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Abstract

In this thesis, we construct a general theoretical framework for anytime inference which auto-
matically gives us instantiations of inference in various important domains, such as Bayesian
networks, relational algebras, disjunctive normal forms and set potentials in Dempster-Shafer
theory. Our framework is based on local computation schemes for inference, which perform
inference by message-passing on junction trees. We also undertake an analysis of distributed in-
ference. Our theoretical framework is implemented as a software library to illustrate examples
of anytime inference using the theoretical framework.

Exact inference in general is a #P-hard problem. Due to the prohibitive computational com-
plexity, approximate inference is well-studied. In many applications a coarse approximation is
sufficient. Ideally we would like such an approximation process to be anytime. In an anytime
algorithm, the approximation improves monotonically with time, and the process can be inter-
rupted and resumed without restarting. This is especially useful in domains where time may
be limited such as continuous learning and robotics. While there are several domain-specific
anytime algorithms, little work has been done on generalisation. It is advantageous to develop
a theoretical framework which can work for several domains, including statistical and logi-
cal inference. We use the theory of generic inference, a unification of prior local computation
schemes, as a starting point for our framework. In generic inference, information is represented
as elements of an algebra called a valuation algebra, with certain axioms for approximate and
exact inference. We introduce axioms and operations on valuation algebras to support anytime
inference. We illustrate anytime inference with applications to several domains.

Computational overhead can also be reduced by making the algorithm distributed. For our
algorithm, we analyse the tradeoffs between computational, communication and synchroni-
sation costs. We give bounds on the number of processors for maximum concurrency and
describe a processor assignment algorithm for optimisation of communication costs.

The overall aim of the thesis is to contribute to the study of anytime inference, and to do so
in a manner that enables some measure of control over the degree of approximation and easy
applicability to a wide range of domains.





Acknowledgments

I would like to thank my supervisor Samson Abramsky,
without whose guidance this thesis would not have been
possible, for the encouraging conversations, which never
failed to counter my pessimism when things were not going
according to plan, and even when they were. I also thank
Bob Coecke and everyone in the Quantum Group for being
such a nice, friendly group of people, and for the memories of
open-air talks and barbecues.

I am grateful to the Clarendon Fund, Exeter College and
the University of Oxford for funding my study here.

I also thank Kohei Kishida and Ninad Rajgopal from the
department for their helpful comments on the thesis.

For making my time at Oxford memorable (other than
the thesis, which was, of course, extremely fun), I thank my
friends. There are too many that I would like to thank and
I’m sure I will miss some of you, so I shall not attempt it, but
I will cherish the memories I made in Oxford for as long as
I live. I will remember the delicious potlucks, impromptu
baking sessions, walks along the river, the random advice,
poetry sessions, table tennis matches, punting and most
important of all, the comforting camaraderie.

Last, but not the least, I am grateful to my parents for their
unconditional love and support throughout the vicissitudes of
my time here.



distributed anytime generic inference in valuation algebras 6

2.1



Contents

1 Introduction 11
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.1.1 Utility of the distributive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.1.2 Generalised distributive law . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.1.3 Marginalisation of Product Form . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.2 Themes of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Anytime Inference in Valuation Algebras . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Analysis of Distributed Inference . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.3 Overview of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.1 Overview of prior work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.3.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Generic Inference 27
2.1 Valuation Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Semiring induced valuation algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Arithmetic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.2 Disjunctive normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.3 Relational algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Set potential valuation algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4 Inference Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.5 Inference in semiring induced valuation algebras . . . . . . . . . . . . . . . . . . . . 42

2.5.1 Arithmetic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5.2 Disjunctive normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.5.3 Relational algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Inference in set potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.7 The Inference Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7.1 Fusion, Variable Elimination and Join Trees . . . . . . . . . . . . . . . . . . . 46

2.7.2 Inward propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.7.3 Outward propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.7.4 Local Computation Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.8 Ordered Valuation Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.9 Semiring induced ordered valuation algebras . . . . . . . . . . . . . . . . . . . . . . . 59

2.9.1 Arithmetic potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61



distributed anytime generic inference in valuation algebras 8

2.9.2 Disjunctive normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.9.3 Relational algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.10 Set potential ordered valuation algebra . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.11 Approximate inference algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.11.1 Inward propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3 Anytime Generic Inference 67
3.1 Anytime Ordered Valuation Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Anytime inference algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.1.2 Properties of anytime inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.2 Semiring induced anytime ordered valuation algebras . . . . . . . . . . . . . . . . . 88

3.2.1 Instances of semiring induced anytime ordered valuation algebras . . . . . . 94

3.3 Set potential anytime ordered valuation algebra . . . . . . . . . . . . . . . . . . . . . 96

3.4 Outward propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4 Instances of Anytime Inference in Valuation Algebras 103
4.1 Semiring induced anytime ordered valuation algebras . . . . . . . . . . . . . . . . . 103

4.1.1 Arithmetic potentials – Bayesian networks . . . . . . . . . . . . . . . . . . . . 103

4.1.2 Disjunctive normal forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.1.3 Relational algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.2 Set potential anytime ordered valuation algebra . . . . . . . . . . . . . . . . . . . . . 114

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

5 Implementation 119
5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.1.2 Valuation algebra operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.2.1 Arithmetic potentials - Bayesian networks . . . . . . . . . . . . . . . . . . . . 122

5.2.2 Disjunctive Normal Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

6 Analysis of Distributed Inference 127
6.1 Communication, Computation and Synchronisation Tradeoffs in Distributed Com-

putation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.1.1 Dependency graph, parallel schedule, and critical path . . . . . . . . . . . . . 129

6.1.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

6.2 Tradeoffs for Local Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.2.1 Processor assignment algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 133

6.3 Communication costs in Weighted Valuation Algebras . . . . . . . . . . . . . . . . . 142

6.3.1 Optimisation of communication costs . . . . . . . . . . . . . . . . . . . . . . . 143

2.1



distributed anytime generic inference in valuation algebras 9

6.3.2 Comparison with our analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7 Conclusion 147

A Appendix 151
A.1 Axioms of Anytime Ordered Valuation Algebras . . . . . . . . . . . . . . . . . . . . . 151

List of Figures 153

Bibliography 154

2.1





Chapter 1

Introduction

“When you have eliminated the impossible, whatever remains,
however improbable, must be the truth.”

– Arthur Conan Doyle, Sherlock Holmes, The Sign of the Four

Arriving at a conclusion from known premises is one
of the most fundamental cognitive processes; we use it ev-
ery time we pick up an umbrella when it is cloudy (pre-
diction of rain), and adjust our route when we hear of a
traffic jam on the radio (prediction of delay). This process
is that of inference, and in its formalised version is one of
the most important areas of research in computer science.
Inference in the form of statistical inference is a fundamen-
tal component in machine learning [Bishop, 2006], which
itself finds application in solving problems in the areas of
computer vision and speech recognition. Logical inference
[Smith, 2003] in deriving conclusions or entailments from true
premises, finds application in constraint satisfaction prob-
lems [Russell et al., 2003], relational databases [Date, 1975],
theorem provers and formal verification. Inference is gener-
ally computationally expensive, which has led to significant
work in heuristic approaches and in approximate inference
[Dechter, 1998, Koller et al., 1999, Heskes et al., 2002]

This thesis explores approximate inference using the frame-
work of generic inference which unifies the statistical and
logical aspects of inference. We look at the inference prob-
lem from an algebraic, rather than statistical point of view,
using the language of valuation algebras. Valuation algebras
abstract the notion of inference across several domains like be-
lief functions in Dempster-Shafer theory, statistical inference
in probabilistic graphical models, resolution in disjunctive
normal forms and querying in relational databases, among
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others [Pouly and Kohlas, 2011]. The notion of a valuation is
that it is a piece of information, which can take the form of a
conditional probability distribution or a disjunctive normal
form.

Generally, inference problems are in the complexity class
#P-hard [Russell et al., 2003], where #P is the set of counting
problems associated with the problems in NP. We use the ap-
proximation method of ordered valuation algebras introduced
in [Haenni, 2004], which uses a partial order to formulate
information approximation. This framework is extended to
support anytime inference, where the exact solution of the
inference problem is monotonically approached with increas-
ing time allocated to the algorithm. Our framework preserves
the genericity, allowing its application to various useful in-
stances of valuation algebras. We provide constructive proofs
of convergence of our anytime inference algorithm and con-
sider the problem from a software architecture point of view,
providing a proof-of-concept implementation as well as an
analysis of the tradeoffs involved in a distributed version of
our algorithm.

This chapter is organised as follows: Section 1.1 gives a
general background to the thesis, introducing the reader to
the generalised distributive law which is one of the key pre-
decessors of the valuation algebra framework. This section
shows the significance of the distributed law in achieving ef-
ficiency gains. Section 1.2 gives a more detailed introduction
to the two strands of our thesis: namely anytime, approxi-
mate inference in valuation algebras and an analysis of the
tradeoffs involved in distributed inference. Section 1.3 gives
the organisation of the thesis, with the key contributions
highlighted.

1.1 Background

The broad area of our thesis is, as mentioned before, in
the area of inference algorithms, coupled with the theory
of generic inference, which we review in chapter 2. In this
section we give a brief history of the research area and its
general objective.

For computer scientists, programmers and mathematicians,
one of the most fundamental notions is that of generalisation
of mathematical structures, algorithms and code. General-

2.1
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isation helps in the elucidation of hitherto latent structure,
and saves time by unifying various formalisms, algorithms
or mathematical theories into one framework. It embodies
the write it once principle in programming, which is utilised
at all levels, from loops and subroutines at the low level to
object oriented programming and types in functional pro-
gramming. The examples of generalisation in mathematics
and theoretical computer science are too numerous to list;
a few notable ones in theoretical computer science and pro-
gramming languages are the formulation of category theory
as a generalisation of monoids and homomorphisms, gen-
eralised algebraic data types in functional programming
languages like Haskell, and generic programming constructs
like templates in C++ or generics in Java.

In this thesis, we focus on a particular kind of genericity
that encompasses:

Logical systems These include systems of disjunctive normal
forms and problems like satisfiability which can be ex-
pressed in terms of a more generic theory.

Statistical inference in probabilistic graphical models Inference
in probabilistic graphical models typically involves focus-
ing on the probability distribution of a particular set of
variables, given certain evidence, by marginalising out por-
tions of the full underlying joint probability distribution.
The underlying graph in the probabilistic graphical model
can be either directed (representing Bayesian networks) or
undirected (representing Markov networks).

Fourier and Hadamard transforms Hadamard transforms (used
in quantum computation and data encryption) and Fourier
transforms (extensively used in signal processing) can be
formulated in terms of this generic framework.

Belief functions in Dempster-Shafer theory. Belief functions
are a generalisation of classical probability theory, mod-
elling the degree of belief in a proposition as a real number
assigned to a set of events rather than to a single event.
This allows one to model ignorance as well as ambiguity.
Belief functions are used in sensor networks and data fu-
sion. Inference in belief functions is also expressible in this
framework as shown in [Shenoy and Shafer, 1990].

Each of these systems has been studied extensively but

2.1
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the commonality in the algorithms relating to these varied
structures was first mentioned by Shenoy-Shafer in their
unification of inference in belief functions and inference in
probabilistic systems as in the Lauritzen-Spiegelhalter ar-
chitecture [Lauritzen and Spiegelhalter, 1990]. An extensive
unification was performed by Aji and McEliece in their article
on the generalised distributive law [Aji and McEliece, 2000]
which is key to making the algorithms relating to these prob-
lems more efficient. In fact, the mathematical structure of
valuation algebras (reviewed in Chapter 2) can be viewed
as a direct descendant of the early version of the framework
in [Shenoy and Shafer, 1990, Shenoy, 1997], the application
of local computation to probabilistic graphical models in
[Lauritzen and Spiegelhalter, 1990] and the generalised dis-
tributive law of [Aji and McEliece, 2000].

In the following sections, we show the utility of the dis-
tributive law (section 1.1.1), followed by a review of the
notion of a generalised distributive law (section 1.1.2) as
discussed in [Aji and McEliece, 2000].

1.1.1 Utility of the distributive law

We are familiar with the (left-hand) distributive law in
arithmetic

a · (b + c) = a · b + a · c (1.1)

where a, b, c ∈ R. There is an corresponding right-hand
distributive law:

(b + c) · a = b · a + c · a (1.2)

These two are equivalent because of the commutativity of
·. When, as in this case, both left and right-hand distributive
laws hold, we say · is distributive over +.

If we consider the number of arithmetic operations, the
left hand side has two operations, whereas the right has
three. This can be considered a trivial application of the
distributive law to improve efficiency by reducing the number
of operations. However we can get greater improvements in
efficiency in larger problems as we shall see in a couple of
examples.

IExample 1.1. Consider the functions φ : A× A× A× A →
R and γ : A× A → R, where A is a set with |A| = m. Tuples

2.1
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in the domain of φ are denoted by (w, x, y, z), whereas those
in the domain of γ are denoted (r, x). Suppose we have to
compute α : A× A→ R and β : A→ R:

α(w, x) = ∑
y,z,r∈A

φ(w, x, y, z)γ(r, x)

β(y) = ∑
x,z,w,r∈A

φ(w, x, y, z)γ(r, x)

Summing out the variables in the product of φ and γ is
also known as marginalisation. For example, in the first equa-
tion we are obtaining α(w, x) by marginalising out the vari-
ables y, z, r. Similarly β(y) is obtained by marginalising out
the variables x, z, w, r. Let’s look at the number of arithmetic
operations required for computation of these functions, with-
out recourse to the distributive law. Then in the calculation of
α(w, x), for each of the m2 terms in the domain of α, there are
m3 terms (corresponding to the marginalised variables y, z, r).
Each of these terms requires a multiplication and summation,
so a total of 2m5 operations are involved. Similarly for β(y),
we marginalise x, z, w, r, and for each of the m terms, we have
corresponding m4 terms on the right hand side, making a to-
tal of 2m5 operations again. Thus, if we do not take advantage
of the distributive law, we need a total of 4m5 operations.

On the other hand, using the distributive law, we get

α(w, x) =

(
∑

y,z∈A
φ(w, x, y, z)

)(
∑
r∈A

γ(r, x)

)
(1.3)

This can be used to simplify the computation. We can
rewrite the above as α(w, x) = α1(w, x)α2(x) where

α1(w, x) = ∑
y,z∈A

φ(w, x, y, z) (1.4)

α2(x) = ∑
r∈A

γ(r, x) (1.5)

For α1, the computation now only requires m4 operations
(m2 entries in the domain of α1 and m2 entries corresponding
to the marginalised variables y, z). Similarly α2(x) requires
m2 operations, making a total of m4 + m2 operations. If we
then compute the m2 values of α(w, x) = α1(w, x)α2(x), that
requires m2 multiplications, making a total of m4 + 2m2 which
is a significant reduction from the previous inefficient method
which required 2m5 operations.

2.1
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Similarly we can write β(y) using the distributive law as

β(y) = ∑
x,z,w∈A

φ(w, x, y, z)

(
∑
r∈A

γ(r, x)

)
= ∑

x,w∈A
φ(w, x, y, z)α2(x) (1.6)

If we calculate the values of α2(x), which takes m2 operations
and then use equation 1.6 (2m4 operations), we get a total of
2m4 + m2 operations, compared to 2m5 for the direct method.

Also, if we wanted to compute both α(w, x) and β(y) then
we could cache the output of α2(x), thus needing to compute
it only once. Then the computation of both α(w, x) and β(y)
would only take 3m4 + 2m2 compared to 4m5 for the direct
method.

This was a simple example. In the following section we
shall review the notion of the generalised distributive law and
its applications to more general examples.

1.1.2 Generalised distributive law

The generalised distributive law is the generalisation of the
distributive law in arithmetic to commutative semirings. As
we shall extensively use commutative semirings and other
structures such as monoids and semigroups in later chapters,
we present the definitions below before proceeding to discuss
the generalised distributive law.

A commutative semiring can be defined in terms of a
monoid, which in turn can be defined in terms of a semi-
group. The definitions of semigroup, monoid, commutative
semigroup, subsemigroup, commutative monoid are as in
[Rosen, 1999, section 5.1.2]. The definition of semiring is from
[Golan, 2013, chapter 1].

IDefinition 1.1. semigroup. A semigroup is a set S together
with a binary operation · : S × S → S that satisfies the
associative property:

(a · b) · c = a · (b · c) ∀a, b, c ∈ S

IDefinition 1.2. monoid. A monoid is a semigroup (S, ·)
with the identity element: there exists e ∈ S such that for all
a ∈ S, e · a = a · e = a.

2.1
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IDefinition 1.3. commutative semigroup. A commutative
semigroup is a semigroup (S, ·) where · is commutative, i.e.
a · b = b · a for all a, b ∈ S.

IDefinition 1.4. subsemigroup. A nonempty subset T of a
semigroup (S, ·) is a subsemigroup of S if T is closed under ·.

IDefinition 1.5. commutative monoid. A commutative
monoid is a monoid (S, ·) where · is commutative, i.e. a · b =

b · a for all a, b ∈ S.

IDefinition 1.6. semiring. A semiring is a set A with two
binary operations + : A× A→ A (addition) and · : A× A →
A (multiplication), with two elements 0, 1 ∈ A, such that:

1. (A,+) is a commutative monoid with identity element 0.

2. (A, ·) is a monoid with identity element 1.

3. Multiplication left and right distributes over addition; for
all a, b, c ∈ A:

(a) a · (b + c) = (a · b) + (a · c)
(b) (b + c) · a = (b · a) + (c · a)

4. Multiplication by 0 results in 0: for all a ∈ A, a · 0 = 0 · a = 0.

A semiring is denoted by (A,+, ·, 0, 1). We also require 1 6= 0,
as otherwise we would get the trivial semiring A = {0}.

IDefinition 1.7. commutative semiring. A semiring
(A,+, ·, 0, 1) is commutative iff · is a commutative operation,
i.e. for all a, b ∈ A: a · b = b · a.

The generalised distributive law is the distributive law
(point 3 of def. 1.6) in a commutative semiring (A,+, ·, 0, 1).
As · is commutative in a commutative semiring, this collapses
the left and right-hand distributive laws in (def. 1.6) to one.

The distributive law in arithmetic is then a special case
of this generalised distributive law, with the commutative
semiring as (R+,+, ·, 0, 1); the semiring operations being
arithmetic addition and multiplication respectively.

1.1.3 Marginalisation of Product Form

In this section we review a problem called the marginali-
sation of product form (MPF). Several well-known problems
can be formulated as instances of the MPF, like the Hadamard

2.1
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transform and inference in Bayesian networks. This section
is intended to be a brief introduction to the utility of the dis-
tributive law. A detailed discussion of the algorithm and
complexity analysis can be found in [Aji and McEliece, 2000,
Section III].

INotation. We first define some useful notation in the in-
terest of brevity and continuity with similar notation used in
later chapters:

N1 Variables: Variables are denoted by lowercase letters, possi-
bly with subscripts, from a universe V = {x1, x2, . . . , y1, y2, . . . , y, z, . . .}.
Sets of variables are denoted by capital letters, with op-
tional subscripts.

N2 Frame: The set of possible values a variable x can take
called the frame of x and is denoted by Ωx. We also define
the frame of a set of variables X as the Cartesian product
of the frames of its component variables: ΩX = ∏x∈X Ωx.
This can be thought of as the set of all functions x : X →⋃

x∈X Ωx.

If |Ωx| = 2, then we say x is a binary variable.

N3 Tuples: A tuple with variables from X ⊆ V is a function x :
X → ⋃

x∈X Ωx with the condition that x(x) ∈ Ωx for all x ∈
X. This is thus an assignment of values to variables in X.
We also interchangeably use x to denote such a function’s
unique representation in the tuple notation. The standard
tuple notation allows us to write x ∈ ΩX, and we call x an
X-tuple.

N4 Tuple projection: The projection of an X-tuple x to a Y-
tuple, where Y ⊆ X is the tuple as a function restricted to
the subdomain Y: x �Y. The projection in the tuple notation
is denoted by x↓Y.

N5 Tuple partition: We can represent the partition of x, an
X-tuple into tuples with disjoint domains, but whose union
is X. For example an X-tuple can be split into a S-tuple
for S ⊆ X and an X \ S-tuple. This is denoted as x =

(x↓S, x↓X\S).

N6 Functions: In this section we shall consider a particular
class of functions denoted by Φ = {α1, α2, . . . , β, γ, . . .},
where the functions are denoted by lowercase Greek letters.
Each function in Φ has the type α : ∏x∈X Ωx → A for some
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X ⊆ V and (A,+, ·, 0, 1) is a commutative semiring. We
also indicate the type as α : ΩX → A where ΩX = ∏x∈X Ωx.
As the domains of all functions are always ΩX for some
X ⊆ V, we refer to X as the domain label for a function
α : ΩX → A. If the semiring A is implied or specified, we
further abbreviate the type notation of a function α : ΩX →
A as just α : X.

We can now proceed to the definition of the marginalisa-
tion of product form problem.

IDefinition 1.8. Product form. We consider a set of func-
tions F = {φ1, φ2, . . . , φn}, with F ⊆ Φ, where Φ is the class of
functions with the form α : ΩX → A. Each member function
φi has domain label Xi (φi : ΩXi → A). Then the product form
π for the set of functions F is defined as:

π : ΩX → A; π(x) = φ1(x1) · φ2(x2) · . . . · φn(xn) (1.7)

where x is an X-tuple, where X = ∪n
i=1Xi and xi = x↓Xi .

IDefinition 1.9. Marginalisation. Marginalisation of a
function α : ΩX → A to a function β : ΩY → A is defined for
Y ⊆ X as

β(y) = ∑
z∈ΩX , z↓T=y

α(z) (1.8)

IDefinition 1.10. Marginalisation of product form

(MPF). Let π be the product form of F = {φ1, φ2, . . . , φn}.
Then the marginalisation of product form problem is the
computation of a set of functions K = {α1, α2, . . . , αm} where
each αi ∈ K is a marginalisation over one or more variables of
the product form π.

Thus an MPF problem can be represented as a 4-tuple
〈V, A, F, K〉, with V the universe of variables, (A,+, ·, 0, 1) as
the semiring, F being the set of functions which constitute the
product form π, and K. Each function also has an associated
domain label as described in the notation previously.

We also call φi ∈ F as local kernels and their domain labels
Xi local domain labels. The product form π is termed the global
kernel. Functions in K which have to be computed are called
objective functions.

Now that we have defined the MPF, we can consider a
few examples, which show how various problems can be
mapped to the MPF. We start with the problem considered in
example 1.1.

2.1
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IExample 1.2. Here we have V = {r, w, x, y, z}, the semiring
as the real semiring (R+,+, ·, 0, 1), F = {φ : {w, x, y, z}, γ :
{r, x}}, and the set of objective functions K = {α : {w, x}, β :
{y}}, with

α(w, x) = ∑
y,z,r∈A

φ(w, x, y, z)γ(r, x)

β(y) = ∑
x,z,w,r∈A

φ(w, x, y, z)γ(r, x)

This naturally defines a MPF according to the definition
above.

IExample 1.3. Hadamard transform. Let there be binary
variables x1, x2, x3, y1, y2, y3, and f (y1, y2, y3) be a real-valued
function. Consider the following MPF problem under the
commutative semiring of R

D1 {y1, y2, y3} f (y1, y2, y3)

D2 {x1, y1} (−1)x1y1

D3 {x2, y2} (−1)x2y2

D4 {x3, y3} (−1)x3y3

D5 {x1, x2, x3} 1

Then the global kernel π and the objective function at local
domain H(x1, x2, x3) are

π(x1, x2, x3, y1, y2, y3) = f (y1, y2, y3)(−1)x1y1+x2y2+x3y3

H(x1, x2, x3) = ∑
y1,y2,y3

f (y1, y2, y3)(−1)x1y1+x2y2+x3y3

Thus H(x1, x2, x3) is the Hadamard transform of F(y1, y2, y3)

and can be expressed in the MPF form. It can also be shown
that the Fourier transforms over any finite abelian group
can be represented in an MPF form [Pouly and Kohlas, 2011,
Section 3.12].

IExample 1.4. Bayesian network. A Bayesian network
usually depicts a causal relationship between variables and
represents a joint probability distribution. Consider the fol-
lowing example (fig. 1.1) of a causal network of a burglary
alarm being triggered [Pearl, 1988, p49, section 2.2.4]. Mr.
Holmes has a burglary alarm installed in his house. The
nodes in this Bayesian network are binary variables:

• burglary: indicates whether a burglary has occurred.
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• earthquake: indicates whether earthquake occurred.

• alarm: indicates whether alarm rang.

• radio-report: indicates whether there was a report on the
radio (this would mean it is most probably an earthquake).

• watson-call: indicates whether Dr. Watson, Mr. Holmes’
neighbour called to report a burglary.

burglary

alarm

watson-call

earthquake

radio-report

Figure 1.1: The alarm Bayesian
network.

The alarm is triggered by a burglary (burglary→ alarm)
, but there is also a chance that an earthquake can trigger
it (earthquake→ alarm). However, an earthquake would
presumably be reported on the radio (earthquake→ radio-
report). An alarm would cause Mr. Holmes’ neighbour, Dr.
Watson to call him (alarm→ watson-call). Mr. Watson is a
prankster, so it is possible that there was no alarm as well.
The degree of uncertainty in each of these links is represented
by a conditional probability distribution, which is the proba-
bility distribution of the variable conditioned on its parents.
So for example, the conditional probability distribution of
the alarm being triggered is P(alarm|burglary, earthquake).
We discuss Bayesian networks in greater detail in chapter 4,
where we discuss applications of our anytime inference frame-
work. A similar instance is also discussed as an example for
logical inference in chapter 4.

If we want to find a particular probability distribution, for
example probability of alarm P(alarm), we have to compute
the joint probability distribution π(watson-call, alarm, radio-report, burglary, earthquake)

π(watson-call, alarm, radio-report, burglary, earthquake) =

P(burglary)× P(earthquake)× P(alarm | burglary, earthquake)

×P(radio-report | earthquake)× P(watson-call | alarm)

and then marginalise out necessary variables:

P(alarm) = ∑
v∈W

π(watson-call, alarm, radio-report, burglary, earthquake)

(1.9)

where W = {burglary, earthquake, radio-report, watson-call}.
As we see, this problem maps quite naturally to a marginal-

isation of product form problem 〈V, R, F, K〉, if we consider:

• V = {alarm, burglary, earthquake, radio-report, watson-call}.
• The commutative semiring as the real semiring (R+,+, ·, 0, 1).

• The set of local kernels are just the conditional probabil-
ity distributions represented by the edges: F = {φ1 :
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{burglary}, φ2 : {earthquake},
φ3 : {alarm | burglary, earthquake}, φ4 : {radio-report | earthquake},
φ5 : {watson-call | alarm}}

• The set of objective functions as the probability distribu-
tions we want to obtain from the product form (the joint
probability distribution): K = {α : {alarm}}.

In this section we have shown the applicability of the gen-
eralised distributive law to a couple of instances, namely
Hadamard transforms and Bayesian networks. In the next
chapter, we shall consider a generalisation of the ideas dis-
cussed in this chapter and introduce the framework of valua-
tion algebras which is the key theoretical framework for this
thesis.

1.2 Themes of the thesis

We have two main themes in our thesis - that of generic
anytime inference in valuation algebras and an analysis of
distributed inference.

1.2.1 Anytime Inference in Valuation Algebras

The core mathematical framework of our thesis is that of
valuation algebras in the theory of generic inference. The
framework of valuation algebras builds upon the generalised
distributive law specified earlier, and abstracts the notion of
information, taking specific forms like probability potentials,
belief functions, disjunctive normal forms, Gaussian poten-
tials, among others [Pouly and Kohlas, 2011]. In this theme
we consider the anytime inference problem in the context of
valuation algebras.

The research area of anytime algorithms evolved from the
need to specify algorithms which could approximate in an
elegant manner. Instead of an algorithm terminating after an
unspecified amount of time, we are able to tune the accuracy
via a parameter (usually time) passed to the algorithm. The
algorithm could also be designed to be interruptible, gradu-
ally improving its accuracy until terminated by the user. Such
algorithms are important in online learning where new data
is being streamed in [Ueno et al., 2006], in intelligent systems,
decision making under uncertainty [Horsch and Poole, 1998]
and robotics [Zilberstein, 1996] where due to the limitation
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of interacting in real-time there may not be sufficient time to
compute an exact answer.

The core framework of valuation algebras, which arose out
of unification [Shenoy and Shafer, 1990] of similar message-
passing schemes for inference in belief functions and Bayesian
networks is limited to exact inference. Due to the complex-
ity considerations of exact inference, there is a natural in-
terest in approximate inference schemes. Approximate
inference schemes for specific instances of valuation al-
gebras are abundant. A few examples of such work are
approximate inference in probabilistic graphical models
[van de Ven and Ramos, 2012, Ramos and Cozman, 2005] and
belief functions [Haenni and Lehmann, 2002, Harmanec, 1999].
These frameworks often take advantage of instance-specific
features, but, in doing so, do not offer much insight into fea-
tures of the inference algorithm that can be generalised or
lifted to a higher level of abstraction.

In contrast, approximation inference schemes based on
valuation algebras offer the advantage of genericity, with an
axiomatic framework which allows algorithms to be proved
for correctness. In this area, we mention two articles in par-
ticular which can be considered as predecessors to the work
described in the thesis. The first of these is the work on semir-
ing induced valuations by [Kohlas and Wilson, 2008] which
introduces a class of valuation algebras which generalises sev-
eral well-known valuation algebra instances that are covered
in the thesis, such as arithmetic potentials, disjunctive normal
forms and relational algebras. They also implement approx-
imate inference, in the form of deriving upper and lower
bounds of the solution to the inference problem. We do not
utilise this method as our goal is to get a sequence of better
approximations for the solution to the inference problem.

The second, ordered valuation algebras [Haenni, 2004]
discusses a approximate inference algorithm for valuation
algebras. The approximate inference framework is however
not anytime in the sense that the inference algorithm can be
interrupted and resumed to give a better approximation.

The contribution in this strand of the thesis is to develop a
framework which is sufficiently generic to allow us to capture
a wide variety of instances. We improve upon the state of
the art in this area by introducing a framework that supports
interruptible anytime algorithms, augmenting the valuation
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algebra axioms to support anytime inference. We also provide
detailed proofs of correctness of the algorithm. The advantage
of such an anytime inference framework is that it offers the
user of the framework a degree of control over the approxima-
tion, while having a single algorithm support a wide variety
of instances.

1.2.2 Analysis of Distributed Inference

In recent years, we have seen the rise of multi-core pro-
cessors and an increasing emphasis on parallel computation
as the sequential speed of single processors plateaus. The
existence of large datasets has made it possible to perform
statistical inference on them, leading to insights especially in
the fields of complex systems and bioinformatics.

With the introduction of MapReduce [Dean and Ghemawat, 2008]
there has been an increasing interest in the development of
parallel frameworks. One of the problems of MapReduce
is that it does not work well for problems which have any-
thing but the most trivial dependencies between their data.
In the past few years, new frameworks [Low et al., 2010,
Haller and Miller, 2011, Malewicz et al., 2010] have been
developed which try to address this issue. Most of these
are based on representing the data in the form of a graph
which represents the dependencies among the data. However,
comparatively fewer efforts [Pace, 2012, Feldman et al., 2010,
Karloff et al., 2010, Goodrich et al., 2011] have focused on
analysing the communication costs or the tradeoffs involved
in distributed computation in relation to programming frame-
works like MapReduce or GraphLab.

Our focus in this part of the thesis is to analyse distributed
algorithms in local computation using the framework in-
troduced in [Solomonik et al., 2014], which generalises the
well-studied Bulk Synchronous Parallel [Valiant, 1990] model.
In distributed computation, there are three kinds of costs:
communication (between processors), computation (within
a processor), and synchronisation (between processors). Un-
derstanding the tradeoffs between these costs is vital to any
implementation of distributed computation. For example, if
we have an algorithm in which each step depends upon the
previous step, there would be no point in making this algo-
rithm distributed as each processor would have to wait for

2.1



distributed anytime generic inference in valuation algebras 25

the previous processor to finish, making the implementation
effectively sequential.

We derive these tradeoffs and show that there is a maxi-
mum number of processors for a distributed computation
of the inference problem in valuation algebras. In doing so,
we present an optimal processor assignment algorithm and
compare it with similar prior work [Pouly and Kohlas, 2005],
noting the advantages of our approach.

