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ABSTRACTWe introdu
e a family of query languages for linear 
on-straint databases over the reals. The languages are de�nedover two-sorted stru
tures, the �rst sort being the real num-bers and the se
ond sort 
onsisting of a de
omposition ofthe input relation into regions. The languages are de�ned asextensions of �rst-order logi
 by transitive 
losure or �xed-point operators, where the �xed-point operators are de�nedover the set of regions only. It is shown that the querylanguages 
apture pre
isely the queries de�nable in variousstandard 
omplexity 
lasses in
luding Ptime.
1. INTRODUCTIONManipulating spatial data is an in
reasingly important partof modern database systems as spatial data plays an impor-tant role in many appli
ation areas like geographi
al infor-mation systems or (medi
al) image pro
essing. Many of theproposed data models for spatial database systems are de-signed for a parti
ular type of appli
ation. Although theyallow very eÆ
ient storage and manipulation of the kind ofdata used in this appli
ation area, they normally fail forother types of spatial data. For example, there are very ad-van
ed geographi
al information systems available for twodimensional as well as for three dimensional data, but theyrarely work well for both dimensions, let alone higher di-mensions.This narrowed fo
us is often suÆ
ient for many appli
ationsbut it has several disadvantages, one being that one needs
ompletely di�erent database systems for di�erent appli
a-tions.A more general approa
h to spatial databases is to allowarbitrary sets as database relations, as long as they havea �nite presentation in some formalism, e.g. by �rst-orderformulae. A database framework following this approa
h isthe framework of 
onstraint databases. Constraint databaseshave been introdu
ed by Kanellakis, Kuper, and Revesz[17; 16℄ in 1990 and sin
e then a lot of resear
h has beendone in this area. See [19℄ for a very detailed study of
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onstraint databases. In this framework the spatial rela-tions are de�ned by boolean 
ombinations of polynomial(in)equalities. Databases de�ned in this way are 
alled poly-nomial 
onstraint databases and �rst-order logi
 on thesedatabases is usually referred to as FO+POLY. Polynomial
onstraint databases allow a very natural representation ofspatial data. The drawba
k is that the evaluation of queriesbe
omes rather expensive. Although it is known that �rst-order queries on polynomial 
onstraint databases have NCdata 
omplexity, the 
onstants involved are fairly large andthe algorithms be
ome unusable for pra
ti
al appli
ations.As semi-linear data is suÆ
ient for most pra
ti
al purposes,it is quite 
ommon to use linear approximations to the spa-tial data, that is to 
onsider linear 
onstraint databases,where the relations are represented by boolean 
ombina-tions of linear (in)equalities. But �rst-order logi
 on thesedatabases, usually referred to as FO+LIN, is not expres-sive enough as many interesting queries 
annot be de�ned.Therefore more powerful languages are needed. There aredi�erent ways to in
rease the expressive power of �rst-orderlogi
. In this paper we 
on
entrate on in
reasing expressivepower by adding re
ursion me
hanisms. This has su

ess-fully been done for dense order 
onstraint databases. (See[17; 12; 9℄) Unfortunately linear 
onstraint databases are notso well behaved 
on
erning re
ursion. A naive de�nition of,e.g., least �xed-point logi
 leads to a non-terminating andunde
idable language, as it is possible to de�ne the natu-ral numbers with addition and multipli
ation by least �xed-point logi
 over (R; <;+). (See [18℄ for an investigation ontermination properties for query languages with re
ursion.)In order to guarantee termination one has to restri
t theappli
ation of the �xed-point operator.Besides termination, one en
ounters problems with the 
lo-sure of languages over linear 
onstraint databases - the resultof a query on a linear 
onstraint database must itself be lin-ear again. Thus a language powerful enough to de�ne e.g.
onvex hulls has to be restri
ted in some sense, sin
e multi-pli
ation 
an easily be de�ned if the 
omputation of 
onvexhulls is possible. (See Se
tion 4 for details.)Attempts to de�ne query languages with re
ursion me
ha-nisms on linear 
onstraint databases 
an be found in [11; 5℄.Grumba
h and Kuper [11℄ de�ne a query language based onleast �xed-point logi
. Termination is guaranteed by takingthe simultaneous �xed-point of two formulae, the �rst speak-ing only about the ordered set of reals whereas the se
ondformula is allowed to use addition but is required to satisfyrather severe restri
tions. It is shown that the language 
ap-tures Ptime on the 
lass of linear 
onstraint databases but1



expressing queries in this language is not very intuitive.Geerts and Kuijpers [5℄ analyze properties of spatial data-log. They show that 
onne
tivity of spatial relations 
anbe queried by a terminating spatial datalog program, butgenerally spatial datalog queries will not terminate on everyinput.In this paper we take a di�erent approa
h to de�ne re
ur-sive query languages over linear 
onstraint databases, by al-lowing �xed-point 
omputations to range only over a �nite
olle
tion of pre-de�ned sets. More pre
isely, we 
onsiderlogi
s over two sorted stru
tures. The �rst sort is the setof real numbers with order and addition de�ned on them.To de�ne the se
ond sort, we de
ompose the input relationinto regions, whi
h are 
onne
ted subsets of the underlyingspa
e Rd . The set of regions forms the se
ond sort. Thusthere are also two sorts of variables. The �rst one, 
alledelement variables, range over the real numbers whereas these
ond type of variables, 
alled region variables, range overthe regions. The 
onne
tion between the two worlds is givenby the 
ontainment predi
ate, stating that a point, given bya tuple of real numbers, is 
ontained in a region. Now thelanguages are de�ned by extending �rst-order logi
 by (de-terministi
) transitive 
losure, least or partial �xed-pointoperators, where the operators iterate over the (�nite) setof regions only. We show that many interesting queries 
anbe formulated naturally in these languages. To estimate theexa
t expressive power, it is shown that exa
tly the booleanqueries de
idable in various important 
omplexity 
lasses
an be expressed in this family of query languages.Similar languages 
an be de�ned for polynomial 
onstraintdatabases using a 
ell de
omposition for semi-algebrai
 sets,but the 
omplexity of query evaluation will be mu
h higher.The results presented here also 
ontribute to a resear
h pro-gram a
tive for some years now, where it is investigated inhow far the approa
h and methods of des
riptive 
omplexitytheory 
an be applied to in�nite, but �nitely representablestru
tures. Resear
h here 
onsiders various formalisms torepresent in�nite stru
tures, examples being re
ursive stru
-tures [14℄, meta�nite stru
tures and 
omplexity theory overthe reals [8; 10℄, and 
onstraint databases. In this resear
harea the addition of �xed-points to logi
s is still an openproblem.The paper is organized as follows. In the next se
tion wegive a pre
ise de�nition of 
onstraint databases and queries.In Se
tion 3 we de�ne some notions from 
onvex geometrywe need in the sequel and de�ne a de
omposition of the in-put relation and the underlying spa
e. Se
tion 4 de�nes thetwo-sorted stru
tures and �rst-order logi
 on them. In Se
-tion 5 extensions of �rst-order logi
 by �xed-point operatorsare de�ned and some examples are given. We investigatethe expressive power and 
omplexity of these languages inthe Se
tion 6, where it is shown that the least �xed-pointextension 
aptures all boolean Ptime queries. In Se
tion 7logi
s based on transitive 
losure 
onstru
ts are introdu
edtogether with a di�erent de
omposition of the input relation.We 
lose with a summary and remarks on further work. Es-pe
ially, we 
omment on extensions of the logi
s 
apable of
apturing non-boolean queries.
2. PRELIMINARIESConstraint databases. The basi
 idea in the de�nition of
onstraint databases is to allow in�nite relations whi
h havea �nite presentation by a quanti�er-free formula. Let A be a

