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Abstract

After giving a review of the literature in Categorical Compositional Distributional
(DisCoCat in reverse functional notation) models of natural language, we extend
this framework from the meaning of isolated sentences to that of discourses, i.e.
sequences of sentences in context.

In chapter 1 we introduce the necessary categorical machinery to compute the
semantics of individual sentences, fixing the notation used in the rest of the thesis.
In chapter 2 we show how this same machinery can be turned into a framework for
knowledge graph querying — we present string diagrams and dagger structures as a
tool for modeling the duality between questions and their answers. We apply the
DisCoCat framework on a fragment of natural language we call basic, and propose
to look at the isomorphism between basic free corpora and knowledge graphs as a
process for language understanding. In chapter 3 we attempt to model ambiguity
and reference as a constrained optimisation problem.
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Introduction

This thesis may be read as a process: it takes a reader with whom we share a
common language — that of mathematical equations and symbolic reasoning — and
uses this shared language as a resource to produce some thoughts about ambiguity.
In order to produce such a resource, we need tools to make sure that the words
we use in common refer to the same thing, i.e. that the thoughts they produce
are in some sense the same, or at least similar.

We leave ambiguity itself as a third uncompleted chapter. Instead, this thesis
focuses on making sure that our language for reasoning about ambiguity is not itself
ambiguous — which would quickly lead to circularity of thoughts. Thus we will give
a particular attention to the words and symbols we use, trying to make sure that they
are used in a sense defined either in this thesis, in the references at the end of it, or
in the dictionnary. When the same word or symbol refers to two different things, we
try to make it clear from context which meaning applies. For example, the following
strings of symbols (which should look familiar to a working mathematician):

s = 〈x0, . . . , xn〉

t =
∑
x∈s

f(x)

denotes the process of applying the function f to the n elements of the sequence
s then adding them together, calling the result t. Note that we can get rid of the
s altogether and denote the same process as one equation:

t =
∑
i≤n

f(xi)

Our problem is that no two mathematicians will ever give you the same definition
for Σ — i.e. the symbols and the words they would use will probably not look or
sound similar — yet they are talking about the same Σ. Even though they do not
have the same written shape, using these two pieces of mathematics will lead to the
same result, given that the function f and the sequence 〈x0, . . . , xn〉 are the same in
both cases. Calling them “equal” has a name: extensionality — two sets are the same
when their elements are the same. Hence mathematicians usually live on their daily
life calling these two capital sigmas “the same” without asking too many questions.

“Foundations” — the word between “Mathematics” and “Computer Science” in
the name of this M.Sc. — refers to a research program which may be summed up
as: asking too many questions. Or rather: asking how are things the same and
counting in how many ways they are instead of merely asking whether they are
the same. However, asking what is the same or not the same is not the aim of
this thesis, instead we propose to ask a weaker question:

1



2 Contents

What is similar to what?

In the first chapter, we present of Categorical Compositional Distributional1
models of meaning as a framework for computing the similarity between words. We
focus on the axioms for DisCoCat models, with an emphasis on the concepts of
rigidity and freeness. In order to give the meaning of individual words we look at
them in context, i.e. we compute similarities from the way words appear in a given
corpus — a set of natural language documents. From right to left we can sum up

1. distributionality as the fact that similar words appear in similar contexts,

2. compositionality as the idea that the similarity of sentences should depend on
the shape of the sentences and the similarity of the words,

3. category theory as the machinery we use in order to unify these two principles.

We will proceed starting from the middle, defining the syntax of a small fragment
of the English language in terms of pregroup grammars — a mathematical framework
introduced by Lambek in From Word To Sentence [1]. Our aim is to spell out
only those axioms that are justified from a cognitive perspective, and argue that
the fragment of natural language we study is universal in the sense of universal
grammar introduced by Chomsky in Syntactic Structures [2] then further formalised
by Montague in The Proper Treatment of Quantification in Ordinary English [3].

We then define the semantics of individual words in terms of encoding matrices.
These matrices encode the data extracted from the corpus that will be used in
computing word similarity. Again we aim at giving only the definitions that are
necessary — those we can justify linguistically — and give a new formulation
of DisCoCat models which lifts the meaning of sentences to that of documents:
sequences of sentences, which we call discourses. We argue that this new formulation
is furthermore natural, in a sense that is discussed in the third chapter — i.e. yet to be
investigated. We conclude with a universal example of a natural language sentence:

“Alice loves Bob.”

and argue that this basic example leads to the idea that we should update our model.
We define a last piece of structure which is required in order to do so: biproducts.

The second chapter may be read as an attempt to answer the following question:

Can we build a machine that answers human questions?

which we will reformulate as

Can we build a machine that, given a question
gives an answer similar to what humans would give?

(Given that they are given the same question, obviously.)

1 shortened as DisCoCat, for a reason we will attempt to clarify



Contents 3

We begin this middle chapter by a philosophical interlude investigating graphical
ontologies — which physicists would call relational interpretations — descriptions
of what is in terms of graphs describing what is related to what. We show how
in our context this leads to the idea that there should exist a duality between
knowledge graphs in the Resource Description Framework (RDF) and natural
language discourses which we call basic. We argue that this duality should be seen
as a process: namely the update which concludes the previous chapter.

We then give an introduction to the mathematics underlying this duality in
terms of dagger structures and string diagrams. We focus on giving the intuition
behind the use of diagrammatic reasoning in our framework for natural language
and cognition: that of matrices as processes which transform some input data into
some output. Then duality can be seen as the process of reversing processes —
i.e. taking the output to be the input, and vice-versa.

The middle of the middle chapter is a partial attempt at formalising the idea
that an answer should be the reverse process of its question — for reference, we
include the publication that lead to this idea as an appendix. The main personal
motivation for this dissertation was to bridge the gap between it and three other
pieces of work which the author has contributed to.

1. Generalised Relations in Linguistics and Cognition, Coecke et al. [4] where
the DisCoCat framework is formulated in an abstract fashion in terms of
hypergraph categories. Reasoning about family trees is taken as an example
for introducing internal monads as a tool for modeling natural language.

2. A Tool for the Automated Verification of Nash Equilibria in Concurrent Games,
Toumi et al. [5] where temporal logic formulae represent the goals of agents
behaving strategically in a system represented as a theoretical game between
abstract machines. We compute Nash equilibria as the outcomes for the game
that are in some sense reasonable.

3. From Model Checking to Equilibrium Checking, Wooldridge et al. [6] where
the above is seen as a prototype for rational verification. Given a description
of what agents can do and of what they want, we want to make sure that
some global property holds in what is called a multi-agent system.

However in order to remain self-contained, this thesis will not mention either
monads, games or temporal logic. We will not be able to avoid Boolean logic:
conjunction, disjunction and implication2 depicted by the symbols ∧, ∨ and =⇒.

2 but not negation



4



Context

A spectre is haunting Artificial Intelligence — the spectre of duality.
We leave only the traces this spectre has left, in the form of a bibliography:

0.1 Functional and Imperative
• M. Minsky and S. Papert

Perceptrons: An Introduction to Computational Geometry [7]

0.2 Algebra and Geometry
Functors were first introduced to model the duality between algebra and geometry.

• S. M. Lane
Categories for the Working Mathematician [8]

This duality can be traced back to Descartes and his system of coordinates:
points in the plane are pairs of numbers on a line. The same Descartes is also
known for his dualism in metaphysics.

0.3 Mind and Body
• Spinoza

Ethics [9]

“The order and connection of ideas is the same3

as the order and connection of things.” — II.VII

0.4 World as Functor
• Wittgenstein

Tractacus Logico Philosophicus [10]

“The limits of my language4 mean the limit of my world” — 5.6

3 here we add the emphasis
4 here we leave the emphasis

5
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And what is the thought that lies behind the words
“This is a very pleasant pineapple”?
This is a very pleasant pineapple.

Listen to me.

We imagine the meaning of what we say as
something queer, mysterious, hidden from view.
But nothing is hidden! Everything is open to view!
It’s just... it’s just philosophers who muddy the waters.

— Derek Jarman, Wittgenstein (1993) 1
Axioms for DisCoCat Models of Meaning

In this chapter we give a self-contained presentation of DisCoCat models of meaning
which aims at interdisciplinarity. Thus, we will formulate our model in the lingua
franca which is shared today by scientific disciplines from computer science to
theoretical linguistics through physics, economics and engineering: basic set theory.
Cutting through mathematical jargon with Occam’s razor, we attempt to introduce
only the notions that are necessary, and to give precise definitions of every term
we use. We only assume the reader to understand the words “sequence”, “set”
and “function”.

Previous dissertations have already given excellent introductions that we would
qualify as top-down — as opposed to the bottom-up approach we try to follow
here — defining DisCoCat models in terms of dagger symmetrical monoidal functor,
for example see [11]. However enlightening this abstract approach can be — the
bridge between syntax and semantics at the core of DisCoCat would not have been
formulated without it — we believe that it can both hide the simplicity of the
model and put off scientists with less mathematical backgrounds.

Whenever a concrete definition was possible, we have prefered it over its abstract
counterpart: for example we only talk about concrete matrices, never about abstract
vector spaces and linear maps. Moreover all the sets we work with are countable, with
the notable exception of the set of real numbers R — which we use in one example
as a convenient workaround to what should really be floating-point arithmetic. As
a warning to the pure category theorist who might read this thesis: we will make
heavy use of equalities and you will not hear about natural transformations.

The only concept which we have not been able to either completely avoid or give
a precise and general definition of is that of freeness. We apologise to the reader:
making concepts sound hard is easy, making them sound easy is a lot of hard work.

7



8 1.1. Syntax: Pregroup Grammars

1.1 Syntax: Pregroup Grammars
We begin with a few mathematical definitions, fixing the notation used in this thesis.
Given a natural number a ∈ N, we will write a for the set { 0, . . . , a− 1 }.

Definition 1.1 (Monoid). A monoid is a tuple (M,×, 1) where

• M is a set

• × : M ×M →M is a binary function called multiplication

• 1 ∈M is an element of M called the unit

such that for all a, b, c ∈M we have

• a× 1 = a = 1× a (unitality)

• a× (b× c) = (a× b)× c (associativity)

Thanks to associativity we can forget parenthesis and write a×b×c with no ambiguity.
When the multiplication is clear from context we omit the symbol × and simply write
abc ∈M . For monoids as well as for the other algebraic structures we consider, we
will overload the notation and write M for both the monoid and its set of elements.

Given any set X, the set X∗ of all finite sequences 〈x0, . . . , xn〉 of elements in X
is a monoid with concatenation as multiplication and the empty sequence as unit,
this is called the free monoid generated by X. The free monoid X∗ has the special
property that for any monoid (Y,×, 1) and function f : X → Y there is a unique
function f ∗ : X∗ → Y such that for all x ∈ X and 〈a0, . . . , am〉, 〈b0, . . . , bn〉 ∈ X∗

• f ∗〈〉 = 1 and f ∗〈x〉 = f(x)

• f ∗〈a0, . . . , am, b0, . . . bn〉 = f ∗〈a0, . . . , am〉 × f ∗〈b0, . . . bn〉

Intuitively, f ∗ : X∗ → Y takes a sequence of elements in X and applies the function
f element-wise to get a sequence of elements in Y , then multiplies these elements
together to get a single element in Y . We will make heavy use of this property,
as well as of its extension to other algebraic structures.

Remark 1.1. For simplicity we will allow ourselves to consider the set of all finite
sets as a monoid, with the Cartesian product × as multiplication and the singleton
1 as unit. That is, we treat tuples as lists and consider the sets X× 1, X and 1×X
as equal — not only isomorphic. However we will need some set { l, r } such that
X × { l } 6= X × { r }.

Definition 1.2 (Poset). A preorder is a tuple (P,≤) where P is a set and ≤ is a
subset of P × P such that for all p, q, r ∈ P we have

• p ≤ p (reflexivity)

• p ≤ q ∧ q ≤ r =⇒ p ≤ r (transitivity)
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For readability we use infix notation for membership in ≤— i.e. p ≤ q iff (p, q) ∈ ≤.

Definition 1.3 (Poset). A poset (for partially-ordered set) is a preorder (P,≤)
with the following extra axiom for all p, q ∈ P

• p ≤ q ∧ q ≤ p =⇒ p = q (antisymmetry)

Example 1.1. A free monoid X∗ has the structure of a poset with infix ordering:

〈x0, . . . , xn〉 ≤ 〈y0, . . . , ym〉 ⇐⇒ 〈x0, . . . , xn〉 = 〈yi, . . . , yj〉

ŵhere i, j ≤ n ≤ m, for example 〈loves, Bob〉 ≤ 〈Alice, loves, Bob〉. If we forget
sequence order and multiplicity of elements, we get a poset on the powerset P(X)
with subset inclusion as ordering.

Definition 1.4 (Graph). A graph is a tuple G = (O,A, dom, cod) where O is a
set of objects, A is a set of arrows, and the functions dom, cod : A → O are
called the domain and codomain respectively. We write f : a→ b for f ∈ A when
dom(f) = a ∧ cod(f) = b.

Definition 1.5 (Category). A (small) category is a tuple (G, ◦, id) where G =
(O,A, dom, cod) is called the underlying graph, id : O → A called the identity and

◦ : { (f, g) ∈ A× A | cod(f) = dom(g) } → A

is called the composition. We write id(a) = 1a and ◦(f, g) = gf and require that
for all f : a→ b, g : b→ c, h : c→ d

• f1a = f = 1bf (unitality)

• h(gf) = (hg)f (associativity)

As for monoids, associativity allows us to write hgf ∈ A with no ambiguity. We
will also write Ob(C) for O, Ar(C) for A and C(a, b) for the set of arrows f : a→ b.

