− v), q1 := g(T1 − v), q2 := g(T2), q := q1 + q2,
andq′ := g(T ′

v). First, note that if suffices to showq′ ≥ q
2

3

since this implies

g(T ′) = q0 + q′ ≥ q0 + q
2

3 ≥ (q0 + q)
2

3 = g(T )
2

3

by Inequality (2). Consider the following cases:

(i) If T1 is a path, thenq′ ≥ q1+q
2

3

2 ≥ q
2

3 by Inequality (2).

Similarly, if T2 is a path, thenq′ ≥ q
2

3

1 + q2 ≥ q
2

3 .
(ii) Otherwise, letT ′

12 and T ′
2 be defined as in Step 2 of

the algorithm and letq′2 := g(T ′
2) and q′12 := g(T ′

12).
Furthermore, letP be the path fromu to v excluding
u andv and letqP := g(P ). Using Inequality (2) twice
more, we obtain

q′ = qP + q′12 + q′2 ≥ qP + (
q1 − qP

2
)

2

3 + q
2

3

2

≥ (
q1

2
)

2

3 + q
2

3

2 ≥ q
2

3 .

2

Once we have a properly marked tree, it is possible to
mark left and right sub-trees in a proper way using parity
considerations, as follows.

Definition 4.12. Let (T, r) be a sub-cubic tree rooted at
vertexr of degree1 and X a set of good vertices that lies
flat in T . We say the tuple(T, r,X) admits a definable order
if for all branching verticesv with extended sub-treesTi :=
SUBTREEi(v), for i = 1, 2, exactly one of the following is
true. Along with the following conditions we will label some
sub-trees asleft and others asright.

1) At least one ofT1, T2 is a single edge, sayT1. If T2 is
also a single edge, thenT1 and T2 are incomparable;
otherwiseT1 is left andT2 is right.

2) Exactly one ofT1, T2 is a simple path, sayT1. ThenT1

is left andT2 is right.
3) Letui be the next proper branching vertex ofTi if one

exists; otherwise letui be the leaf ofTi that is farthest
away fromv. Let Pi be the path connectingv and ui

in Ti. We definegi to be the number of vertices onPi

that are good or leafy. We require that exactly one of
g1, g2 is odd, sayg1; then T1 is left andT2 is right.

Thecanonical order≤T of (T, r) is defined as follows. Let
x 6= y ∈ V (T ) and let v be the common ancestor ofx, y.
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Thenx ≤T y if and only ifx is in the left sub-tree ofv and
y in the right.

Lemma 4.13. Let (T, r) be a sub-cubic tree rooted at vertex
r of degree1 and X ⊆ V (T ) a given set of good vertices
that lies flat inT . T contains a sub-treeT ′ and a setX ′ ⊆
X ∩ T ′ with |X ′| ≥ |X|

2

3 /2 such that(T ′, r,X ′) admits a
definable order andX ′ is totally ordered by the canonical
order≤T ′ . Furthermore,T ′ can be computed in polynomial
time.

Finally, we can relate our construction to MSO2 by
the following lemma; its proof is immediate from Defini-
tion 4.12:

Lemma 4.14. Let (T, r) be a sub-cubic tree andX ⊆ V (T )
such that(T, r,X) admits a definable ordering. LetMSO2-
formulasϕR(v) andϕX(v) defining the root ofT and the set
X, respectively, be given. Then there is anMSO2-formula
ϕ¹(x, y) which defines the canonical order≤T .

C. Tree-Ordered Webs

In this section we show how to prune the treeT of a
given nice full tree-web(G,T,A,P,Q), so that there is an
MSO2-formula which can detect the nodes ofT in G and
at each branching node of the tree distinguishes between
the left and right sub-tree. We use the same notion of a
topological neighbouras in the previous section, only that
now we consider degrees inG, not in T ; this does make an
important difference, since good vertices have degree2 in T
but degree3 in G. Additionally, we call a vertexv ∈ V (G)
special inG if it has degree4 or has degree3 and isnot
properly marked, i.e. does not have a leaf or a leafy vertex
as a topological neighbour. We denote byspec(G) the set
of special vertices inG.

