Fixed-Point Query Languages for Linear Constraint
Databases

Stephan Kreutzer
LUFG Mathematische Grundlagen der Informatik, RWTH Aachen
D-52056 Aachen, Germany

kreutzer@informatik.rwth-aachen.de

ABSTRACT

We introduce a family of query languages for linear con-
straint databases over the reals. The languages are defined
over two-sorted structures, the first sort being the real num-
bers and the second sort consisting of a decomposition of
the input relation into regions. The languages are defined as
extensions of first-order logic by transitive closure or fixed-
point operators, where the fixed-point operators are defined
over the set of regions only. It is shown that the query
languages capture precisely the queries definable in various
standard complexity classes including PTIME.

1. INTRODUCTION

Manipulating spatial data is an increasingly important part
of modern database systems as spatial data plays an impor-
tant role in many application areas like geographical infor-
mation systems or (medical) image processing. Many of the
proposed data models for spatial database systems are de-
signed for a particular type of application. Although they
allow very efficient storage and manipulation of the kind of
data used in this application area, they normally fail for
other types of spatial data. For example, there are very ad-
vanced geographical information systems available for two
dimensional as well as for three dimensional data, but they
rarely work well for both dimensions, let alone higher di-
mensions.

This narrowed focus is often sufficient for many applications
but it has several disadvantages, one being that one needs
completely different database systems for different applica-
tions.

A more general approach to spatial databases is to allow
arbitrary sets as database relations, as long as they have
a finite presentation in some formalism, e.g. by first-order
formulae. A database framework following this approach is
the framework of constraint databases. Constraint databases
have been introduced by Kanellakis, Kuper, and Revesz
[17; 16] in 1990 and since then a lot of research has been
done in this area. See [19] for a very detailed study of

Permission to make digital or hard copies of all or part o twork for

personal or classroom use is granted without fee providatiabpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listgyuies prior specific
permission and/or a fee.

Copyright 1999 ACM 0-89791-88-6/97/05%5.00

constraint databases. In this framework the spatial rela-
tions are defined by boolean combinations of polynomial
(in)equalities. Databases defined in this way are called poly-
nomial constraint databases and first-order logic on these
databases is usually referred to as FO+POLY. Polynomial
constraint databases allow a very natural representation of
spatial data. The drawback is that the evaluation of queries
becomes rather expensive. Although it is known that first-
order queries on polynomial constraint databases have NC
data complexity, the constants involved are fairly large and
the algorithms become unusable for practical applications.
As semi-linear data is sufficient for most practical purposes,
it is quite common to use linear approximations to the spa-
tial data, that is to consider linear constraint databases,
where the relations are represented by boolean combina-
tions of linear (in)equalities. But first-order logic on these
databases, usually referred to as FO+LIN, is not expres-
sive enough as many interesting queries cannot be defined.
Therefore more powerful languages are needed. There are
different ways to increase the expressive power of first-order
logic. In this paper we concentrate on increasing expressive
power by adding recursion mechanisms. This has success-
fully been done for dense order constraint databases. (See
[17; 12; 9]) Unfortunately linear constraint databases are not
so well behaved concerning recursion. A naive definition of|
e.g., least fixed-point logic leads to a non-terminating and
undecidable language, as it is possible to define the natu-
ral numbers with addition and multiplication by least fixed-
point logic over (R, <,+). (See [18] for an investigation on
termination properties for query languages with recursion.)
In order to guarantee termination one has to restrict the
application of the fixed-point operator.

Besides termination, one encounters problems with the clo-
sure of languages over linear constraint databases - the result
of a query on a linear constraint database must itself be lin-
ear again. Thus a language powerful enough to define e.g.
convex hulls has to be restricted in some sense, since multi-
plication can easily be defined if the computation of convex
hulls is possible. (See Section 4 for details.)

Attempts to define query languages with recursion mecha-
nisms on linear constraint databases can be found in [11; 5].
Grumbach and Kuper [11] define a query language based on
least fixed-point logic. Termination is guaranteed by taking
the simultaneous fixed-point of two formulae, the first speak-
ing only about the ordered set of reals whereas the second
formula is allowed to use addition but is required to satisfy
rather severe restrictions. It is shown that the language cap-
tures PTIME on the class of linear constraint databases but

expressing queries in this language is not very intuitive.
Geerts and Kuijpers [5] analyze properties of spatial data-
log. They show that connectivity of spatial relations can
be queried by a terminating spatial datalog program, but
generally spatial datalog queries will not terminate on every
input.

In this paper we take a different approach to define recur-
sive query languages over linear constraint databases, by al-
lowing fixed-point computations to range only over a finite
collection of pre-defined sets. More precisely, we consider
logics over two sorted structures. The first sort is the set
of real numbers with order and addition defined on them.
To define the second sort, we decompose the input relation
into regions, which are connected subsets of the underlying
space R?. The set of regions forms the second sort. Thus
there are also two sorts of variables. The first one, called
element variables, range over the real numbers whereas the
second type of variables, called region variables, range over
the regions. The connection between the two worlds is given
by the containment predicate, stating that a point, given by
a tuple of real numbers, is contained in a region. Now the
languages are defined by extending first-order logic by (de-
terministic) transitive closure, least or partial fixed-point
operators, where the operators iterate over the (finite) set
of regions only. We show that many interesting queries can
be formulated naturally in these languages. To estimate the
exact expressive power, it is shown that exactly the boolean
queries decidable in various important complexity classes
can be expressed in this family of query languages.

Similar languages can be defined for polynomial constraint
databases using a cell decomposition for semi-algebraic sets,
but the complexity of query evaluation will be much higher.
The results presented here also contribute to a research pro-
gram active for some years now, where it is investigated in
how far the approach and methods of descriptive complexity
theory can be applied to infinite, but finitely representable
structures. Research here considers various formalisms to
represent infinite structures, examples being recursive struc-
tures [14], metafinite structures and complexity theory over
the reals [8; 10], and constraint databases. In this research
area the addition of fixed-points to logics is still an open
problem.

