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Abstract

This is an essay outlining Categorical Quantum Mechanics (CQM)
for a reader familiar with quantum mechanics. No experience with cat-
egory theory is assumed. CQM is a new formulation of quantum infor-
mation that uses the diagrammatic language of monoidal categories to
reframe concepts and problems that arise in the subject. In this paper
dagger compact closed categories will be defined and its relation to
Hilbert Space will be quantified. The Selinger CPM construction will
be defined and will be used to model classical and quantum informa-
tion. This gives rise to a mathematical distinction between ontology
and epistemology. It will then be shown that the language of den-
sity matrices and unitary transformations arises naturally from this
approach. It will be discussed how CQM can be used to describe and
reason about a physical setup involving both quantum and classical
elements and it will be linked to the usual postulates of quantum me-
chanics such as wavefunction collapse. Then the example of quantum
teleportation in terms of CQM will be explored. Finally, some original
work will be presented on how CQM and quantum Bayesianism may
lead to a surprising result regarding the Schrödinger’s Cat thought
experiment.

1 Introduction

This is an essay about quantum mechanics and about how a lot of its features
that we take to be real could actually be features of how we think. This
essay will have succeeded if it pushes you towards believing the ideas of
quantum Bayesianism (also known as QBism) [1, 2]. Bayesian probability
is the idea that probability theory is purely a theory about one’s state of
knowledge. For instance, a Bayesian would argue that the 50/50 chance
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associated with a coin toss is not a physical property of the coin but instead
a reflection of its chaotic mechanics and our lack of knowledge about the
initial conditions of the toss. More information about Bayesian probability
can be found at [3, 4]. Bayesianism is certainly not unanimously accepted
among the scientific community. This is mainly because Bayesianism gives
a controversial and not entirely complete answer to thermodynamics and
also because the mainstream formulation of quantum mechanics (states,
measurements, collapsing etc.) incorporates probabilities at a fundamental
level. In this essay, I will show how categorical quantum mechanics can help
provide a formulation that defines finite dimensional quantum mechanics in a
way that restores the Bayesian sense of probability. While this is not a proof
of Bayesianism, it should help to quell some doubts that it is incompatible
with quantum mechanics. We will also see that this formulation produces
some controversies of its own.

In any scientific theory, there is a division between what the theory
considers to be real and what is a result of the way we gather information
about the world (called epistemology). In most theories, probability lies on
the epistemological side of the divide - a Bayesian would argue that it always
does. For instance; in planetary astronomy, the planets are considered to
be points with absolute positions. When we measure the positions using
a telescope, we pick up some error from the inaccuracy of the equipment.
This error is not a property of the planets themselves. It is a property of
the equipment and the way we gathered information about the planets, it is
epistemological. There are also fields of science where it is extremely difficult
to measure anything without interfering with the system (such as cellular
biology), but we still maintain the belief that there is a physical thing ‘out
there’ that exists and runs independently of whether we choose to find out
about it.

Our (Copenhagen) theory of quantum mechanics disobeys this division.
In quantum mechanics, we are forced to embrace the measurement as an
intrinsic aspect of the physics. It is difficult to formulate quantum mechan-
ics in a way that explains measurement and wavefunction collapse without
invoking something we would regard as epistemology in any other physi-
cal theory. This is true even if we view a measurement as an observer-less
interaction with the environment because we are still forced to invoke ther-
modynamical arguments. As mentioned before, thermodynamics also suffers
from a great deal of disagreement about epistemology.

In this essay I will outline the new field of categorical quantum mechanics
(CQM) [5, 6] with a focus on how it may help point towards a clean division
between the physical and the epistemological aspects of quantum theory.
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Along the way I will also try to derive the postulates of quantum mechanics
in a way that appeals very strongly to intuition to help dispel some of the
mystery that often shrouds discussions of the quantum world. I will also
explain the correspondence between the new conceptual machinery and the
orthodox formulation of QM to assure readers that the new results match
up with our current body of knowledge about QM.

2 Dagger compact categories

Category theory is usually introduced as a system for building bridges be-
tween seemingly disparate areas of mathematics. Here, we instead take the
view that a category is a generalisation of the idea of a process.

Definition 2.1 (Category). A category C is a family of objects C0 and a
family of morphisms C1. Each f ∈ C1 has a source object s(f) ∈ C0 and a
target object t(f) ∈ C0. Suppose s(f) = A and t(f) = B, then we can write
this concisely as f : A → B. A category also has a composition operation
which assigns to each f : A→ B and g : B → C a morphism g ◦ f : A→ C.
Composition is associative; (h◦g)◦f = h◦ (g ◦f). Furthermore, each object
A has a special morphism 1A : A → A with 1B ◦ f = f and f ◦ 1A = f for
all f : A→ B.

To understand the motivation for this definition, consider the flow chart
below.

boil infuse

hot
water

cold
water tea

(1)

We will call these process diagrams. Considered in terms of category
theory; we can think of each wire in the flow chart as an object and each
box as a morphism. For instance, boil is a morphism and tea is an object.
So the composition law of category theory is simply the statement that we
can attach the output of one process to the input of another process to make
a new process. The identity law expresses the fact that we always have a
‘do nothing’ process. A lot of objects in mathematics are also examples of
categories. For example; the category of sets and functions between them
and the category of groups and group homomorphisms between them.
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We also want a way of mapping one category into another. However,
we only want to consider mappings that preserve the categorical structure.
This is the role of the functor.

Definition 2.2 (Functor). Given two categories C and D, we define a func-
tor F : C → D as a function on objects F0 and a function on morphisms
F1 such that given f : A → B we have F1(f) : F0(A) → F0(B) and also
F1(g ◦ f) = F1(g) ◦ F1(f). From now on we drop the subscripts on F , since
it will be obvious from context which map we mean.

Now we add some extra features to a category:

Definition 2.3 ((Strict) monoidal Category). A strict monoidal cate-
gory is a category C equipped with the following items;

• an operation on objects ⊗ : C0 × C0 → C0.

• a parallel composition operation ⊗ on morphisms which takes f : A→
B and g : C → D to f ⊗ g : (A⊗ C)→ (B ⊗D).

• a special unit object I ∈ C0.

We demand that these obey the following rules for all A,B,C ∈ C0;

1. I ⊗A = A = A⊗ I

2. (A⊗B)⊗ C = A⊗ (B ⊗ C)

3. Given f : A → B, g : B → C, h : A′ → B′, k : B′ → C ′, we have the
interchange law: (g ◦ f)⊗ (k ◦ h) = (g ⊗ k) ◦ (f ⊗ h).

4. 1A⊗B = 1A ⊗ 1B

We could also define a non-strict monoidal category as a strict
monoidal category where ⊗ obeys the identity and associativity laws only up
to isomorphism. That is, we have a invertible morphisms α : (A⊗B)⊗C →
A ⊗ (B ⊗ C), ρ : A → A ⊗ I, λ : A → I → A. These isomorphisms also
need to satisfy some coherence relations. We do not need to concern our-
selves too carefully with the details here because of the coherence theorem
in [7, VII.2]. In essence, the coherence theorem shows that in all monoidal
categories we may as well reason as if the category is strict.

