
A Model-Independent Theory of
Computational Complexity:
From Patience to Precision and Beyond

Ed Blakey
The Queen’s College, Oxford
ed.blakey@queens.oxon.org

Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD

Submitted in Trinity Term, 2010
for the degree of Doctor of Philosophy in Computer Science

Acknowledgements and Dedication

We thank the author’s supervisors, Dr Bob Coecke and Dr Joël Ouaknine, for their
continued support and suggestions during this DPhil project. We thank the author’s
Transfer/Confirmation of Status assessors, Prof. Samson Abramsky and Prof. Peter
Jeavons, first for agreeing to act as assessors and secondly for their useful and for-
mative comments about this project; we thank the author’s Examiners, Prof. Peter
Jeavons and Prof. John Tucker, for taking the time to act as such and for their valuable
suggestions, of which some are incorporated here. We thank the organizers of Uncon-
ventional Computing, the International Workshop on Natural Computing, Quantum
Physics and Logic/Development of Computational Models, Science and Philosophy of
Unconventional Computing and the International Conference on Systems Theory and
Scientific Computation for the opportunity (and, in the case of the last-mentioned con-
ference, the kind invitation) to present work forming part of this project. We thank
the participants of the above-mentioned conferences/workshops, as well as the British
Colloquium for Theoretical Computer Science and Complexity Resources in Physical
Computation, for their encouraging feedback and insightful discussion. We thank the
reviewers of publications to which the author has contributed (including New Genera-
tion Computing, the International Journal of Unconventional Computing and Natural
Computing, as well as proceedings/publications associated with the conferences and
workshops mentioned above) for their detailed comments and helpful suggestions; we
thank also Prof. José Félix Costa for his kind invitation to contribute to the last-
mentioned journal. We thank collaborators and colleagues for showing an interest in
this work, for useful discussion and corrections, for bringing to the author’s attention
many relevant references, and for helping to shape and direct this research (as have
the conference participants and publication reviewers—and of course supervisors and
assessors—mentioned above); notably, we thank Prof. Cristian Calude for fascinating
discussions regarding accelerated Turing machines and the conjectured incomplete-
ness of axiomatizations of resource, Dr Viv Kendon and colleagues (not least Rob
Wagner) for the opportunity to explore the interface between the present project and
the practical considerations of quantum computation/simulation, Dr Rebecca Palmer
for noticing an omission relating to wave superposition, András Salamon for inspir-
ing parts of the present work with questions concerning gap theorems and combined
resources, Prof. Susan Stepney for her championing the ‘natural’ in ‘natural compu-
tation’, and Dr Damien Woods for his suggestions relating to restriction of precision.

Academic assistance aside, we thank the administrative and support staff both at
the Oxford University Computing Laboratory and at the Queen’s College for their
help during the author’s DPhil programme; we thank in particular Janet Sadler for
her assistance with the organization of the workshop Complexity Resources in Physical
Computation and with the administration of the below-mentioned EPSRC funding.

We acknowledge the generous financial support of the EPSRC; this work forms part
of, and as of 1.x.2008 is funded by, the EPSRC project Complexity and Decidability
in Unconventional Computational Models (EP/G003017/1).

Personal thanks are due from the author to his family; to his friends in Oxford,
Warwick and elsewhere; and to his girlfriend, Gemma.

The author dedicates this dissertation to the memory of his mother, Linda (1944 –

2009).

Abstract

A Model-Independent Theory of
Computational Complexity:
From Patience to Precision and Beyond

Ed Blakey, The Queen’s College

Submitted in Trinity Term, 2010 for the degree of Doctor of Philosophy in Computer Science

The field of computational complexity theory—which chiefly aims to quan-
tify the difficulty encountered when performing calculations—is, in the case of
conventional computers, correctly practised and well understood (some impor-
tant and fundamental open questions notwithstanding); however, such under-
standing is, we argue, lacking when unconventional paradigms are considered.
As an illustration, we present here an analogue computer that performs the task
of natural-number factorization using only polynomial time and space; the sys-
tem’s true, exponential complexity, which arises from requirements concerning
precision, is overlooked by a traditional, ‘time-and-space’ approach to complex-
ity theory. Hence, we formulate the thesis that unconventional computers war-
rant unconventional complexity analysis; the crucial omission from traditional
analysis, we suggest, is consideration of relevant resources, these being not only
time and space, but also precision, energy, etc.

In the presence of this multitude of resources, however, the task of compar-
ing computers’ efficiency (formerly a case merely of comparing time complexity)
becomes difficult. We resolve this by introducing a notion of overall complex-
ity, though this transpires to be incompatible with an unrestricted formulation
of resource; accordingly, we define normality of resource, and stipulate that
considered resources be normal, so as to rectify certain undesirable complexity
behaviour. Our concept of overall complexity induces corresponding complexity
classes, and we prove theorems concerning, for example, the inclusions therebe-
tween.

Our notions of resource, overall complexity, normality, etc. form a model-
independent framework of computational complexity theory, which allows: in-
sightful complexity analysis of unconventional computers; comparison of large,
model-heterogeneous sets of computers, and correspondingly improved bounds
upon the complexity of problems; assessment of novel, unconventional systems
against existing, Turing-machine benchmarks; increased confidence in the diffi-
culty of problems; etc. We apply notions of the framework to existing disputes in
the literature, and consider in the context of the framework various fundamental
questions concerning the nature of computation.