Definition 4.15. A tree-ordered webof order ℓ is a tuple
(G,T, r,A,P,Q) such that

1) (G,T,A,P,Q) is a tree-web of orderℓ admitting the
definable rootr,

2) A is the set of vertices of degree3 in G not in spec(G)
but having a topological neighbour in spec(G),

3) T is contained in a component ofG − spec(G),
4) (T, r,A) admits a definable order.

Lemma 4.16. There exists a constantc such that ifW0 =
(G0, T0, A0,P0,Q0) is a given nice full tree-web of ordercℓ,
then there exists a tree-webW = (G,T,A,P,Q) with W ⊆
W0 and a vertexr ∈ V (G) such that(G,T, r,A,P,Q) is
a tree-ordered web of orderℓ with |A| ≥ 15ℓ; furthermore,
W can be computed in polynomial time.

A main ingredient of the proof of Lemma 4.16 is the
observation that Definition 4.12 allows us to cut a good path
and make it an artificial leaf without destroying the definable
order. Hence, we can cut away about every second good path
to ensure that vertices of the tree do not land inspec(G).

Figure 3. A (a) single and a (b) double cross.

We also observe that if the number of the leaves of the tree
is large enough, we can just keep the good paths starting at
the leaves; and otherwise, the number of proper branching
vertices is small and we do not need to cut away too many
good paths.

The proof of the following lemma is immediate from
Definition 4.15, Lemma 4.14, and the fact that the special
verticesspec(G) can easily be defined:

Lemma 4.17. Given a tree-ordered webW =
(G,T, r,A,P,Q), there exist MSO2-formulas ϕT (x),
ϕR(x), ϕA(x), ϕPQ(x), and ϕ¹(x, y), defining the tree
T , its root r, the set of good verticesA, the vertices of
the grid-like minor, i.e.V (

⋃

P ∪
⋃

Q), and the canonical
order ≤T , respectively.

D. Labelling Tree-Ordered Webs

We will show next how to encode a wordw :=
w1 . . . wt ∈ {0, 1}⋆ in a tree-ordered web of order2t. We
first need the following simple combinatorial lemma.

Lemma 4.18. Let G be a directed graph onk vertices with
maximum outdegreed. ThenG contains an independent set
of size

⌈

k
2d+1

⌉

which can be computed in polynomial time.

A single crossis a sub-cubic tree with four leaves having
the shape depicted in Fig. 3 (a); adouble crossis a sub-
cubic tree with five leaves having the shape depicted in
Fig. 3 (b) (where the dashed lines indicate paths). The right-
most vertex of each cross, as drawn in Fig. 3, is called the
baseof the cross.

Definition 4.19. A labelled tree-ordered web of orderℓ and
lengthk is a tupleW := (G,T, r,A,P,Q,X,C) where

1) ((G − C) ∪ X,T, r,A,P,Q) is a tree-ordered web of
order ℓ,

2) the rootr does not have a leafy vertex as a topological
neighbour,

3) C is a set of disjoint single and double crosses,
4) X = T ∩C is the set of bases of the crosses inC and

lies flat in T ,
5) |C| = |X| = |A| = k,
6) if X = {x1, . . . , xk} and A = {v1, . . . , vk} then

x1 ≤T v1 ≤T x2 ≤T · · · ≤T xk ≤T vk.

The wordencoded byW is w := w1 . . . wk ∈ {0, 1}k with
wi := 0 if xi is the base of a single cross inC and wi :=
1 if xi is the base of a double cross ofC. W is called
configurableif C consists only of double crosses.
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A labelled tree-ordered web encoding the word010 is
indicated in Figure 2.

Lemma 4.20. For ℓ ≥ 3, let W = (G,T, r,A,P,Q) be
a given tree-ordered web of order2ℓ with |A| ≥ 30ℓ.
There exists a configurable labelled tree-ordered webW ′ =
(G′, T ′, r′, A′,P ′,Q′,X ′, C ′) of order ℓ and lengthℓ with
G′ ⊆ G that can be computed in polynomial time.