A category is discrete when the only arrows are identities, every set X can
equivalently be seen as a discrete category with itself as the set objects. Hence
we overload the notation and write X for the corresponding discrete category.
Categories are also generalisation of both monoids and posets: indeed a monoid is a
category with one object (arrows are the elements, composition is the multiplication),
a poset is a category with at most one arrow between any two objects (objects
are the elements, existence of arrows is the subset membership) together with the
antisymmetry axiom. In the context of categories, antisymmetry can be generalised
to the axiom of skeletality which ensures that there are no two distinct isomorphic
objects: for all f : a → b, g : b → a we have

gf = 1a ∧ fg = 1b =⇒ a = b

Definition 1.6 (Functor). Given two categories C and D, a functor F : C → D is
a pair of functions FOb : Ob(C)→ Ob(D) and FAr : Ar(C)→ Ar(D) such that
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• for all a ∈ Ob(C) we have FAr(1a) = 1FOb(a)

• for all f : a→ b we have FAr(f) : FOb(a)→ FOb(b)

• FAr(gf) = FAr(g)FAr(f) when the composition gf is well-defined.

When it is clear from context we will omit the underscript and overload the notation
to write F for both the object and arrow functions, as well as the functor itself.

Remark 1.2. In the special case of monoids, functors are called homomorphisms,
in the case of partial orders they are better known as monotone functions.

For every category C there exists a unique functor !C : C → 1: it sends all the
objects and arrows of C to the unique object and arrow of 1. Given any object
c ∈ C we can define a functor from 1 to C which maps 0 to c and 10 to 1c. We
overload the notation and denote this functor by c : 1 → C

Remark 1.3. We can define a category Cat with functors as arrows and small
categories as objects: composition of functors is given by the composition of their
object and arrow functions, the identity arrow for C is given by the identity functor
1C : C → C where both the object and arrow parts are taken to be identity functions.
Associativity and unitality of functor composition follow from that of functions.
However Russell’s paradox prevents this category to be small itself.

In order to reason formally about syntax, we will make use of an algebraic
formalism introduced by Lambek in his seminal work From Word to Sentence [1].
The definition proceeds in three steps: 1) partially ordered monoids, 2) pregroups
and 3) pregroup grammars. Finally we will define the basic grammar that will
serve as example throughout this thesis.

Definition 1.7 (Pomonoid). A pomonoid (for partially-ordered monoid) is a tuple
(G,≤,×, 1) where (G,≤) is a poset, (G,×, 1) is a monoid and both are compatible
in the sense that for all a, b, c, d ∈ G we have:

a ≤ b ∧ c ≤ d =⇒ a× c ≤ b× d

Definition 1.8 (Pregroup). A pregroup is a pomonoid G equipped with a pair of
functions (−)l, (−)r : G → G called the left and right adjoints respectively, such
that for all a ∈ G

al × a ≤ 1 ≤ a × al

a × ar ≤ 1 ≤ ar × a
(1.1)

We call the elements of G grammatical types, the elements of ≤ reductions.

Remark 1.4. Our definition differs slightly from the standard one in that we ask
for adjoints to be functions instead of merely requiring existence of al, ar ∈ G for
every a ∈ G. However the standard definition implies that adjoints are unique hence
these two definitions are equivalent.

We will need the following lemma from [1].
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Lemma 1.1 (Contravariance). For all a, b ∈ G, a ≤ b =⇒ bl ≤ al ∧ br ≤ ar.
Proof. Assume a ≤ b then

bl = bl1 ≤ blaal ≤ blbal ≤ 1al = al

and symmetrically for br ≤ ar.
Definition 1.9 (Pregroup Grammar). A pregroup grammar is a tuple (G, s, V, T )
where G is a pregroup with a designated element s ∈ G called the sentence type,
V is a set of natural language words called the vocabulary and T : V → G is a
function assigning a grammatical type T (w) ∈ G to every word w ∈ V .
Definition 1.10 (Discourse and Corpus). We say that an utterance, i.e. a sequence
of words, 〈w0, . . . , wn〉 ∈ V ∗ is a grammatical sentence when T ∗〈w0, . . . , wn〉 ≤ s.
We call a sequence of sentences a discourse and a set of discourses a corpus, thus
the set of corpora is P(V ∗).
Remark 1.5. We will assume that words have a unique grammatical type, even
though this is not necessarily true of natural languages: for example “type” is both
a noun and a verb.

We conclude this section by defining the basic pregroup grammar that will
be used for the examples throughout this thesis. We start with a poset of basic
types B = ({ s, n, obj, sub } ,≤) — the latter three types standing for nouns, objects
and subjects respectively — where

≤ = { (n, obj), (n, sub) } ∪ { (t, t) | t ∈ B }

Then we define G as the free pregroup generated by the poset of basic types B.
Defining freeness formally would lead us astray and is not essential to our discussion,
for a construction of free pregroups see [1, p. 9]. We take our vocabulary to be
V = {Alice, Bob, loves, hates, and, who, whom, . . . } with

T (Alice) = T (Bob) = n

T (songs) = T (movies) = obj

T (loves) = T (hates) = subr × s× objl

T (and) = nr × n× nl

T (who) = nr × n× subll × sl

T (whom) = nr × n× objll × sl

. . .

Example 1.2. The utterance “Alice loves Bob” is a grammatical sentence, indeed
T ∗〈Alice, loves, Bob〉 = n subr s objl n

≤ n nr s objl n (lemma 1.1)
≤ s objl n (equation 1.1)
≤ s nl n (lemma 1.1)
≤ s (equation 1.1)
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The basic example of grammar we use here covers only a small fragment of the
English language: it does not deal with adjectives, intransitive verbs, grammatical
gender, plural and singular; to cite but a few concepts that linguists have used
to describe the utterances that natural language speakers would consider as
grammatical. The analaysis of Lambek covers a much wider fragment of the English
language, and it has been successfully applied to a number of other languages:

“Since 1998, pregroup grammars have been applied to fragments of a
number of languages: English, French, German, Italian, Turkish, Arabic,
Polish, Latin and Japanese, and there is work in progress on Mandarin
and Persian.” — Lambek, From Word To Sentence [1, p. 74]

In this, he follows a long tradition which can be traced from Chomsky’s seminal
work Syntactic Structures [2] through Montague semantics and the idea of universal
grammar. Indeed pregroup grammars have the same expressive power as context-free
grammars [12], which are more widely known to be a foundational concept in both
theoretical linguistics and computer science. Unraveling the universal structures of
natural language is an ambitious research program which brings together philosophy,
anthropology and cognitive science.

In this thesis we aim at describing syntax, semantics and the link between them
from such a universal perspective. Hence we do not focus on any particular of the
English language, taking examples that we believe are applicable to any other natural
language. We make the hypothesis that an example of such a universal is the fact
that the verb “love” needs a subject and an object to form a meaningful sentence.

On the other hand, two examples of phenomenon that are not universal in this
sense — and which will not take care of in what follows — are the fact that the
English “love” needs an “s” when we talk about the present of somebody else, and
the fact that it is written and read from left to right.

1.2 Semantics: Encoding Matrices
Now in order to reason about semantics, we will use one of the most ubiquitous
tools in mathematics and engineering: matrices. We define categories where the
arrows are matrices and the objects are their dimensions, i.e. their number of rows
and columns. These categories are parametrised on the scalars used for the matrix
entries: intuitevely a set of numbers with a notion of addition and multiplication.
Composition of arrows is given by matrix multiplication, in order for it to be
well-behaved we require our sets of scalars to carry the structure of a rig.

Definition 1.11 (Rig). A rig (for “riNg” without Negatives, also known as a
semiring) is a pair of a monoid (S,×, 1) and a commutative monoid (S,+, 0) such
that for all a, b, c ∈ S

• a+ b = b+ a (commutativity)

• a× 0 = 0 = 0× a (absorption)
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• a× (b+ c) = a× b+ a× c (l-distributivity)

• (a+ b)× c = a× c+ b× c (r-distributivity)

We do not ask for (S,×, 1) to be commutative yet.

Example 1.3. The most basic example of a rig is the set of natural numbers N
with addition and multiplication defined in the standard way, indeed it is the free
rig generated by one element. Another example is the set of Booleans B = { 0, 1 }
with × = ∧ and + = ∨, which can be seen as the rig generated by one element and
the equation 1 + 1 = 1. Also any field is a rig hence the rationals Q, the reals R
and the complex numbers C are all examples of rigs.

Definition 1.12 (Rig-valued Matrix). Given a rig S and a number of rows and
columns a, b ∈ N, an a× b matrix is a function M : a× b→ S. Although we will not
need it in this thesis, matrices are usually represented as rectangular tables.

Definition 1.13 (Element-Wise Addition). Given a pair of a × b matrices M, N,
we overload the notation and define the a × b element-wise addition as M + N =
(+) (M× N) µ(a×b) : a× b→ Y where for any set X, µX : X → X ×X is given
by the copy:

µX(x) = (x, x)

Definition 1.14 (Matrix Multiplication). Given a pair of matrices M0 and M1 of
dimensions a× b and b× c respectively, their multiplication M1M0 is the a× c matrix

(M1M0)(i, j) =
∑
k<b

M0(i, k)× M1(k, j)

Note that for consistency we use the same reversed notation as for composition.

Definition 1.15 (Transpose). Given an a×b matrix M, we define its transpose as the
matrix MT = Mσb,a where for any pair of sets X and Y , σX,Y : X ×Y → Y ×X
is given by the swap:

σX,Y (x, y) = (y, x)

Definition 1.16 (Scalar Product). Given a pair of states u, v : 1→ a, their scalar
product is the 1× 1 matrix vTu, which is the same as the scalar vTu(0, 0) ∈ S.

Definition 1.17 (Category of matrices). Given a rig S, we define MatS as the
category with the natural numbers as objects and a× b matrices with values in S as
arrows. Composition is given by multiplication and associativity follows from the
rig axioms. The identity arrow for a ∈ N is given by 1a = δa where for any set X
δX : X ×X → X is given by the Kronecker delta

δX(x0, x1) =
{

1 if x0 = x1

0 otherwise
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Hence from now on we will use the arrow notation M : a→ b for a×bmatrices. We
will also call matrices s : 1→ a row vectors or states, and matrices t : a→ 1 column
vectors or effects. We will denote particular examples of row vectors as sequences.

We conclude this section by giving the main example of how we use matrices
for semantics: given some corpus C ⊆ V ∗ (see definition 1.10), we encode the
distributional semantics of w ∈ V as a state E(C,w) : 1→ n called the word vector,
where n ∈ N will serve as a hyper-parameter of model. In our context, it will
prove more convenient to reformulate this data using two processes known as
currying and indexing.

Intuitively, currying is the observation that a function of pairs is the composition
of a pair of functions — where in the process we go into higher-order functions, i.e.
functions of functions. More elegantly put, we have an isomorphism

A×B → C ' A→ (B → C)

where (B → C) denotes the set of functions from B to C. This isomorphism is
furthermore natural in a sense that will be discussed in section 3.3. Once applied
to our setup, we get the following natural isomorphism:

P(V ∗)× V → MatS(1, n) ' P(V ∗)→ (V → MatS(1, n))
= P(V ∗)→ (V → (n→ S))
' P(V ∗)→ ((V × n)→ S))

where the first and third lines are called currying and uncurrying respectively, and
in the second line we use the equality of remark 1.1.

Definition 1.18 (Indexing). An indexed set is a pair (X, i) where the bijection
i : X → |X| is called the indexing, the product of two indexed sets (X, i) and (Y, j)
is given by (X × Y, i ? j) where

(i ? j)(x, y) = j(y) + |Y | × i(x)

their sum (X + Y, i+ j) is given by

X + Y = X × { l } ∪ Y × { r }

(i+ j)(x, l) = i(x) (i+ j)(y, r) = |X|+ j(y)

Definition 1.19 (One-Hot Vector). Given an indexed set (V, i), the one-hot vectors
|w〉 : 1→ |V | and 〈w| : |V | → 1 for w ∈ V are given by

〈w| (j, 0) = |w〉 (0, j) = δV (w, i−1(j))

Note that, departing from its traditional use in physics, we only write set elements
inside Dirac bra-ket notation to distinguish one-hot vectors from other vectors.

From this indexing, the naturality property mentioned above allows us to derive
the following type for what we call the encoding process:

E : P(V ∗)→ MatS(|V | , n)
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Although this can be seen as only a change in notation, we will argue that this
formulation allows to give a high-level picture of learning: given a corpus C ⊆ V ∗

we want to compute an encoding matrix E : |V | → n. From this isomorphism,
we can also derive the following two statements:

E : V → (P(V ∗)× n→ S)

is an equivalent type of the encoding process and given an indexed set V we have

E = E′ : |V | → n ⇐⇒ ∀w ∈ V · E |w〉 = E′ |w〉

While the latter is a standard fact of linear algebra, in our setup the former
can be formulated in the following way. The process which takes a corpus and
assigns a vector to each word is the same as the process which takes a word and
assigns a vector to each corpus — i.e. computing the meaning of a corpus given
the meaning of its words is the same as computing the meaning of the words
given the meaning of the corpus.

If we can say anything at all — i.e. V 6= ∅ — then P(V ∗) is an infinite set,
i.e. there is no longest utterance, thus there can be no indexing and hence no
encoding matrix for corpora, the vector for a corpus is abstract. However, even if
we restricted ourselves to corpora less than a certain size — say that of the set of
Wikipedia articles — this function is only a notational device and it would not
make computational sense to store corpus vectors in memory. Instead, we formulate
how our model gives the semantics of particular examples of discourses.

The purpose of the encoding matrix is to model a notion of word similarity:
whereas we have 〈wi|wj〉 = 0 whenever wi and wj are distinct words, we want
the scalar product of E |cat〉 an E |dog〉 to tell us how similar “cat” is to “dog”. In
particular, we would like to say that “cat” is more similar to “dog” than “dog” is
to “philosophy” — a statement which should appear as obvious to anyone who
knows the meaning of these three words — and write

〈philosophy| ETE |dog〉 ≤ 〈dog| ETE |cat〉

In order to talk about such degrees of similarity, we need to equip our set of
scalars with some extra structure: namely, a poset. We want this comparison to
always be possible, hence we will require the axioms of a linear order. Moreover,
we require this order to be well-behaved with respect to the rig structure, hence
we require that S forms an ordered rig.

