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ABSTRACTWe introdue a family of query languages for linear on-straint databases over the reals. The languages are de�nedover two-sorted strutures, the �rst sort being the real num-bers and the seond sort onsisting of a deomposition ofthe input relation into regions. The languages are de�ned asextensions of �rst-order logi by transitive losure or �xed-point operators, where the �xed-point operators are de�nedover the set of regions only. It is shown that the querylanguages apture preisely the queries de�nable in variousstandard omplexity lasses inluding Ptime.
1. INTRODUCTIONManipulating spatial data is an inreasingly important partof modern database systems as spatial data plays an impor-tant role in many appliation areas like geographial infor-mation systems or (medial) image proessing. Many of theproposed data models for spatial database systems are de-signed for a partiular type of appliation. Although theyallow very eÆient storage and manipulation of the kind ofdata used in this appliation area, they normally fail forother types of spatial data. For example, there are very ad-vaned geographial information systems available for twodimensional as well as for three dimensional data, but theyrarely work well for both dimensions, let alone higher di-mensions.This narrowed fous is often suÆient for many appliationsbut it has several disadvantages, one being that one needsompletely di�erent database systems for di�erent applia-tions.A more general approah to spatial databases is to allowarbitrary sets as database relations, as long as they havea �nite presentation in some formalism, e.g. by �rst-orderformulae. A database framework following this approah isthe framework of onstraint databases. Constraint databaseshave been introdued by Kanellakis, Kuper, and Revesz[17; 16℄ in 1990 and sine then a lot of researh has beendone in this area. See [19℄ for a very detailed study of
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onstraint databases. In this framework the spatial rela-tions are de�ned by boolean ombinations of polynomial(in)equalities. Databases de�ned in this way are alled poly-nomial onstraint databases and �rst-order logi on thesedatabases is usually referred to as FO+POLY. Polynomialonstraint databases allow a very natural representation ofspatial data. The drawbak is that the evaluation of queriesbeomes rather expensive. Although it is known that �rst-order queries on polynomial onstraint databases have NCdata omplexity, the onstants involved are fairly large andthe algorithms beome unusable for pratial appliations.As semi-linear data is suÆient for most pratial purposes,it is quite ommon to use linear approximations to the spa-tial data, that is to onsider linear onstraint databases,where the relations are represented by boolean ombina-tions of linear (in)equalities. But �rst-order logi on thesedatabases, usually referred to as FO+LIN, is not expres-sive enough as many interesting queries annot be de�ned.Therefore more powerful languages are needed. There aredi�erent ways to inrease the expressive power of �rst-orderlogi. In this paper we onentrate on inreasing expressivepower by adding reursion mehanisms. This has suess-fully been done for dense order onstraint databases. (See[17; 12; 9℄) Unfortunately linear onstraint databases are notso well behaved onerning reursion. A naive de�nition of,e.g., least �xed-point logi leads to a non-terminating andundeidable language, as it is possible to de�ne the natu-ral numbers with addition and multipliation by least �xed-point logi over (R; <;+). (See [18℄ for an investigation ontermination properties for query languages with reursion.)In order to guarantee termination one has to restrit theappliation of the �xed-point operator.Besides termination, one enounters problems with the lo-sure of languages over linear onstraint databases - the resultof a query on a linear onstraint database must itself be lin-ear again. Thus a language powerful enough to de�ne e.g.onvex hulls has to be restrited in some sense, sine multi-pliation an easily be de�ned if the omputation of onvexhulls is possible. (See Setion 4 for details.)Attempts to de�ne query languages with reursion meha-nisms on linear onstraint databases an be found in [11; 5℄.Grumbah and Kuper [11℄ de�ne a query language based onleast �xed-point logi. Termination is guaranteed by takingthe simultaneous �xed-point of two formulae, the �rst speak-ing only about the ordered set of reals whereas the seondformula is allowed to use addition but is required to satisfyrather severe restritions. It is shown that the language ap-tures Ptime on the lass of linear onstraint databases but1



expressing queries in this language is not very intuitive.Geerts and Kuijpers [5℄ analyze properties of spatial data-log. They show that onnetivity of spatial relations anbe queried by a terminating spatial datalog program, butgenerally spatial datalog queries will not terminate on everyinput.In this paper we take a di�erent approah to de�ne reur-sive query languages over linear onstraint databases, by al-lowing �xed-point omputations to range only over a �niteolletion of pre-de�ned sets. More preisely, we onsiderlogis over two sorted strutures. The �rst sort is the setof real numbers with order and addition de�ned on them.To de�ne the seond sort, we deompose the input relationinto regions, whih are onneted subsets of the underlyingspae Rd . The set of regions forms the seond sort. Thusthere are also two sorts of variables. The �rst one, alledelement variables, range over the real numbers whereas theseond type of variables, alled region variables, range overthe regions. The onnetion between the two worlds is givenby the ontainment prediate, stating that a point, given bya tuple of real numbers, is ontained in a region. Now thelanguages are de�ned by extending �rst-order logi by (de-terministi) transitive losure, least or partial �xed-pointoperators, where the operators iterate over the (�nite) setof regions only. We show that many interesting queries anbe formulated naturally in these languages. To estimate theexat expressive power, it is shown that exatly the booleanqueries deidable in various important omplexity lassesan be expressed in this family of query languages.Similar languages an be de�ned for polynomial onstraintdatabases using a ell deomposition for semi-algebrai sets,but the omplexity of query evaluation will be muh higher.The results presented here also ontribute to a researh pro-gram ative for some years now, where it is investigated inhow far the approah and methods of desriptive omplexitytheory an be applied to in�nite, but �nitely representablestrutures. Researh here onsiders various formalisms torepresent in�nite strutures, examples being reursive stru-tures [14℄, meta�nite strutures and omplexity theory overthe reals [8; 10℄, and onstraint databases. In this researharea the addition of �xed-points to logis is still an openproblem.The paper is organized as follows. In the next setion wegive a preise de�nition of onstraint databases and queries.In Setion 3 we de�ne some notions from onvex geometrywe need in the sequel and de�ne a deomposition of the in-put relation and the underlying spae. Setion 4 de�nes thetwo-sorted strutures and �rst-order logi on them. In Se-tion 5 extensions of �rst-order logi by �xed-point operatorsare de�ned and some examples are given. We investigatethe expressive power and omplexity of these languages inthe Setion 6, where it is shown that the least �xed-pointextension aptures all boolean Ptime queries. In Setion 7logis based on transitive losure onstruts are introduedtogether with a di�erent deomposition of the input relation.We lose with a summary and remarks on further work. Es-peially, we omment on extensions of the logis apable ofapturing non-boolean queries.
2. PRELIMINARIESConstraint databases. The basi idea in the de�nition ofonstraint databases is to allow in�nite relations whih havea �nite presentation by a quanti�er-free formula. Let A be a

