Picturing Quantum Processes

Aleks Kissinger and Bob Coecke

Radboud University and Oxford University

ESSLLI Toulouse 2017
Chapter 1: Introduction

Under normal conditions the research scientist is not an innovator but a solver of puzzles, and the puzzles upon which he concentrates are just those which he believes can be both stated and solved within the existing scientific tradition.

Quantum theory: The standard line

- Quantum theory governs the behaviour of the microscopic world

- True, it has some 'bugs' from the p.o.v. of classical physics:
 - irreducible non-determinism
 - non-locality
 - incompatible observations
 - ...

- A century of effort went to answering: Why is quantum theory so weird, and can we fix its bugs?
Quantum theory: The standard line

- Quantum theory governs the behaviour of the microscopic world
- You’ve probably heard from credible sources\(^1\) that it is **weird**, **spooky**, and defies our **natural, classical intuitions**.

\(^1\) e.g. Kissinger & Coecke Picturing Quantum Processes ESSLLI Toulouse 2017 4 / 23
Quantum theory: The standard line

• Quantum theory governs the behaviour of the microscopic world

• You’ve probably heard from credible sources\(^1\) that it is \textit{weird}, \textit{spooky}, and defies our \textit{natural, classical intuitions}.

• True, it has some ‘bugs’ from the p.o.v. of classical physics:
 • irreducible non-determinism
 • non-locality
 • incompatible observations
 • ...

\(^1\) e.g. Kissinger & Coecke Picturing Quantum Processes ESSLLI Toulouse 2017 4 / 23
Quantum theory: The standard line

- Quantum theory governs the behaviour of the microscopic world.
- You’ve probably heard from credible sources\(^1\) that it is **weird**, **spooky**, and defies our **natural, classical intuitions**.
- True, it has some ‘bugs’ from the p.o.v. of classical physics:
 - irreducible non-determinism
 - non-locality
 - incompatible observations
 - ...
- A century of effort went to answering:

 Why is quantum theory so weird, and can we fix its bugs?

\(^1\) e.g. Kissinger & Coecke Picturing Quantum Processes ESSLLI Toulouse 2017
This produced (basically) two answers
This produced (basically) two answers

Make even weirder ontology
This produced (basically) two answers

Make even weirder ontology

(e.g. Bohmian mechanics, many worlds, ...)

Kissinger & Coecke

Picturing Quantum Processes

ESSLLI Toulouse 2017
This produced (basically) two answers

Make even weirder ontology

‘Shut up and calculate!’

(e.g. Bohmian mechanics, many worlds, ...)

Kissinger & Coecke

Picturing Quantum Processes

ESSLLI Toulouse 2017
This produced (basically) two answers

Make even weirder ontology

‘Shut up and calculate!’

(e.g. Bohmian mechanics, many worlds, ...)

(Mermin, describing the Copenhagen interpretation)
Another, more interesting question

- In the 1980s, a handful of people started to think like software engineers, and ask:

 What if the **bugs** in quantum theory are actually **features**?
Another, more interesting question

- In the 1980s, a handful of people started to think like software engineers, and ask:

 What if the bugs in quantum theory are actually features?

- Enter:

 quantum teleportation, communication, cryptography

 quantum computation
From QT to teleportation

1932 - quantum theory
1992 - quantum teleportation

⇒

We'll see that teleportation is miraculous...but it's also totally obvious.
From QT to teleportation

1932 - quantum theory
From QT to teleportation

1932 - quantum theory

⇒

1992 - quantum teleportation

Teleporting an Unknown Quantum State via Dual Classical and Einstein-Podolsky-Rosen Channels

Charles H. Bennett,(1) Gilles Brassard,(2) Claude Crépeau,(2),(8) Richard Jozsa,(2) Asher Peres,(4) and William K. Wootters(6)

(1) IBM Research Division, T.J. Watson Research Center, Yorktown Heights, New York 10598
(2) Département IRO, Université de Montréal, C.P. 6128, Succursale "A", Montréal, Québec, Canada H3C 3J7
(3) Laboratoire d'Informatique de l'École Normale Supérieure, 45 rue d'Ulm, 75230 Paris CEDEX 05, France
(4) Department of Physics, Technion-Israel Institute of Technology, 35000 Haifa, Israel
(5) Department of Physics, Williams College, Williamstown, Massachusetts 01267

(Received 2 December 1992)
From QT to teleportation

1932 - quantum theory 1992 - quantum teleportation

We’ll see that teleportation is **miraculous**...but it’s also **totally obvious**.
Q: Why did it take so long?
From QT to teleportation

Q: Why did it take so long?

A: It took 60 years to ask the right question.
From QT to teleportation

Q: Why did it take so long?

A: It took 60 years to ask the right question.

Q2: Why is this so hard?
From QT to teleportation

Q: Why did it take so long?

A: It took 60 years to ask the right question.

Q2: Why is this so hard?

