Quantum software:
 Phase-free ZX diagrams and CSS codes

Aleks Kissinger

February 16, 2024

Phase-free ZX-diagrams

...are made of spiders with $\alpha=0$:

$$
:=|0 \ldots 0\rangle\langle 0 \ldots 0|+|1 \ldots 1\rangle\langle 1 \ldots 1|
$$

$$
:=|+\ldots+\rangle\langle+\ldots+|+|-\ldots-\rangle\langle-\ldots-|
$$

Phase-free ZX-diagrams

...are made of spiders with $\alpha=0$:

$$
:=\quad|0 \ldots 0\rangle\langle 0 \ldots 0|+|1 \ldots 1\rangle\langle 1 \ldots 1|
$$

$$
:=\quad|+\ldots+\rangle\langle+\ldots+|+|-\ldots-\rangle\langle-\ldots-|
$$

$$
=N \sum_{\oplus i b_{i}=0}\left|b_{1} \ldots b_{n}\right\rangle\left\langle b_{n+1} \ldots b_{n+m}\right|
$$

Phase-free ZX-calculus

(id)
$-\quad=-\square$
$-\quad=-$
(sc)

Simplification

1. Apply (sp) and (id) as much as possible.
2. Apply (sc) where
$-O$ is not an input and

- O is not an output.

3. Repeat as long as step 2 applies.

Simplification

1. Apply (sp) and (id) as much as possible.
2. Apply (sc) where
$-O$ is not an input and

- O is not an output.

3. Repeat as long as step 2 applies.

Each iteration strictly decreases:
(\# non-input O's) + (\# non-output o's)

Simplification

1. Apply (sp) and (id) as much as possible.
2. Apply (sc) where
$-O$ is not an input and

- O is not an output.

3. Repeat as long as step 2 applies.

Terminates with:

Unitaries

Unitary $\quad \Longrightarrow \quad m=n, j=k=0$

Unitaries

Unitary $\quad \Longrightarrow \quad m=n, \quad j=k=0$

States

State $\quad \Longrightarrow \quad m=0, j=0$

States

$$
\text { State } \quad \Longrightarrow \quad m=0, \quad j=0
$$

States

$$
\text { State } \quad \Longrightarrow \quad m=0, \quad j=0
$$

$$
|\psi\rangle=\sum_{v \in S}|v\rangle \text { where } S=\operatorname{span}\left\{v_{1}, \ldots, v_{k}\right\} \subseteq \mathbb{F}_{2}^{n}
$$

$|\mathrm{GHZ}\rangle=|000\rangle+|111\rangle$

$$
\begin{aligned}
|\mathrm{GHZ}\rangle & =|000\rangle+|111\rangle \\
& =\sum_{v \in S}|v\rangle \text { where } S=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\}
\end{aligned}
$$

$|\mathrm{GHZ}\rangle=|000\rangle+|111\rangle$

$=\sum_{v \in S}|v\rangle \quad$ where $S=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)\right\}$

$$
\mid+n+1=\sum_{v a n}(m
$$

$$
\mid+n+1=\sum_{v a n}(m
$$

$$
\begin{aligned}
& { }^{1++n)}=\sum_{k=3}(\mid
\end{aligned}
$$

$$
\begin{aligned}
& { }^{1++n)}=\sum_{k \cdot \mid}(\mid
\end{aligned}
$$

Effects

Effect $\quad \Longrightarrow \quad n=0, \quad k=0$

Effects

Effect $\quad \Longrightarrow \quad n=0, \quad k=0$

Effects

$$
\text { Effect } \quad \Longrightarrow \quad n=0, \quad k=0
$$

$$
\langle\phi|=\sum_{v \in S}\langle v| \text { where } S^{\perp}=\operatorname{span}\left\{w_{1}, \ldots, w_{j}\right\} \subseteq \mathbb{F}_{2}^{m}
$$

Or a second way to write states...

$$
|\psi\rangle=\sum_{v \in S}|v\rangle \text { where } S^{\perp}=\operatorname{span}\left\{w_{1}, \ldots, w_{j}\right\} \subseteq \mathbb{F}_{2}^{n}
$$