1.3 Overview of the thesis

This section gives an overview of the thesis by chapter,
along with the contributions of the thesis.

1.3.1 Overview of prior work

Chapter 1 is this introduction, which sets out the themes of
the thesis and reviews the generalised distributive law,
which is one of the key forerunners of the generic algebraic
framework discussed in chapter 2.

Chapter 2 reviews the theoretical frameworks that form the
basis of the contributions of this thesis.

As mentioned before, we shall be working in the frame-
work of valuation algebras which abstract the notion of
information. We review the axioms and show examples
of application to arithmetic potentials, disjunctive normal
forms, relational algebras and set potentials. Three of the
instances discussed (arithmetic potentials, disjunctive nor-
mal forms and relational algebras) can also be expressed
as instances of a particular class of valuation algebras: that
which are induced by a semiring.

We look at how the inference problem is defined in such
a framework and describe the inference algorithm. We
then consider the literature on approximate inference, in
particular, the framework of ordered valuation algebras,
and look at approximate inference algorithms.

Chapter 6 considers the second theme of the thesis, that of
distributed computation. We review an existing framework
of communication, computation and synchronisation cost
tradeoffs to look at the local computation problem in a
distributed setting.
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1.3.2 Contributions of the thesis

Chapter 3 is the first contribution of the thesis, which de-
velops a framework of anytime inference as described in
section 1.2.1.

We extend valuation algebras to support anytime inference,
followed by an anytime inference algorithm which is guar-
anteed to converge to the solution of the exact inference
algorithm. We prove that the convergence is monotonic
(soundness) as well as guaranteed to converge to the exact
solution (completeness). We also show that the class of
semiring induced valuation algebras, which comprise arith-
metic potentials, disjunctive normal forms and relational
algebras, among others, is amenable to anytime inference.
We also show that the valuation algebra of set potentials
supports anytime inference. Further, we show that sub-
ject to an additional condition, anytime ordered valuation
algebras are also ordered valuation algebras.

The wide variety of instances of anytime ordered valua-
tion algebras illustrates the utility of working in a generic
framework as we get several instantiations of our anytime
inference algorithm for free.

Chapter 4 considers the application of our framework to the
instances discussed in chapters 2 and 3, namely arithmetic
potentials, disjunctive normal forms, relational algebras
and set potentials. We also discuss interpretation of any-
time inference with examples.

Chapter 5 describes a proof-of-concept implementation of the
anytime inference algorithm introduced in Chapter 3, and
describes the results of its application to a few instances of
anytime ordered valuation algebras.

Chapter 6 derives tradeoffs for distributed local computation
and obtains a bound on maximal concurrency. As part
of this derivation we describe a processor assignment
algorithm for optimisation of communication costs and
prove optimality. The algorithm is compared to prior work,
and the advantages of our approach noted.

Chapter 7 concludes the thesis, with a remark on future work.
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Chapter 2

Generic Inference

The core mathematical framework of our thesis is that of
valuation algebras in the theory of generic inference. Genericity
is an important concept in mathematics and computer sci-
ence – the capability of abstracting out the common features
in algorithms and computations into a generic theory is a
common pattern in the literature, often leading to an improve-
ment in understanding and characterisation of computational
processes and mathematical theories. In programming lan-
guages, we are familiar with concepts which illustrate this
paradigm, like generic programming, where procedures are
specified in terms of placeholder types (which are instanti-
ated for concrete types like integers, floats and characters
as needed), thus reducing code duplication, to concepts like
generalised algebraic data types in functional programming
languages like Haskell.

The utility of generic inference can be understood from a
simpler example: sorting. Sorting algorithms can be defined
on any totally ordered structure with an order relation ≤.
All a sorting algorithm needs is the specification of the order
relation; it does not matter whether the items being sorted are
integers, real numbers or character strings. Generic inference
generalises inference algorithms by abstracting the essential
components of information in an algebraic structure. We ob-
tain generic algorithms by lifting algorithms from specific
instantiations of a structure (example: for sorting, a sorting
algorithm that operates on character strings) to a generic, ab-
stract version. In the particular case of generic inference, the
valuation algebra structure was obtained from a similar lifting
process applied to inference algorithms in the Lauritzen-
Spiegelhalter architecture [Lauritzen and Spiegelhalter, 1990]
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which defined an algorithm for solving the inference prob-
lem on Bayesian networks, using a technique called local
computation. Shenoy and Shafer noted that the same algo-
rithm could be used to solve the inference problem on belief
functions, and proposed a sufficient set of axioms for an al-
gebraic framework that is sufficient for the generic inference
algorithm [Shenoy and Shafer, 1990]. This was extended by
Kohlas into a theory of valuation algebras, and a computer
implementation of the valuation algebra along with concrete
instantiations was covered in [Pouly, 2010].

Following the aforementioned work, many instances of val-
uation algebras have been found in areas of mathematics and
computer science, ranging from areas like Fourier transforms,
logic and relational databases to systems of linear equations.
Some of these instances will be described later in the chap-
ter. In all these instances, the computationally interesting
problem can be expressed in terms of the generic inference
structure, which allows us to use the generic inference algo-
rithm. The unification of these various, apparently disparate
mathematical structures leads to a simpler and more coher-
ent description of the inference problem. A comprehensive
account is given in [Pouly and Kohlas, 2011].

The essence of generic inference and the algebra of val-
uations is considering information, which comes in pieces,
and refers to questions from a particular domain; which can
either be combined (to form, for example a joint probability
distribution) or projected to focus on a particular aspect (vari-
ables corresponding to the query in an inference problem)
of the information. Thus the valuation algebra has generic
operations corresponding to the structure of knowledge and
its transformation.

This chapter is organised into the following sections. We
begin by reviewing the axioms of a valuation algebra in sec-
tion 2.1. Section 2.2 and section 2.3 discuss instantiations of
valuation algebras, such as arithmetic potentials (for Bayesian
networks), disjunctive normal forms, set potentials and rela-
tional algebras.

Section 2.4 describes the inference problem in the context
of valuation algebras. The algorithm for exact solution of the
inference problem is described in section 2.7 using join trees.

Sections 2.8 through 2.11 review the ordered valuation
algebra framework for approximate inference [Haenni, 2004].
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Section 2.8 presents the axioms of ordered valuation algebras,
with instances in sections 2.9 and 2.10. The approximate
inference algorithm is described in section 2.11.

Section 2.12 summarises the chapter and concludes the
discussion on generic inference.

2.1 Valuation Algebras

Valuation algebras have elements which represent informa-
tion pieces or valuations in an abstract manner. All operations
in the valuation algebra are defined on these elements. Before
proceeding to the formal definition, we give an overview of
the key components of the valuation algebra. A valuation
algebra comprises (i) a universe of valuations where valuations
refer to pieces of information about a set of variables, which
are drawn from (ii) a universe of variables. We also have (iii)
a domain operation which gives us the set of variables per-
taining to a particular valuation, (iv) a combination operation
which combines the information in two valuations, and (v)
a projection (also known as focusing or marginalisation) opera-
tion which focuses a valuation on a subset of variables in a
valuation domain.

IDefinition 2.1. Valuation algebra. A valuation algebra
is a tuple 〈Φ, V, d,⊗, ↓〉 with the axioms A1 – A6 as shown
below. The tuple components are as follows:

Universe of valuations (Φ) is a set.1 1 Members are denoted by lower-
case Greek letters: φ, ψ, . . .

Universe of variables (V) is a set.2 2 Members are denoted by Roman
lowercase letters (with possible
subscripts): x, y, . . .. Sets of vari-
ables are denoted by uppercase
letters: S, T, . . .. The powerset of V
is denoted by D.

Labelling (d) The labelling (domain) operation is d : Φ→ D.

Combination (⊗) The combination operation is ⊗ : Φ×Φ→ Φ.

Projection (↓) The projection operation ↓: Φ × D 7→ Φ is a
partial function.3 3 This projects or focuses a valua-

tion φ to a domain X ⊆ d(φ). For
(φ, X) ∈ Φ × D, we denote the
projection operation as φ↓X .

The following axioms are then introduced on
〈Φ, V, d,⊗, ↓〉:

A1 Commutative semigroup: Φ is associative and commutative
under ⊗.

A2 Labeling: For φ, ψ ∈ Φ,

d(φ⊗ ψ) = d(φ) ∪ d(ψ) (2.1)
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A3 Projection: For φ ∈ Φ, X ∈ D and X ⊆ d(φ)

d(φ↓X) = X (2.2)

A4 Transitivity: For φ ∈ Φ and X ⊆ Y ⊆ d(φ),

(φ↓Y)↓X = φ↓X (2.3)

A5 Combination: For φ, ψ ∈ Φ with d(φ) = X, d(ψ) = Y and
Z ∈ D such that X ⊆ Z ⊆ X ∪Y,

(φ⊗ ψ)↓Z = φ⊗ ψ↓Z∩Y (2.4)

As ⊗ is commutative, we do not have left and right ver-
sions of this axiom.

A6 Domain: For φ ∈ Φ with d(φ) = X,

φ↓X = φ (2.5)

A1 – A4 can be understood as following from the intuition
of information in pieces being represented as valuations. A1,
the commutative semigroup axiom expresses the notion that
the order of combining information should not matter. A2
refers to the fact that when we combine information, the ques-
tions that they refer to (the variables in their domains) should
be aggregated too, in the natural definition of a set union. A3
expresses the stability of the domain operation under projec-
tion. A4, transitivity, says that successive projections can be
combined.

A5, the combination axiom states how inference is affected
when a new piece of information arrives. Either we combine
the new information and project it to the required domain,
or we first focus the new information appropriately before
combination. This axiom is key to the improvements in ef-
ficiency offered by valuation algebras. We can see that the
axiom states that we do not need to combine two valuations
first to find the projection, instead we can eliminate the part
that we do not need and then combine which leads to less
computation. This axiom is connected to the distributive law;
the connection becomes clear in the proofs of the axioms for
valuation algebra instances in the next section.

A6 expresses stability with respect to projection of a valua-
tion to its own domain.
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In the following sections (sections 2.2 and 2.3), we give
some examples of valuation algebras. The material in these
sections is mostly from [Pouly and Kohlas, 2011, chapter 1].
We shall consider these valuation algebra instances: arith-
metic potentials, disjunctive normal forms, relational algebras
and set potentials. The fact that a single framework encom-
passes such seemingly disparate instances is the primary
reason for focusing on valuation algebras in this thesis.

In particular, there is a subclass of valuation algebras which
encompasses arithmetic potentials, disjunctive normal forms,
relational databases, among others. These are the valuation al-
gebras induced by a semiring. Instances of semiring induced
valuation algebras differ only in the semiring that induces
them. Thus by studying a single class of valuation algebras,
we get several instantiations for free. Out of the valuation
algebra instances discussed in the thesis, all but one, that of
set potentials are instances of semiring induced valuation
algebras.

2.2 Semiring induced valuation algebras

Semiring induced valuation algebras are a subclass of
valuation algebras with several useful instances like arith-
metic potentials and disjunctive normal forms. We use the
definition of semiring induced valuation algebras from
[Kohlas and Wilson, 2008].

IDefinition 2.2. Semiring induced valuation algebra.
A semiring induced valuation algebra is induced by a commu-
tative semiring (def. 1.7) denoted by A = (A,+, ·, 0, 1) and the
set of frames associated with variables x ∈ V, {Ωx : x ∈ V},
where V is the universe of variables. Here frame is the same
definition as in N2 from section 1.1.3. We also re-use the no-
tation of configuration space ΩD of a set of variables D and the
notation of tuples from the notation in section 1.1.3.

Universe of valuations An valuation φ is a function φ : ΩD →
A for some D ⊆ V.4 Then the universe of valuations is 4 The set of all valuations with a

domain D is denoted by ΦD

Φ =
⋃

D⊆V

{φ : ΩD → A} (2.6)

with a fixed A for all functions φ.

Universe of variables The universe of variables is V.
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Domain We define d : Φ→ D as d(φ) = D iff φ : ΩD → A.

Combination The combination operator ⊗ : Φ × Φ → Φ is
defined as φ1 ⊗ φ2 : ΩD1∪D2 → A where φ1 : ΩD1 → A, φ2 :
ΩD2 → A, where the function φ1 ⊗ φ2 : ΩD1∪D2 → A is:

(φ1 ⊗ φ2)(x) = φ1(x↓D1) · φ2(x↓D2) (2.7)

Projection The projection operator ↓: Φ× D 7→ Φ defined as
φ↓D

′
: ΩD′ → A where φ : ΩD → A and D′ ⊆ D. The

function φ↓D
′

: ΩD′ → A is defined5 as 5 The sum is well-defined as D,
and thus ΩD, is finite.

φ↓T(x) = ∑
z∈ΩD : z↓T=x

φ(z) (2.8)

Then 〈Φ, V, d,⊗, ↓〉 is a semiring induced valuation algebra
induced by the semiring (A,+, ·, 0, 1).

We proceed to show that this tuple 〈Φ, V, d,⊗, ↓〉 as de-
fined above satisfies the axioms of a valuation algebra.

ITheorem 2.1. [Pouly and Kohlas, 2011, theorem 5.2] The struc-
ture 〈Φ, V, d,⊗, ↓〉 defined in def. 2.2 is a valuation algebra.

Proof. We show that axioms A1 – A6 are satisfied by 〈Φ, V, d,⊗, ↓
〉.

A1 Commutative semigroup: We have to show that Φ is associa-
tive and commutative under ⊗. Commutativity under ⊗
naturally follows from the commutativity of the underlying
semiring multiplicative operation (·). For associativity, con-
sider valuations φ, ψ, ξ with domains X, Y, Z respectively.
Then we have to show

φ⊗ (ψ⊗ ξ) = (φ⊗ ψ)⊗ ξ (2.9)

Let’s consider the LHS of (2.9). Then, for x ∈ ΩX∪Y∪Z,

(φ⊗ (ψ⊗ ξ))(x) = φ(x↓X) · (ψ⊗ ξ)(x↓Y∪Z)

= φ(x↓X) · (ψ((x↓Y∪Z)↓Y) · ξ((x↓Y∪Z)↓Z))

= φ(x↓X) · (ψ(x↓Y) · ξ(x↓Z))

A similar treatment for the RHS will give the same, due to
associativity of · in the underlying semiring.

A2 Labeling: This follows directly from the definition of com-
bination: d(φ⊗ ψ) = d(φ) ∪ d(ψ)
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A3 Projection: This follows directly from the definition of pro-
jection operation in semiring induced valuation algebras:
d(φ↓X) = X

A4 Transitivity: For φ ∈ Φ and X ⊆ Y ⊆ d(φ), we have to
show

(φ↓Y)↓X = φ↓X (2.10)

Let’s denote Z = d(φ), then consider the LHS: We have (z↓Y)↓X = z↓X which
follows from a requirement of
projection that X ⊆ Y ⊆ Z(φ↓Y)↓X(x) = ∑

y∈ΩY : y↓X=x

φ↓Y(y)

= ∑
y∈ΩY : y↓X=x

 ∑
z∈ΩZ : z↓Y=y

φ(z)


= ∑

y∈ΩY ,z∈ΩZ : y↓X=x, z↓Y=y

φ(z)

= ∑
z∈ΩZ : z↓X=x

φ(z) = φ↓X(x) = RHS

A5 Combination: For φ1, φ2 ∈ Φ with d(φ1) = X, d(φ2) = Y
and Z ∈ D such that X ⊆ Z ⊆ X ∪Y, we have to show that

(φ1 ⊗ φ2)
↓Z = φ1 ⊗ φ↓Z∩Y

2 (2.11)

Expanding this:

(φ1 ⊗ φ2)
↓Z(x) = ∑

k↓Z=x

(φ1 ⊗ φ2)(k)

= ∑
k↓Z=x

φ1(k↓X) · φ2(k↓Y)

= φ1(x↓X) · ∑
k↓Z=x

φ2(k↓Y) using k↓X = (k↓Z)↓X = x↓X

= φ1(x↓X) · ∑
y∈ΩY−Z

φ2(x↓Z∩Y, y)

On the other hand, the right hand side:

(φ1 ⊗ φ2
↓Z∩Y)(x) = φ1(x↓X) · φ2

↓Z∩Y(x↓Z∩Y)

= φ1(x↓X) · ∑
k↓Z∩Y=x↓Z∩Y

φ2(k)

= φ1(x↓X) · ∑
y∈ΩY−Z

φ2(x↓Z∩Y, y)

A6 Domain: This follows directly from the definition of the
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projection operation: φ↓X = φ.

φ↓X = φ (2.12)

This shows that a semiring induced valuation algebra
follows the axioms and is indeed a valuation algebra.

Having established the concept of semiring induced val-
uation algebras, we proceed to discuss three instances of it:
arithmetic potentials, disjunctive normal forms and relational
algebras. There are many other examples of semiring induced
valuation algebras, a detailed introduction to which can be
found in [Kohlas and Wilson, 2008]. In certain cases, the val-
uation algebra induced by the semiring has the idempotent
property, i.e. φ ⊗ φ = φ; then we may use more efficient
architectures for local computation such as the Lauritzen-
Spiegelhalter architecture [Kohlas, 2003].

2.2.1 Arithmetic potentials

The valuation algebra of probability potentials was one of
the first instances to be expressed in the framework. Probabil-
ity potentials represent (conditional) probability distributions
in Bayesian networks, and factors in Markov networks. In
this section, we consider a simple, unnormalised form of the
probability potential, termed arithmetic potentials here, defined
as mappings from a configuration space to real values. We do
not lose much by this simplification as arithmetic potentials
can represent Bayesian networks, and normalisation can be
performed at the end of the inference process.

Arithmetic potentials are a semiring induced valuation
algebra, with the underlying semiring being (R+,+, ·, 0, 1),
where R+ is the set of non-negative reals. A arithmetic poten-
tial π on domain d(π) = D is a function π : ΩD → R+. Thus
π is a mapping of the configuration space onto real numbers,
where the numbers are proportional to the probability of that
particular configuration.

IExample 2.1. [Pouly and Kohlas, 2011, section 1.3] As an
example of computation with arithmetic potentials, we intro-
duce a domain of three variables R = {a, b, c} and the corre-
sponding frames being all binary: Ωa = Ωb = Ωc = {0, 1}.

We show an example of the combination (p3 = p1 ⊗ p2) and
projection (p↓{a

′,c′}
3 ) of arithmetic potentials in table 2.1.
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a b p1
0 0 0.6
0 1 0.4
1 0 0.3
1 1 0.7

b c p2
0 0 0.2
0 1 0.8
1 0 0.9
1 1 0.1

a b c p1 ⊗ p2
0 0 0 0.12

0 0 1 0.48

0 1 0 0.36

0 1 1 0.04

1 0 0 0.06

1 0 1 0.24

1 1 0 0.63

1 1 0 0.07

a c p↓{a
′,c′}

3
0 0 0.48

0 1 0.52

1 0 0.69

1 1 0.31

Table 2.1: Combination and projec-
tion of arithmetic potentials.

2.2.2 Disjunctive normal forms

Disjunctive normal forms in propositional logic are disjunc-
tions of conjunctive clauses. Here are the key terms in order
to understand DNFs:

Literals Literals x,¬x represent the values x = 1, x = 0, where
x ∈ V. respectively. If D ⊆ V then ΛD = {x,¬x : x ∈ D}
denotes the set of all literals in D.

Term A term is a non-repetitive conjunction `1 ∧ `2 ∧ . . . ∧ `n

of literals `i ∈ ΛD, 1 ≤ i ≤ n; we can also consider terms as
the equivalent sets {`1, `2, . . . , `n} ⊆ ΛD of literals.

DNF Formula We denote TD = 2ΛD as the set of all possible
terms. Then a DNF formula is a non-repetitive disjunction
τ1∨ · · · ∨ τm of terms τi ∈ TD, 1 ≤ i ≤ m. Similarly to literals,
we can consider the equivalent sets of terms {τ1, . . . , τm}, as
a representation of the DNF formula. We use DD = 2TD to
denote the set of all possible formulae corresponding to D.

Full DNF formula A full DNF formula is one in which in each
term each variable appears once as a literal, as itself or its
negation.

Model An assignment to variables that makes the formula
true is called a satisfying assignment. The set of satisfying
assignments for a formula is called the model.

Disjunctive normal forms are a semiring induced valuation
algebra, with the underlying semiring being the boolean
semiring ({0, 1},+, ·, 0, 1). This means valuations with a
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domain D ⊆ V are of the form δ : ΩD → {0, 1}, where V is
the universe of variables and ΩD is the Cartesian product of
the variable frames, which are all binary: ΩD = {0, 1}|D|

Alternatively, we can represent the function δ as the subset
MD(δ) ⊆ ΩD for which the image of δ is 1, i.e. MD(δ) is the
preimage of 1. Then MD(δ) is the model of δ. In a disjunctive
normal form, if any term is satisfied then the entire formula is
satisfied. Going with the usual interpretation of 0 as ⊥ (false)
and 1 as > (true), each x ∈ ΩD that maps to 1 represents a
term which contains all literals. Thus we can have a bijective
mapping between the model and the full disjunctive normal form
of a particular formula. The truth table is a list of the mapping
of the configuration space ΩD to {0, 1} which shows whether
the formula is true (evaluates to 1) for a particular assignment
to variables.

IExample 2.2. Let’s look at a simple example of a valuation
δ = ab + ac̄ (replacing ∨ with + , ¬x as x̄) with the domain
D = {a, b, c}. Then the configuration space (all possible
assignments to variables) is shown in table 2.2 along with the
value of δ.

a b c δ

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 0

1 0 0 1
1 0 1 0

1 1 0 1
1 1 1 1

Table 2.2: Truth table for the
formula δ = ab + ac̄

Thus the model MD(δ) = {(1, 0, 0), (1, 1, 0), (1, 1, 1)}, the
subset of the configuration space which maps to 1. The model
corresponds to the full DNF formula: δ′ = ab̄c̄ + abc̄ + abc,
which is logically equivalent to δ = ab + ac̄:

δ′ = ab̄c̄ + abc̄ + abc

= ab̄c̄ + abc̄ + abc̄ + abc as x + x = x

= ac̄(b̄ + b) + ab(c̄ + c) using distributivity

= ac̄ + ab as x + x̄ = 1

IExample 2.3. Now let’s look at combination and projection
of disjunctive normal forms. We have valuations correspond-
ing to the formulae ξ1 = a → b, ξ2 = b → c, ξ3 = ξ1 ⊗ ξ2 and
ξ
↓{a,c}
3 .

2.2.3 Relational algebras

Relational algebra is used in the theory of databases, to
model relational databases. They form the basis of database
query languages such as sql.

Relational algebras are an instance of semiring induced
valuation algebra, with the underlying semiring being the
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a b a→ b

0 0 1

0 1 1

1 0 0

1 1 1

b c b→ c

0 0 1

0 1 1

1 0 0

1 1 1

a b c ξ3

0 0 0 1

0 0 1 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

a c ξ
↓{a,c}
3

0 0 1

0 1 1

1 0 0

1 1 1

Table 2.3: Configuration spaces
of the disjunctive normal forms
ξ1 = a → b, ξ2 = b → c,
ξ3 = ξ1 ⊗ ξ2, ξ

↓{a,c}
3

boolean semiring ({0, 1},+, ·, 0, 1). This means valuations
with a domain D ⊆ V are of the form φ : ΩD → {0, 1}, where
V is the universe of variables. Unlike in the previous instance
of disjunctive normal forms, in relational algebras the frames
Ωx for x ∈ V need not be binary.

Alternatively, we can represent the function φ as the subset
R ⊆ ΩD for which the image of φ is 1, i.e. R is the preim-
age of 1. Here, R is a relation, comprising tuples x ∈ ΩD.
Using the language of the theory of databases, the variables
x, y, z, . . . are called attributes and sets of tuples are called rela-
tions. The set of valuations is then the set of all possible tuples
over all possible subsets of variables:

Φ =
⋃

S⊆V

2Ωs (2.13)

where 2ΩS is the powerset of ΩS. In this instance, the valu-
ation algebra operations are well known operations in rela-
tional algebras, so we introduce them:

Combination Combination is defined by the natural join (./): If
R1, R2 are relations with domains S, T respectively, then

R1 ⊗ R2 = R1 ./ R2 = {x ∈ ΩS∪T : x↓S ∈ R1, x↓T ∈ R2}
(2.14)

Projection Projection is defined for a relation R with domain S
and T ⊆ S as

R↓T = {x↓T : x ∈ R} (2.15)

Alternatively, in the language of relational algebras, the
notation πT(R) = R↓T is used, where π is the projection
operator.
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IExample 2.4. An example of the combination and pro-
jection operations in relational algebra follows. If there
are two relations R1, R2, with d(R1) = {fruit, colour} and
d(R2) = {fruit, calories per 100g}.

fruit colour

banana green
orange orange
apple red

pomegranate red
blueberry indigo

strawberry red

fruit calories per 100g

banana 89

apple 100

blueberry 57

strawberry 37

Table 2.4: R2

fruit colour calories per 100g

banana green 80

apple red 100

blueberry indigo 57

strawberry red 37

colour

green
red

indigo

Table 2.5: π{colour}(R3) = R{colour}
3

2.3 Set potential valuation algebra

Set potentials are a general case of belief potentials intro-
duced in Dempster-Shafer’s theory of evidence [Shafer et al., 1976].
They are unnormalised versions of belief potentials. The ad-
vantage of belief potentials over standard probability theory
is in their ability to express ignorance or partial information
in a manner not possible in probability theory. This is the
reason for the extensive use of belief functions in the sensor
network literature, which involves fusion of information from
various sources, not all them equally reliable [Denoeux, 2000,
Yu and Frincke, 2005, Sentz and Ferson, 2002, Murphy, 1998].

IDefinition 2.3. Set potential valuation algebra.
[Pouly and Kohlas, 2011, section 5.7] As in the previous case,
a variable x ∈ V has a finite frame Ωx. Also the Cartesian
product ΩD is the set of configurations corresponding to the
domain D ⊆ V. We also recall the operations of join and
projection from relational algebras, defined in section 2.2.3:

If R1 ⊆ ΩS, R2 ⊆ ΩT, the join operation is

R1 ./ R2 := {x ∈ ΩS∪T : x↓S ∈ R1, x↓T ∈ R2}
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and the projection is, where T ⊆ S here:

πT(R) := R↓T := {x↓T : x ∈ R}

The elements of the valuation algebra here are set poten-
tials. A set potential on a domain D is defined by a function
φ : 2ΩD → R+. The subsets A ⊆ ΩD for which ϕ(A) 6= 0 are
known as focal sets. Then 〈Φ, V, d,⊗, ↓〉 is a valuation algebra
where the components of the valuation algebra are as follows

Universe of valuations The universe of valuations is

Φ =
⋃

D⊆V

{φ : 2ΩD → R+} (2.16)

Universe of variables The universe of variables is V.

Domain For a set potential φ : 2ΩD → R+, d(ϕ) = D.

Combination The combination of two set potentials ϕ1 and ϕ2

on D1, D2 ⊆ V respectively is a simplified version Demp-
ster’s rule of combination[Dempster, 1968, Jøsang and Pope, 2012]:

m1⊗m2(A) := ∑
B./C=A,B⊆ΩD1 ,C⊆ΩD2

m1(B) ·m2(C) for all A ⊆ ΩD, D = D1∪D2

(2.17)

Projection Projection of the set potential ϕ from D to D′ ⊆ D
is defined by

ϕ↓D
′
(A) := ∑

πD′ (B)=A,B⊆ΩD

ϕ(B) for all A ⊆ ΩD′ (2.18)

IExample 2.5. Consider two variables {a, b} with binary
frames Ωa = Ωb = {0, 1}. Now consider two set potentials
ϕ1, ϕ2 with domains {a, b}, {a} respectively:

focal set ϕ1

{(0, 0)} 0.7
{(1, 0), (0, 1)} 0.1
{(0, 0), (1, 1)} 0.2

focal set ϕ2

{(1)} 0.6
{(0)} 0.4

We construct the following table as an intermediate step.
The first column contains ϕ1 and the top row contains

ϕ2. Both of them have been extended to the union domain
d(ϕ1) ∪ d(ϕ2) = {a, b}. Then the intersection between the
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corresponding tuple sets with the product is in the internal
cells.

{(1, 1), (1, 0)}, 0.6 {(0, 1), (0, 0)}, 0.4

{(0, 0)}, 0.7 ∅, 0.42 {(0, 0)}, 0.28
{(1, 0), (0, 1)}, 0.1 {(1, 0)}, 0.06 {(0, 1)}, 0.04
{(0, 0), (1, 1)}, 0.2 {(1, 1)}, 0.12 {(0, 0)}, 0.08

To complete the combination, we then add the values of
all internal cells with equal tuple set. The result is projected
afterwards.

focal set ϕ1 ⊗ ϕ2

∅ 0.42

{(0, 0)} 0.36

{(0, 1)} 0.04

{(1, 0)} 0.06

{(1, 1)} 0.12

focal set (ϕ1 ⊗ ϕ2)↓{a}

∅ 0.42

{(1)} 0.18

{(0)} 0.40

ITheorem 2.2. [Pouly and Kohlas, 2011, theorem 5.5] The struc-
ture 〈Φ, V, d,⊗, ↓〉 defined in def. 2.3 is a valuation algebra.

Proof. To show that 〈Φ, V, d,⊗, ↓〉 is a valuation algebra, we
have to show that A1 – A6 hold.

A1 Commutative semigroup: We have to show that Φ is as-
sociative and commutative under ⊗. Commutativity
follows from the commutativity of semiring multiplica-
tion and natural join. To show associativity, we assume
ϕ ∈ ΦS, ψ ∈ ΦT, ν ∈ ΦU and A ⊆ ΩS∪T∪U

(ϕ⊗ (ψ⊗ ν))(A) = ∑
B./E=A

ϕ(B) · (ψ⊗ ν)(E)

= ∑
B./E=A

ϕ(B) · ∑
C./D=E

ψ(C) · ν(D)

= ∑
B./C./D=A

ϕ(B) · ψ(C) · ν(D)

We get the same result, if we start with ((ϕ⊗ ψ)⊗ ν)(A),
proving associativity.

A2 Labeling: This follows directly from the definition of com-
bination: d(φ⊗ ψ) = d(φ) ∪ d(ψ)

A3 Projection: This follows directly from the definition of
projection.
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A4 Transitivity: For ϕ ∈ Φ with S ⊆ T ⊆ d(ϕ), we have

(ϕ↓T)↓S(A) = ∑
πS(B)=A

ϕ↓T(B) = ∑
πS(B)=A

∑
πT(C)=B

ϕ(C)

= ∑
πS(πT(C))=A

ϕ(C) = ∑
πS(C)=A

ϕ(C) = ϕ↓S(A) using transitivity of π

A5 Combination: Suppose that ϕ ∈ ΦS, ψ ∈ ΦT and A ⊆ ΩZ,
where S ⊆ Z ⊆ S ∪ T. Using the combination property of
relational algebras, we have

(ϕ⊗ ψ)↓Z(A) = ∑
πZ(B)=A

(ϕ⊗ ψ)(B) = ∑
πZ(B)=A

∑
C./D=B

ϕ(C) · ψ(D)

= ∑
πZ(C./D)=A

ϕ(C) · ψ(D) = ∑
C./πT∩Z(D)=A

ϕ(C) · ψ(D)

= ∑
C./E=A

ϕ(C) · ∑
πT∩Z(D)=E

ψ(D)

= ∑
C./E=A

ϕ(C) · ψ↓T∩Z(E) = ϕ⊗ ψ↓T∩Z(A)

A6 Domain: For ϕ ∈ Φ and X = d(ϕ), we have

ϕ↓X(A) = ∑
B=A

ϕ(B) = ϕ(A)

This shows that the valuation algebra of set potentials
follows the axioms and is indeed a valuation algebra.

2.4 Inference Problem

The previous section introduced the theoretical framework
of valuation algebras and the axioms of the framework fol-
lowed by some instances of valuation algebras. Now that we
have an abstract generic framework for representing informa-
tion, we can perform inference. Inference in this case refers
to the aggregation of the various pieces of information in the
knowledgebase, followed by focusing/projection on the rele-
vant domain of interest. This computational problem is called
the inference problem for valuation algebras and is of interest to
the fields of statistics and machine learning as well as logical
inference, constraint satisfaction problems, theorem proving
and formal verification. We start with a formal definition of
inference problems and show how it is expressed in some
of the valuation algebra instances described earlier. In sec-
tion 2.7, we discuss the algorithms for efficient computation
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of the inference problem.