Contents

1 Introduction 6
1.1 A Tale of Two Complexities . 6
1.2 Background . 7

1.2.1 Preliminaries . 7
1.2.2 Literature . 12

1.3 Overview . 12

2 Motivation 15
2.1 Introduction . 15

2.1.1 Factorization . 16
2.2 Original Analogue Factorization System 27

2.2.1 Description . 27
2.2.2 Proof of Correctness . 52
2.2.3 Time/Space Complexity 53
2.2.4 Precision Complexity . 55
2.2.5 Summary . 57

2.3 Improved Analogue Factorization System 58
2.3.1 Relating the Original and Improved Systems 58
2.3.2 Description . 59
2.3.3 Proof of Correctness . 66
2.3.4 Practical Considerations 67
2.3.5 Time/Space Complexity 69
2.3.6 RSA Factorization . 70
2.3.7 Precision Complexity . 72
2.3.8 Summary . 73

2.4 Conclusion . 74
2.4.1 Summary . 74
2.4.2 Discussion . 74

3 Resource 75
3.1 Unconventional Resources . 75

3.1.1 The Need Therefor. 75
3.1.2 . . . But the Neglect Thereof 79

3.2 Interpreting ‘Resource’ . 83
3.2.1 Possible Interpretations 83
3.2.2 Recasting as Different Resource Types 88
3.2.3 Source of Complexity . 88
3.2.4 Commodity Resources . 91

1

CONTENTS 2

3.3 Precision—an Illustrative Unconventional Resource 92
3.3.1 Motivation . 92
3.3.2 Examples . 93
3.3.3 Definitions . 105
3.3.4 Precision in the Literature 114

3.4 Formalizing Resource . 116
3.4.1 First Steps . 116
3.4.2 Null Resource . 118
3.4.3 From Resource Comes Complexity 118

3.5 Model-Independent Resources . 121
3.5.1 Specific Examples . 122
3.5.2 Generic Criteria . 124
3.5.3 Two Approaches . 125

3.6 Model-Dependent Resources . 125
3.6.1 Resources for Non-Quantum Computers 125
3.6.2 Resources for Quantum Computers 132
3.6.3 Summary . 136

3.7 The Old versus the New . 136
3.7.1 Two Conventional Resources 137
3.7.2 Moore’s Law . 138

3.8 Underlying Resource . 139
3.8.1 Trade-Offs . 140
3.8.2 Combining Resources . 141

3.9 Summary . 142

4 Dominance 143
4.1 Comparison of Computers . 143

4.1.1 The Need to Compare Computers 143
4.1.2 Problem-Homogeneity . 146
4.1.3 Comparing Turing Machines 146
4.1.4 Comparing Unconventional Computers 147

4.2 Dominance Defined . 149
4.2.1 Overall Complexity . 150

4.3 Dominance Classes . 152
4.3.1 Definitions . 152
4.3.2 Expected Results . 152
4.3.3 Other Internal Results . 153
4.3.4 Trade-Off Results . 160
4.3.5 Relationship to Traditional Hierarchy 162
4.3.6 Transfer between Hierarchies of Results/Questions 162

4.4 An Analogue of the Gap Theorem 162
4.4.1 Introduction . 163
4.4.2 Dominance Gap Theorem 165
4.4.3 Future Work . 168
4.4.4 Conclusion . 171

4.5 Normalization—Resources Revisited 172
4.5.1 The Problem: Dominance versus Unrestricted Resource . 172
4.5.2 The Solution: Normalization 173
4.5.3 Why Normalization? . 178
4.5.4 Summary of Resource . 178

CONTENTS 3

4.6 Discussion . 179
4.6.1 Summary . 179
4.6.2 Comments . 180

5 Case Studies 181
5.1 Introduction . 181
5.2 Ray-Tracing—Computing the Uncomputable? 181

5.2.1 Background . 181
5.2.2 Resolution . 182

5.3 An Adiabatic Solution to Hilbert’s Tenth Problem 184
5.3.1 Background . 184
5.3.2 Resolution . 186

5.4 Cabello versus Meyer . 186
5.4.1 Background . 186
5.4.2 Resolution—First Steps 188

5.5 Future Work . 189
5.6 Discussion . 190

5.6.1 General Features of Resolution 190
5.6.2 Extent of Resolution . 191

6 Discussion 192
6.1 Other Applications . 192

6.1.1 Cryptography . 192
6.1.2 Kolmogorov Complexity 193
6.1.3 Cardinality and Set Theory 194

6.2 Fundamental Questions . 194
6.2.1 Inherence of Complexity in Problems 194
6.2.2 Model- and Resource-Heterogeneous Comparison 195
6.2.3 Source of Systems’ True Complexity 195
6.2.4 Computer/Environment Boundary 196
6.2.5 Underlying, Fundamental Resource 196

6.3 Conclusion . 196
6.3.1 Summary . 196
6.3.2 Future Work . 198
6.3.3 Final Comments . 199

List of Figures

2.1 y = n
x , with natural-number points thereon highlighted. 29

2.2 The apparatus that implements the integer grid. 33
2.3 The region under the parabola containing M1. 34
2.4 The constructions used in the proof of Prop. 5. 35
2.5 The path from S via the three mirrors back to S. 37
2.6 R, and the maximally active points therein. 38
2.7 The four rays incident on (a, b, 0). 39
2.8 Two lines with combined length g (x) = 2 (1 + ε). 40
2.9 The apparatus that implements the cone. 44
2.10 The position within R of Gn. 45
2.11 The correspondence between Gn and Cn. 47
2.12 A water-wave/visible-light implementation of the system. 50
2.13 The circle of radiation, and its structure as plotted against t. . . 59
2.14 The apparatus described in Definition 5. 61
2.15 Example use of the apparatus of Definition 5. 61
2.16 The apparatus as modified in Sect. 2.3.4. 67

3.1 The experiment to determine which of A and B is more massive. 81
3.2 The region within which addition is performed without error. . . 95
3.3 The region within which addition is performed without error. . . 96
3.4 Computing with a slide-rule that 3× 5 = 15 = 5× 3. 97
3.5 Computation, via sinusoidal-wave superposition, of gcd (8, 6). . . 99
3.6 Computation, via triangular-wave superposition, of gcd (8, 6). . . 99
3.7 The distances that must exceed the sensor’s resolution. 101
3.8 The region within which gcds are found without error. 104
3.9 With two slits open, light cannot reach D; with only one, it can. 121
3.10 Blind Monks Examining an Elephant, Hanabusa Itchō. 139

5.1 The set of errors corrigible for the storage/retrieval process. . . . 183

4

List of Tables

2.1 The line-by-line and overall complexity of M ′. 19
2.2 The line-by-line complexity of N ′. 24

3.1 A summary of the resources relevant to various paradigms. . . . 136

4.1 A summary of the class-inclusion theorems of Sect. 4.3.3. 159

5

Chapter 1

Introduction

1.1 A Tale of Two Complexities

It was the best of times. Computational complexity theory, as it pertains to
standard, Turing-machine-like computers, is in many respects well understood.
The field has achieved sufficient maturity to guide the practical direction of our
algorithm-designing efforts (notably, NP-hardness is routinely taken as excuse
enough for our inability to find efficient methods). The field enjoys undeni-
able success in characterizing problems according to their solutions’ cost. The
field formalizes and answers important questions concerning problems’ compar-
ative difficulty, thereby imbuing with a rich, hierarchical structure the space of
problems.