� -stru
ture, 
alled the 
ontext stru
ture, and '(x1; : : : ; xn)be a quanti�er-free formula of vo
abulary � . We say that an-ary relation R � An is represented by '(x1; : : : ; xn) overA i� R equals f�a 2 An : A j= '[�a℄g. Let � := fR1; : : : ; Rkgbe a relational signature. A �-
onstraint database over the
ontext stru
ture A is a �-expansion B := (A; R1; : : : ; Rk)of A where all Ri are �nitely represented by formulae 'Riover A. The set � := f'R1 ; : : : ; 'Rkg is 
alled a �nite rep-resentation of B.By de�nition, 
onstraint databases are expansions of a 
on-text stru
ture by �nitely representable database relations.Note that the same relation 
an be represented in di�erentways, e.g. '1 := 0 < x ^ x < 10 and '2 := (0 < x ^ x <6) _ (6 < x ^ x < 10) _ x = 6 are di�erent formulae de�n-ing the same relation. Two representations � and �0 areA-equivalent, i� they represent the same database over A.To measure the 
omplexity of algorithms taking 
onstraintdatabases as inputs we have to de�ne the size of a 
on-straint database. Unlike �nite databases, the size of 
on-straint databases 
annot be given in terms of the number ofelements stored in them but has to be based on a represen-tation of the database. Note that equivalent representationsof a database need not be of the same size. Thus the size of a
onstraint database 
annot be de�ned independent of a par-ti
ular representation. In the following, whenever we speakof a 
onstraint database B, we have a parti
ular represen-tation � of B in mind. The size jBj of B is then de�nedas the sum of the length of the formulae in �. This 
orre-sponds to the standard en
oding of 
onstraint databases bythe formulae of their representation.In this paper we 
onsider linear 
onstraint databases, that isdatabases de�ned by boolean 
ombinations of linear (in)e-qualities. In the literature one 
an �nd two models of 
om-putation for su
h databases. The �rst model allows real 
o-eÆ
ients in the formulae. The 
omputational devi
es used
an store any real number in a single storage 
ell and havebuilt in fun
tions like addition and multipli
ation. The se
-ond model allows only rational 
oeÆ
ients in the formulae.Sin
e one 
an multiply the atoms in the formulae with theleast 
ommon denominator, this is equivalent to allowinginteger 
oeÆ
ients only. The integers are stored bitwise onthe Turing tape. We take the se
ond approa
h and 
onsiderthe 
ontext stru
ture A := (R; <;+). The formulae are al-lowed to use elements from Z as parameters. As usual werequire the formulae representing the input relations to bein disjun
tive normal form and 
onsider databases with onesingle spatial relation only. This restri
tion is not 
ru
ialbut helps to simplify the presentation. For notational rea-sons we disallow the use of negation, but allow �;>, and �instead. Clearly, 6= 
an be de�ned using <.Constraint queries. Fix a 
ontext stru
ture A. A 
on-straint query is a mapping Q from 
onstraint databasesover A to �nitely representable relations over A. Note thatqueries are abstra
t, i.e. they depend only on the databasenot on their representation. That is, any algorithm that
omputes Q, taking a representation � of a database B asinput and produ
ing a representation of Q(B) as output,has to 
ompute on two A-equivalent representations � and�0 output formulae that are not ne
essarily the same, butrepresent the same relation on A.In the sequel we are parti
ularly interested in queries de�nedby formulae of a given logi
 L. Let ' 2 L be a formula withk free variables. Then ' de�nes the query Q' mapping a2




onstraint database B over A to the set'B := f(a1; : : : ; ak) : B j= '[�a℄g:In order for Q' to be well de�ned, this set must be repre-sentable by a quanti�er-free formula. If ' is �rst-order, thismeans that A admits quanti�er elimination. For more pow-erful logi
s than �rst-order logi
, the additional operatorsmust be eliminated as well. A logi
 L is 
losed for a 
lassC of 
onstraint databases over A, if for every ' 2 L andevery B 2 C the set 'B 
an be de�ned by a quanti�er-free�rst-order formula over A.Typi
al questions that arise when dealing with 
onstraintquery languages are the 
omplexity of query evaluation fora 
ertain 
onstraint query language and the de�nability of aquery in a given language. For a �xed query formula ' 2 L,the data 
omplexity of the queryQ' is de�ned as the amountof resour
es (e.g. time, spa
e, or number of pro
essors)needed to evaluate the fun
tion that takes a representation� of a database B to a representation of the answer relationQ'(B).
3. ARRANGEMENTSIn this se
tion we explain some notions from 
onvex geom-etry that will be needed later. The presentation mostly fol-lows [4℄. See also [6; 23℄ for details.Let P � Rd be a set of points in Rd . The aÆne support oraÆne hull of P is de�ned as the smallest aÆne subspa
e ofRd 
ontaining P . The 
onvex hull of P is de�ned as
onv(P ) := fx : 9p1; : : : ; pn 2 P; n 2 N; 9a1; : : : an 2 R�0 ;�aipi = x; �ai = 1g:We de�ne the open 
onvex hull of P as the interior of 
onv(P )with respe
t to its aÆne support. It 
an be de�ned asopen
onv(P ) := fx : 9p1; : : : ; pn 2 P; n 2 N; 9a1; : : : an 2 R;ai > 0; �aipi = x; �ai = 1g:Whenever we speak about the interior of a set or a set beingopen, we always mean with respe
t to its aÆne support.Usually, a polyhedron in Rd is de�ned as the interse
tionof �nitely many 
losed halfspa
es in Rd . For our purposesit is more 
onvenient to allow the interse
tion with openhalfspa
es as well. Thus we de�ne a polyhedron in Rd as theinterse
tion of �nitely many open or 
losed halfspa
es. Itis bounded, if it is entirely 
ontained in some d-dimensionalhyper
ube of edge length l for some l 2 R�0 . A boundedpolyhedron is 
alled a polytope.Re
all that a linear 
onstraint relation S is de�ned by a for-mula 'S := WiVj 'ij , where ea
h 'ij is a linear inequality,de�ning a halfspa
e, or a linear equation, de�ning a hyper-plane.Thus, ea
h 
onjun
t in 'i := V'ij de�nes a polyhedronand the relation S 
onsists of a union of polyhedra. LetG(S) := fg1; : : : ; gng be the set of (in)equalities o