$|\mathrm{GHZ}\rangle=|000\rangle+|111\rangle$
$|\mathrm{GHZ}\rangle=|000\rangle+|111\rangle$
$=\sum_{v \in S}|v\rangle$ where $S=\left\{v \mid v_{1} \oplus v_{2}=0, v_{2} \oplus v_{3}=0\right\}$
$|\mathrm{GHZ}\rangle=|000\rangle+|111\rangle$
$=\sum_{v \in S}|v\rangle$ where $S=\left\{v \mid v_{1} \oplus v_{2}=0, v_{2} \oplus v_{3}=0\right\}$
$=\sum_{v \in S}|v\rangle$ where $S^{\perp}=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$
$|\mathrm{GHZ}\rangle=|000\rangle+|111\rangle$
$=\sum_{v \in S}|v\rangle$ where $S=\left\{v \mid v_{1} \oplus v_{2}=0, v_{2} \oplus v_{3}=0\right\}$
$=\sum_{v \in S}|v\rangle$ where $S^{\perp}=\operatorname{span}\left\{\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)\right\}$

Theorem
A state represented by a phase-free $Z X$-diagram is uniquely fixed by a subspace $S \subseteq \mathbb{F}_{2}^{n}$ (or equivalently $S^{\perp} \subseteq F_{2}^{n}$).

$=\sum_{v \in S}|v\rangle$ where $S^{\perp}=\operatorname{span}\left\{w_{1}, \ldots, w_{j}\right\}$

Stabiliser Theory

Theorem (FTST)
If \mathcal{S} has k generators, then $\operatorname{Stab}(\mathcal{S})$ is a 2^{n-k} dimensional subspace of $\left(\mathbb{C}^{2}\right)^{\otimes n}$.

Stabiliser Theory

Theorem (FTST)
If \mathcal{S} has k generators, then $\operatorname{Stab}(\mathcal{S})$ is a 2^{n-k} dimensional subspace of $\left(\mathbb{C}^{2}\right)^{\otimes n}$.

$$
\begin{array}{cc}
k=n & \\
\text { maximal } & \operatorname{Stab}(\mathcal{S})=\{\lambda|\psi\rangle \mid \lambda \in \mathbb{C}\} \\
1 D \text { subspace }
\end{array}
$$

CSS codes

Definition

For $S \subseteq \mathbb{F}_{2}^{n}, T \subseteq S^{\perp}$, a CSS code is a stabiliser group with generators:

$$
\vec{X}_{i}:=\bigotimes_{q=1}^{\operatorname{dim} S} X^{\left(v_{i}\right)_{q}} \quad \vec{Z}_{j}:=\bigotimes_{q=1}^{\operatorname{dim} T} Z^{\left(w_{j}\right)_{q}}
$$

where $S=\operatorname{span}\left\{v_{i}\right\}$ and $T=\operatorname{span}\left\{w_{i}\right\}$.

A CSS code is maximal iff $T=S^{\perp}$, i.e. it has generators:

$$
\vec{X}_{i}:=X^{\left(v_{i}\right)_{1}} \otimes \ldots \otimes X^{\left(v_{i}\right)_{n}} \quad \vec{Z}_{j}:=Z^{\left(w_{j}\right)_{1}} \otimes \ldots \otimes Z^{\left(w_{j}\right)_{n}}
$$

where $S=\operatorname{span}\left\{v_{i}\right\}$ and $S^{\perp}=\operatorname{span}\left\{w_{j}\right\}$.

Example

The stabiliser group of $|\mathrm{GHZ}\rangle$ is generated by:

$$
X \otimes X \otimes X \quad Z \otimes Z \otimes I \quad I \otimes Z \otimes Z
$$

Example

The stabiliser group of $|\mathrm{GHZ}\rangle$ is generated by:

$$
X \otimes X \otimes X \quad Z \otimes Z \otimes I \quad I \otimes Z \otimes Z
$$

This is a maximal CSS code, where:

$$
S=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} \quad S^{\perp}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

Example

The stabiliser group of $|\mathrm{GHZ}\rangle$ is generated by:

$$
X \otimes X \otimes X \quad Z \otimes Z \otimes I \quad I \otimes Z \otimes Z
$$

This is a maximal CSS code, where:

$$
S=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)\right\} \quad S^{\perp}=\operatorname{span}\left\{\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right)\right\}
$$

Theorem
The $Z X$-diagram associated with $S \subseteq \mathbb{F}_{2}^{n}$ is the unique stabiliser state of the maximal CSS code defined by $\left(S, S^{\perp}\right)$.

