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Introduction
Physics in the 20th century experienced a great number of breakthroughs, leading to the forma-
tion of one of the most well-known fundamental theories: quantum physics. In quantum physics,
a studied system can be considered in a superposition of classical states at the same time – the
final state being determined only with a measurement. This new way of thinking helped discover
many new phenomena – especially in the world of extremely small particles. Those behaviors
are well-known to be counter-intuitive and to be very different from what people can observe
with a macroscopic point of view. Many results in quantum physics already have applications
and benefit vastly different fields.

Quantum theory has also started influence computer science. Indeed, a quantum bit could be in
both states 0 and 1 at the same time before a measurement. The possible operations on qubits
– the short name for quantum bits – are settled by quantum physics. A quantum algorithm can
be described as a sequence of operations on qubits.

Quantum circuits are build on the same idea as classical circuits: it is a sequence of gates applied
on qubits. Some gates can only apply on one qubit, others can apply on several qubits. All those
operations are described in Hilbert spaces. The two basis states of a qubit are |0〉 and |1〉 defined
as follows:

|0〉 :=
[
1
0

]
|1〉 :=

[
0
1

]
A qubit state is defined as a superposition of those two states, with α, β complex numbers:

|ψ〉 := α |0〉+ β |1〉 , such that |α|2 + |β|2 = 1

To operate on several qubits, the state of a pair is calculated as the tensor product of the two
qubits. We will note for example |00〉 := |0〉⊗ |0〉. Importantly, it is not always possible to write
a state of a pair of qubits as a tensor product of two states – this is what is called entanglement.
The † denotes the adjoint. The adjoint of the ket notation is the bra notation: 〈ψ| := |ψ〉†.
An important set of gates are the following:

J H K := 1√
2

[
1 1
1 −1

]
J S K := [

1 0

0 e
iπ
2

]

r
⊕

z
:=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


With these gates, we can make all the Clifford unitaries, an important subset of all unitaries.
Operations inside the Clifford group are known to be efficiently simulated by classical computers.
Nevertheless, it is far from realizing every possible quantum operation. To do so, it is necessary
to add the T-gate and to form the Clifford+T group:

J T K := [
1 0

0 e
iπ
4

]
Clifford+T is not efficiently simulated by classical computation.

The not operation can be defined as follows:

X = H S S H
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The main focus will be the verification of quantum circuits: given two different quantum circuits,
being able to affirm where they are equal or not. This can be done by computing the matrix
semantics of both circuits, but the size of the matrices is exponential in the number of qubits.
My work focuses then on two frameworks used to verify quantum circuits [9, 1] and which scale
better than computing matrices of the circuits.

These two frameworks are path-sum [2] and ZH-calculus [3] – actually, it is ZX-calculus [4]
that is used for verification for now, but ZX- and ZH-calculus work in the same way. They
are respectively introducted in Sections 1 and 2. At first they seem very different from each
other, but they are used for the same goal. Thus we will try here to show to what extend they
are similar. The idea was also to look for strategy that can borrow to the other. Section 3 is
an example of picturing a path-sum law into ZH-calculus, unveiling an new graphical equation.
Section 4 builds an new path-sum formalism – pure path-sum – in order to describe a bijection
between the latter and ZH-calculus in Section 5. Thanks to this bijection, the path-sum rules
can be pictured in ZH-calculus as shown in Sections 6 and 7. This helped reduce the number
of axioms of ZH-calculus as proven in Section 8. Finally Section 9 reveals that ZH-calculus can
also influence path-sum.

1 Path-sum approach
1.1 Definition
Path-sum has been introduced by Feynman as the path integral formulation of quantum me-
chanics. In quantum theory, there are several ways – or transformations – to go from one state to
another. Feynman’s idea is to describe the resulting state as a sum of every possible paths taken.
The set of possibilities is continuous, that is why we talk about path integral. Since quantum
gates are operators over a finite dimensional Hilbert space, the integral over all the paths is a
discrete sum in computational frameworks.

To understand what comes, some notations must be introduced. B will be the Boolean set {0, 1}.
Bn is the set of vectors composed of n Boolean values. Bn

∗ is the same set, but excluding the
vector only composed of 0s. DM – the positive dyadic rationals – is the set of numbers of the
form a

2b
with a, b non-negative numbers.

We can describe a path-sum abstractly as a discrete set of paths S ⊆ Bm, together with an
amplitude function ϕ and state transformation f representing the operator

U : |x〉 7→
∑
y∈S

ϕ(x,y) |f(x,y)〉 .

This general form does not hold any particular computational property, since f and ϕ might be
represented in any way. Therefore, a fixed representation as given by Amy [2] is necessary to
make the manipulation of these terms possible.