urringin 'S . Consider the set of hyperplanesH(S) := fh : there is an equation g 2 G(S) and h = g, org is an inequality and h is obtained by re-pla
ing in g inequality by equality g.See Figure 1 and 2 for a spatial relation and the 
orrespond-ing set of hyperplanes.For ea
h h := �aixi = b 2 H(S) we de�ne the set of pointsbeing above, on, or below h, where a point p := (p1; : : : ; pd)

Figure 1: Example of a spatial relation S.

Figure 2: Set of hyperplanes indu
ed by S.is above h if �aipi > b, on h if �aipi = b, and below hif �aipi < b. We denote by h� the set of points belowh and by h+ the set of points above h. Clearly, any twopoints on the same side of all hyperplanes in H(S) are eitherboth 
ontained in or both not 
ontained in S. To see this,re
all that the hyperplanes in H(S) arise from the atoms in'S . Points on the same side of a hyperplane h 
annot beseparated by the 
orresponding atom. Clearly, if the points
annot be separated by the atoms in 'S , then the boolean
ombination of the atoms 
annot separate them either.More pre
isely, let p be a point in Rd . The position vi(p)with respe
t to hi 2 H(S) is de�ned asvi(p) := 8><>:+1 if p 2 h+i0 if p 2 hi�1 if p 2 h�i :The position of a point with respe
t to H(S) is determinedby the ve
tor (v1(p); : : : ; vn(p)), 
alled the position ve
torof p, and any two points sharing the same position ve
torare inseparable by 'S.We 
all a set of all points sharing the same position ve
tora fa
e and the disse
tion of Rd indu
ed by the set H(S) ofhyperplanes an arrangement A(S). This disse
tion of Rdinto fa
es is a partition of Rd with the property that everyfa
e is either 
ontained in or disjoint to S. See Figure 3 forthe de
omposition of the database shown above.3
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Figure 3: Arrangement A(S).The dimension of a fa
e in the de
omposition is de�ned asthe dimension of its aÆne support. Thus we have seven 2-dimensional fa
es e1 to e7, nine 1-dimensional fa
es l1 to l9,and three 0-dimensional fa
es p1 to p3. As usual, we 
all0-dimensional fa
es verti
es.We say, that two fa
es f and g are in
ident, if one is ofdimension one less than the other and it is 
ontained in theboundary of the other region.Typi
ally, arrangements are stored in a data stru
ture likethe in
iden
e graph. The in
iden
e graph 
ontains a vertexfor ea
h fa
e in the arrangement as well as two additionalverti
es, one representing a virtual (�1)-dimensional fa
e,denoted by ?, whi
h is in
ident to every 0-dimensional fa
e,and one vertex representing a (d+ 1)-dimensional fa
e, writ-ten as A(S), where every d-dimensional fa
e is in
ident to.We 
all the last two verti
es improper and the other properverti
es. Ea
h proper vertex v stores the position ve
tor ofthe points 
ontained in the 
orresponding fa
e f as well astwo lists of dire
ted edges, one 
ontaining edges pointingat the verti
es whose fa
es are in
ident to f and one 
on-taining edges pointing at the verti
es to whose fa
es f isin
ident. Figure 4 shows the in
iden
e graph for the part ofthe arrangement of Figure 3 
ontaining the fa
es around p2.A(S): : : e5 xx

88qqqqqqqqqqq e4 ��

??������� e3��OO e7��

__??????? : : :: : : l1��OO ��

AA������� l2��OO ��

??~~~~~~~ l7&&

ffNNNNNNNNNNNNN ��

??~~~~~~~ l8��

__@@@@@@@ ��

OO : : :: : : p2&&

ffNNNNNNNNNNNNN ��

__??????? ��

OO

��

??������� : : :?��OOFigure 4: Part of the in
iden
e graph for A(S).As every vertex stores the position ve
tor of the 
orrespond-ing fa
e, a 
onjun
tion of atoms de�ning the fa
e 
an easilybe obtained from H(S) and the in
iden
e graph for A(S).

Also the in
iden
e relation 
an be eÆ
iently de
ided.It is known, that an arrangement for a set of n hyperplanesin Rd 
an be 
omputed in time O(nd). See Theorem 7.6in [4℄. Besides the known sequential algorithms, there havesome attempts been made to de�ne parallel algorithms for
omputing arrangements [1; 7℄, leading to algorithms run-ning in parallel time O(log n) using a polynomial number ofpro
essors on a CREW PRAM (See [7℄).Sin
e the number of hyperplanes in H(S) is always less orequal the number of atoms in the representation of the data-base, the following theorem is immediate.Theorem 3.1. Let B := ((R; <;+); S) be a linear 
on-straint database. The arrangement A(S) 
an be 
omputedin polynomial time with respe
t to the size of the represen-tation of B.
4. FIRST-ORDER LOGIC WITH REGION