Definition 1.20 (Linear order). A linear order is a poset (S,≤) such that for all
a, b ∈ S we have

• a ≤ b ∨ b ≤ a (linearity)

Note that when |S| = n, a linear order on S is equivalent to an indexing i : n→ S.
Computing i from ≤ is known as sorting.

Definition 1.21 (Ordered rig). An ordered rig is a tuple (S,≤,×, 1,+, 0) where
(S,×, 1,+, 0) is a rig and (S,≤) is a linear order such that for all a, b, c ∈ S
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• a ≤ b =⇒ a+ c ≤ b+ c (+-compatibility)

• 0 ≤ a ∧ 0 ≤ b =⇒ 0 ≤ a× b (×-compatibility)

In the examples that follow, the hyper-parameter n is taken to be the cardinality
of a set of context words: some subset {w0, . . . , wn } ⊆ V that we consider as relevant
for computing word similarity. Usually this involves ignoring so-called stop words —
i.e. words that appear too often to provide meaningful information such as “the”,
“of”, etc. — as well as words that do not appear enough (e.g. “anticonstitutionally”).

Example 1.4 (S = N). The most basic method for computing the encoding matrix
E : |V | → n is counting: E(Alice, wi) is the number of times “Alice” appears in the
same sentence as the context word wi, i.e.

EN(wi, wj) =
∑
d∈C

∑
s∈d

1s(wi)× 1s(wj)

where 1s : V → B is the indicator function for membership in the set of words
in s. Note that we have made the arbitrary choice of considering appearance in
the same sentence: we could compute a more coarse-grained meaning by taking
discourse instead, or a finer-grained one by considering so-called context windows,
i.e. whether the two words appear closer than some distance k of each other (which
becomes another hyper-parameter of the model).

Example 1.5 (S = B). An example which is of perhaps less importance for
semantics, but which we give nonetheless in order to illustrate the use of the Boolean
rig, is to compute not how many times words appear together but only whether they
appear together:

EB(wi, wj) =
{

0 if EN(wi, wj) = 0
1 otherwise

Then 〈wi| ETBEB |wj〉 = 1 iff wi and wj appeared next to the same context word.

Example 1.6 (S = R). Counting is usually not sufficient to give a satisfactory
measure of similarity, hence count statistics are usually scaled so that less frequent
words are given more weight: the fact that a word appears next to “house” gives less
information than appearing next to “troglodyte” would. One traditional weighting
scheme in information retrieval and text mining is tf-idf (for term frequency -
inverse document frequency) of which there are numerous variations. Here we give
the most basic version:

EQ(wi, wj) = EN(wi, wj) log
(

|C|∑
d∈C 1d(wj)

)

We are now in a position to define the motivation for this thesis: given an
encoding matrix E : |V | → n, we want to compute the semantics for the utterances
d ∈ V ∗ with T ∗(d) ≤ s× · · · × s. Our first step is to remove the need for the star,
as well as that for the dots: we do this by defining exponentials.
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Definition 1.22 (Exponential). Given a monoid (X,×, 1), the exponential is an
X × N→ X function denoted (x, n) 7→ x(×n) and defined by

x(×n) =
{ 1 if n = 0
x× x(×(n−1)) otherwise

When x is a natural number itself we denote the exponential by xn, similarly when
it is a set with × denoting the Cartesian product, see remark 1.1. Thus V k is the set
of utterances of length k and we can reformulate our problem by fixing its dimension:
given a discourse d ∈ V k with T ∗(d) ≤ s(×t) — i.e. t grammatical sentences with k
words in total — we encode the computation for the meaning of d as the scalar

D(d) = r E(⊗k) |d〉

where |d〉 : 1→ |V |k is the one-hot state for the utterance. We construct r : nk → 1
based on the grammatical derivation of the utterance while E(⊗k) : |V |k → nk

denotes the exponential for the Kronecker product:

Definition 1.23 (Kronecker Product). The Kronecker product u⊗ v : 1→ a× b
is defined by

(u⊗ v) = (×) (u× v) (1a ? 1b)−1 : 1× a× b→ S

on pair of states u : 1→ a, v : 1→ b, and M⊗ N : a× b→ c× d is defined by

(M⊗ N) |i, j〉 = M |i〉 ⊗ N |j〉

on pairs of matrices M : a→ c, N : b→ d.

Lemma 1.2 (Ar(MatS),⊗, 1 is a monoid).

Proof. Note that we have overloaded ⊗: the right hand side of the bottom line is
defined by the top line, which prevents circularity. The bijection ? : a× b→ a× b
of definition 1.18 together with the equivalence of the previous remark makes this
is a well-defined function. Then the proof follows from the definition of the product
of encodings and the fact that N is a rig:

(k + |Z| × j) + |Z × Y | × i = k + |Z| × j + |Z| × |Y | × i
= k + |Z| × (j + |Y | × i)

for (x, y, z) ∈ X × Y × Z, writing i for i(x) and similarly for j and k.

1.3 Functors of Rigid Monoidal Categories
We can now get into the core of the DisCoCat model: the bridge between syntax and
semantics which was first introduced in [13] then given mathematical foundations
in [14]. The construction this bridge begins with the observation that pregroups
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and categories of matrices share a common structure: they are both examples
of rigid monoidal categories.

In this section, we introduce the categorical machinery required to formalise
the structure-preserving mapping from syntax to semantics which drives our model.
As a technical side-remark for the mathematically-minded reader, note that the
categories we consider in this thesis are all skeletal hence what we actually define
are strict monoidal categories. We will not need to mention this fact any further in
what follows, indeed thanks to MacLane’s coherence theorem we know that every
monoidal category is equivalent to a strict one, see [8, p. 165].

A monoidal category can be seen as a category where the set of objects and
arrows have the structure of two monoids that interact in a well-behaved way.
Then intuitively rigid categories are to monoidal categories what pregroups are to
monoids: they are equipped with left and right adjoints satisfying axioms which
generalise those of definition 1.1. In order to define monoidal categories, we first
define the notion of product of two categories and of two functors.

Definition 1.24 (Product Categories). Given a pair of categories C and D, their
product C × D is a category defined by

• Ob(C × D) = Ob(C)×Ob(D)

• Ar(C × D) = Ar(C)× Ar(D)

• 1(c,d) = (1c, 1d) for c ∈ Ob(C) and d ∈ Ob(D)

• (gC, gD)(fC, fD) = (gCfC, gDfD) for fC, gC ∈ Ar(C) and fD, gD ∈ Ar(D),
whenever the compositions of the right-hand side are well-defined.

Associativity and unitality of composition in C × D follow from that of C and D.

Definition 1.25 (Product Functors). Given a pair of functors F : A → B and
G : C → D, their product is a functor F ×G : A× C → B ×D defined by

• (F ×G)Ob = FOb ×GOb

• (F ×G)Ar = FAr ×GAr

where in the righ-hand sides the operation × is Cartesian product of functions. That
F ×G is indeed a functor follows from the fact F and G are functors.

Definition 1.26 (Monoidal Category). A monoidal category is a tuple (C,⊗, I)
where ⊗ : C × C → C is called the monoidal tensor and I ∈ Ob(C) is called the
monoidal unit, such that

• ⊗(1C × I) = 1C = ⊗(I × 1C) (unitality)

• ⊗(⊗× 1C) = ⊗(1C ×⊗) (associativity)

This formulation, which we borrow from [8, p. 162], allows to define at once the
two monoids of objects and arrows, as well as their interaction.
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Pregroups are monoidal categories where the objects are the elements and the
arrows are the grammatical reductions. The object part of the tensor is the pregroup
multiplication, the arrow part follows from the pomonoid axiom.

Definition 1.27 (Rigid Category). A monoidal category C is rigid if there exists
an Ob(C)× { l, r } → Ob(C) function denoted (a, x) 7→ ax, and a pair of functions
cup, cap : Ob(C)× { l, r } → Ar(C) such that

cup(a, l) : al ⊗ a→ I cup(a, r) : a⊗ ar → I

cap(a, l) : I → a⊗ al cap(a, r) : I → ar ⊗ a
for all a ∈ Ob(C). We call al and ar the left and right duals of a and require the
following four axioms

(1a ⊗ cup(a, l))(cap(a, l)⊗ 1a) = 1a = (cup(a, r)⊗ 1a)(1a ⊗ cap(a, r))

1al = (cup(a, l)⊗ 1al)(1al ⊗ cap(a, l)) (1ar ⊗ cup(a, r))(cap(a, r)⊗ 1ar) = 1ar

Pregroups are special cases of rigid categories: indeed the four functions required
in the definition correspond precisely to the axioms defining a pregroup, and the
four equations are trivially satisfied because pregroups are posets.

We now want to look at MatS as a rigid category, however in order to recover
the original formulation of DisCoCat as a functor to a compact closed category,
we need to add an extra axiom on our set of scalars. For any commutative rig
S — i.e. s × t = t × s for all s, t ∈ S — MatS is a rigid category with the extra
property that for all a ∈ Ob(MatS) = N we have al = ar = a.

Definition 1.28 (Maximally-Entangled Vectors). Given a dimension a ∈ N, the
maximally-entangled vectors cupa : a⊗ a→ 1 and capa : 1→ a⊗ a are given by

cupa |i, j〉 = δa(i, j) capa = cupTa

Lemma 1.3 ((MatS,⊗, 1) is rigid).

Proof. Take cup(a, l) = cup(a, r) = cupa and cap(a, l) = cap(a, r) = capa. The
functoriality axiom on objects follows from the fact that (N,×, 1) is a monoid, that
on arrows can be spelled out as the interchange rule:

(M1M0)⊗ (N1N0) = (M1 ⊗ N1)(M0 ⊗ N0)

Both this statement and the axioms for rigidity can be proved directly by extension-
ality, i.e. proving that the matrices have equal entries. However the proof would be
rather cumbersome and uninformative so we will allow ourselves to appeal to general
abstract nonsense: MatS is equivalent to the category of free finite-dimensional
S-semimodules. Thus it is compact closed — which implies rigidity, see [15].

We can now define our functor from syntax to semantics: the object part
sends every grammatical type to some natural number, the arrow part sends every
grammatical reduction to a matrix. Moreover we require that it behaves well with
respect to the rigidity of the two categories: it is a rigid functor.
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Definition 1.29 (Monoidal Functor). A monoidal functor between two monoidal
categories (C,⊗, I) and (D,�, J) is a functor F : C → D such that

FI = J : 1→ D F⊗ = �(F × F ) : C × C → D

As for the definition of monoidal category, this formulation allows to give the axioms
for both the object and arrow part of F at once.

Definition 1.30 (Rigid Functor). A monoidal functor F : C → D is rigid if the
two categories are rigid and furthermore for x ∈ { l, r }:

F (−)x = (−)xF Fcup(x) = cup(x)F Fcap(x) = cap(x)F

where we have overloaded the object and arrow functions of F and curried the
functions cup, cap : Ob(X ) × { l, r } → Ar(X ) ' { l, r } → (Ob(X ) → Ar(X )) for
X ∈ {C,D }. Note that this differs from the standard definition, which only requires
the existence of adjoints, not explicit functions.

Let us begin by defining the image FB : B → MatS of our semantic functor
F on the poset of basic types B as defined in 1.1:

F (s) = 1 F (n) = F (sub) = F (obj) = n

where n is overloaded and stands for both the noun type and the hyper-parameter
of the model as described in section 1.2. Defining FB on objects uniquely defines
the object function FOb : G→ N of the semantic functor, indeed the images on the
other types follows from monoidality and the freeness of the pregroup. With this
definition on objects, we can define the arrow function of FB : B → MatS as

F (n ≤ obj) = F (n ≤ sub) = 1n : n→ n

Then image on the reductions given by the pomonoid axioms follow from the axioms
of monoidal functors, it now remains to define the image on the reductions defined
by the pregroup axioms. We would like to simply assert

F (al × a ≤ 1) = F (a× ar ≤ 1) = cupF (a) : F (a)⊗ F (a)→ 1
F (1 ≤ a× al) = F (1 ≤ ar × a) = capF (a) : 1→ F (a)⊗ F (a)

but this becomes problematic in the case when the same utterance has two
non-isomorphic derivations. Indeed whereas pregroups are posets and therefore
have at most one arrow between any two types, this definition would map the same
arrow in G to two distinct arrows in MatS: it cannot define a functor.

Example 1.7. The utterance “Bob hates songs and movies that Alice loves” is a
grammatical sentence in two ways. The full derivations would fill up the page, but
intuitively they correspond to the two bracketings “Bob hates (songs and movies)
that Alice loves” and “Bob hates songs and (movies that Alice loves)”, see [16].
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In order to define the desired functor, we need to enrich our structure for
syntax so that it takes into account not only whether a sentence is grammatical
but how it reduces to the sentence type. We do this by extending the notion of
free pregroup to that of free rigid category introduced by Preller and Lambek as
special cases of free compact 2-categories.

The free rigid category generated by a poset B has the same objects as that
of the free pregroup, and its arrows intuitively correspond to pregroup derivations
with concatenation of proofs as composition. As for freeness of pregroups, a formal
definition of free rigidity would lead us astray: we only need to know that a rigid
functor from such a free category is uniquely defined by its image on the poset B.

We conclude this section by defining what we call rigid grammars: intuitively
they are to free rigid categories what pregroup grammars are to pregroups. Finally,
we define an S-valued semantic functor as a rigid functor from some rigid grammar
to the category MatS.

Definition 1.31 (Free Rigid Grammar). Given a pregroup grammar (G, s, V, T )
freely generated by a poset B, we define the rigid grammar (G,⊗, I) as the free rigid
category generated by B and word arrows w : I → T (w) for w ∈ V .

We overload the notation and also write u : I → T ∗(u) for the utterance
arrow generated by u = 〈w0, . . . , wn〉. By construction, an utterance u ∈ V ∗ is a
grammatical sentence when there exists a reduction arrow r : T ∗(u) → s, which
holds if and only if T ∗(u) ≤ s in G.