Proof

Using:

compute the X-stabilisers by "firing" each basis vector of S :

Proof

Using:

compute the X-stabilisers by "firing" each basis vector of S :

Proof (cont'd)

Similarly, compute the Z-stabilisers from S^{\perp} :

Proof (cont'd)

Similarly, compute the Z-stabilisers from S^{\perp} :

This gives $\operatorname{dim} S+\operatorname{dim} S^{\perp}=n$ generators for n qubits, so $|\psi\rangle$ uniquely fixed by FTST.

Corollary

We can translate a maximal CSS code directly into a ZX-diagram in 2 ways.

Corollary

We can translate a maximal CSS code directly into a ZX-diagram in 2 ways.

For example, $\{X \otimes X \otimes X, Z \otimes Z \otimes I, I \otimes Z \otimes Z\}$ gives:

X-representation:

Z-representation: $\{Z \otimes Z \otimes I, I \otimes Z \otimes Z\} \rightsquigarrow$

Quantum error correction

...is done by encoding some logical qubits into a bigger space of physical qubits:

Quantum error correction

...is done by encoding some logical qubits into a bigger space of physical qubits:

$$
k\left\{\begin{array}{c}
\bar{\vdots} \bar{\vdots}
\end{array}\right\} n
$$

E defines a stabiliser code when:

$$
\operatorname{Im}\left(\begin{array}{ccc}
\bar{\vdots} & E & \vdots \\
\end{array}\right)=\operatorname{Stab}(\mathcal{S})
$$

where \mathcal{S} is a stabiliser group with $n-k$ generators.

Quantum error correction

We can detect errors without destroying the state by measuring stabilisers in \mathcal{S}.

For CSS codes, 2 kinds of stabiliser measurements are relevant:

$$
\begin{aligned}
& \mathcal{M}_{X \ldots X}:=\left\{\Pi_{X \ldots X}^{(0)}, \Pi_{X \ldots X}^{(1)}\right\} \\
& \mathcal{M}_{Z \ldots Z}:=\left\{\Pi_{Z \ldots Z}^{(0)}, \Pi_{Z \ldots Z}^{(1)}\right\}
\end{aligned}
$$

X measurements

$$
\mathcal{M}_{X \ldots X}=\left\{\Pi_{X \ldots X}^{(k)}:=\frac{1}{2}\left(I+(-1)^{k} X \otimes \ldots \otimes X\right)\right\}
$$

Z measurements

$$
\mathcal{M}_{Z \ldots z}=\left\{\Pi_{Z \ldots z}^{(k)}:=\frac{1}{2}\left(I+(-1)^{k} Z \otimes \ldots \otimes Z\right)\right\}
$$

Example
The GHZ code:

$$
\mathcal{S}:=\{X \otimes X \otimes X, \quad Z \otimes Z \otimes I, \quad I \otimes Z \otimes Z\}
$$

Then:

$$
\operatorname{Im}(-)=\operatorname{span}\{|000\rangle,|111\rangle\}=\operatorname{Stab}(\mathcal{S})
$$

Example

The GHZ code:

$$
\mathcal{S}:=\{\underline{X} \otimes X \otimes X, \quad Z \otimes Z \otimes I, \quad I \otimes Z \otimes Z\}
$$

Then:

$$
\operatorname{Im}(-\mathcal{C})=\operatorname{span}\{|000\rangle,|111\rangle\}=\operatorname{Stab}(\mathcal{S})
$$

So, we can encode states like this:

Applying $\Pi_{Z Z I}^{ \pm}$to an encoded state:

Hence:

$$
\operatorname{Prob}_{z z \prime}(k \mid<\psi-\infty)=\delta_{0, k}
$$

Applying $\Pi_{Z Z I}^{ \pm}$to an encoded state with an error:

Hence:

Logical operators

Note:

$$
\operatorname{Im}\left(\begin{array}{ccc}
\bar{\vdots} & E & \vdots \\
\end{array}\right)=\operatorname{Stab}(\mathcal{S})
$$

only fixes the image of E, not E itself.