IDefinition 2.4. Inference problem. [Pouly and Kohlas, 2011,
def. 2.1] The inference problem is the task of computing

(φ1 ⊗ · · · ⊗ φn)
↓Xi , i ∈ {1 . . . k} (2.19)

for a given knowledgebase or collection of valuations {φ1, . . . , φn} ⊆
Φ and domains X = {X1, . . . , Xk} where Xi ⊆ d(φ1 ⊗ · · · ⊗ φn).
The domains Xi are called queries.

In this thesis, we shall restrict ourselves to the simplest
case, that of the single query inference problem: |X| = 1.

2.5 Inference in semiring induced valuation
algebras

2.5.1 Arithmetic potentials

The valuation algebra of arithmetic potentials can express
Bayesian networks. In this section we re-cast the earlier exam-
ple from example 1.4 in the introduction in the language of
valuation algebras.

As we recall, the joint probability distribution for a Bayesian
network can be factored into its constituent conditional prob-
ability distributions. Thus the knowledgebase here is the set
of conditional probability distributions which are variables
conditioned on their parents in the directed acyclic graph
representation. We also wish to find out the probability for
a particular subset of variables, thus these subsets are the
queries.

IExample 2.6. In the specific case of example 1.4, if we want
to find out P(alarm), the knowledgebase is the set of local
kernels

F = {φ1 : {burglary}, φ2 : {earthquake}, φ3 : {alarm, burglary, earthquake},
φ4 : {radio-report, earthquake}, φ5 : {watson-call, alarm}}

(2.20)

where the domains of the valuations φi are indicated next to
them, and the query set is K = {alarm}.

This instantiates the inference problem definition. We will
consider Bayesian networks in more detail in chapter 4.
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2.5.2 Disjunctive normal forms

We consider the following example of a simple inference
problem in the valuation algebra of disjunctive normal forms
which illustrates logical inference in the formalism of the
inference problem definition in (def. 2.4).

IExample 2.7. Consider the set of variables V = {a, b, c}
and the formulae ξ1 = a → b, ξ2 = b → c. Using standard
inference rules, we get a→ c.

We can also obtain this inference via the methods of combi-
nation and marginalisation as explained in section 2.2.2. We
can see the equivalence between the full disjunctive normal
form and the model by combining the DNFs and projecting:
combining ξ1 and ξ2 gives us

ξ1 ⊗ ξ2 = (¬a ∨ b) ∧ (¬b ∨ c)

= (¬a ∧ ¬b) ∨ (¬a ∧ c) ∨ (b ∧ ¬b) ∨ (b ∧ c)

= (¬a ∧ ¬b) ∨ (¬a ∧ c) ∨ (b ∧ c)

If we marginalise out b, then we get

(ξ1 ⊗ ξ2)
↓{a,c} = ¬a ∨ (¬a ∧ c) ∨ c = ¬a ∨ c (2.21)

which is the same as a→ c.
Alternatively we can consider the model equivalent in

table 2.3, which gives the same result.

2.5.3 Relational algebras

Query answering in relational databases is another instance
of the inference problem. The knowledgebase is a set of
database tables which belong to the valuation algebra as
described in section 2.2.3. The inference problem computes
the natural join of all the elements in the knowledgebase and
projects the answer to the attributes of interest. However the
selection operator, an important part of relational databases,
does not have a corresponding operation in the valuation
algebra. One way of achieving an integration of selections
into the valuation algebra framework is to transform them
to relations which can then be added to the knowledgebase.
However transforming selections into relations can cause
production of relations with infinite cardinality if queries
over attributes with infinite frames are involved. In such
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cases, we can perform selection enabled local computation
[Schneuwly, 2007]. The following example is taken from
[Pouly and Kohlas, 2011], which transforms selections into
relations that augment the knowledgebase.

IExample 2.8. [Pouly and Kohlas, 2011, section 2.2] We con-
sider four tables (relations) with information about students,
their grades, courses and their professors:

SID Student

1 Ann
2 John
3 Laura

SID Grade LID

1 C 901

2 A 901

2 B 903

LID Lecture Semester

901 Chemistry S1898

902 Mathematics S1801

903 Physics A1905

PID LID

1 903

2 902

3 901

PID Professor

1 Einstein
2 Gauss
3 Curie

Thus we have a knowledgebase of five relations {r1 . . . , r5}.
If we have the database query

Find all students with grade A or B in a lecture of professor Einstein

then we have a single query for the inference problem: {Stu-
dent}. We augment the knowledgebase with the selections, s1

(Grade) = {A, B} and s2 (Professor) = {Einstein}. Then we can
formulate the inference problem as

(r1 ⊗ r2 ⊗ r3 ⊗ r4 ⊗ r5 ⊗ s1 ⊗ s2)
↓{Student} (2.22)

2.6 Inference in set potentials

For set potentials, we consider the following example given
by Shafer [Shafer, 1982]. We neglect normalisation and thus
can use set potentials instead of belief potentials.

IExample 2.9. Consider a disorder called ploxoma which
has two variants, θ1, called virulent ploxoma, which is fatal,
and θ2 called ordinary ploxoma which varies in severity and is
treatable. Virulent ploxoma can be identified without doubt
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at the time of a victim’s death, but to distinguish between the
two variants in the early stages one has to perform a blood
test with possible outcomes x1, x2, x3. The following is known:

1. Blood tests of a large number of patients dying of virulent
ploxoma showed the outcomes x1, x2 and x3 occurring 20,
20 and 60 percent of the time respectively.

2. A study of patients with prolonged ploxoma (and thus
almost certainly ordinary ploxoma) showed outcome x1

occurring 85 percent of the time and the outcomes x2, x3

occurring 15 percent of the time (this was before methods
were perfected to distinguish between x2 and x3). There is
some doubt as to whether the patients in the study are a
fair sample of ordinary ploxoma victims, but experts are 75

percent sure that the criteria for patient selection would not
affect the distribution of test outcomes.

3. Most people seeking medical help for ploxoma are seeking
it for ordinary ploxoma. While there have been no careful
statistical studies, physicians are convinced that only 5–15

percent of ploxoma patients suffer from virulent ploxoma.

This introduces the variable d for the disease, with values
{θ1, θ2} and t for the test result with values {x1, x2, x3}. There
is further discussion in [Shafer, 1982] about how to translate
the evidence into the knowledgebase. Here we proceed di-
rectly to enumerating the valuations in the knowledgebase;
and focus on formulating the reasoning with set potentials as
an inference problem.

From the first statement, we get the following mass func-
tion m1:

{(θ1, x1), (θ2, x1), (θ2, x2), (θ2, x3)} 0.2
{(θ1, x2), (θ2, x1), (θ2, x2), (θ2, x3)} 0.2
{(θ1, x3), (θ2, x1), (θ2, x2), (θ2, x3)} 0.6

Thus we have a belief of 0.6 for the proposition that the blood
test returns x3 for a patient with virulent ploxoma. This mass
function does not give any evidence about the test outcome
with disease θ2. The second factor m2 is

{(θ2, x1), (θ1, x1), (θ1, x2), (θ1, x3)} 0.85 · 0.75
{(θ2, x2), (θ2, x3), (θ1, x1), (θ1, x2), (θ1, x3)} 0.15 · 0.75

{(θ2, x1), (θ2, x2), (θ2, x3), (θ1, x1), (θ1, x2), (θ1, x3)} 0.25
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The second mass function is telling us that in ordinary plox-
oma θ2, the test outcome is x1 in 85 percent of the cases,
which we scale by 0.75 to reflect the confidence in the out-
come by experts. There are 25 percent cases which give us no
new information. The last mass function m3 is

{(θ1)} 0.05

{(θ2)} 0.85

{(θ1), (θ2)} 0.10

This signifies that 85 percent of the time, the patient is suffer-
ing from ordinary ploxoma. The ambiguity in the remaining
percentage is represented in the set potential by assigning 5

percent to virulent ploxoma and 10 percent possibility to both
cases.

Now suppose we want to calculate the belief held for
θ1 and θ2 given that the test result is, say x1. Similarly to
Bayesian networks, we add an observation set potential ex-
pressing that the test result is x1: mo : {{(x1)}, 1.0}. Then we
can compute the belief for presence of virulent or ordinary
ploxoma by solving

(m1 ⊗m2 ⊗m3 ⊗m0)
↓{d} (2.23)

We shall look at the application of our anytime inference
framework to this example in section 4.2.

2.7 The Inference Algorithm

2.7.1 Fusion, Variable Elimination and Join Trees

In this section, we shall discuss the algorithm which solves
the inference problem stated in section 2.4. The inference
algorithm described here is one among others, such as the
fusion algorithm [Shenoy, 1992] and bucket elimination algo-
rithm [Dechter, 1998], which are referred to in the literature as
local computation schemes. These local computation schemes
reduce the computational complexity considerably from the
naïve approach of combining all the valuations and then
projecting to the desired query.

We discuss the fusion algorithm which uses variable elim-
ination instead of marginalization. This technique is gener-
alised in a message-passing algorithm. We use the algorithms
and notation from [Haenni, 2004].
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Fusion algorithm

The fusion algorithm was first described by Shenoy [Shenoy, 1992,
Shenoy, 1997]. Later, the essential idea was rediscovered by
Dechter in the bucket elimination framework [Dechter, 1998].
Let Ψ = {φ1, . . . , φr} ⊆ Φ be a given set of valuations and
D ⊆ V be the domain of interest where V ⊇ d(φ1) ∪ · · · ∪
d(φn). The fundamental operation of the fusion algorithm is
the elimination of a single variable x ∈ ∆ where ∆ = V \ D
is the set of variables to be eliminated. We introduce the
following notation:

Ψx := {φ ∈ Ψ : x ∈ d(φ)} and Ψ∗x := {φ ∈ Ψ : x 6∈ d(φ)}
(2.24)

where Ψx and Ψ∗x denote the corresponding subsets of val-
uations which have the variable x and its complement. In
Dechter’s framework, Ψx is called the bucket of x [Dechter, 1998].
Only valuations in Ψx are changed by the elimination of x.
The remaining set of valuations after eliminating x from Ψ is

Fusx(Ψ) := {(⊗Ψx)
−x} ∪Ψ∗x (2.25)

Thus the marginal of the joint valuation can be computed by
successively eliminating the variables in ∆ = {x1, . . . , xs}. If
〈x1, . . . , xs〉 is an arbitrary sequence in which variables are
eliminated, then

Fus{x1,...,xs}(Ψ) := Fusxs � . . .� Fusx1(Ψ) (2.26)

is the set of remaining valuations after eliminating all the
variables in ∆. The entire process is called the fusion algorithm
or bucket elimination. Finally:

(⊗Ψ)↓D = (⊗Ψ)−∆ = �Fus∆(Ψ) (2.27)

The efficiency of the algorithm is strongly dependent on the
elimination order; several heuristic methods have been de-
veloped to find good elimination sequences [Almond, 1995,
Almond and Kong, 1991, Cano and Moral, 1995, Haenni and Lehmann, 1999].

Binary join trees

The fusion algorithm is a simple algorithm for solving the
inference problem. However it is not a good solution in the
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case when multiple projections are required from the joint
valuation. It can be shown that fusion corresponds to inward
propagation [Shenoy, 1997, sections 4,5] of valuations (with
marginalisation) from the leaves to the root of a binary tree
with nodes as valuations. Inward propagation gives us the
ability to reuse the computations of the inward phase when
several marginals are requested.

IDefinition 2.5. Join tree. Also known as junction trees,
clique trees, hypertrees, cluster trees and bucket trees, a join tree
is a tree G = (N, E) of nodes N and edges E, with a label
called a domain, λ : N → 2V associated with each node and
satisfying the running intersection property. V is the universe of
variables.

Running intersection property. For a tree G = (N, E) with
nodes {i, j, k, . . .} ∈ N, there is an unique path PG(i, j) which
is represented as the set of nodes on the path from i to j in G.
Then the running intersection property states that

λ(i) ∪ λ(j) ⊆ λ(k), k ∈ PG(i, j) (2.28)

This implies, that if a variable is in the domain of two distinct
nodes, then it is in the domain of each node on the unique
path between these two nodes.

IDefinition 2.6. Rooted join tree. A rooted join tree is a
join tree G = (N, E) with directed edges; the unique root of
the tree is denoted by root(N).

IDefinition 2.7. Binary join tree. A binary join tree is a
rooted join tree in which every node has an outgoing edge (to
the parent) and either zero (if it is a leaf), or two incoming
edges.

INotation. We use the following notation for denoting
elements of the binary join tree (abbreviated as BJT):

• L(n) denotes the left child of a node n, or nil if n is a leaf.

• R(n) denotes the right child of a node n, or nil if n is a leaf.

• P(n) denotes the parent of node n or nil if n = root(N).

• S(n) denotes the sibling of node n or nil if n = root(N).
Thus S(n) = R(P(n)) if n = L(P(n)), or S(n) = L(P(n))
otherwise.

Next we consider how to construct a BJT for a given set
Ψ = {φ1, . . . , φr} ⊆ Φ of valuations and a domain D ⊆ V
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of interest. Here Ψ is the knowledgebase and D is the query.
The process of constructing the join tree is similar to that of
the fusion algorithm, in which variables are eliminated one
after the other. Let NΨ = {n1, . . . , nr} be the initial set of
nodes ni with d(ni) = d(φi), L(ni) = nil, R(ni) = nil and P(ni)

= nil. The set of variables to be eliminated is ∆ = V \ D =

{x1, . . . , xs}. For s variables to be eliminated, the binary join
tree can be constructed in s + 1 steps. At each step a set of
nodes Nx is selected. During the first s steps, Nx comprises
the nodes that contain the current variable x. At each of the
s + 1 steps, pairs of nodes are selected from Nx and linked to
a new node until only one node remains. If ∆c is used to keep
track of the eliminated variables, then the complete procedure
goes as follows:

function construct-binary-join-tree(NΨ, ∆)
N ← ∅; ∆c ← ∅; root(N) = nil
repeat

if ∆ = ∅ then
Nx = NΨ

else
select x ∈ ∆ using some heuristic
Nx ← {n ∈ NΨ : x ∈ d(n)};

end if
while |Nx| > 1 do

generate new node n with P(n) = nil;
select distinct n1, n2 ∈ Nx using some heuristic.
P(n1)← n; P(n2)← n;
L(n)← n1; R(n)← n2;
d(n)← (d(n1) ∪ d(n2)) \ ∆c;
Nx ← (Nx \ {n1, n2}) ∪ {n};
N ← N ∪ {n1, n2}

end while
select n from Nx = {n};
if ∆ = ∅ then

root(N) = n;
else

∆← ∆ \ {x}; ∆c ← ∆c ∪ {x}
NΨ ← {n ∈ NΨ : x 6∈ d(n)} ∪ d(n)

end if
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until root(N) 6= nil
N ← N ∪ {n}; return N;

end function

The return value N = {n1, . . . , n2r−1} is a BJT where the
domains of the leaves correspond to the domains of the val-
uations in Ψ such that D ⊆ d(root(N)). There is a strong
correspondence between this procedure for constructing
join trees and the fusion algorithm discussed earlier. If we
implemented the combination procedure in fusion as a tree
structure, we would produce a join tree which would not be
binary. Here we restrict combination to two valuations at a
time to form the binary join tree.

IExample 2.10. Let Ψ = {φ1, . . . , φn} be the initial set of val-
uations assigned to corresponding nodes in NΨ = {n1, . . . , n9}
with domains

d(n1) = {a, x1}, d(n2) = {a, c, x1}, d(n3) = {b, x1, x2},
d(n4) = {b, c, x2}, d(n5) = {c, x2}, d(n6) = {a, x3, x4},

d(n7) = {d, x3, x4}, d(n8) = {c, x5}, d(n9) = {a, b}.

The query is D = {a, b, c, d}. Thus the set of variables to be
eliminated is ∆ = {x1, . . . , x5}. We eliminate the variables
in increasing order of index, that is xi is eliminated before
xj iff i < j. Similarly, when we are choosing the nodes to be
combined from Nx, we choose the nodes with the smallest
indices. The table below shows a trace of an invocation of the
algorithm:

∆ NΨ Nx n d(n)

{x1, . . . , x5} {n1, . . . , n9} {n1, n2, n3} n10 {a, c, x1}
{n3, n10} n11 {a, b, c, x1, x2}

{x2, . . . , x5} {n4, . . . , n9, n11} {n4, n5, n11} n12 {b, c, x2}
{n11, n12} n13 {a, b, c, x2}

{x3, x4, x5} {n6, . . . , n9, n13} {n6, n7} n14 {a, d, x3, x4}
{x4, x5} {n8, n9, n13, n14} {n14} n14 {a, d, x3, x4}
{x5} {n8, n9, n13, n14} {n8} n8 {c, x5}
{} {n8, n9, n13, n14} {n8, n9, n13, n14} n15 {a, b, c}

{n13, n14, n15} n16 {a, b, c, d}
{n15, n16} n17 {a, b, c, d}

Table 2.6: Trace of binary join tree
construction for example 2.10.

The execution trace of the algorithm is similar to that of the
fusion algorithm. x1 is the first variable to be eliminated; it
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appears in the domains of nodes Nx = {n1, n2, n3}; two nodes
n10, n11 are generated to connect the nodes in the binary join
tree. If we had not restricted ourselves to binary join trees,
then there would be one parent node connecting each of
n1, n2, n3; instead we first connect n1, n2 to the parent node n10

and then connect n3 to n10 to form n11. Thus we get d(n10) =

{a, c, x1} and d(n11) = {a, b, c, x1, x2}. Similarly we proceed
with the elimination of x2, . . . , x5. After the elimination, four
nodes remain NΨ = {n8, n9, n13, n14}. We need three more
nodes n15, n16, n17 to connect them. The result is a binary
join tree with nodes N = {n1, . . . , n17} and root(N) = n17.
The query D = {a, b, c, d} is the domain of d(root(N)). The
constructed binary join tree is shown in figure 2.1.

17

16 15

981413

11 12 6 7

10 3 4 5

21

{a,b,c,d}

{a,b,c,d} {a,b,c}

{a,b,c,x2} {a,d,x3,x4}

{c,x5} {a,b}

{a,b,c,x1,x2}

{b,c,x2}

{a,x3,x4} {d,x3,x4}

{b,c,x2} {c,x2}{b,x1,x2}

{a,c,x1}

{a,c,x1}{a,x1}

Figure 2.1: The binary join tree
from example 2.10.

IRemark. In this and the following chapters 3 through 5, we
do not concern ourselves with whether the binary junction
trees are balanced. The inference algorithm presented in this
chapter, and the anytime inference algorithm presented in
chapter 3 will still be correct regardless.

We give references to methods that can be used to con-
struct balanced binary join trees in chapter 6 which requires
balanced binary junction trees for some results.
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2.7.2 Inward propagation

The first phase of the algorithm is inward propagation of
messages sent from the leaves of the BJT towards the root.

INotation. Let Ψ = {φ1, . . . , φr} be a set of valuations, D be
the domain of interest and N = {n1, . . . , n2r−1} be the nodes
of the constructed BJT.

We denote the r leaves of the BJT by leaves(N). Then for
each valuation φ ∈ Ψ, we select the corresponding leaf n ∈
leaves(N) with d(n) = d(φ) and assign φ to n; the valuation at
node n is denoted by φ(n). The message sent from a leaf node
n to the parent node P(n) is denoted by φs(n).

We also denote the queue of nodes to be processed by
next(N) which denotes the subset of nodes that have received
messages from both its children and is thus ready to compute
its own valuation.

next(N) := {n ∈ N : φs(n) = nil, φs(L(n)) 6= nil, φs(R(n)) 6= nil}
(2.29)

For all nodes which are not leaves, we set φ(n) = nil. The
content of the message is φ(n) marginalised to the common
variables between the node and its parent d(n) ∩ d(P(n)).
Thus for any n which is not the root, φs(n) = φ(n)−∆(n)

where ∆(n) = d(n) \ d(P(n)). Here the notation used
for φ(n)−∆(n) is the same as in section 2.7.1, where ϕ−X for
X ⊆ V denotes elimination of variables in X from ϕ. Thus
φ(n)−∆(n) = φ(n)d(n)∩d(P(n)).

After the parent node n has received messages from both
its child nodes L(n), R(n), its own valuation φ(n) is calculated
by combining the messages:

φ(n) = φs(L(n))⊗ φs(R(n)) (2.30)

Initially we set φs(n) = nil for all n ∈ N. We also define
∆(root(N)) := d(root(N)) \ D as the set of variables to be elimi-
nated at the end. Then the inward propagation algorithm can
be written as

function inward(N)
for all n ∈ leaves(N) do φs(n)← φ(n)−∆(n)

while next(N) 6= ∅ do
select n from next(N)
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φ(n)← φs(L(n))⊗ φs(R(n))
φs(n)← φ(n)−∆(n)

end while
return φs(root(N))

end function

At the end of the inward propagation procedure, we get
the marginal (⊗Φ)↓D at the root node, root(N).

IRemark. Time complexity of inward propagation. From the
inward propagation algorithm we can see that there will
be n − 1 combinations which is the more time-consuming
operation generally compared to projection. Thus the time
complexity of inward propagation is O(nk) where O(k) is
the maximum time taken for combination at a node. This
is usually a function of the size of the join tree label (the
number of variables assigned). It follows that the largest join
tree label will determine the complexity:

IDefinition 2.8. treewidth. The treewidth of a join tree
G = (N, E) with labels λ : N → 2V where λ(n) denotes the
label of n, is the size of the largest join tree label:

ω(N) = max{|λ(n)| : n ∈ N}

The treewidth is an important parameter that determines
complexity. The goals of most heuristics in this research area
is to reduce the join tree width, and thus the time complexity.

2.7.3 Outward propagation

The outward propagation calculates the marginals for
each node in the join tree. We reuse the intermediate results
(messages passed from nodes to parents, and the valuation at
each node) to construct the marginals at each node.

INotation. We denote φr(n) to be the message that a parent
node P(n) sends to its child node n. The marginal at n, which
is the solution to the inference problem with query d(n), is
denoted by φ′(n) = (⊗Φ)↓d(n). The sibling (other child of the
parent node) of n is denoted by S(n). The queue of nodes to
be processed as in the inward part of the algorithm is then

next′(N) := {n ∈ N : φ′(n) = nil, φ′(P(n)) 6= nil} (2.31)
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The above is the set of nodes that are ready to receive a mes-
sage from the parent node P(n).

φr(n) carries all the information about non-descendants
of n. The marginal φ′(n) = (⊗Φ)↓d(n) at node n is obtained
using φ′(n) = φ(n)⊗φr(n), where φ(n) = φs(L(n))⊗φs(R(n))
is the valuation computed at node n in the inward phase.

The message φr(n) is determined by φr(P(n)) and φs(S(n)).
If we denote ∆′(n) = d(P(n)) \ d(n) to denote a set of vari-
ables in d(P(n)) but not in d(n), then

φr(n) = (φr(P(n))⊗ φs(S(n)))−∆′(n) (2.32)

For the root node, φr(root(N)) = eD and φ′(root(N) =

φ(root(N)). Also, Then the outward phase can be described as
follows:

function outward(N)
φr(root(N))← eD; φ′(root(N))← φ(root(N))

while next′(N) 6= ∅ do
select n from next′(N)

φr(n)← (φr(P(n))⊗ φs(S(n)))−∆′(n)

φ′(n)← φ(n)⊗ φr(n)
end while
return {φ′(n) : n ∈ N}

end function

outward(N) returns the marginal φ′(n) = (⊗Φ)↓d(n)

for each n ∈ N. Nodes with identical domains get identical
results. The algorithm stops after 2 · (r − 1) steps, requiring
4 · (r− 1) combinations.

For this we need an identity valuation for each domain eD

for each domain D ⊆ V. This is naturally present in some
instances, such as valuation algebras introduced by a boolean
semiring: eD(x) = 1 for all x ∈ ΩD. Otherwise, we need to
use architectures such as the outward phase in the Shenoy-
Shafer architecture [Pouly and Kohlas, 2011, section 4.1.1]. We
shall not be requiring outward propagation in the thesis, so
this matter is not elaborated further.
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2.7.4 Local Computation Architectures

In this section we briefly discuss some of the local com-
putation architectures prevalent in the literature. All the
architectures utilise a covering join tree for the valuations
in the knowledge base. A covering join tree for an inference
problem is a join tree that has at least one node n (with label
λ(n)) for every valuation φi such that d(φi) ⊆ λ(n). The local
computation architectures differ in the implementation of
inward and outward (collect and distribute) phases of the
inference algorithm.

Shenoy-Shafer In the Shenoy-Shafer architecture, we store the
messages sent between nodes for later re-use. The inward
and outward propagation algorithms in this architecture
are thus similar to those presented in the previous sec-
tions. Unlike the previous section which only considered
binary join trees, the Shenoy-Shafer architecture is appli-
cable to arbitrary join trees. However binary join trees
generally perform better in the Shenoy-Shafer architecture
[Shenoy, 1997]. A general introduction can also be found at
[Pouly and Kohlas, 2011, section 4.1].

Lauritzen-Spiegelhalter This architecture was introduced to per-
form local computation in Bayesian networks [Lauritzen and Spiegelhalter, 1990].
This differs from the Shenoy-Shafer architecture in using a
division operation during the inward propagation phase.
Thus the Lauritzen-Spiegelhalter architecture is less general
than the Shenoy-Shafer architecture as it only supports
valuation algebras with division.

The advantage of the Lauritzen-Spiegelhalter architecture
is that messages need not be stored. In the Shenoy-Shafer
architecture it is necessary to store the inward propagation
messages, as otherwise a particular node would get back
the message it sent in the outward phase, counting the
information twice. In Lauritzen-Spiegelhalter, the nodes
can factor our the message from its own valuation after the
message has been sent.

HUGIN The HUGIN architecture was introduced in [Jensen et al., 1990]
as a modification of the Lauritzen-Spiegelhalter architec-
ture. Here, the division is postponed to the outward propa-
gation phase. The division takes place in a separate class of
nodes called separators (sij) which lie between neighbouring
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nodes i and j with a label λ(sij) = λ(i) ∩ λ(j). The advan-
tage over Lauritzen-Spiegelhalter is that division is less
costly due to the smaller label sizes of the separators.

2.8 Ordered Valuation Algebras

As exact inference is a #P-hard problem, we need frame-
works for approximate inference. The framework reviewed
in this section, and introduced by [Haenni, 2004], extends the
generic inference framework to accommodate approximate
inference.

Before proceeding to the definition, we need to consider
two notions which are essential to any such approximate in-
ference framework, an approximation relation and a method
for construction of approximate valuations:

Approximation relation The first notion to consider when build-
ing a framework for approximate inference is to have a
relation for approximation; we would need to know when a
valuation is more approximate than the other; and ideally
would also be able to quantify the degree of approxima-
tion. For this, we introduce a completeness relation �. If φ, φ′

are two valuations, then φ � φ′ means that φ is more com-
plete than φ′. Intuitively, the information contained in φ

is more informative and a better approximation than the
information encoded by φ′. Further, we assume a partial
order:

• Reflexivity: φ � φ for all φ ∈ Φ.
• Anti-symmetry: φ � φ′ and φ′ � φ implies φ = φ′ for all

φ, φ′ ∈ Φ.
• Transitivity: φ � φ′ and φ′ � φ′′ implies φ � φ′′ for all

φ, φ′, φ′′ ∈ Φ.

Also it is reasonable to assume that comparison of val-
uations is only defined when the domains match. Thus
φ � φ′ implies d(φ) = d(φ′) for all φ, φ′ ∈ Φ and � actu-
ally defines separate completeness relations �D for each
subsemigroup6 ΦD. 6 defined at def. 1.4

Approximate valuation construction In addition to an approx-
imation relation such as partial order, we also need a
method or operation to construct approximate valuations.
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This is accomplished in [Haenni, 2004] through the intro-
duction of a time-bound combination operation which
constructs approximate valuations. Combination is chosen
to be the operation here since it is usually the more com-
putationally intensive one, as compared to marginalisation.
Variations of the inward and outward propagation algo-
rithm are considered which restrict the time required for
computation, guaranteeing computation of an approximate
valuation within a specified time bound.

IRemark. Our treatment of ordered valuation algebras
varies slightly from [Haenni, 2004], which does not include
the time-bound combination operation in the ordered valua-
tion algebra definition, instead considering it as an additional
component. We have opted to include the time-bounded com-
bination operation in the main definition for simplicity, along
with its associated axioms, here R5 – R9, originally R1 – R5 in
[Haenni, 2004].

IDefinition 2.9. Ordered Valuation Algebra. An or-
dered valuation algebra is a tuple 〈Φ, V, d,⊗, ↓,�,⊗t〉 satis-
fying R1–R9 where 〈Φ, V, d,⊗, ↓〉 is a valuation algebra. The
additional components are the partial order �: Φ×Φ and the
time-bound combination operation ⊗t : Φ×Φ→ Φ

R1 Partial order: There is a partial order � on Φ such that
φ � φ′ implies d(φ) = d(φ′) for all φ, φ′ ∈ Φ. Also the
infimum inf(Ψ) exists for each subset Ψ ⊆ ΦD and for all
D ⊆ V.

R2 Null element: The least complete valuations for a particular
domain D are the null valuations for that domain nD. Thus
nD ⊗ φ = φ⊗ nD = nD for all φ ∈ ΦD and for all D ⊆ V.
Since null elements for a particular domain are unique,
nD1 ⊗ nD2 = nD1∪D2 for D1, D2 ⊆ V and n↓D

′

D = nD′ for all
D′ ⊆ D.

R3 Combination preserves partial order: If φ1, φ′1, φ2, φ′2 ∈ Φ are
valuations such that φ1 � φ′1 and φ2 � φ′2, then φ1 ⊗ φ2 �
φ′1 ⊗ φ′2.

R4 Marginalisation preserves partial order: If φ, φ′ ∈ Φ are
valuations such that φ � φ′, then φ↓D � φ′↓D for all
D ⊆ d(φ) = d(φ′).
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The time bound combination operation ⊗t : Φ× Φ → Φ
satisfies the following axioms, for all φ1, φ2 ∈ Φ and t ∈
R+ ∪ {∞}.

R5 Computation time: The effective time to compute φ1 ⊗t φ2 is
less than t units.

R6 Approximate valuation: The exact combination of two
potentials φ1 ⊗ φ2 is approximated by the time-bound
combination; φ1 ⊗ φ2 � φ1 ⊗t φ2.

R7 Monotone: The approximation gets better with time; φ1 ⊗t′

φ2 � φ1 ⊗t φ2 for all t′ ≥ t. In other words, operation ⊗t is
monotonic with respect to t.

R8 Null valuation at t = 0: φ1 ⊗0 φ2 = nD where nD is the
null element of the valuation algebra corresponding to the
domain D = d(φ1) ∪ d(φ2).

R9 Complete: Given sufficient time, the time-bound com-
bination operation returns the same result as the exact
combination; φ1 ⊗∞ φ2 = φ1 ⊗ φ2

Using these axioms, we can arrive at the result that if a set
of valuations Ψ = {φ1, . . . , φr} is approximated by a corre-
sponding set of less complete valuations Ψ′ = {φ′1, . . . , φ′r},
then (⊗Ψ′)↓D is an approximation of the exact marginal of
the joint valuation (⊗Ψ)↓D.

The time-bound combination operator ⊗t is not commuta-
tive or associative as different sequences of combinations can
lead to different outcomes. This is not surprising as the im-
plementation of ⊗t contributes to the result; since the result
is not exact, but approximate, it is natural to expect slightly
different results depending on the exact sequence of combina-
tion. Since we are trying to find an approximate solution, it
does not matter which one of the many possible approximate
solutions we arrive at. The inward(N) algorithm is modified
to incorporate the resource-bound combination operator ⊗t.
There is also a corresponding outward propagation algorithm
which we do not discuss here.

Now we present some examples of ordered valuation
algebras to give an intuitive sense of how the axioms work.

In the following two sections we extend the valuation
algebra instances discussed previously. We do not provide
proofs of correctness, however we shall show in chapter 3
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that our framework of anytime ordered valuation algebras
subsumes ordered valuation algebras, subject to an additional
condition. We do discuss instances of ordered valuation
algebras: arithmetic potentials, disjunctive normal forms
and relational algebras, as well as set potentials. We shall
conclude the discussion of ordered valuation algebras with
set potentials which are not semiring induced.