And yet, in some respects, it was the worst of times. The field retains
many fundamental, open questions (despite, in one notable case, a million-dollar
incentive [47]). The field struggles to reconcile its intention to determine the
complexity of problems with its ability directly to measure the complexity only
of methods that solve these problems.

The field, created as it was to cater primarily for Turing-like models of
computation, fails to capture the true complexity of many non-standard

(analogue, chemical, quantum, etc.) computers.

These misgivings about traditional complexity theory, and especially though
not exclusively the last—namely, its inadequacy for capturing some unconven-
tional systems’ complexity—, motivate the work described in the present dis-
sertation. More specifically, we describe here a framework of computational
complexity that allows quantification and meaningful comparison of comput-
ers’ efficiency, independently of computational model and of types of resource
consumed.

There are, then, two distinct (though not disjoint) approaches to compu-
tational complexity: the traditional, which, having been developed with the
Turing machine very much in mind, considers only those resources such as run-
time, memory space, etc. relevant to that model; and the model-independent—
described and developed here—, which incorporates conventional and unconven-
tional resources alike (required precision being a notable example of the latter).
Each approach has its own structure of complexity classes: the traditional hier-
archy has, of course, received much attention and undergone much exploration,

6

CHAPTER 1. INTRODUCTION 7

and so is reasonably well understood (fundamental, open questions notwith-
standing); that the new hierarchy has, in contrast, barely been explored is, to
an extent, redressed here.

It is the author’s hope that the model-independent framework of complexity
theory introduced and investigated in this dissertation is both of use and of inter-
est to members of the computational-complexity and unconventional-computing
communities, as well as to a wider readership of computer scientists.

1.2 Background

1.2.1 Preliminaries

We outline now some preliminary notions that recur throughout this disserta-
tion. For some, we present not a full description, but rather one that suffices for
the purposes of the present work; some details irrelevant here, then, are omit-
ted. Further detail than is given in this section is deferred to the below-cited
works (as well as to the relevant subsequent sections of this dissertation), since
it is hoped that the reader’s preexisting familiarity with at least some of these
notions renders additional exposition here redundant.

Complexity Theory.

Computational complexity theory (or, simply, complexity theory) is the field of
mathematics/theoretical computer science that concerns the difficulty encoun-
tered, or the cost incurred, when performing calculations. This cost is encap-
sulated as the amount of resource (typically time) consumed by the system
during calculation; calculations can then be categorized into complexity classes
according to their cost. See [37,103] for an introduction to the field.

Computation.

To compute is to perform a calculation, which entails

• acceptance of an input value (the argument or instance of the mathemat-
ical function/relation/problem being implemented in the calculation),

• some processing of the value (during which the person or system perform-
ing the calculation acts in accordance with, for example, an algorithm, or
the physical laws to which the system is subject), and

• production of an output value (the answer to the problem solved, or the/a
value of the implemented mathematical function/relation, evaluated with
the given input value as its argument).

Computation is the term given either to this process of computing, or to the
resultant relation (often a function) of input-output value pairs (with context
determining which meaning is intended). See [103,120] for (much) further detail.

Turing Machine.

The Turing machine, introduced in [127], is a formalized, mathematical model
of systems that compute. It has

CHAPTER 1. INTRODUCTION 8

• storage space, consisting of a one-dimensional tape—extending unbound-
edly in one direction—of discrete cells, each of which either being blank
or bearing a symbol taken from the machine’s finite alphabet ; and

• a tape head (positioned at one of the cells), which, in each of the machine’s
discrete time steps, may write a symbol to its current cell, may move along
the tape by up to one cell in either direction, and may switch from the
current to a new internal state (of which there is a finite set)—the sym-
bol written, direction taken and state adopted depend (via the machine’s
transition function—its ‘program’) upon only the previous cell’s symbol
and the head’s previous state.

This corresponds to the ‘input, processing, output’ formulation of computation
described in Sect. 1.2.1 Computation, in that a Turing machine’s tape is, by
supposition, preloaded with an encoding of the input value, the sequence of
state/symbol/position transitions constitutes the processing stage, and, if and
when the machine halts, the tape’s contents encode the output value (the ma-
chine, and computation, are said to halt if and when the machine adopts any of
the subset of states deemed to be halting states; else, the computation’s output
value, and sometimes the computation itself, are said to be undefined).

Halting Problem.

Depending upon the choice of Turing machine and input value, it is possible
though not certain that a Turing-machine computation halts. One may nat-
urally question, then, whether or not1 a given machine-value pair results in a
halting computation; this is the Halting problem of [127], and the set of pairs
that halt (and only these pairs) is the Halting set.

This problem cannot be decided by any Turing machine:

it is proven in [127] that there does not exist a machine that, given an encoding
of a machine and an input value, returns (say) ‘1’ if the pair halts and ‘0’
otherwise. Thus arises the question of computability, i.e., of whether a given
function is implementable by a Turing machine.

Church-Turing Thesis.

For each mathematical model of computers (the Turing machine being one ex-
ample), there is a corresponding division of mathematical functions into the
computable and the uncomputable.2 It is prima facie possible that there is much
variation between the respective such divisions arising from different models;
however, this seems not to be the case: many ‘reasonable’ formulations of com-
putability, including Turing-computability, recursiveness and expressibility in

1Though semantically redundant, the “or not” here stresses an important point: that, in
order to decide the Halting problem, a Turing machine must, if a machine-value pair halts,
declare that it does so, and, if the pair does not, declare that it does not. Whereas, we note
below, no Turing machine decides the problem in this way, there do exist machines that accept
the problem—i.e., that, if a machine-value pair halts, declare that it does so, but, if the pair
does not, either declare that it does not or declare nothing.

2For example, the Turing-machine model places into the former category the identity func-
tion on input values—by virtue of the machine that halts immediately—, and into the latter
the Halting problem.