Definition 2.4 (Symmetry). We can also add a symmetry to the monoidal
structure. This is a morphism cA,B : (A⊗B)→ (B⊗A) for each A,B ∈ C0
satisfying the following 5 axioms for all A,B,C ∈ C0 and f : A→ B:
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1. cB,A ◦ cA,B = 1A⊗B

2. cB,C ◦ (f ⊗ 1C) = (1C ⊗ f) ◦ cA,C

3. cC,B ◦ (1C ⊗ f) = (f ⊗ 1C) ◦ cC,A

4. (1B ⊗ cA,C) ◦ (cA,B ⊗ 1C) = cA,(B⊗C)

5. (cA,C ⊗ 1B) ◦ (1A ⊗ cB,C) = c(A⊗B),C

A monoidal category can be thought of as a category that allows for
running two processes in parallel.

boil infuse

toast

serve

hot
water

cold
water

bread

tea

toast

breakfast

(2)
If we have a symmetry cA,B then we can represent this in a process

diagram as a pair of crossed wires . Under this representation, the 5
axioms in definition 2.4 look like the following diagrams.

1. =

2.
f

=

f

3.

f

=
f

4.

A

B

C A

B

C
=

A

B

C A

B

C

5



5.

A

B

C

C

A

B
=

A

B

C B

C

A

Surprisingly, diagrams such as these are more than visual aids. We can
argue quite rigorously that the symmetric monoidal category is the mathe-
matical formalisation of process diagrams like the ones shown above. Joyal
and Street [8] showed that the diagrammatic language of boxes and wires is
logically coherent with the mathematics of monoidal categories. That is to
say, every proof that two expressions are equal in a (symmetric) monoidal
category corresponds to a demonstration that the given expressions have
isotopic process diagrams. Here, two diagrams are isotopic when the vari-
ous boxes can be translated and moved over each other without any of the
attached wires doubling back on themselves. There are many more types of
categories which are coherent with graphical languages. For a summary of
the various graphical languages, read [9].

Definition 2.5 (State, effect, number). We call a morphism I → A a state
and a morphism A→ I an effect. A morphism I → I is called a number.
I’ll sometimes represent states and effects using kets and bras respectively.
Eg. |ψ〉 : I → A. Then 〈φ| ◦ |ψ〉 = 〈φ|ψ〉 : I → I and so on.

Proposition 2.1. Numbers commute: for all λ, µ : I → I we have λ ◦ µ =
µ ◦ λ.

Proof.
λ ◦ µ = (λ⊗ 1I) ◦ (1I ⊗ µ) = λ⊗ µ

= (1I ⊗ µ) ◦ (λ⊗ 1I) = µ ◦ λ
(3)

We now add a new feature to a category which doesn’t have a clear
analogue to our example of making breakfast.

Definition 2.6 (Dagger compact category). A dagger compact category
(or DCC for short) is a symmetric monoidal category C equipped with a
dagger operation on morphisms (f : A→ B) 7→ (f † : B → A) and for each
object A we have

• a dual object A∗ ∈ C0.

• a morphism εA : A⊗A∗ → I.

• a morphism ηA : I → A∗ ⊗A.
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obeying these rules for all A,B ∈ C0 and all f : A→ B, g : B → C;

1. (εA ⊗ 1A) ◦ (1A ⊗ ηA) = 1A

2. (1A∗ ⊗ εA∗) ◦ (ηA∗ ⊗ 1A∗) = 1A∗

3. cA,A∗ ◦ ηA∗ = ηA

4. (f †)
†

= f

5. g ◦ f † = f † ◦ g†

6. g ⊗ f † = g† ⊗ f †

7. cA,B
† = cB,A

8. εA
† = ηA∗

Definition 2.7 (isometry, unitary). An isometry of a DCC is a morphism
f : A → B such that f † ◦ f = 1A. A unitary is a morphism f : A → A
where f † ◦ f = 1A = f ◦ f †.

As usual, DCC’s also come with a diagrammatic language. We draw
A as a wire with an arrow on it, A∗ as a wire with an arrow going in the
opposite direction and εA, ηA are drawn as U-turns in the wires.

εA =
A

A∗
, ηA =

A

A∗
(4)

The dagger operation is depicted as flipping the image vertically. To
take advantage of this, we draw our morphism boxes with a sloping edge so
that we can distinguish between f and f † diagrammatically.

f = fA B , f † = f AB (5)

For an example of diagrammatic reasoning, consider the following proof;

Proposition 2.2. All duals are unique up to isomorphism. Here, a dual of
A is defined as an object equipped with an ε and an η which obey the first
two rules in definition 2.6.
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Proof. Suppose we had that X and X ′ are both duals of A. Then we have
an invertible map θ : X → X ′ defined as;

θ :=

X

X ′

ε

η′

A
θ−1 :=

X ′

X

ε′

η

A
(6)

Which gives;

θ−1 ◦ θ =

X

X

ε

η′

ε′

η

=

X

X

ε

η′

ε′

η

=

X

X

ε

η
=

X

(7)

The first step in this proof is the interchange law for monoidal categories in
definition 2.3 and the final two steps follow from the first two rules in defini-
tion 2.6. Similar for θ ◦ θ−1 = 1X′ . So we have constructed an isomorphism
between X and X ′.

We call these string diagrams because of how proofs involving manip-
ulation of them have the appearance of translating and rotating boxes and
moving the wires as if they were flexible pieces of string. When this happens
we say the diagrams are isotopic.

There is a coherence theorem for DCC diagrams. But Coecke and
Kissinger claim in their book [10, p. 157] that this theorem ‘is widely re-
garded as folklore’. My understanding of this is that it is assumed to be true
because there are lots of very similar theorems about other diagrammatic
languages which have been proven (eg. Joyal and Street [8]) and because
all string diagram proofs encountered so far do obey the coherence theorem.
Fortunately, we do not have to rely on the coherence theorem to perform
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mathematics because whenever presented with a diagrammatic proof, one
can verify by consulting the laws of DCC’s that the proof works.

Definition 2.8 (Transpose and conjugate). Given a morphism f : A → B
in a DCC, define its transpose fT : B∗ → A∗ as:

fT =

(
fA B

)T
:= f

A∗

B∗

=: f A∗B∗ (8)

And define its conjugate f∗ := (fT )
†
.(

fA B

)∗
= fA∗ B∗ (9)

Definition 2.9 (Trace). Given a morphism f : A⊗B → A⊗C, the partial
trace TrAf is defined as;

TrA

 f
A A

B C

 := f
B C

(10)

3 Science with categories

Let us sketch a rough dogma for how science works. We observe and experi-
ence the world and find things that we wish to understand. To understand
them we form a theory, which is a model of this thing and a way of mapping
between this model and our experience of the world. Once we have a the-
ory, we may look at a science experiment, convert it into the mathematical
model and then ask questions about what the model predicts.