The paper is organized as follows. In the next section we
give a precise definition of constraint databases and queries.
In Section 3 we define some notions from convex geometry
we need in the sequel and define a decomposition of the in-
put relation and the underlying space. Section 4 defines the
two-sorted structures and first-order logic on them. In Sec-
tion 5 extensions of first-order logic by fixed-point operators
are defined and some examples are given. We investigate
the expressive power and complexity of these languages in
the Section 6, where it is shown that the least fixed-point
extension captures all boolean PTIME queries. In Section 7
logics based on transitive closure constructs are introduced
together with a different decomposition of the input relation.
We close with a summary and remarks on further work. Es-
pecially, we comment on extensions of the logics capable of
capturing non-boolean queries.

2. PRELIMINARIES

Constraint databases. The basic idea in the definition of
constraint databases is to allow infinite relations which have
a finite presentation by a quantifier-free formula. Let 2 be a

T-structure, called the contert structure, and ¢(z1,...,2n)
be a quantifier-free formula of vocabulary 7. We say that a
n-ary relation R C A" is represented by p(x1,... ,Tn) over
Aiff Requals {a € A" : A= yp[a]}. Let 0 :={Ry1,... ,Ri}
be a relational signature. A o-constraint database over the
context structure A is a og-expansion B := (A, Ri,... , Ry)
of A where all R; are finitely represented by formulae ¢g;,
over 2. The set ® := {¢r,,...,¢r,} is called a finite rep-
resentation of B.

By definition, constraint databases are expansions of a con-
text structure by finitely representable database relations.
Note that the same relation can be represented in different
ways, eg. o1 :=0<zAz <10and g2 = (0<zAz <
6) V(6 <xAz<10)V ez =6 are different formulae defin-
ing the same relation. Two representations ® and @' are
A-equivalent, iff they represent the same database over 2.
To measure the complexity of algorithms taking constraint
databases as inputs we have to define the size of a con-
straint database. Unlike finite databases, the size of con-
straint databases cannot be given in terms of the number of
elements stored in them but has to be based on a represen-
tation of the database. Note that equivalent representations
of a database need not be of the same size. Thus the size of a
constraint database cannot be defined independent of a par-
ticular representation. In the following, whenever we speak
of a constraint database 2B, we have a particular represen-
tation ® of B in mind. The size |%B| of B is then defined
as the sum of the length of the formulae in ®. This corre-
sponds to the standard encoding of constraint databases by
the formulae of their representation.

In this paper we consider linear constraint databases, that is
databases defined by boolean combinations of linear (in)e-
qualities. In the literature one can find two models of com-
putation for such databases. The first model allows real co-
efficients in the formulae. The computational devices used
can store any real number in a single storage cell and have
built in functions like addition and multiplication. The sec-
ond model allows only rational coefficients in the formulae.
Since one can multiply the atoms in the formulae with the
least common denominator, this is equivalent to allowing
integer coefficients only. The integers are stored bitwise on
the Turing tape. We take the second approach and consider
the context structure 2 := (R, <, +). The formulae are al-
lowed to use elements from Z as parameters. As usual we
require the formulae representing the input relations to be
in disjunctive normal form and consider databases with one
single spatial relation only. This restriction is not crucial
but helps to simplify the presentation. For notational rea-
sons we disallow the use of negation, but allow <, >, and >
instead. Clearly, # can be defined using <.

Constraint queries. Fix a context structure 2. A con-
straint query is a mapping from constraint databases
over 2 to finitely representable relations over 2. Note that
queries are abstract, i.e. they depend only on the database
not on their representation. That is, any algorithm that
computes @, taking a representation ® of a database 9B as
input and producing a representation of Q(B) as output,
has to compute on two 2A-equivalent representations ¢ and
®' output formulae that are not necessarily the same, but
represent the same relation on 2I.

In the sequel we are particularly interested in queries defined
by formulae of a given logic £. Let ¢ € £ be a formula with
k free variables. Then ¢ defines the query), mapping a

constraint database B over 2l to the set
B = plal}.

In order for @, to be well defined, this set must be repre-
sentable by a quantifier-free formula. If ¢ is first-order, this
means that 20 admits quantifier elimination. For more pow-
erful logics than first-order logic, the additional operators
must be eliminated as well. A logic £ is closed for a class
C of constraint databases over 2, if for every ¢ € L and
every B € C the set ™ can be defined by a quantifier-free
first-order formula over 2.

Typical questions that arise when dealing with constraint
query languages are the complexity of query evaluation for
a certain constraint query language and the definability of a
query in a given language. For a fixed query formula ¢ € L,
the data complezity of the query @ is defined as the amount
of resources (e.g. time, space, or number of processors)
needed to evaluate the function that takes a representation
® of a database B to a representation of the answer relation

Qe (B).
3. ARRANGEMENTS

In this section we explain some notions from convex geom-
etry that will be needed later. The presentation mostly fol-
lows [4]. See also [6; 23] for details.

Let P C R? be a set of points in R?. The affine support or
affine hull of P is defined as the smallest affine subspace of
R? containing P. The convez hull of P is defined as

conv(P) :={x :3p1,... ,pn € PbLneN, Jai,...a, € RZ°,
Ya;p; =z, Xa; = 1}.

©® = {(a1,... ,ax) :

We define the open convez hull of P as the interior of conv(P)
with respect to its affine support. It can be defined as

openconv(P) :={x : 3Ip1,... ,pn € P,n €N, Jay,..
a; >0, Yaip; =z, Xa; = 1}.

.an €R,

Whenever we speak about the interior of a set or a set being
open, we always mean with respect to its affine support.
Usually, a polyhedron in R? is defined as the intersection
of finitely many closed halfspaces in R?. For our purposes
it is more convenient to allow the intersection with open
halfspaces as well. Thus we define a polyhedron in R? as the
intersection of finitely many open or closed halfspaces. It
is bounded, if it is entirely contained in some d-dimensional
hypercube of edge length I for some I € RZ°. A bounded
polyhedron is called a polytope.

Recall that a linear constraint relation S is defined by a for-
mula s :=\/; A\, ¢i;, where each ¢;; is a linear inequality,
defining a halfspace, or a linear equation, defining a hyper-
plane.