Definition 1.1 (path-sum). An n-qubit path-sum ξ consists of

• an input signature |x = x1x2 · · ·xn〉 where each xi is a (distinct) variable or Boolean con-
stant,

• a global phase α ∈ C.

• a phase polynomial P ∈ DM [x,y] over input variables x and path variables y = y1y2 . . . ym,
and

• an output signature |f(x,y) = f1(x,y) · · · fn(x,y)〉 where each fi ∈ B[x,y] is a Boolean
polynomial.
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The associated operator of a path-sum is the partial linear map Uξ where

Uξ : |x〉 7→ α
∑
y∈Bm

e2πiP (x,y) |f(x,y)〉 .

We say a path variable is internal if it does not appear in the output signature, as in the example
of Toffoli3 below (1.2). Our presentation is inspired by descriptions of quantum operators in
mathematical texts [11], and as such we write a path-sum informally by the action of its associated
operator. By an abuse of notation, we use |x〉 to refer to either an input signature or an arbitrary
Boolean vector corresponding to an input signature.

Example 1.2. Path-sum representations of common quantum gates and circuits are listed below:

T : |x〉 7→ e2πi
x
8 |x〉

H : |x〉 7→ 1√
2

∑
y∈B

e2πi
xy
2 |y〉

Toffoli3 : |x1x2x3〉 7→
∑
y1,y2

e2πi
1
2
(x3y1+x1x2y1+y1y2) |x1x2y2〉

Path-sum representations are not unique: Toffoli3 can also be written |x1x2x3〉 7→ |x1x2(x1x2 ⊕ x3)〉.
Thus we introduce a calculus to be able to go form complicated path-sums to simpler ones.

1.2 Reduction rules
Figure 1 gives the rules of our calculus, presented as algebraic rewrite rules on exponential sums
for convenience and applied to path-sums in the obvious way. We write ξ −→ ξ′ to denote that
ξ reduces to ξ′, and denote by −→∗ the transitive closure of −→. For all rules, y0 is an internal
path variable, the polynomials Q are Boolean-valued and whenever yi ← Q, yi does not appear
in Q. For the [Case] rule, both yi and yj are internal.

Before introducing the reduction rules, we define the lifting of a Boolean polynomial P , written
P .

xα = xα,

P ⊕Q = P +Q− 2PQ,

where xα = xα1
1 xα2

2 · · ·xαn
n for α ∈ Bn is a multi-index.

α
∑
y0∈B

∑
y∈Bm

e2πi(
1
4
y0+

1
2
y0Q(x,y)+R(x,y)) |f(x,y)〉 −→

√
2α

∑
y∈Bm

e2πi(
1
8
− 1

4
Q(x,y)+R(x,y)) |f(x,y)〉 [ω]

α
∑

y0,y1∈B

∑
y∈Bm

e2πi(
1
2
y0(y1+Q(x,y))+R(x,y1,y)) |f(x, y1,y)〉 −→ 2α

∑
y∈Bm

e2πi(R[y1←Q])(x,y1,y) |(f [y1 ← Q]) (x, y1,y)〉[HH]

P (x,y) = 1
4yix+ 1

2yi(yj +Q(x,y)) +R(x,y) = 1
4yj(1− x) +

1
2yj(yi +Q′(x,y)) +R′(x,y)

α
∑

y∈Bm+2 e2πiP (x,y) |f(x,y)〉 −→ 2α
∑

y∈Bm e
2πi((1−x)R[yj←Q]+xR′[yi←Q′])(x,y) |f(x,y)〉

[Case]

Figure 1: Path-sum reduction rules

The rules were developed [2] by translating known circuit identities into path-sums, then mini-
mizing the identities to obtain simple interference patterns which strictly reduce the number of
path variables. The [HH] rule derives from the equality HH = I. The [ω] rule arises from the
identity (SH)3 = e

2πi
8 I, and the final rule [Case] is a specific case distinction needed to prove

the 2-qubit Clifford+T identity
(
CNOT(X ⊗ T )controlled-H(X ⊗ T †)

)2 [6].
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Proposition 1.3 (Correctness). If ξ −→∗ ξ′′, then ξ ≡ ξ′.

The correctness of our rewrite system follows from direct calculation over symbolic exponential
sums. Since the proof is not necessary to understand the other sections, it is left in appendix.

1.3 Examples of path-sum terms and reductions
1.3.1 Two Toffoli gates

It is a known fact that a circuit composed of two Toffoli gates that follow each other is equal to
the identity. It is possible to prove it in path-sum.