This dogma can be implemented in category theory in a fairly clean way.
First, note that scientific experiments can often be represented as process
diagrams. Consider these two examples from quantum mechanics; a simple
Stern-Gerlach setup (11) and quantum teleportation (12).
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split beam

block

silver atom
spin up atom

spin down atom

(11)

bell basis
transform

measure

measure

entangle

CX CZ

qubit

qubit

classical bit

(12)
There are obviously lots of caveats to this and we need to be careful that

what we draw really is a process diagram and is an accurate representation
of the experiment we wish to model. But pressing ahead, since we know
that process diagrams are monoidal categories, we can make a monoidal
category of science experiments; that is, the category of all possible ways
of connecting up the various pieces of lab equipment. Again, defining this
rigorously is an open ended problem, but that doesn’t mean we can’t get
something which is useful. Consider researchers into fluid dynamics: while
the predictions they make are very accurate, the link from the model to real
experiments is usually obvious without resort to formalisation.

Now we need to map these science experiments to our category repre-
senting the mathematical model that we postulate as describing the physics.
But this is exactly the purpose for which we defined a functor.

Remarkably, categorical quantum mechanics lets us do precisely this.
Moreover, it can also take into account the fact that we may not be able to
model the experiment with complete accuracy. That is, we can also build
model diagrams that include our epistemology.
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4 Hilbert space

This essay focusses on the epistemology of quantum mechanics rather than
the theory for the real underlying physics. We can do this because our
theory of the epistemology in the next section requires only one premiss:
the physics of quantum mechanics is modelled in a DCC.

Let’s unpack this a little. What exactly does ’the physics of quantum
mechanics’ mean? It may help to consider the example of Newtonian astron-
omy again. What we mean by ’the physics of astronomy’ is a mathematical
model that lets us reason about the positions of planets as if we knew ev-
erything. That is, without having to worry about measurements, errors and
so on. In Newtonian astronomy, that physical theory is 3D Euclidean space
and a set of objects which come with masses, time dependent velocities
and other properties. We also have differential equations for calculating the
time dependence of these properties. Before Newton, we didn’t know the
differential equations but we knew that the appropriate system to reason
about the planets was 3D Euclidean space. The premiss above is similar.
We don’t need to have our rules about how reality operates precisely pinned
down before we can start to make reasonable assumptions about the stage
on which the drama will unfold.

Deciding which DCCto use is still an active area of research. For instance
in [11, 12], a DCC theory of the physics of quantum mechanics is derived
with respect to some information theoretical axioms. Here, for the sake of
familiarity, we will use Hilbert space as our DCC.

Definition 4.1. We define FdHilb as the category whose objects are fi-
nite dimensional Hilbert spaces and the morphisms are linear maps between
them.

Proposition 4.1. The category of finite dimensional Hilbert spaces FdHilb
is a DCC.

Proof. Take I to be the one dimensional Hilbert space; the complex numbers
C and take ⊗ to be the usual tensor product. A map f : A→ B in FdHilb
is an n×m matrix where n = dimA and m = dimB. We set the † operation
to be the hermitian adjoint of this matrix. Next, define A∗ as the set of all
linear functionals A→ I and εA : A⊗A∗ → C to be the linear map given by
(|ψ〉 , 〈φ|) 7→ 〈φ|ψ〉. We then define ηA = εA∗

† and all of the defining axioms
of the DCC follow easily.

Furthermore, we have a completeness theorem for string diagrams and
FdHilb:
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Theorem 4.2. FdHilb is complete for string diagrams. That is, we can
prove that two string diagrams are isotopic if and only if any assignment
of terms in the diagram to morphisms in FdHilb results in the diagrams
evaluating to the same thing.

Proof. See Selinger [13].

Our category FdHilb has been very successful at describing the quan-
tum mechanical world. This tells us that DCC’s are the right way to go in
trying to frame quantum mechanics in category theory. While this method
of rebuilding all of our language in terms of diagrams may seem redundant
since we could just use matrices like everyone else, it offers some conceptual
advantages. CQM gives us formal justification to use diagrammatic reason-
ing, a lot of the proofs and definitions in quantum information and quantum
computing have very elegant diagrammatic proofs. Indeed, a very similar
notation was developed by Roger Penrose [14] as an alternative to indices in
tensor algebra. These diagrams are more than aesthetics, the human brain
is extremely well adapted to visual reasoning. As various psychological stud-
ies such as [15, 16] have explored, the ability to (appropriately) visualise a
problem greatly enhances a person’s ability to understand and solve it.

5 Adding epistemology

Now we want to add epistemology to our model; we want to account for
our incomplete knowledge about the physical situation. Here, rather than
using FdHilb we will use an arbitrary DCC C as our underlying category
of pure quantum processes. We will construct a new category out of C that
models the physics and takes into account our incomplete knowledge of the
situation too. This is called the CPM construction first defined in [17]1.

Consider the following functor;

Definition 5.1 (Doubling). Suppose C is a DCC. Define double(C) as the
functor double(A) := A ⊗ A∗ and double(f : A → B) := f ⊗ f∗. Define
double(C) to be the category of all objects and morphisms in the range of
the double functor.

Definition 5.2 (Selinger CPM construction). Now define CPM(C) as the
category with all objects in double(C)0 and morphisms as the set

double(C)1 ∪ {(1B ⊗ εC ⊗ 1B∗) ◦ double(f) | f : A→ B ⊗ C ∈ C1} (13)

1This construction has also found use in linguistics to model ambiguity in the meanings
of sentences [18]
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That is, the set of all morphisms in double(C) and all possible ways of ap-
plying εA to double(A) objects for all A ∈ C. Any morphism which can be
expressed as double(f) for some f in C is called pure.

Theorem 5.1. CPM(C) really is a category. Moreover, it’s a DCC.

Proof. Suppose we have f : double(A) → double(B) and g : double(B) →
double(C) in CPM(C). So there is some pure f ′ : A→ B⊗X and g′ : B →
C ⊗ Y in C. Then we compose the morphisms in CPM(C) as follows:

g ◦ f :=

f ′ g′

f ′ g′

A B C

YX

=

f ′
g′

f ′

g′

(14)

=

g′ ◦ (f ′ ⊗ 1X)

g′ ◦ (f ′ ⊗ 1X)

A C

X ⊗ Y ∈ CPM(C) (15)

Which is a morphism of CPM(C) since ⊗ing two discards is a discard. We
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define 1double(A) := 1A ⊗ 1A∗ . We define ⊗ on CPM(C) as

f ⊗ g := f g (16)

and I as its counterpart in C. We also define the dagger operator as its
counterpart in C and εA : double(A)⊗ (double(A))∗ → I as ε⊗ ε in C.

A

A∗

A

A∗

(17)

Note that (double(A))∗ = (A⊗A∗)∗ ∼= (A∗ ⊗A) because one can show that
both of these objects are dual to double(A) in C. One can readily confirm
this obeys the laws of a monoidal category and a DCC.