2.9 Semiring induced ordered valuation al-
gebras

We shall use the same definition of a semiring induced
valuation algebra as in def. 2.2, with the additional constraint
that the semiring be positive and partially ordered (defined
below). This is similar to the treatment of approximations
in [Haenni, 2004] and constitutes a generalization of the in-
stances in that article. We shall use the notation for config-
uration space ΩD of a set of variables D and the associated
notation for tuples from definition 2.2 (semiring induced
valuation algebras).

IDefinition 2.10. Partially ordered semiring. [Golan, 2013,
chapter 20] A semiring (A,+, ·, 0, 1) is partially-ordered if
and only if there exists a partial order relation �A on A sat-
isfying the following conditions for elements r, r′, and r′′ of
R:

(1) If r �A r′ then r + r′′ �A r′ + r′′;
(2) If r �A r′ and 0 �A r′′ then r · r” �A r′ · r” and r′′ · r �A

r′′ · r′,

IDefinition 2.11. Positive semiring. [Golan, 2013, chapter
20] A partially ordered semiring (A,+, ·, 0, 1) is positive if
and only if 0 � r for all r ∈ A.

We derive two further properties that will be used in Chap-
ter 3.

ILemma 2.3. For a partially ordered semiring (A,+, ·, 0, 1), with
the partial order denoted as �A, we have:

(1) If r �A r′ and s �A s′ then r + s �A r′ + s′;
(2) If r �A r′ and s �A s′ then r · s �A r′ · s′

Proof. For (1), we note that r + s �A r′ + s using (1) of the
partially ordered semiring definition. Similarly, we have
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r′ + s �A r′ + s′. From transitivity of partial order, we get
r + s �A r′ + s′.

For (2), we note that r · s �A r′ · s using (2) of the partially
ordered semiring definition. Similarly, we have r′ · s �A r′ · s′.
From transitivity of partial order, we get r · s �A r′ · s′.

IRemark. We proceed to the definition of semiring induced
ordered valuation algebras. As we shall not be using the or-
dered valuation algebra in the thesis, we do not show validity
of the ordered valuation algebra axioms R1 – R9.

IDefinition 2.12. Semiring induced ordered valuation

algebras. A semiring induced ordered valuation algebra is
a tuple 〈Φ, V, d,⊗, ↓,�,⊗t〉, where 〈Φ, V, d,⊗, ↓〉 is a semir-
ing induced valuation algebra (def. 2.2) induced by a positive,
partially ordered, commutative semiring (A,+, ·, 0, 1). The
partial order in the semiring is denoted by order �A. We also
have the partial order relation for the valuation algebra and
the time-bound combination operation:

Partial order Valuations having the same domain D form a
partially ordered set ΦD ⊆ Φ. For two valuations φ, φ′ ∈
ΦD, φ � φ′ iff φ(x) �A φ′(x) for all x ∈ ΩD.

Time bound combination operation The time bound combination
operation is defined as follows: For φ1 : ΩD1 → A and φ2 :
ΩD2 → A, the time bound combination φ1⊗t φ2 is a function
φ1 ⊗ φ2 : ΩD1∪D2 → A. Thus the time bound combination
has the same type as the combination operation ⊗. It is
implemented as the combine(φ1, φ2, t) algorithm.

Null element The null element of a valuation algebra corre-
sponding to a particular domain D is nD : ΩD → A, with
nD(x) = 0 for all x ∈ ΩD.

We can consider a semiring induced valuation φ with do-

main D, i.e. φ : ΩD → A as being represented by a list

Lφ = 〈(x1, φ(x1)) . . . (xn, φ(xn))〉, where {x1 . . . xn} ⊆ ΩD is

the subset that does not map to 0.

We then consider two valuations φ1 on domain D1 and φ2 on

domain D2 with Lφ1 = 〈(x1, φ1(x1)) . . . (xn1 , φ1(xn1))〉 and Lφ2 =

〈(y1, φ2(y1)) . . . (yn2 , φ2(yn2))〉 If x ∈ ΩD1 and y ∈ ΩD2 with

x↓D1∩D2 = y↓D1∩D2 then we denote by xy the configuration in

ΩD1∪D2 for which xy↓D1 = x and xy↓D2 = y.
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function combine(φ1, φ2, t)

L← 〈〉; i← 1; j← 1

initialise timer to t units

while timer() > 0 and (i ≤ n1 or j ≤ n2) do

if j > n2 or (i ≤ n1 and π1(xi) � π2(yj)) then

while timer() > 0 and for r from 1 to j− 1 do

if x↓D1∩D2
i = y↓D1∩D2

r then

insert [xiyr, φ1(x1) · φ2(yr)] into L.

end if

end while

i← i + 1;

else

while timer() > 0 and for r from 1 to i− 1 do

if y↓D1∩D2
j = x↓D1∩D2

r then

insert [xryj, φ1(xr) · φ2(yj)] into L.

end if

end while

j← j + 1

end if

end while

return valuation corresponding to L

end function

2.9.1 Arithmetic potentials

To extend the valuation algebra instance of arithmetic
potentials from section 2.2.1, we need to define the partial
order. The time-bound combination operation follows from
the time-bound combination for semiring induced ordered
valuation algebra definition.

Partial order For two arithmetic potentials π, π′ (π, π′ : ΩD →
R+):

π � π′ equivalent to d(π) = d(π′) and π(x) ≥ π′(x) for all x ∈ ΩD

(2.33)

The above defines a completeness relation. The infimum for
a set of potentials Π on D is

inf(Π)(x) = min
π∈Π

π(x). (2.34)
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Null elements The least complete arithmetic potentials are
those for which π(x) = 0 for all x ∈ ΩD, which are also the
null elements of the valuation algebra.

2.9.2 Disjunctive normal forms

IRemark. This instance of disjunctive normal forms consid-
ers it at the formula level as this is the approach in [Haenni, 2004].
We note that the valuation algebra of formulae and the model
are identical upto logical equivalence as we discussed in
section 2.2.2, and as also discussed in [Kohlas et al., 1999].

For disjunctive normal forms, we consider a formula to
be more informative or a better approximation than another
if its terms are subterms of the other. This leads to a larger
model, which is the basis for approximation. The elements of
the ordered valuation algebra in this case are:

Partial order If we consider DNF potentials [δ, D] and [δ′, D′]
where D, D′ are the respective domains and let

[δ, D] � [δ′, D′] equivalent to D = D′ and ∀τ′ ∈ δ′ there is τ ∈ δ such that τ ⊆ τ′

(2.35)

Set inclusion ⊆ forms a lattice. Thus � forms a partial
order and satisfies R1. For ∆, a set of DNF potentials on
domain D, then infimum inf(∆) is the combination ⊗∆ of
the potentials in ∆.

Null element [∅, D] is the null element of the combination.

2.9.3 Relational algebras

We recall that a valuation in a relational algebra is a rela-
tion, comprising tuples over certain variables, called attributes.
Thus a relation R over a set of variables S is a subset of the
configuration space of S, i.e. R ⊆ ΩS.

Partial order The completeness relation is defined as such, for
R1, R2 over the same domain d(R1) = d(R2) = D:

R1 � R2 := R1 ⊇ R2 (2.36)

This satisfies R1 as relations on different domains are not
compared, and ⊇ gives a partial order on sets, and the
infimum relation on any domain D is the empty relation ∅
on D.
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Null element The null element nD for a domain D is the
empty relation ∅ on the domain D.

2.10 Set potential ordered valuation algebra

IRemark. We use set potentials in keeping with the rest of
the thesis; [Haenni, 2004] considers belief potentials which
are normalised. As in the case of semiring induced ordered
valuation algebras, we do not show validity of R1 – R9 since
we do not use ordered valuation algebras in the thesis.

We consider the set potentials defined as m : 2ΩD → R+.
The set of such set potentials forms a valuation algebra. The
extension of the valuation algebra to an ordered valuation
algebra is as follows:

Partial order For two such belief potentials m, m′, we define
the completeness relation as such:

m � m′ := d(m) = d(m′), m(A) ≥ m′(A) for all A ⊆ ΩD

(2.37)

Thus set potentials with different domains cannot be com-
pared, ≥ is a total order, and there is the natural infimum
belief potential for every domain D which is the belief
potential with m(A) = 0 for all A.

Null element The null element is also the infimum belief
potential for a domain D with m(A) = 0 for all A.

Time-bound combination The time bound combination op-
eration is defined as follows: For m1 : 2ΩD1 → A and
m2 : 2ΩD2 → A, the time bound combination m1 ⊗t m2 is a
function m1 ⊗m2 : 2ΩD1∪D2 → A. Thus the time bound com-
bination has the same type as the combination operation
⊗. It is implemented as the combine(m1, m2, t) algorithm
below.

We represent a mass function m : 2ΩD → [0, 1] as an ordered

list Lm = 〈[A1, m(A1), . . . , [An, m(An)]〉, where {A1, . . . , An} ⊆
2ΩD is the set of focal elements of m with m(Ai) ≥ m(Aj) for

1 ≤ i ≤ j ≤ n. If m1 on D1 and m2 on D2 are represented by

corresponding sets of focal sets {A1, . . . , An1} and {B1, . . . , Bn2},
then the resource-bounded combination can be carried out thus:
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function combine(m1, m2, t)

L← 〈〉; i← 1; j← 1

initialise timer to t units

while timer() > 0 and (i ≤ n1 or j ≤ n2) do

if j > n2 or (i ≤ n1 and m1(Ai) ≥ m2(Bj)) then

while timer() > 0 and for r from 1 to j− 1 do

C ← Ai ./ Br

m← m1(Ai) ·m2(Br)

if [C, m′] ∈ L then

m′ ← m′ + m

else

insert [C, m] into L.

end if

end while

i← i + 1;

else

while timer() > 0 and for r from 1 to i− 1 do

C ← Ar ./ Bj

m← m1(Ar) ·m2(Bj)

if [C, m′] ∈ L then

m′ ← m′ + m

else

insert [C, m] into L.

end if

end while

j← j + 1

end if

end while

return L

end function

2.11 Approximate inference algorithm

Like the exact inference algorithm in section 2.7, the ap-
proximate inference algorithm comprises two steps: inward
and outward propagation.
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2.11.1 Inward propagation

Let’s consider the inward propagation algorithm in in-
ward(N) and replace the combination operator with ⊗t. As
the total number of combinations in the inward phase is r− 1
(one at each step of the algorithm for every non-leaf node in
the BJT); a trivial way to ensure a T unit time-bound algo-
rithm is to allocate T/(r− 1) units for each of the r− 1 combi-
nation steps. However some combinations may take more or
less time, so this is not a particularly efficient approach.

If T is the remaining time, and s the number of remaining
steps, then t = T/s is the approximate time which we can
allocate for the next combination φs(L(n))⊗ φs(R(n)) at node
n ∈ next(N); also

INotation. Effective time for combination. let Teff(φ1, φ2)

denote the effective time required for the exact combination
φ1 ⊗ φ2. such that

1. for t ≥ Teff(φ1, φ2), φ1 ⊗ φ2 = φ1 ⊗t φ2

2. for t < Teff(φ1, φ2), φ1 ⊗ φ2 � φ1 ⊗t φ2

The effective time for the combination φ1 ⊗ φ2 at node n is

T (n) = Teff(φs(L(n)), φs(R(n))) (2.38)

For the remaining s − 1 steps of the algorithm, (T −
min{T (n), T/s})/(s − 1) units are left. Thus the actual al-
location of available time t = T/s increases monotonically
during the process. To maximise increase at the beginning, it
is important, at each step of the algorithm to select the node
n ∈ next(N) such that T (n) is as small as possible. As T (n)
is unknown, we use some T ′(n) to estimate the time required
for exact combination at each node n and minimise T ′(n)
instead of T (n). A possible T ′(n) could be some function of
d(n) for example.

We construct a resource-bounded version of the propaga-
tion algorithm with input BJT having nodes N = {n1, . . . , n2r−1}
and total available time T. We use steps(N) := r − 1 to rep-
resent the number of necessary combinations; calling the
function timer() allows one to determine the number of re-
maining units. The definitions of L(n), R(n), P(n), S(n) are
the same as in def. 2.7.1.
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function inward(N, T)
s← steps(N);
initialise timer to T units.
for all n ∈ leaves(N) do φs(n)← φ(n)−∆(n)

while next(N) 6= ∅ do
select n from next(N) such that T ′(n) is minimal;
φ(n)← φs(L(n))⊗T/s φs(R(n));
φs(n)← φ(n)−∆(n)

s← s− 1
T ← timer()

end while
return φs(root(N))

end function

This process terminates after a maximum of T units. The
result is an incomplete valuation φ ∈ Φ, such that (⊗Ψ)↓D �
φ as a direct consequence of (R3), (R4) and (R6). If φ, φ′ are
the outputs of inward(N, T) and inward(N, T′) with T′ ≥ T,
then (R6) guarantees that φ′ � φ. As a consequence of (R8)
and (R9), inward(N, 0) returns the least complete valuation
nD and inward(N, ∞) produces the exact solution (⊗Ψ)↓D.

2.12 Conclusion

In this chapter, we reviewed the framework of generic
inference, the associated theory of valuation algebras, and
presented examples of generic inference as an unifying ab-
straction across various representations of information, from
relational algebras to Bayesian networks. Then we described
the binary join tree structure and the inward and outward
propagation algorithms for exact inference.

Next, we reviewed the framework of ordered valuation
algebras, which supports approximate (but not anytime)
inference using a time-bound combination operator. We
showed the applicability of ordered valuation algebras to the
instances of arithmetic potentials, disjunctive normal forms,
relational algebras and set potentials. In the next chapter
we introduce our work on anytime inference in valuation
algebras which builds upon the formalisms presented in this
chapter.
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Chapter 3

Anytime Generic
Inference

As we noted in the introduction, one of the contributions
of the thesis is in the area of anytime inference. Anytime in-
ference refers to solving the inference problem approximately,
while allowing for the approximation to be improved with
time and making use of intermediate results. This can be
useful in applications with limited space, and for efficiency
reasons, such as in continuous learning and robotics. In this
chapter we introduce the framework for constructing an
anytime inference algorithm based on the valuation algebra
framework reviewed in chapter 2.

The chapter is organised as follows: Section 3.1 introduces
the anytime ordered valuation algebra framework. We show
in section 3.2 that the class of semiring induced valuation
algebras are amenable to anytime inference, and in section 3.3
show that set potential valuation algebras support anytime
inference. In section 3.4, we discuss outward propagation.
Section 3.5 concludes.

We also present proofs of soundness (thm 3.4) and com-
pleteness (thm 3.5) of anytime inference. Soundness of any-
time inference refers to the monotonicity of anytime inference
with time on the obtained solutions, and convergence to the
exact valuation given sufficient time. Completeness of any-
time inference asserts the existence of an upper bound on the
time for computing the exact valuation.
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3.1 Anytime Ordered Valuation Algebras

In this section, we extend valuation algebras in a structure
we refer to as anytime ordered valuation algebras. We introduce
the extension, and in the following section give examples of
anytime ordered valuation algebras. The primary purpose
of introducing anytime ordered valuation algebras is to de-
velop an anytime inference algorithm within the framework
of generic inference. Such extensions preserve the genericity
inherent in valuation algebras, but add axioms to simplify or
add features to the inference algorithm. For example, valua-
tion algebras were extended to weighted valuation algebras to
study communication complexity [Pouly and Kohlas, 2005].

We shall informally discuss the additional components
in an anytime ordered valuation algebra before proceeding
to the formal definition. In addition to the operations of a
valuation algebra, we also have (i) a partial order operation
which relates valuations with the same domain1 (ii) a compo- 1 This is the same operation as in

ordered valuation algebras.sition operator, which composes two valuations of the same
domain into a valuation more complete (containing more
information) than either2, (iii) a truncation operator which 2 A version of this operation and

truncation specific to belief func-
tion computations was considered
in [Haenni and Lehmann, 2002]

truncates a valuation to a less informative valuation and a
complementary inverse truncation operation, and finally, (iv)
a time bound update operation which is designed to extend
(add more information via composition) a combination of two
valuations.

IDefinition 3.1. Anytime ordered valuation algebra.
An anytime ordered valuation algebra is a tuple 〈Φ, V, d,⊗, ↓
,�, K,⊕, ρ〉 which satisfies axioms A7 – A21 presented in
this definition, and where the sub-tuple 〈Φ, V, d,⊗, ↓〉 is a
valuation algebra. The additional operations compared to a
valuation algebra are:

In the following we use N to
denote the set of natural numbers
which contain zero.

Partial order There is a partial order �: Φ×Φ on Φ.

Composition The composition operator ⊕ : Φ × Φ → Φ is a
family of operations

⊕D : ΦD ×ΦD → ΦD D ⊆ V (3.1)

with each ⊕D operating on a type labelled by a domain D.

Truncation The truncation function ρ : Φ×N → Φ is a family
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of operations
ρD : ΦD ×N→ ΦD (3.2)

with each ρD operating on a type labelled by a domain D.
domain D and is referred to as ρ collectively.

We also have a inverse truncation function ρ̄D : ΦD ×N→
ΦD.

The inverse truncation is the
complement of the truncated
valuation ρ(φ, k) such that
ρ̄(φ, k)⊕ ρ(φ, k) = φ

We define the associated notion of valuation size | · | : Φ→
N of a valuation φ as |φ| := min{k : ρ(φ, k) = φ}

Thus we limit ourselves to finite
valuations.

Time bound update The time bound update is a function, with
the integer input parameter as time:

K : Φ×Φ×Φ×Φ×N→ Φ×N×N

Like with the previous operations, the time bound update
is indexed by the type of the valuation and is referred to as
K collectively:

This operation is denoted by K in
the formal framework and update

in the algorithm.

KA,B : ΦA ×ΦA ×ΦB ×ΦB ×N→ ΦA∪B ×N×N

K(φA, φ′A, φB, φ′B, t) = 〈φ, kA, kB〉, where

φ := (φA ⊗ ρ(φ′B, kB))⊕ (ρ(φ′A, kA)⊗ φB)⊕
(ρ(φ′A, kA)⊗ ρ(φ′B, kB))

A7 – A11 are axioms relating to
the approximation relation (partial
order �), out of which A7 – A10
are similar to R1 – R4 of ordered
valuation algebras; any differences
are noted.

This structure 〈Φ, V, d,⊗, ↓,�, K,⊕, ρ〉 is an anytime ordered
valuation algebra if 〈Φ, V, d,⊗, ↓〉 is a valuation algebra and the
following axioms A7 – A21 are satisfied:

A7 Partial Order3: There is a partial order � on Φ such that 3 In R4, there is an additional con-
dition that the infimum inf(Ψ) ex-
ists for all Ψ ⊆ ΦD. It is not clear
why this condition is required in
ordered valuation algebras; it is
also not used in our framework so
we have not kept it.

φ � φ′ implies d(φ) = d(φ′) for all φ, φ′ ∈ Φ.

A8 Null element4 : The least complete valuations for a partic-

4 This is a stronger condition
than that in R2 which states that
nD ⊗ φ = nD. Our condition
implies the condition in R2, if we
set A = D.

ular domain D are the null valuations for that domain D.
We require the property that nD ⊗ φ = nD∪A for all φ ∈ ΦA

and for all A, D ⊆ V, which implies that nD is the null ele-
ment for the domain D. Since null elements for a particular
domain are unique, we also have n↓D

′

D = nD′ for all D′ ⊆ D.

A9 Combination preserves partial order5: If φ1, φ′1, φ2, φ′2 ∈ Φ are 5 same as R3

valuations such that φ1 � φ′1 and φ2 � φ′2, then φ1 ⊗ φ2 �
φ′1 ⊗ φ′2.

A10 Projection preserves partial order6: If φ, φ′ ∈ Φ are valua- 6 same as R4

tions such that φ � φ′, then φ↓D � φ′↓D for all D ⊆ d(φ) =
d(φ′).
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A11 Composition preserves partial order: If ψ, φ, φ′ ∈ Φ are
valuations such that φ � φ′, then ψ⊕ φ � ψ⊕ φ′.

A12 Composition forms a monoid: The composition opera- A12 – A14 pertain to the
composition operation ⊕tor ⊕ forms a commutative monoid with the valuation

sub-semigroup (ΦD,⊕), with the null valuation nD as the
identity element.

A13 Combination ⊗ distributes over composition ⊕:

(φ1 ⊕ φ′1)⊗ φ = (φ1 ⊗ φ)⊕ (φ′1 ⊗ φ) (3.3)

A14 Projection ↓ distributes over composition ⊕:

(φ′ ⊕ φ′′)↓D = φ′↓D ⊕ φ′′↓D, D ⊆ d(φ). (3.4)

A15 Size of truncated valuations: For k ≤ |φ|, |ρ(φ, k)| = k and A15 – A17 pertain to the
truncation operation ↓.|ρ̄(φ, k)| = |φ| − k.

A16 Truncation monotonically increasing: Truncation is mono-
tonically increasing with the non-negative integer parame-
ter. For k, k′ ≤ |φ|, k′ > k implies ρ(φ, k′) � ρ(φ, k) and vice
versa for the complementary valuation ρ̄(φ, k′) ≺ ρ̄(φ, k).

A17 Zero truncation: Truncation with k = 0 gives the neutral
valuation for that domain: ρ(φ, 0) = nd(φ) where d(φ) is the
domain of φ.

In the following, 〈φ, k1, k2〉 is the result of K(φ1, φ′1, φ2, φ′2, t):

A18 Time bounded update: The time for computation of A18 – A21 pertain to the time-
bound truncated update K.K(φ1, φ′1, φ2, φ′2, t) does not exceed t units. This is satisfied

operationally through the specification of the function as
an algorithm which performs an approximate combination
within the specified time.

A19 Monotonic time bounded update: The condition t′ ≥ t im-
plies k′1 ≥ k1, k′2 ≥ k2 where 〈φ′, k′1, k′2〉 = K(φ1, φ′1, φ2, φ′2, t′).

A20 Zero time update: For t = 0, k1 = k2 = 0

A21 Maximum time for update: For all φ′1, φ′2 ∈ Φ there exists a
Tφ′1,φ′2

such that for t ≥ Tφ′1,φ′2
, k1 = |φ′1|, k2 = |φ′2|.

IRemark. The time bound update operation is designed
to add to an existing combination, φA ⊗ φB, making it more
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complete. This can be seen if we add φA ⊗ φB to φ, where
〈φ, kA, kB〉 = K(φA, φ′A, φB, φ′B, t):

φA ⊗ φB ⊕ φ

= (φA ⊗ φB)⊕ (φA ⊗ ρ(φ′B, kB))⊕ (ρ(φ′A, kA)⊗ φB)⊕
(ρ(φ′A, kA)⊗ ρ(φ′B, kB))

= (φA ⊕ ρ(φ′A, kA))⊗ (φB ⊕ ρ(φ′B, kB)) using distributivity from A13

IDefinition 3.2. time bounded combination. We also
define another operation, the time bounded combination K′

which can be expressed in terms of K:

K′(φ′A, φ′B, t) := K(nA, φ′A, nB, φ′B, t)

= 〈(nA ⊗ ρ(φ′B, kB))⊕ (ρ(φ′A, kA)⊗ nB)⊕ (ρ(φ′A, kA)⊗ ρ(φ′B, kB)), kA, kB〉
= 〈nA∪B ⊕ nA∪B ⊕ (ρ(φ′A, kA)⊗ ρ(φ′B, kB)), kA, kB〉 using A8

= 〈ρ(φ′A, kA)⊗ ρ(φ′B, kB), kA, kB〉 using A12

where nA, nB are the null valuations for the corresponding
domains A and B.

We can also show that anytime ordered valuation algebras
are also ordered valuation algebras, with a single additional
condition that the infimum inf(Ψ) exists for all Ψ ⊆ ΦD,
where ΦD ⊆ Φ is the sub-semigroup of the valuations with
domain D. Thus any instance of anytime ordered valuation
algebras which also satisfy this additional condition, satisfy
the axioms of an ordered valuation algebra.

ITheorem 3.1. An anytime ordered valuation algebra 〈Φ, V, d,⊗, ↓
,�, K,⊕, ρ〉 is also an ordered valuation algebra 〈Φ, V, d,⊗, ↓,�
,⊗t〉 with

φ1 ⊗t φ2 := ρ(φ1, k1)⊗ ρ(φ2, k2) where

〈ρ(φ1, k1)⊗ ρ(φ2, k2), k1, k2〉 = K′(φ1, φ2, t)

and the additional condition that the infimum inf(Ψ) exists for all
Ψ ⊆ ΦD, where ΦD ⊆ Φ is the sub-semigroup of the valuations
with domain D.

Proof. The core valuation algebra component 〈Φ, V, d,⊗, ↓〉
is the same in both the cases. Here, let the domains of φ1, φ2

be D1, D2 respectively. We prove the statement of the theorem
by showing that if any instance satisfies A7 – A21, it shall
also satisfy R1 – R9, subject to the additional condition being
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satisfied. We proceed to the enumeration of the ordered
valuation algebra axioms with the accompanying proofs.

R1 Partial Order: The partial order axiom in ordered valua-
tion algebras has the additional condition that the infimum
inf(Ψ) exists for all Ψ ⊆ ΦD. It is not clear why this is re-
quired in the framework, so we have omitted it, and made
it an additional requirement in the theorem.

R2 Null element: In comparison to the ordered valuation
algebra condition

φ⊗ nD = nD ⊗ φ = nD, ∀φ ∈ ΩD

our condition (A8) is stronger

φ⊗ nD = nD ⊗ φ = nD∪A, ∀φ ∈ ΩA, A ⊆ V

Our condition is more general, and the condition for or-
dered valuation follows when we set A = D.

R3 Combination preserves partial order These are the same in
both, corresponding to A9 in our framework.

R4 Projection preserves partial order These are the same in both,
corresponding to A10 in our framework.

R5 Computation time: We have to show that effective time to
compute φ1 ⊗t φ2 is less than t units. This is guaranteed by
A18 which limits the execution time of K, and thus K′.

R6 Approximate valuation: We have to show that the exact
combination of two potentials φ1 ⊗ φ2 is approximated by
the time-bound combination; φ1 ⊗ φ2 � φ1 ⊗t φ2. We know
that φ1 ⊗t φ2 = ρ(φ1, k1)⊗ ρ(φ2, k2). From the definition of
ρ, we have ρ(φ1, k1) � φ1 (likewise for φ2). As combination
⊗ preserves the partial order (A9), we have ρ(φ1, k1) ⊗
ρ(φ2, k2) � φ1 ⊗ φ2.

R7 Monotone: We have to show that the approximation gets
better with time; φ1 ⊗t′ φ2 � φ1 ⊗t φ2 for all t′ ≥ t. This is
guaranteed by the monotonicity of the time bound update
K, and thus K, in A19.

R8 Null valuation at t = 0: We have to show that φ1 ⊗0 φ2 =

nD where nD is the null element of the valuation algebra
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corresponding to the domain D = D1 ∪ D2. From A20, we
have k1 = k2 = 0 for t = 0. This gives us

φ1 ⊗0 φ2 = ρ(φ1, 0)⊗ ρ(φ2, 0)

= nD1 ⊗ nD2 using A17

= nD1∪D2 using A8

R9 Complete: We have to show that given sufficient time, the
time-bound combination operation returns the same result
as the exact combination; φ1 ⊗∞ φ2 = φ1 ⊗ φ2. While we
do not have infinite time in our framework, we do have
an temporal upper bound which is equivalent because we
have finite valuations. From A21, we have for all φ1, φ2 ∈ Φ
there exists a Tφ1,φ2 such that for t ≥ Tφ1,φ2 , k1 = |φ1|,
k2 = |φ2|. Thus for t ≥ Tφ1,φ2 , we have

φ1 ⊗t φ2 = ρ(φ1, |φ1|)⊗ ρ(φ2, |φ2|)
= φ1 ⊗ φ2 from definition of size

3.1.1 Anytime inference algorithm

We shall show that we can construct a anytime inference al-
gorithm in the anytime ordered valuation algebra framework.
Here we shall focus on developing a refinement algorithm
which can improve upon approximate inference results.

To develop a refinement algorithm which can incremen-
tally obtain more complete valuations, we need to store the
partial valuations at each step. We use a modified version of
the propagation algorithm [Shenoy, 1997, Haenni, 2004]. This
method is similar to that adopted by [Haenni and Lehmann, 2002]
though the referenced method only applies for belief function
computations, and lacks proofs of correctness.

Intuitive understanding of the algorithm. We recall that in
the inward propagation algorithm inward(N), propagation
of information as messages proceeded from the leaves to
the root. The leaf nodes contain exact valuations as they
constitute the input to the inference problem. For any non-
leaf node n, there are two children, L(n) and R(n) which
are the left and right children of n. In exact inference, the
child nodes compute the portion of the valuation relevant to
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the parent node φ↓d(n)∩d(P(n)) and send it as a message (φs)
to the parent. In anytime inference, we compute a partial
valuation based on combination of truncations of the child
valuations. Our algorithm comprises two parts: an initial
inward propagation inward(N, t) followed by successive
refinements refine(N, t).

Initial inward propagation. For every node n, we have
a portion of the valuation at the child node (L(n), R(n))
which has been taken into consideration for constructing
the parent valuation. This portion is stored and denoted
by τ (τ(L(n)), τ(R(n))). We also have the complementary
valuation, the portion which was not used to construct the
parent due to lack of time. This portion is also stored and is
denoted by κ (κ(L(n)), κ(R(n))). The initial assignment of τ, κ

in a propagation from the leaves to the root constitutes the
inward(N, t) algorithm.

Successive refinements. For refinement using the refine(N, t)
algorithm, we extend the non-leaf valuations by combining
portions of the child valuations which have not been com-
bined (κ). In the following procedures, ∆(n) = d(n) \ d(P(n))7 7 This definition of ∆(n) gives us

φd(n)∩d(P(n)) = φ−∆(n)
is the set of variables to be eliminated as we propagate mes-
sages from the children nodes to the parent node. To get the
solution to the inference problem at the final step, we also
define ∆(root(N)) = d(root(N)) \ X where X is the query.
There are r valuations in the knowledgebase resulting in r− 1
combination steps in the BJT.

Traversal sequence for propagation. The propagation
proceeds from the leaves to the root. Thus it is helpful to
consider the BJT as a directed acyclic graph, with the edges
reversed. Instead of the usual arrows from P(n) to n, we
have arrows from n to P(n) which reflects the underlying
dependency graph of the computation. Then the sequence
of nodes to be traversed is the topological sort of the BJT
G′ where G′ is the subgraph of G without the leaves of G.
This traversal sequence which shall remain the same in both
inward and refine is denoted by topological-sort(G′).

We hereby the present the algorithms.

1: procedure inward(N, t)
2: s← r− 1
3: initialise timer to t units.
4: for all n ∈ leaves(G) do φs(n)← φ(n)−∆(n)
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5: foreach n ∈ topological-sort(G′) do
6: (φ(n), k1, k2)← K(φs(L(n)), φs(R(n)), t/s)
7: τ(L(n))← ρ(φs(L(n)), k1)

8: τ(R(n))← ρ(φs(R(n)), k2)

9: κ(L(n))← ρ̄(φs(L(n)), k1)

10: κ(R(n))← ρ̄(φs(R(n)), k2)

11: φs(n)← φ(n)−∆(n)

12: s← s− 1
13: t← timer()
14: end foreach
15: return φs(root(N))

16: end procedure

1: procedure refine(N, t)
2: initialise timer to t units
3: s← r− 1
4: foreach n ∈ topological-sort(G′) do
5: (ν(n), k1, k2)← K′(τ(L(n)), κ(L(n)), τ(R(n)), κ(R(n)), t/s)
6: t← timer()
7: τ(L(n))← τ(L(n))⊕ ρ(κ(L(n)), k1)

8: τ(R(n))← τ(R(n))⊕ ρ(κ(R(n)), k2)

9: κ(L(n))← ρ̄(κ(L(n)), k1)

10: κ(R(n))← ρ̄(κ(R(n)), k2)

11: φ(n)← φ(n)⊕ ν(n)
12: κ(n)← κ(n)⊕ ν(n)−∆(n)

13: s← s− 1
14: end foreach
15: return φs(root(N))

16: end procedure

This procedure refines the existing valuations in the binary
join tree G, taking at most time t units. We ensure that the
algorithm is interruptible in lines 9–12 using appropriate
caching of partial valuations.

3.1.2 Properties of anytime inference

In this section we shall prove the correctness of the algo-
rithm in the previous section by proving two properties of the
algorithm:

Soundness Soundness of anytime inference refers to the asser-
tion that the valuations obtained in the refinement process
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are approximations of the exact valuation, and that fur-
ther refinements are better approximations of the exact
valuation.