VARIABLESIn this se
tion we use the arrangement de�ned above to in-trodu
e �rst-order logi
 with region variables, whi
h is �rst-order logi
 on 
ertain two-sorted stru
tures. We �rst intro-du
e the stru
tures the logi
s operate on.Let B be a database with a d-ary spatial relation S. Thede�nition of the stru
tures is based on a disse
tion of Rdinto regions, where a region is a 
onne
ted subset of Rd .We denote the set of regions by region(S). To de�ne �rst-order logi
 with region variables and its extension by �xed-point operators, we use the arrangement A(S) as disse
tion.Thus, here and in the next se
tion regions(S) is de�ned asthe set of fa
es in A(S). In Se
tion 7 we will use a di�erentde
omposition of Rd into regions to de�ne a logi
 based ona transitive 
losure operator.Definition 4.1. Let B := ((R; <;+); S) be a linear 
on-straint database, where S is a d-ary relation symbol.The stru
ture B gives rise to a two-sorted stru
ture BReg :=(R;Reg;�;+; S; adj;2), 
alled the region extension of B,with sorts R and Reg := regions(S), the adja
en
y relationadj � Reg�Reg, where two regions are adja
ent if there is apoint p in one of them su
h that every "-neighbourhood of phas a non-empty interse
tion with the other region, and theelement 
ontainment relation 2 between elements from Rdand Reg, where �x 2 R is true i� the point �x is 
ontained inthe region R.The "-neighbourhood of a point p = (p1; : : : ; pd) 2 Rd 
anbe de�ned as the set fp0 := (p01; : : : ; p0d) : jpi � p0ij <" for all 1 � i � dg. It follows immediately that the adja-
en
y relation is �rst-order de�nable. Thus adding it to thesignature of BReg is a mere 
onvenien
e.The above de�nition of adja
en
y is equivalent to an al-ternative de�nition, where two regions are adja
ent i� oneregion is 
ontained in the 
losure of the other. Thus if tworegions are adja
ent, then one is of stri
tly lower dimensionthan the other. Further, any two regions being in
ident areadja
ent too.Definition 4.2. Let V be a set of element variables andR be a set of region variables. We de�ne RegFO as �rst-order logi
 over stru
tures BReg. Thus we have quanti-�ers 8x;9x for element variables ranging over the reals and8R; 9R for region variables ranging over the set Reg of re-gions. A RegFO query is a query de�ned by a RegFO formulawithout free region variables.4



Usually we use small letters x; y; z; : : : for element variablesand 
apital letters R;X; Y; : : : to denote region variables.Clearly, every linear 
onstraint database has an unique re-gion extension. Therefore we freely speak about a databaseB being a model of a RegFO -senten
e instead of expli
-itly mentioning its region extension BReg. We also use thedatabase as input for algorithms and Turing ma
hines.Theorem 4.3. Every RegFO query on linear 
onstraintdatabases has polynomial time data 
omplexity.Proof. To prove the theorem we have to show that forea
h RegFO-query ' there is a Ptime algorithm whi
h,given (a representation of) a database B, 
omputes a quan-ti�er-free �rst-order formula de�ning 'B.By Theorem 3.1 we know that the arrangement of the inputdatabase 
an be 
omputed in time polynomial in the sizeof the database. The proof of the theorem now follows byindu
tion on the stru
ture of the query. The �rst-order 
asesfollow immediately from the Ptime 
omplexity of �rst-orderqueries on linear 
onstraint databases as proved in [17℄ and[13℄. The 
ase of atoms built up by the adja
en
y relationis trivial as the relation is �rst-order de�nable.The remaining 
ases are where region variables o

ur. Com-puting a formula de�ning a region 
an be done in polynomialtime, sin
e the in
iden
e graph stores the position ve
tor ofthe 
ontained points for every region. On
e the positionve
tor is given the 
onstru
tion of the formula is trivial.The 
ase of a formula of the type 9P'(P ), where P is aregion variable, 
an be handled as follows. For ea
h region Rwe 
onstru
t the formula de�ning R, repla
e the o

urren
esof P in ' by this formula and evaluate the resulting formula.By indu
tion, this 
an be done in polynomial time. Theoutput now 
onsists of the disjun
tion of the formulae forea
h region.The universal quanti�
ation 
an be dealt with analogously,taking the 
onjun
tion instead of disjun
tion.A natural question arising is whether it is ne
essary to re-stri
t the region variables to regions of the input relation in-stead of introdu
ing quanti�ers of the kind 9R 2 region( )meaning that R is a region variable ranging over the setof regions of the relation de�ned by  . Unfortunately thismakes the logi
 too expressive, as 
onvex 
losure and thusmultipli
ation 
an easily be de�ned. The de�nition of mul-tipli
ation by 
onvex 
losure is demonstrated in Figure 5.
������������

��

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
��

y

x z

�
�
�
�z y y-1( , )

y-1 ��
����
����
����

����
����
����

Figure 5: De�ning multipli
ation by 
onvex 
losure.The relation mult(x; y; z), true for x; y, and z if x � y = z,
an be de�ned as follows. We assume w.l.o.g. that x; y, andz are positive. Consider the points (0; y) and (z; 0) in theplane. The 
onvex 
losure of these points is the line segment

as shown in Figure 5. The point on the line segment having(y�1) as se
ond 
oordinate has the �rst 
oordinate zy . Thus,if (x; y�1) 2 
onv(f(0; y); (z; 0)g), then x = zy and x �y = z.Having de�ned �rst-order logi
 over region extensions wenow turn to more expressive languages.
5. LOGICS BASED ON FIXED-POINT OP-