⊕ ⊕

This circuit corresponds to the following path-sum expression. The composition of path-sum is
done as presented in the original paper [2].

|x1x2x3〉 7→
1

22

∑
y1,y2,y3,y4∈B4

e2πi
1
2
(x3y1+x1x2y1+y1y2+y2y3+x1x2y3+y3y4) |x1x2y4〉

7→ 1

2

∑
y1,y4∈B2

e2πi
1
2
(x3y1+y1y4) |x1x2y2〉 [HH]

7→ |x1x2x3〉 [HH]

1.3.2 The Euler equation

As before, what is called here Euler equation is a known circuit semantically equal to the identity
up to a phase. This circuit is the following:

S H S H S H

Which is written and reduced in path-sum:

|x〉 7→ 1

2
√
2

∑
y1,y2,y3∈B3

e2πi(
1
4
x+ 1

2
xy1+

1
4
y1+

1
2
y1y2+

1
4
y2+

1
2
y2y3) |y3〉

7→ 1

2
√
2

∑
y1,y2,y3∈B3

e2πi(
1
4
y1+

1
2
y1(y2+x)+ 1

4
x+ 1

4
y2+

1
2
y2y3) |y3〉

7→ 1

2
eπi

1
4

∑
y2,y3∈B2

e2πi(−
1
4
x− 1

4
y2+

2
4
xy2+

1
4
x+ 1

4
y2+

1
2
y2y3) |y3〉 [ω]

7→ 1

2
eπi

1
4

∑
y2,y3∈B2

e2πi(
1
2
xy2+

1
2
y2y3) |y3〉

7→ eπi
1
4 |x〉 [HH]

1.4 Understanding a path-sum term
As one can notice above, the path-sum framework gives a straightforward strategy to prove that
a circuit is equivalent or not to the identity in some cases. However, these terms reside now far
from circuits and it is difficult to visualize what the reduction rules actually do, and particularly
the rules involving variable replacement. For example, in [HH], this variable replacement emerges
from the deletion of two central variables. As seen in the examples of path-sums above, H gates
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introduce path variables – thus eliminating H gates is deleting path variables.

The naïve picture of what [HH] does is the following circuit:

H H
...

...
...

...
...

...f g

h1

h2

which is reduced to this circuit:

...

...
...

...
...

...f g

h1

h2

But we will see that [HH] is more than this in a graphical framework – the ZH-calculus. The latter
is introduced in the following. We can see that a graphical representation more expressive than
circuits is necessary thanks to the examples above: in the middle of the reduction to the identity,
it may be difficult – or impossible – to roll back to a circuit represensation of the path-sum.

2 ZH-calculus
The ZH-calculus is a diagrammatic language that represents linear maps between qubits as string
diagrams. There are two generators of these diagrams: H-boxes, depicted as white boxes with a
complex parameter a, and Z-spiders, depicted as white dots.

. . .

. . .

n

m

:= |0 . . . 0〉 〈0 . . . 0|+ |1 . . . 1〉 〈1 . . . 1|
. . .

a
. . .

n

m

:=
∑

ai1...imj1...jn |j1 . . . jn〉 〈i1 . . . im|

where in the right-hand equation, the sum runs over all i1, . . . , im, j1, . . . , jn ∈ {0, 1}. An H-box
represents a matrix with a as its |1 . . . 1〉 〈1 . . . 1| entry, and ones elsewhere. By convention, the
parameter a is omitted when a = −1, so an un-labelled H-box with 1 input and 1 output is a
Hadmard gate (up to normalisation).
A pair of diagrams can be composed either by stacking them and joining the outputs of the
first with the inputs of the second, which corresponds to composition of linear maps, or placed
side-by-side, which represents the tensor product.
For our purposes, we will treat two other spiders as derived generators: the X-spider and the
NOT gate.

:=

. . .

. . .

. . .

. . .

n

m

n

m

1
2 (XS) ¬ := 1

2 (N)

We consider ZH-diagrams to be equal when they can be topologically deformed into one another
[4, 5], preserving the order of in- and outputs, or when they can be transformed into another
another by using the rules of the ZH-calculus. The ZH-calculus is complete in the sense that any
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equality between matrices can be proven just from diagrammatic rules [3], and Figure 2 contains
the complete set of rules. As a result, any two diagrams that are equal as linear maps, can be
proven to be equal using some combination of these rules.
The calculations in this paper will greatly benefit from the use of !-box – « bang box » – notation
[8]. !-boxes represent parts of a diagram that may be replicated an arbitrary number of times,
and thus allow one to express a whole family of diagrams at once.

←→

{
, , , , . . .

}
When used in equations, corresponding !-boxes on either side of the equation should be replicated
an equal number of times. For example, the grey spider (XS) can be redefined.

:= 1
2 (XS)

and one can straightforwardly prove for example that grey spiders fuse just like white spiders
(XS1), and that we have a usual color changing law (CC):

=
(XS)

=
(HS1)

=
(ZS1)

=
(XS)

1
22

1
2

1
2

(XS1) =
(XS)

=
(HS1)

1
2

(CC)

To make the equations that follow more readable, it is necessary to picture the !-boxed versions
of the rules that are used in this report.