� -struture, alled the ontext struture, and '(x1; : : : ; xn)be a quanti�er-free formula of voabulary � . We say that an-ary relation R � An is represented by '(x1; : : : ; xn) overA i� R equals f�a 2 An : A j= '[�a℄g. Let � := fR1; : : : ; Rkgbe a relational signature. A �-onstraint database over theontext struture A is a �-expansion B := (A; R1; : : : ; Rk)of A where all Ri are �nitely represented by formulae 'Riover A. The set � := f'R1 ; : : : ; 'Rkg is alled a �nite rep-resentation of B.By de�nition, onstraint databases are expansions of a on-text struture by �nitely representable database relations.Note that the same relation an be represented in di�erentways, e.g. '1 := 0 < x ^ x < 10 and '2 := (0 < x ^ x <6) _ (6 < x ^ x < 10) _ x = 6 are di�erent formulae de�n-ing the same relation. Two representations � and �0 areA-equivalent, i� they represent the same database over A.To measure the omplexity of algorithms taking onstraintdatabases as inputs we have to de�ne the size of a on-straint database. Unlike �nite databases, the size of on-straint databases annot be given in terms of the number ofelements stored in them but has to be based on a represen-tation of the database. Note that equivalent representationsof a database need not be of the same size. Thus the size of aonstraint database annot be de�ned independent of a par-tiular representation. In the following, whenever we speakof a onstraint database B, we have a partiular represen-tation � of B in mind. The size jBj of B is then de�nedas the sum of the length of the formulae in �. This orre-sponds to the standard enoding of onstraint databases bythe formulae of their representation.In this paper we onsider linear onstraint databases, that isdatabases de�ned by boolean ombinations of linear (in)e-qualities. In the literature one an �nd two models of om-putation for suh databases. The �rst model allows real o-eÆients in the formulae. The omputational devies usedan store any real number in a single storage ell and havebuilt in funtions like addition and multipliation. The se-ond model allows only rational oeÆients in the formulae.Sine one an multiply the atoms in the formulae with theleast ommon denominator, this is equivalent to allowinginteger oeÆients only. The integers are stored bitwise onthe Turing tape. We take the seond approah and onsiderthe ontext struture A := (R; <;+). The formulae are al-lowed to use elements from Z as parameters. As usual werequire the formulae representing the input relations to bein disjuntive normal form and onsider databases with onesingle spatial relation only. This restrition is not ruialbut helps to simplify the presentation. For notational rea-sons we disallow the use of negation, but allow �;>, and �instead. Clearly, 6= an be de�ned using <.Constraint queries. Fix a ontext struture A. A on-straint query is a mapping Q from onstraint databasesover A to �nitely representable relations over A. Note thatqueries are abstrat, i.e. they depend only on the databasenot on their representation. That is, any algorithm thatomputes Q, taking a representation � of a database B asinput and produing a representation of Q(B) as output,has to ompute on two A-equivalent representations � and�0 output formulae that are not neessarily the same, butrepresent the same relation on A.In the sequel we are partiularly interested in queries de�nedby formulae of a given logi L. Let ' 2 L be a formula withk free variables. Then ' de�nes the query Q' mapping a2