ERATORSWe now 
onsider extensions of RegFO by �xed-point 
on-stru
ts. First, we give a de�nition of a language based onleast �xed-point indu
tion. Logi
s based on transitive 
lo-sure operators will be de�ned later. In all of these logi
s,the �xed-point indu
tion is allowed only on the region do-main, guaranteeing 
losure of the queries and eÆ
ien
y oftheir evaluation.Definition 5.1. LetM := Si2NMi be a set of variables,
alled set variables, where ea
h Mi is a 
ountable in�niteset of variables of arity i. These variables will be interpretedas sets of regions.De�ne RegLFP as RegFO extended by the following rules.� If M 2 M is a set variable of arity k and R1; : : : ; Rkare region variables, then :=MR1 : : : Rk 2 RegLFPand free( ) := fM;R1; : : : ; Rkg.� LetM 2 M be a set variable of arity k and R1; : : : ; Rk;X1; : : : ; Xk be region variables. Further, let ' be aRegLFP-formula with free(') = fM;X1; : : : ; Xkg su
hthat ' is positive in M . Then[LFPM;X1;::: ;Xk'℄(R1; : : : ; Rk) 2 RegLFPwith free variables fR1; : : : ; Rkg.� If ' is a formula with exa
tly one free element variablebut arbitrarily many region variables �P , then := [rBIT '℄(Rn; Rd) 2 RegLFP;where Rd; Rn are region variables. The free variablesof  are Rd; Rn and �P .A RegLFP query is a query de�ned by a RegLFP formulawithout free region or set variables.The logi
s RegIFP and RegPFP are de�ned analogously byusing in
ationary or partial �xed-point operators instead.Let B := ((R; <;+); S) be a database. The semanti
s of theLFP operator is the standard least �xed-point semanti
s onthe region domain.Let �X := X1; : : : ; Xn be a sequen
e of region variables, Mbe a set variable of arity n, and '(M; �X) a formula with freevariables M and �X. ' gives rise to fun
tion f' given byf' : P(Regn) ! P(Regn)M 7! f �P 2 Regn : B j= '[M; �P ℄g:If ' is positive in M , then f' is monoton and the least�xed-point of f' is guaranteed to exist.Now 
onsider  := [LFPM; �X'(M; �X)℄( �X). B j=  [ �P ℄ for atuple of regions �P i� �P is 
ontained in the least �xed-pointof f'. See [3℄ for a detailed introdu
tion to least �xed-pointlogi
s.5



The rBIT operator requires some explanation. Considerthe set of regions with dimension 0 and let n be the num-ber of regions in it. This set 
an be ordered by the order-ing indu
ed by the lexi
ographi
al order on the points they
ontain. Clearly, this is a total order. Now let '(x; �P ) be aformula with one free element variable x and arbitrary manyfree region variables �P . If, for a given interpretation of thefree region variables �P , the formula ' is satis�ed by exa
tlyone rational number a, then [rBIT '℄(Rn; Rd) is true for apair of regions Ri; Rj , if1. they are 0-dimensional and the i-th bit of the bit rep-resentation of a's numerator is 1 and the j-th bit ofthe bit representation of a's denominator is 1, or2. a = 0, Ri = Rj and both are higher dimensional re-gions.Otherwise [rBIT '℄ de�nes the empty set.The main ingredient of the language is the least �xed-pointoperator. The rBIT operator should be 
onsidered a te
h-ni
al ne

essity whi
h is needed to prove that RegLFP 
ap-tures Ptime on linear 
onstraint databases.Before proving 
omplexity bounds for RegLFP -queries, wegive some examples of queries expressible in RegLFP .The �rst example is 
onne
tivity, whi
h plays an importantrole in spatial databases. Let S be d-ary. Conne
tivity 
anbe de�ned by the queryConn := 8�x8�y(S�x ^ S�y ! (9Rx9Ry �x 2 Rx ^ �y 2 Ry^[LFPM;R;R0((R = R0 ^R � S) _ (9Z M(R;Z)^ adj(Z;R0) ^ R0 � S))℄(Rx; Ry)))stating that for ea
h pair of points �x; �y 2 S, the regionsRx and Ry they are 
ontained in, 
an be 
onne
ted by asequen
e of adja
ent regions 
ontained in S.We now turn to a less te
hni
al example as it might o
-
ur in appli
ations of GIS systems. Figure 6 gives an (ab-stra
t) map of a 
ountry's border, a river, and some 
ities onits bank. Sin
e we don't 
onsider \mixed-part" databases,databases with a standard relational database part in addi-tion to the spatial information, we assume that the infor-mation whether a point belongs to the border, a 
ity, or theriver is stored in the third dimension. Thus we take formu-lae river(R) and 
ity(R) for granted, stating that a regionR belongs to a river or 
ity respe
tively.Now imagine that the river is polluted by 
ertain 
hemi
alsat some 
ities on the river bank and we ask whether thereis a part of the river, where a parti
ular 
ombination of
hemi
als 
an be found. In RegLFP it is now an easy taskto start at the spring and follow the river 
olle
ting the
hemi
als the river is polluted with. On
e we have seen thedesired 
ombination of 
hemi
als, we mark the 
ity. This 
anbe expressed in RegLFP as follows, using formulae spring,
hem1, 
hem2 with the obvious semanti
s. :=9R19R2 R1 6= R2^[LFPM;R;R0 ((spring(R) ^R = R0)_(9Z9Z0 M(Z; Z0) ^ river(R) ^ adj(Z;R) ^R = R0)_(9Z9Z0 M(Z; Z0)^
hem1(Z) ^ 
hem2(R) ^R0 = Z)℄(R;R0)The �rst two disjun
ts in the formula inside the LFP oper-ator make sure that, beginning at the spring and followingthe 
ourse of the river, at ea
h indu
tion step a new pair(R;R), for a region R of the river, is added to M . The
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Figure 6: Map showing a river and some 
ities on its bank.last disjun
t 
he
ks that whenever there is a part of theriver with the se
ond 
hemi
al, whether there was a partwith the �rst 
hemi
al before. Thus, the �xed-point 
on-tains only pairs (R;R) of equal regions, ex
ept for when thedesired 
ombination of 
hemi
als is found.
6. COMPLEXITYIn this se
tion we investigate the expressive power and 
om-plexity of RegLFP -queries. The main theorem states thatRegLFP 
aptures Ptime in the usual sense of �nite modeltheory, meaning that the 
lass of properties of linear 
on-straint databases de�nable in RegLFP is exa
tly the 
lass ofproperties de
idable in Ptime. In other words, RegLFP 
anexpress all Ptime 
omputable boolean queries, but it fallsshort of being able to express all Ptime queries of higherarity. See Se
tion 8 for 
omments on non-boolean queries.First we show the Ptime 
omplexity of RegLFP -queries.Theorem 6.1. The data-
omplexity of RegLFP-queries isPtime.Proof. Again the proof of the theorem is by indu
tionon the stru
ture of the RegLFP -query. The RegFO 
asesare already handled by Theorem 4.3. The �xed-point 
asesare trivial sin
e the �xed-point indu
tion is only de�ned forthe �nite set of regions.The only 
ase requiring some 
are is the rBIT operator.Let '(x; �P ) be a RegLFP -formula. Clearly, for any giveninterpretation of the free region variables �P , the evaluationof [rBIT '℄ 
an be done in polynomial time. Sin
e there areonly polynomially many di�erent interpretations of the freeregion variables the evaluation of the operator 
an be donein Ptime as well.We now state the main theorem of this se
tion. Sin
e werequire some te
hni
al restri
tions on the databases, we �rststate pre
isely what we understand by a logi
 
apturing a
omplexity 
lass.Definition 6.2. A linear 
onstraint database B has thesmall 
oordinate property if the absolute values of the 
oor-dinates of all points 
ontained in a 0-dimensional region arebounded by 2O(n), where n is the number of regions in theregion extension of B.6