CHAPTER 1. INTRODUCTION 9

the λ-calculus (see [49, 127]), have been shown to be equivalent, and this no-
tion is widely believed, furthermore, to correspond with effective computabil-
ity—the ability to be computed via the mechanistic following of some finite
algorithm. This belief, which is not susceptible to rigorous proof since effective
computability is an intuitive rather than a formally defined concept, is known
as the Church-Turing thesis; see [49,68].

As is suggested in Sect. 1.2.1 Complexity Theory, the division between the
computable and the uncomputable may be refined: one may ask of a function
not only whether it is computable, but, if it is, then also how resource-efficiently
it may be computed. The belief (less widely held than the Church-Turing thesis,
though still supported by much evidence) that not only computability, but also
resource-efficiency, is independent of choice of model of computer is known as the
extended Church-Turing thesis (more precisely, the thesis does permit efficiency
to vary between models, but only polynomially3); see [57,135].

Throughout this dissertation, we mention ‘standard’, ‘traditional’ and ‘al-
gorithmic’ computers; by these we mean Turing machines or instances of some
model of polynomially equivalent efficiency.

Unconventional Computation.

Perhaps in part because of the Church-Turing thesis and in part because of
the close correspondence between Turing machines and the digital computing
systems that perform virtually all real-world calculations, computers are typi-
cally modelled using the Turing-machine model or equivalent; an according bias
exists in dependent fields such as complexity theory. However, many models
exist—both as the subject of theoretical studies and (with varying degrees of
success/acceptance) as physically realized devices—that do not conform to the
standard computational paradigm. These unconventional computers include,
but are by no means limited to: quantum, chemical, analogue, optical, kine-
matic and slime-mould computers; as long as a system has provision for ac-
cepting input values and—after some form of processing—for supplying output
values, then it computes (cf. Sect. 1.2.1 Computation).

For example,

• a digital computer’s input values may be typed on a keyboard and its
output values presented on a screen (with processing—implemented as
an algorithmic program, which is in turn implemented electronically—
occurring between input and output); and

• a chemical computer’s input and output values may be encoded in the
concentrations of solutions respectively supplied to and drawn from the
system (with chemical reaction occurring between input and output).

More generally, computers accept input values encoded in the values of ma-
nipulable parameters of the system, and supply output values encoded in the
values of mensurable parameters of the system (with processing, in the form of
the system’s evolving in accordance with the laws—which may, for example, be

3If a reasonable model implements a function f such that the required resource is a function
R (n) of the size n of the input value, then the thesis implies that any other reasonable model
M can compute f using resource bounded above by some polynomial—depending upon only
M and f , and, in particular, certainly not upon n—in R (n).

CHAPTER 1. INTRODUCTION 10

electrical, chemical or quantum mechanical—to which it is subject, occurring
between input and output).

This model-independent view of computation—which accommodates not
only standard computers, but also more natural, physical systems—may al-
low new approaches to traditionally difficult problems. As we argue in this
dissertation, however, part of the cost of this freedom is the need for innovative
forms of complexity analysis.

Aside. Often, an unconventional system will lend itself naturally to a particular
computational process, whilst being unsuitable for more general tasks.4 In
particular, it may be more viable to have (say) a Turing machine convert the
user’s input value into a form processable by the unconventional system and
convert the unconventional system’s output into a user-readable form, than
to have the unconventional system operate unaided by such a Turing-machine
‘harness’. Such hybrid systems appear throughout the present work; see, for
example, Footnote 14 of Chap. 2 and Remark 16.

See [2, 78] for discussion of the field of unconventional computing as well as
its importance and timeliness.

Resource.

In order to quantify the efficiency of a computing device, one measures the
resource consumed during its operation. For Turing machines, the resources
typically considered are time and space—respectively a computation’s duration
measured in time steps and its memory usage in tape cells. When (as here)
the notion of computer is widened so as to include unconventional paradigms,
then the notion of resource may—and, in some cases, does—need according
extension; resources consumed by—and that should be considered during com-
plexity analysis of—unconventional computers include energy and precision, for
example.5 See [23,51] for more on resources.

Slightly more formally, we may model resources as functions (dependent
upon the computing system in question) that map each input value to the cor-
responding amount of the resource consumed by the computer in processing
that value. This notion is developed in Chaps. 3 and 4.

Blum’s Axioms.

Blum’s axioms, introduced and investigated in [31], stipulate of a resource

1. that it be defined at those inputs—and at those inputs only—at which the
computation being measured is defined, and

2. that it be a computable problem to determine whether a given value is
indeed the amount of the resource consumed in processing a given input.

4This unsuitability is in part because certain unconventional paradigms are not easily pro-
grammable in a high-level way—practitioners of such paradigms may perform manipulations
at a low level, observing and exploiting behaviour exhibited by their systems, whilst lacking
a library/language of high-level commands with which to achieve arbitrary computational
needs; see the aside of Sect. 3.6.2 for a recognition of this situation in the context of quantum
computation.

5That ‘resource’ needs extension to the non-standard is an important observation, since
the availability of unconventional resources may impinge on a system’s efficiency long before
availability of time or space has become pressing.

CHAPTER 1. INTRODUCTION 11

The axioms are in many contexts desirable (a notable exception is when re-
sources are allowed to be non-deterministic, which transpires to conflict with
the latter axiom), and so the notion of resource is often taken to include them.
See Sect. 3.4.1 Blum’s Axioms for further detail.

Complexity Function.

Whereas resource functions map each input value to the amount of resource
required to process that value, complexity functions (see Sect. 3.4.3) map each
input size to the minimal amount of resource sufficient to process any input value
of that size. This encapsulates the way in which resources scale as the input
value grows, and complexity theorists are particularly interested in whether this
scaling is logarithmic, polynomial (and of what degree), exponential, etc. See
also [1, 37,103].

Asymptotic Notation.

The use of asymptotic, especiallyO-, notation (discussed in [103], amongst many
others) is widespread in complexity theory. It provides a suitable language with
which to capture the large-scale behaviour of complexity functions, allowing
abstraction and isolation of their complexity-theoretically relevant properties:
whether (and of what degree) the functions are polynomial, etc.