Proof sketch.First, note that any good pathP ∈ P can be
easily transformed to a double cross by destroying at most
7 good paths. Consider a digraphD having a vertexuP for
each good path inP and a directed edge fromuP to uP ′

if turning P into a double cross destroysP ′. The maximum
out-degree of this digraph is7 and hence, by Lemma 4.18,
there exists a setY0 ⊆ A of size at least|A|

15 ≥ 2ℓ of good
vertices, so that the vertices inD that correspond to the good
paths starting atY0 build an independent set inD.

Let Y := {y1, . . . , y2ℓ} be a subset of exactly2ℓ vertices
of Y0 such thaty1 ≤T y2 ≤T · · · ≤T y2ℓ. We define
X ′ := {yi | i is odd} and A′ := {yi | i is even}. We trans-
form every good path starting at a vertex inX ′ into a double
cross and remove all the paths that get destroyed. LetC ′ be
the set of double crosses we obtain this way. The rest of the
proof follows easily. 2

Lemma 4.21. Given a labelled tree-ordered webW =
(G,T, r,A,P,Q,X,C), there existMSO2-formulasϕT (x),
ϕR(x), ϕA(x), ϕX(x), ϕC(x), ϕPQ(x), andϕ¹(x, y) defin-
ing T , r, A, X, C, P ∪ Q, and the canonical order≤T ,
respectively.

Proof.Sincer does not have a leafy vertex as a topological
neighbour, the crosses are distinguishable fromr. Hence, we
can easily obtain an MSO2-formula ϕC(x) to identify the
vertices in the crosses and then apply Lemma 4.17 to obtain
our result. 2

The definition below is needed in Section V:

Definition 4.22. If W is a labelled tree-ordered web of order
ℓd and lengthℓ encoding a wordw = w1 . . . wℓ, we say that
W encodesw with powerd.

Theorem 4.23 sums up the algorithmic part of this work:

Theorem 4.23. Let a word w = w1 . . . wℓ ∈ {0, 1}⋆, a
graph G, and an integerd be given. There is a constant
c, so that if the tree-width ofG is at leastcℓ14d then G
contains either anℓd × ℓd-wall or a labelled tree-ordered
webW that encodesw with powerd. Furthermore, either
outcome can be computed in polynomial time.

V. PARAMETERIZED INTRACTABILITY OF MSO2 MODEL

CHECKING

In this section we prove Theorem 1.2. We first show the
intractability of MSO2 on walls and then lift this to show

the general result. For this, we first recall the well-known
fact that MSO2 is intractable on coloured walls. Recall that
from the results of the previous section, given a wordw and
a graphG of large enough tree-width, we construct either a
wall encodingw or a labelled tree-ordered web encodingw.
For either outcome we will define an MSO2-interpretation
of coloured walls in these structures which will allow us to
transfer the intractability results from coloured walls tothese
structures and hence to the general case of Theorem 1.2.

A. MSO2-Interpretations

We first recall briefly the concepts of interpretations (see
e.g. [5]).

Definition 5.1. Let σ and τ be signatures and letX be a
tuple of monadic second-order variables. Aninterpretation
of τ in σ with parametersX is a tuple Θ :=

(

ϕvalid,
ϕuniv(x), ϕ∼(x, y), (ϕR(x))R∈τ

)

of MSO2[σ∪̇X]-formulas,
where the arity ofx in ϕR(x) is ar(R), such that for all
σ-structuresA and assignmentsY ⊆ U(A) to X with
(A, Y ) |= ϕvalid, ϕ∼ defines an equivalence relation on
ϕuniv(A).

