## Quantum Processes and Computation Assignment 2, Friday, 21 Oct, 12:00

Deadline: Fri Week 3 (Groups 3 and 4), Weds Week 4 (Groups 1 and 2)

**Goals:** After completing these exercises you should know how to reason with the transpose, adjoints, and the conjugate, and work with projections, unitaries and isometries. Material covered in book: Chapter 4.

**Note:** Many of these exercises also appear in *Picturing Quantum Processes*, but sometimes they have been slightly modified for the problem sheet. The corresponding exercise number from the book is shown in brackets.

## Exercise 1 (4.10 & 4.16):

(a) Prove that in **relations**, the following relations on a set A:

$$( ) :: * \mapsto \{(a,a) \mid a \in A\}$$
 
$$( ) :: \forall a \in A : (a,a) \mapsto *$$

satisfy the *yanking equations* (eq. 4.11 in the book), and thus that **relations** has process-state duality.

(b) Show that process-state duality does not hold for functions.

Exercise 2 (4.12): Prove that

$$\bigcirc$$
 = | or written differently:  $\bigcirc$  =

follows from the following 3 equations:

Hint: Use the second notation (with the boxes) as it prevents you from accidentally cheating.

Exercise 3 (4.14 in online version of PQP): Show that the following are equivalent:

(i) a state and an effect satisfying:





(ii) a state and an effect satisfying:



So in particular, if either eqs. (i) or eqs. (ii) hold, then all equations hold.

**Exercise 4 (4.59):** An *inverse* for a process  $f : A \to B$  is a process  $f^{-1} : B \to A$  such that  $f^{-1} \circ f = id_A$  and  $f \circ f^{-1} = id_B$ . Show that for a process f the following are equivalent:

- f is unitary.
- f is an isometry and has an inverse.
- $f^{\dagger}$  is an isometry and has an inverse.

**Exercise 5 (4.37):** Show that the trace of a process is independent of the particular choice of cup and cap, i.e. that if  $\cup$  and  $\cap$  satisfy the yanking equations, but  $\cup'$  and  $\cap'$  also satisfy it that then:



For a process  $f: A \to A$  we define its *separable projector* by



**Exercise 6 (4.73):** Given processes  $f_i : A \to A$  find the process g such that:



Write g as a sequential composition of the conjugates, transposes and adjoints of the  $f_i$ 's. **Hint:** Doing exercise 4.73 from the book first might reveal whether you understand the concept.

**Exercise 7 (4.82):** A state  $\psi$  is maximally non-separable if it corresponds to a unitary U by process-state duality, up to a number:



Show (i) that if one applies a unitary V to one side of a maximally non-separable state:



that one again obtains a maximally non-separable state, and (ii) that this unitary can always be chosen such that the resulting state is the cup (up to a number).