We now pre
isely de�ne the notion of 
apturing we use here.Definition 6.3. We say that a logi
 L 
aptures a 
om-plexity 
lass C on a 
lass K of linear 
onstraint databases, iffor every boolean query Q on K whi
h 
an be de
ided in C,there is a senten
e ' 2 L su
h that for all linear 
onstraintdatabases B 2 K Q(B) is true i� B j= ':With this notion of 
apturing we 
an state the main theoremof this se
tion.Theorem 6.4. RegLFP 
aptures Ptime on the 
lass oflinear 
onstraint databases having the small 
oordinate prop-erty. Analogously, RegIFP and RegPFP 
apture Ptime andPspa
e respe
tively.Proof. We �rst prove the theorem for RegLFP . By The-orem 6.1 we know that RegLFP � Ptime.To prove the other dire
tion we show that every 
lass Cof databases de
idable in Ptime is de�nable by a RegLFPsenten
e '. Sin
e C 2 Ptime, there is a polynomial timeTuring ma
hineM de
iding C. Thus it suÆ
es to show thatthere is a senten
e 'M 2 RegLFP su
h that a database Bis a

epted by M i� B j= 'M .Letting logi
al formulae en
ode runs of Turing ma
hines isa standard pro
edure in des
riptive 
omplexity theory. See[3; 15℄ for more details. One 
an de�ne the senten
e 'M asa 
onjun
tion 'M := START ^ COMPUTE ^ END, whereSTART is a formula 
oding the start 
on�guration, COM-PUTE 
odes the transition fun
tion, and END states thatM never rea
hes a reje
ting state. The formula START de-pends on a formula � de�ning the input tape of M , i.e. therepresentation of B. The de�nition of � is the only essentialdi�eren
e in the 
ase of linear 
onstraint databases. Theother formulae 
an be de�ned as in the �nite 
ase, using re-gion variables ranging over the set of 0-dimensional regionsinstead of �rst-order variables.We have to show that there is a formula � de�ning the rep-resentation of B. The database is represented in the follow-ing way. First we partition the set of regions into boundedand unbounded regions, where a region is bounded if it is
ontained in a d-dimensional hyper
ube of edge length l forsome l 2 R. Otherwise the region is unbounded. Note thatby the following rules we 
an de�ne an order relation on thebounded regions. If R;R0 are bounded regions and R0 is ofhigher dimension than R, then R < R0. The 0-dimensionalregions 
an be ordered by the lexi
ographi
al order on the
oordinates of the points they 
ontain. Without giving de-tails we state that an ordering of the i-dimensional regions
an be de�ned from the lexi
ographi
al ordering of all (i+1)-tuples of 0-dimensional regions.By results of [21; 22; 2℄ the dimension of a region is �rst-order de�nable. Consequently the order relation is RegFO-de�nable.We now de�ne the representation of the bounded regions.The representation is illustrated in the following �gure.R1z }| {jp11jp12j : : : jp1dj
1j#j : : : j# Rnz }| {jpn1 jpn2 j : : : jpnd j
nj| {z }Dimension 0 #jd11jd12j : : : jd1n2 j| {z }Dimension 1 : : : jdd1jdd2 j : : : jddnd+1 j| {z }Dimension d

Here Ri is the ith smallest 0-dimensional region, pij is thejth 
oordinate of the point pi 2 Ri and 
i = 1 if and onlyif pi 2 S. Further, dij = 1 i� the j-th i-dimensional regionis 
ontained in S. The 
oordinates pij of the 0-dimensionalregions are represented in binary (not shown in the �gure.)The binary representation 
an be de�ned using the rBIToperator. The operator transforms the 
oordinates of thepoint into sequen
es of 0-dimensional regions representingthe 
oordinates. As there are only n 0-dimensional regions,only 
oordinates up to 2O(n) 
an be represented in this way.Thus the databases whi
h 
an be represented must satisfythe small 
oordinate property.For unbounded regions we �rst de�ne an ordering on the setof all unbounded regions. Let R and R0 be unbounded. If Ris of lower dimension than R0 then R < R0. Otherwise let ibe the dimension of R and R0. If i = 1 we 
an order the re-gions as follows. Note that every unbounded 1-dimensionalregion R has exa
tly one 0-dimensional region R0 = fpg ad-ja
ent to but not 
ontained in it. Starting from p we 
an
ompute some arbitrary other point q 2 R. Now the lexi-
ographi
al order on (p; q) indu
es an order relation on theset of 1-dimensional unbounded regions. The higher dimen-sional unbounded regions 
an now be ordered analogouslyto the bounded 
ase by enumerating tuples of 1-dimensionalregions. Using this order relation we 
an represent the un-bounded regions as follows.R1z }| {jp1jq1j
1j# : : :# Rmz }| {jpmjqmj
mj| {z }Dimension 1 # jd21jd22j : : : jd2m2 j| {z }Dimension 2 : : : jdd1jdd2j : : : jddmd j| {z }Dimension dAllRi and pi; qi; 
i, and dij are de�ned similar to the bounded
ase. By a rather te
hni
al but not very 
omplex argumentit 
an be shown that this representation of the database 
anbe de�ned in RegFO .Clearly, if there is a polynomial-time Turing ma
hine Mde�ning C using the standard en
oding of 
onstraint da-tabases, then there also is a polynomial-time ma
hine M 0de
iding C whi
h uses the above representation. Thus forall databases B we haveB 2 C i� B is a

epted by M 0 i� B j= 'M0 :This 
on
ludes the proof for RegLFP . The proofs for RegIFPand RegPFP are analogous.
7. LOGICS BASED ON TRANSITIVE CLO-