For an interpretationΘ we will denoteϕvalid by ϕvalid(Θ).
With any interpretationΘ we associate a map taking aσ-
structureA andY ⊆ U(A) such that(A, Y ) |= ϕvalid to aτ -
structureH with universeU(H) := ϕuniv(A, Y )|ϕ∼(A,Y ) :=

{[v]∼ : (A, Y ) |= ϕuniv(v)} where [v]∼ denotes the equiv-
alence class ofv under ϕ∼(A, Y ). For R ∈ τ of arity
r := ar(R) we defineR(H) := {([a1], . . . , [ar]) : (A, Y ) |=
ϕR(a1, . . . , ar)}.

Furthermore, any interpretationΘ also defines a transla-
tion of MSO2[τ ]-formulasϕ to MSO2[σ]-formulasΘ(ϕ) by
replacing occurrences of relationsR ∈ τ by their defining
formulasϕR ∈ Θ in the usual way (see [5] for details) so
that the following lemma holds.

From now on we will always letσ = τ := σgraph and
therefore speak about interpretations without any reference
to specific signatures.

Lemma 5.2 (Interpretation Lemma). Let Θ be anMSO2-
interpretation with parametersX. For any σgraph-structure
A and assignmentY ⊆ U(A) to X s.t. (A, Y ) |= ϕvalid(Θ),
and anyMSO2-sentenceϕ we haveΘ(A, Y ) |= ϕ if, and
only if, (A, Y ) |= Θ(ϕ).

B. MSO2 on Coloured Elementary Walls

Definition 5.3. The signatureσwall of coloured walls is de-
fined asσwall := {V,E,∈, C0, C1}, whereV,E,C0, C1 are
unary relation symbols and∈ is a binary relation symbol. A
σwall-structureW is a coloured elementaryl × l-wall if its
σgraph-reductW|{V,E,∈} is an elementaryl×l-wall according
to Definition 2.3.W encodes a wordw := w1 . . . wn ∈ Σn

with powerd if l ≥ nd and if {v1,i : 1 ≤ i ≤ l} are the
vertices on the bottom row thenv1,i ∈ C0 if wi = 0 and
v1,i ∈ C1 if wi = 1, for all 1 ≤ i ≤ n, and C0 ∩ C1 = ∅.
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The following theorem is part of the folklore.

Theorem 5.4. For d ≥ 2 let Wd be the class of coloured
elementary walls encoding words with powerd. Then
MC(MSO2,Wd) is not in XP unlessP = NP.

The theorem follows immediately from the following
lemma, whose proof is standard.

Lemma 5.5. LetM be a non-deterministicnd-time bounded
Turing-machine. There is a formulaϕM ∈ MSO2 such that
for all words w ∈ Σ⋆, if W is a coloured elementary wall
encodingw with powerd, thenW |= ϕM if, and only if,M
acceptsw. Furthermore, the formulaϕM can be constructed
effectively fromM . The same holds ifM is an alternating
Turing-machine with a bounded number of alternations, as
they are used to define the polynomial-time hierarchy.

C. MSO2 on Uncoloured Walls

The previous paragraph stated the intractability of MSO2

on coloured elementary walls. As one possible outcome of
Section IV we get an uncoloured wallW , not necessarily
elementary, of sufficient size. In the absence of colours we
will encode a wordw in W by taking a suitable sub-graph
W ′ ⊆ W as follows.

Let w := w1, . . . , wn ∈ {0, 1}∗ be a word of lengthn,
let d ≥ 1 and letm := nd + 2. The aim is to encodew in
a wall W of order at leastm×m. Let v0, . . . , vm−1 be the
nails (see 2.3) on the bottom-rowR ⊆ W of W and, for
0 ≤ i < m − 1, let Pi ⊆ R be the sub-path connectingvi

and vi+1. Let W ′ ⊆ W be the wall obtained fromW by
deleting the internal vertices ofP0 and for each1 ≤ i ≤ n
such thatwi = 0 the internal vertices ofPi. All other paths
remain unchanged. We say thatW ′ encodesw with power
d. The reason we deleteP0 but notPm−1 is that this defines
a unique ordering on the bottom-row, the left-most path is
deleted but the right-most is not, needed to read the word
w in the correct order. The following is now easily seen.