onstraint database B over A to the set'B := f(a1; : : : ; ak) : B j= '[�a℄g:In order for Q' to be well de�ned, this set must be repre-sentable by a quanti�er-free formula. If ' is �rst-order, thismeans that A admits quanti�er elimination. For more pow-erful logis than �rst-order logi, the additional operatorsmust be eliminated as well. A logi L is losed for a lassC of onstraint databases over A, if for every ' 2 L andevery B 2 C the set 'B an be de�ned by a quanti�er-free�rst-order formula over A.Typial questions that arise when dealing with onstraintquery languages are the omplexity of query evaluation fora ertain onstraint query language and the de�nability of aquery in a given language. For a �xed query formula ' 2 L,the data omplexity of the queryQ' is de�ned as the amountof resoures (e.g. time, spae, or number of proessors)needed to evaluate the funtion that takes a representation� of a database B to a representation of the answer relationQ'(B).
3. ARRANGEMENTSIn this setion we explain some notions from onvex geom-etry that will be needed later. The presentation mostly fol-lows [4℄. See also [6; 23℄ for details.Let P � Rd be a set of points in Rd . The aÆne support oraÆne hull of P is de�ned as the smallest aÆne subspae ofRd ontaining P . The onvex hull of P is de�ned asonv(P ) := fx : 9p1; : : : ; pn 2 P; n 2 N; 9a1; : : : an 2 R�0 ;�aipi = x; �ai = 1g:We de�ne the open onvex hull of P as the interior of onv(P )with respet to its aÆne support. It an be de�ned asopenonv(P ) := fx : 9p1; : : : ; pn 2 P; n 2 N; 9a1; : : : an 2 R;ai > 0; �aipi = x; �ai = 1g:Whenever we speak about the interior of a set or a set beingopen, we always mean with respet to its aÆne support.Usually, a polyhedron in Rd is de�ned as the intersetionof �nitely many losed halfspaes in Rd . For our purposesit is more onvenient to allow the intersetion with openhalfspaes as well. Thus we de�ne a polyhedron in Rd as theintersetion of �nitely many open or losed halfspaes. Itis bounded, if it is entirely ontained in some d-dimensionalhyperube of edge length l for some l 2 R�0 . A boundedpolyhedron is alled a polytope.Reall that a linear onstraint relation S is de�ned by a for-mula 'S := WiVj 'ij , where eah 'ij is a linear inequality,de�ning a halfspae, or a linear equation, de�ning a hyper-plane.Thus, eah onjunt in 'i := V'ij de�nes a polyhedronand the relation S onsists of a union of polyhedra. LetG(S) := fg1; : : : ; gng be the set of (in)equalities ourringin 'S . Consider the set of hyperplanesH(S) := fh : there is an equation g 2 G(S) and h = g, org is an inequality and h is obtained by re-plaing in g inequality by equality g.See Figure 1 and 2 for a spatial relation and the orrespond-ing set of hyperplanes.For eah h := �aixi = b 2 H(S) we de�ne the set of pointsbeing above, on, or below h, where a point p := (p1; : : : ; pd)

Figure 1: Example of a spatial relation S.

Figure 2: Set of hyperplanes indued by S.is above h if �aipi > b, on h if �aipi = b, and below hif �aipi < b. We denote by h� the set of points belowh and by h+ the set of points above h. Clearly, any twopoints on the same side of all hyperplanes in H(S) are eitherboth ontained in or both not ontained in S. To see this,reall that the hyperplanes in H(S) arise from the atoms in'S . Points on the same side of a hyperplane h annot beseparated by the orresponding atom. Clearly, if the pointsannot be separated by the atoms in 'S , then the booleanombination of the atoms annot separate them either.More preisely, let p be a point in Rd . The position vi(p)with respet to hi 2 H(S) is de�ned asvi(p) := 8><>:+1 if p 2 h+i0 if p 2 hi�1 if p 2 h�i :The position of a point with respet to H(S) is determinedby the vetor (v1(p); : : : ; vn(p)), alled the position vetorof p, and any two points sharing the same position vetorare inseparable by 'S.We all a set of all points sharing the same position vetora fae and the dissetion of Rd indued by the set H(S) ofhyperplanes an arrangement A(S). This dissetion of Rdinto faes is a partition of Rd with the property that everyfae is either ontained in or disjoint to S. See Figure 3 forthe deomposition of the database shown above.3
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Figure 3: Arrangement A(S).The dimension of a fae in the deomposition is de�ned asthe dimension of its aÆne support. Thus we have seven 2-dimensional faes e1 to e7, nine 1-dimensional faes l1 to l9,and three 0-dimensional faes p1 to p3. As usual, we all0-dimensional faes verties.We say, that two faes f and g are inident, if one is ofdimension one less than the other and it is ontained in theboundary of the other region.Typially, arrangements are stored in a data struture likethe inidene graph. The inidene graph ontains a vertexfor eah fae in the arrangement as well as two additionalverties, one representing a virtual (�1)-dimensional fae,denoted by ?, whih is inident to every 0-dimensional fae,and one vertex representing a (d+ 1)-dimensional fae, writ-ten as A(S), where every d-dimensional fae is inident to.We all the last two verties improper and the other properverties. Eah proper vertex v stores the position vetor ofthe points ontained in the orresponding fae f as well astwo lists of direted edges, one ontaining edges pointingat the verties whose faes are inident to f and one on-taining edges pointing at the verties to whose faes f isinident. Figure 4 shows the inidene graph for the part ofthe arrangement of Figure 3 ontaining the faes around p2.A(S): : : e5 xx
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Also the inidene relation an be eÆiently deided.It is known, that an arrangement for a set of n hyperplanesin Rd an be omputed in time O(nd). See Theorem 7.6in [4℄. Besides the known sequential algorithms, there havesome attempts been made to de�ne parallel algorithms foromputing arrangements [1; 7℄, leading to algorithms run-ning in parallel time O(log n) using a polynomial number ofproessors on a CREW PRAM (See [7℄).Sine the number of hyperplanes in H(S) is always less orequal the number of atoms in the representation of the data-base, the following theorem is immediate.Theorem 3.1. Let B := ((R; <;+); S) be a linear on-straint database. The arrangement A(S) an be omputedin polynomial time with respet to the size of the represen-tation of B.
4. FIRST-ORDER LOGIC WITH REGION