Definition 1.32 (Semantic Functor). Given a rigid grammar G generated by
(G, s, V, T ), a semantic functor is a rigid functor F : G → MatS for some rig S.
Given a reduction r : a→ b, the semantics of an utterance u ∈ V ∗ with T ∗(u) = a
is given by F (ru) : 1→ b.

From functoriality, we have that the semantics of u = w0 ⊗ · · · ⊗ wk : 1 → a
under r : a→ b is equal to the composition of the images. From monoidality, we
get that the image of a semantic functor on utterances is the Kronecker product of
the images on its constituent words. Finally, the image on the reduction arrows
follows from rigidity and the fact that G is free, thus we recover the formulation
which concluded the previous section:

F (ru) = F (r) F (u)
= F (r) (E |w0〉 ⊗ · · · ⊗ E |wk〉)
= F (r) E(⊗k) (|w0〉 ⊗ · · · ⊗ |wk〉)
= F (r) E(⊗k) |u〉

The last line follows from k applications of the definition for one-hot vectors
and that for Kronecker product, the one before last follows from k applications of
the interchange rule of lemma 1.3. However, in passing from the first to the second
line we made the assumption that there is a single encoding matrix E : |V | → n, e.g.
we have E |loves〉 = F (loves) : 1 → F (nr × s × nl) which by monoidality implies
that n = F (nr)× F (s)× F (nl) = n× n — i.e. n ∈ { 0, 1 } our model is trivial!
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1.4 Alice Loves Bob and Biproducts
This leads to a crucial observation which distinguishes DisCoCat from previous
distributional models: the word vectors for nouns and for transitive verbs cannot
have the same dimension anymore: we need to define distinct encoding matrices for
every grammatical type. With our definition of F : G → MatS for the basic example
of grammar described in section 1.1, the meaning of a sentence is given by a scalar
in S which we will interpret as a generalised truth value, the meaning of a noun is
given by a state 1 → n, that of a transitive verb by a state 1 → n ⊗ n.

Example 1.8. Take S = B and n = 2, we partition our vocabulary V = E ∪R into
a set of nouns E = {Alice, Bob } and a set of verbs R = { loves }. We define two
encoding matrices E : |E| → n and R : |R| → n⊗ n as follows.

E |Alice〉 = (01) E |Bob〉 = (10) R |loves〉 = (0101)

Then we compute the meaning of the sentence “Alice loves Bob” under the reduction
arrow r : n⊗ subr ⊗ s⊗ objl ⊗ n→ s corresponding to example 1.2 as the scalar

F (r)F (Alice⊗ loves⊗Bob) = (cup2 ⊗ cup2)(E |Alice〉 ⊗ R |loves〉 ⊗ E |Bob〉)
= (E |Alice〉 ⊗ E |Bob〉)TR |loves〉
= ((01)⊗ (10))T (0101) = (0100)T (0101) = 1

In the end, we can say that Alice really does love Bob! Note that in order to get
from the first to the second line, we have used some magic which we introduce in
the next chapter: string diagrams.

One way of getting around the issue mentioned above would be to make the
assumption that the set of grammatical types for the words is finite, which is a
more reasonable hypothesis than that discussed in section 1.2. Then we can make
use of a construction which we have not yet introduced in this thesis: biproducts.

Definition 1.33 (Biproduct). Given two matrices M : a→ c and N : b→ d, their
biproduct M⊕ N : a+ b→ c+ d is given by

M⊕ N = (M � N) ((1a + 1b)−1 × (1c + 1d)−1) : a+ b× c+ d→ S

where (+) is the sum of indexing, and the function M � N : a+ b→ c+ d is given by:

(M � N)((i, x), (j, y)) =


M(i, j) if x = y = l

N(i, j) if x = y = r

0 otherwise

Thus we can update our model, i.e. take n 7→ n+n×n and E 7→ E⊕R so that:

F (ru) = F (r) E(⊗k) |τ ∗(u)〉 τ(w) =
{

(w, l) if w ∈ E
(w, r) if w ∈ R

This reformulation comes at the cost of: 1) a quadratic increase in the size of
our encoding matrix, 2) a loss of the separation of concerns between syntax and
semantics. In the next chapter, we attempt to justify this cost.



le petit prince: “Even flowers that have thorns?”

antoine: “Yes, even flowers that have thorns.”

le petit prince: “So, what’s the use of thorns?”

I didn’t know. At that point I was very busy trying to unscrew a
bolt in my engine that was too tight. I was very worried because
the breakdown started to look very serious, and the drinking water
running low made me expect the worse.

le petit prince: “So, what’s the use of thorns?”

The little prince never let go of a question, once he had asked it. 2
Diagrams of Questions and Answers

In this chapter, our working hypothesis is that something similar to the dialogue:

bob: Does Alice love Charlie?
dan: Alice does love him.

has happened in every natural language. Hence we take this question and its
answer as a universal example, in the sense discussed at the end of section 1.1.
In the late eighties, Hamblin [17] formalised natural language questions in the
framework of Montague semantics: he defined a homomorphism which translates
questions into programs that compute the set of the answers. We will show how
adapting this approach to the DisCoCat model leads to the idea that the semantics
for an answer should be in some intuitive sense the dual1 of its question.

We define the fragment of natural language which will be our object of study
for the rest of this thesis: the discourses built from basic sentences of the form
“subject verb object”. We then show how a corpus in this fragment, once given a
semantics in the DisCoCat framework, can be translated into machine language in
a structure-preserving way: it forms a knowledge graph — also called an ontology.

1 This is a footnote to Plato, whose dialogues have a similar structure to game semantics — a
framework which could be used to formalise the logic behind our models of meaning: multiplicative
linear logic [18]. To make a political analogy, one player tries to make a claim while the other
answers: “fake news!” Then the claim is true if and only if the first player has a winning strategy,
i.e. he answers every question his opponent asks and wins the debate.

The idea that truth is a process has notably been formalised in Hegel’s Science of Logic, which
has long been accused by scientists and logicians of being neither scientific nor logical. With his
Hegelian taco [19], Lawvere offers some food (a monoid) for thoughts on how modern mathematics
may end up going back to Hegel — in a way, he might be considered as the founding father of
“general abstract nonsense” in philosophy.

Borrowing the intuition from Wittgenstein’s Tractacus, dialogues of questions and answers
between a master and a student can be seen as “ladders”, the student “eventualy recognises them
as nonsensical, when he has used them — as steps — to climb beyond them. (He must, so to
speak throw the ladder after he has climbed up it)” [10, p. 6.54].

23



24 2.1. String Diagrams for Natural Language

2.1 String Diagrams for Natural Language
One of the strengths of DisCoCat models for natural language is that they allow
us to reason about information flow through a graphical language known as string
diagrams. In this section we introduce equations of diagrams as a tool to reason about
compact closed categories, we refer the reader to [20] for a survey of diagrammatic
reasoning for monoidal categories in general.

Before formalising the notion of duality, we start by spelling out the main
intuition behind how we use diagrams to reason about natural language. The
graphical language allows to literally see how matrices can encode the computation
for the meaning of a discourse: they transform and connect together the meanings
of the individual words. The algebraic formulations of chapter 1 allowed us to
express semantic computations in a generic and concise way. On the other hand
writing string diagrams takes more space, however it is well-suited to the study
of particular examples.

We represent a matrix M : a → b as a box with an input wire labeled with a
on top, and an output wire labeled with b at the bottom. This is the so-called
pessimistic convention where information flows downwards, i.e. future is hell.
The main intuition behind the graphical notation is that of matrices as processes:
a-dimensional information flows into the matrix M which transforms it into b-
dimensional information. The identity matrices leave this information untouched,
thus we represent them as plain wires instead of boxes. From this intuitive notation,
the unit axiom of categories becomes a topological move: we are allowed to slide
boxes up and down wires. Indeed, the equalities M1a = M = 1bM become graphically

a

M

b

=

a

M

b

=

a

M

b

where composition of matrices M0 : a→ b, M1 : b→ c is depicted by the vertical
concatenation of their boxes, connecting the output wire of the top box with the
input of the bottom one. This notation allows to get the associativity axiom of
categories for free: we never need to draw parenthesis. This was was already true
for the associativity of monoids written as one-dimensional equations — at least
when the monoid multiplication was clear from context. Now whereas connecting
wires of boxes vertically represents composition, horizontal juxtaposition of boxes
will represent the Kronecker product.

The intuition is that composition of matrices encodes processes in sequence while
the Kronecker product encodes processes in parallel. As for vertical concatenation,
horizontal juxtaposition gives us the associativity axiom of monoidal categories
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for free. This is perhaps key advantage of two-dimensional diagrams over their
corresponding one-dimensional bracketed expressions, as can be seen with the
interchange rule spelled out in lemma 1.3. Spotting the applications of this rule
inside complex expressions would require some heavy mental gymnastics, however
once we represent it graphically as the following equation of diagrams:

aM

M0

bM

M1

cM

aN

N0

bN

N1

cN

=

aM

M0

bM

M1

cM

aN

N0

bN

N1

cN

... it becomes trivial! The final piece of notation we will need for reasoning about
MatS as a monoidal category is that for its unit 1. Intuitively whereas we represent
the identity matrix 1a as a labeled wire carrying a-dimensional information, the
identity matrix 11 : 1→ 1 cannot carry any information: we do not bother drawing
it at all or rather, we draw it as the empty diagram. Again, this notation gives us
the unit axiom for free: juxtaposition with the empty diagram does nothing. It may
also be seen as allowing us to leave some space on the left and right of a diagram.

a

M

b

=

a

M

b

=

a

M

b

We will distinguish states and effects from other matrices by drawing them as
triangles — with no input and no output respectively — instead of boxes. This is
consistent with the representation of 11 : 1→ 1 as an empty diagram: concatenating
it on top of a state or below an effect does nothing. Finally, composing a state with an
effect of the same dimension yields a diagram with no input or output: a scalar in S.

We conclude this section by defining the mathematical devices we will use
to reason about duality, from opposite categories to symmetric dagger structures:
intuitively, we flip all the arrows upside-down. Note that in this chapter we will
also forget about left and right, that is we ask for the multiplication in rig of
scalars S to be commutative: for all s, t ∈ S

s× t = t× s

This extra assumption has the following linguistic consequence: scalar product
becomes commutative which makes word similarity a symmetric relation — e.g.
“France” is as similar to “Belgium” as “Belgium” is to “France” — which violates
experimental results in psychology, see [21]. Non-commutative cases and their
applications to cognition have been investigated in some previous work, see [4].
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Definition 2.1 (Opposite Category). The opposite of the graph G = (O,A, dom, cod)
is G† = (O,A, cod, dom). The opposite of C = (G, ◦, id) is C† = (G†, ◦ σA×A, id).

Note that the opposite functor F : C† → D† is the same as F : C → D —
i.e. they have the same object and arrow functions — and C†† is the same as
C, which follows from the fact that σA×A : A × A → A × A is an involution:
(σA×A)(σA×A) = 1A×A. Currying our notation, if

G = (C, cup(l), cap(l), cup(r), cap(r))

is rigid then its opposite

G† = (C†, cap(r), cup(r), cap(l), cup(l))

is rigid as well. However we avoid mentioning C† directly as it is really the same as
C — opposite categories are only a device we use to define daggers.

Definition 2.2 (Dagger Structure). A dagger structure is a functor † : C → C†
such that

† = 1Ob(C) : Ob(C)→ Ob(C) † † = 1Ar(C) : Ar(C)→ Ar(C)

in short, an involutive identity-on-object contravariant endofunctor. When applied
to categories with a single object, a dagger structure is called an involutive monoid.

Definition 2.3 (Symmetric Category). A monoidal category (C,⊗, 1) is symmetric
if there is a function σ assigning a swap arrow σ(a, b) : a⊗ b→ b⊗ a to each pair
(a, b) ∈ Ob(C)×Ob(C) such that for all f : a→ b and g : c→ d

• σ(1, a) = 1a = σ(a, 1)

• σ(b, a) σ(a, b) = 1a ⊗ 1b

• σb,d(f ⊗ g) = (g ⊗ f)σa,c

• σ(a× b, c) = (σ(a, c)⊗ 1b) (1a ⊗ σ(b, c))

We depict the swap of a and b by the crossing of the wire depicting their identity
so that we can translate these axioms as equations of string diagrams:

a
= a =

a

ba

ab
=

a b



2. Diagrams of Questions and Answers 27

a c

g

d

f

b

=

a

f

c

g

b d

a b c

=
b c

a c

Thus we can interpret the four axioms for symmetry as encoding our graphical
intuition for bending and crossing of wires. The first axiom — crossing with the
empty diagram does nothing — allows us to bend an identity wire as long as it does
not disconnect. The second axiom allows us to uncross two wires while the third
is called naturality. Applying it to the case when f or g are the identity allows us
to slide boxes through wires, in the same way as the axiom for identity allowed
us to slide it up and down. Finally, the last axiom called the pentagon allows to
decompose the crossing of a pair of wires into a pair of crossings, one wire at a time.

Definition 2.4 (Symmetric Dagger). A dagger structure † : C → C† is symmetric
if C is symmetric, † is monoidal and †(σ(a, b)) = σ(b, a) for all a, b ∈ Ob(C).

Definition 2.5 (Inner Product). When (S, †) is a commutative involutive rig, the
conjugate transpose of the a× b matrix M is given by

M† = † MT : b× a→ S

The inner product of two states u, v : 1→ a is the scalar v†u ∈ S.

Lemma 2.1. The conjugate transpose † : MatS → Mat†S defines a symmetric dagger
with the swap arrow σ(a, b) : a× b→ b× a given by the matrix:

σ(a, b) = (?) σa×b (?)−1

where σ in the right-hand side denotes the swap function of definition 1.15 and from
right to left (?) denotes first a× b→ a× b then b× a→ b× a from definition 1.18.

Proof. See [15] where this result is used to build toy quantum theories.