Theorem 5.6.There is anMSO2-interpretationΘ fromσwall

in σgraph such that ifW is an uncoloured wall encoding
w ∈ Σ∗ with powerd thenΘ(W ) is a coloured elementary
wall encodingw with powerd.

D. Defining Labelled Tree-Ordered Webs

The aim of this section is to show that we can define a
coloured elementary wall encoding a wordw in a labelled
tree-ordered web encodingw. The main result of this part
is the following theorem.

Theorem 5.7. There is anMSO2-interpretationΘ such that
if (G,T, r,A,P,Q,X,C) is a labelled tree-ordered web
encoding a wordw with powerd, thenΘ(G) is a coloured
elementary wall encodingw with powerd.

Proof.We will define the interpretation in a sequence of steps
and will illustrate the formulas by a labelled tree-ordered

web W = (G,T, r,A,P,Q,X,C) encoding a wordw of
lengthℓ with powerd. The actual formulas will not depend
on W in any form.

By Lemma 4.21, there exist MSO2-formulas ϕT (x),
ϕR(x), ϕA(x), ϕX(x), ϕC(x), ϕPQ(x), andϕ¹(x, y) defin-
ing T , r, A, X, C, P ∪ Q, and the canonical order≤T ,
respectively. Essentially, we now have formulas which, on
G as above, define the labelled tree-ordered webW.

What is left to do is to define formulas which generate a
wall from the grid-like minor(P,Q) so that the bottom-row
of the wall is connected to the vertices inA = {v1, . . . , vℓ}
in the correct order, whereℓ is the length of the wordw.
This is by far the most complex part of the interpretation.
But fortunately we can adapt formulas defined in [8] for this
purpose. The actual formulas are very long and tedious. We
therefore refrain from repeating them here and refer the full
version of [8] at http://arxiv.org/abs/0904.1302.

Let k := ℓd; by Definition 4.19 we know thatI(P,Q)
contains a sub-division ofKk2 , so thatℓ of its nails are
paths fromP that start at the verticesv1 ≤T · · · ≤T

vℓ of A. We can consider a subgraph of thisKk2 sub-
division to obtain ak × k-wall in I(P,Q), so that the
first ℓ nails of the bottom row of the wall are adjacent
to A. Suitably adapting the formulas defined in [8], we
obtain formulasϕvalid, ϕuniv, ϕ∼, ϕV , ϕE , and ϕ∈ needed
for the interpretationΘ. What is left to do is to define
the colouring. However, it is easily seen that there are
MSO2-formulasϕ′

C0
(x), ϕ′

C1
(x), usingϕC , ϕX , ϕA andϕ¹

from Lemma 4.21, so that forX := {x1, . . . , xℓ}, with
x1 ≤T v1 ≤T x2 · · · ≤T xℓ ≤ vℓ, vi ∈ ϕ′

C0
(G) if xi is

adjacent to a single cross andvi ∈ ϕ′
C1

(G) if xi is adjacent
to a double cross inC. From this, formulasϕC0

(x, P,Q,A)
and ϕC1

(x, P,Q,A) defining the correct colouring of the
wall W ′ can be easily defined. This concludes the proof of
the theorem. 2

E. Proof of Theorem 1.2.

In this section we complete the proof of Theorem 1.2. We
first prove Part 1.

Suppose, MC(MSO2, C) ∈ XP, i.e. there is a computable
function f : N → N such that givenG ∈ C andϕ ∈ MSO2

we can decideG |= ϕ in time O(|G|f(|ϕ|)). Let M be a
non-deterministic Turing-machine deciding SAT in quadratic
time and letϕM be the formula constructible fromM as
defined in Lemma 5.5.