Thus, each conjunct in ¢; := A ¢;; defines a polyhedron
and the relation S consists of a union of polyhedra. Let
&(S) := {g1,... ,9n} be the set of (in)equalities occurring
in ¢gs. Consider the set of hyperplanes

$(S) :={h : there is an equation g € &(S) and h = g, or
g is an inequality and h is obtained by re-
placing in g inequality by equality }.

See Figure 1 and 2 for a spatial relation and the correspond-
ing set of hyperplanes.

For each h := Xa;xz; = b € H(S) we define the set of points
being above, on, or below h, where a point p := (p1,... ,pd)

Figure 1: Example of a spatial relation S.

Figure 2: Set of hyperplanes induced by S.

is above h if Xa;p; > b, on h if Xa;p; = b, and below h
if Ya;p; < b. We denote by h™ the set of points below
h and by h™ the set of points above h. Clearly, any two
points on the same side of all hyperplanes in §(S) are either
both contained in or both not contained in S. To see this,
recall that the hyperplanes in $(S) arise from the atoms in
¢s. Points on the same side of a hyperplane h cannot be
separated by the corresponding atom. Clearly, if the points
cannot be separated by the atoms in g, then the boolean
combination of the atoms cannot separate them either.
More precisely, let p be a point in R?. The position v;(p)
with respect to h; € $(S5) is defined as

+1 ifpehf
vi(p) :=1¢0 ifp€h;
-1 ifpeh;.

The position of a point with respect to $(5) is determined
by the vector (vi(p),...,vn(p)), called the position vector
of p, and any two points sharing the same position vector
are inseparable by ¢s.

We call a set of all points sharing the same position vector
a face and the dissection of R? induced by the set (S) of
hyperplanes an arrangement A(S). This dissection of R¢
into faces is a partition of R? with the property that every
face is either contained in or disjoint to S. See Figure 3 for
the decomposition of the database shown above.

Figure 3: Arrangement A(S).

The dimension of a face in the decomposition is defined as
the dimension of its affine support. Thus we have seven 2-
dimensional faces e; to e7, nine 1-dimensional faces 1 to lg,
and three 0-dimensional faces p; to ps. As usual, we call
0-dimensional faces vertices.

We say, that two faces f and g are incident, if one is of
dimension one less than the other and it is contained in the
boundary of the other region.

Typically, arrangements are stored in a data structure like
the incidence graph. The incidence graph contains a vertex
for each face in the arrangement as well as two additional
vertices, one representing a virtual (—1)-dimensional face,
denoted by @, which is incident to every 0-dimensional face,
and one vertex representing a (d + 1)-dimensional face, writ-
ten as A(S), where every d-dimensional face is incident to.
We call the last two vertices improper and the other proper
vertices. Each proper vertex v stores the position vector of
the points contained in the corresponding face f as well as
two lists of directed edges, one containing edges pointing
at the vertices whose faces are incident to f and one con-
taining edges pointing at the vertices to whose faces f is
incident. Figure 4 shows the incidence graph for the part of
the arrangement of Figure 3 containing the faces around p».

Figure 4: Part of the incidence graph for A(S).

As every vertex stores the position vector of the correspond-
ing face, a conjunction of atoms defining the face can easily
be obtained from $(S) and the incidence graph for A(S).

Also the incidence relation can be efficiently decided.

It is known, that an arrangement for a set of n hyperplanes
in R? can be computed in time O(n?). See Theorem 7.6
in [4]. Besides the known sequential algorithms, there have
some attempts been made to define parallel algorithms for
computing arrangements [1; 7], leading to algorithms run-
ning in parallel time O(log n) using a polynomial number of
processors on a CREW PRAM (See [7]).

Since the number of hyperplanes in (S) is always less or
equal the number of atoms in the representation of the data-
base, the following theorem is immediate.

THEOREM 3.1. Let B := ((R, <,+),S5) be a linear con-
straint database. The arrangement A(S) can be computed
in polynomial time with respect to the size of the represen-
tation of B.

4. FIRST-ORDER LOGIC WITH REGION
VARIABLES

In this section we use the arrangement defined above to in-
troduce first-order logic with region variables, which is first-
order logic on certain two-sorted structures. We first intro-
duce the structures the logics operate on.

Let B be a database with a d-ary spatial relation S. The
definition of the structures is based on a dissection of R¢
into regions, where a region is a connected subset of R,
We denote the set of regions by region(S). To define first-
order logic with region variables and its extension by fixed-
point operators, we use the arrangement A(S) as dissection.
Thus, here and in the next section regions(S) is defined as
the set of faces in A(S). In Section 7 we will use a different
decomposition of R into regions to define a logic based on
a transitive closure operator.

DEFINITION 4.1. Let B := ((R, <,+),S) be a linear con-
straint database, where S is a d-ary relation symbol.
The structure B gives rise to a two-sorted structure BRI .=
(R, Reg; <,+, S,adj, €), called the region extension of 9B,
with sorts R and Reg := regions(S), the adjacency relation
adj C Reg x Reg, where two regions are adjacent if there is a
point p in one of them such that every e-neighbourhood of p
has a non-empty intersection with the other region, and the
element containment relation € between elements from R?
and Reg, where T € R is true iff the point T is contained in
the region R.

The e-neighbourhood of a point p = (p1,...,ps) € R? can
be defined as the set {p’ := (pi,...,p)) lpi —pi| <
eforall 1 <i < d}. It follows immediately that the adja-
cency relation is first-order definable. Thus adding it to the
signature of 87 is a mere convenience.

The above definition of adjacency is equivalent to an al-
ternative definition, where two regions are adjacent iff one
region is contained in the closure of the other. Thus if two
regions are adjacent, then one is of strictly lower dimension
than the other. Further, any two regions being incident are
adjacent too.

DEFINITION 4.2. Let V be a set of element variables and
R be a set of region variables. We define RegFO as first-
order logic over structures BT°9. Thus we have quanti-
fiers Vx, 3z for element variables ranging over the reals and
VR,3R for region variables ranging over the set Reg of re-
gions. A RegFO query is a query defined by a RegFO formula
without free region variables.