(ZS1)
. . .

. . .

m

n

. . .

n

m

. . .

= (ZS2) == (BA1)
. . .

. . .

m

n

. . .

n

m

. . .

= . . .. . .

(HS1)
. . .

a
. . .

m

n

. . .

n

m

. . .

a
= 2 (HS2) = 2 (BA2)

. . .

. . .

m

n

. . .

n

m

. . .

= . . .. . .

(M)
a b

=
ab

(U)
1

= (I) a a
=

¬

a

(A) a b = a+b
2

¬

2 (O) =¬2 ¬

Figure 2: The rules of the ZH-calculus. Throughout, m,n are nonnegative integers and a, b are
arbitrary complex numbers. The right-hand sides of both bialgebra rules (BA1) and (BA2) are
complete bipartite graphs on (m+n) vertices, with an additional input or output for each vertex.
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(ZS1) = (HS1)
a

a= 2 (BA1) = (BA2) =

Most of the coming !-boxes will be annotated, as in the example that follows:

b ∈ B2

ab
=
a00 a01 a10 a11

When a !-box are annotated with a given integer n, there are exactly n copies of what is inside
this !-box. A !-box annotated with a set introduces a variable, and pictures the fact that there
is a copy of what contains the !-box for each element of the set.

Furthermore, !-boxes can overlap as in this example:

2

3

=

These annotations and overlapping are required to understand the next section.

3 Hyper pivot
In the long process of picturing diagrammatically the [HH] rule, the first result that came out was
the hyper pivot – which is also called regular hyper pivot, since it does not completely picture the
[HH] rule. Even if it is a particular case of the action of the path-sum law, it is a first example
to illustrate the use of !-boxes in a complex manner.

The name hyper pivot refers to the pivot equation [7] of ZX-calculus, in our case involving hyper
graphs.

Theorem 3.1 (Hyper pivot). For n,m two positive numbers:

=

n m n m

2 (RHP)

As in the [HH] rule, the two white dots in the middle of the left-side diagram are internal variables
– or internal white dots. Pivoting on these dots connects any group of white dots from the left-
hand side to any group of white dots from the right-hand side with a multi-legged H-box. It can
be seen as all the n H-boxes on the left are copied m times; hence the n × m H-boxes in the
resulting diagram.
Diagrammatic equations in these sections seem oriented – either left to right, or top to bottom
–, but there is no such thing: in ZH-calculus, any wire can be bended in any direction. The
representation of the equation is only a choice to make them more readable.
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3.1 Applications
Lemma 3.2. (HS1) is an instance of (RHP).

Proof.
= 2

(RHP)

Lemma 3.3. (BA1) is an instance of (RHP).

Proof.

=

1
22

(RHP)

=
(XS)+(HS2)

=
(XS)

1
2

Lemma 3.4. (BA2) is an instance of (RHP).

Proof.

=

1
2

(RHP)

=
(XS)

3.2 Bigger example
We are going to show the use of this rule on an example: proving that the circuits A and B are
equal.

⊕ ⊕
⊕ ⊕ ⊕ ⊕

⊕ ⊕

Which becomes in ZH-calculus:

(HS2)
=

(RHP)
=

(M)+(HS2)
=

9



(M)
=

(RHP)
= =

(M)
=

(HS2)
=

The several uses of (HS2) are highlighted by braces as follows: . In this case, the
multiplication law (M) is only used with −1×(−1) = 1, then two H-boxes connected to the same
white dots eliminates themselves. They are signaled with braces:

Finally, the other operations are (RHP) applications, and highlighted this way: .

3.3 Proof of hyper pivot
The proof of Theorem 3.1 consists on a sequence of well-chosen bialgebras and color changes.
The color changes are responsible for the opverlapping !-boxes, which is natural: there must be
a created H-box on every wire.

1st step, push the middle H-box to the left.

=

n m n m

2

1
2

n
(CC)

2nd step, BA1 in the middle.

=

n m n m

22

1
2

n1
2

n
(BA1)

3rd step, push the H-box from the left.

=

n m n m

2

1
2

n

2

1
2

mn
(CC)

4th step, BA2 on the left.

=

n m n m

2

1
2

mn

2

1
2

mn
(BA2)

5th step, spider fusion on the left.

=

n m n m

2

1
2

mn

2

1
2

mn
(ZS1)
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6th step, BA2 on the right.

=

n m n m

2

1
2

mn

2

1
2

mn
(BA2)

7th step, HS1 in the middle and spider fusion on the right.