Rigid symmetric monoidal categories are called compact closed, rigid symmetric
dagger structures are simply called compact dagger. Now in order to reason about
matrices as a compact closed category, we introduce an extra piece of notation for
the maximally-entangled states and effects which justifies their name. Indeed, while
the intuition behind the use of vectors is that they serve as information-storing
devices, we can interpret the special case of cupa and capa as information-passing
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mechanisms. Thus we represent them as bent wires, the reason for this notation
becomes clearer once we represent the axioms for rigidity — also known as the
snake equations — graphically:

a

a
= a =

a

a

String diagrams are not only an intuitive notation: they can be treated as a
formal language in a mathematical sense. Indeed, any equality which can be proved
from the graphical notation — by bending and stretching wires, sliding boxes without
disconnecting them — can also be proved directly from the axioms of compact
closed categories. The converse is also true: any equation derived from the axioms of
compact closed categories can be proved in the graphical language. A proof of these
two statements — called soundness and completeness of the graphical language —
would go well beyond the scope of this thesis, we refer the interested reader to [20].

The standard concepts of linear algebra can be formulated in terms of this graph-
ical language, see Coecke and Kissinger [22] for an introduction to diagrammatic
reasoning in the context quantum computing. As an example, we can redefine
graphically the transpose of a matrix M : a → b as follows.

a

a

M

b

b

=

b

MT

a

=

a b

M

a b

Note that the equation MT = (1a ⊗ cupb) (1a ⊗ M ⊗ 1b) (capa ⊗ 1b) would be
non-trivial without the help of monoidal category theory. The graphical language
makes clear that taking the transpose encodes some intuitive notion of reversing
the process. We are now in a position where we can justify the derivation we
used in the example which concluded the previous chapter. The meaning of the
sentence “Alice loves Bob” given the grammatical reduction described in example
1.2 is represented by the following diagram.

Alice

|E|

E

n

loves

|R|

R

n

Bob

|E|

E
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=

loves

|R|

R

nn

ET

|E|
Alice

ET

|E|
Bob

We have rotated the encoding matrices E : |E| → n into their transpose
ET : n → |E|, the transposes of the one-hot states |Alice〉 , |Bob〉 : 1 → |E| being
the corresponding effects 〈Alice| , 〈Bob| : |E| → 1. This allows to see graphically
how the maximally-entangled effect cupn : n⊗n→ 1 feeds the information from the
subject and the object into the verb. In essence, the scalar we compute with this
diagram can be interpreted as the similarity between the meaning of “loves” and
the pair of meanings for the two nouns “Alice” and “Bob”, i.e. their scalar product.

In a more complex example we adapt from [23], we show how the maximally
entangled state capn : 1 → n ⊗ n behaves in a similar way. It starts from the
observation that the meaning of the sentence “Alice does love Bob” — in our
setting where this is a scalar encoding a generalised notion of truth value — should
be the same as that of “Alice loves Bob” even though the two sentences have a
different syntax. The auxiliary “does” can be given the pregroup type vtr × (vtr)l
where vtr = subr × s × objl: intuitively it waits for a transitive verb on its right
to yield a composite verb. The image of this type under our semantic functor
is F (vtr × (vtr)l) = (n ⊗ 1 ⊗ n) ⊗ (n ⊗ 1 ⊗ n) = n4, which is enforced by the
axioms of a monoidal functor.

We choose to model the meaning of the word “does” — i.e. define the image of its
word arrow under the semantic functor — as the state capn(1n⊗capn⊗1n) : 1→ n4.
Then the meaning of “Alice does love Bob” is represented by the diagram

Alice

|E|

E

does
n

n

love

|R|

R

Bob

|E|

E

n n

n

n

where we have composed the state F ∗〈Alice, does, love, Bob〉 : 1→ n8 with the effect
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F (r) : n8 → 1 — the image of the semantic functor on the following reduction arrow:

sub vtr (vtr)l vtr obj → sub vtr obj

→ sub subr s objl obj

→ 1 s 1
→ s

Note that we have made no other choice than the type for the word “does”, the
axioms which define our semantic functor as monoidal have enforced:

F (r) = cupn ⊗ (1n ⊗ cupn ⊗ 1n)(cupn ⊗ (1n ⊗ 1n ⊗ cupn ⊗ 1n ⊗ 1n))

which is easier to remember as a 4-line diagram than as a 1-dimensional formula.
Then our choice for the image of the word arrow for “does” becomes graphically

intuitive: the state for “does” takes the meaning of “loves” on its right then feeds it
into the meaning for the pair “Alice” and “Bob”. This is consistent with the reverse
intuition we gave above for the sentence “Alice loves Bob”, indeed any scalar s : 1→ 1
is trivially self-transpose — which is provable graphically by rotating it by a π.

2.2 Object and Subject Questions as Effects
While the dimension of word vectors and the matrices for the reduction follow
freely from the axioms for rigidity, we are free to choose the image of our semantic
functor on words as we will. Assigning special vectors to structural words — such
as “does” in the previous section — has been an ongoing area of research since
the first formulation of DisCoCat models.

In a series of work [24] [25] [26], Sadrzadeh et al. have applied this method to
give a semantics to a class of such structural words: relative pronouns such as “that”,
“which” and “whom”. Intuitively, a relative pronoun takes the information of some
noun on its left — the referent — and updates it with some new information coming
from an incomplete sentence on its right — the relative clause. This intuition has
been modelled mathematically using the generalised Kronecker delta:

Definition 2.6 (Generalised Kronecker Delta). For any triple of dimensions
a, b, n ∈ N, the Kronecker delta δa,bn : na → nb is given by

δa,bn |w0, . . . , wa〉 =


|i〉(⊗b) if ∃ i < n ·

∧
j<a

δn(wj, i) = 1

0(⊗b) otherwise

for 〈w0, . . . , wa〉 ∈ na where for any m,n ∈ N the zero matrix 0 : m → n denotes
the constant 0(i, j) = 0 ∈ S and ∧j<a denotes the function

∧
j<a

bj =


b0 if a = 1

b(a−1) ∧
( ∧
j<(a−1)

bj
)

otherwise

We will omit n when the context is clear.
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This defines a basic algorithm for comparing a sequence of a one-hot vectors,
and in the case when they are all equal to some |i〉 : 1 → n, output a sequence
|i〉(⊗b) : 1→ nb of b copies of it. This definition by cases — which is justified by the
equivalence discussed in section 1.2 — puts emphasis on the computational steps
required to compute the composition of δa,bn with particular states. However, from
this notation a basic symmetry of the generalised Kronecker delta is hidden: taking
its mirror image and swapping the a for the b — i.e. δa,bn |w0, . . . , wa〉 becomes
〈w0, . . . , wb| δa,bn and ∧j<a bj becomes ∧i<b ai — yields an equivalent definition. We
will need the following graphical theorem in order to make sense of this symmetry.
Theorem 2.1 (Spider Fusion). For all n ∈ N and (a, b, c, d) ∈ N4, we have the
following spider fusion rule where we denote δa,bn as an a-input, b-output spider:

a

b

c

d

. . .

. . .

. . .

. . .

. . .

=

. . .

. . .

a+ c

b+ d

Proof.
(
id(⊗b)

n ⊗ δ(k+c),d
n

) (
δa,(b+k)
n ⊗ id(⊗c)

n

)
= δ(a+c),(b+d)

n , see [27]. Note how the
string diagrams make the topological nature of the equation apparent while hiding
the bureaucracy of indices and parenthesis.
Definition 2.7 (Relative Clause). Given a free rigid grammar G generated by
(G, V, s, T ) and a designated pair of object type o ∈ G and noun type n ∈ G with
n ≤ o, we define an (object) relative pronoun as a word arrow

that : 1→ rel = nl × n× (ol)l × sl

An (object) relative clause is an utterance u = 〈that, w0, w1, . . .〉 ∈ V ∗ with a
reduction arrow r : T ∗(u)→ rel. Symmetrically for subject relative clauses.
Example 2.1. For F : G → MatS and some hyper-parameter n ∈ N, we define:

F (s) = 1 F (o) = F (n) = n F (n ≤ o) = 1n
F (that) = δ0,3

F (n) : 1→ F (n)⊗ F (n)⊗ F (o)
We compute the semantics of the utterance u = 〈that, tell, jokes〉 with

T (tell) = nr × s× ol T (jokes) = o

r = 1nl ⊗ 1n ⊗ cuprn ⊗ 1s ⊗ cuplo
then F (ru) : 1→ F (n)⊗ F (n) is given by the following scalar.

that

δ0,3
n

tell

|R|

R

jokes

|E|

E

n n
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Relative clauses, as introduced in [11], allow us to encode a notion of definition.
One of the requirements for our encoding matrices should be that a word is
similar to its definition. As this is a hard constraint to express, we will begin
by asking for equality:

Example 2.2. If our corpus contains some philosophy, we ought to have

Men

|E|

E

that

δ0,3
n

are

|R|

R

mortal

|E|

E

n n nn

=

Men

|E|

E

n

We propose to apply relative clauses — together with the notion of duality
discussed in the previous section — and show how in our model they generate basic
questions. We start from the observation that computing the value of the scalar

Alice

|E|

E

loves

|R|

R

boys

|E|

E

that

δ0,3
n

tell

|R|

R

jokes

|E|

E

.

n n n n

n

should be the same as answering the question

bob: “Does Alice love boys that tell jokes?”

Thus once we have computed some encoding matrices from a corpus, our semantic
functor gives a way of computing the semantics natural language questions — from
the similarity of the words in the sentence, and from its grammatical derivation.
However, giving a semantics to the answers of such basic yes-no questions proved
to be surprisingly hard to encode. Or rather to decode: given a scalar in a rig
S, which we obtained by computing the semantics of a question, what natural
language utterance is the answer?

While giving a semantics to positive answers is trivial — applying the reverse
process and turning the question into a declarative sentence — negatives require
a good encoding for the word “not”:

dan: “Alice does not.”
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Instead, we propose to adapt Lambek’s analysis [1] to our framework, looking at
object questions as sentences with holes. Intuitively, the word “Who′′ is a process
which takes an incomplete sentence “Alice loves —” on its right and transforms it
into the question “Who does Alice love?”. The role of the word “does” has already
been discussed in the previous section: it does nothing. Or rather, nothing else
than making the question sound grammatical to an English reader.

Definition 2.8 (Who and Whom). In a free rigid grammar G with designated types
s, q, o, n ∈ Ob(G) such that n ≤ o, the (object) question words “Who” and “whom”
are given by arrows

Who − ? : q → (ol)l × sl

− whom? : q → o× sr

where s and q are the sentence and question, o and n the object and noun types.

Example 2.3. Take the set of nouns E = {w ∈ V | T (w) = n }, we define

F (s) = 1 F (q) = |E| F (o) = F (n) = n ∈ N

F (n ≤ o) = 1n F (Who − ?) = F ( − whom?) = E : |E| → n

Then the semantics of the question “Who does Alice love?” is given by:

Who

|E|

E

does

n

Alice

|E|

E

love

|R|

R

?

n n

n

Using string diagrams, we can see graphically what Chomsky [2] calls the trace:

Alice

|E|

E

loves

|R|

R

whom?
|E|

E

n n

In pregroup grammars the trace is encoded by the double adjoint type (ol)l ∈ G,
which we have already encountered in the definition of relative clauses:

“Chomskyan linguists might say that the question word has been moved
from the end to the beginning of the question, and I have placed a dash
at the end to represent what they call a trace. Traces are not really
needed for our approach, their place being taken by double adjoints.” —
Lambek, From Word To Sentence [1, p. 29]
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MatS is compact closed — we have assumed the rig S to be commutative —
hence by symmetry we can extend this analysis to that of subject questions, and
we may also imagine giving the semantics of questions of two arguments, e.g.

|E||E|

q
=

Who

|E|

E

loves

|R|

R

whom?
|E|

E

n n

In chapter 3 we propose instead to look at anaphora as a resource for generating
a class of effects — which includes the image of basic questions as given here, and
extends it to effects of type q : |E|k → 1 for any number of arguments k ∈ N.

2.3 Knowledge Graphs and Free Corpora
We believe that one of the main applications of our work would be in building
concrete systems for interaction between human and machine — in this chapter,
our aim is to model how the two could answer each other’s questions. To that
effect, we introduce basic discourses as mid-level representations between human
language and machine-readable format.

In this section, we start by showing how a basic corpus — i.e. a collection
of basic discourses — generates a knowledge graph in the Resource Description
Framework (RDF) for the Semantic Web. We focus on the Boolean case and
show that a knowledge graph generates what we call a basic semantic functor
which in turn generates a free corpus.

Adapting Montague’s framework for natural language semantics to our basic
setup, we argue that the equivalence between these three definitions should be
seen as a process which — once generalised beyond basic grammars and Boolean
semantics — gives an abstract framework for natural language understanding. First,
we fix the terms of our ontology by defining an RDF signature: a pair of finite
sets E and R denoting entities and relations respectively. As in the first chapter
we assume that the sets have been indexed.

Definition 2.9 (Knowledge Graph). Given a signature (E,R), a knowledge graph
is a subset K ⊆ T of the set of triples T = E×R×E. The concrete implementation
of a knowledge graph is also known as a triple store.

Remark 2.1. Every knowledge graph defines a graph in the sense of definition 1.4

A = K O = E dom(x, r, y) = x cod(x, r, y) = y

In some sense, we have forgotten the relation part of K.
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A knowledge graph encodes facts, we will assume that we can express those
facts: i.e. that our vocabulary has been translated into RDF — every noun has
been encoded as an entity, and every transitive verb as a relation.

Definition 2.10 (Basic Grammar). Given a signature (E,R), the basic grammar
GE,R is the free rigid grammar generated by:

• the set of basic types { s, n }

• a noun arrow e : 1→ n for every entity e ∈ E

• a verb arrow r : 1→ vtr for every relation r ∈ R, where vtr = nr × s× nl

Lemma 2.2. The set of basic sentences — i.e. utterances grammatical under the
grammar GE,R — is T = E×R×E. The set of basic discourses is T ∗ = (E×R×E)∗.

Proof. Applying Lambek’s switching lemma for pregroups [1] in our setup with
no order on the basic types, we know that any reduction arrow g : a→ b has the
form g = ec where c : a → z is generated by contraction arrows and e : z → b is
generated by expansion arrows — which correspond to the left and right handside
of definition 1.8 respectively. Hence for basic grammars, we can exclude expansions
from reduction arrows while retaining the same definition of grammaticality.