To see why the CPM construction is a good way to model epistemology,
let’s look back at our experiments in figures (11) and (12). Consider the
box in the Stern-Gerlach experiment (11) labelled ‘block’. When an exper-
imenter blocks or discards a part of their experiment, this is the same as
simply noting that it will never be used again and so it can be ignored. Is
the process of discarding something a physical process? That is, should it
considered to be a pure process? We will postulate here that the answer
is no, because it is a matter of viewpoint whether or not a part of an ex-
periment can be ignored. Suppose that after the Stern-Gerlach apparatus
had split the electrons into beams A and B, these beams were sent to lab-
oratories A and B at opposite ends of the country. An experimenter in A,
who doesn’t know or care about the work of B, is then justified in modelling
her experiment as discarding beam B, and vice versa for experimenter B.
The experimenters are not justified in discarding the opposite beams if their
experiments depend on the results of the opposite lab. The opposite beam
may be discarded even if the two beams are entangled in some way; the
results of the beams will be correlated but A has no way of discovering this
if she doesn’t care about the work of B.

What do we want formally from a discard process? We can use our
intuition in the “category of science experiments”: producing a pure state
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and then immediately discarding it should be the equivalent to having never
made the state in the first place [10, section 5.2].

Definition 5.3 (Discard). For any DCC C, define a discard process in
CPM(C) as a morphism >A : A→ I for each A ∈ CPM(C). Such that for
any pure state ψ : I → A in C where ψ†◦ψ = 1I , we have >A◦double(ψ) = 1I
in CPM(C). Additionally, >A⊗B = >A ⊗>B for all A, B in CPM(C).

This definition first appears in [19] under the name of >-structure. Using
this definition, we can see that one needs CPM(C) to discuss discards.

Proposition 5.2. In FdHilb, for any space A with dim(A) > 1 there is no
process which composes with any state ψ : I → A with ψ† ◦ ψ = 1I to give
1I . That is, there is no discard process in FdHilb alone.

Proof. Given a space A with dimA > 1 and an ONB {|i〉}i. We need a
map A → C, but this is 〈>| =

∑
i ai 〈i| for some ai ∈ C. But 〈i|i〉 = 1 so

〈>|i〉 = 1 so ai = 1. But then

〈>| 1√
2

(|0〉+ |1〉) =
2√
2

(18)

but this should equal 1 if 〈>| is a discard.

This isn’t too surprising, we already discussed that discarding should
not be pure.

Proposition 5.3. εA : A⊗A∗ → I in C is a discard operation for any object
double(A) in CPM(C). If C is FdHilb, then this discard is unique.

Proof. Suppose we are given a pure state ψ : I → A in C with ψ† ◦ ψ = 1I .
Then we have that

ψ ψ =

ψ

ψ
= double(ψ) εA = 1I (19)

For uniqueness in CPM(FdHilb), suppose that one finds another operation
T ′ : double(A) → I in CPM(FdHilb). Then T ′ has this form for some
f : A→ B in FdHilb:

T ′A =

A

A∗

f

f
(20)
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But then for an ONB {|i〉}i, we have;

i

i∗

f

f
=

i

i∗
= 1I (21)

because T ′A is a discard. So f is an isometry since the ONB spans the space
A and so T ′A = εA.

To save some space, we will now adopt a convention for discussing dia-
grams in CPM(C).

Definition 5.4. Suppose f is some morphism in C. Then we write;

f := double(f) =

f

f
(22)

Also, discarding, εA, is represented as;

double(A) := εA =

A

A∗
(23)

This means that any morphism in CPM(C) can be expressed as:

f
(24)

for some f in C.

So we can choose to write diagrams in CPM(C) either as ‘doubled,
thin wire’ or ‘thick wire’ diagrams. Why did we bother constructing this
doubling when we could have just added a discard operation to C to begin
with? The answer is that using the doubling construction lets us maintain
a clear separation between the category modelling the physics C, and the
category modelling both the physics and the epistemology CPM(C).

Next, we need to define a subcategory of CPM(C) that contains only
the diagrams that represent things that we can build in a laboratory.
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At the moment, in FdHilb for λ some complex number and |ψ〉 some
pure normalised state, λ · |ψ〉 is a pure state but if we try and discard the
state in CPM(FdHilb):

λ ψ =

λ

λ

ψ

ψ
=

λ

λ

= |λ|2 (25)

Our diagram picks up a factor of |λ|2. States that pick up a factor other
than 1 can’t be implemented in the lab, because we demand that discarding
a state is the same as never having the state to start with. So we need to
modify CPM(FdHilb) to prevent these ‘bad’ states from being allowed.
This definition is taken from [10, section 5.2] which is inspired by the work
of Chirabella [12].

Definition 5.5 (Causal). Define Causal(C) to be the category with the
same objects CPM(C) but it only has the morphisms in CPM(C) that are
causal. A morphism f is causal when

f = (26)

Proposition 5.4. Causal(C) is a monoidal category.

Proof. Since Causal(C) has a subset of the morphisms in CPM(C) which is
a monoidal category by theorem 5.1, it suffices to note that I and 1double(A)
are in Causal(C) and to show that ⊗ and ◦ preserve the causal property as
shown by (27) and (28).

A⊗B f ⊗ g =

A

B

f

g
=

A

B

= A⊗B (27)

f g = f = (28)

Proposition 5.5. For all A ∈ double(C), there are no effects A → I in
Causal(C) other than discarding.

Proof. First, we have that >I : I → I commutes with 1I because it is a
number. So >I = >I ◦ 1I = 1I . Now given x : A→ I in Causal(C) we have
x = 1I ◦ x = >I ◦ x = >A.
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What have we achieved so far? Given a DCC C, we have constructed
two categories CPM(C) and Causal(C). The claim of this formulation
is that all quantum mechanical experiments including epistemology have a
corresponding diagram in Causal(C).

So, in short, Causal(C) represents your state of knowledge about the
experiment. To justify this claim, we will examine what this interpretation
says when we set C to be FdHilb. We will see that in this category, the
claim corresponds exactly to our orthodox formulation of QM.

5.1 CPTP maps from Causal(FdHilb)

Let’s investigate what Causal(FdHilb) looks like. The arguments in this
section are based on [10, section 5.2].

Proposition 5.6. The pure processes in Causal(FdHilb) correspond to
isometries.

Proof. A pure causal process f is a morphism f : A → B in FdHilb that
obeys the following equation:

f

f

A

A∗
B = (29)

which is equivalent to

f f =
A

(30)

which is exactly the condition for f to be an isometry.

Theorem 5.7. The morphisms in Causal(FdHilb) are the completely pos-
itive, trace preserving maps in FdHilb.

Proof. Take f : double(A)→ double(B) in Causal(FdHilb). Then we have
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for some f ′ : A→ B ⊗ C

f =
f ′A B

C
=

f ′

f ′

A B

C (31)

This can be rearranged to

f [−] = f ′f ′ A A

C∗

B B

(32)

This is a linear map from A → A to B → B in FdHilb (the A → A map
is inserted into the dotted box). Suppose that ρ : A → A in FdHilb is
positive. This means that ρ = ν†ν for some ν : A→ C. So then

f [ρ] = ν ν f ′f ′ (33)

Which is also positive because the diagram is symmetric in the x direction.
So f [−] is completely positive. Next, suppose ρ has trace x. This means

x = TrA(ρ) =
ρ

(34)
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so

TrB(f [ρ]) = ρ f ′f ′

= ρ

f ′

f ′

BC

= ρ f ′

= ρ

=
ρ

= x

(35)

So f is trace preserving.
Going in the other direction, we know that all CPTP maps can be written

as an isometry f ′ : A → B ⊗ C where f [ρ] = TrC(f ′ ◦ f ′†). But this is
exactly diagram (32), which can be rearranged to (31) which is a member
of CPM(FdHilb). Causality follows from the isometry of f ′.