=

n m n m

2
2

1
2

mn
(HS1)

4 Pure path-sum
In order to understand the path-sum rules diagrammatically, and reversely ZH rules in path-sum,
it was decisive to have a translation between the two formalisms.

The aim of this section is to adjust path-sum to be able to build a bijection between ZH diagrams
and path-sums. This bijection should also respect the correspondance between laws in the two
– which is discribed later. In this section, we present the necessity to introduce a pure path-sum
approach in order to have a bijection.

A pure path-sum expression does not have inputs, only outputs but keeping a memory of whether
they are inputs or outputs in another function. Besides, the output signature can no longer be
composed of functions, only a list of variables.

This is necessary because otherwise, there is not any proper way to express in a path-sum the
ZH diagram composed of a white dot, two inputs and an output.

A path-sum term is now expressed that way :

Definition 4.1 (pure path-sum). An n-qubit pure path-sum ξ consists of

• an input signature |x = x1x2 · · ·xn〉 where each xi is a (distinct) variable or Boolean con-
stant,

• a phase ϕ over path variables y = y1y2 . . . ym,

• an output signature |ℓ(y)〉 which is a list of path variables, and

• a memory function C ∈ [m]B
n such as C(x) ⊆ ℓ, which maps each element of x to its

corresponding y in ℓ.

The associated vector of a pure path-sum is |ψ〉 where:

|ψ〉 :
∑
y

ϕ(y)|ℓ(y)〉.

To have a better picture of pure path-sum, here are some examples:
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Example 4.2. Path-sum representations of common quantum gates and circuits are listed below:

T : |x〉 7→

x 7→ y1∑
y1

ei
π
4
y1 |y1y1〉

H : |x〉 7→

x 7→ y1
1√
2

∑
y1,y2

(−1)y1y2 |y1y2〉

CNOT : |x1x2〉 7→

x1, x2 7→ y1, y2
1

2
√
2

∑
y1,y2,y3,y4

(−1)y1y3(−1)y2y3(−1)y4y3 |y1y1y2y4〉

With that formalism, we can express the problematic example from earlier:

can now be translated as

C : (x0, x1) 7→ (y, y)∑
y
|yyy〉

Which is basically corresponding to the following diagram:

x0

x1

As you can see, a white dot in the graphical calculus corresponds to a path variable in path-sum.
Besides, two white dots connected by a positive number of wires can be fused – that is to say,

they actually correspond to a unique path variable. Since = holds, any

output wire can be chosen for the inputs in any order.

The [HH] law presented at the beginning of this report will be changed to fit this pure approach,
and it does not change its reduction power concerning verification.

The original [HH] law authorizes the replacement of a variable by a Boolean polynomial in the
output signature. However our new definition, the output signature is a list of variables – it can
no longer contain polynomials. Thus, it is not possible to replace a variable that appears in the
output signature. The pure [HH] is now applied only when y0, y1 are interior variables, expect
when the polynomial that is going to replace y1 is also a variable.

5 Towards a bijection
We define ZH† = ZH/{(ZS1), (ZS2), (M), (U), (SV )}. (ZS1), (ZS2), (M), (U), (SV) are natural
in path-sum, that is why we consider classes of ZH-diagrams.

Lemma 5.1. A 3-ary white node and H-box that are doubly connected reduces to a single 2-ary
H-box:

a
a= (SV)

12



5.1 ZH to pure path-sum
Let us consider a ZH† diagram D. It is composed of white dots and of H-boxes with phases.
Since two diagrams equal by spider fusion are in the same class, we fuse as many white dots as
we can, such that no white dot is directly connected to another white dot. Similarly, let us put
a white dot between every connected H-boxes, for example:

=

Now every wire is either a connection between a white dot and an H-box, or is an output wire.

Let us name all the white dots y0, y1, etc. The order does not matter. Every H-box is then
characterized by a complex phase λ and a list of white dots y′, which are the white dots connected
to that box. Remember that an empty H-box actually has a phase of −1. The phase ϕ of the
resulting path-sum is the product of all the terms λy′ . The output signature is naturally produced
observing the output wires. The resulting path-sum is written JDKZH†→PPS.

5.2 Pure path-sum to ZH
Let us consider a pure path-sum ξ. To draw the corresponding diagram, let us create as many
white dots as path variables in ξ. Then for every term λy

′ , we draw a λ-labelled H-box connected
to all the white dots of y′.

λ
... y′

Then we can put some more wires to the output white dots, and bend those which were meant
to be inputs (stored in C). The resulting diagram is noted JEKPPS→ZH† .