A2: QT needs a better language.
Low-level vs. high-level languages
Low-level vs. high-level languages

```
.LCO:
    .string "QUANTUM!"
    .text
    .globl main
    .type main, @function
main:
.LFB0:
    .cfi_startproc
    pushq  %rbp
    .cfi_def_cfa_offset 16
    .cfi_offset 6, -16
    movq  %rsp, %rbp
    .cfi_def_cfa_register 6
    subq  $16, %rsp
    movl  $0, -4(%rbp)
    jmp   .L2
.L3:
    movl  $.LCO, %edi
    movl  $0, %eax
    call   printf
    addl  $1, -4(%rbp)
.L2:
    cmpl  $4, -4(%rbp)
    jle   .L3
    leave
    .cfi_def_cfa 7, 8
    ret
    .cfi_endproc
```

```vs.
5. times do
    print "QUANTUM!"
end
```
Low-level vs. high-level languages
Low-level vs. high-level languages

\[
\frac{1}{4} \begin{pmatrix}
-1+i & 1+i & 1+i & -1+i & 1+i & 1-i & 1-i & 1+i \\
1+i & 1-i & 1-i & 1+i & -1+i & 1+i & 1+i & -1+i \\
1+i & 1-i & 1-i & 1+i & 1-i & -1-i & -1-i & 1-i \\
1-i & -1-i & -1-i & 1-i & 1+i & 1-i & 1-i & 1+i \\
1+i & 1-i & 1-i & 1+i & 1-i & -1-i & -1-i & 1-i \\
1-i & -1-i & -1-i & 1-i & 1+i & 1-i & 1-i & 1+i \\
-1+i & 1+i & 1+i & -1+i & 1+i & 1-i & 1-i & 1+i \\
1+i & 1-i & 1-i & 1+i & -1+i & 1+i & 1+i & -1+i
\end{pmatrix}
\]
Low-level vs. high-level languages

\[
\frac{1}{4} \begin{pmatrix}
-1+i & 1+i & 1+i & -1+i & 1+i & 1-i & 1-i & 1+i \\
1+i & 1-i & 1-i & 1+i & -1+i & 1+i & 1+i & -1+i \\
1+i & 1-i & 1-i & 1+i & 1-i & -1-i & -1-i & 1-i \\
1-i & -1-i & -1-i & 1-i & 1+i & 1-i & 1-i & 1+i \\
1+i & 1-i & 1-i & 1+i & 1-i & -1-i & -1-i & 1-i \\
1-i & -1-i & -1-i & 1-i & 1+i & 1-i & 1-i & 1+i \\
-1+i & 1+i & 1+i & -1+i & 1+i & 1-i & 1-i & 1+i \\
1+i & 1-i & 1-i & 1+i & -1+i & 1+i & 1+i & -1+i
\end{pmatrix}
\]
Quantum picturalism

Definition

Quantum picturalism refers to the use of diagrams to represent, reason about, and capture essential features and logic of interacting quantum processes.

\[
\begin{align*}
 \quad & = \\
 \quad & =
\end{align*}
\]
Quantum theory: a warmup

• Typical quantum systems are photons, electrons, etc.
• You won't need any physics background for this course, so let's focus on an 'alternative' quantum system.
Quantum theory: a warmup

• Typical quantum systems are photons, electrons, etc.
Quantum theory: a warmup

- Typical quantum systems are photons, electrons, etc.
Quantum theory: a warmup

- Typical quantum systems are photons, electrons, etc.

- You won’t need any physics background for this course, so let’s focus on an ‘alternative’ quantum system
This is Dave.
This is Dave.

...he’s a dodo.
This is Dave.

...he’s a quantum dodo.
Bits vs. qubits

- Dave’s state is that of a *two-level system*, or a *qubit*, the simplest kind of quantum system.
Bits vs. qubits

- Dave’s state is that of a *two-level system*, or a *qubit*, the simplest kind of quantum system.
- Bits:
 1. admit two states, 0 and 1
 2. can be subjected *any* function
 3. can be read freely
Bits vs. qubits

• Dave’s state is that of a *two-level system*, or a *qubit*, the simplest kind of quantum system.

• Bits:
 1. admit two states, 0 and 1
 2. can be subjected *any* function
 3. can be read freely

• Qubits:
 1. admit an *entire sphere* of states
 2. can *only be subjected to rotations* of the sphere
 3. can only be accessed by special processes called *quantum measurements*
Where’s Dave?

The rules:
1. we are only allowed to ask whether an animal lives at a specific location on Earth or its antipodal location,
2. all animals can talk, and will always answer 'correctly', and
3. predatory animals will refrain from eating the questioner.
Where’s Dave?

The rules:
Where’s Dave?

The rules:

1. we are only allowed to ask whether an animal lives at a specific location on Earth or its antipodal location,
Where’s Dave?

The rules:

1. we are only allowed to ask whether an animal lives at a specific location on Earth or its antipodal location,
2. all animals can talk, and will always answer ‘correctly’, and
Where’s Dave?

The rules:

1. we are only allowed to ask whether an animal lives at a specific location on Earth or its antipodal location,
2. all animals can talk, and will always answer ‘correctly’, and
3. predatory animals will refrain from eating the questioner.
Process theories

- Dave (or rather, a qubit) is just one kind of *system*
• Dave (or rather, a qubit) is just one kind of system
• systems undergo processes (e.g. rotations and measurements)
Process theories

- Dave (or rather, a qubit) is just one kind of system
- systems undergo processes (e.g. rotations and measurements)
- if we wrap up all the processes which ‘fit together’ in a theory of physics/logic/computation/etc., we get a process theory
Process theories

- Dave (or rather, a qubit) is just one kind of system
- systems undergo processes (e.g. rotations and measurements)
- if we wrap up all the processes which ‘fit together’ in a theory of physics/logic/computation/etc., we get a process theory
- The plan for this week:

Build the theory of quantum processes from scratch, and understand its behaviour using diagrams.