Corollary 5.8. States in Causal(FdHilb) are the density matrices in
FdHilb.
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Proof. For a causal process ρ ∈ C → double(A), we have that the map
ρ : (C→ C)→ (A→ A) is CPTP. But that is isomorphic to ρ : (A→ A) so
completely positive just means that ρ is positive and trace preserving means
Trρ = 1.

Now we can see the power of the Causal(C) construction. We have
derived the language of mixed states and CPTP maps from the simple in-
tuition that discarding a state should be the same as removing that state
from the diagram. This is an improvement over orthodox quantum theory,
where mixed states and CPTP maps are simply postulated to be the way of
modelling quantum processes.

Let’s look at some specific examples of some states in Causal(FdHilb).
An entangled pair of qubits can be represented as a pure density matrix

ρ : Q2 → Q2 in FdHilb, namely

ρ :=
1

2
(|0〉 ⊗ |0〉+ |1〉 ⊗ |1〉)(〈0| ⊗ 〈0|+ 〈1| ⊗ 〈1|)

=
1

2

(36)

This corresponds to the pure state in CPM(FdHilb)

1

2
=

1

2
(37)

So the maximally entangled state is 1
2 double(η). One can confirm that this

is causal:

1

2
=

1

2
=

1

2
=

1

2
Tr(1Q) = 1 (38)

We know that the maximally mixed density matrix of a system is repre-
sented as the identity matrix divided by the dimensionality of the system.
This means that, as a state in Causal(FdHilb), the maximally mixed state
for the system A is

1

dimA
=

1

dimA
(39)
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From this, we can see that discarding one of the qubits in an entangled
system is the same as having one qubit in the mixed state;

1

2
=

1

2
(40)

So throwing away one entangled qubit is the same as knowing nothing about
the other. This is a hint at the controversies to come. In most other formu-
lations of QM, we would say that the qubits are entangled whether or not
we choose to throw one of them away.

6 Classical Information

What does it mean to perform a measurement? From our previous expe-
rience with quantum mechanics, this is the process of taking a quantum
system and somehow extracting a value from it. This measured value is
different from the quantum system because we can copy it. We take this
duplicability of the measured information to be our primary motivation be-
hind defining a category including both classical and quantum information.
To make this notion precise, we are going to introduce Frobenius algebras.
This has a fairly obtuse definition, but with the right intuitions they become
very easy to understand. The theorems and definitions in this section follow
the work of Coecke and Pavlovic in [20].

Definition 6.1 (Frobenius algebra). Given a DCC C, a dagger Frobenius
algebra is an object X and two morphisms j : I → X, m : X ⊗ X → X
which obey the following rules:

m

j

=
X

= m

j
(41)

m

m
=

m

m
(42)

m

m†
= m m† =

m

m†
(43)
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From now on we can omit the labels from the circles. These circles are often
called ‘spiders’. We say the Frobenius algebra is commutative when

= (44)

and special when
= (45)

‘Dagger special commutative Frobenius algebra’ is shortened to †SCFA.

Proposition 6.1. If X is a Frobenius algebra, it is self dual.

Proof. We claim that ε = and η = . By axioms (43) and
(41) we have

(ε⊗ 1X) ◦ (1X ⊗ η) = = = = 1X

(46)
similar for (1X ⊗ ε) ◦ (η ⊗ 1X) = 1X .

So from now on we can drop the little arrows on all of the wires. The
motivation behind †SCFA’s is that they represent a connection between
objects. For instance, the wires used in electronics schematics merely pro-
vide a description of which terminals are in electrical contact. The actual
topology and routing of the wires doesn’t matter. The electrical wires and
the junction form a †SCFA.

Theorem 6.2 (†SCFA normal form). Take X⊗n to mean X ⊗ed with itself
n times. Suppose that we are given a morphism χ : X⊗n → X⊗m which is
formed from a connected network of X spiders for X some †SCFA. All
such χ are equal. This means that we can change our graphical notation
of †SCFA’s to ’spider diagrams’ with arbitrary legs, knowing that we can
always rewrite it in the canonical form.

Proof. See Lack’s paper [21].

= (47)

Definition 6.2 (Classical Object). Given a DCC C, we define a classical
object as a †SCFA in C.
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Proposition 6.3. If X is a classical object in C then double(X) is a classical
object in CPM(C).

Proof. Follows immediately from the fact that the axioms (41, 42, 43) for
double(X) are just the axioms in X ⊗ed with its conjugate.

Let’s see what a classical object looks like in FdHilb:

Theorem 6.4. Suppose we had a space A and an ONB (orthonormal basis)
{|i〉}i in FdHilb. Then we can make the classical object;

m =
∑
i

|i〉 (〈i| ⊗ 〈i|) j =
∑
i

〈i| (48)

In fact, each classical object in FdHilb defines an ONB.

Proof. It is easy to verify that m, j obey the axioms of a †SCFA. In the
other direction, define the set {|φi〉} where each |φi〉 is non-zero and obeys

φi =

φi

φi

(49)

We claim that this forms an ONB. First, they are orthonormal because

φi φj = φi φj =

φi φj

φi φj

(50)

So 〈φi|φj〉 = 〈φi|φj〉 · 〈φi|φj〉 and therefore 〈φi|φj〉 = 1 or 0. The positive-
definiteness of Hilbert spaces gives 〈φi|φi〉 6= 0, so 〈φi|φi〉 = 1. But this
means that if 〈φi|φj〉 = 1 then i = j. So 〈φi|φj〉 = δi,j . To show it’s
a basis, suppose that there is some non-zero, non-empty set {|ψi〉} that is
orthonormal to all the |φi〉 which together form an ONB for the space. Then
we can write

ψj =
∑
p,q

bpqj |ψp〉 |ψq〉 (51)

because if a |φk〉 component was present, we get

ψj

φk
=

ψj
φk =

ψj φk

φk

= 0 (52)
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Next, note that;

ψi ψj = ψi ψi 6= 0 (53)

ψj = ψj (54)

so bpqk is not zero everywhere and is symmetric under any permutation of
its indices. This means we can construct an orthonormal set {|χi〉} out of
the {|ψi〉} such that |χi〉 obeys (49). So |χi〉 ∈ {|φi〉}i so {|ψi〉} was empty
after all.

How would one implement a classical object in real life? Suppose we had
a system involving 2 qubits, one can quickly verify that CX, the quantum
controlled NOT gate, is unitary. So it is a pure, causal quantum process.
But then applying a |0〉 state to one of the inputs we have the following
causal map.