Theorem 5.2.
qJ.KPPS→ZH†

y
ZH†→PPS = 1 and

qJ.KZH†→PPS
y

PPS→ZH† = 1

6 Fourier hyper pivot
6.1 Notations and the Fourier transform
The translation from path-sum to ZH-calculus helps to see that the connected H-boxes to the
internal variables on which one can pivot are not necessarily phase-free: one side can have phases.
However in this case, we must picture diammagratically this term:

λQ

For example, if Q = x1 ⊕ x2, Q = x1 + x2 − 2x1x2, which makes:

λx1+x2−2x1x2 = λx1λx2
(
λ−2

)x1x2

The corresponding diagram is similar to a Fourier transform [10]:

a

=

a−2
a a

13



which has a general version with !-boxes:

=

λ λ(−2)
|b|−1

bi

b ∈ Bn
∗

i ∈ [n]

i ∈ [n]

with a new notation:

1 0= = 1
2

Each of these tools above are necessary to completely picture the [HH] law in ZH-calculus. The
resulting diagrammatic law will be named Fourier hyper pivot.

6.2 General theorem
Theorem 6.1 (Fourier hyper pivot). λ can be any list of complex numbers.

=

λk

λ
(−2)|b|−1

k
bi

n k ∈ [m]

i ∈ [n]
b ∈ Bn

∗

k ∈ [m]

2

(FHP)

The left-hand side of the first diagram pictures the polynomial Q, and the right-hand side is
what is left but only the parts connected to y1, since the other parts of the path-sum are not
modified by [HH], it is not necessary to picture them in a diagrammatic equation. As explained
above, the Fourier transform comes from the lifting of Q.

The proof of Theorem 6.1 is left in appendix.

6.3 Simple examples
The (FHP) equation involves an undecent number of !-boxes, this is why simple examples might
be easier to handle.

6.3.1 First example

λ

= λ λ−2 λ2

14



In this example, n = 2, m = 1 and one of the white dots groups inside the n-labelled !-box is
composed of two white dots, the other only one. Since n = 2, the labels in H-boxes are λ and
λ−2. The λ-boxes are only connected to one group of white dots, the λ−2-box is connected to
both groups.

6.3.2 Second example

λ µ

= λ λ−2 λ µ µ−2 µ2

This example is similar to the previous one, only a µ-box is added, to demonstrate that the
H-boxes can also be connected to nothing at all.

7 Case hyper pivot
7.1 Path-sum rule and proof
The original [Case] rule in figure 1 can be generalized this way:∑

y0,y1,y

φX(−1)y0Q(−1)y0y1(−1)y1Q′
ψ1−X |ℓ〉 → 2

∑
y

(−1)QQ′
φ[y0 ← Q′]Xψ[y1 ← Q]1−X |ℓ〉

where φ is a complex function over y0 and y; ψ over y0 and y; X is a boolean polynomial over
y; Q,Q′ are boolean polynomials over y and y0, y1 are not present in ℓ.

When y is fixed:

∑
y0,y1

φX(−1)y0Q(−1)y0y1(−1)y1Q′
ψ1−X |ℓ〉 =


∑
y0,y1

(−1)y0Q(−1)y0y1(−1)y1Q′
ψ if X = 0∑

y0,y1

φ(−1)y0Q(−1)y0y1(−1)y1Q′ if X = 1

when applied the same idea as the [HH] rule on both cases, it is proven equal to:{
2(−1)QQ′

ψ[y1 ← Q] if X = 0

2φ[y0 ← Q′](−1)QQ′ if X = 1

which is equal to

2(−1)QQ′
φ[y0 ← Q′]Xψ[y1 ← Q]1−X

7.2 Diagramatic version
Here is the ZH translation of the path-sum rule:

15



n

n′

λk

k ∈ [m]

µk′

k′ ∈ [m′]

X =

i ∈ [n′]

k ∈ [m]

λ
(−2)|b′|−1

k
b′i

b′ ∈ {0, 1}n
′

j ∈ [n]

k′ ∈ [m′]

µ
(−2)|b|−1

k′
bj

b ∈ {0, 1}n

X
¬

2
¬

The boxed X is a Boolean polynomial, meaning a sequence of sum – – and product –

– operations.

7.3 What we can learn from it
The [Case] rule was created out of a two-qubit equation [6] and translated into the path-sum
framework [2]. This rule appears at first as a special case – a rule that would not be used much.
But we can show that both sides of the case rule are [HH] reductions of a common diagram. This
provides a general receipe to create new path-sum rules: from a diagram, compute all its [HH]
reductions until they are not reductible anymore; then every couple of resulting diagrams can
make a new rule, given that they have a different number of variables.

8 New ZH set of axioms
In the section presenting the regular hyper pivot, we have shown that the axioms (HS1), (BA1)
and (BA2) are all included into (RHP). We will now prove that with (FHP), the (I) law is also
induced.

Lemma 8.1. (FHP) includes (I).

