
Quantum Software
Assignment 3, Hillary Week 4, 2023

In these exercises we will look at Pauli gadgets in a slightly more abstract way, motivating why
they work the way they do.

First, let’s define the following.

Definition 1. Let f : A → C2 ⊗ A be a linear map. We say it is a measure-box when it satisfies
the following identities:

f = f f
= f f† = f

We call this map a measure-box because it allows us to define a von Neumann measurement
(with 2 outcomes) on system A. Note that, while the first output wire is always a 2D space, the
system A which appears on the input wire and the second output wire can be more general. As
we will see, this is often a tensor product of multiple qubits.

Exercise 1: Let f be a measure-box.

a) Show that the following is unitary for any choice of α: f
α . Recall that taking the

adjoint of spiders flips the phase.

b) Show that the following is a projector for b ∈ {0, 1}:

fb := 1√
2 · f

bπ

c) Show that the above projectors for b = 0 and b = 1 are in fact orthogonal projectors, i.e. that
f0 ◦ f1 = f1 ◦ f0 = 0.

d) Show that f0 and f1 form a resolution of the identity, namely f0 + f1 = I.

Exercise 2: Let f : A → C2 ⊗ A and g : B → C2 ⊗ B be two measure-boxes. Show that the
following combined process is also a measure-box from A ⊗ B to C2 ⊗ A ⊗ B:

f

g

So now that we have these abstract boxes with nice properties that can be combined together,
let’s make it more concrete. We define the Pauli boxes as follows:

I X:= :=

Y
π
2:= -π

2 Z :=

1√
2

We’ve drawn the wires coming out at the top, since it will turn out not to matter if we treat them
as inputs or outputs, due to the next exercise. But for now you can treat them as being output
wires.



Exercise 3:

a) Show that each of the Pauli boxes is a measure-box. Hint: you can prove the result for X,
Y , and Z in one go with a good choice of lemma.

b) Show that if we plug π into each of the Pauli boxes’ top wires that the result is the Pauli
that it is named after.

Okay, so the Pauli boxes are measure-boxes that give back the Pauli’s when we plug in the
right thing to their top wire. Using the construction of Exercise 2 we can then combine these Pauli
boxes into larger measure-boxes, so that for any Pauli string P1 ⊗ P2 ⊗ · · · ⊗ Pn we can build an
associated measure-box. Then, by plugging in a α it becomes a unitary by Exercise 1a).

Exercise 4: Show that the unitaries we get by combining Pauli boxes using the constructions of
Exercise 2 and then 1a), are Pauli exponentials, by showing that the diagrams agree with those
found in the lecture.

When we have two different Pauli’s P, Q ∈ {X, Y, Z}, they always anti-commute: PQ = −QP
(two copies of the same Pauli of course commute with one another). This means that when we
have Pauli strings P⃗ and Q⃗, they will either commute or anti-commute depending on how many of
its factors commute or anti-commute. This (lack of) commutation translates onto the associated
Pauli exponentials as well.

Exercise 5:

a) Prove diagrammatically that the Pauli exponentials ZZ(α) and XX(β) commute for any
value of α and β.

b) Try doing the same rewrite strategy with the (non-commuting) ZZ(α) and ZX(β). What
goes wrong?

c) Describe the condition on general Pauli strings that is required to allow you to commute the
associated Pauli exponentials past each other.