Usually we use small letters z,y, z,... for element variables
and capital letters R, X,Y,... to denote region variables.
Clearly, every linear constraint database has an unique re-
gion extension. Therefore we freely speak about a database
B being a model of a RegFO-sentence instead of explic-
itly mentioning its region extension B7°9. We also use the
database as input for algorithms and Turing machines.

THEOREM 4.3. Every RegFO query on linear constraint
databases has polynomial time data complezity.

PrOOF. To prove the theorem we have to show that for
each RegFO-query ¢ there is a PTIME algorithm which,
given (a representation of) a database 9B, computes a quan-
tifier-free first-order formula defining ™.

By Theorem 3.1 we know that the arrangement of the input
database can be computed in time polynomial in the size
of the database. The proof of the theorem now follows by
induction on the structure of the query. The first-order cases
follow immediately from the PTIME complexity of first-order
queries on linear constraint databases as proved in [17] and
[13]. The case of atoms built up by the adjacency relation
is trivial as the relation is first-order definable.

The remaining cases are where region variables occur. Com-
puting a formula defining a region can be done in polynomial
time, since the incidence graph stores the position vector of
the contained points for every region. Once the position
vector is given the construction of the formula is trivial.
The case of a formula of the type IP¢(P), where P is a
region variable, can be handled as follows. For each region R
we construct the formula defining R, replace the occurrences
of P in ¢ by this formula and evaluate the resulting formula.
By induction, this can be done in polynomial time. The
output now consists of the disjunction of the formulae for
each region.

The universal quantification can be dealt with analogously,
taking the conjunction instead of disjunction. [

A natural question arising is whether it is necessary to re-
strict the region variables to regions of the input relation in-
stead of introducing quantifiers of the kind IR € region(v)
meaning that R is a region variable ranging over the set
of regions of the relation defined by 1. Unfortunately this
makes the logic too expressive, as convex closure and thus
multiplication can easily be defined. The definition of mul-
tiplication by convex closure is demonstrated in Figure 5.

A

- / (;y,y-l)

y1

X z

Figure 5: Defining multiplication by convex closure.

The relation mult(z,y, 2), true for z,y, and z if z - y = z,
can be defined as follows. We assume w.l.o.g. that z,y, and
z are positive. Consider the points (0,y) and (z,0) in the
plane. The convex closure of these points is the line segment

as shown in Figure 5. The point on the line segment having
(y—1) as second coordinate has the first coordinate i Thus,
if (z,y—1) € conv({(0,y),(2,0)}), thenz =2 and z-y = 2.
Having defined first-order logic over region extensions we
now turn to more expressive languages.

5. LOGICS BASED ON FIXED-POINT OP-
ERATORS

We now consider extensions of RegF'O by fixed-point con-
structs. First, we give a definition of a language based on
least fixed-point induction. Logics based on transitive clo-
sure operators will be defined later. In all of these logics,
the fixed-point induction is allowed only on the region do-
main, guaranteeing closure of the queries and efficiency of
their evaluation.

DEFINITION 5.1. Let M = UieNMi be a set of variables,
called set variables, where each M; is a countable infinite
set of variables of arity i. These variables will be interpreted
as sets of regions.

Define RegLFP as RegFO extended by the following rules.

o If M € M is a set variable of arity k and R1,... , Ry
are region variables, then

Y :=MR;... Ry € RegLFP
and free(y)) :== {M,Ry,...,Ry}.

o Let M € M be a set variable of arity k and Ry, . .. , Ry,
Xi,..., Xk be region variables. Further, let ¢ be a
RegLFP-formula with free(p) = {M, X1,... , Xy} such
that ¢ is positive in M. Then

[LFPM,Xl,...,ka](Rl,--- ,Rk) € RegLFP
with free variables {Ry,... ,Ry}.

o Ifp is a formula with ezactly one free element variable
but arbitrarily many region variables P, then

¢ := [rBIT ¢|(Rn, Ra) € RegLFP,

where Rq, Ry are region variables. The free variables
of ¢ are R4, Ry, and P.

A RegLFP query is a query defined by a RegLFP formula
without free region or set variables.

The logics RegIFP and RegPFP are defined analogously by
using inflationary or partial fived-point operators instead.

Let % := ((R, <, +), S) be a database. The semantics of the
LFP operator is the standard least fixed-point semantics on
the region domain.

Let X := Xi,..., X, be a sequence of region variables, M
be a set variable of arity n, and p(M, X) a formula with free
variables M and X. ¢ gives rise to function f, given by

fo: P(Reg™) — P(Reg™)

M — {P € Reg" : B ¢[M, P]}.

If ¢ is positive in M, then f, is monoton and the least
fixed-point of f, is guaranteed to exist.

Now consider ¢ := [LFPy; xp(M, X)](X). B | ¢[P] for a
tuple of regions P iff P is contained in the least fixed-point
of f,. See [3] for a detailed introduction to least fixed-point
logics.

The rBIT operator requires some explanation. Consider
the set of regions with dimension 0 and let » be the num-
ber of regions in it. This set can be ordered by the order-
ing induced by the lexicographical order on the points they
contain. Clearly, this is a total order. Now let o(z, P) be a
formula with one free element variable x and arbitrary many
free region variables P. If, for a given interpretation of the
free region variables P, the formula ¢ is satisfied by exactly
one rational number a, then [rBIT ¢](Rn, Rq) is true for a
pair of regions R;, R;, if

1. they are 0-dimensional and the ¢-th bit of the bit rep-
resentation of a’s numerator is 1 and the j-th bit of
the bit representation of a’s denominator is 1, or

2. a = 0, R; = R; and both are higher dimensional re-
gions.

Otherwise [rBIT ¢] defines the empty set.

The main ingredient of the language is the least fixed-point
operator. The rBIT operator should be considered a tech-
nical neccessity which is needed to prove that RegLFP cap-
tures PTIME on linear constraint databases.

Before proving complexity bounds for RegLFP-queries, we
give some examples of queries expressible in RegLFP.