Then given an utterance u ∈ V ∗ and a reduction arrow g : T ∗(u)→ s, the proof
that u has to be a basic sentence of the form 〈subject, verb, object〉 ∈ E ×R× E,
i.e. that

g = cuprn ⊗ 1s ⊗ cupln : n× vtr × n→ s

proceeds by induction on the structure of pregroup derivations. Knowing that
contraction arrows can only reduce the length of types, we are sure that the proof
comes to an end, we refer the interested reader to [16].

Note that under the Curry-Howard correspondance, finding such pregroup
derivations is isomorphic to parsing the syntax of sentences — investigating Lambek’s
side of this correspondance is one of the motivations for this thesis.

We now show how if we’re given a set of basic discourses, we can generate a
knowledge graph from it — intuitively, this process amounts to collecting all
the facts in a corpus.

Lemma 2.3. Given a corpus of basic discourses C ⊆ T ∗, we can construct a
knowledge graph:

K(C) =
( ⋃
d∈C

⋃
s∈d

s

)
⊆ E ×R× E

Moreover, any knowledge graph can be generated in that way.

Proof. The function K : P(T ∗)→ P(T ) is injective: for all K we have K(K∗) = K.
We call K∗ ⊆ (E ×R× E)∗ the free corpus generated by K.

After introducing basic discourses and knowledge graphs, we now look at the
third side of the equivalence: we define a class of semantic functors which adapts
Montague’s framework to our basic setup.
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Definition 2.11 (Basic Semantic Functor). A basic semantic functor is a functor
F : GE,R → MatS such that

• F (s) = 1 and F (n) = |E|

• the image of entities e ∈ E is their one-hot vector F (e) = |e〉 : 1→ |E|
Note that because GE,R is free, a basic semantic functor is uniquely determined by
its image on the verb arrows F (r) : 1 → |E| × |E|, i.e. by an encoding matrix
R : |R| → |E| × |E|.
Lemma 2.4. Given a knowledge graph K ⊆ E ×R× E we can construct a basic
semantic functor F(K) : GE,R → MatS such that the set of true sentences is K, the
set of true discourses is K∗. Moreover when S = B, F is an isomorphism between
basic semantic functors and knowledge graphs.
Proof. In the case S = B, currying gives that encoding matrices and of knowledge
graphs are both functions E ×R× E → B, the isomorphism being implicit in the
indexing we use for one-hot vectors.

We exhibit one side of the construction which has the desired property for any
S, i.e. given K ⊆ T we construct F(K) : GE,R → MatS such that for all utterance
arrows u : 1→ a and reduction arrows to the sentence type g : a→ s

F(K)(gu) = 1 ⇐⇒ u ∈ K

We first construct an effect 〈K| : |T | → 1 as follows:

〈K| =
∑

(x,r,y)∈K
〈x| ⊗ 〈r| ⊗ 〈y| : |E| × |R| × |E| → 1

where we take element-wise addition of matrices and we define:
RK = (1|E| ⊗ 〈K| ⊗ 1|E|)(cap|E| ⊗ 1|R| ⊗ cap|E|) : |R| → |E| × |E|

From lemma 2.2 we know that a grammatical sentence has the form u = x⊗ r⊗ y :
1→ |T | and we can derive F (g)F (u) = (cup|E| ⊗ cup|E|)F (u) = 〈K|u〉 graphically:

x

|E|
r

|R|

R

y

|E|
=

x

|E|

|E|

r

|R|
K

|E|

y

|E|

=

x

|E|
r

|R|

K

|E|

y

By construction we have that 〈K| (|x〉⊗|r〉⊗|y〉) = 1 if and only if (x, r, y) ∈ K.
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These three lemmas are simply reformulations of the same object — the same
function K : E × R × E → B — as a knowledge graph, as a Boolean semantic
functor, as a set of true sentences generating a corpus. Instead of focusing on any
of the three formulation, we propose to look at the translation between them as
an abstract process for natural language understanding.

Once extended beyond basic grammars and Boolean semantics, it suggests the
following learning scheme for natural language. We borrow the terminology of
machine learning — given a training set C ⊆ V ∗ of true discourses:

1. parse the sentences of the corpus into basic discourses (lemma 2.2)

2. aggregate the facts of the corpus into a knowledge graph (lemma 2.3)

3. from the knowledge graph, compute an encoding matrix for verbs and generate
a basic semantic functor (lemma 2.4)

Then this semantic functor can be used to predict whether some unseen testing
utterance u ∈ V ∗ is a true discourse — the set of basic semantic functor is the
hypothesis class. Under this scheme, the construction we have given defines the
most trivial learning algorithm: it remembers the examples it has seen as true
and judges everything else as false. One would say that our construction does not
generalise, however this is not entirely true: in a certain sense the algorithm learns
to close its knowledge under concatenation — that is for all u, v ∈ C we have
FK(C)(u⊗ v) = 1 even if u⊗ v was not in the training set — as well as under the
infix relation defined in example 1.1 u ≤ v ∈ C =⇒ FK(C)(u) = 1.

While this closure describes a compositional learning process, we conjecture that
one can recover its distributional counterpart through tensor factorisation — i.e.
finding low-dimensional approximations of the encoding matrix. In the conclusion
we discuss directions towards integrating our framework with that of knowledge
graph completion — a factorisation scheme for 〈K| : |T | → 1 through S = C
introduced in [28], which is motivated both from the point of view of computational
learning theory and that of abstract linear algebra.

Finally we believe this framework naturally leads to a perspective between that of
online learning and formal languages: our semantic functor and its updating may be
seen as the state and transitions of what could be called a compositional perceptron,
extending that of Minsky and Papert [7]. Note that although the automata theory
and machine learning communities seem totally separate today, they share a common
founding father. Indeed, the same Kleene both formalised the star we use as a
notation for free monoids, and introduced them in order to model the language of
neural networks — which in the late sixties were called “nerve nets”, see [29].

Automata theory and linguistics also share a common father: Chomsky’s
hierarchy is both an order on languages, and a dual order on the machines that
generate those languages. At the bottom of the hierarchy, free monoids together with
their union, intersection and complementation yield the notion of regular languages,
generated by finite-state machines. Going one level higher in the hierarchy, push-
down automaton implement stacks to store sequences of arbitrary-length in memory.
These machines generate context-free grammars — which are equivalent to pregroup
grammars, as discussed in section 1.1.
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Does it contain any abstract reasoning
concerning quantity or number? No.

Does it contain any experimental reasoning
concerning matter of fact and existence? No.

Commit it then to the flames: for it can contain
nothing but sophistry and illusion.

— David Hume, An Enquiry Concerning Human Understanding

3
Ambiguity and Semantic Unification

A lack of space and time forced us to commit most of this chapter to the flames, we
apologise to the reader and leave only a few definitions and the sketch of a plan:

3.1 Anaphora and Basic Ambiguous Discourses
Definition 3.1 (Basic Anaphoric Functor). Given a signature (E,R) with a
designated set of anaphora {us, them, they, . . . } ⊆ E, we define the basic
anaphoric grammar G†E,R as the free rigid category generated by:

• the set of basic types { s, n, n† }

• a noun arrow e : 1 → n for all e ∈ E and a verb arrow r : 1 → vtr for all
r ∈ R, where vtr = nr × s× nl

• an anaphoric arrow a : n† → n for all a ∈ {us, them, they, . . . }

Note that the symbol † does not refer to the same † as that of the previous section
yet.

Definition 3.2. A basic anaphoric functor is a semantic functor F : G†E,R → MatS
such that:

• F (s) = 1 and F (n) = F (n†) = |E|

• F (e) =
{

1|E| : |E| → |E| if e ∈ {us, them, . . . }
|e〉 : 1 → |E| otherwise

Lemma 3.1. F is completely determined by its image on the verb arrows, hence
by an encoding matrix E : |R| → |E| × |E|.

Proof. G†E,R is free and by functoriality F (r) : 1→ F (vtr) = F (nl)×F (1)×F (nr) =
|E| × |E|.
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Lemma 3.2 (Basic Anaphoric Sentence). The set of basic anaphoric sentences is
T = E × R × E, the set of discourses is T ∗. Given a basic anaphoric functor F ,
the image of a basic sentence is given by an effect

F (g) F 〈el, v, er〉 : |E|a × |E|b → 1

where (a, b) = 1∗{us,them,... }(el, er) is given by membership in {us, them, . . . } and

g = cuprn ⊗ 1s ⊗ cupln

Proof. This follows from the same reasoning as lemma 2.2. If 0 < l + r, we say
the sentence is anaphoric, when l = 0 we say the sentence subject is unambiguous,
symmetrically for the object position.

Lemma 3.3 (Basic Ambiguous Discourse). For a basic ambiguous discourse d ∈ T k
with k ∈ N sentences, the image of a basic semantic functor is given by an effect

F (g(×k))F (d) : |E|a → 1

for a ≤ 2× k the number of anaphoric expressions in the discourse.

Proof. By example.

Example 3.1. The semantics of

d = 〈Spinoza, influenced, him, he, discovered, calculus〉

is given by the effect

Spin.

|E|

E

n

infl.

|R|

R

n

him.

|E|

E

He

|E|

E

n

disc.

|R|

R

calc.

|E|

E

.

n

Remark 3.1. The set { (x, y) | F (g(×2)) F (d) |x, y〉 = 1 } should contain

(Leibniz, Leibniz) ∈ E2

but then it should also contain

(Wittgenstein, Newton) ∈ E2

we need some constraints.
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3.2 Resolution as Constrained Optimisation
Discourse representation theory is a computational framework introduced by Kamp
in [30] for modeling natural language constraints. in this section, we use basic
discourse representation structures (DRS) in the sense of Abramsky [31].

For a discourse d ∈ T k with F (d) : |E|a → 1, the k basic sentences are called
“literals” and the a anaphoras are called “variables”. Given a set D(d) ⊆ a→ E of
matching functions satisfying some DRS constraints on the discourse d, we formulate
probabilistic anaphora resolution as an optimisation problem.

Definition 3.3. Given a matching function µ : a→ E which assigns a referent in
E to each anaphora in the effect F (d) : |E|a → 1, the resolution of the ambiguity is
defined as the scalar:

A(d, µ) = F (g)(⊗a) F (d) | µ(0), . . . , µ(a− 1) 〉 ∈ S

we define probabilistic anaphora resolution as the following optimisation problem:

argmax
µ∈D(d)

A(d, µ)

Note that the symbol D(d) does not refer to the same D as that of the previous
chapter yet.

Lemma 3.4. Given a matching function µ : a→ E, we construct an entity store

!E =
⊗
e∈E
|e〉 : 1→ |E||E|

and a matching matrix !µ : |E||E| → |E|a such that:

∀d : |E|a → 1 · A(d, µ) = d(!µ)(!E)

Proof. By example, intuitively we draw the graph of the function µ.

Example 3.2. We compute the resolution A(d, µ) = d(!µ)(!E) ∈ R as

Spin.

|E|

E

n

infl.

|R|

R

n

him.

|E|

E

He

|E|

E

n

disc.

|R|

R

calc.

|E|

E

.

n

δ1,0
|E| δ1,0

|E|

δ1,2
|E|

δ1,0
|E| δ1,0

|E|

Desc. Spin. Leib. Newt. calc.
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where µ = {0, 1 7→ Leibniz}. If we compute our encoding matrix E from an
encyclopedia, we should expect this scalar to be close to 1. Choosing µ = {0, 1 7→
Descartes} instead should make it close to 0.

Lemma 3.5. In the Sparql Protocol and RDF Query Language, a basic ambiguous
discourse generates a query of the form

SELECT ∗ WHERE { 〈 x, r, y 〉 ∈ BGP }

where x and y are taken to range over both referents and variables and BGP is the
set of basic graph patterns, also called the conjunctive fragment of Sparql.

Proof. Future work.
See [32] for an analysis of the complexity of Sparql conjunctive queries.

3.3 Towards Semantic Unification
Note that throughout this thesis we have avoided to overload two technical terms,
the meaning of which is ambiguous and has not yet been unified: natural and
universal. We have considered the fragment defined in this thesis as a basic form of
natural language, and we argued that the examples we took were representative of
some universal structures: both of these terms belong to cognitive science.

We have not mentioned natural transformations and universal constructions
of category theory. Although in some intuitive sense, the meaning of these two
words should be the same in the two contexts: the motivation of thesis may be
seen as attempting to unify their semantics. We refer the reader to [31] for a
formal construction of semantic unification, as well as the M.Sc. thesis [33] for
a development of this formalism in terms of Kripke semantics and topos theory.
Making our framework fit in the Elephant of [34] is left to future work.



Conclusion

This thesis was the conclusion of two years of research in Computer Science and
the Foundations of Mathematics. This is the conclusion of the conclusion, hence
by duality we refer the reader back to the introduction either of this thesis, or of
the copy of the publication in the following appendix.

We have attempted to unravel the duality between the same word: on one side,
seen as an abstract syntactic unit for building sentences — Frege’s principle of
compositionality — on the other as the collection of all its contexts — Wittgenstein’s
“meaning is use”. In terms of string diagrams, the aim of this thesis may be
seen graphically as follows.

F (Alice)
n

, F (Bob)
n

=

Alice

|E|

E

n

,

Bob

|E|

E

n

F (loves)
n n

=

loves

|R|

R

n n

We gave a new formulation of the DisCoCat framework where the vector
F (Alice) : 1→ n representing “Alice” is decomposed as the composition of its one-
hot encoding |Alice〉 : 1→ |E| followed by an encoding matrix E : |E| → n. Applying
the same method to transitive verbs leads to an encoding matrix R : |R| → n× n,
which we propose to interpret as a generalised knowledge graph. In order to do so,
we restrict ourselves to a natural language fragment we call basic discourses, and
define basic semantic functors which are uniquely determined by such knowledge
graphs. We used this decomposition to lift the semantics of isolated sentences
to that of sets of sentences in sequence.

