
Quantum Processes and Computation
Assignment 2, Hilary 2026

Solutions are shown after each question. Note some solutions are marked Sketch. These are
intended to be instructions on how to work out the solution yourself, rather than an example of
how you should answer this question on an exam.

Exercise 1: We can write the cup/cap for any dimension as a sum over ONB elements:
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(i) Using this definition (and not the matrix form) verify the yanking equations.

“ “

(ii) Compute the matrices for the cup and cap in 3 dimensions.
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(i) These can be verified using the properties of ONBs and sums. For the first one:
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For the second one:
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(ii) This is a column vector, whose entries correspond to the basis elements |i, jy for i, j P t0, 1, 2u.
If i “ j, the entry is a 1, otherwise it is a 0. This results in the following vector:
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n.b. it is the same as the columns of a 3ˆ3 identity matrix, all stacked on top of each other.
Cups in all dimensions have this same pattern. The cap is the transpose of the above, which
is row vector:

`

1 0 0 0 1 0 0 0 1
˘
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Exercise 2 (5.86): This excercise is about encoding classical functions as linear maps using
ONB states and effects, as explained in Section 5.3.4. For a function F : t0, 1um Ñ t0, 1un, we
can define an associated linear map f as follows:

f “
ÿ

pa1...am ÞÑb1...bnqPF

b1
. . .

bn

a1 . . . am

where the notation pa1...am ÞÑ b1...bnq P F means we are summing over the graph of F , i.e. the
set of bitstrings tpa1, . . . , am, b1, . . . bnq | F pa1, . . . , amq “ pb1, . . . bnqu.

Using this encoding, define:
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Show that

CNOT “

COPY

XOR

(Hint: try comparing the LHS to the RHS on all basis states, rather than writing out a big sum.)
Next, find ψ and ϕ such that the following equation holds:
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Although it might not look like much now, this equation will turn out to lie at the heart of the
notion of complementarity which is an important part of the ZX-calculus.
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The first part can be done by plugging in basis states, and nothing that the LHS gives:

CNOT “
x‘ yx

yx

and the RHS gives:
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If I evaluate the second diagram at a basis state, I get:
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This tells me that |ϕy should be |0y. For xψ|, I need the effect that “deletes” any basis state:
xψ| “ x0| ` x1| “

ř

ixi|. Then xψ|0y “ xψ|1y “ 1, so:
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Exercise 3: Let the Hadamard gate, which sends the Z-basis to the X-basis be defined as follows:
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Compute the matrix of H. Show that H “ H: “ HT . Using this fact (or otherwise) show
that H also sends the X-basis back to the Z-basis.
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Sketch: The matrix can be computed by plugging in each of the 4 bras and kets of the computational
basis. We can see it sends X-basis elements to Z-basis elements by applying the adjoint to both
sides of the definition of H and using H “ H:.
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Exercise 4: Write the following diagrams as tensor contractions, i.e. as sums over products of
matrix elements fklij , etc.

S “ f

g

h

λ “ f f f
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Labelling the wires with some index names:
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...we get:
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Note λ is a scalar, so all indices on the RHS are summed over.
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