The first example is connectivity, which plays an important
role in spatial databases. Let S be d-ary. Connectivity can
be defined by the query

Conn :=VzVy(Sz A Sy — (3R.3R, T € Rz AN §j € RyA
[LFPy rr((R=R ARCS)V(3Z M(R,Z)
A adj(Z,R') A R' C S))](Ra, Ry)))

stating that for each pair of points Z,§ € S, the regions
R, and Ry they are contained in, can be connected by a
sequence of adjacent regions contained in S.

We now turn to a less technical example as it might oc-
cur in applications of GIS systems. Figure 6 gives an (ab-
stract) map of a country’s border, a river, and some cities on
its bank. Since we don’t consider “mixed-part” databases,
databases with a standard relational database part in addi-
tion to the spatial information, we assume that the infor-
mation whether a point belongs to the border, a city, or the
river is stored in the third dimension. Thus we take formu-
lae river(R) and city(R) for granted, stating that a region
R belongs to a river or city respectively.

Now imagine that the river is polluted by certain chemicals
at some cities on the river bank and we ask whether there
is a part of the river, where a particular combination of
chemicals can be found. In RegLFP it is now an easy task
to start at the spring and follow the river collecting the
chemicals the river is polluted with. Once we have seen the
desired combination of chemicals, we mark the city. This can
be expressed in RegLFP as follows, using formulae spring,
chemy, chemsy with the obvious semantics.

¢ :=3R13Rs Ri # RoA
[LF Py g re ((spring(R) AR = R')
V(3Z3Z' M(Z,Z') A river(R) Aadj(Z,R) AR = R')
V(3Z3Z' M(Z,Z'YAchemi(Z) A chems(R) AR' = Z)
I(R, R')

The first two disjuncts in the formula inside the LFP oper-
ator make sure that, beginning at the spring and following
the course of the river, at each induction step a new pair
(R, R), for a region R of the river, is added to M. The

Figure 6: Map showing a river and some cities on its bank.

last disjunct checks that whenever there is a part of the
river with the second chemical, whether there was a part
with the first chemical before. Thus, the fixed-point con-
tains only pairs (R, R) of equal regions, except for when the
desired combination of chemicals is found.

6. COMPLEXITY

In this section we investigate the expressive power and com-
plexity of RegLFP-queries. The main theorem states that
RegLFP captures PTIME in the usual sense of finite model
theory, meaning that the class of properties of linear con-
straint databases definable in RegLFP is exactly the class of
properties decidable in PTIME. In other words, RegLFP can
express all PTIME computable boolean queries, but it falls
short of being able to express all PTIME queries of higher
arity. See Section 8 for comments on non-boolean queries.
First we show the PTIME complexity of RegLFP-queries.

THEOREM 6.1. The data-complezity of RegLFP-queries is
PriME.

PROOF. Again the proof of the theorem is by induction

on the structure of the RegLFP-query. The RegFO cases
are already handled by Theorem 4.3. The fixed-point cases
are trivial since the fixed-point induction is only defined for
the finite set of regions.
The only case requiring some care is the rBIT operator.
Let ¢(z,P) be a RegLFP-formula. Clearly, for any given
interpretation of the free region variables P, the evaluation
of [rBIT ¢] can be done in polynomial time. Since there are
only polynomially many different interpretations of the free
region variables the evaluation of the operator can be done
in PTIME as well. [

We now state the main theorem of this section. Since we
require some technical restrictions on the databases, we first
state precisely what we understand by a logic capturing a
complexity class.

DEFINITION 6.2. A linear constraint database B has the
small coordinate property if the absolute values of the coor-
dinates of all points contained in a 0-dimensional region are
bounded by 2°") | where n is the number of regions in the
region extension of B.

We now precisely define the notion of capturing we use here.

DEFINITION 6.3. We say that a logic L captures a com-
plexity class C on a class IC of linear constraint databases, if
for every boolean query Q on K which can be decided in C,
there is a sentence ¢ € L such that for all linear constraint
databases B € K

Q(B) is true iff B = .

With this notion of capturing we can state the main theorem
of this section.

THEOREM 6.4. RegLFP captures PTIME on the class of
linear constraint databases having the small coordinate prop-
erty. Analogously, RegIFP and RegPFP capture PTIME and
PSPACE respectively.

PrROOF. We first prove the theorem for RegLFP. By The-
orem 6.1 we know that RegLFP C PTIME.
To prove the other direction we show that every class C
of databases decidable in PTIME is definable by a RegLFP
sentence . Since C € PTIME, there is a polynomial time
Turing machine M deciding C. Thus it suffices to show that
there is a sentence ¢y € RegLFP such that a database B
is accepted by M iff B | ¢oum.
Letting logical formulae encode runs of Turing machines is
a standard procedure in descriptive complexity theory. See
[3; 15] for more details. One can define the sentence ¢ as
a conjunction ¢pr := START A COMPUTE A END, where
START is a formula coding the start configuration, COM-
PUTE codes the transition function, and END states that
M never reaches a rejecting state. The formula START de-
pends on a formula 8 defining the input tape of M, i.e. the
representation of 8. The definition of 3 is the only essential
difference in the case of linear constraint databases. The
other formulae can be defined as in the finite case, using re-
gion variables ranging over the set of 0-dimensional regions
instead of first-order variables.
We have to show that there is a formula 8 defining the rep-
resentation of B. The database is represented in the follow-
ing way. First we partition the set of regions into bounded
and unbounded regions, where a region is bounded if it is
contained in a d-dimensional hypercube of edge length [for
some | € R. Otherwise the region is unbounded. Note that
by the following rules we can define an order relation on the
bounded regions. If R, R' are bounded regions and R’ is of
higher dimension than R, then R < R'. The 0-dimensional
regions can be ordered by the lexicographical order on the
coordinates of the points they contain. Without giving de-
tails we state that an ordering of the i-dimensional regions
can be defined from the lexicographical ordering of all (:+1)-
tuples of 0-dimensional regions.
By results of [21; 22; 2] the dimension of a region is first-
order definable. Consequently the order relation is RegFO-
definable.
We now define the representation of the bounded regions.
The representation is illustrated in the following figure.