SURE OPERATORSIn this se
tion we 
onsider extensions of RegFO by indu
-tion me
hanisms based on transitive 
losure 
omputation.In parti
ular, we de�ne RegTC and RegDTC , the extensionsof RegFO by transitive and deterministi
 transitive 
losureoperators. Here we en
ounter the problem, that Theorem3.1 only yields a Ptime upper 
omplexity bound for the
omputation of arrangements. As explained in Se
tion 3,the arrangements 
an be 
omputed in logarithmi
 paralleltime on a CREW PRAM, and thus in AC1, but it is notknown, whether this 
an be redu
ed to NC1 or Logspa
e.Thus, showing that, e.g., RegDTC -queries have Logspa
edata-
omplexity already fails at the 
omplexity of the ar-rangement 
omputation.7



To deal with this problem, we de�ne a di�erent de
omposi-tion as in Se
tion 3, whi
h 
an be 
omputed in NC1.Let B := ((R; <;+); S) be a linear 
onstraint database,where S is a d-ary relation represented by 'S := Wi  i, i := Vj 'ij and ea
h 'ij is a linear (in)equality. First,we de�ne sets regions( i) separately for ea
h disjun
t  i.regions(S) then 
onsists of the union of regions( i) for all i.We roughly sket
h the de�nition of the regions by givingan example of the 
omputation for a polytope in the plane.See Figure 7. The pre
ise de�nition 
overing also the 
asesof unbounded polyhedra and polyhedra in higher dimension
an be found in Appendix A.Consider the polytope P shown in Figure 7.
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Figure 7: Polytope P de�ned by a disjun
t in 'S.
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Figure 8: De
omposition of the polyhedron in Figure 7.The regions for P are de�ned as follows. First, the verti
esp1; : : : ; p5 of P are 
omputed and every vertex is a region inregions(P ). These are the 0-dimensional regions. Further,for any two verti
es p; p0 let Cp;p0 be the open 
onvex 
losureof p and p0. If the interse
tion of Cp;p0 and the interior ofP is empty, then Cp;p is added as a 1-dimensional region toregions(P ). In the example, the 1-dimensional regions areexa
tly the line segments l1; : : : ; l5 on the boundary of P .Finally, we add regions in the interior of P . First, we 
hoosethe point p1 as basis for the regions. The regions then arede�ned as indi
ated in Figure 8. The regions R1; : : : ; R3are de�ned as the open 
onvex hulls of the three boundingverti
es. Further, we the line segments between p1 and p3and p1 and p4 resp. are added to regions(P ).In the 
ase of polytopes in higher dimension d, the regionsin the interior would be de�ned by the open 
onvex hull ofd+ 1 verti
es and the regions in the boundary by the open
onvex hull of up to d verti
es.The regions thus de�ned 
an be 
omputed eÆ
iently, inNC1. See Lemma A.1 in the appendix. We are now readyto de�ne extensions of RegFO by (determinsti
) transitive
losure operators.

Note 7.1. We now base the de�nition of the region ex-tension BReg of a linear 
onstraint database B on the set ofregions de�ned above. Thus, if B := ((R; <;+); S) is a lin-ear 
onstraint database, then its region extension BReg :=(R;Reg;�;+; S; adj;2) is a two-sorted stru
ture, where these
ond sort ist de�ned as Reg := regions(S). The de�nitionof the relations adj and 2 is analogous to De�nition 4.1.Re
all that regions(S) 
onsist of the union of regions sepa-rately de�ned for ea
h disjun
t  i in 'S . Regions for di�er-ent polyhedra may overlap and thus the regions in regions(S)are not guaranteed to be either 
ontained in or disjoint fromS. Also the regions do not 
over all of the underlying spa
eRd . Both makes the logi
s less intuitive to use. Thus itwould be interesting to have a de
omposition with the ni
eproperties of arrangements but 
omputable in NC1.Definition 7.2. RegTC is the extension of RegFO by atransitive 
losure operator on the region domain. Pre
isely,RegTC extends RegFO by the following rule. If ' 2 RegTCand �R := R1; : : : ; Rm; �R0 := R01; : : : ; R0m are sequen
es ofregion variables su
h that free(') = f �R; �R0g then := [TC �R; �R0'℄( �X; �Y ) 2 openRegTCand free( ) := f �X; �Y g, where �X; �Y are sequen
es of m re-gion variables ea
h. As before, we de�ne RegTC queries asthe set of queries de�ned by RegTC formulae without freeregion variables.RegDTC is de�ned analogously using a deterministi
 transi-tive 
losure operator instead.The TC operator has the standard semanti
s, i.e. givena formula  := [TC �R; �R0'℄( �X; �Y ), a database B, and tu-ples of regions �P ; �P 0, B j=  [ �P ; �P 0℄ i� there is a sequen
e�Z1; : : : ; �Zn of tuples of regions, �Z1 = �X; �Zn = �Y and for all1 � i � n�1 '( �Zi; �Zi+1). See [3℄ for a detailed introdu
tionto transitive 
losure logi
s.By indu
tion on the stru
ture of the queries one 
an easilyshow the following theorem.Theorem 7.3. The data-
omplexity of RegTC-queries isNLogspa
e. Analogously, the data-
omplexity of RegDTC-queries is Logspa
e.In analogy to the proof of Theorem 6.1 the following theorem
an be proved.Theorem 7.4. RegTC 
aptures NLogspa
e on the 
lassof linear 
onstraint databases having the small 
oordinateproperty. Analogously, RegDTC 
aptures Logspa
e.
8. CONCLUSION AND ONGOING WORKWe presented a family of query languages for linear 
on-straint databases integrating re
ursion me
hanisms into �rst-order logi
. The �xed-points in these languages operate ona set of regions, whi
h is essentially the set of fa
es in ade
omposition of the input spa
e. Note that the de�nitionof the languages and their expressive power and 
omplexitydo not depend on a parti
ular de
omposition. Other de-
ompositions 
ould also be used, provided that they 
an be
omputed eÆ
iently and it is possible to de�ne a represen-tation of the database from the de
omposition.Following this idea, it should also be possible to de�ne in-teresting logi
s for other sorts of 
onstraint databases, e.g.polynomial 
onstraint databases.8



It has been shown, that the logi
s de�ned 
apture all booleanqueries de
idable in important 
omplexity 
lasses. But thelogi
s fail to 
apture, e.g., the 
lass of non-boolean Ptimequeries. We are 
urrently working on extending the logi
s bya 
onvex-
losure operator su
h that the 
lass of non-booleanPtime-queries 
an be 
aptured as well.
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APPENDIX