Logical operators

Note:

$$
\operatorname{Im}\left(\begin{array}{ccc}
\bar{\vdots} & E & \vdots \\
\hline
\end{array}\right)=\operatorname{Stab}(\mathcal{S})
$$

only fixes the image of E, not E itself.
For example, the following is also a GHZ encoder:

Logical operators

To fix E, we should fix $2 k$ more logical operators by "pushing" Pauli X and Z ops through the encoder:

Logical operators

Equivalently, we fix $2 k$ more stabilisers for the $n+k$ qubit state $|E\rangle:=(I \otimes E)|\cup\rangle:$

Logical operators

Equivalently, we fix $2 k$ more stabilisers for the $n+k$ qubit state $|E\rangle:=(I \otimes E)|\cup\rangle:$

$$
(n-k)+2 k=n+k \text { stabilisers for }|E\rangle
$$

Example

The GHZ code has stabiliers and logical operators:

$$
\begin{array}{cc}
\vec{Z}_{1}=Z_{1} Z_{2} & \vec{Z}_{2}=Z_{2} Z_{3} \\
\overrightarrow{\mathcal{X}}=X_{1} X_{2} X_{3} & \overrightarrow{\mathcal{Z}}=Z_{1}
\end{array}
$$

Stabiliers for $|E\rangle$:

$$
\begin{gathered}
\vec{X}_{1}^{\prime}=X_{1} X_{2} X_{3} \quad \vec{Z}_{1}^{\prime}=Z_{1} Z_{2} \quad \vec{Z}_{2}^{\prime}=Z_{2} Z_{3} \\
\overrightarrow{\mathcal{X}}^{\prime}=X_{0} X_{1} X_{2} X_{3} \quad \overrightarrow{\mathcal{Z}}^{\prime}=Z_{0} Z_{1}
\end{gathered}
$$

X-representation:

\rightsquigarrow

Z-representation:

\cdots

The surface code

The surface code

...is a 2D lattice of $d \times e$ qubits:

$$
\begin{array}{ll}
\vec{X}_{1}:=X_{2} X_{3} X_{5} X_{6} & \vec{X}_{2}:=X_{4} X_{5} X_{7} X_{8} \\
\vec{Z}_{1}:=Z_{1} Z_{2} Z_{4} Z_{5} & \vec{Z}_{2}:=Z_{5} Z_{6} Z_{8} Z_{9}
\end{array}
$$

$(d-1)(e-1)$ stabilisers

The surface code

...is a 2D lattice of $d \times e$ qubits:

$$
\begin{array}{ll}
\vec{X}_{1}:=X_{2} X_{3} X_{5} X_{6} & \vec{X}_{2}:=X_{4} X_{5} X_{7} X_{8} \\
\vec{X}_{3}:=X_{1} X_{4} & \vec{X}_{4}:=X_{6} X_{9} \\
\vec{Z}_{1}:=Z_{1} Z_{2} Z_{4} Z_{5} & \vec{Z}_{2}:=Z_{5} Z_{6} Z_{8} Z_{9} \\
\vec{Z}_{3}:=Z_{2} Z_{3} & \vec{Z}_{4}:=Z_{7} Z_{8}
\end{array}
$$

$$
(d-1)(e-1)+d-1+e-1=d e-1 \text { stabilisers }
$$

2 logical operators

\downarrow

\downarrow

Lattice surgery

In the surface code, we can implement physical operations that behave like SPLIT and MERGE on logical qubits:

This lets us do entangling operations, e.g. CNOT:

This lets us do entangling operations, e.g. CNOT:

Split

Split

Split

Split

Merge

Merge

Final notes

Final notes

This all used the X-representation. Flip to the Z-representation to get the colour-reversed split and merge.

Final notes

This all used the X-representation. Flip to the Z-representation to get the colour-reversed split and merge.

Similar tricks implement:

- Entangled measurements
- Magic state injection
- \Longrightarrow universal FTQC

Final notes

This all used the X-representation. Flip to the Z-representation to get the colour-reversed split and merge.

Similar tricks implement:

- Entangled measurements
- Magic state injection
- \Longrightarrow universal FTQC

Other CSS codes like colour codes translate to ZX very similarly. L.S. should pretty much work the same way.