Completeness Completeness of anytime inference asserts the
existence of an upper bound on the time for computing the
exact valuation.

Before embarking on the proof of soundness, we introduce
a couple of definitions, introduce the required notation for the
proof, and prove a couple of lemmas which will be used in
the main proof.

IDefinition 3.3. level. The level of a node n is defined
recursively as

level(n) =

0 if n is a leaf

1 + max(level(L(n)), level(R(n)))
(3.5)

INotation. In both the soundness and completeness proofs,
there is an iterative improvement in terms of better approxi-
mation of a valuation at each step. For valuations in the BJT
G with nodeset N, we shall follow the convention of affixing
a superscript to denote which step of the refinement process
it is at. Thus φi(n) is the valuation at node n after step i. We
affix superscripts to the caches accordingly. For the values
(k1, k2) obtained in line 6 of inward and line 5 of refine, we
affix a tuple of (n, i) to denote the node n at which the combi-
nation is happening and the step i. So we have the following
notation, in which i indicates the value of the quantity after
step i of the refinement process, where step 0 is the initial
propagation:

• valuation at node n: φi(n)

• the portion of truncated valuation at node n which has
been propagated: τi(n)

• for κ, we need a tuple to denote the state as it is updated
twice, for nodes at level > 0. κi,1(n) represents the state
after line 12 and κi,2(n) represents the state after line 9 has
been executed from the parent node.

For the leaf nodes, κ(n) is updated once as leaves are not
part of topological-sort(G′), thus here we can write
κi(n) without ambiguity.

Thus κ (unlike τ) is updated twice in each iteration: once at
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node n and once at P(n) except for n ∈ leaves(N), when κ

is updated once. This is summarised in the diagram.

• truncation parameters at node n: kn,i
1 , kn,i

2
This is the formalisation of the
soundness property for step i of
soundness at level d.

IDefinition 3.4. soundness(d, i).

soundness(d, i) := φi(n) � φ(n); φi(n) = τi(L(n))⊗ τi(R(n)) ∀ n ∈ Dd

(3.6)

where Dd is the set of nodes at level d and φ(n) is the val-
uation obtained from exact inference at node n. Intuitively,
soundness(d, i) is the statement of the soundness property
φi(n) � φ(n) holds for level d for step i. The second portion
φi(n) = τi(L(n))⊗ τi(R(n)) is introduced as that shall be used
in the induction hypothesis.

We also denote the soundness at a particular level d for all i
collectively as:

soundness(d) :=
j∧

k=0

{soundness(d, k)} (3.7)

ILemma 3.2. For n ∈ leaves(N), τi(n)⊕ κi(n) = φs(n) for all
i = {0, . . . , j}.

Proof. Intuitively this proof can be easily seen as the valu-
ations at the leaves are exact. So we combine more chunks
of the valuation in successive refinements, but the composi-
tion of the valuation that has been combined (τ) and the part
which has not been (κ) is always the exact valuation. Note
that this shall not hold for non-leaf nodes as the part which
has not been computed may itself be incomplete.

For the base case, we look at inward(N, t). For each leaf
node, only one of lines 7 and 8 and one of lines 9 and 10 will
be executed as it is either the left or the right node of the
parent node. As they have the same form, we can write:

τ0(n)⊕ κ0(n) = ρ(φs(n), k)⊕ ρ̄(φs(n), k)

= φs(n) by definition of ρ and ρ̄

This establishes the base case. For the induction step, let
us assume φi(n) ⊕ κi(n) = φs(n). Then we have to show
φi+1(n)⊕ κi+1(n) = φs(n). For this we note that the only time
τ and κ are updated in refine is in lines 7–10. Similar to the
base case, whether the node n is a left leaf node or a right leaf
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node does not matter. Then:

τi+1(n)⊕ κi+1(n) = (τi(n)⊕ ρ(κi(n), k))⊕ ρ̄(κi(n), k)

= τi(n)⊕ κi(n) using ⊕ associativity and ρ, ρ̄ complementarity

= φs(n)

This establishes the statement of the lemma.

ILemma 3.3. For n ∈ N − leaves(N), and c being one of
L(n), R(n), and at refine step i, the following identity holds:
τi(c)⊕ κi+1,1(c) = (φi+1(c))−∆(c)

Proof. We now establish an identity from lines 7–10 of refine

for non-leaf nodes. Using the symmetry of L(n) and R(n) we
can write an identity, where c is one of L(n), R(n), and k is
k1, k2 respectively:

τi+1(c) = τi(c)⊕ ρ(κi+1,1(c), kn,i+1) line 7,8 refine

κi+1,2(c) = ρ̄(κi+1,1(c), kn,i+1) line 9,10 refine

τi+1(c)⊕ κi+1,2(c) = τi(c)⊕ κi+1,1(c) summing above, using ρ, ρ̄ complementarity

= τi(c)⊕ κi,2(c)⊕ νi+1(c)−∆(c) line 12 of refine to expand κi+1,1(c)

In the case of c ∈ leaves(N), we know that there is only one
κ update (in line 9 or 10 of refine depending on whether c
is a left or right child). To avoid encumbering the notation at
this point, we still consider two κ updates, with the second
one being a null operation. This is achieved by setting νr(c) =
0 for all r ∈ {0 · · · j}, c ∈ leaves(N).

We can expand the recursive form

τi+1(c)⊕ κi+1,2(c) = τi(c)⊕ κi,2(c)⊕ νi+1(c)−∆(c)

to get (with the limit at 1 as refine starts at iteration 1,
following inward at 0):

τi(c)⊕ κi+1,1(c) = τi+1(c)⊕ κi+1,2(c) = τ1(c)⊕ κ1,2(c)⊕ ν2(c)−∆(c) ⊕ · · · ⊕ νi+1(c)−∆(c)

We connect τ, κ from inward and refine via the following
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identities:

τ1(c)⊕ κ1,2(c) = τ0(c)⊕ κ1,1(c)

= τ0(c)⊕ κ0(c)⊕ ν1(c)−∆(c)

= φ0
s (c)⊕ v1(c)−∆(c) using τ0(c)⊕ κ0(c) = φ0

s (c), lines 7–10 of inward

= (φ0(c)⊕ ν1(c))−∆(c) using A14, Projection ↓ distributes over composition ⊕

Substituting into the previous equation, we get, via re-
peated application of A14:

τi(c)⊕ κi+1,1(c) = τ1(c)⊕ κ1,2(c)⊕ ν2(c)−∆(c) ⊕ · · · ⊕ νi+1(c)−∆(c)

= (φ0(c)⊕ ν1(c))−∆(c) ⊕ ν2(c)−∆(c) ⊕ · · · ⊕ νi+1(c)−∆(c)

= (φ1(c)⊕ ν2(c))−∆(c) ⊕ ν2(c)−∆(c) ⊕ · · · ⊕ νi+1(c)−∆(c) use φi+1(c) = φi(c)⊕ νi+1(c)

= (φi(c)⊕ νi+1(c))−∆(c)

= φi+1(c)−∆(c)

which gives us the identity, for n ∈ N − leaves(N) and c being
one of L(n), R(n):

τi(c)⊕ κi+1,1(c) = φi+1(c)−∆(c)

ITheorem 3.4. Soundness of anytime inference. Consider
the following length j + 1 sequence of operations for j > 0:
inward(N0, t0 > 0), refine(N1, t1), . . . , refine(Nj, tj)

where Nk+1 is the node set of the BJT after step k, where step 0 is
the initial inward propagation. If we denote φj := refine(Nj, tj)

for j > 0 then soundness asserts φ0 � φ1 � · · · � φj � φ where
φ is the valuation that would been returned by exact inference and
φ0 := inward(N0, t0).

Proof. We shall structure the proof in three stages. The first
stage (S1) is an induction on the number of steps for level 1,
the second stage is a induction on the level.

S1 The first stage8 proves soundness for the nodes in G 8 Proof stage S1:

soundness(1, 0)

soundness(1, i)→ soundness(1, i + 1)

which are the immediate parents of the leaves, that is the
nodes at level 1 of the tree. Thus we show that soundness(1)
is true. We use induction for this, showing soundness(1, 0)
as the base case, and proving the induction step by show-
ing that soundness(1, i + 1) follows from soundness(1, i),
the induction hypothesis.
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S2 The second stage9 shows that if soundness is true for 9 Proof stage S2:

d∧
m=1
{soundness(m)} →

soundness(d + 1, 0)

soundness(d + 1, i)→
soundness(d + 1, i + 1)

nodes at level d and lesser then it also holds for the nodes
at level d + 1. We show this in two stages: we first show
that the initial valuation (i = 0) at n for level d + 1 satisfies
soundness (soundness(d + 1, 0)), by using the fact that
soundness holds for level d and below (

∧d
m=1{soundness(m)}).

Then we use soundness(d + 1, 0) as a base case and use
the induction hypothesis soundness(d + 1, i) to show
soundness(d + 1, i + 1). Then we apply induction to get
soundness(d + 1) if soundness(d) holds.

The process of using soundness(d + 1, 0) as a base case
and then the induction hypothesis soundness(d + 1, i)
to show soundness(d + 1, i + 1) is similar to S1 but not
exactly the same. Otherwise we could have used nested
induction, where we induct on i within the larger induction
on the level d.

S3 From S1 and S2, we show that soundness is true at the
root of the BJT10 by applying induction using the base case 10 Proof stage S3:

soundness(dmax)
soundness(1) and the induction step, soundness(d) im-
plies soundness(d + 1), which was shown in S2. From
applying the induction, we get soundness(dmax) is true,
where dmax is the maximum value of d in the the BJT G. .
Since the only node at dmax is the root node, and the valu-
ation returned from the inward and refine algorithm is
a (possibly marginalised) valuation at the root, this proves
the statement of the soundness theorem.

For both S1 and S2, it is trivial to see that we shall always
have an non-decreasing sequence φ0(n) � φ1(n) � · · · � φj(n)
from line 11 of refine(N, t) as by definition φ � φ⊕ φ′.

S1. Here we shall prove soundness(1), soundness for soundness(1)

nodes n ∈ D1. Here D1 is the set of nodes at level 1, i.e.
those nodes whose children are both leaves. We shall give
an inductive proof on the steps i, showing soundness(1, 0)
as the base case, and proving the induction step by showing
that soundness(1, i + 1) follows from soundness(1, i), the
induction hypothesis.

S1 Base. The base case for S1 is to show φ0(n) � φ(n) and soundness(1, 0)

φ0(n) = τ0(L(n))⊗ τ0(R(n)). As this is the zeroth step, we are
looking at the valuation at n after the inward invocation.
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We see that φ0(n) is assigned once, in line 6 of inward:

(φ(n), k1, k2)← K(φs(L(n)), φs(R(n)), t/s) line 6, inward

φ0(n) = ρ(φs(L(n)), kn,0
1 )⊗ ρ(φs(R(n)), kn,0

2 ) K definition

φ0(n) = τ0(L(n))⊗ τ0(R(n)) lines 7–8, inward

As ρ(φ, k) � φ by definition, we get ρ(φs(L(n)), kn,0
1 ) �

φs(L(n)), and similarly for R(n). As partial order is pre-
served under combination (A9), we have φ0(n) � φs(L(n))⊗
φs(R(n)) = φ(n).

S1 Induction. We have to show that given the induction soundness(1, i) →
soundness(1, i + 1)hypothesis φi(n) � φ(n) and φi(n) = τi(L(n))⊗ τi(R(n)), we

have φi+1(n) � φ(n) and φi+1(n) = τi+1(L(n))⊗ τi+1(R(n)).
We note that the valuation φ(n) is only updated once in

refine, in line 11, which is extended by νi+1(n) as given by
line 5:

νi+1(n) = K′(τi(L(n)), κi(L(n)), τ(R(n)), κ(R(n), t/s)

= (τi(L(n))⊗ ρ(κi(R(n)), ki+1
2 ))⊕ (ρ(κi(L(n)), ki+1

1 )⊗ τi(R(n)))⊕
(ρ(κi(L(n), ki+1

1 )⊗ ρ(κi(R(n)), ki+1
2 ))

Here we note that since n is at level 1, it only depends on τ

and κ from the previous step, i, instead of the current step.
Then

φi+1(n) = φi(n)⊕ νi+1(n) line 11, refine

= (τi(L(n))⊗ τi(R(n)))⊕ νi+1(n) using induction hypothesis for φi(n)

= (τi(L(n))⊕ ρ(κi(L(n)), ki+1
1 )) substituting νi+1(n), and

⊗ (τi(R(n))⊕ ρ(κi(R(n)), ki+1
2 )) using ⊗ distributes over ⊕ (A13)

Note that at this point, using lines 7, 8 of refine, we get
τi+1(L(n)) = τi(L(n)) ⊕ ρ(κi(L(n)), ki+1

1 ) and similarly for
R(n), so we already get the second part of what we wanted to
prove: φi+1(n) = τi+1(L(n))⊗ τi+1(R(n)). For the first part:

φi+1(n) � (τi(L(n))⊕ κi(L(n)))⊗ (τi(R(n))⊕ κi(R(n))) using definition of ρ and A9

= (φs(L(n))⊗ φs(R(n)) = φ(n) using lemma 3.2

This shows that φi+1(n) � φ(n).
S2. The second stage shows that if

∧d
m=1{soundness(m)} ∧d

m=1{soundness(m)} →
soundness(d + 1)holds, that is soundness is true for nodes at level d and lesser,
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then soundness(d + 1) is true, that is it holds for the nodes
at level d + 1. For this we shall show soundness(d + 1, 0) that
is the valuation at nodes in level d + 1 are approximations to
the exact valuation at the first step (0), and induct to show
that as refinement progresses, we get a successive sequence
of approximations to the exact valuation at the node in level
d + 1.

S2 Base. We have to show φ0(n) � φ(n) and φ0(n) =
∧d

m=1{soundness(m)} →
soundness(d + 1, 0)τ0(L(n))⊗ τ0(R(n)) for n ∈ Dd+1 if the induction hypothesis

holds.
As this is the initial inward propagation step, we get, from

line 6–8 in inward
11: we get 11

inward

6: (φ(n), k1, k2) ←
K(φs(L(n)), φs(R(n)), t/s)

7: τ(L(n))← ρ(φs(L(n)), k1)
8: τ(R(n))← ρ(φs(R(n)), k2)

φ0(n) = ρ(φ0
s (L(n)), k1)⊗ ρ(φ0

s (R(n)), k2) from definition of K

= τ0(L(n))⊗ τ0(R(n))

This shows the second part of the proof. For the first part:

φ0(n) = ρ(φ0
s (L(n)), k1)⊗ ρ(φ0

s (R(n)), k2)

� φ0
s (L(n))⊗ φ0

s (R(n)) using ρ and A9

Now we use the induction hypothesis φ0(L(n)) � φ(L(n))
(likewise for R(n)). This is true as L(n), R(n) are at depth d or
lesser. Then we can apply A14 (Projection ↓ distributes over
composition ⊕), to get φ0

s (L(n)) � φs(L(n)) as φs(L(n)) is
a projection of φ(L(n)) (likewise for R(n)) using line 11 of
inward. Then we have

φ0(n) � φ0
s (L(n))⊗ φ0

s (R(n))

� φs(L(n))⊗ φs(R(n)) using A9

= φ(n)

S2 Induction. In the S2 base case, we showed that soundness(d + 1, i) →
soundness(d + 1, i + 1)

soundness(d + 1, 0) holds. Now we shall show the in-
duction step, that is if soundness(d + 1, i) is true, then
soundness(d + 1, i + 1) is true.

This proceeds similarly to the S1 induction case, with one
important difference. Here we have n ∈ Dd+1, where d ≥ 1. In
this case, line 12 in refine extends the portion of the valuation
which has not been computed for the left and right nodes of
n. Thus we use the τ cache at the earlier timestep i, but the
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κ cache from the current timestep i + 1, as the left and right
nodes of n would have been visited before n in topological-
sort. Then from line 5 of refine:

νi+1(n) = K′(τi(L(n)), κi+1,1(L(n)), τi(R(n)), κi+1,1(R(n), t/s)

= (τi(L(n))⊗ ρ(κi+1,1(R(n)), kn,i+1
2 ))⊕ (ρ(κi+1,1(L(n)), kn,i+1

1 )⊗ τi(R(n)))⊕
(ρ(κi+1,1(L(n)), kn,i+1

1 )⊗ ρ(κi+1,1(R(n)), kn,i+1
2 ))

Here κ has the index (i + 1, 1) as this is after the first update to
κ but before the second on line 9–10 of refine. refine

7: τ(L(n)) ← τ(L(n)) ⊕
ρ(κ(L(n)), k1)

8: τ(R(n)) ← τ(R(n)) ⊕
ρ(κ(R(n)), k2)

9: κ(L(n))← ρ̄(κ(L(n)), k1)

10: κ(R(n))← ρ̄(κ(R(n)), k2)

11: φ(n)← φ(n)⊕ ν(n)
12: κ(n)← κ(n)⊕ ν(n)−∆(n)

As φi(n) = τi(L(n))⊗ τi(R(n)) using the induction hypoth-
esis soundness(d + 1, i), we get

φi+1(n) = φi(n)⊕ νi+1(n)

= (τi(L(n))⊗ τi(R(n)))⊕ νi+1(n)

= (τi(L(n))⊗ τi(R(n)))

⊕ (τi(L(n))⊗ ρ(κi+1,1(R(n)), kn,i+1
2 ))

⊕ (ρ(κi+1,1(L(n)), kn,i+1
1 )⊗ τi(R(n)))

⊕ (ρ(κi+1,1(L(n)), kn,i+1
1 )⊗ ρ(κi+1,1(R(n)), kn,i+1

2 ))

= (τi(L(n))⊕ ρ(κi+1,1(L(n)), kn,i+1
1 )⊗ (τi(R(n))⊕ ρ(κi+1,1(R(n)), kn,i+1

2 ) using A13

= τi+1(L(n))⊗ τi+1(R(n)) lines 7,8 of refine

The last line establishes the second part of this proof, now we
have to show φi+1(n) � φ(n):

φi+1(n) = (τi(L(n))⊕ ρ(κi+1,1(L(n)), kn,i+1
1 )⊗ (τi(R(n))⊕ ρ(κi+1,1(R(n)), kn,i+1

2 )

� (τi(L(n))⊕ κi+1,1(L(n)))⊗ (τi(R(n))⊕ κi+1,1(R(n))) using A11

= (φi+1(L(n)))−∆(L(n)) ⊗ (φi+1(R(n)))−∆(R(n)) using lemma 3.3, A9

Now we can use the fact that
∧d

m=1{soundness(m)} holds
to assert φi+1(L(n)) � φ(L(n)) (similarly for R(n)). As par-
tial order � is preserved under projection ↓ (A10), we also
get (φi+1(L(n)))−∆(L(n)) � φs(L(n)) where φs(L(n)) :=
φ(L(n))−∆(L(n)). Substituting these into the above gives

φi+1(n) � φs(L(n))⊗ φs(R(n))

From the inward propagation for exact inferencewe know
that φ(n) = φs(L(n)) ⊗ φs(R(n)). This shows φi+1(n) �
φ(n) and φi+1(n) = τi+1(L(n)) ⊗ τi+1(R(n)) is shown
previously. This establishes soundness(d + 1, i + 1) from
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soundness(d + 1, i) and
∧d

m=1{soundness(m)}.
S3. This is as described in the proof structure section:

From S1 and S2, we show that soundness is true at the
root of the BJT by applying induction using the base case
soundness(1) and the induction step, soundness(d) im-
plies soundness(d + 1), which was shown in S2. From ap-
plying the induction, we get soundness(dmax) is true, where
dmax is the maximum value of d in the the BJT G. . Since the
only node at dmax is the root node, and the valuation returned
from the inward and refine algorithm is a (possibly
marginalised) valuation at the root, this proves the statement
of the soundness theorem.

ITheorem 3.5. Completeness of anytime inference. Con-
sider the following length j + 1 sequence of operations for j > 0,
inward(N0, t0 > 0), refine(N1, t1), . . . , refine(Nj, tj) with
ti such that the sequence of valuations φi obtained is strictly increas-
ing:

φ0 ≺ φ1 ≺ · · · ≺ φj ≺ φ

Here Nk+1 is the node set of the BJT after step k, where step 0
is the initial inward propagation. The valuations at each step are
defined as φ0 := inward(N0, t0) and φi := refine(Ni, ti). The
valuation obtained from exact inference is φ. Then completeness
asserts that

∃k > 0 s.t. φk = φ

Proof. Note that we are implicitly using A19, as we are as-
suming that there is a time ti for which some progress has
been made in the refinement step i at the root node (valuation
has been updated). This is only possible because time bound
truncated combination is monotonic with time.

Like the soundness proof, we shall structure this proof
into three parts: C1 proves that completeness holds at level
1 (leaves are the nodes). C2 is the inductive step that shows
completeness holds for level m if it holds for all levels n < m.
C3 is the application of the induction to give us the complete-
ness result at the root node.

C1. We use the result from lemma 3.2 as applied to the leaf
nodes c = {L(n), R(n)} : φs(c) = φ(c)−∆(c) =

φ(c)↓(d(c)∩d(P(c)))

τ(c)⊕ κ(c) = φ(c)−∆(c) = φs(c) (3.8)
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Now we consider the valuation update at line 11 of refine

for step i + 1. Since n is at level 1, it only depends on τ and κ

from the previous step i.
From soundness proof stage S1 we get:

φi+1(n) = (τi(L(n))⊕ ρ(κi(L(n)), kn,i+1
1 ))⊗ (τi(R(n))⊕ ρ(κi(R(n)), kn,i+1

1 )))

From lines 7 to 10 of refine, we get:

τi+1(L(n)) = τi(L(n))⊕ ρ(κi(L(n)), kn,i+1
1 )

τi+1(R(n)) = τi(R(n))⊕ ρ(κi(R(n)), kn,i+1
2 )

κi+1(L(n)) = ρ̄(κi(L(n)), kn,i+1
1 )

κi+1(R(n)) = ρ̄(κi(R(n)), kn,i+1
2 ) (3.9)

From A16 we know that ρ̄(φ, k) ≺ φ. We also know from
A15 that for k < |φ| (the case here), |ρ̄(φ, k)| = |φ| − k.

Thus from the last two equations above we get a decreasing
sequence for m ∈ {L(n), R(n)}:

κ0(m) � κ1(m) � · · · � κi(m) � κi+1(m) (3.10)

which, implies a corresponding decreasing sequence of their
respective sizes

|κ0(m)| > |κ1(m)| > · · · > |κi(m)| > |κi+1(m)| (3.11)

As valuations have finite size, the above sequence is bounded
below by 0. Thus we shall eventually reach the null valuation.
Let this κ sequence terminate for some r1, r2 for L(n) and
R(n) respectively, that is κr1(L(n)) = ∅ and κr2(R(n)) = ∅.

Without loss of generality, take r1 ≥ r2. Then τ at R(n) will
stop updating from steps r2 + 1 to r1. This can be seen at line 8

of refine at step r2:

τr2+1(R(n)) = τr2(R(n))⊕ ρ(κr2(R(n)), kn,r2+1
2 )

= τr2(R(n))⊕∅ using κr2(R(n)) = ∅

= τr2(R(n))

Thus τr1(R(n)) = τr2(R(n)).
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Then at step i ≥ r1 we have c ∈ {L(n), R(n)}:

τi(c)⊕ κi(c) = φs(c) using (3.8)

τi(c)⊕ κi(c) = τi(c) = φs(c) using κi(c) = ∅

Then we have

φr1+1(n) = (τr1(L(n))⊕ ρ(κr1(L(n)), kn,r1+1
1 ))⊗ (τr1(R(n))⊕ ρ(κr1(R(n)), kn,r1+1

1 )))

φr1+1(n) = τr1(L(n))⊗ τr1(R(n)) using κr2(L(n)) = ∅ and κr2(R(n)) = ∅

= φs(L(n))⊗ φs(R(n))

= φ(n)

This shows completeness for level 1 we have a k = r1 + 1 for
which φk(n) = φ(n).

C2 This is the inductive step that shows completeness
holds for level d + 1 if it holds for all levels ≤ d.

For the second part of the proof we consider the equation
for valuation update φi+1(n) from S2 induction step.

φi+1(n) = (τi(L(n))⊕ ρ(κi+1,1(L(n)), kn,i+1
1 ))⊗ (τi(R(n))⊕ ρ(κi+1,1(R(n)), kn,i+1

2 )))

As in the case for soundness, for level > 1, κ is updated
twice in each refinement. This is reflected in the indices of
κ which gain a superscript of 1 or 2 denoting the update
sequence.

As in S2 induction, in the case of c ∈ leaves(N); where
c ∈ {L(n), R(n)}, we know that there is only one κ update
(in line 9 or 10 of refine depending on whether c is a left or
right child). To avoid encumbering the notation at this point,
we still consider two κ updates, with the second one being a
null operation. This is achieved by setting νr(c) = 0 for all
r ∈ {0 · · · j}, c ∈ leaves(N).

The intuition here is that once the κ update in line 12

switches off for L(n) and R(n), the problem becomes equiv-
alent to C1 where the completeness at the first level was
dependent on the children being exact. We shall then use the
same argument as before.

As the L(n), R(n) are at level ≤ d, we can use the induction
hypothesis, i.e. they satisfy the completeness criterion. From
completeness, we have φr1(L(n)) = φ(L(n)) and φr2(R(n)) =
φ(R(n)) for some r1, r2 ∈ N. Again as before, without loss of
generality we assume r1 ≥ r2 and r = max(r1, r2). Since the
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valuation at L(n) and R(n) have reached completion (with the
one at R(n) reaching completion earlier), for step r + 1, we can
write νr+1(c) = ∅ for c ∈ {L(n), R(n)}; this must be the case,
as otherwise we would have had the valuation φr(c) updated
in line 11 of refine. This switches off the κ update in line 12

for L(n) and R(n).
Using line 12 of refine to write, for c ∈ {L(n), R(n)}:

κr+1,1(c) = κr,2(c)⊕ νr+1(c)−∆(c)

= κr,2(c) (νr+1(c) = ∅)

Thus we can drop the additional superscript on κ of 1 or 2 (as
κ updates only once).

From lemma 3.3, at step r:

τr(c)⊕ κr+1,1(c) = (φr+1(c))−∆(c), c ∈ {L(n), R(n)}

Dropping the extra subscript on κ:

τr(c)⊕ κr(c) = (φr+1(c))−∆(c) = (φ(c))−∆(c)

as φr+1(m) = φ(m) via completeness.
We can then write:

τi(m)⊕ κi(m) = (φ(m))−∆(m) i > r

At node n, we then have the following τ, κ updates:

τi+1(L(n)) = τi(L(n))⊕ ρ(κi(L(n)), kn,i+1
1 )

τi+1(R(n)) = τi(R(n))⊕ ρ(κi(R(n)), kn,i+1
2 )

κi+1(L(n)) = ρ̄(κi(L(n)), kn,i+1
1 )

κi+1(R(n)) = ρ̄(κi(R(n)), kn,i+1
2 ) (3.12)

With the above equations we end up with the same situ-
ation as C1, specifically (3.8) and (3.9). Then we get, using
similar reasoning:

κ0(m) � κ1(m) � · · · � κi(m) � κi+1(m) (3.13)

The decreasing sequence of κ eventually culminates in the
null valuation.

The rest of the argument proceeds in the same manner as
C1. Thus we have shown completeness holds for level d + 1 if
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it holds for all levels ≤ d.
C3 To obtain the completeness result at the root node, we

apply induction on the level using C1 as the base case and C2

as the induction step.

3.2 Semiring induced anytime ordered valu-
ation algebras

In the following section we discuss the class of anytime
ordered valuation algebras that are induced by a positive
(def. 2.11), partially ordered (def. 2.10), commutative semiring.
We shall use the notation for configuration space ΩD of a set
of variables D and the associated notation for tuples from
definition 2.2 (semiring induced valuation algebras).

As in the case of semiring induced ordered valuation al-
gebras, several instances such as arithmetic potentials, dis-
junctive normal forms and relational algebras are part of this
general class. In chapter 4, we shall consider these semiring
induced anytime ordered valuation algebras in greater detail.

IDefinition 3.5. Semiring induced anytime ordered

valuation algebras. A semiring induced anytime or-
dered valuation algebra is a tuple 〈Φ, V, d,⊗, ↓,�, K,⊕, ρ〉,
where 〈Φ, V, d,⊗, ↓〉 is a semiring induced valuation alge-
bra (def. 2.2) induced by a positive, partially ordered, com-
mutative semiring (A,+, ·, 0, 1) with a partial order �A on
elements of the semiring.

We can consider a semiring induced valuation φ with
domain D, i.e. φ : ΩD → A as being represented by a list
Lφ = 〈(x1, φ(x1)) . . . (xn, φ(xn))〉 ∈ 2ΩD×A, where {x1 . . . xn} ⊆
ΩD is the subset that does not map to 0. For convenience,
we shall use the notation S(D) := 2ΩD×A. If the inducing
semiring has a total order, then we order the tuples of Lφ by
the semiring values ϕ(xi), from highest to lowest.12 Then we 12 We do this to ensure that con-

figuration with the highest “mass”
get combined first. We comment
on this further in chapter 4.

have the following operations:

Partial order Valuations having the same domain D form a
partially ordered set ΦD ⊆ Φ. For two valuations φ, φ′ ∈
ΦD,

φ � φ′ iff φ(x) �A φ′(x) ∀ x ∈ ΩD (3.14)

Composition The composition operation (⊕ : ΦD ×ΦD → ΦD)
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is defined as follows:

(φ⊕ ψ)(x) = φ(x) + ψ(x), ∀ x ∈ ΩD (3.15)

Truncation The truncation function ρ : ΦD ×N → ΦD is
defined as follows: ρ(φ, k) is such that

Lρ(φ,k) = 〈(x1, φ(x1)) . . . (xm, φ(xm))〉 m = min(k, n), n = |Lφ|
(3.16)

Thus the truncated valuation corresponds the first k el-
ements of Lϕ. We also get the size of a valuation |φ| :=
|Lφ| = n. The inverse truncation is similarly defined as

Lρ̄(φ,k) = 〈(xm+1, φ(xm+1)) . . . (xn, φ(xn))〉 (3.17)

Time bound update The time bound update is defined as an
algorithm: K(φ1, φ′1, φ2, φ′2, t) := update(φ1, φ′1, φ2, φ′2, t). We
also define the secondary methods:

• insert(φ1 : ΦA, φ2 : ΦB, i, j : N, L : S(A ∪ B)).
This method inserts a combination into the configuration
space.

• combine-extend(φ1 : ΦA, φ2 : ΦB, 〈i, j : N, L :
S(A ∪ B)〉, i′, j′ : N)→N×N× (S(A ∪ B)).
This method incrementally adds combinations into the
configuration and updates the state, going from the state
ρ(φ1, i)⊗ ρ(φ2, j) to ρ(φ1, i + i′)⊗ ρ(φ2, j + j′).

• update-extend(φ1, φ′1 : ΦA, φ2, φ′2 : ΦB, 〈i, j : N, L1, L2, L3 :
S(A ∪ B)〉, i′, j′ : N) → N×N× S(A ∪ B)× S(A ∪ B)×
S(A ∪ B).
This method updates the state, effectively going from

(ρ(φ′1, i)⊗ φ2)⊕ (φ1 ⊗ ρ(φ′2, j))⊕ (ρ(φ′1, i)⊗ ρ(φ′2, j)) initial state, to

(ρ(φ′1, i + i′)⊗ φ2)⊕ (φ1 ⊗ ρ(φ′2, j + j′))⊕ (ρ(φ′1, i + i′)⊗ ρ(φ′2, j + j′)) final state

where L1, L2, L3 are the lists corresponding to the valua-
tions being composed by ⊕.

• update(φ1, φ′1 : ΦA, φ2, φ′2 : ΦB, t : N) → φA∪B ×
N×N is the implementation of the time bound update
operation K.

