Quantum Processes & Computation

Aleks Kissinger & Matty Hoban

Oxford University

MT 2023

Kissinger

Quantum Processes & Computation

Chapter 1: Introduction

Karma police, arrest this man. He talks in maths.

- Radiohead, "Karma Police", Oxford, 1997.

Kissinger

Quantum Processes & Computation

Quantum theory: the standard line

- Quantum theory governs the behaviour of the microscopic world
- You've probably heard from credible sources¹ that it is **weird**, **spooky**, and defies our **natural**, **classical intuitions**.
- True, it has some 'bugs' from the p.o.v. of classical physics:
 - irreducible non-determinism
 - non-locality
 - incompatible observations
 - ...
- A century of effort went to answering:

Why is quantum theory so weird, and can we fix its bugs?

Kissinger

This produced (basically) two answers

Make even weirder ontology

(e.g. Bohmian mechanics, many worlds, ...)

'Shut up and calculate!'

(Mermin, describing the Copenhagen interpretation)

Kissinger

Quantum Processes & Computation

4 / 26

Another, more interesting question

• In the 1980s, a handful of people started to think like software engineers, and ask:

What if the **bugs** in quantum theory are actually **features**?

Enter:

quantum teleportation, communication, cryptography

quantum computation

From QT to teleportation

1932 - quantum theory

1992 - quantum teleportation

We'll see that teleportation is **miraculous**...but it's also **totally obvious**.

Kissinger

Quantum Processes & Computation

From QT to teleportation

Q: Why did it take so long?

A: It took 60 years to ask the right question.

Q2: Why is this so hard?

A2: QT needs a better language.

Quantum Processes & Computation

Low-level vs. high-level languages

VS.

```
.LCO:
    .string "QUANTUM!"
    .text
   .globl main
    .type
           main, Ofunction
main:
.LFBO:
   .cfi_startproc
   pushq %rbp
   .cfi_def_cfa_offset 16
   .cfi_offset 6, -16
   movq %rsp, %rbp
   .cfi_def_cfa_register 6
   subq
           $16, %rsp
   movl
           $0, -4(%rbp)
   jmp .L2
.L3:
           $.LCO, %edi
   movl
   movl
           $0, %eax
   call
           printf
   addl
           $1, -4(%rbp)
.L2:
   cmpl
           $4, -4(%rbp)
   jle .L3
   leave
   .cfi_def_cfa 7, 8
   ret
    .cfi_endproc
```

5.times do print "QUANTUM!" end

Low-level vs. high-level languages

Kissinger

Quantum Processes & Computation

Quantum picturalism

Definition

Quantum picturalism refers to the use of diagrams to represent, reason about, and capture essential features and logic of interacting quantum processes.

Quantum Processes & Computation

Quantum theory: a warmup

• Typical quantum systems are photons, electrons, etc.

- In this course, we study quantum phenomena that effect all such systems, at an **abstract level**
- So let's focus on a hypothetical, 'alternative' quantum system...

This is Dave.

...he's a quantum dodo.

Quantum Processes & Computation

Bits vs. qubits

• Dave's state is given by a *qubit*, the simplest quantum system.

Bits:

- $1.\,$ admit two states, 0 and 1 $\,$
- 2. can be subjected any function
- 3. can be read freely, at any time

• Qubits:

- 1. admit an entire sphere of states
- 2. can only be subjected to rotations of the sphere
- 3. can only be accessed by special processes called *quantum measurements*

Quantum Processes & Computation

Where's Dave?

Quantum Processes & Computation

Where's Dave?

The rules:

- 1. we are only allowed to ask whether a Dave lives at a specific location on Earth or its antipodal location,
- 2. Dave will always answer 'correctly', i.e. once he gives an answer, that answer becomes correct.

Oxford or New Zealand?

Quantum Processes & Computation

Oxford or New Zealand?

Quantum Processes & Computation

North Pole or South Pole?

Quantum Processes & Computation

North Pole or South Pole?

Quantum Processes & Computation

North Pole or South Pole?

Quantum Processes & Computation

Process theories

- Dave (or rather, a qubit) is just one kind of system
- systems undergo processes (e.g. rotations and measurements)
- if we wrap up all the processes which 'fit together' in a theory of physics/logic/computation/etc., we get a **process theory**

The Plan

- 1. Build the theory of quantum processes from scratch,
- 2. Understand its behaviour using diagrams, and
- 3. Derive some of the most interesting consequences and applications:
 - quantum communication (e.g. teleportation and quantum crypto)
 - quantum computation (e.g. the factoring algorithm)
 - quantum foundations (e.g. quantum non-locality)

Format

• all material is on the website:

www.cs.ox.ac.uk/teaching/courses/2023-2024/quantum

- 24 lectures
- classes in weeks 3, 4, 5, 6, 7, 8
- exam by miniproject (expect a combination of exercise-sheet style and more open-ended problems)

Quantum Processes & Computation