We proposed two directions for further research: modeling object and subject
questions and their answers as knowledge graph queries of one or two arguments,
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using relative clauses and anaphora as a resource for extending this to queries of
arbitrary number of arguments. Other potential directions for future work using
this approach include the following.

1. Integrating our approach with that of Hedges and Sadrzadeh [35], which
models generalised quantifiers as bialgebras. We believe that our factorisation
would allow to use these bialgebras to generate complex queries.

2. Giving a presentation of our approach in terms of PROducts and Permuta-
tions categories (PROPs), which have been used to study the interaction of
bialgebras and Frobenius algebras — abstract counterparts to the generalised
Kronecker delta of section 2.2 — see [36] [37].

3. Using the complex rig C in order to distinguish between objects and subjects
by modeling them as the conjugate of one another, as developed by Trouillon
et al. in [28] where a complex factorisation of the relation matrix R allows
dimensionality reduction and statistical learning. A proper treatment of the
object-subject distinction should also allow us to implement the switch from
active to passive voice as diagram rewriting [38].

4. Investigating the relation of our abstract model with concrete implementations
of question answering such as the tensor product recurrent networks of Palangi
et al. [39]. We conjecture that the hypergraph categories introduced in [40]
for modeling open and interconnected systems — together with Fong and
Spivak’s formulation of neural networks in terms of PROPs [41] — could lead
to a functorial implementation: given some cognitive requirements for our
model of language, we want to be correct by construction.

5. Extending our framework for anaphora to the more general problem of
coreference resolution — which has applications in the automated analysis
of electronic medical records, see [42]. We wish to apply our computational
approach to cognition and linguistics to the study of human psychology, and
we conjecture that the same notion of duality could apply — for example in
modeling the “sticky switch” between the left and right hemispheres of the
brain, which lies behind bipolar disorders [43].
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A
Towards Compositional Distributional

Discourse Analysis

This is a copy of the publication by B. Coecke, D. Marsden, G. De Felice and the
present author, which we will present at the CAPNS18 Workshop on the day of
the present deadline. The title and details may be subject to minor updates, as
the camera-ready version will be released before the end of the year.
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Abstract

Categorical compositional distributional semantics provide a method to derive the
meaning of a sentence from the meaning of its individual words: the grammatical
reduction of a sentence automatically induces a linear map for composing the word
vectors obtained from distributional semantics. In this paper, we extend this passage
from word-to-sentence to sentence-to-discourse composition. To achieve this we
introduce a notion of basic anaphoric discourses as a mid-level representation between
natural language discourse formalised in terms of basic discourse representation
structures (DRS); and knowledge base queries over the Semantic Web as described by
basic graph patterns in the Resource Description Framework (RDF). This provides
a high-level description of compositional algorithms for question answering and
anaphora resolution, and allows us to give a picture of natural language understanding
as a process involving both statistical and logical resources.



Introduction
In the last couple of decades, the traditional symbolic approach to AI and cognitive
science — which aims at characterising human intelligence in terms of abstract
logical processes — has been challenged by so-called connectionist AI: the study of
the human brain as a complex network of basic processing units [44]. When it comes
to human language, the same divide manifests itself as the opposition between
two principles, which in turn induce two distinct approaches to Natural Language
Processing (NLP). On one hand Frege’s principle of compositionality asserts that the
meaning of a complex expression is a function of its sub-expressions, and the way in
which they are composed — distributionality on the other hand can be summed up in
Firth’s maxim “You shall know a word by the company it keeps”. Once implemented
in terms of concrete algorithms we have expert systems driven by formal logical
rules on one end, artificial neural networks and machine learning on the other.

Categorical Compositional Distributional (DisCoCat) models, first introduced in
[13], aim at getting the best of both worlds: the string diagrams notation borrowed
from category theory allows to manipulate the grammatical reductions as linear
maps, and compute graphically the semantics of a sentence as the composition of the
vectors which we obtain from the distributional semantics of its constituent words.

In this paper, we introduce basic anaphoric discourses as mid-level represen-
tations between natural language discourse on one end — formalised in terms of
basic discourse representation structures (DRS) [31]; and knowledge queries over
the Semantic Web on the other — given by basic graph patterns in the Resource
Description Framework (RDF) [32]. We construct discourses as formal diagrams of
real-valued matrices and we then use these diagrams to give abstract reformulations
of NLP problems: probabilistic anaphora resolution and question answering.

In the first two sections we introduce the notation used in the rest of the paper,
then give a brief summary of how DisCoCat models can be used to turn declarative
sentences into probabilistic Ask-type queries in the Sparql protocol and RDF
query language. In the third section, we extend this analysis to Select-type queries
and show how they can be translated as “who” or “whom” questions in the simple
case, as discourses making use of ambiguous pronouns such as “they” or “them” in
more complex cases, i.e. when the Sparql query contains more than two output-
variables. In the last section we give a finer-grained analysis of anaphora resolution
as a resource-sensitive process, copying word-vectors from memory and feeding
them in the meaning computation of some anaphoric discourse.

We conclude our discussion with related work on deep neural networks and knowl-
edge graph factorisation, as well as potential directions for modeling more involved
linguistic phenomena and translating them in terms of knowledge base queries.

A.1 Diagrams of Matrices for Knowledge Graphs
First we fix an ordered set of scalars S with addition +, multiplication × and units
0, 1 ∈ S respectively, then we write M : a → b for a × b matrices with entries in
S and idn : a → a for the a × a identity matrix. For all a, b, c ∈ N and matrices
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M1 : a → b, M2 : b → c, we have their composition M2M1 : a → c given by matrix
multiplication. We also have element-wise addition M + N of matrices M, N : a→ b.
Hence given a choice of scalars (where + and × respect the axioms of a semi-ring)
we have the structure of a category MatS , with the natural numbers as objects and
matrices as arrows. We will focus on the Boolean case S = B with + = ∨ and
× = ∧ and on the non-negative reals S = R+ encoding probabilities. Note that a
proper treatment of normalisation is beyond the scope of this paper.

We will manipulate matrices using the string diagrams notation for monoidal
categories — for a reference guide to graphical languages see [20], for an introduction
targeted at a general audience see [45] — we depict id1 : 1 → 1 as the empty
diagram and other identity matrices as labeled wires; we represent non-trivial
matrices as boxes with labeled input and output wires and their composition
as vertical concatenation. Finally, horizontal juxtaposition of boxes depicts the
Kronecker product M ⊗ N : a ⊗ c → b ⊗ d of matrices M : a → b, N : c → d. We
overload the notation and also write a⊗ b for multiplication of natural numbers,
i.e. the dimension of the tensor space.

We want to translate natural language into machine-readable format through
linear algebra, hence we reformulate the standard Semantic Web terminology in
terms of vectors and matrices. We assume that our vocabulary has been encoded
in RDF: nouns come from an ordered set of entities E = {Alice, boys, . . . }, verbs
come from an ordered set of relations R = { loves, tell, . . . }. In Semantic Web
languages, relations are always binary so we will focus on transitive verbs, for a
translation of adjectives and intransitive verbs in RDF see [46]. We encode every
word as a binary code with one bit up, also called a one-hot vector — both entities
ei ∈ E and relations rj ∈ R correspond to one-hot row vectors, of dimension |E| and
|R| respectively. We denote these one-hot vectors using Dirac’s bra-ket notation:

|ei〉 =
(
︸ ︷︷ ︸

|E|

i︷ ︸︸ ︷
0 . . . 0 1 0 . . . 0

)
: 1→ |E|

|rj〉 =
(
︸ ︷︷ ︸

|R|

j︷ ︸︸ ︷
0 . . . 0 1 0 . . . 0

)
: 1→ |R|

The corresponding one-hot column vectors are denoted 〈ei| : |E| → 1 and 〈rj| :
|R| → 1. Row vectors are also called states, in the diagrammatic language we
depict them as triangles with no inputs; similarly column vectors are called effects
which we depict as triangles with no outputs.

Composing a state with an effect of the same dimension yields a diagram
with no inputs or ouputs: a scalar in S. Thus, in the case S = R+ any effect
q : n → 1 induces an ordering of the states a, b : 1 → n, take a ≤ b if and only
if (qa) ≤ (qb). When S = B, q yields a subset of the states: a : 1 → n is in that
subset if and only if qa = 1. In both cases, the one-hot column vector 〈e| : |E| → 1
corresponding to an entity e ∈ E acts as a test of identity with e: for all e′ ∈ E
we have 〈e|e′〉 = 1 if and only if e′ = e.

A knowledge graph (also called an ontology) is given by a set of RDF triples
K ⊆ E × R × E which contains all the true statements that we care about, e.g.
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(Alice, loves, Bob), (Bob, hates, Charles) ∈ K. We can turn any knowledge graph
into an effect by summing over the column vectors of its triples:

〈K| =
∑

(s,v,o)∈K
〈s| ⊗ 〈v| ⊗ 〈o| : |E| ⊗ |R| ⊗ |E| → 1

Then for any triple t ∈ E×R×E, if we compose the state |t〉 : 1→ |E| ⊗ |R| ⊗ |E|
with the effect 〈K|, the scalar 〈K|t〉 ∈ S we obtain is equal to 1 if and only
if t ∈ K— we consider this scalar as the outcome of a basic knowledge graph
query. In order to study more complex queries, we need a way to wire knowledge
graphs together: we do this using the generalised Kronecker delta together with
the following standard results.

Definition A.1. For a, b, n ∈ N, the (a, b) Kronecker delta over n — which we
depict as an a-input, b-output spider — is the matrix:

δa,bn =
∑
i<n

|ei〉(⊗b) 〈ei|(⊗a) : na → nb (A.1)

Theorem A.1. For all n ∈ N, the set of matrices
{
δa,bn

}
a,b∈N

obeys the spider fusion
equations:

a

b

c

d

. . .

. . .

. . .

. . .

. . .

=

. . .

. . .

a+ c

b+ d

Proof. We have:
(
id(⊗b)

n ⊗ δ(k+c),d
n

) (
δa,(b+k)
n ⊗ id(⊗c)

n

)
= δ(a+c),(b+d)

n , see [27].
Note how the string diagrams make the topological nature of the equation apparent
while hiding the bureaucracy of indices.

The (2, 0) and (0, 2) Kronecker deltas — which we depict as cups and caps
respectively — make MatS a compact closed category. We recall a couple of useful
properties of cups and caps.

Corollary A.1.1. For all n ∈ N, the effect cupn = δ2,0
n : n⊗ n→ 1 and the state

capn = δ0,2
n : 1→ n⊗ n obey the snake equations:

n

n
= n =

n

n

Proof. We have: (idn⊗cupn) (capn⊗idn) = idn = (cupn⊗idn) (idn⊗capn)
which follows from Theorem A.1 and δ1,1

n = ∑
i<n |ei〉 〈ei| = idn, see [22].
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Corollary A.1.2. We can define the transpose of a matrix M : m→ n as:

m

MT

n

=

n m

M

n m

Proof. We have MT = (idn ⊗ cupm) (idn ⊗ M⊗ idm) (capn ⊗ idm) : n→ m, see
[22].

A.2 Diagrams for Distributional Compositional
Semantics

Lambek introduced pregroup grammars as a means of encoding the grammatical
structure of natural language. In [13, 14], Clark et al. observe that both pregroups
and vector spaces carry the same mathematical structure: both are compact closed
categories. This allows us to assign vectors to words and automatically combine
them together using a linear map induced by the grammatical reduction. In this
section, we give a graphical presentation of the concrete implementation described
in [47] and reformulate their construction in terms of knowledge graphs.

The first step is to build a noun space N which we will assign to the noun
type of our pregroup grammar. This can be done by collecting co-occurrence data
over a large natural language corpus: the dimension n of the noun space can be
seen as a hyper-parameter of the model, where in the simple case each dimension
corresponds to a “context word”. However, our model is agnostic of the exact
method used to construct N : we will only assume that every entity e is assigned a
vector ve ∈ N , and store them as one matrix E = ∑

e∈E ve 〈e|. This encoding matrix
E : |E| → n gives us a measure of similarity between the entities, indeed whereas
we have 〈cat|dog〉 = 0 now we expect the inner product 〈cat| ETE |dog〉 ∈ R+ to be
strictly greater than zero: their contexts share at least the words “pet”, “food”, etc.

Then for every verb v ∈ R, we compute its meaning by summing over the outer
products E |s〉 ⊗ E |o〉 : 1→ n⊗ n of all the encoded entities that it relates, i.e. all
s, o ∈ E such that (s, v, o) ∈ K. Given an encoding matrix E and a knowledge
graph K we store this construction as a matrix:

|R|

R

n n

= E

n

|R|

〈K| E

n

|E| |E|

encoding every relation v in the verb space N ⊗ N . Finally, we can compute
the semantics of “subject verb object” sentences using the following recipe: let
T = E ⊗ R ⊗ E be the encoding matrix for triples,
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1. tensor the encoded states for t = (s, v, o) ∈ E ×R× E together

T |t〉 = E |s〉 ⊗ R |v〉 ⊗ E |o〉 : 1→ n⊗ (n⊗ n)⊗ n

2. translate the grammar into a linear map in Mat+
R , here the effect

G = cupn ⊗ cupn : (n⊗ n)⊗ (n⊗ n)→ 1

3. compose word meanings with grammar to get a scalar GT |t〉 ∈ R+.

Computing these real-valued scalars allows to generalise to unseen sentences and
outperform the standard bag-of-words approach on word disambuigation tasks,
where the experimental data can be seen as a small knowledge graph [47]. We can
give the semantics of more complex sentences — hence more complex knowledge
graph patterns — by modeling relative pronouns as three-output spiders over n. For
any x, y : 1→ n, if we encode the word “that” as the Kronecker delta δ0,3

n : n3 → 1
and apply the appropriate grammatical reduction we get:

G′
(

x⊗ that⊗ y
)

= δ2,1
n

(
x⊗ y

)
: 1→ n

where G′ = cupn ⊗ idn ⊗ cupn : n5 → 1. This the coordinate-wise multiplication
of the vectors x and y, which can be seen as the intersection of entities in co-
occurrence space, see [24] and [25].