Proof. This can be proven with the path-sum [HH] law – then also with the Fourier hyper pivot.

a a
y2

y3

y0

y1

16



This diagram corresponds to the following path-sum expression.∑
y0,y1,y2,y3

∑
y

(−1)y0+y0y1+y0y3ay1y2ay2y3ϕ(y2, y3,y)|ℓ(y2, y3,y)〉

Which is reduced when applying [HH]y0,y1 to:

2
∑
y2,y3

∑
y

ay2(a−1)y2y3ay2y3ϕ(y2, y3,y)|ℓ(y2, y3,y)〉

2
∑
y2,y3

∑
y

ay2ϕ(y2, y3,y)|ℓ(y2, y3,y)〉

That is exactly the result.

(ZS1)
. . .

. . .

m

n

. . .

n

m

. . .

= (HS2) = 2 (ZS2) ==

(M)
a b

=
ab

(U)
1

= (FT)
a

=

a−2
a a

(A) a b = a+b
2

¬

2 (O) =¬2 ¬ (RHP) =

n

m

n

m

2

Figure 3: The rules of the ZH-calculus. Throughout, m,n are nonnegative integers and a, b are
arbitrary complex numbers.

Theorem 8.2. The set of rules in Figure 3 is complete for ZH-calculus.

Proof. As seen in lemmas 3.2, 3.3 and 3.4, (HS1), (BA1) and (BA2) can all be replaced by
(RHP). Moreover, (RHP) and (FT) are enough to prove (FHP) – Fourier hyper pivot – since it
is only proven through color changes, bialgebras and Fourier transform. Then (RHP) and (FT)
can prove (I), thanks to lemma 8.1. The set of axioms in Figure 2 being complete, the one in
Figure 3 is also complete.

9 Future work
ZH-calculus and path-sum may still have a lot to learn from one another, there must be some
reductions that are more natural in path-sum, which could be then translated into ZH-calculus.
Or the other way around, an equation of ZH-calculus that could be a reduction into path-sum.
This happened with the (O) law in ZH-calculus, which appears to reduce the number of variables.

9.1 Ortho
Ortho is an equation of the ZH-calculus, that we can now translate into path-sum. A generalized
version of this law is the following:∑

y0,y1,y

φ(y0)
Xψ(y1)

1−Xϕ′|ℓ〉 → 2
∑
y0,y

φ(y0)
Xψ(y0)

1−Xϕ′|ℓ〉

17



Going back to the world of diagrams now, we obtain this:

λk

k ∈ [m]

µk′

k′ ∈ [m′]

λk

k ∈ [m]

µk′

k′ ∈ [m′]

X

¬

X

¬ = 2

The above ZH equation is the complete !-boxed version of (O).

9.1.1 Example of use

An example of application of (O) is

= = =

¬

¬
=

1
2

1
2

(O) (RHP) (M) (HH)

Then adding this new law to path-sum would increase its power in reducing term to the identity.
The (O) law has not yet been proven independant from the other axioms of ZH-calculus nor is
proven using those axioms; it is likely that it is an independant axiom.
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Appendix
Correctness of the path-sum rules

[ω]:
∑
y0∈B

∑
y∈Bm

e2πi(
1
4
y0+

1
2
y0Q(x,y)+R(x,y)) |f(x,y)〉

=
∑
y∈Bm

(
1 + e2πi(

1
4
+ 1

2
Q(x,y))

)
e2πiR(x,y) |f(x,y)〉

=

{∑
y∈Bm (1 + i) e2πiR(x,y) |f(x,y)〉 if Q(x,y) = 0 mod 2∑
y∈Bm (1− i) e2πiR(x,y) |f(x,y)〉 if Q(x,y) = 1 mod 2

=

{√
2
∑

y∈Bm e
2πi( 1

8
+R(x,y)) |f(x,y)〉 if Q(x,y) = 0 mod 2

√
2
∑

y∈Bm e
2πi( 1

8
+ 3

4
+R(x,y)) |f(x,y)〉 if Q(x,y) = 1 mod 2

=
√
2

∑
y∈Bm

e2πi(
1
8
+ 3

4
Q(x,y)+R(x,y)) |f(x,y)〉

[HH]:
∑
y0∈B

∑
y∈Bm

e2πi(
1
2
y0(yi+Q(x,y))+R(x,y)) |f(x,y)〉

=
∑
y∈Bm

(
1 + e2πi(yi+Q(x,y))

)
e2πiR(x,y) |f(x,y)〉

=
∑

y∈Bm, yi=Q(x,y) mod 2

(
1 + e2πi(2k)

)
e2πiR(x,y) |f(x,y)〉

+
∑

y∈Bm, yi=1+Q(x,y) mod 2

(
1 + e2πi(2k+1)

)
e2πiR(x,y) |f(x,y)〉

= 2
∑

y∈Bm, yi=Q(x,y) mod 2

e2πiR(x,y) |f(x,y)〉

= 2
∑

y∈Bm−1

e2πi(R[yi←Q])(x,y) |(f [yi ← Q]) (x,y)〉

[Case]: Recall the precondition

P (x,y) =
1

4
yix+

1

2
yi(yj +Q(x,y)) +R(x,y) =

1

4
yj(1− x) +

1

2
yj(yi +Q′(x,y)) +R′(x,y).