To say that an algorithm requires, say, 6n2− 2n+10 milliseconds to process
an input value of size n is to make an implicit assumption about the implemen-
tation of the algorithm (that it uses a processor of a specific speed, for example);
a better processor may execute the same algorithm in 3n2 − n + 5 milliseconds.
Since it is typically the time complexity of the algorithm itself—and, ultimately,
of the problem that the algorithm solves—, rather than of any of the algorithm’s
physical implementations (with specific-speed processors and so on), that one
wishes to measure (see Sect. 4.1.1 Complexity: Problems versus Solution Meth-
ods), the relevant information is that the time complexity is quadratic in n; more
exactly, the complexity theorist is often interested only in the fact that, but for a
finite number (or bounded set) of exceptional values of n—which necessarily all
occur where n is less than some finite threshold—, the time complexity behaves
quadratically. This is precisely the flavour of condition captured by O-notation,
as is evident from the following definition.6

Definition 1. Let O (g (n)) denote the class of all functions f (n) such that
there exist a threshold n0 and constant c such that, for all n > n0, |f (n)| ≤
c |g (n)|.

In many of the uses of this notation in the present work, f and g are functions
mapping natural numbers to natural numbers.

Aside. Returning to the quadratic-time algorithm above, then, we see that the
respective time-complexity functions of 6n2−2n+10ms and 3n2−n+5 ms are

6In addition to the notation’s ignoring arbitrary, irrelevant details such as processor speed,
its appropriateness in the context of complexity theory is further bolstered by speed-up the-
orems, etc. For example, for any algorithm with time complexity f (n) and any real number
ε > 0, there exists an equivalent algorithm with time complexity εf (n)+n+2 (see Sect. 2.4 of
[103]); hence, we may disregard as irrelevant all but the degree of a polynomial time-complexity
function—coefficients, in particular, may be ignored.

CHAPTER 1. INTRODUCTION 12

both in O (
n2

)
: letting c (as in Definition 1) be 6ms and n0 be 5, the definition

is satisfied for either processor. Neither can we improve upon this, in the sense
that there is no choice of c and n0 that demonstrates that these complexity
functions are in O (

n2−ε
)

for any positive real number ε (we leave the details to
the reader, claiming only that any n > max

{
n0, ε

√
c
2

}
offers a counterexample);

that no such improvement can be made may be formalized with other forms of
asymptotic notation, though we use only O in the present dissertation.

We state and prove now a lemma concerning O-notation (and, in partic-
ular, its distributive interaction with addition) that we evoke in the proof of
Theorem 9.

Lemma 1. For non-negative functions fi and gi, if fi ∈ O (gi) for all i ∈
{1, 2, 3, . . . , k}, then

∑
i fi ∈ O (

∑
i gi).

Proof. For each i, we have that fi ∈ O (gi), whence there exist a threshold ni

and constant ci such that |fi (n)| ≤ ci |gi (n)| for all n > ni. Letting n0 =
max {n1, n2, n3, . . . , nk} and c = max {c1, c2, c3, . . . , ck}, then, we have that, for
all n > n0,

∣∣∣∣∣
∑

i

fi (n)

∣∣∣∣∣
Non-negativity of fi=

∑

i

|fi (n)|

≤
∑

i

ci |gi (n)|

≤
∑

i

c |gi (n)|

Non-negativity of gi= c

∣∣∣∣∣
∑

i

gi (n)

∣∣∣∣∣ ,

as required.

Natural Numbers.

In Chap. 2, and Chap. 2 alone, we deem zero not to be a natural number:
N := {1, 2, 3, . . .}. Throughout the rest of this dissertation, we take zero to be
natural: N := {0, 1, 2, . . .}; as an important consequence, certain definitions of
Chap. 3 allow resource and complexity functions to take the value zero.

1.2.2 Literature

The existing literature that forms part of the background to the present project
is cited throughout this dissertation and listed in the bibliography (which begins
on p. 200); notably, we relate the project to certain of the bibliographical items
in Sects. 3.1.1, 3.1.2 and 3.3.4.

1.3 Overview

We give now a brief overview of the content of this dissertation.

CHAPTER 1. INTRODUCTION 13

In Chap. 2 (Motivation), we consider the mathematical problem of fac-
torization7. We describe two analogue-computer systems that factorize natural
numbers, and analyze8 the systems so as to demonstrate that they operate with
polynomial time and space complexity. However, whereas this seemingly renders
the systems more efficient than known, conventional-computer methods of fac-
torizing, we demonstrate also that the system’s precision complexity (outlined
in Chap. 2 and formalized in Chap. 3) is exponential, and, hence, prohibitive of
the systems’ efficient use. The implication is that successful complexity analyses
of unconventional computers sometimes require consideration of unconventional
resources (for, as in the factorization example, a ‘standard’ complexity analysis
may overlook the true complexity of a system); thus is motivated the model-
independent framework of computational complexity theory presented in this
dissertation. (An additional, practical purpose of Chap. 2 is to illustrate the
derivation and analysis of computers as prescribed by the model-independent
framework.)

In Chap. 3 (Resource), we begin to describe the framework. After a discus-
sion of the computational resource of precision (encountered in Chap. 2 in the
context of the factorization systems), we abstract the crucial properties so as
to begin formalization of a general notion of resource. We discuss also specific
examples of resources, pertaining to several different computational paradigms.

In Chap. 4 (Dominance), we continue to describe our complexity frame-
work. We deal, in particular, with the issue of comparison of computers’ effi-
ciency, which ability is implemented using a notion of computers’ overall com-
plexity, which, in turn, is defined in terms of dominance, a criterion that formal-
izes resources’ ‘relevance’ to a computation (to dominance correspond complex-
ity classes, which we introduce and investigate—via inclusion theorems, etc.—in
Chap. 4). However, having introduced a means by which computers’ efficiency
may be compared, we find an inconsistency between the notions behind this
means and certain resources (which, admittedly, are contrived, though are cer-
tainly valid according to the description of Chap. 3): without further restriction,
the formalization of resource begun in Chap. 3, when used in conjunction with
dominance and related notions, leads to undesirable complexity behaviour. We
introduce normality (a property of resources), and stipulate that the resources
with which we work be normal, in order to eliminate some of this unwanted
behaviour.

The ideas introduced in Chaps. 3 and 4 are central and fundamental to
the present work’s model-independent framework of complexity theory; they
constitute the chief theoretical contribution of this DPhil project.