VARIABLESIn this setion we use the arrangement de�ned above to in-trodue �rst-order logi with region variables, whih is �rst-order logi on ertain two-sorted strutures. We �rst intro-due the strutures the logis operate on.Let B be a database with a d-ary spatial relation S. Thede�nition of the strutures is based on a dissetion of Rdinto regions, where a region is a onneted subset of Rd .We denote the set of regions by region(S). To de�ne �rst-order logi with region variables and its extension by �xed-point operators, we use the arrangement A(S) as dissetion.Thus, here and in the next setion regions(S) is de�ned asthe set of faes in A(S). In Setion 7 we will use a di�erentdeomposition of Rd into regions to de�ne a logi based ona transitive losure operator.Definition 4.1. Let B := ((R; <;+); S) be a linear on-straint database, where S is a d-ary relation symbol.The struture B gives rise to a two-sorted struture BReg :=(R;Reg;�;+; S; adj;2), alled the region extension of B,with sorts R and Reg := regions(S), the adjaeny relationadj � Reg�Reg, where two regions are adjaent if there is apoint p in one of them suh that every "-neighbourhood of phas a non-empty intersetion with the other region, and theelement ontainment relation 2 between elements from Rdand Reg, where �x 2 R is true i� the point �x is ontained inthe region R.The "-neighbourhood of a point p = (p1; : : : ; pd) 2 Rd anbe de�ned as the set fp0 := (p01; : : : ; p0d) : jpi � p0ij <" for all 1 � i � dg. It follows immediately that the adja-eny relation is �rst-order de�nable. Thus adding it to thesignature of BReg is a mere onveniene.The above de�nition of adjaeny is equivalent to an al-ternative de�nition, where two regions are adjaent i� oneregion is ontained in the losure of the other. Thus if tworegions are adjaent, then one is of stritly lower dimensionthan the other. Further, any two regions being inident areadjaent too.Definition 4.2. Let V be a set of element variables andR be a set of region variables. We de�ne RegFO as �rst-order logi over strutures BReg. Thus we have quanti-�ers 8x;9x for element variables ranging over the reals and8R; 9R for region variables ranging over the set Reg of re-gions. A RegFO query is a query de�ned by a RegFO formulawithout free region variables.4



Usually we use small letters x; y; z; : : : for element variablesand apital letters R;X; Y; : : : to denote region variables.Clearly, every linear onstraint database has an unique re-gion extension. Therefore we freely speak about a databaseB being a model of a RegFO -sentene instead of expli-itly mentioning its region extension BReg. We also use thedatabase as input for algorithms and Turing mahines.Theorem 4.3. Every RegFO query on linear onstraintdatabases has polynomial time data omplexity.Proof. To prove the theorem we have to show that foreah RegFO-query ' there is a Ptime algorithm whih,given (a representation of) a database B, omputes a quan-ti�er-free �rst-order formula de�ning 'B.By Theorem 3.1 we know that the arrangement of the inputdatabase an be omputed in time polynomial in the sizeof the database. The proof of the theorem now follows byindution on the struture of the query. The �rst-order asesfollow immediately from the Ptime omplexity of �rst-orderqueries on linear onstraint databases as proved in [17℄ and[13℄. The ase of atoms built up by the adjaeny relationis trivial as the relation is �rst-order de�nable.The remaining ases are where region variables our. Com-puting a formula de�ning a region an be done in polynomialtime, sine the inidene graph stores the position vetor ofthe ontained points for every region. One the positionvetor is given the onstrution of the formula is trivial.The ase of a formula of the type 9P'(P ), where P is aregion variable, an be handled as follows. For eah region Rwe onstrut the formula de�ning R, replae the ourrenesof P in ' by this formula and evaluate the resulting formula.By indution, this an be done in polynomial time. Theoutput now onsists of the disjuntion of the formulae foreah region.The universal quanti�ation an be dealt with analogously,taking the onjuntion instead of disjuntion.A natural question arising is whether it is neessary to re-strit the region variables to regions of the input relation in-stead of introduing quanti�ers of the kind 9R 2 region( )meaning that R is a region variable ranging over the setof regions of the relation de�ned by  . Unfortunately thismakes the logi too expressive, as onvex losure and thusmultipliation an easily be de�ned. The de�nition of mul-tipliation by onvex losure is demonstrated in Figure 5.
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Figure 5: De�ning multipliation by onvex losure.The relation mult(x; y; z), true for x; y, and z if x � y = z,an be de�ned as follows. We assume w.l.o.g. that x; y, andz are positive. Consider the points (0; y) and (z; 0) in theplane. The onvex losure of these points is the line segment

as shown in Figure 5. The point on the line segment having(y�1) as seond oordinate has the �rst oordinate zy . Thus,if (x; y�1) 2 onv(f(0; y); (z; 0)g), then x = zy and x �y = z.Having de�ned �rst-order logi over region extensions wenow turn to more expressive languages.
5. LOGICS BASED ON FIXED-POINT OP-

ERATORSWe now onsider extensions of RegFO by �xed-point on-struts. First, we give a de�nition of a language based onleast �xed-point indution. Logis based on transitive lo-sure operators will be de�ned later. In all of these logis,the �xed-point indution is allowed only on the region do-main, guaranteeing losure of the queries and eÆieny oftheir evaluation.Definition 5.1. LetM := Si2NMi be a set of variables,alled set variables, where eah Mi is a ountable in�niteset of variables of arity i. These variables will be interpretedas sets of regions.De�ne RegLFP as RegFO extended by the following rules.� If M 2 M is a set variable of arity k and R1; : : : ; Rkare region variables, then :=MR1 : : : Rk 2 RegLFPand free( ) := fM;R1; : : : ; Rkg.� LetM 2 M be a set variable of arity k and R1; : : : ; Rk;X1; : : : ; Xk be region variables. Further, let ' be aRegLFP-formula with free(') = fM;X1; : : : ; Xkg suhthat ' is positive in M . Then[LFPM;X1;::: ;Xk'℄(R1; : : : ; Rk) 2 RegLFPwith free variables fR1; : : : ; Rkg.� If ' is a formula with exatly one free element variablebut arbitrarily many region variables �P , then := [rBIT '℄(Rn; Rd) 2 RegLFP;where Rd; Rn are region variables. The free variablesof  are Rd; Rn and �P .A RegLFP query is a query de�ned by a RegLFP formulawithout free region or set variables.The logis RegIFP and RegPFP are de�ned analogously byusing inationary or partial �xed-point operators instead.Let B := ((R; <;+); S) be a database. The semantis of theLFP operator is the standard least �xed-point semantis onthe region domain.Let �X := X1; : : : ; Xn be a sequene of region variables, Mbe a set variable of arity n, and '(M; �X) a formula with freevariables M and �X. ' gives rise to funtion f' given byf' : P(Regn) ! P(Regn)M 7! f �P 2 Regn : B j= '[M; �P ℄g:If ' is positive in M , then f' is monoton and the least�xed-point of f' is guaranteed to exist.Now onsider  := [LFPM; �X'(M; �X)℄( �X). B j=  [ �P ℄ for atuple of regions �P i� �P is ontained in the least �xed-pointof f'. See [3℄ for a detailed introdution to least �xed-pointlogis.5