We then consider two valuations φ1 on domain D1 and φ2

on domain D2 with Lφ1 = 〈(x1, φ1(x1)) . . . (xn1 , φ1(xn1))〉
and Lφ2 = 〈(y1, φ2(y1)) . . . (yn2 , φ2(yn2))〉 If x ∈ ΩD1 and
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y ∈ ΩD2 with x↓D1∩D2 = y↓D1∩D2 then we denote by xy
the configuration in ΩD1∪D2 for which xy↓D1 = x and
xy↓D2 = y. Then we can define the algorithms:

1: function insert(φ1, φ2, i, j, L)
2: if x↓D1∩D2

i = y↓D1∩D2
j then13 13 Here xi, yj refer to the tuples in

Lϕ1 , Lϕ1 respectively
3: insert [xiyj, φ1(xi) · φ2(yj)] into L.
4: end if
5: end function

1: function update-extend(φ1, φ′1, φ2, φ′2, 〈i, j, L1, L2, L3〉, i′, j′)
2: for k← 1 to |φ1| do
3: for m← j + 1 to j + j′ do
4: insert(φ1, φ′2, k, m, L1)

5: end for
6: end for
7: for k← 1 to |φ2| do
8: for m← i + 1 to i + i′ do
9: insert(φ2, φ′1, k, m, L2)

10: end for
11: end for
12: 〈i, j, L3〉 = combine-extend(φ′1, φ′2, 〈i, j, L3〉, i′, j′)
13: return 〈i, j, L1, L2, L3〉
14: end function

1: function combine-extend(φ1, φ2, 〈i, j, L〉, i′, j′)
2: for k← 1 to i + i′ do
3: for m← j + 1 to j + j′ do
4: insert(φ1, φ2, k, m, L)
5: end for
6: end for
7: for k← i + 1 to i + i′ do
8: for m← 1 to j + j′ do
9: insert(φ1, φ2, k, m, L)

10: end for
11: end for
12: return 〈i + i′, j + j′, L〉
13: end function

1: function update(φ1, φ′1, φ2, φ′2, t)
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2: 〈i, j, L1, L2, L3〉 ← 〈0, 0, 〈〉, 〈〉, 〈〉〉
3: n1 ← |φ′1|; n2 ← |φ′2|
4: initialise timer to t units
5: while timer() > 0 and i < n1 and j < n2 do
6: 〈i, j, L1, L2, L3〉 ← update-extend(φ1, φ′1, φ2, φ′2, 〈i, j, L1, L2, L3〉, 0, 1)
7: if not timer() > 0 then
8: break
9: end if

10: 〈i, j, L1, L2, L3〉 ← update-extend(φ1, φ′1, φ2, φ′2, 〈i, j, L1, L2, L3〉, 1, 0)
11: end while
12: if i ≥ n1 then
13: while timer() > 0 and j < n2 do
14: 〈i, j, L1, L2, L3〉 ← update-extend(φ1, φ′1, φ2, φ′2, 〈i, j, L1, L2, L3〉, 0, 1)
15: end while
16: else
17: while timer() > 0 and i < n1 do
18: 〈i, j, L1, L2, L3〉 ← update-extend(φ1, φ′1, φ2, φ′2, 〈i, j, L1, L2, L3〉, 1, 0)
19: end while
20: end if
21: return 〈to-valuation(L1)⊕ to-valuation(L2)⊕

to-valuation(L3), i, j〉 to-valuation takes the list
representation of a valuation and
converts it into the valuation.

22: end function

ITheorem 3.6. The structure introduced in def. 3.5 satisfies the
axioms of an anytime ordered valuation algebra.

Proof. To show that def. 3.5 is an anytime ordered valuation
algebra, we need to show that A7 – A21 hold.

A7 Partial Order: This is as in the definition.

A8 Null element: The null element for a domain D is defined
as the unique function nD which maps all elements to
the semiring zero; nD : ΩD → {0}. That this is the least
element follows from the positivity of the semiring.

Then we have to show

1. nD ⊗ φ = nD∪A, where φ ∈ ΩA. For all x ∈ ΩD∪A:

(nD ⊗ φ)(x) = nD(x↓D) · φ(x↓A) = 0

Thus nD ⊗ φ = nD∪A as it maps all x to 0.
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2. n↓D
′

D = nD′ . For all x ∈ ΩD′

n↓D
′

D (x) = ∑
z∈ΩD :z↓T=x

nD(z) = 0

Thus n↓D
′

D = nD′ .

A9 Combination preserves partial order: For φ1 � φ′1, φ2 � φ′2, we
have to show φ1 ⊗ φ2 � φ′1 ⊗ φ′2. For all x ∈ ΩD1∪D2 , we have

(φ1 ⊗ φ2)(x) = φ1(x↓D1) · φ2(x↓D2)

�A φ′1(x
↓D1) · φ′2(x↓D2) = (φ′1 ⊗ φ′2)(x) using lemma 2.3

This follows from distributivity of �A over ·, and from
φi(x↓Di) �A φ′i(x

↓Di) for i = {1, 2}.

A10 Projection preserves partial order: For φ � φ′, we have to
show φ↓D

′ � φ′↓D
′

for D′ ⊆ D. For all x ∈ ΩD′ , we have

φ↓D
′
(x) =

 ∑
z∈ΩD : z↓D′=x

φ(z)

 �A

 ∑
z∈ΩD : z↓D′=x

φ′(z)

 = φ′↓D
′
(x) using lemma 2.3

This follows from distributivity of �A over +, and from
φ(z) �A φ′(z) for all z ∈ ΩD.

A11 Composition preserves partial order: We have to show that if
ψ, φ, φ′ ∈ Φ are valuations such that φ � φ′, then ψ⊕ φ �
ψ⊕ φ′. Let d(φ) = d(φ′) = d(ψ) = D, as is required by A7.
Then from φ � φ′, we have φ(x) �A φ′(x) for all x ∈ ΩD.
From the monotone property of partial order in a semiring
(def. 2.10), we get ψ(x) + φ(x) �A ψ(x) + φ′(x). As this is
a point-wise expression that is true for all x ∈ ΩD, we have
ψ⊕ φ � ψ⊕ φ′.

A12 Composition forms a monoid: We recall that the composi-
tion operation (⊕ : ΦD ×ΦD → ΦD) is defined as follows:

(φ⊕ ψ)(x) = φ(x) + ψ(x), ∀ x ∈ ΩD (3.18)

Here + is semiring addition which is associative and com-
mutative, causing ⊕ to be so as well. The identity for ⊕
is the neutral element of the domain D, nD which follows
from 0 being the semiring additive identity.

A13 Combination ⊗ distributes over composition ⊕: If φ1 =

φ′1 ⊕ φ′′1 and φ2 = φ′2 ⊕ φ′′2 then we have to show that:
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φ1 ⊗ φ2 = (φ′1 ⊗ φ′2)⊕ (φ′1 ⊗ φ′′2 )⊕ (φ′′1 ⊗ φ′2)⊕ (φ′′1 ⊗ φ′′2 ).

LHS applied to x is φ1(x↓S)× φ2(x↓T), where d(φ1) = S and
d(φ2) = T.

RHS is (φ′1(x
↓S) · φ′2(x↓T)) + (φ′1(x

↓S) · φ′′2 (x↓T)) +
(φ′′1 (x

↓S) · φ′2(x↓T)) + (φ′′1 (x
↓S) · φ′′2 (x↓T))

= (φ′1(x
↓S) + φ′′1 (x

↓S)) · (φ′2(x↓S) + φ′′2 (x
↓T) = LHS

using distributivity of · over + .

A14 Projection ↓ distributes over composition ⊕: We have to
show that if φ = φ′ ⊕ φ′′ that φ↓D = φ′↓D ⊕ φ′′↓D, where
D ⊆ d(φ). The LHS applied to x is φ↓D(x) = ∑z↓D=x φ(z) =

∑z↓D=x(φ
′ ⊕ φ′′)(z), and the RHS is

(φ′↓D ⊕ φ′′↓D)(x) = φ′↓D(x) + φ′′↓D(x)

= ∑
z↓D=x

φ′(z) + ∑
z↓D=x

φ′′(z) = ∑
z↓D=x

(φ′ ⊕ φ′′)(z)

where we use the associativity and commutativity of +.

A15 Size of truncated valuations: Follows from definition.

A16 Truncation monotonically increasing: We have to show that
ρ(φ, k) � ρ(φ, k′) for all k > k′, and k, k′ ≤ |ϕ|. For the
semiring induced valuation φ : ΩD → A we defined ρ(φ, k)
as the valuation corresponding to

Lρ(φ,k) = 〈(x1, φ(x)1) . . . (xm, φ(x)m)〉 m = min(k, |Lϕ|)
(3.19)

As k, k′ ≤ |ϕ| = |Lϕ|, we have Lρ(φ,k′) ⊂ Lρ(φ,k) ⊆ Lϕ. We can
see that ρ(φ, k) � ρ(ϕ, k′) as

ρ(ϕ, k)(x) � ρ(ϕ, k′)(x) = 0 x ∈ {xi : k′ < i ≤ k}
ρ(ϕ, k)(x) = ρ(ϕ, k′)(x) otherwise

A17 Zero truncation: Follows from definition.

A18 Time bounded update: Time taken from K(φ1, φ′1, φ2, φ′2, t)
does not exceed t units. As we referred to in the axiom
definition, this axiom is satisfied operationally by the im-
plementation of the time bound truncated combination
update(φ1, φ′1, φ2, φ′2, t).
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A19 Monotonic time bounded update: For t, t′:

〈φ, k1, k2〉 = K(φ1, φ′1, φ2, φ′2, t) (3.20)

〈φ′, k′1, k′2〉 = K(φ1, φ′1, φ2, φ′2, t′) (3.21)

First, we note that we refer to k1, k2 in the update algorithm
as i, j respectively.

We have to show that the condition t′ ≥ t implies k′1 ≥ k1

and k′2 ≥ k2. We note that update calls update-extend.
We know that any call to update-extend(φ1, φ2, 〈i, j, L1, L2, L3〉, i′, j′)
will return 〈i′′, j′′, L′1, L′2, L′3〉 where i′′ ≥ i, j′′ ≥ j. In update-
extend, the updating of i, j actually happens in line 12

with the call to combine-extend. Starting from the same
initial state, if we have t′ ≥ t, the loops in line 5, 13 and 17

of update, will have possibly more invocations of update-
extend, thus leading to a higher i, j for t′ as compared to t.
Thus given that t′ ≥ t, we get k′1 ≥ k1, k′2 ≥ k2.

A20 Zero time update: For t = 0, no loop is entered in the
update algorithm and the initial state is returned, thus
k1 = k2 = 0.

A21 Maximum time for update: If we have no time limit,
timer() > 0 is always true and can be effectively removed.
As valuations in our framework are finite, we can see that
update will take a finite number of steps, giving us a finite
time. From the termination conditions of the loops, we get
k1 = n1 = |φ′1| and k2 = n2 = |φ′2|.

3.2.1 Instances of semiring induced anytime ordered
valuation algebras

As stated earlier, several common instances of valuation
algebras are semiring induced: arithmetic potentials, disjunc-
tive normal forms and relational algebras. To show that these
instances also support anytime inference, we have to addition-
ally show that the respective inducing semirings are positive,
and that we can define a partial order on them.

Before embarking on the proofs, we mention that given
existence of a zero element in the semiring (A,+, ·, 0, 1), we
can always define a preorder:

a � b iff ∃ c, s.t. a + c = b
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A preorder has two conditions: (i) reflexivity: a � a, and (ii)
transitivity: a � b, b � c implies a � c. The first follows
if we set c = 0. For the second, we have from the preorder
condition a + d = b, b + e = c. Substituting, we get a + (d +

e) = c, and thus a � c.
We however need a partial order, which imposes the addi-

tional condition of antisymmetry: a � b, b � a implies a = b.
If we define a preorder on the semiring in the manner de-
scribed above, all we need to do is to show that the preorder
is actually a partial order.

IRemark. According to def. 3.5, any positive, partially or-
dered, commutative semiring (A,+, ·, 0, 1), along with a set
of variables V, and variable frames {Ωx : x ∈ V}, induces
a valuation algebra14. This valuation algebra was shown to 14 This follows from the fact that

a commutative semiring, with V
and frames, induce a valuation
algebra, shown in theorem 2.1

be an anytime ordered valuation algebra in theorem 3.6. For
theorems 3.7 and 3.8, where we show various instances of
def. 3.5 are anytime ordered valuation algebras, we then
just show that the inducing semiring is positive, partially
ordered and commutative. The variables V and the frames
are independent of the choice of semiring; each choice of V
and frames will give a different semiring induced anytime
ordered valuation algebra.

ITheorem 3.7. Arithmetic potentials when induced by (R+,+, ·, 0, 1)
with the � preorder relation defined above are an anytime ordered
valuation algebra.

Proof. All we have to show is that (R+,+, ·, 0, 1) is (i) positive,
and (ii) has a partial order. The first immediately follows as
0 � x, for all x ∈ R+. For the second, consider a � b and
b � a. This gives a + c = b and b + d = a, from which we get
a + c + d = a. As we are working in R+, we have cancellativity,
which we use c + d = 0. As R+ is positive, this gives c = d = 0,
and we have the partial order.

ITheorem 3.8. Disjunctive normal forms and relational algebras
when induced by ({0, 1},+, ·, 0, 1) with the � preorder relation
defined above are an anytime ordered valuation algebra.

Proof. Disjunctive normal forms and relational algebras are
induced by the same semiring ({0, 1},+, ·, 0, 1) with + = ∨
and · = ∧ for disjunctive normal forms. We have to show that
({0, 1},+, ·, 0, 1) is (i) positive, and (ii) has a partial order. The
first immediately follows as 0 � x, for all x ∈ {0, 1}. For the
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second, consider a � b and b � a. This gives a + c = b and
b + d = a, from which we get a + c + d = a. We can check
that the only assignment to c, d that makes it true for all a is
c = d = 0, and we have the partial order.

All anytime ordered valuation algebras are also ordered
valuation algebras (theorem 3.1), if they have an infimum
inf(Ψ) for all Ψ ⊆ ΦD. If the inducing semiring has an infi-
mum for all subsets then we can see that

inf(Ψ)(x) = inf({ϕ(x) : ϕ ∈ Ψ})

As the infimum for every subset exists for reals and booleans,
the instances of semiring induced anytime ordered valuation
algebras discussed here are also ordered valuation algebras.

We shall present a detailed exposition of the application of
our framework to these instances in chapter 4.

3.3 Set potential anytime ordered valuation
algebra

We discussed the valuation algebra instance of set poten-
tials in section 2.3, and the corresponding ordered valuation
algebra instance in section 2.10. Set potentials also utilise
the notation of configuration space of a set of variables D,
ΩD, except the valuations are mappings from subsets of the
configuration space to the non-negative reals. We shall use
the notation for configuration space ΩD of a set of variables
D and the associated notation for tuples from definition 2.2
(semiring induced valuation algebras). In this section we shall
define the additional operations that will constitute the set
potential anytime ordered valuation algebra. Before the defi-
nition, we recall the definition of the natural join ./, and the
projection operator π from relational algebras, which we used
to define combination ⊗ and projection operation ↓ for set
potentials back in definition 2.3.

If R1 ⊆ ΩS, R2 ⊆ ΩT, the join operation is

R1 ./ R2 := {x ∈ ΩS∪T : x↓S ∈ R1, x↓T ∈ R2}

and the projection is, where T ⊆ S here:

πT(R) := R↓T := {x↓T : x ∈ R}
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IDefinition 3.6. Set potential anytime ordered val-
uation algebras. A set potential anytime ordered val-
uation algebra is a tuple 〈Φ, V, d,⊗, ↓,�, K,⊕, ρ〉, where
〈Φ, V, d,⊗, ↓〉 is a set potential valuation algebra (def. 2.3)

We can consider a set potential valuation φ with domain
D, i.e. φ : 2ΩD → R+ as being represented by a list Lφ =

〈(A1, φ(A1)) . . . (An, φ(An))〉, where Ai ⊆ ΩD and we only
keep the sets which do not map to 0. For convenience, we
shall use the notation S(D) := 22ΩD×R+

. These sets, which
have a non-zero mapping are known as focal sets. We order
the tuples of Lφ by the values ϕ(Ai), from highest to lowest.
Then we have the following:

Partial order Valuations having the same domain D form a
partially ordered set ΦD ⊆ Φ. For two valuations φ, φ′ ∈
ΦD,

φ � φ′ iff φ(A) ≤ φ′(A) ∀ A ⊆ ΩD (3.22)

Composition The composition operation (⊕ : ΦD ×ΦD → ΦD)
is defined as follows:

(φ⊕ ψ)(x) = φ(A) + ψ(A), ∀ A ⊆ ΩD (3.23)

Truncation The truncation function ρ : ΦD ×N → ΦD is
defined as follows:

Lρ(φ,k) = 〈(A1, φ(A1)) . . . (Am, φ(Am))〉 m = min(k, n), n = |Lφ|
(3.24)

Thus the truncated valuation corresponds the first k el-
ements of Lϕ. We also get the size of a valuation |φ| :=
|Lφ| = n. The inverse truncation is similarly defined as

Lρ̄(φ,k) = 〈(xm+1, φ(Am+1)) . . . (xn, φ(An))〉 (3.25)

Time-bound truncated update The time-bounded truncated
update operation is nearly identical to that of semiring
induced anytime ordered valuation algebras (def 3.5). The
time bound truncated update is defined as an algorithm:
K(φ1, φ′1, φ2, φ′2, t) := update(φ1, φ′1, φ2, φ′2, t). We also
define the secondary methods:

• insert(φ1 : ΦA, φ2 : ΦB, i, j : N, L : S(A ∪ B)).
This method inserts a combination into the list represen-
tation of the set potential.
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• combine-extend(φ1 : ΦA, φ2 : ΦB, 〈i, j : N, L :
S(A ∪ B)〉, i′, j′ : N)→N×N× (S(A ∪ B)).
This method incrementally adds combinations into the
list representation and updates the state, going from the
state ρ(φ1, i)⊗ ρ(φ2, j) to ρ(φ1, i + i′)⊗ ρ(φ2, j + j′).

• update-extend(φ1, φ′1 : ΦA, φ2, φ′2 : ΦB, 〈i, j : N, L1, L2, L3 :
S(A ∪ B)〉, i′, j′ : N) → N×N× S(A ∪ B)× S(A ∪ B)×
S(A ∪ B).
This method updates the state, effectively going from

(ρ(φ′1, i)⊗ φ2)⊕ (φ1 ⊗ ρ(φ′2, j))⊕ (ρ(φ′1, i)⊗ ρ(φ′2, j)) initial state, to

(ρ(φ′1, i + i′)⊗ φ2)⊕ (φ1 ⊗ ρ(φ′2, j + j′))⊕ (ρ(φ′1, i + i′)⊗ ρ(φ′2, j + j′)) final state

where L1, L2, L3 are the lists corresponding to the valua-
tions being composed by ⊕.

• update(φ1, φ′1 : ΦA, φ2, φ′2 : ΦB, t : N) → φA∪B ×
N×N is the implementation of the time bound update
operation K.

Out of the algorithms mentioned above, only insert needs
to be changed for set potentials; the rest are identical to
those in definition 3.5.

1: function insert(φ1, φ2, i, j, L)
2: insert [Ai ./ Aj, φ1(Ai) · φ2(Aj)] into L.
3: end function

ITheorem 3.9. The structure introduced in def. 3.6 satisfies the
axioms of an anytime ordered valuation algebra.

Proof. To show that def. 3.6 is an anytime ordered valuation
algebra, we have to show A7 – A21 hold.

A7 Partial Order As in the definition.

A8 Null element For a domain D, the null element is the set
potential with sets all subsets of the configuration space
ΩD to 0: nD(A) = 0 ∀ A ⊆ ΩD. It can be easily seen that
this is also the least element in ΩD.

Then we have to show

1. nD ⊗ φ = nD∪A, where φ ∈ ΩA. For all A ⊆ ΩD∪A:

(nD ⊗ φ)(A) = ∑
B./C=A

nD(B) · φ(C) = 0
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Thus nD ⊗ φ = nD∪A

2. n↓D
′

D = nD′ . For all A ⊆ ΩD′

n↓D
′

D (A) = ∑
πD′ (B)=A

nD(B) = 0

Thus n↓D
′

D = nD′ .

A9 Combination preserves partial order Let d(φ) = d(φ′) = S
and d(ψ) = d(ψ′) = T. We have to show that if φ � φ′, ψ �
ψ′, then φ⊗ ψ � φ′ ⊗ ψ′.

For A ⊆ ΩS∪T

(φ⊗ ψ)(A) = ∑
B./C=A

φ(B) · ψ(C)

≤ ∑
B./C=A

φ′(B) · ψ′(C)

= (φ′ ⊗ ψ′)(A)

From the definition of �, we get φ⊗ ψ � φ′ ⊗ ψ′.

A10 Projection preserves partial order Let d(φ) = d(φ′) = S and
D ⊆ S. We have to show that if φ � φ′, then φ↓D � φ′↓D.
This follows simply:

φ↓D(A) = ∑
πD(B)=A

φ(B) ≤ ∑
πD(B)=A

φ′(B) = φ′↓D(A)

A11 Composition preserves partial order: We have to show that if
ψ, φ, φ′ ∈ Φ are valuations such that φ � φ′, then ψ⊕ φ �
ψ ⊕ φ′. Let d(φ) = d(φ′) = d(ψ) = D, as is required
by A7. Then from φ � φ′, we have φ(Z) ≥ φ′(Z) for all
Z ⊆ ΩD. As ≥ is monotone with respect to addition, we
have ψ(Z) + φ(Z) ≥ ψ(Z) + φ′(Z). As this is a point-wise
expression that is true for all Z ⊆ ΩD, we have ψ ⊕ φ �
ψ⊕ φ′.

A12 Composition forms a monoid: We recall that the composi-
tion operation (⊕ : ΦD ×ΦD → ΦD) is defined as follows:

(φ⊕ ψ)(A) = φ(A) + ψ(A), ∀ A ⊆ ΩD (3.26)

Here + is arithmetic addition which is associative and
commutative, causing ⊕ to be so as well. The identity for ⊕
is the neutral element of the domain D, nD.
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A13 Combination ⊗ distributes over composition ⊕: We have to
show that

(φ⊕ φ′)⊗ ψ = (φ⊗ ψ)⊕ (φ′ ⊗ ψ) (3.27)

Let d(φ) = d(φ′) = S and d(ψ) = T. From the definition
of ⊕, we get d(φ⊕ φ′) = S. Then, we have for A ⊆ ΩS∪T,
where ΩS∪T is the configuration space associated with S ∪ T:

((φ⊕ φ′)⊗ ψ)(A) = ∑
B./C=A

(φ⊕ φ′)(B) · ψ(C)

= ∑
B./C=A

(φ(B) + φ′(B)) · ψ(C)

= ∑
B./C=A

φ(B) · ψ(C) + ∑
B./C=A

φ′(B) · ψ(C)

= (φ⊗ ψ)(A)⊕ (φ′ ⊗ ψ)(A)

= ((φ⊗ ψ)⊕ (φ′ ⊗ ψ))(A)

which shows the equality.

A14 Projection ↓ distributes over composition ⊕: We have to
show that, for d(φ) = d(φ′) = S and D ⊆ d(φ):

(φ⊕ φ′)↓D = φ↓D ⊕ φ′↓D (3.28)

Then we have

((φ⊕ φ′)↓D)(A) = ∑
πD(B)=A

(φ⊕ φ′)(B)

= ∑
πD(B)=A

φ(B) + ∑
πD(B)=A

φ′(B)

= φ↓D(A) + φ′↓D(A)

= (φ↓D ⊕ φ′↓D)(A)

which shows the equality.

A16 Truncation monotonically increasing: We have to show that
ρ(φ, k) � ρ(φ, k′) for all k > k′, and k, k′ ≤ |ϕ|. For the set
potential φ : 2Ω

D → R+ we defined ρ(φ, k) as the valuation
corresponding to

Lρ(φ,k) = 〈(A1, φ(A1)) . . . (Am, φ(Am))〉 m = min(k, |Lϕ|)

As k, k′ ≤ |ϕ| = |Lϕ|, we have Lρ(φ,k′) ⊂ Lρ(φ,k) ⊆ Lϕ. We can
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see that ρ(φ, k) � ρ(ϕ, k′) as

ρ(ϕ, k)(A) > ρ(ϕ, k′)(A) = 0 A ∈ {Ai : k′ < i ≤ k}
ρ(ϕ, k)(A) = ρ(ϕ, k′)(A) otherwise

A17 Zero truncation: Follows from definition.

The axioms A17 – A21 have the same proof as that for semir-
ing induced valuation algebras, except for the operation
insert which was defined previously.

3.4 Outward propagation

In the earlier sections we considered only inward propaga-
tion, which produces the marginal of the combined joint valu-
ation at the root node. A refinement algorithm was also intro-
duced which would improve the accuracy of the marginal at
the root node incrementally, converging to the exact inference
solution after a finite number of steps. We did not consider
the outward propagation process which generally follows the
inward propagation process to produce the marginals at all
the nodes of the join tree.

The outward propagation algorithm involves sending mes-
sages from the root towards the leaves. Each node combines
the messages from its parent and its siblings (all nodes except
its own children) and combines them to get the marginal at
the node. For binary join trees, the outward propagation
is then identical to the outward propagation algorithm pre-
sented in section 2.7.3. The only difference in the anytime
inference case is that the messages φr from the parent nodes
and φs from the sibling nodes are approximations to the exact
valuations thus giving approximate marginals at the interior
nodes. An outward propagation following a approximate
inward propagation is thus automatically approximate as
well. There can be several such inward-outward propagations
before convergence to the exact marginals.

3.5 Conclusion

In this chapter we have introduced the framework of any-
time ordered valuation algebras. The significance of anytime
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ordered valuation algebras is that it allows us to perform
approximate inference in the valuation algebra framework
while having the ability to improve upon the approximation
if required. This process of refinement can be repeated by the
user, and the approximation is guaranteed to improve with
time. This thus allows fine-grained control over the progress
of the inference process.

On the other hand, the genericity of the framework allows
its immediate application to a wide variety of instances, in-
cluding the important class of semiring induced valuation
algebras as well as set potentials. We also prove soundness
and completeness of the anytime inference algorithm. In the
next chapter, we shall consider instances of anytime ordered
valuation algebras in more detail, with emphasis on concrete
examples.

2.1



Chapter 4

Instances of Anytime
Inference in Valuation
Algebras

In this chapter we describe some instances of the anytime
ordered valuation algebra introduced in chapter 3. For each
instance, we give a general introduction and map it to the
anytime ordered valuation algebra, followed by application to
a concrete example which illustrates anytime inference.

The instances considered are: Bayesian networks (sec-
tion 4.1.1), including Bayesian and Markov networks, dis-
junctive normal forms (section 4.1.2), relational algebras
(section 4.1.3) and set potentials (section 4.2). Section 4.3
concludes with a summary of the instances discussed.

4.1 Semiring induced anytime ordered valu-
ation algebras

4.1.1 Arithmetic potentials – Bayesian networks

Probabilistic graphical models express the dependence
of variables in probability distributions. Various common
statistical models like Hidden Markov Models and Ising
models can be described as probabilistic graphical models
[Koller et al., 2007]. They are one of the most useful valuation
algebra instances with a wide range of applications, ranging
from engineering, biomedical sciences, image processing
and natural language processing. Probabilistic graphical
models can be broadly divided into undirected and directed
graphical models. Directed graphical models, also known
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as Bayesian networks are suited for probability distributions
which can be decomposed into constituent (conditional)
probability distributions with a causal relationship between
them; whereas undirected graphical models, also known as
Markov networks are suited for data which are not causally,
perhaps spatially related, as in image processing algorithms.
In this section we shall focus on Bayesian networks.

IDefinition 4.1. Probabilistic Graphical Model. A
probabilistic graphical model is a graph G = (V , E) represen-
tation of a joint probability distribution over random variables
v ∈ V , where edges (v, w) ∈ E represent dependencies
between variables v and w in the probability distribution.

IDefinition 4.2. Bayesian network. Bayesian networks are
probabilistic graphical models where G is a directed acyclic
graph (DAG). The edges in the DAG represent conditional
independence criteria.

Pneumonia Tuberculosis

Lung 
Infiltrates

X-Ray Sputum 
Spear

Figure 4.1: Bayesian network
showing causes and effects of lung
infiltrates

A way of intuitively understanding Bayesian networks is
that of effects and causes. The probability that a particular
effect E = e was caused by a particular cause C = c can be
represented as P(E = e|C = c). We represent the relation
between effect and cause by a directed arrow from the cause
to the effect.

Another way of viewing Bayesian networks is as a represen-
tation of the factorized joint probability distribution over all
the variables depicted in the graph. In a graph over the vari-
ables X1 . . . Xn, each variable Xi has a conditional probability
distribution of P(Xi|PaXi), where PaXi are the parents of Xi in
the graph.

An example of a Bayesian network is shown in figure 4.1,
depicting the causes and effects of lung infiltrates. The arrows
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indicate causal direction: lung infiltrates (L) can be caused by
either or both of pneumonia (P) and tuberculosis (T), which
will show up in an X-ray (X). If it is indeed tuberculosis
(T) that is the cause of lung infiltrates there is a probability
that it will show up in a sputum spear (S). The entire joint
probability distribution can be factorized as

P(P, T, L, X, S) = P(P)P(T)P(L | P, T)P(X | L)P(S | T)

Thus a Bayesian network is one where we can factorise the
joint probability distribution as

P(X1, . . . Xn) =
n

∏
i=1

P(Xi|PaXi) (4.1)

Inference in Bayesian networks involves finding the solu-
tion to the inference problem, which is the projection of the
joint probability distribution to a query of interest. First, we
need to create a binary join tree. We start by creating a valua-
tion for each conditional probability distribution and use the
join tree construction process from section 2.7.1. The inward
propagation algorithm (section 3.1.1) then gives the solution
to the inference problem.

IExample 4.1. We consider the asia network (fig. 4.2) from
[Lauritzen and Spiegelhalter, 1990] which depicts a causal
network which could be used to diagnose patients in a clinic.
All the variables are binary; if the condition represented by
the variable is true, it is set to 1. The variables are as follows

A visited Asia S smokes
T tuberculosis L lung cancer
E either tuberculosis or cancer B bronchitis
X abnormal X-ray result D dysponea

A

T

E

DX

S

L

B

Figure 4.2: The asia Bayesian
network

The network shows the causal relationships, such as smok-
ing can cause both lung cancer and bronchitis. Bronchitis
usually won’t show up in an X-ray result but tuberculosis or
lung cancer will, and this is represented in the connections
between variables.

We choose a query of {A, B, D} which represent the vari-
ables of whether a patient has (i) visited Asia (ii) bronchitis
and (iii) dysponea. Once we have constructed the binary join
tree for the inference problem (fig. 4.4), we can perform any-
time inference using the algorithms discussed in chapter 3.
The valuations of the inference problem in this case directly
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correspond to the conditional probability distributions (c.p.d.)
which form the factors of the joint probability distribution
P(A, T, S, L, B, E, X, D). Due to the direct correspondence be-
tween valuations and the conditional probability distributions,
we denote the valuation corresponding to a c.p.d. by the no-
tation φN1,N2,...|M1.M2,... where P(N1, N2, . . . |M1, M2, . . .) is the
corresponding c.p.d. Then the inference problem is

(φA ⊗ φT|A ⊗ φs ⊗ φL|S ⊗ φB|S ⊗ φE|L,T ⊗ φX|E ⊗ φD|B,E)
↓{A,B,D}

The valuations (probability distributions) are shown in
table 4.1.

The inward propagation process starts at the leaves of the
join tree. If we consider the leaf valuations φT|A and φE|L,T

with insufficient time allocated for exact combination, we
get a subset of the full configuration space. The progress of
anytime inference is shown in table 4.2 by comparing the
valuation at the root node (which is the solution to the infer-
ence problem) under successive refinements in table 4.2. As
expected, incompleteness ε(t) decreases with time (fig. 4.3),
where D = d(ϕ) and ϕt denotes the valuation at the root
node at time t:

ε(t) = 1− ∑
x∈ΩD

ϕt(x)/ ∑
x∈ΩD

ϕ(x) (4.2)
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Figure 4.3: Degree of incomplete-
ness of the inference solution with
time, in the asia Bayesian network

IRemark. When we were defining semiring induced any-
time ordered valuation algebras (def. 2.12), we stated

If the inducing semiring also has a total order, then we order
the tuples of Lφ by the semiring values ϕ(xi), from highest
to lowest. We do this to ensure that configuration with the
highest “mass” get combined first.