Ry Rn

——~ —_—
[pilpz| . Ipales| #| .. 14 DT Ip5 |- Ipilen| #

Dimension 0
[dilda] .. |dy2 | .. |d9|d2] . . |dpas |

Dimension 1 Dimension d

Here R; is the ¢th smallest 0-dimensional region, p§ is the
jth coordinate of the point p; € R; and ¢; = 1 if and only
if p; € S. Further, d; = 1 iff the j-th ¢-dimensional region
is contained in S. The coordinates p§ of the 0-dimensional
regions are represented in binary (not shown in the figure.)
The binary representation can be defined using the rBIT
operator. The operator transforms the coordinates of the
point into sequences of 0-dimensional regions representing
the coordinates. As there are only n 0-dimensional regions,

only coordinates up to 90 () can be represented in this way.
Thus the databases which can be represented must satisfy
the small coordinate property.

For unbounded regions we first define an ordering on the set
of all unbounded regions. Let R and R’ be unbounded. If R
is of lower dimension than R' then R < R'. Otherwise let i
be the dimension of R and R'. If i = 1 we can order the re-
gions as follows. Note that every unbounded 1-dimensional
region R has exactly one 0-dimensional region Ro = {p} ad-
jacent to but not contained in it. Starting from p we can
compute some arbitrary other point ¢ € R. Now the lexi-
cographical order on (p,q) induces an order relation on the
set of 1-dimensional unbounded regions. The higher dimen-
sional unbounded regions can now be ordered analogously
to the bounded case by enumerating tuples of 1-dimensional
regions. Using this order relation we can represent the un-

bounded regions as follows.
Rq Rm

—— ——
Ipilgilci|# .. # [pmlgmlem]

~~
Dimension 1

#|d3|d3] . |dye . |dY|dS] |y

-~

Dimension 2 Dimension d
All R; and pi, qi, ¢i, and d; are defined similar to the bounded
case. By a rather technical but not very complex argument
it can be shown that this representation of the database can
be defined in RegF'O.

Clearly, if there is a polynomial-time Turing machine M
defining C using the standard encoding of constraint da-
tabases, then there also is a polynomial-time machine M’
deciding C which uses the above representation. Thus for
all databases B we have

BeC iff Bisaccepted by M iff Bl o

This concludes the proof for RegLFP. The proofs for RegIFP
and RegPFP are analogous. [

7. LOGICS BASED ON TRANSITIVE CLO-
SURE OPERATORS

In this section we consider extensions of RegF'O by induc-
tion mechanisms based on transitive closure computation.
In particular, we define RegTC and RegDTC, the extensions
of RegFO by transitive and deterministic transitive closure
operators. Here we encounter the problem, that Theorem
3.1 only yields a PTIME upper complexity bound for the
computation of arrangements. As explained in Section 3,
the arrangements can be computed in logarithmic parallel
time on a CREW PRAM, and thus in AC!, but it is not
known, whether this can be reduced to NC' or LOGSPACE.
Thus, showing that, e.g., RegDTC-queries have LOGSPACE
data-complexity already fails at the complexity of the ar-
rangement computation.

To deal with this problem, we define a different decomposi-
tion as in Section 3, which can be computed in NC!.

Let B = ((R,<,+),5) be a linear constraint database,
where S is a d-ary relation represented by ¢s = \/; ¢,
¥i ==\, ¢i; and each g;; is a linear (in)equality. First,
we define sets regions(1);) separately for each disjunct ;.
regions(S) then consists of the union of regions(v;) for all i.
We roughly sketch the definition of the regions by giving
an example of the computation for a polytope in the plane.
See Figure 7. The precise definition covering also the cases
of unbounded polyhedra and polyhedra in higher dimension
can be found in Appendix A.

Consider the polytope P shown in Figure 7.

—

Figure 8: Decomposition of the polyhedron in Figure 7.

The regions for P are defined as follows. First, the vertices
pi1, ... ,ps of P are computed and every vertex is a region in
regions(P). These are the 0-dimensional regions. Further,
for any two vertices p, p' let C,, ,» be the open convex closure
of p and p'. If the intersection of C, , and the interior of
P is empty, then Cp ; is added as a 1-dimensional region to
regions(P). In the example, the 1-dimensional regions are
exactly the line segments I, ... ,l5 on the boundary of P.
Finally, we add regions in the interior of P. First, we choose
the point p; as basis for the regions. The regions then are
defined as indicated in Figure 8. The regions Ri,..., R3
are defined as the open convex hulls of the three bounding
vertices. Further, we the line segments between p; and p3
and p1 and p4 resp. are added to regions(P).

In the case of polytopes in higher dimension d, the regions
in the interior would be defined by the open convex hull of
d + 1 vertices and the regions in the boundary by the open
convex hull of up to d vertices.

The regions thus defined can be computed efficiently, in
NC!. See Lemma A.1 in the appendix. We are now ready
to define extensions of RegFO by (determinstic) transitive
closure operators.

NoTE 7.1. We now base the definition of the region ex-
tension B9 of a linear constraint database B on the set of
regions defined above. Thus, if B := (R, <, +),S) is a lin-
ear constraint database, then its region extension BT .=
(R, Reg; <,+, S;adj, €) is a two-sorted structure, where the
second sort ist defined as Reg := regions(S). The definition
of the relations adj and € is analogous to Definition 4.1.

Recall that regions(S) consist of the union of regions sepa-
rately defined for each disjunct ¢; in ¢s. Regions for differ-
ent polyhedra may overlap and thus the regions in regions(S)
are not guaranteed to be either contained in or disjoint from
S. Also the regions do not cover all of the underlying space
R?. Both makes the logics less intuitive to use. Thus it
would be interesting to have a decomposition with the nice
properties of arrangements but computable in NC',

DEFINITION 7.2. RegTC is the extension of RegFO by a
transitive closure operator on the region domain. Precisely,
RegTC extends RegFO by the following rule. If ¢ € RegTC
and R := Ri,... ,Rm,R' := R},... R, are sequences of
region variables such that free(p) = {R, R'} then

¢ :=[TCr p|(X,Y) € openRegTC

and free(y) := {X,Y}, where X,V are sequences of m re-
gion variables each. As before, we define RegTC queries as
the set of queries defined by RegTC formulae without free
region variables.