Example A.1. If we encode some philosophy into our knowledge graph K, we want
that:

Men

|E|

E

that

δ0,3
n

are

|R|

R

mortal

|E|

E

n n nn

=

Men

|E|

E

n

i.e. all men are mortal.

Example A.2. We compute the semantics of “Alice loves boys that tell jokes.” as
the following scalar:

Alice

|E|

E

loves

|R|

R

boys

|E|

E

that

δ0,3
n

tell

|R|

R

jokes

|E|

E

.

n n n n

n



A. Towards Compositional Distributional Discourse Analysis 55

A.3 From Questions and Discourse to Knowledge
Graph Queries

From an NLP perspective, computing the diagram for the sentence above can
equivalently be seen as answering the question “Do the boys that Alice loves tell
jokes?”. We will exploit this question-answer duality to show how natural language
can be translated into machine-readable format in a structure-preserving way.
Given a concrete implementation of a knowledge graph, also called a triplestore,
the semantics of yes-no questions can be interpreted as the true - false output
of Ask-type queries in the Sparql protocol and RDF query language. As a first
step towards more complex query patterns, we extend this language-to-database
translation to object and subject questions as Select-type queries.

In [1], Lambek gives a thorough analysis of the grammar of questions in terms of
pregroups. Here we will leave the subtleties of the English language aside and only
assume designated grammatical types QO and QS for object and subject questions
respectively ; in our semantic category MatS , both correspond to effects q : |E| → 1.
Indeed, given a potential answer a ∈ E the inner product q |a〉 ∈ S gives us a
measure of how well a answers the query q; comparing these scalars allow us to
translate a natural language question into a ranking of its possible answers. Note
that if we interpret q with S = B we get crisp answers while taking S = R+ and
the encoding T = E ⊗ R ⊗ E yields real-valued approximations.

In order to form a subject question, Lambek starts by constructing incomplete
sentences with a hole in the subject position, e.g. “- loves Bob”. Object questions
proceed dually, for example “Alice loves -”. Question words like “who” and “whom”
can then be seen as processes which turn these incomplete sentences into questions
of type QS and QO. In our setup, the semantics of both words are given by the
encoding matrix E : |E| → n, they take the state for the answer as input and feed
it in the computation of the corresponding query. The semantics for “Who loves
Bob?” and “Who does Alice love?” are given by:

|E|

qS
=

Who

|E|

E

loves

|R|

R

Bob

|E|

E

?

n n

|E|

qO
=

Who

|E|

E

does

n

Alice

|E|

E

love

|R|

R

?

n n

n
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Note that the semantics of “does” is given by a cap, i.e. a maximally-entangled
state of two noun sytems, this is discussed further in [23]. Indeed, using the
symmetry (〈x| ⊗ 〈y|) cap|E| = (〈y| ⊗ 〈x|) cap|E| for all x, y ∈ E and the
snake equations we can rewrite object questions and see the cap serve as an
information-passing mechanism:

|E|

qO
=

Alice

|E|

E

loves

|R|

R

whom?
|E|

E

n n

We can extend this to two-variable Select queries such as

|E||E|

q
=

Who

|E|

E

loves

|R|

R

whom?
|E|

E

n n

however, general Select queries can have an unbounded number of variables
whereas natural language questions of three arguments or more will sound awkward
to a human speaker — picture a stranger asking you: “Who did what where with
whom?”... Instead, we argue that natural language speakers can express complex
query patterns through ambiguous discourse together with anaphora as a resource
for interaction of meanings. Concretely, we translate personal pronouns such as
“us” and “them” in terms of Sparql query variables ranging over the set of entities
E, then we say a sentence is anaphoric when it contains a personal pronoun: its
meaning depends on that of another expression in context.

We define an atomic sentence as one of the form “subject verb object”, where
both subject and object may be either entities or personal pronouns. In the
anaphoric case we obtain a diagram with an open wire for the anaphoric expression,
representing the input required from the context in order to compute the meaning of
the sentence. Once the ambiguity has been resolved, i.e. once we have assigned an
entity to the pronoun, we get a diagram with no open wires as in the unambiguous
case of Section 2. Finally a basic anaphoric discourse is defined as a sequence of
these atomic sentences, when it has k pronouns in total its semantics is an effect
of dimension |E|k: a knowledge graph query of k variables.

Definition A.2. Take a, b ∈ { 0, 1 }, an atomic sentence is a matrix in{
G
(

sub⊗ R |v〉 ⊗ obj
)

: |E|a ⊗ |E|b → 1
}
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where the verb v ranges over the relations R. If a = 1, the sentence is anaphoric
in the subject position and we take sub = E : |E| → n. If a = 0, sub ranges
over the encoded entities E |s〉 : 1 → n and the sentence subject is unambiguous.
Symmetrically for the object position:

obj =
{

E : |E| → n if b = 1
E |o〉 : 1 → n for o ∈ E otherwise

We define a basic anaphoric discourse as the matrix d = ⊗
i<l ti : |E|k → 1

obtained by tensoring a list of l atomic sentences

ti : |E|ai ⊗ |E|bi → 1

where k = ∑
i<l (ai + bi), i.e. the discourse d contains k anaphoric expressions

in total.

Example A.3. The semantics of “Spinoza influenced him. He discovered calculus.”
is given by the effect

Spin.

|E|

E

n

infl.

|R|

R

n

him.

|E|

E

He

|E|

E

n

disc.

|R|

R

calc.

|E|

E

.

n

A.4 Language Understanding as a Process
We have seen that the semantics of basic anaphoric discourses involving k anaphoric
expressions can be given in terms of knowledge graph queries of k variables. However,
interpreting directly the effect |E|2 → 1 corresponding to the discourse in the
example above as a Sparql query of two variables will give counter-intuitive
answers such as:

“Spinoza influenced Wittgenstein. Newton discovered calculus.”

whereas an English speaker will have naturally assumed that the two pronouns “him”
and “he” have to refer to the same entity. Without this constraint, maximising
over the complex query would be equivalent to maximising the outcome for the
two sentences independently.

Discourse representation theory is a computational framework first introduced
in [30] for manipulating such natural language constraints. In this paper, we
model basic discourse representation structures (DRS) in the sense of [31], where
entities are called “discourse referents”, atomic sentences “literals” and pronouns
“variables”. Using the set of constraints formalised in terms of DRS, together
with our encoding T = E ⊗ R ⊗ E allows us to formalise probabilistic anaphora
resolution as an optimisation problem.
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Definition A.3. Given a matching function µ : {0, . . . , k − 1} → E which assigns
an entity in E to each pronoun in d, the resolution of the ambiguity in the discourse
d is defined as the following scalar:

A(d, µ) = d
⊗
i<k

| µ(i) 〉 ∈ S

Given a set D(d) ⊆ E{0...k−1} of matching functions satisfying some DRS constraints
for the anaphoric discourse d, we define probabilistic anaphora resolution as the
following optimisation problem:

argmax
µ∈D(d)

A(d, µ)

The function µ can only give a static picture of the ambiguity resolution’s result,
instead we want a fine-grained diagram of the computational process involved.
We give a resource-aware reformulation of anaphora resolution in terms of an
entity-store, defined as the state:

!E =
⊗
e∈E
|e〉 : 1→ |E||E|

From the matching function µ we construct a matching process !µ which takes an
entity-store !E and feeds the appropriate entities into the ambiguous sentences in
d. Graphically this construction amounts to drawing the graph of the function µ,
labeling all the wires with |E| and interpreting this as a diagram in MatS . When i
edges of the graph meet at a vertex in E — i.e. when the same entity is referenced
by i distinct pronouns — we witness this with a Kronecker delta: the head of a
1-input i-output spider. Whereas in section 2 the multi-input one-output spider
acted as intersection of meanings, here the dual process copies an entity state and
feeds it to its i outputs i.e. for all e ∈ E we have that:

(δ1,i
|E|) |e〉 =

∑
e′∈E
|e′〉(⊗i) 〈e′|e〉

=
( ∑
e′ 6=e
|e′〉(⊗i) 〈e′|e〉︸ ︷︷ ︸

= 0

)
+ |e〉(⊗i) 〈e|e〉︸ ︷︷ ︸

= 1

= |e〉(⊗i)

Theorem A.2. Given a matching function µ : {0, . . . , k−1} → E we can construct
a matching process !µ : |E||E| → |E|k such that:

∀ d : |E|k → 1 · A(d, µ) = d(!µ)(!E)

Proof. In set-theoretic terms, !E is the list of all the elements e ∈ E, ordered by
the indices of the corresponding vectors |e〉 : 1 → |E|. Then !µ is the incidence
matrix of the graph for the function

fµ ( e0, . . . , e|E|−1 ) = ( eµ(0), . . . , eµ(k−1) ) : E|E| → Ek

In the case when the graph of the function fµ is not planar, constructing !µ as
a diagram in MatS would require a formalisation of the intuitive notion of “wire-
crossing”, which can be obtained using the symmetry morphisms of MatS . This
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falls outside the scope of our discussion but we refer the interested reader to any
introduction to symmetric monoidal categories (e.g. [45]) which are the suitable
framework in this context.

Example A.4. Take E = {Descartes, Spinoza, Leibniz,Newton, calculus }, let
µ be the constant function { 0, 1 7→ Leibniz }. We have:

(!µ) δ1,0
|E| δ1,0

|E|

δ1,2
|E|

δ1,0
|E| δ1,0

|E|

(!E) Desc. Spin. Leib. Newt. calc.

=
δ1,0
|E| δ1,0

|E|

δ1,2
|E|

δ1,0
|E| δ1,0

|E|

Desc. Spin. Leib. Newt. calc.
= 1

= Leib.

|E|
Leib.

|E|

Even though our construction involves systems of exponential dimensions, the
concrete computation it induces is linear in the size n× |E| of the encoding matrix:
we are only retrieving and copying vectors. In effect, what this abstract formulation
allows is to manipulate the knowledge graph, the entity encoding and matching
explicitly, while hiding the bureaucratic process of labeling, indexing and wiring
the entity-vectors required to compute complex queries.

We can now focus on what really is the core of the model: the interaction
between the symbolic world of RDF and the statistical world of distributional
semantics. In diagrammatic terms, this is witnessed by the interaction of distinct
spiders, i.e. Kronecker deltas over two different dimensions: δ|E| for copying and
matching entities, δn for their intersection in the noun space N .
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Example A.5. We compute the resolution A(d, µ) = d(!µ)(!E) ∈ R as the scalar:

Spin.

|E|

E

n

infl.

|R|

R

n

him.

|E|

E

He

|E|

E

n

disc.

|R|

R

calc.

|E|

E

.

n

δ1,0
|E| δ1,0

|E|

δ1,2
|E|

δ1,0
|E| δ1,0

|E|

Desc. Spin. Leib. Newt. calc.

If we extract our encoding matrix E and knowledge graph K from an encyclopedia,
we should expect this scalar to be close to 1. Choosing µ = {0, 1 7→ Descartes}
instead should make it close to 0.

In order to get the class of all basic DRS, we need to assume that for every
r ∈ R we have its negation not(r) ∈ R such that E(x, not(r), y) ∈ K if and only
if (x, r, y) /∈ K. Lifting this function not : R → R to the matrix of its graph
|not〉 : |R| → |R| and deriving a compositional semantics for natural language
negations in MatS from this is left for future work. Nevertheless, if we restrict
ourselves to the negation-free fragment, we can already give a semantics for basic
anaphoric discourses in terms of the conjunctive fragment of Sparql. Indeed,
we can generate any query of the form

SELECT ∗ WHERE { 〈 x, r, y 〉 ∈ BGP }

where x and y are taken to range over both entities and variables. In the Semantic
Web community, the set of triples BGP is also called a basic graph pattern [32].

Conclusion
We have developed a process-theoretic framework for natural language understand-
ing, making use of both statistical and logical resources to translate question
answering and anaphora resolution as probabilistic knowledge base queries. Using
formal diagrams of matrices we give a high-level picture of NLP algorithms which
are motivated both from the point of view of AI and of human cognition.

Even though we focused on S = B and S = R+, our discussion can be extended
to any other semi-ring structure such as the unit interval [0, 1] with min and max
encoding fuzzy truth values. It is also possible to incorporate further structure such
as the convexity property used in conceptual space models of cognition, or taking
proof relevance into account and record why are entities related [4].
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In the RDF language, variables can also serve as blank nodes also called
anonymous resources: entities that are used in the computation but do not appear
in the output of the query, e.g. y in

SELECT x WHERE { 〈 x, loves, y 〉, 〈 y, loves, x 〉 }

In MatS, we conjecture that these would translate in terms of an entity-discarding
process δ0,1

|E| : 1 → |E|.
The translation from pregroup grammars to RDF triples is developed further in

[46], in order to model count nouns (e.g. “a cat”) and relative pronouns (e.g. “whose
tail”), Delpeuch and Preller introduce a notion of categories with side effects —
i.e. creation and update of blank nodes. It would be interesting to investigate
the connections with our current work.

We would like to investigate how our model relates to concrete architectures for
NLP, such as the Tensor Product Recurrent Networks (TPRNs) of [39]. Another
machine learning model which would fit our approach is that of [28]: this method
uses gradient descent over a landscape of complex-valued encoding matrices E and R
to predict missing values in a knowledge graph K. Linguistically, the passage to the
alternative semi-ring of complex numbers would allow to give two distinct encodings
for entities: in our model the object-pronoun “them” would be modelled as the
complex conjugate of the subject “they”. Modelling the active-to-passive switch
with diagrams of complex matrices, as well as exploring potential implementations
making use of quantum resources is left to later work.

In this paper we looked only at one discourse d at a time, assuming a global
matching process !µ and entity-store !E. Using methods from sheaf theory would
allow to study the passage from local to global ambiguity and investigate the notion
of contextuality common to natural language, quantum mechanics and database
theory [48]. This finer-grained analysis of the resolution process, as well as the
implementation of other DRS operations, such as disjunction, implication and
quantification, in the category MatS is left for future work.
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