Ex 2.1

(a) First, let's show \(\mathcal{U} = I \). We'll do this by decomposing the LHS as:

\[
R_1 = \bigcup a \mapsto \{(b, b, a) \mid b \in A^3\}
\]

\[
R_2 = I \cap (a, b, c) \mapsto \{(a \text{ if } b = c) \text{ otherwise}\}
\]

Then:

\[\mathcal{U} = R_2 \circ R_1 \]

\[\mathcal{U} \circ a \mapsto \{(b, b, a) \mid b \in A^3\} \xrightarrow{R_2} \{b \mid b = a^2 \circ \xi_0^3\} \]

\[\mathcal{U} \text{ and } I \text{ both map } a \mapsto \xi_0^3 \text{.} \]

Hence \(\mathcal{U} = I \).

For \(\mathcal{U} = \emptyset \), we have:

\[\text{LHS} \circ \ast \xrightarrow{U} (a, a) \]

\[\text{RHS} \circ \ast \xrightarrow{U} (a, a) \xrightarrow{U} (a, a) \text{.} \]

The other two equations in 4.11 are proven by flipping the relations above.
n.b. We can also prove \(\bigcup I = 1 \) by writing the diagram formula for the LHS and following the recipe from PAP (p.65).

Step 1: Write LHS as diagram formula:

Let \(R = \bigcup I \), then:

\[
R^A = \bigcup A_2 A_1 \bigcap A_2 A_1
\]

Step 2: Replace labels with set elements:

\[
R^A = \bigcup a_2 a_1 \bigcap a_2 a_1, \text{ for } a_1, a_2, a_3 \in A
\]

Step 3:

\[
\bigcup : a_1 \rightarrow a_3 \iff \exists a \in A. \left(\bigcup : (a_3, a_2) \rightarrow \star \right) \bigcap : \star \rightarrow (a_2, a_1) \rightarrow \star
\]

\[
\iff \exists a_2. a_1 = a_2 = a_3
\]

\[
\iff a_1 = a_3
\]

Since \(\bigcup : a_1 \rightarrow a \ \forall a \in A \), \(\bigcup = 1 \).
Ex 2.2

\[
\begin{align*}
\text{Diagram 1} &= \text{Diagram 2} \quad \text{or} \quad \text{Diagram 3} = 1
\end{align*}
\]
Ex 2.3

Assume (i) \[\begin{array}{c}
\Delta \rightarrow a \\
\subseteq \\
\end{array} \] and \[\begin{array}{c}
\Delta \rightarrow b \\
\subseteq \\
\end{array} \].

Then:

\[\begin{array}{c}
\Delta \rightarrow a \\
\subseteq \\
\end{array} \quad \text{and} \quad \begin{array}{c}
\Delta \rightarrow b \\
\subseteq \\
\end{array} \]

so we have \[\Delta \rightarrow c \] \[\subseteq \Delta \]. From this, we can show:

\[\begin{array}{c}
\Delta \rightarrow b \\
\subseteq \\
\end{array} \quad \text{and} \quad \begin{array}{c}
\Delta \rightarrow c \\
\subseteq \\
\end{array} \]

So we have shown (ii) \[\begin{array}{c}
\Delta \rightarrow a \\
\subseteq \\
\end{array} \] \[\Rightarrow \] \[\Delta \rightarrow c \]

follows from (i). The proof that (ii) \[\Rightarrow \] (i) is the same, but with all diagrams flipped vertically (or horizontally!).
Ex 2.4

Thm The following are equivalent:

(i) f is a unitary

(ii) f is an isometry and has an inverse

(iii) $f^*\ d f = f^+\ d f$, so f has an inverse

Pf If f is a unitary, then it is an isometry (by definition) $\Rightarrow f^{-1} = f^*$, so (i) \Rightarrow (ii).

Assume (ii), then:

$$f^* f = \begin{bmatrix} 1 \\ f \\ f^* \end{bmatrix} = \begin{bmatrix} 1 \\ f \\ f^* \end{bmatrix} = \begin{bmatrix} f^*f^{-1} \end{bmatrix} \Rightarrow f = f^*f^{-1}.$$

Since $f^* f = f^* f$, f is a unitary. Hence (i) \iff (ii).

Now, f is a unitary iff f^* is unitary. Hence (i) \iff (iii) by the same proof.
Ex 2.6

\[P_f = \text{Diagram} \]

\[\text{Diagram} = \text{Diagram} \]
Ex 2.7

Suppose is maximally non-sep.

Then for some unitary U.

For any unitary V, is also unitary. Hence is also maximally non-sep.

If we let $V = U^*$, then:

$$\begin{align*}
 \begin{array}{c}
 U \\
 \psi
 \end{array} & \sim \begin{array}{c}
 U \\
 U^*
 \end{array} = 1 .
\end{align*}$$

By bending the input wire up, we get:

$$\begin{align*}
 \begin{array}{c}
 U \\
 \psi
 \end{array} & \sim U .
\end{align*}$$