In Chap. 5 (Case Studies), we apply our framework’s theoretical concepts
—notably precision—to several practical case studies, with a view to resolving
controversial aspects thereof; we consider also the extent to which this resolution
is carried out.

In the sixth and final chapter (Discussion), we consider the analogues sug-

7For clarity and unambiguity, we use in this dissertation the verb ‘factorize’ rather than
‘factor’ (and, hence, ‘factorization’ instead of ‘factoring’, etc.), reserving ‘factor’ as a noun.

8We spell the verb ‘analyze’ with a ‘z’ rather than an ‘s’ (even though in the case of
other words we adhere to British rather than United States spelling conventions) because we
wish, so as to be clear and unambiguous, to be able to distinguish this verb’s third-person,
singular, indicative, present-tense form (‘analyzes’) from the plural form (‘analyses’) of the
noun ‘analysis’.

CHAPTER 1. INTRODUCTION 14

gested by our framework of such concepts as cryptography, Kolmogorov com-
plexity and set theory. Further, we view within the context of the framework
various issues surrounding the fundamental nature of computation: complexity’s
inherence in computational tasks (rather than in computers), the delimiting of
a computer from its environment, the existence of an underlying computational
resource, and so on. We gather ideas (from throughout this dissertation) for
future extension of the present project, and make some concluding comments.

Whereas Chaps. 3 and 4 represent the majority of the present project’s the-
oretical contribution, Chap. 5 offers its chief practical application, and Chap. 6
its relationship to foundational issues.

Chapter 2

Motivation

2.1 Introduction

An important and motivating thesis of the present project is that

unconventional computers warrant unconventional complexity analysis.

That is to say that, in analyzing the computational complexity of an uncon-
ventional computer, one cannot apply the techniques of traditional, Turing-
machine-type complexity theory and realistically expect the analysis thereby
performed to be necessarily accurate, meaningful or correct. The standard tools
of complexity theory are by definition suitable for analyzing the standard com-
puters for which they were designed, but there exist, we claim, non-standard
computers that demand markedly different complexity analyses.

In order to justify the above thesis, we discuss in this chapter a computing
system (and an improvement thereon) of which the true computational complex-
ity is not captured by traditional complexity analysis. Specifically, the system
is an analogue/optical computer that factorizes natural numbers1 (we describe
this task below—see Sect. 2.1.1); analysis following the pattern of traditional
complexity theory suggests that the system has polynomial time and space com-
plexity (which, indeed, it does), but we argue that resources other than time
and space are consumed by the system, and that this consumption scales expo-
nentially—we argue, in short, that standard complexity analysis overlooks the
true complexity of the system. More specifically than the above thesis, then,
the content of the present chapter highlights that the failure of conventional
complexity theory to cater for unconventional computers is an issue of resource.

Additionally to the motivational intent of Chap. 2, the chapter serves a
practical purpose: its content offers detailed worked examples of the way in
which computational systems can be derived and analyzed, from the identifica-
tion of a problem of interest (in our case, the notoriously difficult factorization
problem), via both development of a strategy with which to tackle the problem
and implementation thereof as a physical system (we formulate the problem
geometrically with a view to direct, physical instantiation), to complexity anal-
ysis—with respect to all relevant resources—of the system; we hope that this

1In this chapter, we deem 0 not to be a natural number: we define the set N of natural
numbers to be {1, 2, 3, . . .}.

15

CHAPTER 2. MOTIVATION 16

exposition is of use to practitioners of (especially unconventional) computing
when designing/reasoning about their computers.

Note that the detail with which we analyze the complexity of the systems of
the present chapter is necessary in that this detail gives rise to the rigour that
allows us to state (rather than merely to suggest) that there exist systems with
time and space complexity but not precision complexity suggestive of tractability
(from which statement one may derive the thesis presented at the start of this
chapter). This is not to say that the detail is necessary in order broadly to
understand the main, motivational argument of Chap. 2, and in particular the
proofs of the propositions, lemmata, etc. of Sects. 2.2 and 2.3 can safely be
disregarded if broad though not rigorous understanding is the reader’s aim. This
notwithstanding, the detail may also be of instructive use in contributing to the
practical purpose mentioned in the previous paragraph, especially when the
reader’s systems bear similarity in some sense to those of the present chapter.
Furthermore, our detailed complexity analysis answers the question of where
exactly the ‘cheating’ occurs—a perfectly natural and tantalizing question given
the existence of polynomial-time, polynomial-space factorization systems, and
one, therefore, that cannot be ignored.

As a final comment before exploring in detail the present chapter’s systems,
we note that they arguably offer a less clear demonstration of the importance
to complexity analyses of precision than do the systems of Sect. 3.3.2, and offer
less familiarity to the reader than a similar analysis of, say, the soap-bubble
computer of [97]; they are nonetheless included here because of the notorious
difficulty of the factorization problem and the historical fact that the former of
the two systems of this chapter motivates the present DPhil project.

2.1.1 Factorization

The problem of factorization is simple to state—it is that of identifying the
factors of a given natural number—, but, despite being an extremely natural
and well- and long-studied problem, has thus far resisted efficient solution.2

Neither does the lack of such solution stem from a lack of motivation; not only
would an efficient factorization method be of great academic interest, it would
also have profound consequences for, amongst others, cryptography and the
practical applications (internet security, etc.) thereof. We now introduce the
problem more formally in two closely related forms.

The Problems, Function and Decision.

The function problem of factorization (which we informally outline in the pre-
ceding paragraph) is to return the multiset3 of prime factors of a given natural

2This may seem counterintuitive. Our everyday experience tells us that it is easier to
take things apart than to put them back together; thermodynamicists, with their inexorable
increase in entropy (at least in closed systems yet to achieve equilibrium), would only agree.
Yet the ‘putting together’ of natural numbers via multiplication of their prime factors seems
to offer an exception: whilst, given natural numbers a and b, we can efficiently combine them
into their product ab (e.g., via long multiplication, which takes time quadratic and space linear
in the numbers of digits of a and b), it appears to be much more difficult to ‘take apart’ ab so
as to retrieve a and b.