The rBIT operator requires some explanation. Considerthe set of regions with dimension 0 and let n be the num-ber of regions in it. This set an be ordered by the order-ing indued by the lexiographial order on the points theyontain. Clearly, this is a total order. Now let '(x; �P ) be aformula with one free element variable x and arbitrary manyfree region variables �P . If, for a given interpretation of thefree region variables �P , the formula ' is satis�ed by exatlyone rational number a, then [rBIT '℄(Rn; Rd) is true for apair of regions Ri; Rj , if1. they are 0-dimensional and the i-th bit of the bit rep-resentation of a's numerator is 1 and the j-th bit ofthe bit representation of a's denominator is 1, or2. a = 0, Ri = Rj and both are higher dimensional re-gions.Otherwise [rBIT '℄ de�nes the empty set.The main ingredient of the language is the least �xed-pointoperator. The rBIT operator should be onsidered a teh-nial neessity whih is needed to prove that RegLFP ap-tures Ptime on linear onstraint databases.Before proving omplexity bounds for RegLFP -queries, wegive some examples of queries expressible in RegLFP .The �rst example is onnetivity, whih plays an importantrole in spatial databases. Let S be d-ary. Connetivity anbe de�ned by the queryConn := 8�x8�y(S�x ^ S�y ! (9Rx9Ry �x 2 Rx ^ �y 2 Ry^[LFPM;R;R0((R = R0 ^R � S) _ (9Z M(R;Z)^ adj(Z;R0) ^ R0 � S))℄(Rx; Ry)))stating that for eah pair of points �x; �y 2 S, the regionsRx and Ry they are ontained in, an be onneted by asequene of adjaent regions ontained in S.We now turn to a less tehnial example as it might o-ur in appliations of GIS systems. Figure 6 gives an (ab-strat) map of a ountry's border, a river, and some ities onits bank. Sine we don't onsider \mixed-part" databases,databases with a standard relational database part in addi-tion to the spatial information, we assume that the infor-mation whether a point belongs to the border, a ity, or theriver is stored in the third dimension. Thus we take formu-lae river(R) and ity(R) for granted, stating that a regionR belongs to a river or ity respetively.Now imagine that the river is polluted by ertain hemialsat some ities on the river bank and we ask whether thereis a part of the river, where a partiular ombination ofhemials an be found. In RegLFP it is now an easy taskto start at the spring and follow the river olleting thehemials the river is polluted with. One we have seen thedesired ombination of hemials, we mark the ity. This anbe expressed in RegLFP as follows, using formulae spring,hem1, hem2 with the obvious semantis. :=9R19R2 R1 6= R2^[LFPM;R;R0 ((spring(R) ^R = R0)_(9Z9Z0 M(Z; Z0) ^ river(R) ^ adj(Z;R) ^R = R0)_(9Z9Z0 M(Z; Z0)^hem1(Z) ^ hem2(R) ^R0 = Z)℄(R;R0)The �rst two disjunts in the formula inside the LFP oper-ator make sure that, beginning at the spring and followingthe ourse of the river, at eah indution step a new pair(R;R), for a region R of the river, is added to M . The
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Figure 6: Map showing a river and some ities on its bank.last disjunt heks that whenever there is a part of theriver with the seond hemial, whether there was a partwith the �rst hemial before. Thus, the �xed-point on-tains only pairs (R;R) of equal regions, exept for when thedesired ombination of hemials is found.
6. COMPLEXITYIn this setion we investigate the expressive power and om-plexity of RegLFP -queries. The main theorem states thatRegLFP aptures Ptime in the usual sense of �nite modeltheory, meaning that the lass of properties of linear on-straint databases de�nable in RegLFP is exatly the lass ofproperties deidable in Ptime. In other words, RegLFP anexpress all Ptime omputable boolean queries, but it fallsshort of being able to express all Ptime queries of higherarity. See Setion 8 for omments on non-boolean queries.First we show the Ptime omplexity of RegLFP -queries.Theorem 6.1. The data-omplexity of RegLFP-queries isPtime.Proof. Again the proof of the theorem is by indutionon the struture of the RegLFP -query. The RegFO asesare already handled by Theorem 4.3. The �xed-point asesare trivial sine the �xed-point indution is only de�ned forthe �nite set of regions.The only ase requiring some are is the rBIT operator.Let '(x; �P ) be a RegLFP -formula. Clearly, for any giveninterpretation of the free region variables �P , the evaluationof [rBIT '℄ an be done in polynomial time. Sine there areonly polynomially many di�erent interpretations of the freeregion variables the evaluation of the operator an be donein Ptime as well.We now state the main theorem of this setion. Sine werequire some tehnial restritions on the databases, we �rststate preisely what we understand by a logi apturing aomplexity lass.Definition 6.2. A linear onstraint database B has thesmall oordinate property if the absolute values of the oor-dinates of all points ontained in a 0-dimensional region arebounded by 2O(n), where n is the number of regions in theregion extension of B.6