0

= (55)

One can then verify that this obeys the laws of a †SCFAon a qubit. This
is the classical object associated with the {|0〉 , |1〉} basis. This gives us an
interpretation of classical objects in FdHilb. is the process that takes
a state and copies it relative to a certain basis. Note that a classical object
does not copy all quantum states but it does copy basis states. Also,

=
∑
i

|i〉 (56)

Proposition 6.5. Both double( /
√

dimX) and double( ) are in Causal(FdHilb)

but double( ) and double( ) are not.

Proof.

= =
∑
i

∑
j

〈i|j〉 = dimX (57)

= = = (58)
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= 6= (59)

and double( ) is an effect, so its not in Causal(FdHilb) by proposition
5.5.

Suppose we had a diagram representing some process on a classical object
double(X) in CPM(C). This looks like a twinned network of wires and
spiders. Suppose further that we discard one of the branches somewhere.

= = =

(60)
That last diagram involves a new diagram which is short for :
double(X) → X. The introduction of a discard into the system causes all
the connected double wires to collapse into a single wire diagram. We call
this collapsed diagram a classical diagram.

Non-classical diagrams are very fragile. We only need to discard one
of the connected branches for our diagram to become classical. That is,
our quantum diagrams only work if we are sure that we are modelling the
entire quantum process accurately without discarding any branches of the
diagram.

Definition 6.3 (Projector valued spectrum). Let C be a DCC and X be a
classical object. A projector valued spectrum (PVS) of X is an object
A and a morphism p : A→ X ⊗A which satisfies the following diagrams;

A Ap =
A

(61)

A A

X

X

p p
=

A A

X

X

p
(62)
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Categorically minded readers should note that a PVS is an object in the
Eilenberg-Moore coalgebra category created by the comonad (X⊗−, ⊗
−, ⊗−), this is also called the category of X comodules.

Proposition 6.6. For all classical objects X, the morphism is a PVS
of X.

Proof. Immediate from (41) and (42).

Proposition 6.7. Suppose we have a PVS P in C. Then double(P ) is in
Causal(C) if and only if

p
=

p
(63)

Proof. Suppose p is causal. Then

p =

p

p

= (64)

so

p p
= (65)
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p
=

p p p

=
p p

=
p p p

=
p

(66)

Going the other way;

p p
=

p p

=
p

=
p

=

(67)
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Theorem 6.8. Suppose we had a PVS P for †SCFA X in FdHilb such
that double(P ) is in Causal(FdHilb). Then each P corresponds to a com-
plete family of mutually orthogonal projectors. That is, a set

{Pi : A→ A | 0 < i < dimX} (68)

such that Pi ◦ Pj = δi,jPi and
∑

i Pi = 1.

Proof. Given a PVS P of X, we have by theorem 6.4 an ONB {|i〉}i. So
define

Pi := i
P

(69)

By proposition 6.7 we have (63). Then we have Pi ◦ Pj = δi,jPi because

i
P

j
P

= i

j

P
= i

P

ji

(70)
and

∑
i Pi = 1 so

∑
i

i
P

=
P

= (71)

So each causal PVS defines a complete family of mutually orthogonal projec-
tors. Going the other way; suppose we had a complete family of n mutually
orthogonal projectors Pi. Define X as some n dimensional space and define
P as

P :=
∑
i

Pi
i

(72)

We have that P is a PVS:

A AP P
=
∑
i,j

Pi Pj

i
j

(73)
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=
∑
i

Pi

i

=

A A

X

X

p
(74)

Causality of double(P ) is demonstrated by expanding (65) in a similar way.

7 Alternative postulates of quantum mechanics

We can now state the postulates of this new formulation of quantum me-
chanics.

• An experimenter’s state-of-knowledge about an experiment in quan-
tum mechanics can be mapped to a state diagram in Causal(FdHilb).

• Physical processes (a process in reality) are processes f in FdHilb
such that double(f) is causal.

• The experimenter represents her ignorance of the fate of a particular
state with a discard operation.

• The experimenter calculates the probability p of measuring a value |ψ〉
on a classical object X by calculating the following diagram;

p =
state of

knowledge

ψ

B

X

(75)

• If the experimenter learns that a classical objectX has value |ψ〉 (in the
ONB associated with X), the state-of-knowledge diagram is updated
to

new state of knowledge =
1

p

state of
knowledge

ψ

B

X

(76)

The factor of 1/P is needed to ensure the diagram remains causal.

The question of what it means for the experimenter to ‘learn’ a value is
intuitive but philosophically slippery. We will return to the problem later.
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Proposition 7.1. If the state of knowledge of (75) is in Causal(FdHilb)
then new state of knowledge of (76) is in Causal(FdHilb) too.

Proof. Discarding new state of knowledge gives p
p = 1.

We ought to confirm that the probability calculation actually works.
Suppose that we know that a particular quantum state is pure and in |φ〉.
Then calculating the probability that we will measure it to be |ψ〉 is

p = φ ψ =

φ ψ

φ ψ
= 〈φ|ψ〉 · 〈φ|ψ〉∗ = | 〈φ|ψ〉 |2 (77)

Now suppose that we have two entangled qubits, what is the probability
that we measure |1〉 on one qubit and |0〉 on the other?

p =

0

1

=

0

1

0

1

= 0 (78)

In general, the probabilities will always be the same as in the orthodox
formulation. Here we will prove it for PVM’s. Recall that a PVM mea-
surement is defined by a group of complete mutually orthogonal projectors
Ex : Q→ Q for x in some finite set with dimension N . But this is precisely a
causal PVS on a classical N dimensional object by theorem 6.8. Also recall
that the probability of measuring x given a initial density matrix ρ : Q→ Q
is given by Px = Tr(Ex◦ρ). We also have that the new state after measuring
the value x is ExρEx/Px.

Theorem 7.2. The probability Px of a measurement of a PVM E is the
same as the evaluation of the following probability.

Px = ρ E
x

Q

X

(79)

Which equals Tr(Ex ◦ ρ). Additionally, the new state after the measurement
is equal to ExρEx/Px.
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Proof. Our original state-of-knowledge is:

ρ E

Q Q

X

(80)

And after learning that the state of the object is 〈x| we have

1

Px
ρ E

x

Q Q

X

=
1

Px
ρ

E

E

x

x

(81)

Which is equivalent to ExρEx/Px.

This is not quite the end of the story for quantum measurement, because
we know that sometimes quantum systems behave classically even if the
experimenter isn’t aware of the result of the measurement.

8 Decoherence and observer-less measurement

Decoherence is often sold as that mysterious process when something other
than you measures a quantum object, causing the state to collapse to a
classical one without you, the experimenter, learning about the value it
collapsed to. CQM offers a more precise definition which we draw from [20].

Definition 8.1 (Decoherence). Given an object A in CPM(C), a deco-
herence process A→ A is defined as a process that can be written as;

P

A A

X

(82)

for some classical object X and a PVS P : A→ A⊗X.
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Hence, decoherence is an epistemological phenomenon. It occurs because
our state-of-knowledge ignores the fate of the classical object after the PVS
occurs. Also note that decoherence is dependent on the classical object.