3A multiset is similar to a set, but members may be included more than once; whereas 6,
12 and 36 have the same set (namely, {2, 3}) of prime factors, for example, their multisets

CHAPTER 2. MOTIVATION 17

number; the corresponding decision problem asks whether a given natural num-
ber has a non-trivial4 factor less than a given threshold. Formally, then, the
problems are as follows:

Factorization (function-problem version)

Instance: n ∈ N.
Question: What (as a multiset) are the prime factors of n?

The size of an instance n (which instance we suppose to be presented in standard
place notation, say with base ten) is the number blog10 nc+1 of digits of n. We
may, for complexity-theoretic purposes, use the approximation log10 n to this
number.5

For example, the instance 90 (which has size 2) leads to the answer {2, 3, 3, 5}
since 90 = 2× 32× 5, and the instance 217− 1 (= 131 071, size 6) to the answer{
217 − 1

}
since 217 − 1 is prime.

Factorization (decision-problem version)

Instance: (n, l) ∈ N2, with l ≤ n.
Question: Does there exist a factor a of n such that 1 < a < l?

The size of an instance (n, l) (the coordinates of which we suppose to be pre-
sented in standard place notation, say with base ten) is the number blog10 nc+
blog10 lc + 2 of digits of n and l combined. We may, for complexity-theoretic
purposes, use the approximation log n to this number (this logarithm is a factor
of between one and two away from the sum of the respective logarithms of n and
l: 1 ≤ l ≤ n, whence 0 ≤ log l ≤ log n, whence log n ≤ log n + log l ≤ 2 log n).

For example, the instance (90, 3) (size 3) yields the answer ‘yes’ (since 2|90
and 2 < 3), and the instance

(
217 − 1, 217 − 1

)
(size 12) the answer ‘no’ (since

217 − 1 is prime and so has no non-trivial factors).

The Problems’ Equivalence.

The two problem formulations are equally difficult in the sense that a method
for solving either one yields an ‘essentially equally efficient’ method for solving
the other, as we now make precise.

Proposition 1. From a method for solving Factorization (function) can
be constructed a closely related method for solving Factorization (decision).
The methods’ respective time-complexity functions differ only by a term that is
quadratic in the input size; similarly their space-complexity functions.

({2, 3}, {2, 2, 3} and {2, 2, 3, 3} respectively) of prime factors differ. By uniqueness of prime
factorization and by accommodation in multisets of repeated members, there exists a bijection
between natural numbers and their prime-factor multisets.

4The trivial factors of n ∈ N are 1 and n; all other factors, and only the other factors, are
non-trivial.

5We may simply write log n, rather than log10 n, here. When using O-notation, the base to
which logarithms are taken does not matter: a change of base is equivalent to multiplication
by a constant (which is ignored by O), since logu x = logu v logv x.

CHAPTER 2. MOTIVATION 18

Informally, the method (for Factorization (decision)) that we construct
merely calls the existing method (for Factorization (function)) and checks
the resultant multiset for members that are less than the given limit (namely, l
in the decision problem’s definition).

Proof. Suppose that the method6 M solves the function version of the problem
with time complexity T ∗M and space complexity S∗M (that is, M needs at most
T ∗M (k) units of time (e.g., time steps if M is a Turing machine) and S∗M (k)
units of space (e.g., tape cells if M is a Turing machine) to process an arbitrary
input value of size k).

Consider the following method M ′:

M ′

1. Accept input value (n, l) ∈ N2.
2. Let P be the multiset returned by method M given input n.
3. If the minimal element p0 of P satisfies p0 < l,
4. then return ‘yes’;
5. else, return ‘no’.

This method solves Factorization (decision) since,

• if the answer to Factorization (decision) given input n is ‘yes’—that
is, if n has any factor a such that 1 < a < l—, then n certainly has a
prime factor p such that 1 < p < l (simply let p be any prime factor of a),
and so the minimal prime factor p0 of n satisfies 1 < p0 ≤ p < l, whence
M ′ returns ‘yes’; and,

• if the answer to Factorization (decision) given input n is ‘no’—that
is, if n has no factor a such that 1 < a < l—, then in particular the
minimal prime factor p0 of n does not satisfy 1 < p0 < l (and, of course,
it is not the former inequality 1 < p0 but the latter p0 < l that fails, since
all primes are greater than 1), whence M ′ returns ‘no’.

We consider now the time and space complexity of each line of M ′, supposing
that n has ν digits and that l has λ.

• Line 1, in which the two place-notation natural numbers n and l are
accepted as input, takes time and space linear in the numbers’ combined
length ν + λ; this assumes a time overhead for reading digits, and a space
overhead for storing digits, that are constant—i.e., these costs do not, in
particular, depend upon the position of the digit being read.

• Line 2, in which the multiset P of prime factors of n is found (using
method M) and stored, takes time T ∗M (ν), and uses space S∗M (ν) (in which
space M can be executed and, hence, P calculated) plus ν log2 n digits’
space (in which P may be stored, since P has at most log2 n members

6The method may be an algorithm, a Turing machine implementing such an algorithm,
or a digital computer implementing such a machine; alternatively, it may for example be an
analogue, chemical or quantum system. The model of computation is not important here,
provided that it is endowed with notions of time and space complexity (and virtually all
models are indeed so endowed—see Sect. 3.5.1 Time and Space).

CHAPTER 2. MOTIVATION 19

(since each is at least 2 and their product is n, whence n =
∏

p∈P p ≥∏
p∈P 2 = 2|P | and so log2 n ≥ |P |) of which each has at most ν digits).

• Line 3, in which the minimal member p0 of P is identified and com-
pared with l, may consist of |P | comparisons (each, between two numbers
consisting of O (ν) digits, taking O (ν) time and O (1) space (which lat-
ter can be reused for subsequent such comparisons))—the first |P | − 1 to
identify p0, the last one to compare p0 with l—during which comparisons
the smallest member of P yet considered is stored, requiring O (ν) space.
Again since |P | ≤ log2 n, this line takes time in O (

ν2
)
; it takes space in

O (ν).

• Lines 4 and 5 each take constant time and zero space.

We summarize this analysis in Table 2.1.

Line: Time complexity: Space complexity:
1. O (ν + λ) O (ν + λ)
2. T ∗M (ν) S∗M (ν) +O (

ν2
)

3. O (
ν2

) O (ν)
4. O (1) O (1)
5. O (1) O (1)

Total T ∗M (ν) +O (
ν2 + λ

)
S∗M (ν) +O (

ν2 + λ
)

Table 2.1: A summary of the line-by-line and overall time and space complexity
of method M ′.