We now preisely de�ne the notion of apturing we use here.Definition 6.3. We say that a logi L aptures a om-plexity lass C on a lass K of linear onstraint databases, iffor every boolean query Q on K whih an be deided in C,there is a sentene ' 2 L suh that for all linear onstraintdatabases B 2 K Q(B) is true i� B j= ':With this notion of apturing we an state the main theoremof this setion.Theorem 6.4. RegLFP aptures Ptime on the lass oflinear onstraint databases having the small oordinate prop-erty. Analogously, RegIFP and RegPFP apture Ptime andPspae respetively.Proof. We �rst prove the theorem for RegLFP . By The-orem 6.1 we know that RegLFP � Ptime.To prove the other diretion we show that every lass Cof databases deidable in Ptime is de�nable by a RegLFPsentene '. Sine C 2 Ptime, there is a polynomial timeTuring mahineM deiding C. Thus it suÆes to show thatthere is a sentene 'M 2 RegLFP suh that a database Bis aepted by M i� B j= 'M .Letting logial formulae enode runs of Turing mahines isa standard proedure in desriptive omplexity theory. See[3; 15℄ for more details. One an de�ne the sentene 'M asa onjuntion 'M := START ^ COMPUTE ^ END, whereSTART is a formula oding the start on�guration, COM-PUTE odes the transition funtion, and END states thatM never reahes a rejeting state. The formula START de-pends on a formula � de�ning the input tape of M , i.e. therepresentation of B. The de�nition of � is the only essentialdi�erene in the ase of linear onstraint databases. Theother formulae an be de�ned as in the �nite ase, using re-gion variables ranging over the set of 0-dimensional regionsinstead of �rst-order variables.We have to show that there is a formula � de�ning the rep-resentation of B. The database is represented in the follow-ing way. First we partition the set of regions into boundedand unbounded regions, where a region is bounded if it isontained in a d-dimensional hyperube of edge length l forsome l 2 R. Otherwise the region is unbounded. Note thatby the following rules we an de�ne an order relation on thebounded regions. If R;R0 are bounded regions and R0 is ofhigher dimension than R, then R < R0. The 0-dimensionalregions an be ordered by the lexiographial order on theoordinates of the points they ontain. Without giving de-tails we state that an ordering of the i-dimensional regionsan be de�ned from the lexiographial ordering of all (i+1)-tuples of 0-dimensional regions.By results of [21; 22; 2℄ the dimension of a region is �rst-order de�nable. Consequently the order relation is RegFO-de�nable.We now de�ne the representation of the bounded regions.The representation is illustrated in the following �gure.R1z }| {jp11jp12j : : : jp1dj1j#j : : : j# Rnz }| {jpn1 jpn2 j : : : jpnd jnj| {z }Dimension 0 #jd11jd12j : : : jd1n2 j| {z }Dimension 1 : : : jdd1jdd2 j : : : jddnd+1 j| {z }Dimension d

Here Ri is the ith smallest 0-dimensional region, pij is thejth oordinate of the point pi 2 Ri and i = 1 if and onlyif pi 2 S. Further, dij = 1 i� the j-th i-dimensional regionis ontained in S. The oordinates pij of the 0-dimensionalregions are represented in binary (not shown in the �gure.)The binary representation an be de�ned using the rBIToperator. The operator transforms the oordinates of thepoint into sequenes of 0-dimensional regions representingthe oordinates. As there are only n 0-dimensional regions,only oordinates up to 2O(n) an be represented in this way.Thus the databases whih an be represented must satisfythe small oordinate property.For unbounded regions we �rst de�ne an ordering on the setof all unbounded regions. Let R and R0 be unbounded. If Ris of lower dimension than R0 then R < R0. Otherwise let ibe the dimension of R and R0. If i = 1 we an order the re-gions as follows. Note that every unbounded 1-dimensionalregion R has exatly one 0-dimensional region R0 = fpg ad-jaent to but not ontained in it. Starting from p we anompute some arbitrary other point q 2 R. Now the lexi-ographial order on (p; q) indues an order relation on theset of 1-dimensional unbounded regions. The higher dimen-sional unbounded regions an now be ordered analogouslyto the bounded ase by enumerating tuples of 1-dimensionalregions. Using this order relation we an represent the un-bounded regions as follows.R1z }| {jp1jq1j1j# : : :# Rmz }| {jpmjqmjmj| {z }Dimension 1 # jd21jd22j : : : jd2m2 j| {z }Dimension 2 : : : jdd1jdd2j : : : jddmd j| {z }Dimension dAllRi and pi; qi; i, and dij are de�ned similar to the boundedase. By a rather tehnial but not very omplex argumentit an be shown that this representation of the database anbe de�ned in RegFO .Clearly, if there is a polynomial-time Turing mahine Mde�ning C using the standard enoding of onstraint da-tabases, then there also is a polynomial-time mahine M 0deiding C whih uses the above representation. Thus forall databases B we haveB 2 C i� B is aepted by M 0 i� B j= 'M0 :This onludes the proof for RegLFP . The proofs for RegIFPand RegPFP are analogous.
7. LOGICS BASED ON TRANSITIVE CLO-

SURE OPERATORSIn this setion we onsider extensions of RegFO by indu-tion mehanisms based on transitive losure omputation.In partiular, we de�ne RegTC and RegDTC , the extensionsof RegFO by transitive and deterministi transitive losureoperators. Here we enounter the problem, that Theorem3.1 only yields a Ptime upper omplexity bound for theomputation of arrangements. As explained in Setion 3,the arrangements an be omputed in logarithmi paralleltime on a CREW PRAM, and thus in AC1, but it is notknown, whether this an be redued to NC1 or Logspae.Thus, showing that, e.g., RegDTC -queries have Logspaedata-omplexity already fails at the omplexity of the ar-rangement omputation.7