RegDTC is defined analogously using a deterministic transi-
tive closure operator instead.

The TC operator has the standard semantics, i.e. given
a formula ¢ := [TCy np]()?,l_f) a database B, and tu-
ples of regions P, P’ 9B = [P, P'] iff there is a sequence
Zl, . ,Zn of tuples of regions, Zl = X Z, =Y and for all
1<i<n—1¢(Zi,Zit1). See [3] for a detalled introduction
to transitive closure logics.

By induction on the structure of the queries one can easily
show the following theorem.

THEOREM 7.3. The data-complezity of RegTC-queries is
NLOGSPACE. Analogously, the data-complexity of RegDTC-
queries 18 LOGSPACE.

In analogy to the proof of Theorem 6.1 the following theorem
can be proved.

THEOREM 7.4. RegTC captures NLOGSPACE on the class
of linear constraint databases having the small coordinate
property. Analogously, RegDTC captures LOGSPACE.

8. CONCLUSION AND ONGOING WORK

We presented a family of query languages for linear con-
straint databases integrating recursion mechanisms into first-
order logic. The fixed-points in these languages operate on
a set of regions, which is essentially the set of faces in a
decomposition of the input space. Note that the definition
of the languages and their expressive power and complexity
do not depend on a particular decomposition. Other de-
compositions could also be used, provided that they can be
computed efficiently and it is possible to define a represen-
tation of the database from the decomposition.

Following this idea, it should also be possible to define in-
teresting logics for other sorts of constraint databases, e.g.
polynomial constraint databases.

It has been shown, that the logics defined capture all boolean
queries decidable in important complexity classes. But the
logics fail to capture, e.g., the class of non-boolean PTIME
queries. We are currently working on extending the logics by
a convex-closure operator such that the class of non-boolean
PTIME-queries can be captured as well.

9. REFERENCES

[1] R. Anderson, P. Beame, and E. Brisson. Parallel algo-
rithms for arrangements. Algorithmica, 15:104 — 125,
1996.

[2] F. Dumortier, M. Gyssens, L. Vanderurzen, and D. Van
Gucht. On the decidability of semi-linearity for semi-
algebraic sets and its implications for spatial databases.
In In Proc. 16th ACM Symp. on Principles of Database
Systems, 1997.

[3] H.-D. Ebbinghaus and J. Flum. Finite Model Theory.
Springer, 1995.

[4] H. Edelsbrunner. Algorithms in Combinatorial Geome-
try. EATCS Monographs on Theoretical Computer Sci-
ence. Springer, 1987.

[5] F. Geerts and B. Kuijpers. Expressing topological con-
nectivity of spatial databases. DBPL’99, 1999.

[6] J. E. Goodman and J. O’Rourke, editors. Handbook
of Discrete and Computational Geometry. CRC Press,
1997.

[7] M. T. Goodrich. Constructing arrangements optimal in-
parallel. Discrete €& Computational Geometry, 9:371 —
385, 1993.

8

E. Griadel and Y. Gurevich. Metafinite model theory.
Information and Computation, 140:26-81, 1998.

[9] E. Grddel and S. Kreutzer. Descriptive complexity
theory for constraint databases. In Computer Science
Logic, number 1683 in LNCS, pages 67 — 82. Springer,
1999.

[10] E. Gradel and K. Meer. Descriptive complexity theory
over the real numbers. In Mathematics of Numerical
Analysis: Real Number Algorithms, volume 32 of AMS
Lectures in Applied Mathematics, pages 381-403. 1996.

[11] S. Grumbach and G. M. Kuper. Tractable recursion
over geometric data. In Principles and Practice of Con-
straint Programming, number 1330 in LNCS, pages 450
— 462. Springer, 1997.

[12] S. Grumbach and J. Su. Finitely representable
databases. Journal of Computer and System Sciences,
55:273-298, 1997.

[13] S. Grumbach and J. Su. Queries with arithmetical con-
straints. Theoretical Computer Science, 173:151-181,
1997.

[14] D. Harel. Towards a theory of recursive structures. In
Proceedings of 23rd International Symposium on Math-
ematical Foundations of Computer Science MFCS 98,
volume 1450 of Lecture Notes in Computer Science,
pages 36-53. Springer, 1998.

[15] N. Immerman. Descriptive complezity. Graduate Texts
in Computer Science. Springer, 1998.

[16] P. Kanellakis, G. Kuper, and P. Revesz. Constraint
query languages. Journal of Computer and Systems Sci-
ences, 51:26-52, 1995. (An extended abstract appeared
in the Proceedings of PODS’90).

[17] P. C. Kanellakis, G. M. Kuper, and P. Z. Revesz. Con-
straint query languages. In Proc. 9th ACM Symp. on
Principles of Database Systems, pages 299-313, 1990.

[18] B. Kuijpers, J. Paredaens, M. Smits, and J. Van den
Bussche. Termination properties of spatial datalog pro-
grams. In Logic in Databases, number 1154 in LNCS,
pages 101 — 116, 1996.

[19] G. Kuper, L. Libkin, and J. Paredaens, editors. Con-
straint Databases. Springer, 2000.

[20] A. Schrijver. Theory of Linear and Integer Program-
ming. Wiley, 1986.

[21] L. Vanderurzen, M. Gyssens, and D. Van Gucht. On the
desirability and limitations of linear spatial query lan-
guages. In Proceedings of the 4th International Sympo-
stum of Spatial Databases, number 951 in LNCS, pages
14 - 28, 1995.

[22] L. Vanderurzen, M. Gyssens, and D. Van Gucht. On
query languages for linear queries definable with poly-
nomial constraints. In Proceedings of the 2nd Interna-
tional Conference on Principles and Practice of Con-
straint Programming, number 1118 in LNCS, pages 468
- 481, 1996.