Here Lϕ is, as we recall, the list representation of ϕ. If we
look at fig. 4.3, we see that the rate of progress of anytime
inference is greatest at the beginning, and plateaus after a
point. This is not an accident. Combining the configurations
with the highest weight first ensures that the total mass of the
arithmetic potential is as large as early as possible, leading
more quickly to a lower degree of incompleteness.
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A p(A)

1 0.99

0 0.01

S p(S)

0 0.5
1 0.5

A T p(A, T)

1 1 0.99

0 1 0.95

0 0 0.05

1 0 0.01

S L p(S, L)

1 1 0.99

0 1 0.9
0 0 0.1
1 0 0.01

S B p(S, B)

1 1 0.7
0 0 0.6
0 1 0.4
1 0 0.3

E X p(E, X)

0 0 0.98

1 1 0.95

1 0 0.05

0 1 0.02

L T E p(L, T, E)

0 0 0 1.0
0 1 0 1.0
1 0 0 1.0
1 1 1 1.0
0 0 1 0.0
0 1 1 0.0
1 0 1 0.0
1 1 0 0.0

B E D p(B, E, D)

0 0 0 0.9
1 1 1 0.9
0 1 0 0.8
1 0 0 0.7
1 0 1 0.3
0 1 1 0.2
0 0 1 0.1
1 1 0 0.1

Table 4.1: Probability potentials for
the asia network.

t 0.0015 0.0025 0.0035 0.0045 0.0195
incompleteness 0.5326 0.1429 0.0910 0.0513 0.0000

{A, B, D}
1 1 1 0.4412 0.4412 0.4412 0.4644 0.4730
1 0 0 0.0259 0.3377 0.3377 0.3540 0.3599
1 0 1 0.0779 0.0808 0.0808 0.0855
1 1 0 0.0490 0.0490 0.0715
0 1 1 0.0046
0 0 0 0.0002 0.0002 0.0002 0.0002 0.0036
0 1 0 0.0008
0 0 1 0.0008

Table 4.2: Anytime inference
in the asia Bayesian network,
showing the incompleteness
and the valuation at the root
node, which is the solution to the
inference problem.

2.1



distributed anytime generic inference in valuation algebras 108

S, L

S, L

A

A, B, D

A, B, E, X, D

A, L, B, E

A, T, L, E

A, T L, T, E

S, L, B

S, B

S

B, E, X, D

E, X B, E, D

Figure 4.4: Binary join tree for the
asia Bayesian network
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4.1.2 Disjunctive normal forms

We gave a brief introduction to the application of valuation
algebras in propositional logic in section 2.2.2. Here we shall
consider them in more detail, particularly the valuation alge-
bra of disjunctive normal forms which is an anytime ordered
semiring induced valuation algebra (theorem 3.8).

We shall use the same notation in this section as that in
section 2.2.2. Briefly, the language of propositional logic
contains literals, which can be either variables (x, y, . . .) or
their negation ¬x,¬y, . . .. Any combination of such literals
with the binary connectives of disjunction/logical-or (∨) or
conjunction/logical-and (∨) is a valid propositional formula.
In propositional logic, all functions are boolean, taking values
true (>) or false (⊥). Conventionally these are also indicated
by 1 and 0 respectively. The valuation corresponding to a
formula δ is [δ, D] where D is the domain of the formula.

For disjunctive normal forms, we may choose to perform
inference on the model or on the formula itself. Both repre-
sentations can be expressed in the valuation algebra frame-
work [Pouly and Kohlas, 2011, Chapter 7]. We always work
with full disjunctive normal forms (every literal or its nega-
tion appears in every term), which have a bijective corre-
spondence to the model. When representing, we show the
minimised, logically equivalent version.

We now consider what anytime inference means for propo-
sitional logic. In the previous instance of Bayesian networks,
anytime inference was depicted as computing chunks of the
(unnormalised) probability distribution, with the inference
algorithm converging to the exact inference answer eventually.
In the case of probability distributions, anytime inference
is particularly useful since we may only be interested in the
region of the probability distribution with the greatest area
under curve, which is always computed first.

In the case of propositional logic, the notion of anytime
inference is less immediately intuitive. Our method for any-
time, approximate inference in disjunctive normal forms can
be interpreted as an anytime inference on the model, where
the anytime inference algorithm converges on the exact model
over time, gradually computing the truth assignments of the
model. As each model has an associated formula, this be-
comes an anytime inference algorithm on formulae as well,
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converging to the exact formula eventually. We can think of
each term in the disjunctive normal form as a state or a choice
that makes the statement true. Then with anytime inference
we are gradually uncovering more states or choices.

Now we consider anytime inference in a well-known exam-
ple from the literature, that of the alarm network described in
[Pearl, 1988]. We review the example and show how anytime
inference proceeds.

IExample 4.2. The inference problem for the alarm system
uses clauses to describe the various pathways by which an
alarm in a house can be activated. The interpretations of
the propositional symbols are given below, followed by the
clauses.
a: the alarm system in the house of Mr Holmes is ringing,

b: there is a burglary,
e: an earthquake has occurred,
c: there is confirmation of the earthquake on the radio,
w: the neighbour of Mr Holmes, Mr Watson phones Mr

Holmes,
g: the neighbour, Mrs Gibson phones Mr Holmes,
d: the daughter of Mr Holmes phones.

ξ1 = b ∧ a1 → a
ξ2 = a ∧ a1 → a
ξ3 = a2 → a
ξ4 = ¬b ∧ ¬e ∧ ¬a2 → ¬a
ξ5 = ¬a ∧ ¬a2 → ¬a
ξ6 = a→ w
ξ7 = a3 → w
ξ8 = ¬a ∧ ¬a3 → ¬w
ξ9 = a ∧ ¬a4 → g

ξ10 = a4 → ¬g
ξ11 = ¬a→ ¬g
ξ12 = a ∧ a5 → d
ξ13 = ¬a5 → ¬d
ξ14 = ¬a→ ¬d
ξ15 = e ∧ a6 → c
ξ16 = ¬e→ ¬c
ξ17 = ¬a6 → ¬c

The variables in the knowledgebase are

{a, b, c, d, e, g, w, a1, a2, a3, a4, a5, a6}

The rules tell us the various causes (a1 – a6) for an alarm to
ring (a). They denote the following:

ξ1 – ξ5 A burglary generates alarm in Mr. Holmes’ house,
if the alarm is functioning (a1). The alarm could also be
caused by an earthquake, or other causes (a2). These are
the only ways an alarm can arise (ξ4, ξ5).
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ξ6 – ξ8 If there is an alarm, Mr. Watson, who is Mr. Holmes’
neighbour phones him, though he may also phone as a joke
(a3).

ξ9 – ξ11 Thankfully, Mr. Holmes has another neighbour, Mrs.
Gibson. However she can only phone him if there is an
alarm and she is able to hear it (ā4).

ξ15 – ξ17 If Mr. Holmes’ daughter is at home then she phones
if there is an alarm (a5). Also, if there was an earthquake
there would be confirmation on the radio if the earthquake
was recorded (a6).

ξ18 – ξ20 We may also incorporate some evidence, such as (i)
Mr. Watson phones (ξ18 = w), (ii) Mrs. Gibson does not
phone (ξ19 = ¬g) and (iii) there is no confirmation of an
earthquake on the radio (ξ20 = ¬c).

We now consider certain variables we are interested in:
namely, whether the alarm was raised (a), whether there was
a burglary (b) or earthquake (e). We may also be interested in
the various reporting methods for an alarm (a1 . . . a6) giving
us a query of x = {a, b, e, a1, a2, a3, a4, a5, a6}. A binary join tree
representing the inference problem is shown in fig. 4.6. The
labels (domains) for the leaf nodes (the valuations ξ1 . . . ξ20)
are shown alongside the nodes.

Performing the exact inference with the query x yields:

a3b̄ēā2 ā + ā1ēā2a3 ā + ā1 ā6 ā2a3 ā + ba1aa4ē +

ba1aā6a4 + a1aā6ea4 + a2aa4ē + a2aā6a4

which is equivalent to the CNF form [Kohlas et al., 1999,
Section 2.1]:

(b̄+ ā1 + a)(ē+ ā1 + a)(ā2 + a)(b+ e+ a2 + ā)(a+ a2 + ā)(a+ a3)(ā+ a4)(ē+ ā6)

(4.3)

By substituting further observables in eq. 4.3, we can see
which conditions must be true. The conditions are precisely
the set of assignments to the remaining variables which
render the formula true, i.e. the model. For example with
a = 1, a5 = 1 (the alarm rang and the alarm system is work-
ing), we get

a4((a2 + b)(ē + ā6) + ā6e) (4.4)

The model of the above formula can be interpreted as follows:
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Mrs. Gibson hasn’t heard the alarm (a4), since she would
have called if she had. Also, the alarm could be caused by
(i) no earthquake (ē) or no confirmation (a6), and either a
burglary happened (b) or other causes triggered the alarm (a2)
(ii) an earthquake did happen (e), but without confirmation
(ā6). When we perform anytime inference, we progressively
obtain the full model. For example, for t = 0.0051, we obtain
a4(b(ē + ā6) + ā6e), which does not consider the case where the
alarm could have been caused from a2.

To show progress of anytime inference in this instance
(fig. 4.5), we can define a degree of incompleteness ε(δ′) =

1 − |MD(δ
′)|/|MD(δ)|, where δ′ is an approximation of δ

(δ � δ′).
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Figure 4.5: Progress of anytime
inference for the alarm instance.
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Figure 4.6: Binary join tree for the
alarm instance
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4.1.3 Relational algebras

We reviewed the application of the valuation algebra frame-
work to the instance of relational algebras in sections 2.2.3
and 2.5.3. As relational algebras are also a semiring induced
valuation algebra, with the semiring ({0, 1},+, ·), they form
an anytime ordered valuation algebra automatically (theo-
rem 3.8). Relational algebras can be considered as a semiring
induced valuation algebra as follows:

R = {x|φR(x) = 1, x ∈ Ωd(φR)} (4.5)

Thus the relation R is the set of tuples which are mapped by
the corresponding semiring induced valuation φR to 1.

We note that relational algebras are induced by the same
boolean semiring as disjunctive normal forms. Just like in
the case of disjunctive normal forms, we uncovered more of
the model as the inference progressed, here we uncover more
tuples in the relation as inference progresses.

Thus the anytime inference algorithm in the case of rela-
tional algebras produces a partial view of the database table
for the selected query (which is the domain of the root node
in the constructed binary join tree as in the other instances).
As the uncombined portions of the relations are cached, the
anytime inference algorithm can incrementally produce new
records of the query on demand. The interpretation of any-
time inference here is thus trivial and we do not consider a
specific example.

4.2 Set potential anytime ordered valuation
algebra

As we recall from section 2.3, set potentials are unnor-
malised belief potentials, which are a generalisation of prob-
ability potentials to subsets of the configuration space in
Dempster-Shafer’s theory of evidence [Shafer et al., 1976]. We
discussed the valuation algebra instance of set potentials with
the respective combination and projection rules in section 2.3.
Set potentials considered as an anytime ordered valuation
algebra was discussed in section 3.3.

1

{d,t}

4

2

{d,t}

3

{d}

6

{d}

0

{t}

5

Figure 4.7: Binary join tree for the
ploxoma inference problem

IExample 4.3. We reconsider the example of ploxoma con-
sidered in section 2.6 for illustration of anytime inference.
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To briefly summarise, there are two forms of a disease, ordi-
nary ploxoma (θ2) and virulent ploxoma (θ1). Ploxoma can
be detected by one of three tests, represented by x1, x2, x3.
Thus the frame of discernment (the set of possible outcomes
in the configuration space) is d × t where d = {θ1, θ2} and
t = {x1, x2, x3}. The following set potentials are represented
in the problem (reproduced from section 2.6 for ease of refer-
ence)

domain focal sets mass

m1 {d, t} m10 = {(θ1, x1), (θ2, x1), (θ2, x2), (θ2, x3)} 0.2
m11 = {(θ1, x2), (θ2, x1), (θ2, x2), (θ2, x3)} 0.2
m12 = {(θ1, x3), (θ2, x1), (θ2, x2), (θ2, x3)} 0.6

m2 {d, t} m20 = {(θ2, x1), (θ1, x1), (θ1, x2), (θ1, x3)} 0.85 · 0.75
m21 = {(θ2, x2), (θ2, x3), (θ1, x1), (θ1, x2), (θ1, x3)} 0.15 · 0.75
m22 = {(θ2, x1), (θ2, x2), (θ2, x3), (θ1, x1), (θ1, x2), (θ1, x3)} 0.25

m3 {d} m30 = {θ1} 0.05

m31 = {θ2} 0.85

m32 = {θ1, θ2} 0.10

m0 {t} m00 = {x1} 1.0

Table 4.3: Belief functions in the
ploxoma inference problem

We can now consider anytime inference by considering the
join tree (figure 4.7) for the inference problem

(m0 ⊗m1 ⊗m2 ⊗m3)
↓{d} (4.6)

Owing to the simplicity of the example (4 set potentials, 2

variables), we can give details of the inference process. The
first step is computing m4 = m1⊗t m2, with d(m4) = {d, t}. We
show the table for the exact computation; we shall consider
truncated versions of m4 to illustrate anytime inference.

focal set mass

m12 ∩m20 {(θ1, x3), (θ2, x1)} 0.3825
m11 ∩m20, m10 ∩m20 {(θ1, x1), (θ2, x1)} 0.255
m12 ∩m22 {(θ1, x3), (θ2, x1), (θ2, x2), (θ2, x3)} 0.15
m12 ∩m21 {(θ1, x3), (θ2, x2), (θ2, x3)} 0.0675
m11 ∩m22 {(θ1, x2), (θ2, x1), (θ2, x2), (θ2, x3)} 0.05
m10 ∩m22 {(θ1, x1), (θ2, x1), (θ2, x2), (θ2, x3)} 0.05
m11 ∩m21 {(θ1, x2), (θ2, x2), (θ2, x3)} 0.0225
m10 ∩m21 {(θ1, x1), (θ2, x2), (θ2, x3)} 0.0225

Table 4.4: m4 = m1 ⊗m2

Next we combine m0 which is the test result (x1), giving us
m5. We also show m↓{d}5 which will be combined with m3, the
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incidence of virulent and ordinary ploxoma in the population
(somewhat like a Bayesian prior).

focal set (m5) focal set (m↓{d}5 ) mass

∅ ∅ 0.09
{(θ1, x1)} {θ1} 0.0225
{(θ2, x1)} {θ2} 0.5825
{(θ1, x1), (θ2, x1)} {θ1, θ2} 0.305

Table 4.5: m5 = m0 ⊗m4

Finally we reach the root node, the solution to the inference
problem m6 = (m0 ⊗m1 ⊗m2 ⊗m3)↓{d} = m↓{d}5 ⊗m3:

focal set mass (m5) mass (m3) mass (m6)

∅ 0.09 0.0 0.138 25
{θ1} 0.0215 0.05 0.018 625
{θ2} 0.5825 0.85 0.812 625
{θ1, θ2} 0.305 0.10 0.0305

Table 4.6: Solution to the ploxoma
inference problem

By considering truncations of the m5 valuation (table 4.4),
we can obtain approximations to the exact inference problem
at the root node m6. As the other intermediate valuation m5

has a single binary variable, in most cases there will be suffi-
cient time for exact combination of m5 and m3. The caching of
the uncombined focal sets in m4 ⊗m0 lets us perform anytime
inference. We combine the focal sets with greatest weight first
so that we get diminishing returns with time. The progress
of anytime inference is shown in table 4.7. We consider the
cases when we take k = 2, 4, 6, 8 focal sets respectively from
m4, with the degree of incompleteness ε(φ) = 1−∑A[φ(A)]m

shown in fig. 4.8.

focal set k = 2 k = 4 k = 6 k = 8 (exact)

∅ 0.019125 0.094125 0.096625 0.13825

{θ1} 0.01275 0.01275 0.01525 0.018625

{θ2} 0.580125 0.722625 0.812625 0.812625

{θ1, θ2} 0.0255 0.0255 0.0305 0.0305

Table 4.7: Approximations to the
exact inference value (last column)
for ploxoma
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Figure 4.8: Degree of incomplete-
ness of the ploxoma inference
solution. As we include more focal
sets, the degree of incompleteness
converges to zero for the exact
solution.

4.3 Conclusion

In this chapter we discussed several important instances
of anytime ordered valuation algebras, specifically Bayesian
networks, disjunctive normal forms in propositional logic,
relational algebras and set potentials. Out of these all but
set potentials are special cases of semiring induced anytime
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ordered valuation algebras which we showed to be a class of
valuation algebras that permit anytime inference in chapter
3. While the first three instances are semiring induced, the
choice of the semiring and the applications influence the
interpretation and significance of anytime inference.

2.1





Chapter 5

Implementation

In this chapter, we describe our implementation of the the-
oretical framework of anytime ordered valuation algebras
presented in the preceding chapters. In contrast to existing
software implementations of local computation [Pouly, 2010]
which only consider exact inference, we implement an any-
time, approximate inference framework as covered in chap-
ter 3. We use Python as the implementation language because
of its relative ease of use and popularity within the scientific
computing community in general.

The chapter is organised as follows: Section 5.1 gives an
overview of the library with the core functions. Section 5.2
gives examples of usage for Bayesian networks and disjunc-
tive normal forms. We conclude with a brief note on further
work in section 5.3. Examples of code from a Python REPL
(read-eval-print-loop) session are identified with lines starting
with a triple greater-than sign (≫).

5.1 Overview

All inference algorithms in local computation are imple-
mented as message-passing algorithms. In particular, we
develop an implementation based on binary join trees. Ini-
tially, the binary join tree data structure contains the domains
of the valuations only, so it is uninitialised with the actual
valuations. The inward propagation algorithm propagates
the valuations towards the root node, combining valuations
from children nodes and projecting them to the domain of the
parent node. By the nature of the construction of the binary
join tree structure, the domain of the root node is the query
for the inference problem, so this solves the inference problem
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for that query. For illustration of anytime inference, we have
initially implemented and focused on the anytime inward
propagation algorithm (section 3.1). The following section
describes the structure of the library, followed by section 5.1.2
where we discuss the valuation algebra operations.

5.1.1 Structure

The library is organised into submodules:

geninf Core valuation algebra class (Valuation) and opera-
tions, including parsers for common data formats and the
anytime inference algorithm (geninf.inference)

geninf.instances Instance-specific operations such as combina-
tion (⊗), time-bound combination (⊗t)1 and projection (↓). 1 In the formal framework, ⊗t is

implemented in terms of the time
bound update K. We have kept a
separate ⊗t in the implementation
for efficiency purposes.

All instances derive from the abstract Valuation base class.

geninf.data Data files used for tests and examples.

geninf.experiments Code for the examples used in chapter 4,
shown in section 5.2.

geninf.tests Test suite.

5.1.2 Valuation algebra operations

We recall the structure of the anytime ordered valuation
algebra as 〈Φ, V, d,⊗, ↓,�, K,⊕, ρ〉 (def. 3.1). These operations
are implemented as the following methods in the instances,
which derive from the abstract base class Valuation:

combine Two valuations v1 and v2 can be combined by v1.combine(v2).
There is also an equivalent infix notation (*).

project The projection operation for a valuation v can be
performed by v.project(domain)

domain For a valuation v, v.domain() returns the domain of
v.

combine_t Two valuations v1 and v2 are combined with a time
limit t by v1.combine_t(v2, t)

≥, ≤ The comparison operators can be used to compare
valuations in an instance with a partial order.

trunc, itrunc Returns the truncation and inverse truncation
(ρ, ρ̄) of valuations. For example, v.trunc(k) gives ρ(v, k).

2.1
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extend The composition operation for two valuations, with an
equivalent infix notation of (+).

update_t The time bound update operation K.

Some instances also provide additional methods such as tex

for typesetting and completeness measures.
The core inference module is implemented in geninf.inference

with the inward_t and refine methods. Setting up an infer-
ence problem has the following steps: (i) read data into val-
uations (ii) given a query, construct a binary join tree from
the valuations and (iii) run the inward propagation and re-
finement algorithms. This is implemented in the Inference

class shown below, which encapsulates these operations.
On an Inference object, the run method starts the inward
propagation process, calling the refine method for further
refinements. History of the intermediate valuations and join
trees is maintained to facilitate inspection.

class Inference():

_N = None # join tree state

_elimination_order = []

_valuations = []

_query = []

_refinecount = 0

_bjts = []

_s = 0

def __init__(self, valuations, query, elimination_order):

self._valuations = valuations

self._query = query

self._elimination_order = elimination_order

self._N = construct_bjt(self._valuations, self._elimination_order)

self._bjts = [(0, self._N)]

self._s = len(self._valuations)

def assign_leaf_nodes(self):

valuations_to_leaf_nodes(self._N, self._valuations)

def run(self, t):

N_last = self._bjts[-1][1]

if self._refinecount == 0:

solution, Nn = inward_t(N_last, self._query, t, self._s)

else:

solution, Nn = refine(N_last, self._query, t, self._s)

self._refinecount += 1
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self._bjts.append((t, Nn))

return solution, Nn

def reset(self):

# forget history

self._bjts = [self._bjts[0]]

self._refinecount = 0

Initially, we have not focused on optimisation, instead aiming
to build a library of the approximate and anytime generic
inference framework.

5.2 Usage

5.2.1 Arithmetic potentials - Bayesian networks

We implement arithmetic potentials in this instance. Arith-
metic potentials are represented in the implementation as
a list of tuples of configuration points and their associated
weight. Variables are encoded as integers.

To be of practical use, an inference framework should be
able to read in and construct networks from external sources.
There are a few standardised repositories for Bayesian net-
works2 3 – we shall be using the bnlearn repository which 2 http://www.cs.huji.ac.il/

site/labs/compbio/Repository/
3 http://www.bnlearn.comprovides dsc files (among other formats), which our library

can parse.
We shall give an example of using probability potentials;

followed by showing how partial combination works. Then
we shall consider the asia network shown in [Lauritzen and Spiegelhalter, 1990],
and show partial time-bound inference.

IExample 5.1. If we consider the example given in the sec-
tion on probability potentials (example 2.1), we can represent
it as follows where the variables a, b, c are mapped to 1, 2, 3
respectively. The ProbabilityValuation constructor takes
the following arguments (i) a list of variables, (ii) a hash with
the keys as the variables and the values as the frames of the
variables and (iii) the configuration space with associated
probabilities.

>>> from geninf.instances.probability import ProbabilityValuation

>>> p1 = ProbabilityValuation([1,2],{1:[0,1],2:[0,1]},

... [({1:0,2:0},0.6),({1:0,2:1},0.4),({1:1,2:0},0.3),({1:1,2:1},0.7)])

>>> p2 = ProbabilityValuation([2,3],{2:[0,1],3:[0,1]},

... [({2:0,3:0},0.2),({2:0,3:1},0.8),({2:1,3:0},0.9),({2:1,3:1},0.1)])

2.1
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>>> p3 = p1 * p2

>>> print(p3)

[({1: 1, 2: 1, 3: 0}, 0.63), ({1: 0, 2: 0, 3: 1}, 0.48),

({1: 0, 2: 1, 3: 0}, 0.36000000000000004),

({1: 1, 2: 0, 3: 1}, 0.24), ({1: 0, 2: 0, 3: 0}, 0.12),

({1: 1, 2: 1, 3: 1}, 0.06999999999999999),

{1: 1, 2: 0, 3: 0}, 0.06), ({1: 0, 2: 1, 3: 1}, 0.04000000000000001)]

The output p3 is expressed in the form a tuple with the
first tuple in the form {variable: value} where the integer is
the binary 0 or 1 (as this is an arithmetic potential). Thus the
entry in the output ({1:0, 2:0, 3:0}, 0.12) refers to the
probability of the configuration a = b = c = 0 being 0.12.
If we translate the output into tabular form we get table 5.1
with a representing a = 0 and ā representing a = 1 and
similarly for b, c. This is as expected the same as that given in
example 2.1.

A B C p1 ⊗ p2

a b c 0.12

a b c̄ 0.48

a b̄ c 0.36

a b̄ c̄ 0.04

ā b c 0.06

ā b c̄ 0.24

ā b̄ c 0.63

ā b̄ c̄ 0.07

Table 5.1: Configuration space for
p3

IExample 5.2. Next we consider partial time-bound com-
bination for the above example. Time bound combination
works by combining only the configurations with the highest
mass first, and continuing if time is left. This can be done by
replacing a call to combine with combine_t.

>>> import operator

>>> from geninf.instances.probability import ProbabilityValuation

>>> p1 = ProbabilityValuation([1,2],{1:[0,1],2:[0,1]},

... [({1:0,2:0},0.6),({1:0,2:1},0.4),({1:1,2:0},0.3),({1:1,2:1},0.7)])

>>> p2 = ProbabilityValuation([2,3],{2:[0,1],3:[0,1]},

... [({2:0,3:0},0.2),({2:0,3:1},0.8),({2:1,3:0},0.9),({2:1,3:1},0.1)])

>>> p3 = p1.combine_t(p2, 0.0002)

>>> print(p3)

[({1: 1, 2: 1, 3: 0}, 0.63), ({1: 0, 2: 0, 3: 1}, 0.48)]

As we can see, calling combine_t with a restriction of t =

0.0002 has resulted in a partial configuration; the rest of the
configuration is implicitly set to zero. Increasing the time
allocated for the combination returns further elements from
the configuration space. In figure 5.1, we plot a graph of the
error of the valuation φ (p3), εt(φ) = ∑x φ(x)−∑x φt(x) where
φt(x) is the configuration mass at x, when the combination
has been allowed to run for time t, and φ is the corresponding
exact valuation.
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Figure 5.1: Graph of error in
partial combination with time

IExample 5.3. Anytime inference for the asia network was
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considered in example 4.1, with progress of anytime infer-
ence shown in fig. 4.3 and table 4.2 for the binary join tree
in fig. 4.4. We used a query of {asia, bronchitis, dysponea} or
the variables {A, B, D}, represented in the code as [0,4,7].
We perform an initial inward propagation for t = 0.001, with
successive refinements. The inference converges to the exact
solution at about t = 0.02. The code for the example is shown
below.

if __name__ == "__main__":

asianet = io.StringIO(geninf.data.networks.asia_net)

d = DSC_Parser(asianet)

query = [0,4,7]

valuations = d.get_valuations()

to_be_eliminated = list(set(range(len(d.nodes))) - set(query))

asia = Inference(valuations, query, to_be_eliminated)

asia.assign_leaf_nodes()

solution_incompleteness = [(0.0, 1)]

solutions = [(0.0, null(query))]

times = [0.001, 0.0005, 0.0005, 0.0005, 0.0005, 0.0005,

0.0005, 0.0005, 0.005, 0.005, 0.005]

t = 0

for duration in times:

sol, _ = asia.run(duration)

t += duration

solution_incompleteness.append((t, sol.incompleteness()))

solutions.append((t, sol))

with open("asia-incompleteness.txt", "w") as f:

for t,i in solution_incompleteness:

print(t,i,file=f)

5.2.2 Disjunctive Normal Forms

We implement disjunctive normal forms at the language
level. They are represented in the implementation as a set of
terms, where a term is a set of literals. Literals are a variable
or its negation, for example a,a’ represent a, ā respectively.
Conjunction and disjunction are denoted by (.) and (+) re-
spectively.

IExample 5.4. Here we consider the inference in exam-
ple 2.7, where we illustrated the equivalence of inference
at the level of language and model, with ((a → b).(b →
c))↓{a,c} = a→ c.
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>>> from geninf.instances.logic import *

>>> v1 = LogicValuation.expr("a' + b")

>>> v2 = LogicValuation.expr("b' + c")

>>> (v1 * v2).project(['a','c'])

a' + c

IExample 5.5. We considered the instance of disjunctive
normal forms in the alarm example (example 4.2). Progress of
anytime inference was shown in fig. 4.5 with the correspond-
ing binary join tree shown in fig. 4.6. The query comprised
the variables representing alarm, burglary, earthquake and
the various causes of alarms: {a, b, e, a1, . . . , a6}. The method
sat_count returns the size of the model. The code for the
example is shown below.

if __name__ == "__main__":

alarm = Inference(geninf.data.alarm.vals, geninf.data.alarm.query,

['w','g','d','c'])

solutions = [(0,null(geninf.data.alarm.query))]

sat = lambda v: v.sat_count(geninf.data.alarm.query)

t = 0

delta = 0.0003

for i in range(20):

s, _ = alarm.run(delta)

ls = solutions[-1][1]

t += delta

solutions.append((t, s))

f = open("alarm-sat-counts.txt", 'w')

for t,s in solutions:

print("%.4f\t%d" % (t,sat(s)), file=f)

f.close()

5.3 Conclusion

In this chapter we have presented a library for approximate
anytime inference. We have given an overview of the library
structure with the core functions and presented examples for
the instances of probability potentials and disjunctive normal
forms. Due to the generic nature of the framework, we only
need to specify certain operations for the instances instead
of re-implementing the anytime inference algorithm for each
instance. The progress of anytime inference for some of the
examples was also presented in chapter 4. Future versions
of the library will have support for more instances of the
anytime ordered valuation algebra.
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Chapter 6

Analysis of Distributed
Inference

As mentioned in chapter 1, the increasing size of datasets
involved in statistical inference and machine learning has led
to the development of frameworks to structure algorithms,
such as the MapReduce framework which has been applied to
diverse areas such as genome sequencing [McKenna et al., 2010],
machine learning [Chu et al., 2007] and astrophysics [Mackey et al., 2008].
With the emergence of multicore machines and the general
acceptance that traditional methods of increasing core proces-
sor speeds are yielding diminishing returns, the theoretical
study of these models as well as their application to the devel-
opment of new parallel frameworks have become important.
To parallelise algorithms operating on large graphs, frame-
works such as Pregel [Malewicz et al., 2010] and GraphLab
[Low et al., 2010] have been developed. Even though these
frameworks have proved useful in practical applications,
there is often a lack of theoretical analysis of communication
costs and the tradeoff between computation and communica-
tion cost. Recently there have been efforts to describe frame-
works such as MapReduce from a theoretical perspective,
linking it to well-established theories of parallel algorithms
such as BSP and PRAM [Pace, 2012, Feldman et al., 2010,
Karloff et al., 2010, Goodrich et al., 2011].

Our contribution in this chapter is to undertake such a
theoretical analysis of communication cost and the communi-
cation, computation and synchronisation tradeoffs involved
in local computation. Here local computation refers to the
general family of message passing schemes which are used to
perform inference in valuation algebras.
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We give an algorithm for optimisation of communication
and computation costs, and perform tradeoff analysis for
the case of balanced binary join trees. We compare our op-
timisation algorithm with prior work on optimisation of
communication costs in weighted valuation algebras and note
the advantages of our approach.

The chapter is organised as follows:

1. Section 6.1 reviews the communication, computation
and synchronisation tradeoff framework introduced in
[Solomonik et al., 2014]. This is the framework that we
shall be using for our analysis and is a generalisation of the
BSP [Valiant, 1990] framework.

2. Section 6.2 introduces the processor assignment algorithm
and shows that it optimises communication costs. This is
followed by the tradeoffs involved in local computation
using Solomonik’s framework. We give bounds on the
number of processors for maximum concurrency and
pairwise tradeoffs between communication, computational
and synchronisation costs.

3. Section 6.3 reviews prior work on optimisation of commu-
nication costs in weighted valuation algebras [Pouly and Kohlas, 2005],
with comparisons to our analysis and processor assignment
algorithm described in section 6.2.

4. Section 6.4 concludes.

6.1 Communication, Computation and Syn-
chronisation Tradeoffs in Distributed
Computation

In section 6.1.2 we review the framework proposed in
[Solomonik et al., 2014] which derives tradeoffs between
communication, synchronisation and computational costs
in a distributed algorithm, and gives bounds on the total
execution time. In section 6.1.1, we review essential concepts
in parallel computation.
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6.1.1 Dependency graph, parallel schedule, and criti-
cal path

IDefinition 6.1. Dependency graph. The dependency
graph of a program is a directed acyclic graph G = (V, E)
representing the dependencies in the data and the flow of
execution in the algorithm.

IDefinition 6.2. Maximum concurrency. Maximum con-
currency is defined as the maximum number of concurrent
tasks at any point of the execution

The vertices of the dependency graph V = I ∪ Z ∪ O
are comprised of the input to the algorithm, I (vertices of
in-degree 0), the intermediary vertices representing the compu-
tations, Z and the output vertices O (vertices of out-degree
0). The edges representing data dependencies are E ⊂
V × (Z ∪ O). The data dependencies constrain the max-
imum concurrency possible; for example, if the depen-
dency graph is a line graph with V = (v1, . . . , vn) and
E = {(v1, v2), (v2, v3), . . . , (vn−1, vn)} then the algorithm is
effectively constrained to be sequential (maximum concur-
rency of 1); the computational cost of an algorithm having a
line graph as its dependency graph would thus be identical to
its sequential counterpart. A quantification of the degree of
data dependency is the critical path length:

IDefinition 6.3. Critical path length. The critical path
length is the length of the longest directed path between
input node and output node. The corresponding path is
called the critical path.