To deal with this problem, we de�ne a di�erent deomposi-tion as in Setion 3, whih an be omputed in NC1.Let B := ((R; <;+); S) be a linear onstraint database,where S is a d-ary relation represented by 'S := Wi  i, i := Vj 'ij and eah 'ij is a linear (in)equality. First,we de�ne sets regions( i) separately for eah disjunt  i.regions(S) then onsists of the union of regions( i) for all i.We roughly sketh the de�nition of the regions by givingan example of the omputation for a polytope in the plane.See Figure 7. The preise de�nition overing also the asesof unbounded polyhedra and polyhedra in higher dimensionan be found in Appendix A.Consider the polytope P shown in Figure 7.
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Figure 7: Polytope P de�ned by a disjunt in 'S.
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Figure 8: Deomposition of the polyhedron in Figure 7.The regions for P are de�ned as follows. First, the vertiesp1; : : : ; p5 of P are omputed and every vertex is a region inregions(P ). These are the 0-dimensional regions. Further,for any two verties p; p0 let Cp;p0 be the open onvex losureof p and p0. If the intersetion of Cp;p0 and the interior ofP is empty, then Cp;p is added as a 1-dimensional region toregions(P ). In the example, the 1-dimensional regions areexatly the line segments l1; : : : ; l5 on the boundary of P .Finally, we add regions in the interior of P . First, we hoosethe point p1 as basis for the regions. The regions then arede�ned as indiated in Figure 8. The regions R1; : : : ; R3are de�ned as the open onvex hulls of the three boundingverties. Further, we the line segments between p1 and p3and p1 and p4 resp. are added to regions(P ).In the ase of polytopes in higher dimension d, the regionsin the interior would be de�ned by the open onvex hull ofd+ 1 verties and the regions in the boundary by the openonvex hull of up to d verties.The regions thus de�ned an be omputed eÆiently, inNC1. See Lemma A.1 in the appendix. We are now readyto de�ne extensions of RegFO by (determinsti) transitivelosure operators.

Note 7.1. We now base the de�nition of the region ex-tension BReg of a linear onstraint database B on the set ofregions de�ned above. Thus, if B := ((R; <;+); S) is a lin-ear onstraint database, then its region extension BReg :=(R;Reg;�;+; S; adj;2) is a two-sorted struture, where theseond sort ist de�ned as Reg := regions(S). The de�nitionof the relations adj and 2 is analogous to De�nition 4.1.Reall that regions(S) onsist of the union of regions sepa-rately de�ned for eah disjunt  i in 'S . Regions for di�er-ent polyhedra may overlap and thus the regions in regions(S)are not guaranteed to be either ontained in or disjoint fromS. Also the regions do not over all of the underlying spaeRd . Both makes the logis less intuitive to use. Thus itwould be interesting to have a deomposition with the nieproperties of arrangements but omputable in NC1.Definition 7.2. RegTC is the extension of RegFO by atransitive losure operator on the region domain. Preisely,RegTC extends RegFO by the following rule. If ' 2 RegTCand �R := R1; : : : ; Rm; �R0 := R01; : : : ; R0m are sequenes ofregion variables suh that free(') = f �R; �R0g then := [TC �R; �R0'℄( �X; �Y ) 2 openRegTCand free( ) := f �X; �Y g, where �X; �Y are sequenes of m re-gion variables eah. As before, we de�ne RegTC queries asthe set of queries de�ned by RegTC formulae without freeregion variables.RegDTC is de�ned analogously using a deterministi transi-tive losure operator instead.The TC operator has the standard semantis, i.e. givena formula  := [TC �R; �R0'℄( �X; �Y ), a database B, and tu-ples of regions �P ; �P 0, B j=  [ �P ; �P 0℄ i� there is a sequene�Z1; : : : ; �Zn of tuples of regions, �Z1 = �X; �Zn = �Y and for all1 � i � n�1 '( �Zi; �Zi+1). See [3℄ for a detailed introdutionto transitive losure logis.By indution on the struture of the queries one an easilyshow the following theorem.Theorem 7.3. The data-omplexity of RegTC-queries isNLogspae. Analogously, the data-omplexity of RegDTC-queries is Logspae.In analogy to the proof of Theorem 6.1 the following theoreman be proved.Theorem 7.4. RegTC aptures NLogspae on the lassof linear onstraint databases having the small oordinateproperty. Analogously, RegDTC aptures Logspae.
8. CONCLUSION AND ONGOING WORKWe presented a family of query languages for linear on-straint databases integrating reursion mehanisms into �rst-order logi. The �xed-points in these languages operate ona set of regions, whih is essentially the set of faes in adeomposition of the input spae. Note that the de�nitionof the languages and their expressive power and omplexitydo not depend on a partiular deomposition. Other de-ompositions ould also be used, provided that they an beomputed eÆiently and it is possible to de�ne a represen-tation of the database from the deomposition.Following this idea, it should also be possible to de�ne in-teresting logis for other sorts of onstraint databases, e.g.polynomial onstraint databases.8



It has been shown, that the logis de�ned apture all booleanqueries deidable in important omplexity lasses. But thelogis fail to apture, e.g., the lass of non-boolean Ptimequeries. We are urrently working on extending the logis bya onvex-losure operator suh that the lass of non-booleanPtime-queries an be aptured as well.
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APPENDIX