[23] G. M. Ziegler. Lectures on Polytopes. Number 152 in
Graduate texts in mathematics. Springer, 1995.

APPENDIX
A. COMPUTING REGIONS IN NC !

In this section we precisely define the decomposition of data-
bases into regions as sketched in Section 7.

Let B := ((R,<,+),S) be a linear constraint database,
where S is a d-ary relation represented by ¢s = \/, ¢,
¢i == A, ¢i; and each g;; is a linear (in)equality. First,
we separately define sets regions(v);) of regions for each dis-
junct ¥;. The set of regions for S is defined as regions(S) :=
U, regions(v;).

To ease notation we denote by ; both the formula as well
as the set of points it defines. It will always be clear from
the context what is meant.

Let, for some i, ¢ := 1; be a disjunct of 5. We denote by
closure(1)) the closure of the set of points defined by 1. Let
&(1) be the set of (in)equalities occurring in . Define
() :=={¢ : ¢ is an equation contained in &(¢)), or
there is an inequality ¢’ occurring in 1) and
¢ equals ¢’ where the inequality is replaced
by equality}.

as the set of formula defining the hyperplanes bounding .
We demonstrate the following algorithm using the examples
given in Figure 9 and 10.

R

p

(I e

Figure 10: Example of an unbounded polyhedron P’.

First we calculate the set vert(y) of vertices of ¢. For each
d-tuple of atoms from $(2)) we compute the intersection of
the hyperplanes. If they intersect in exactly one point p and
p is contained in closure(v), then p is a vertex.

Example. Consider the polytope P in Figure 9. The hyper-
planes in $(P) are the lines bounding the polytope. To compute
the vertices every pair of lines is intersected. This results in the
vertices p1,... ,ps but also in points like p. Of course p is not a
vertex of P as it is not contained in closure(P).

The next step is to check whether v is bounded. Let ¢
be the maximal absolute value of a coordinate of a vertex
of ¢. If there are no vertices, then define vert’(¢)) as the
set of points p such that there is a d-tuple of atoms from
HW)U{z; =0 : 1 <i<d} intersecting exactly in p. Let
¢ be the maximal absolute value of a coordinate of a point
in vert’(v).

Define cube(v)) as {z; = 2(c+1),z; = —2(c+1) : 1 < i < d}.
If each atom from cube(v)) has an empty intersection with
1, then 9 is bounded, otherwise it is unbounded.
Example continued. 1In the example polyhedra, the cube’s
are indicated by the dashed boxes. Obviously the (bounded) poly-
tope P in Figure 9 does not intersect with the box, whereas the
(unbounded) polyhedron does.

If ¢ is bounded, then define the following regions for .
There are two sorts of regions, inner and outer regions. To
define the inner regions, choose one vertex pio. € vert(vy),
e.g. the point whose coordinates are the lexicographically
smallest. The set region(v) consists of all open convex hulls
C of d+1 vertices piow and p1, . .. , paq of ¥, such that the line
segment between pj,,, and any other vertex except p1,... ,pd
has an empty intersection with C.

Note that the points piow, p1, ... ,pa do not have to be dis-
joint. Thus the regions may be of lower dimension than d.
The outer regions are defined as the open convex hull of at
most d vertices pi, ... ,pd, such that for no 1 < i, 5 < d the
line segment between p; and p; intersects with the interior
of 1.

Example continued. Consider again the example polytope

10

P. There are three 2-dimensional regions defined by {p1,p2,ps},
{p1,p3,pa}, and {p1,pa,p5}. In addition there are seven 1-di-
mensional regions, namely the regions defined by {p;,p;+1} for
1 <i <4, {p1,ps},{p1,p3}, and {p1,pa}. Only the last two
regions are inner regions, the other five are outer regions. Further,
each point defines its own 0-dimensional (outer) region.

Now assume that 1) is unbounded. Define icube(¢)) := {z; <
2(c+1),z; > —2(c+ 1) 1 < i < d}, where ¢ is as
above. As icube(v)) is bounded we can compute the vertices
of ¥ N icube(v)) as before. Define up()) as the set of all
pairs (p, (p — q)) such that p is a vertex on the boundary
of icube(v)), q is any other vertex, and the set {z : z =
p + a(p — q) for some a > 0} is in closure(yp). Now define
regions(v) as follows. Compute the bounded regions for
vert(y Nicube(y))) as above. The unbounded regions are
defined as follows.

Let (p,p — q) € up(y)). Then (p,p — q) defines the region
{z : thereis an a € R,a > 0 such that z = p+a(p — q)}.
The other unbounded regions are defined by the open convex
hulls of at most d such regions.

Example continued. The vertices computed in the first step
of the algorithm for the polyhedron P’ are p; and pa. The set
defined by icube is the interior of the dashed box and the vertices
computed for ¢ N icube(y)) are, besides p; and p2, p and p'.
Thus regions(P') contains: two bounded 2-dimensional regions,
{p,p',p1} and {p,p1,p2}, four bounded 1-dimensional regions,
{p,p2},{p2;p1},{p1,p'}; and {p, p1}, the last one being the only
inner region, and four O-dimensional regions. Further, there are
the two unbounded 1-dimensional regions defined by (p’,p’ — p1)
and (p,p — p2) and one unbounded 2-dimensional region.

Note that eventually the vertices of the cube can be con-
tained in wvert(y N icube(e))). This is necessary in certain
degenerated cases, e.g. a polyhedron defined by only one
inequality.

As mentioned above, the set regions(y¢s) of regions of the
input relation S is defined as the union of the regions for the
disjuncts of ¢s. Note that every point p € S is contained in
at least one region.

Although we do not precisely present the circuits, it should
be clear that the computation of the regions essentially re-
quires some applications of the Gauss and Fourier-Motzkin
elimination method. Both methods can be computed by
circuits with logarithmic depth and polynomial size, pro-
vided that the dimension, that is the number of variables
involved, is fixed. See [20] for details. Thus we get the
following lemma.

LEMMA A.1. regions(gs) can be computed by an NC* cir-
cuit.