A more general case of decoherence is quantum measurements. The
intuition here is that a measurement is simply the process of making a
quantum system interact with a classical object and then discarding a copy
of this object [20].

Definition 8.2 (Observerless measurement). Let C be a DCC and let X be
a classical object in CPM(C) and P : A → A ⊗ X be a PVS of X. Then
define a P-measurement in CPM(C) as

P

X

A A
(83)

That is, a measurement of a quantum system is a projection followed
by a copy, followed by a discard on one of the copies. Let’s interpret this
informally and then work through some examples formally.

Note that these collapses don’t occur in the physics (that is, the world
‘out there’) because it only happens when an epistemological discard is
present. This means that the collapse happens in our state-of-knowledge
about the experiment. This concept is critical to the quantum Bayesian way
of thinking. The diagrams we have been reasoning with are in Causal(C).
This category was defined to encapsulate our state-of-knowledge of an exper-
imental setup. Once a discard is introduced, our state of knowledge about
the experiment is not complete because we don’t know what happens to the
state we discarded. We already agreed that discarding is not a physical phe-
nomenon, so the collapsing must be epistemological. This is controversial
because it means that two experimenters with different knowledge about an
experiment may disagree about whether the system is behaving in a classical
or quantum fashion.

So, to summarise, a measurement is defined as a process where a quan-
tum state is copied in such a way that you, the experimenter, lose track of
some of the copies. In most physics experiments there are processes that
involve copying a value millions of times. For instance, in a photomulti-
plier tube, the information about the presence of a photon is copied into
a cascade of millions of electrons. We only need to fail to understand the
fate of a single electron to result in a discard of that photon in our state-
of-knowledge diagram. Once that discard is present, the information about
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the detection of the photon becomes classical. This photomultiplier can be
seen informally as the following diagram where each wire is the quantum
information representing ”has a photon been detected?”

photon source · · · 10 more stages

(84)
Our state of knowledge only needs to discard one of these 512 electrons
carrying the information about the photon detection to get a wavefunction
collapse as depicted in diagram (60).

Another important way decoherence can occur is when a quantum state
associates with a large, chaotic process with a lot of uncertainty. A quan-
titative sketch of how this might occur is as follows. Suppose that we are
storing the value of a qubit Q in some system which creates a small electric
field if in the |1〉 state. Next, suppose there is some qubit S whose energy
levels depend on the strength of this electric field. Let us say that S, which
initially we do not know the state of, is brought into the range of Q’s electric
field for a small time t and then S is moved away and is discarded. The
Hamiltonian when both of the qubits are together is;

H :=


E 0 0 0
0 E 0 0
0 0 (E − ε) 0
0 0 0 (E + ε)

 : Q⊗ S → Q⊗ S (85)

So the unitary transformation corresponding to t seconds together U =
exp (itH/~). The process Pt,ε : double(Q)→ double(Q) in Causal(FdHilb)
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representing the entire encounter is

Pt,ε :=
1

2
U =


1 0 0 0
0 c 0 0
0 0 c 0
0 0 0 1

 (86)

Where c := cos(tε/~). If many P processes happened, we would represent
this as a chain of P processes. Since the c terms always have magnitude
≤ 1 then as more and more P processes occur, the two middle diagonal
terms will approach zero. When this happens our process is the same as
decoherence. If ε is large, then decoherence may occur after one or two P
processes. If εt � ~ then decoherence will happen slowly. Suppose that t
and ε are fixed and we let Pt,ε processes happen at some frequency f . We
can then show that the qubit decays to a decohered classical bit with time
constant of order

τ ∝ 1

ft2ε2
(87)

This number is often called the relaxation time of the qubit.
When might such a succession of P processes occur in real life? A clear

example would be if Q was surrounded by a gas of polar molecules but the
basic idea is quite general. The point is that even though each P process
only makes a tiny change to our state-of-knowledge of the qubit, over a huge
number of processes a measurement occurs even though we can’t point to
the single qubit which was discarded to cause the collapse. Note also that
the collapse happened with reference to a certain basis of the qubit. This
is because we understood the way in which Q was influencing S was basis
dependent.

There is still one annoying issue with quantum Bayesianism. In a ‘true’
measurement something extra happens: you, the experimenter, learn about
whether an instrument display - which notifies you if a photon was detected
- is on or off. If you learn the value of the classical object then decoherence
must have occurred. This is because the value was copied into your brain
which is certainly not something you understand well enough to accurately
track the propagation of individual quantum mechanical processes.

So what does this exploration tell us philosophically? The main message
is that we can explain the phenomena of wave function collapse, decoher-
ence and the link between classical and quantum information as being an
epistemological phenomenon. They result from the fact that our model of a
given experiment can’t account for the whole universe so we have to discard
information. I will argue that this points strongly to the interpretation of
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quantum Bayesianism. We will now illustrate quantum Bayesianism further
with some examples.

9 Entanglement and Teleportation

We first consider the situation where two qubits are entangled and then are
moved a large distance away from each other. Alice accompanies qubit A
and Bob accompanies qubit B.

In the Copenhagen interpretation of QM, we would model the two qubits
as being in the |0〉 |0〉+ |1〉 |1〉 state. Then, when Alice measures her qubit,
this state suddenly collapses. This is often called ‘spooky action at a dis-
tance’. At first it seems to violate the key postulate of relativity that no
information can travel faster than the speed of light. But while the collapse
of the state does indeed travel faster than light, it is impossible for Bob to
learn whether Alice caused the state to collapse or not until they meet and
compare results later. This is why the action is spooky; the physics can
influence faster than the speed of light but conspires to do so in such a way
that we can never know this.

Quantum Bayesianism [1] offers an alternative explanation that keeps the
physics within the universe’s speed limit. The spookiness is resolved simply
by noting that a wavefunction collapse is purely epistemological. This means
that Alice and Bob can have different states-of-knowledge regarding the
same experiment about wavefunction collapses. Suppose first that the two
qubits are entangled and then Alice and Bob depart never to communicate
again. Then Alice’s and Bob’s state-of-knowledge about the experiment are
respectively;

B

A

B

A

Alice Bob

(88)

Now suppose that the friends agree that after separation at time 0, Bob will
measure in the computational basis at time 1 and send the result to Alice
which is received at time 2. Suppose that x is measured by Bob. Then the
states of knowledge at the various times are proportional to the following
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diagrams.

B

A

x

B

A

Alice (t = 0, 1) Alice (t = 2);

(89)

B

A

x
B

A

x

B

A

Bob (t = 0) Bob (t = 1) Bob (t = 2)

(90)

Note that Bob’s state-of-knowledge of Alice’s qubit changes instanta-
neously at time 1 at the moment that the result of the measurement is
learnt. But the abrupt change is epistemological - it happens in Bob’s head!
- so we don’t have the spookiness. Consider the classical analogue: sup-
pose Alice and Bob both receive an envelope, and they know the envelopes
contain the same number. Then, when they move far apart, Bob can learn
the contents of Alice’s envelope by simply looking inside his. It would be
absurd to call Bob’s learning ‘action at a distance’. The only difference in
the quantum case is that the correlation between the results of Alice and
Bob can’t be explained using predetermined variables.