A. COMPUTING REGIONS IN NC 1In this setion we preisely de�ne the deomposition of data-bases into regions as skethed in Setion 7.Let B := ((R; <;+); S) be a linear onstraint database,where S is a d-ary relation represented by 'S := Wi  i, i := Vj 'ij and eah 'ij is a linear (in)equality. First,we separately de�ne sets regions( i) of regions for eah dis-junt  i. The set of regions for S is de�ned as regions(S) :=Si regions( i).To ease notation we denote by  i both the formula as wellas the set of points it de�nes. It will always be lear fromthe ontext what is meant.Let, for some i,  :=  i be a disjunt of 'S . We denote bylosure( ) the losure of the set of points de�ned by  . LetG( ) be the set of (in)equalities ourring in  . De�neH( ) := f' : ' is an equation ontained in G( ), orthere is an inequality '0 ourring in  and' equals '0 where the inequality is replaedby equalityg:as the set of formula de�ning the hyperplanes bounding  .We demonstrate the following algorithm using the examplesgiven in Figure 9 and 10.9
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pFigure 10: Example of an unbounded polyhedron P 0.First we alulate the set vert( ) of verties of  . For eahd-tuple of atoms from H( ) we ompute the intersetion ofthe hyperplanes. If they interset in exatly one point p andp is ontained in losure( ), then p is a vertex.Example. Consider the polytope P in Figure 9. The hyper-planes in H(P ) are the lines bounding the polytope. To omputethe verties every pair of lines is interseted. This results in theverties p1; : : : ; p5 but also in points like p. Of ourse p is not avertex of P as it is not ontained in losure(P ).The next step is to hek whether  is bounded. Let be the maximal absolute value of a oordinate of a vertexof  . If there are no verties, then de�ne vert'( ) as theset of points p suh that there is a d-tuple of atoms fromH( ) [ fxi = 0 : 1 � i � dg interseting exatly in p. Let be the maximal absolute value of a oordinate of a pointin vert'( ).De�ne ube( ) as fxi = 2(+1); xi = �2(+1) : 1 � i � dg.If eah atom from ube( ) has an empty intersetion with , then  is bounded, otherwise it is unbounded.Example ontinued. In the example polyhedra, the ube'sare indiated by the dashed boxes. Obviously the (bounded) poly-tope P in Figure 9 does not interset with the box, whereas the(unbounded) polyhedron does.If  is bounded, then de�ne the following regions for  .There are two sorts of regions, inner and outer regions. Tode�ne the inner regions, hoose one vertex plow 2 vert( ),e.g. the point whose oordinates are the lexiographiallysmallest. The set region( ) onsists of all open onvex hullsC of d+1 verties plow and p1; : : : ; pd of  , suh that the linesegment between plow and any other vertex exept p1; : : : ; pdhas an empty intersetion with C.Note that the points plow; p1; : : : ; pd do not have to be dis-joint. Thus the regions may be of lower dimension than d.The outer regions are de�ned as the open onvex hull of atmost d verties p1; : : : ; pd, suh that for no 1 � i; j � d theline segment between pi and pj intersets with the interiorof  .Example ontinued. Consider again the example polytope

P . There are three 2-dimensional regions de�ned by fp1; p2; p3g,fp1; p3; p4g, and fp1; p4; p5g. In addition there are seven 1-di-mensional regions, namely the regions de�ned by fpi; pi+1g for1 � i � 4, fp1; p5g; fp1; p3g, and fp1; p4g. Only the last tworegions are inner regions, the other �ve are outer regions. Further,eah point de�nes its own 0-dimensional (outer) region.Now assume that  is unbounded. De�ne iube( ) := fxi <2( + 1); xi > �2( + 1) : 1 � i � dg, where  is asabove. As iube( ) is bounded we an ompute the vertiesof  \ iube( ) as before. De�ne up( ) as the set of allpairs (p; (p � q)) suh that p is a vertex on the boundaryof iube( ), q is any other vertex, and the set fx : x =p + a(p � q) for some a � 0g is in losure( ). Now de�neregions( ) as follows. Compute the bounded regions forvert( \ iube( )) as above. The unbounded regions arede�ned as follows.Let (p; p � q) 2 up( ). Then (p; p � q) de�nes the regionfx : there is an a 2 R; a > 0 suh that x = p+ a(p� q)g.The other unbounded regions are de�ned by the open onvexhulls of at most d suh regions.Example ontinued. The verties omputed in the �rst stepof the algorithm for the polyhedron P 0 are p1 and p2. The setde�ned by iube is the interior of the dashed box and the vertiesomputed for  \ iube( ) are, besides p1 and p2, p and p0.Thus regions(P 0) ontains: two bounded 2-dimensional regions,fp; p0; p1g and fp; p1; p2g, four bounded 1-dimensional regions,fp; p2g; fp2; p1g; fp1; p0g, and fp; p1g, the last one being the onlyinner region, and four 0-dimensional regions. Further, there arethe two unbounded 1-dimensional regions de�ned by (p0; p0 � p1)and (p; p� p2) and one unbounded 2-dimensional region.Note that eventually the verties of the ube an be on-tained in vert( \ iube( )). This is neessary in ertaindegenerated ases, e.g. a polyhedron de�ned by only oneinequality.As mentioned above, the set regions('S) of regions of theinput relation S is de�ned as the union of the regions for thedisjunts of 'S . Note that every point p 2 S is ontained inat least one region.Although we do not preisely present the iruits, it shouldbe lear that the omputation of the regions essentially re-quires some appliations of the Gauss and Fourier-Motzkinelimination method. Both methods an be omputed byiruits with logarithmi depth and polynomial size, pro-vided that the dimension, that is the number of variablesinvolved, is �xed. See [20℄ for details. Thus we get thefollowing lemma.Lemma A.1. regions('S) an be omputed by an NC1 ir-uit.
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