A. COMPUTING REGIONS IN NC 1In this se
tion we pre
isely de�ne the de
omposition of data-bases into regions as sket
hed in Se
tion 7.Let B := ((R; <;+); S) be a linear 
onstraint database,where S is a d-ary relation represented by 'S := Wi  i, i := Vj 'ij and ea
h 'ij is a linear (in)equality. First,we separately de�ne sets regions( i) of regions for ea
h dis-jun
t  i. The set of regions for S is de�ned as regions(S) :=Si regions( i).To ease notation we denote by  i both the formula as wellas the set of points it de�nes. It will always be 
lear fromthe 
ontext what is meant.Let, for some i,  :=  i be a disjun
t of 'S . We denote by
losure( ) the 
losure of the set of points de�ned by  . LetG( ) be the set of (in)equalities o

urring in  . De�neH( ) := f' : ' is an equation 
ontained in G( ), orthere is an inequality '0 o

urring in  and' equals '0 where the inequality is repla
edby equalityg:as the set of formula de�ning the hyperplanes bounding  .We demonstrate the following algorithm using the examplesgiven in Figure 9 and 10.9
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al
ulate the set vert( ) of verti
es of  . For ea
hd-tuple of atoms from H( ) we 
ompute the interse
tion ofthe hyperplanes. If they interse
t in exa
tly one point p andp is 
ontained in 
losure( ), then p is a vertex.Example. Consider the polytope P in Figure 9. The hyper-planes in H(P ) are the lines bounding the polytope. To 
omputethe verti
es every pair of lines is interse
ted. This results in theverti
es p1; : : : ; p5 but also in points like p. Of 
ourse p is not avertex of P as it is not 
ontained in 
losure(P ).The next step is to 
he
k whether  is bounded. Let 
be the maximal absolute value of a 
oordinate of a vertexof  . If there are no verti
es, then de�ne vert'( ) as theset of points p su
h that there is a d-tuple of atoms fromH( ) [ fxi = 0 : 1 � i � dg interse
ting exa
tly in p. Let
 be the maximal absolute value of a 
oordinate of a pointin vert'( ).De�ne 
ube( ) as fxi = 2(
+1); xi = �2(
+1) : 1 � i � dg.If ea
h atom from 
ube( ) has an empty interse
tion with , then  is bounded, otherwise it is unbounded.Example 
ontinued. In the example polyhedra, the 
ube'sare indi
ated by the dashed boxes. Obviously the (bounded) poly-tope P in Figure 9 does not interse
t with the box, whereas the(unbounded) polyhedron does.If  is bounded, then de�ne the following regions for  .There are two sorts of regions, inner and outer regions. Tode�ne the inner regions, 
hoose one vertex plow 2 vert( ),e.g. the point whose 
oordinates are the lexi
ographi
allysmallest. The set region( ) 
onsists of all open 
onvex hullsC of d+1 verti
es plow and p1; : : : ; pd of  , su
h that the linesegment between plow and any other vertex ex
ept p1; : : : ; pdhas an empty interse
tion with C.Note that the points plow; p1; : : : ; pd do not have to be dis-joint. Thus the regions may be of lower dimension than d.The outer regions are de�ned as the open 
onvex hull of atmost d verti
es p1; : : : ; pd, su
h that for no 1 � i; j � d theline segment between pi and pj interse
ts with the interiorof  .Example 
ontinued. Consider again the example polytope

P . There are three 2-dimensional regions de�ned by fp1; p2; p3g,fp1; p3; p4g, and fp1; p4; p5g. In addition there are seven 1-di-mensional regions, namely the regions de�ned by fpi; pi+1g for1 � i � 4, fp1; p5g; fp1; p3g, and fp1; p4g. Only the last tworegions are inner regions, the other �ve are outer regions. Further,ea
h point de�nes its own 0-dimensional (outer) region.Now assume that  is unbounded. De�ne i
ube( ) := fxi <2(
 + 1); xi > �2(
 + 1) : 1 � i � dg, where 
 is asabove. As i
ube( ) is bounded we 
an 
ompute the verti
esof  \ i
ube( ) as before. De�ne up( ) as the set of allpairs (p; (p � q)) su
h that p is a vertex on the boundaryof i
ube( ), q is any other vertex, and the set fx : x =p + a(p � q) for some a � 0g is in 
losure( ). Now de�neregions( ) as follows. Compute the bounded regions forvert( \ i
ube( )) as above. The unbounded regions arede�ned as follows.Let (p; p � q) 2 up( ). Then (p; p � q) de�nes the regionfx : there is an a 2 R; a > 0 su
h that x = p+ a(p� q)g.The other unbounded regions are de�ned by the open 
onvexhulls of at most d su
h regions.Example 
ontinued. The verti
es 
omputed in the �rst stepof the algorithm for the polyhedron P 0 are p1 and p2. The setde�ned by i
ube is the interior of the dashed box and the verti
es
omputed for  \ i
ube( ) are, besides p1 and p2, p and p0.Thus regions(P 0) 
ontains: two bounded 2-dimensional regions,fp; p0; p1g and fp; p1; p2g, four bounded 1-dimensional regions,fp; p2g; fp2; p1g; fp1; p0g, and fp; p1g, the last one being the onlyinner region, and four 0-dimensional regions. Further, there arethe two unbounded 1-dimensional regions de�ned by (p0; p0 � p1)and (p; p� p2) and one unbounded 2-dimensional region.Note that eventually the verti
es of the 
ube 
an be 
on-tained in vert( \ i
ube( )). This is ne
essary in 
ertaindegenerated 
ases, e.g. a polyhedron de�ned by only oneinequality.As mentioned above, the set regions('S) of regions of theinput relation S is de�ned as the union of the regions for thedisjun
ts of 'S . Note that every point p 2 S is 
ontained inat least one region.Although we do not pre
isely present the 
ir
uits, it shouldbe 
lear that the 
omputation of the regions essentially re-quires some appli
ations of the Gauss and Fourier-Motzkinelimination method. Both methods 
an be 
omputed by
ir
uits with logarithmi
 depth and polynomial size, pro-vided that the dimension, that is the number of variablesinvolved, is �xed. See [20℄ for details. Thus we get thefollowing lemma.Lemma A.1. regions('S) 
an be 
omputed by an NC1 
ir-
uit.
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