∑
y∈Bm+2

e2πiP (x,y) |f(x,y)〉

=

{∑
y∈Bm+2 e

2πi( 1
2
yi(yj+Q(x,y))+R(x,y)) |f(x,y)〉 if x = 0∑

y∈Bm+2 e
2πi( 1

2
yj(yi+Q′(x,y))+R′(x,y)) |f(x,y)〉 if x = 1

=

{
2
∑

y∈Bm e
2πi(R[yj←Q])(x,y) |(f [yj ← Q]) (x,y)〉 if x = 0

2
∑

y∈Bm e
2πi(R′[yi←Q′])(x,y) |(f [yi ← Q′]) (x,y)〉 if x = 1

by [HH]

= 2
∑
y∈Bm

e2πi((1−x)R[yj←Q]+xR′[yi←Q′])(x,y) |f(x,y)〉 since yi, yj /∈ f
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Proof of Fourier hyper pivot
1st step, push the the H box from the middle and unfold the λ H boxes.

=

λk

n k ∈ [m]

λk

n k ∈ [m]

21
2

m+n

2nd step, BA1 between the two dots in the middle.

=

λk

n k ∈ [m]

λk

n k ∈ [m]

21
2

m+n

21
2

m+n

3rd step, push the H box from the left.

=

λk

n

λk

n k ∈ [m]

k ∈ [m]

2

21
2

mn+m

1
2

m+n
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4th step, BA2 on the left-hand side.

=

λk

n

λk

n

k ∈ [m]

k ∈ [m]

21
2

mn+m

21
2

mn+m

5th step, BA2 on the right-hand side.

=

λk

n

λk

n

k ∈ [m]

k ∈ [m]

21
2

mn+m

21
2

mn+m

6th step, push the H box from the right.

=

λk

n

λk

n

k ∈ [m]

k ∈ [m]

21
2

mn+m

21
2

mn
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7th step, Fourier transform.

=

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

λk

n

k ∈ [m]

21
2

mn

21
2

mn

8th step, push H box from the left.

=

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

21
2

mn

2mn+1

1
2

mn2n

9th step, BA2 on the left-hand side.

=

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

2mn+1

1
2

mn2n

2mn+1

1
2

mn2n
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Final step, proven in the following lemma.

=

i ∈ [n]

k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

i ∈ [n]
k ∈ [m]

λ
(−2)|b|−1

k
bi

b ∈ Bn
∗

2mn+1

1
2

mn2n

2

Lemma 9.1. We are going to prove the following by induction on n and m:

=

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2mn+1

1
2

mn2n
i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

Proof. We start with an induction on m, by at first expending the m+ 1 term of the !-box:

=

i ∈ [n]

k ∈ [m+ 1]

χ(λk,b)bi

b ∈ Bn
∗

2(m+1)n+1

1
2

(m+1)n2n

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2n+1

1
2

n2n

χ(λm+1,b)bi

b ∈ Bn
∗

2mn+1

1
2

mn2n
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Then by induction hypothesis:

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2n+1

1
2

n2n

χ(λm+1,b)bi

b ∈ Bn
∗

2mn+1

1
2

mn2n

=

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2n+1

1
2

n2n

χ(λm+1,b)bi

b ∈ Bn
∗

Before stating the next step, we detail the reasons why it is true:

0 χ = χ

1
2

= χ1

= χ12 = χ2

and also:

1 χ = χ

= χ2
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Thanks to the two previous equations:

=

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

1
2

n(2n−1)

χ(λm+1,b)bi

b ∈ Bn
∗

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

χ(λm+1,b)bi

b ∈ Bn
∗

And finally we can put back the m+ 1 term of the !-box:

=

i ∈ [n]

k ∈ [m]

χ(λk,b)bi

b ∈ Bn
∗

2

χ(λm+1,b)bi

b ∈ Bn
∗

i ∈ [n]

k ∈ [m+ 1]

χ(λk,b)bi

b ∈ Bn
∗

2

Then, the proof carries on with the induction on n, the expansion of the Booleans b doubles
what resides in the m-labelled !-box, which meanss that we need the induction hypothesis for
the coupe (n, 2m) – which is already proven since we have proven the induction over m. Thus
the lemma holds.
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