Colouring or processor assignment. In any distributed
algorithm we need to assign processors to the nodes (this is
also called, interchangeably, colouring a node, where we think
of the processors as various colours) in the dependency graph.
A parallelisation corresponds to a colouring of the dependency
graph G = (V, E), or a partitioning of the vertices into p
disjoint sets Ci (i = {1 . . . p}), where processor i computes
Ci ∩ (Z ∪O). A vertex v of colour (processor) i, i.e. v ∈ Ci has
to be communicated to a different processor j if there is an
edge (v, k) ∈ E such that k ∈ Cj.

IDefinition 6.4. Parallel schedule. The parallel sched-
ule of a distributed algorithm with a dependency graph
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G = (V, E) is another DAG Ḡ = (V̄, Ē), which has p edge-
disjoint paths, corresponding to p processors; each path
corresponding to the tasks executed by a certain processor,
such as communication, computation and synchronisation.

In addition to the computation vertices in the underlying
dependency graph (V, E), we also add other types of vertices
which represent communication and synchronisation in the
distributed system; this gives an explicit representation of
these tasks in the parallel schedule; thus the vertices v ∈ V̄
can belong to either:

• v ∈ V̄c, computation node, denoted by round nodes ◦
• v ∈ V̄s, synchronisation point, denoted by diamond nodes �
• v ∈ V̄o, sending (outbox) message point, denoted by square nodes �
• v ∈ V̄i, receiving (inbox) message point, denoted by square nodes �

Each vertex v ∈ V̄c ∪ V̄s ∪ V̄r should be adjacent to at most
one incoming and outgoing edge. Only the synchronisation
vertices can have k ≥ 1 incoming and k outgoing vertices
corresponding to a k-way synchronisation among processors.

Each message in this model has a single originating and
destination processor. However messages need not be directly
transferred to the destination and can be routed through
intermediary nodes. Multiple messages may be transmitted
through the same synchronisation vertex. A schedule is point-
to-point if a synchronisation vertex has at most two incoming
and outgoing paths.

IExample 6.1. Construction of a parallel schedule.
We shall consider the following coloured dependency graph
and convert it to a parallel schedule. The dependency graph
is coloured with 3 processors, indicated by shaded, clear and
dotted outlines respectively.

Converting this to a parallel schedule results in subtrees
allocated to the three processors being converted to paths
representing execution flow in the parallel schedule (fig. 6.2).

In this case, we get 2 synchronisation points and 4 send/receive
nodes.

6.1.2 Model Description

The framework has three primary parameters (coefficients)
corresponding to communication, computation and synchro-
nisation costs. There are also the associated algorithmic costs.
The parameters and costs are summarised in table below.
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Figure 6.1: Coloured dependency
graph
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Figure 6.2: Parallel schedule
corresponding to fig. 6.1

coefficient cost cost contri-
bution

α, network latency, or
time for synchronisa-
tion between two or
more processors

S, number of synchro-
nisations or network
latency cost.

α · S

β, time to send or re-
ceive a word of data
from the network.

W, number of words
transferred or commu-
nication cost.

β ·W

γ, time to perform a
(floating point) opera-
tion on local data.

F, number of local
floating point oper-
ations performed or
computational cost.

γ · F
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Each of the quantities S, W, F is considered along individ-
ual execution paths in the parallel schedule. The sequence of
operations performed by any processor locally is thus a lower
bound for these quantities. The execution time of the parallel
schedule is related to these quantities by:

max(α · S, β ·W, γ · F) ≤ execution time ≤ α · S + β ·W + γ · F
(6.1)

The analysis is asymptotic. Overlaps between communication
and computation are not considered, but instead considered
separately. In order to perform the asymptotic analysis, we
need to consider the dependency graph of the computation.

The parallel schedule runtime can then be defined as the
maximum total weight of any path in the schedule.

T(Ḡ) = max
π∈Π

∑
v∈π

t̂(v) (6.2)

where Π is the set of p edge disjoint paths representing the se-
quence of computation, communication and synchronisation
performed by each processor.

Here t̂(v) is the cost associated with a particular task,
which varies according to whether it is computation, com-
munication or synchronisation:

t̂(v) =



γ v ∈ V̄c

α v ∈ V̄s

β v ∈ V̄o

β v ∈ V̄i

(6.3)

We depart slightly from [Solomonik et al., 2014] in that
their framework allows each vertex in the parallel schedule
to represent multiple vertices of the dependency graph. We
do not need this, and it also simplifies discussion by having a
direct correspondence between the parallel schedule and the
dependency graph.

6.2 Tradeoffs for Local Computation

In this section we discuss the tradeoffs involved in dis-
tributed local computation using the framework described in
the previous section. In contrast to prior work on weighted
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valuation algebras reviewed in the section 6.3, this work looks
at the communication, computation and synchronisation costs
rather than just the communication cost. We derive bounds
on the communication and single processor computational
cost and discuss how it scales with the number of processors.
We also give bounds on the number of processors for maxi-
mum concurrency. Beyond this bound, increasing the number
of processors does not lead to faster overall execution time,
instead leading to unnecessary additional communication and
synchronisation overhead. For our analysis, we shall focus
on inward propagation. Irrespective of whether we use the
the exact inward propagation (section 2.7.2) or the anytime
inference algorithm (section 3.1.1), we have the same binary
join tree structure and thus the same dependency graph.

We shall use these definitions in the next section:

IDefinition 6.5. Depth of a node. Depth of a node in a
tree is the length of the unique path between the node to the
root node. The root node is at depth 0.

IDefinition 6.6. Depth of a tree. Depth of a tree is the
maximum depth of a node in the tree.

6.2.1 Processor assignment algorithm

We note that the dependency graph for the anytime inward
propagation algorithm is the binary join tree itself N = (V, E);
our aim will be to construct a corresponding parallel schedule
N̄ = (V̄, Ē) which shall give us our cost estimates.

IExample 6.2. We give a simple example for illustration
before discussing the processor assignment algorithm. The
colouring shall proceed recursively. Consider the base case
(tree of depth d = 1, one root node, two leaf nodes, figure 6.3).
This has a maximum concurrency of 2, as the leaf nodes
can independently project their own valuations and send
them to the root node. For the case d = 2 we consider the
decomposition of the tree into subtrees T1 and T2 where
T1, T2 are trees of depth 1; the binary join tree now has a
maximum concurrency of 4 as shown. Since each processor is
responsible for a single connected subtree of the binary join
tree, it only needs to communicate the results once from the
root of the subtree it is allocated.

Figure 6.3: The first two cases
d = 1, 2 in the processor-assign

algorithm, left: d = 1, right: d = 2

We formalise the processor assignment algorithm in
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processor-assign, where the set of processors is an or-
dered set M and c(i) denotes the colour (processor) of a node
i. We note that the critical path length of a tree is the depth of
the tree. The depth of a tree with the root node n is denoted
by depth(n).

The processor assignment is invoked at the root node.

1: procedure processor-assign(n, M)
2: if |M| = 1 then
3: colour-subtree(n, M0) 1 1 M0 is the first element of M

4: return
5: end if
6: c(n)← M0

7: split M in half to MA, MB s.t. M0 = MA,0
2 2 It does not matter which set

has more processors. We can
decide which set to give more
processors to (MA or MB) to make
the algorithm reproducible. Both
ML and MR are ordered sets.

8: ML ← MA if depth(L(n)) ≥ depth(R(n)) else MB

9: MR ← MB if depth(L(n)) < depth(R(n)) else MA

10: processor-assign(L(n), ML)

11: processor-assign(R(n), MR)

12: end procedure

1: procedure colour-subtree(n, m)
2: c(n)← m
3: if n ∈ leaves(N) then
4: return
5: end if
6: colour-subtree(L(n), m)

7: colour-subtree(R(n), m)

8: end procedure

Before proving optimality, let’s consider an example. We
already looked at this dependency graph in section 6.1.1 and
showed the conversion to a parallel schedule. This is the
colouring that is obtained if we apply processor-assign to
the underlying balanced BJT with |M| = 3.

Now we shall show that this algorithm is optimal with
respect to communication cost, while utilising the maximum
concurrency available. To optimise communication cost,
we show that we assign all the nodes in the critical path to
the same processor. Assigning nodes in the critical path to
different processors would only increase communication
costs, while not decreasing computation time.
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Figure 6.4: Processor assignment
for d = 3, p = 3, 15 nodes, 8

valuations, number of messages =
2 (3→ 1, 7→ 3)

ITheorem 6.1. processor-assign assigns all nodes of the
critical path length the same colour.

Proof. The root node is assigned M0. We ensure that the
critical path is assigned M0 by lines 8–9. To see this, we use
the notion that the tree depth is the same as the critical path
length. We also use the inductive notion for depth:

depth(n) = 1 + max(depth(L(n)), depth(R(n))) (6.4)

Once the root node has been assigned M0, we have a choice
between the left and right subtree roots to colour M0. Since
nodes in the critical path must lie in the subtree with the
higher depth, we colour the corresponding subtree root the
same as M0. This continues till we have |M| = 1, when we
colour the entire subtree, which would include the critical
path.

ITheorem 6.2. processor-assign generates at most p − 1
communication steps for p processors.

Proof. This easily follows from the fact that nodes of the same
colour belong to a connected subtree of the same colour. Thus
the tree is partitioned into subtrees which communicate only
across the edge connecting one subtree to another.

To see why nodes of the same colour from a connected
subtree, consider two nodes m and n of the same colour.
There are three cases (i) m is on the path from n to the root
(ii) when n is on the path from m to the root (iii) both m and
n belong to a subtree rooted at r.

The cases (i) and (ii) are interchangeable with m being
swapped with n. We consider case (i) first and note that
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the L(m) and R(m) subtrees will get assigned a disjoint
pool of processors. Without loss of generality, take n ∈
subtree(L(m)), where subtree(n) is the subtree rooted
at n. The fact that c(n) = c(m) implies that the processor pool
assigned to L(m) must have had c(m). In that case, we would
have c(L(m)) = c(m) as c(m) would have been ordered first
in the pool assigned to L(m). We can now recursively apply
this procedure to L(m) and n which are the same colour to
get a c(m) coloured path from m to n.

For case (iii), we have both m, n ∈ subtree(r) for some r.
For this, we again use the fact that the left and right subtrees
of the root r, L(r) and R(r) subtrees get assigned a disjoint
pool of processors. As m and n belong to L(r) and R(r) (or
the other way round, we pick one without loss of general-
ity), the only way they get the same processor is via color-
subtree, in which case the the entire subtree is coloured c(r),
which will make c(m) = c(n) = c(r).

As we have at most p coloured, connected subtrees, we will
have at most p− 1 communication steps.

An important simplification in our analysis is that all val-
uations have the same weight. From a communication cost
perspective this can be taken as the maximum weight of the
valuations that can be computed at any join tree node and is
similar to consideration of treewidth as a measure of compu-
tational complexity in inference. This allows us to generate an
optimal processor distribution without relying on an initial
colouring or assignment of processors to the leaf valuations as
is done in [Pouly and Kohlas, 2005], reviewed in section 6.3.

The processor-assign algorithm gives a colouring or
partition of the dependency graph N = (V, E). Now we can
construct a parallel schedule corresponding to the (coloured)
dependency graph:

• For edges (v, w) with c(v) 6= c(w), the processor c(v)
would need to send a message to c(w). For this, we add a
send/receive node pair, denoted by �. As the framework
requires synchronisation before data can change control,
we have to connect these via a synchronisation point, de-
noted by �.

• Nodes in the same partition, which are the responsibility of
a particular processor, are stacked to reflect the execution
flow for the corresponding processor.
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Before we state the tradeoffs, we estimate the costs for the
following: computation (FL, theorem 6.3), total communica-
tion (QL, theorem 6.4), communication (WL, theorem 6.5) and
synchronisation (SL, theorem 6.6). The subscript L denotes
local computation.

Each of these quantities is measured along a path in the
parallel schedule. It is useful to recall that each path in the
parallel schedule represents a parallel processor, and thus
these quantities, except for QL, are taken as the maximum
along any particular execution path.

IRemark. In the following, we take the cost of combination
at a particular join tree node to be O(k). Here k is a function
that denotes the maximum complexity of combination at a
join tree node; it is generally a function of the treewidth of
the join tree (size of the largest join tree label). This function
is naturally dependent on the particular instance of valuation
algebra being discussed. The particular functional form of k
does not affect the following proof and discussion.

IRemark. For the tradeoff analysis, we impose the condition
that the BJT be balanced. While a BJT in general will not be
balanced, we outline two approaches to construct balanced
binary join trees for specific instances of valuation algebras.

The first approach is for arithmetic potentials (Bayesian
networks). [Darwiche, 2001] introduces dtrees which per-
mits exact inference for Bayesian networks while offering a
smooth tradeoff between time and space. The introduced
structure is similar to BJTs, a relationship which is formalised
in [Darwiche, 2001, section 6.1], which gives a mapping from
dtrees to join trees, while preserving the underlying tree
structure of a dtree. The mapping in fact gives a BJT, as the
conditional probability tables (valuations) are assigned to the
leaves and every node has at most three neighbours.

In section 6.3, Darwiche presents a method to balance
dtrees, essentially by combining nodes till the tree is balanced.
Since a balanced dtree can be converted to a balanced BJT,
this method can be used to construct balanced BJTs.

The second method can work for instances which have an
identity element. Then we can add nodes containing identity
to make the tree balanced. As the time complexity is linear
in the number of nodes, this will only work if the number of
nodes added to a join tree is linear in the number of existing
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nodes.

ITheorem 6.3. The number of floating point operations FL in
the parallel schedule across any path in the parallel schedule is
O(nk/p)

Proof. First, we note that the balanced binary join tree will
have 2k nodes at level k. Thus if n is the number of nodes
then

n = 20 + · · ·+ 2d (6.5)

where we add up the nodes for each level, where d is the
depth of the tree, which can be expressed in terms of n, d =

lg(n + 1)− 1.
We make a further assumption that p = 2k, for k < m. If

this is not so, we round p down to the nearest power of 2, as
we shall see, this only changes FL by at most a factor of 2.

We note that in the parallel schedule, each path corre-
sponds to a different processor. Therefore the length of the
longest path will determine the complexity. We can see that in
a balanced tree, M0 gets assigned the most number of nodes,
including the root node. Thus, the number of nodes assigned
to M0 will determine the floating point complexity. As we
have assumed equal sizes for (transmitted) valuations, the
complexity of combination is O(k) at every non-leaf node.

Let’s first get the number of nodes assigned to M0. In a
balanced tree, all paths from the root to the leaves have equal
length, so we always have ML,0 = M0. Thus the left branch
of the tree starting from the root node (n, L(n), L(L(n)), . . .)
is always assigned M0, till the processor pool is exhausted
(|M| = 1 in line 2 of processor-assign). At that point, the
entire subtree at n is assigned to processor M0. So to get the
number of nodes assigned to M0, there are two steps: (i) find
at which depth we have |M| = 1; M0 will be assigned the
left branch till this point, and (ii) the number of nodes in the
subtree when |M| = 1 (M = {M0}) as these get assigned to
M0.

For step (i), as we start with 2k processors, we will have k
steps till we get |M| = 1. M0 is assigned the left branch till
this point, i.e k nodes.

For step (ii), we colour (assign) the subtree n at depth k
to M0. The subtree rooted at node n at depth k will have
20 + 20 + · · · + 2d−k where d is the depth of the tree. As no
combination happens at the leaves (nodes at highest depth),
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we shall be computing combinations for C nodes:

C := k + 20 + 21 + · · ·+ 2d−k−1 (6.6)

As we explained at the beginning of the proof, the number
of nodes assigned to M0 determines the floating point com-
plexity. If we leave the leaves of the tree, then absent the O(k)
factor, FL is the same as C:

C = k + (20 + 20 + · · ·+ 2d−k−1)

= k + (2d−k − 1)

= k− 1 +
n + 1

2p

As k = O(lg n), we can neglect that term. Thus we get C =

O(n/p) and FL = O(nk/p). If we have to round p down to
the nearest power of 2, we get p′ = p/2 as a minimum, which
keeps the same O(nk/p) bound.

ITheorem 6.4. QL = O(pk), where p is the number of processors
and k is the upper bound on weights of transmitted valuations,
analogous to the k parameter defined in the anytime inference
algorithm for the truncation function ρ.

Proof. As each processor i is responsible for a single con-
nected subtree only (theorem 6.2), we can add a synchronisa-
tion and send/receive vertices to the single edge (v, w) ∈ E
such that c(v) 6= c(w) with c(v) = i. As the communication
cost (bytes transferred) of the valuation is proportional to the
truncated portion, i.e. O(k) we get the worst-case communica-
tion cost across a single path as O(pk).

IExample 6.3. We look at an example to illustrate the argu-
ment made in theorem 6.4, in particular where we calculate
the number of nodes assigned to the first processor. Consider
a BJT with 16 valuations (and thus 2 · 16− 1 = 31 nodes).

Let’s start with two processors: we perform the obvious as-
signment, the root and the left subtree are assigned processor
M0. For this example, we indicate the assignment to processor
M0 with shaded nodes, while the unshaded nodes represent
assignments to any other processor. We show the assignments
to processor M0 for p = 4, 8, 16 in the same figure.

We do not show the case p = 3, as the processor assign-
ment would happen on the right subtree, keeping the left
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p = 2

p = 4

p = 8

p = 16

Figure 6.5: Processor assignment
in a BJT constructed from 16

valuations for p = 2, 4, 8, 16. We
show the assignments for the first
processor only, to illustrate the
argument in theorem 6.4
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subtree unchanged. As we shall see, only for p = 2i, does the
allocation to processor m1 change. For instance, for p = 4,
we assign the right subtree of the left subtree (i.e. the subtree
rooted at R(L(root(N)))) to the fourth processor according to
processor-assign.

Beyond p = 16, we do not achieve an increase in concur-
rency by adding processors, which only serves to increase
communication costs. This is due to the nature of the depen-
dency graph (a tree), where each successive level (from the
bottom up, with top being towards the root) has fewer nodes
and depends upon the results from the level below it.

ICorollary. Maximum concurrency in local computation.
For the case of a balanced BJT, the maximum concurrency for a
knowledgebase with n valuations is achieved with n processors.

Proof. For p = n, the number of local floating point oper-
ations FL = O(nk/p) = O(k) which is the lower bound
for a single processor. Intuitively, the tree structure of the
dependency graph constrains parallelism and the greatest
concurrency is at the leaves, which are bounded by n, due to
the nature of the BJT construction algorithm.

ITheorem 6.5. The maximum communication cost WL across
any single path in the parallel schedule is O(k lg p)

Proof. We know that each processor i is responsible for a sin-
gle connected subtree only (theorem 6.2). Like in theorem 6.3,
we assume p = 2m, and let’s consider the processor M0. It
is easy to see that M0 will have only incoming links, as it
is the processor assigned to the root node. As the left most
branch of the tree is always assigned to M0, the number of
incoming links to M0 is the upper bound for communication
along any single path. M0 will be assigned the left branch,
but not the right branch, until |M| = 1. These right branches
will have to send messages to M0, and there will be atmost m
messages as we have m steps till we get |M| = 1. Thus we get
WL = O(mk) = O(k lg p).

ITheorem 6.6. The maximum synchronisation cost SL across any
single path in the parallel schedule is O(lg p).

Proof. Each synchronisation is one-to-one in our case, there is
no synchronisation of more than two processors. Thus each
synchronisation corresponds to a communication step, and
we get the same cost, except the factor of k.

2.1



distributed anytime generic inference in valuation algebras 142

ICorollary. The tradeoff between total communication cost and
computational cost measured over a single execution path, can be
expressed as QL · FL = O(nk2), where n is the number of valuations,
and k is the upper bound on the size of transmitted valuations.

ICorollary. Bound on total execution time. For a local com-
putation parallel schedule, with p processors and n valuations, the
execution time is bounded by αO(lg p) + βO(k lg p) + γO(nk/p),
thus effectively O(k lg p) + O(nk/p).

Proof. This result is obtained by application of eq. (6.1) and
results from theorems 6.3, 6.5, 6.6.

6.3 Communication costs in Weighted Valua-
tion Algebras

In this section we review the work on optimisation of com-
munication costs in weighted valuation algebras [Pouly and Kohlas, 2005],
followed by a comparison to our analysis in section 6.3.2. We
focus on the discussion of the algorithm for optimisation of
communication costs and refer the reader to the article for a
detailed discussion of their framework.

Weighted valuation algebras are an extension of valuation
algebras with an additional weight function which allows
us to calculate the communication cost. Assigning weights
to valuations reflect the real-world requirement of execut-
ing local computation on large join trees, distributed across
multiple processors. Then, nodes in the underlying join tree
structure of local computation are identified with real proces-
sors, following from the work of [Kohlas, 2003] which treated
join tree nodes as virtual processors, exchanging messages
between them.

IDefinition 6.7. The weight function for a valuation algebra
is defined on the valuations. If 〈Φ, V, d,⊗, ↓〉 is a valuation
algebra, then a function ω : Φ → N is called a weight
function if for all φ ∈ Φ and x ⊆ d(φ) we have ω(φ) ≥
ω(φ↓x).

This definition can be extended to valuation algebras with
an identity e by assigning a constant to ω(e). Generally, the
identity element has no information (ω(e) = 0).

Some examples of weight functions are:
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IExample 6.4. For semiring induced valuation algebras, defined
as φ : ΩS → A where ΩS is the frame of S, or the set of all
possible configurations of a set of variables S and A is the
semiring whose values are assigned. Then a general weight
function for such valuations is

ω(φ) = ∏
x∈S
|Ωx| (6.7)

IExample 6.5. A possible weight function for belief poten-
tials with domain s is

ω(φ) = 2|Ωs| (6.8)

Another representation of belief potentials is counting the
number of focal sets, as these shrink when projected to a
subdomain.

6.3.1 Optimisation of communication costs

First, we define a penalty function:

IDefinition 6.8. On a graph G = (V, E), where G is the
join tree, a penalty function is a map p : V → (N ∪ {∞})|P|

where P is the set of processors. The map pi(v) denotes the
total weight of a subtree of a node v, if processor i has been
assigned to v, denoted by m(i) = v.

There are two phases in this processor assignment algo-
rithm: an inward phase, from the leaves to the root which
computes the penalty function for all interior nodes, and
an outward phase which assigns a processor to the interior
nodes based on the minimum penalty.

Inward (Phase 1) For each leaf v,

pi(v) =

0 if m(v) = i

∞ otherwise
(6.9)

Then, recursively for interior nodes:

pi(v) = ∑
u∈{L(v),R(v)}

min
j∈P
{ fu.dij + pj(u)} (6.10)

where dij is the distance between processors i and j and fu

is the weight of the valuation at u.
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Outward (Phase II) The complete processor mapping m : V →
P is determined such that the total communication costs
are minimised. First, the root node r is assigned i such
that pi(r) ≤ pj(r) for all j ∈ P. The interior nodes are
then assigned recursively, with m(v) = i if fv · di,m(ch(v)) +

pi(v) ≤ fv · dj,m(ch(v)) + pj(v) for all j ∈ P. The procedure
is well-defined since the children of a node are assigned
processors first.

6.3.2 Comparison with our analysis

A key difference between the analysis presented in [Pouly and Kohlas, 2005]
and the one presented in section 6.2 is that our work is
based on established theories of parallel computation, like
[Solomonik et al., 2014], a generalisation of the BSP model.
This enables us, in contrast to prior work, to give an asymp-
totic analysis of communication costs, as well as the tradeoff
with computational and synchronisation costs.

We shall now compare processor assignment algorithms.

IExample 6.6. If we apply the optimisation algorithm dis-
cussed in the previous section to example 6.1, keeping the
processor assignments at the leaves only (as we require an
initial assignment for the inward propagation of penalties),
we get the assignment as shown in fig 6.6. The corresponding
processor distribution using processor-assign is shown in
fig 6.4.

1

2 3

4 5

8 9 10 11

6

12 13

7

14 15

Figure 6.6: Processor distribution
for example 6.1 with d = 3, p = 3
using the optimisation algorithm
described in section 6.3.1. Number
of messages = 2 (6→ 3, 7→ 3).

Thus the communication cost in both optimisation meth-
ods is same, if we impose the condition of valuations having
equal weight. If we consider the inward propagation of penal-
ties in our example, we can see that any node with both
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parents (or subtrees) having a colour i will get coloured i
to minimize the penalty. To see this, we look at the penalty
assignment during inward propagation

pi(v) = ∑
u∈{L(v),R(v)}

min
j∈P
{δij + pj(u)}

where we set fu = 1 as all our valuations have the same
weight and dij = δij where δij is the Kronecker delta which is 1

if i = j, 0 otherwise. If both leaves are the same processor, say
j, then we can see that pj(v) = 0 if pj(L(v)) = pj(R(v)) = 0.
Thus this is the processor that will get assigned in the out-
ward phase. In effect, this will also give rise to a j-coloured
subtree.

In effect, processor-assign generalises the optimisation
algorithm in section 6.3.1, when ignoring valuation weight.
However it has the advantage of finding the optimal com-
munication cost given the number of processors without
depending on some arbitrary initial assignment of valuations.

6.4 Conclusion

In this chapter, we analysed the local computation algo-
rithm for anytime inference in a distributed setting. In any
distributed computation, communication and synchronisation
costs become important in addition to computational costs.
Using the theory of [Solomonik et al., 2014] which generalises
the widely used BSP model, we give results for tradeoffs in
synchronisation, communication and computational costs,
including a processor assignment algorithm which is optimal
with respect to computation and communication costs. We
also consider the tradeoffs for when the binary join tree is
balanced. While this work in the context of local computation
in valuation algebras was performed independently, we note
that similar results are known in the literature on prefix sums
[Blelloch, 1990], due to the similarity in dependency graph
structure.

The tradeoff result shows that increasing the number of
processors reduces the computational overhead per processor
as expected, but increases total communication volume pro-
portionally (QL · FL = O(nk2)). This also gives us a bound on
the number of processors for distributed inference, beyond
which adding processors will not contribute to a reduced run-
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time of the algorithm. We compare our processor assignment
algorithm with previous work and note the advantage of our
approach, which is independent of an initial assignment of
valuations to processors.
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Chapter 7

Conclusion

In this thesis we explored aspects of inference in a setting
that is sufficiently general to include a wide gamut of appli-
cations, which range from propositional logic and relational
algebras to Bayesian networks and set potentials in Dempster
Shafer theory. Our work is rooted in the extensive litera-
ture on local computation [Lauritzen and Spiegelhalter, 1990,
Shenoy, 1992, Shenoy and Shafer, 1990], message-passing al-
gorithms [Shenoy, 1997, Pearl, 1988] and the framework of
generic inference [Pouly and Kohlas, 2011, Haenni, 2004].
We make contributions to anytime inference and analysis of
distributed local computation, which are summarised below.

Anytime inference We introduced a framework to perform
anytime inference in valuation algebras (Chapter 3; also as
[Dasgupta and Abramsky, 2016, preprint]). Anytime inference
has the advantage of giving partial results, or an approxima-
tion to the exact inference solution which can be improved
with time without repeating unnecessary computations. In
contrast to previous work on anytime inference, the proposed
theoretical framework of anytime ordered valuation algebras
is generic, with guarantees of soundness and completeness
under certain axioms. This genericity allows us to capture the
essential features of valuation algebra instances which permit
anytime inference.

The introduced framework is also applicable to various in-
stances, discussed in chapter 4. The class of semiring induced
valuation algebras, which includes instances such as arith-
metic potentials and disjunctive normal forms, among others
is also shown to be an anytime ordered valuation algebra.
This makes a large class of valuation algebras immediately
amenable to anytime inference.
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In chapter 4, we explored a selected subset of these, namely,
Bayesian networks, disjunctive normal forms in propositional
logic, relational algebras and set potentials. As exact inference
is #P-hard, approximate anytime inference can be a useful
tool to explore the inference problem, and in certain cases,
have a reasonable interpretation even as a partial solution.

Distributed inference With the advent of large datasets
and increasing availability of multicore machines, it has
become not only important, but also practically useful to
consider algorithms for distributed computation. In chapter
6, we performed an analysis of distributed local computa-
tion with the inward propagation algorithm. We derived
tradeoffs between computational, synchronisation and com-
munication costs, which are important considerations for a
distributed algorithm. This also gave a bound on number
of processors for maximum concurrency. Our analysis is
based on [Solomonik et al., 2014], which generalises the well-
established Bulk Synchronous Parallel model [Valiant, 1990].
A processor assignment algorithm is also presented, which
offers some advantage as compared to prior work on op-
timisation of communication costs in local computation
[Pouly and Kohlas, 2005].

Implementation In chapter 5 we described the implementa-
tion of our anytime inference framework as a software library
in Python, with examples of usage. The library is modular
and supports additional instances. Due to the genericity of
the framework, specification of the basic operations of the
anytime ordered valuation algebra is sufficient for the any-
time algorithm.

Future Work Throughout the thesis, our focus has been to
preserve the genericity of the local computation framework.
Working on a generic framework allows immediate applica-
bility to a large class of problems in a unified manner. The
applications of generic inference and local computation are
numerous [Pouly and Kohlas, 2011]; aside from the common
instances reviewed in chapter 2, it can formulate Fourier and
Hadamard transforms, linear programming and constraint
satisfaction problems. We considered a small subset of these
as an application of anytime inference; exploration of other
instances is left for future work. In particular, we note that it
should be relatively straightforward to generalise the instance
of set potential anytime ordered valuation algebras (where
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the valuations map to the reals) to arbitrary semiring induced
set potential anytime ordered valuation algebras.

The work covered in this thesis used the the most general
of local computation architectures, partly to ensure that we
wouldn’t have to consider special cases for specific instances
of valuation algebras. However there are specialised message-
passing architectures, such as the Lauritzen-Spiegelhalter and
HUGIN architectures, briefly reviewed in section 2.7.4. These
architectures improve upon certain aspects by considering
additional restrictions on the valuation algebra, such as the
division operation in Lauritzen-Spiegelhalter. Consideration
of such architectures would simplify some of the algorithms,
as it does in the case for exact inference.

Other areas of interest as a natural extension of this thesis
are relating this work to other distributed anytime inference
algorithms, such as for MAP inference in Bayesian networks
[van de Ven and Ramos, 2012, Williams et al., 1997], as well
as other approximate inference techniques such as the mini-
bucket scheme [Dechter and Rish, 2003].

In Perspective From a broader perspective, this work con-
tributes to the well-established literature on local compu-
tation and message-passing algorithms. Due to the very
general nature of the valuation algebra framework, the no-
tions of the generalised distributive law it captures, and
the ubiquity of the join tree structure, local computation
schemes appear and are discovered in various contexts. As
an example, recent work has shown applications of local
computation in the topological approach to contextuality
[Abramsky, 2013, Abramsky et al., 2015, Kishida, 2016], ex-
tending applications of local computation to the quantum
realm. Here contextuality refers to the aspect of quantum
mechanics where a measurement of a quantum observable
depends upon the context, such as the experimental setup
and the set of commuting observables. The message-passing
architecture also makes it easier to transition to a distributed
computation environment and local computation has found
application in sensor networks [Paskin et al., 2005] to perform
inference.
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Appendix

A.1 Axioms of Anytime Ordered Valuation
Algebras

For convenience, we have listed the axioms of anytime
ordered valuation algebras that were defined in def. 3.1, with
their use within the framework on the following page.
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Ax-
iom

Use

A1
–
A6

Core valuation algebra

A7 Partial Order used to define the approximation relation
A8 Null element used to define the time-bound combination K′ in terms of

the time-bound update K′; also used to derive that we get
the null valuation at t = 0

A9 Combination preserves
partial order

used extensively in the soundness proof

A10 Projection preserves
partial order

A11 Composition preserves
partial order

A12 Composition forms a
monoid

A13 Combination ⊗
distributes over
composition ⊕

used in soundness when extending cached valuations from
the last step

A14 Projection ↓ distributes
over composition ⊕

A15 Size of truncated
valuations

used in completeness, to show that a decreasing sequence of
valuations converge to the null valuation

A16 Truncation
monotonically
increasing

used in completeness, to show a sequence of valuations is
decreasing

A17 Zero truncation monotonicity of anytime inference and compatibility with
R5 – R9 of ordered valuation algebras

A18 Time bounded update
A19 Monotonic time

bounded update
A20 Zero time update
A21 Maximum time for

update
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