Let Θ1 be the interpretation from the Theorem 5.6 and let
Θ2 be the interpretation from Theorem 5.7. Defineϕ1

M :=
Θ1(ϕM ) andϕ2

M := Θ2(ϕM ).
Let w ∈ {0, 1}∗ be a word of which we want to decide

whetherw ∈ SAT, let ℓ := |w| and t := 2cℓ28, where c
is the constant from Theorem 4.23. As the treewidth ofC
is strongly unbounded bylog28γ n, there areε < 1 and a
polynomialp(n) of degree less thanγ such thatC contains
a graphG with tw(G) ≥ log28γ |G| and t ≤ tw(G) ≤
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p(t) and G can be computed in time2|w|ε ; note that this

implies that |G| ≤ 2p(2cℓ28)
1

28γ
≤ 2|w|δ , for someδ < 1.

By Theorem 4.23,G either contains a) a wallWw encoding
w with power2 as a subgraph or b) a labelled tree-ordered
webW = (H,T, r,A,P,Q,X,C) encodingw with power
2. Note that we need an encoding with power2 because
M needs|w|2 space cells and computation steps to decide
w ∈ SAT.

In casea), asC is closed under sub-graphs,Ww ∈ C and
we can therefore decideWw |= ϕ1

M in time |Ww|
f(|ϕ1

M |) ≤
|G|f(|ϕ1

M |) ≤ (2|w|δ)f(|ϕ1

M |) = 2f(|ϕ1

M |)|w|δ = 2o(|w|). By
construction,Ww |= ϕM if, and only if, M acceptsw if,
and only if,w ∈ SAT.

In case b),H ∈ C as H is a subgraph ofG. We
can therefore decideH |= ϕ2

M in time |H|f(|ϕ2

M |) ≤

|G|f(|ϕ2

M |) ≤ (2|w|δ)f(|ϕ2

M |) = 2f(|ϕ2

M |)|w|δ = 2o(|w|). By
construction,H |= ϕM if, and only if, M acceptsw if, and
only if, w ∈ SAT.

Hence, in both cases a) and b) we can decidew ∈ SAT

in time 2o(|w|). This shows Part 1.
To show Part 2, we use the same proof idea. LetP

be a language in the polynomial-time hierarchy and letM
be an alternating Turing-machine with bounded alternation
decidingP in time nk. We use essentially the same proof as
above but, given a wordw, we construct a graphG which
contains a wall or a labelled tree-ordered web encodingw
with powerk. The rest follows then as before.

This concludes the proof of Theorem 1.2. It is easily seen
that the proof can be adapted to classes of graphs closed
under spanning sub-trees, i.e. edge deletion: instead of taking
sub-graphs we simply delete all edges no longer needed and
make the MSO2-formulas ignore isolated vertices.

Corollary 5.8. If C is closed under spanning sub-graphs
and the tree-width ofC is strongly unbounded bylog28 n,
then MC(MSO2, C) 6∈ XP unless SAT can be solved in
sub-exponential time. If the tree-width ofC is not poly-
logarithmically bounded thenMC(MSO2, C) 6∈ XP unless
all problems in the polynomial-time hierarchy can be solved
in sub-exponential time.

VI. CONCLUSION

We have presented a strong intractability result for MSO2

on graph classes of unbounded tree-width. In comparison to
Courcelle’s theorem, Courcelle’s theorem requires the tree-
width to be constant whereas our result refers to classes
whose tree-width is essentially not bounded logarithmically.
However, it seems difficult to close this gap as we believe
that there are classes of graphs whose tree-width is only
bounded by log1−ε n but which are closed under sub-
graphs and satisfy the other conditions above, but do admit
tractable MSO2-evaluation. On the other hand, this is very
unlikely to be the case for all classes of logarithmic tree-
width. Exploring tractability and intractability of MSO2 on

classes of unbounded tree-width, but bounded bylog n,
might lead to interesting new results on the boundary of
MSO2-tractability.

The results reported in this paper refer to MSO2, i.e. MSO
with quantification over sets of edges. For MSO without
edge set quantification, referred to as MSO1, it can be shown
that MSO1 is tractable on any classC of graphs of bounded
clique width. Again not much is known about MSO1 and
graph classes of unbounded clique-width and it would be
very interesting to establish similar results as in this paper
for the case of clique-width. This, however, is much more
difficult as there is no good obstruction similar to grid-like
minors.
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