Now let’s see how one can use CQM and quantum Bayesianism to under-
stand quantum teleportation. The process is outlined as follows; Alice and
Bob again have a pair of entangled qubits. Alice takes a qubit X that she
wishes to teleport, and measures the X ⊗ A state in the Bell basis. These
two bits are then sent to Bob classically. Bob receives these and uses them
to perform a couple of unitary transformations on his qubit. All of this
is represented by diagram (12). Diagram (12) translates to the following
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state-of-knowledge diagram

bell basis
transform

measure

measure

entangle

CX CZ

(91)
Here, the white and grey spiders are the Frobenius algebras associated with
the |0〉 , |1〉 basis and |+〉 , |−〉 basis respectively. One can confirm that each
component of the diagram is causal and that they are indeed the processes
that we claim they are. We will use one additional fact of grey and white
spiders which can be easily confirmed.

≈ (92)

Where ≈ means that the two diagrams are equal up to a number. This is a
result of the two bases being strongly complementary. For much more
on these multi-spider diagrams, see [10, sections 7,8] and [22, 23]. Using this
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fact, we can show that our state-of-knowledge diagram simplifies;

(91) =

= ≈

= = ≈ ≈

(93)

Here we can really see the power of graphical reasoning. Once one knows
the rules of manipulating the diagrams, producing proofs becomes easy and
intuitive. So, the process of quantum teleportation is epistemologically the
same as simply moving the state X from Alice to Bob. That is, while the
real-world setups of quantum teleportation and translating a quantum state
are very different, they have exactly the same outcomes.

10 Schrödinger’s Cat

To finish off this essay, let’s turn quantum Bayesianism to analyse a fun,
cornerstone example. I believe that the work in this section is original, but
unfortunately I haven’t had time to do a review of the literature on the
analysis of Schrödingers Cat. The possibility that the analysis below has
not been published elsewhere cannot be ruled out.

The formulation of quantum mechanics we have developed has sad con-
sequences for the famous Schrödinger’s Cat experiment. Before we tackle the
quantum process representing a full-blown cat, consider a simple ‘Schrödinger’s
Qubit’ experiment. Here, our ‘cat’ qubit is initially in the alive |1〉 state.
We will model our poison as another qubit which is in the superposition of
|0〉 and |1〉 where the 0 state represents no poison and 1 means that poison
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is present. The idea of this experiment is for the cat qubit to flip depending
on the status of the other qubit. So our experiment is modelled by a con-
trolled NOT gate. But this arrangement is just equal to the cat qubit and
the poison qubit being entangled.

+

0

≈ ≈ 1

2
(94)

Suppose we have this box in front of us and we know that we are going to
open it in 10 minutes and measure the cat qubit in the 1,0 basis. Then our
state of knowledge for the experiment looks like this:

= (95)

This analysis shows that this state of knowledge is the same as the state of
knowledge that the two qubits are only classically correlated. There is no
‘quantum weirdness’ to see here. So Schrödinger’s cat is exactly the same
as a classical cat.

In what way was the above experiment quantum at all? The answer
is that if instead of ‘opening the box’ we had decided to make the qubits
interact with another quantum process, we could get a different answer to
its classical partner. For instance, suppose that we piped the two qubits
through another CNOT before opening the box. In the quantum case:

= (96)

Whereas in the classical case:

= (97)

So we are not yet done in disproving Schrödinger’s cat. We must also
show that even before we decide to open the box, our state of knowledge
is still (at least approximately) equal to its classical counterpart. To show
this, we will use the fact that we have great uncertainty about the quantum
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state of a cat before we put it into the box. A cat is too fluffy to consider
mathematically so we shall instead imagine that the cat system is modelled
as a huge number of qubits.

Consider a situation where we know that the state of a qubit is copied
to many locations, but there is a small chance that it is copied to some
qubit that we are not aware of, and is thus discarded. In our example of the
cat, we know that each cell in the cat’s body will contain the information
of the cat’s demise. But are you confident enough in your cellular biology
to know all of the subsystems of this cell which one could also extract this
information from? Even if we hired a team of biologists, how confident can
we be that our model is keeping track of every place that the information
may be stored?

Theorem 10.1. Take X to be a classical object in CPM(FdHilb). Suppose
that we have a system of n qubits and a single qubit is X-copied to each qubit.
But for each of the n qubits, there is a small chance ε � 1 that the value
of the qubit is copied again and discarded. In this case, decoherence occurs
when εn� 1.

Proof. The diagram representing the above situation is

D =

a

a
...
a

(98)

where

a = (1− ε) ( ) + ε

  (99)
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But as a matrix, this is

D =

11∑
ij=00

(1− ε)


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+ ε


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1



⊗n

(|ij〉)⊗n 〈ij|

=
11∑

ij=00


1 0 0 0
0 (1− ε) 0 0
0 0 (1− ε) 0
0 0 0 1


⊗n

(|ij〉)⊗n 〈ij|

=
11∑

ij=00




1 0 0 0
0 (1− ε) 0 0
0 0 (1− ε) 0
0 0 0 1

 |ij〉

⊗n

〈ij|

=


1
0
0
0


⊗n

〈00|+


0

(1− ε)
0
0


⊗n

〈01|+


0
0

(1− ε)
0


⊗n

〈10|+


0
0
0
1


⊗n

〈11|

= |0000 · · · 00〉 〈00|+ (1− ε)n |0101 · · · 01〉 〈01|
+ (1− ε)n |1010 · · · 10〉 〈10|+ |1111 · · · 11〉 〈11|

(100)

Consider the 〈01| and 〈10| terms which are multiplied by (1 − ε)n. Taking
the log of this expression and remembering that ε� 1 we get

ln (1− ε)n = n ln (1− ε) ≈ −nε (101)

So if nε� 1, these terms vanish. But, this vanishing implies that decoher-
ence occurs. This is because a decoherence process is given by

= =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 (102)

So a process f preceded by decoherence has zero entries in the 2nd and 3rd

42



columns.

f =

f11 f12 f13 f14
f21 f22 f23 f24
...

...
...

...

◦


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 =

f11 0 0 f14
f21 0 0 f24
...

...
...

...


(103)

Which is exactly what occurs in our process D if nε� 1.

Let’s put some numbers into this theorem. There are of order 109 cells
in a cat’s body. Suppose we wish to model the cat in such a way that it
does not collapse into a classical cat. In order to do this, we would have
to model each cell in such a way that we assign a probability of much less
than 10−9 to the chance that the information of the cats demise is copied
to a subsystem of the cell in a way that we did not anticipate. This is an
extreme level of confidence in one’s ability to understand the inner workings
of a cat. So all realistic attempts to get the cat to enter a superposition of
being alive and dead inside an isolated box will not work.

If the analysis above is correct, Schrödinger’s cat is not in a superposi-
tion of being both dead and alive because we are unable to model the cat
accurately enough to prevent a wavefunction collapse.
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