Hence, the overall7 time and space complexity of M ′ differs from that of M
only by terms quadratic in the size of the input; this is as claimed.

A specific corollary of Prop. 1 is that a method M for solving Factoriza-
tion (function) in polynomial (degree k ≥ 2) time/space leads to a method
M ′ for solving Factorization (decision) also in polynomial (of degree k)
time/space; another corollary is that a method M that solves Factorization
(function) in exponential time/space leads to M ′ that solves Factorization
(decision) in the same.

Proposition 2. Conversely to Prop. 1, from a method for solving Factor-
ization (decision) can be constructed a closely related method for solving
Factorization (function). The methods’ respective time-complexity func-
tions differ only by a quadratic multiplicative term and a cubic additive term;
similarly their space-complexity functions.

Informally, the method (for Factorization (function)) that we construct
repeatedly finds via binary search the least, as-yet-unfound, prime factor of the
input value n. The existing method (for Factorization (decision)) is called
at each stage of the search so as to determine in which half of the search-space
range (initially {2, 3, 4, . . . , n− 1}) the sought factor lies.

7Note that execution of M ′ follows either the path consisting of lines ‘1, 2, 3, 4’ (if n has a
non-trivial factor less than l) or the path ‘1, 2, 3, 5’ (otherwise); the overall complexity stated
reflects this.

CHAPTER 2. MOTIVATION 20

Proof. Suppose that the method8 N solves the decision version of the problem
with time complexity T ∗N and space complexity S∗N .

Consider the following method N ′:

N ′

1. Accept input value n ∈ N.
2. If n = 1,
3. then return {}.
4. If, given input (n, n), N returns ‘no’, (i.e., ‘If n is prime,’)
5. then return {n}.
6. Let rlow = 2.
7. Let rhigh = n− 1.
8. Repeat:
9. If rlow = rhigh,

10. then return {rlow} ∪N ′
(

n
rlow

)
.

11. Let c =
⌈

rlow+rhigh
2

⌉
.

12. If, given input (n, c), N returns ‘yes’,
13. then set rhigh to c− 1;
14. else, set rlow to c.
15. End ‘repeat’. (i.e., ‘Go to line 8.’)

Note that, at line 10, we use the notation ‘N ′ (x)’ to mean the multiset
returned by N ′ given input x.

The intuitive idea of method N ′ is to find via binary search the least prime
factor p of n and recursively to call the method with input n

p in order to find
the remaining prime factors.

We defer to the lemmata below the proofs of the following statements, which,
together, establish Prop. 2.

• N ′ solves Factorization (function) (Lemma 2).

• N ′ has time complexity in O (
ν2T ∗N (ν) + ν3

)
and space complexity in

O (
ν2S∗N (ν) + ν3

)
(Lemma 3).

A specific corollary of Prop. 2 is that, if N solves Factorization (deci-
sion) in polynomial (say, degree-k) time/space, then N ′ solves Factorization
(function) in polynomial (degree-(max {k + 2, 3})) time/space; another corol-
lary is that, if N requires exponential time/space, then so does N ′.

Lemma 2. N ′ solves Factorization (function).

Proof. First, note that N ′ solves Factorization (function) in the special
cases ‘n = 1’9 and ‘n is prime’ by explicit construction at lines 2/3 and 4/5
respectively.

8We use ‘method’ as in the previous proposition—see Footnote 6.
9Note that the multiset of prime factors of 1 is empty—cf. line 3; this is uniquely consistent

with rules such as ‘X is the multiset of prime factors of k if and only if X ∪{q} is the multiset
of prime factors of qk, for prime q’. Intuitively, much as one expects the total of no numbers
to be 0 (the additive identity), it is equally sensible to take as the product of no numbers the
multiplicative identity 1.

CHAPTER 2. MOTIVATION 21

In other cases (explicitly, when n is composite), N ′ initializes rlow to 2
and rhigh to n − 1; writing p for the least prime factor of n, this initialization
establishes the invariant

rlow ≤ p ≤ rhigh . (2.1)

We claim that this invariant is maintained throughout execution of N ′.
After initialization at lines 6 and 7, variables rlow and rhigh are altered only

at lines 13 and 14.
Suppose that invariant (2.1) holds just before execution of line 13. By the

conditional statement at line 12 and hypothesizing that line 13 is to be executed,
we have that N returns ‘yes’ given input (n, c), i.e., that n has a factor a in the
range {2, 3, 4, . . . , c− 1}. Clearly a ≥ p (by definition of p as the least prime
factor of n), whence p ≤ a ≤ c − 1, so, in reducing rhigh to c − 1 (and leaving
rlow unchanged), execution of line 13 maintains invariant (2.1).

Similarly, if line 14 is about to be executed (and supposing that invari-
ant (2.1) holds), then we have from the conditional statement at line 12 that N
returns ‘no’ given input (n, c), i.e., that n has no factors in {2, 3, 4, . . . , c− 1};
in particular, p 6∈ {2, 3, 4, . . . , c− 1}. So p ≥ c, and, in increasing rlow to c (and
leaving rhigh unchanged), execution of line 14 maintains the invariant.

Therefore invariant (2.1) is maintained throughout execution of N ′.
Consider now the value d := rhigh − rlow; after initialization, d = n − 3.

In each repetition of the ‘repeat’ block (lines 8 – 15) such that d 6= 0 (i.e.,
rhigh 6= rlow, whence line 10 is not executed), exactly one of lines 13 and 14 is

executed: either rhigh becomes c− 1 or rlow becomes c, where c =
⌈

rlow+rhigh
2

⌉
.

Note that, since rlow ∈ N,
⌈
rlow +

1
2

⌉
= rlow + 1 ; (2.2)

similarly, since rhigh ∈ N,
⌈
rhigh − 1

2

⌉
= rhigh . (2.3)

Note also that, since non-execution of line 10 together with invariant (2.1) gives
that rlow < rhigh, and since rlow and rhigh are integers, we have that

rlow ≤ rhigh − 1 . (2.4)

So

rlow

(2.2)
<

⌈
rlow +

1
2

⌉

=
⌈

2rlow + 1
2

⌉

(2.4)

≤
⌈

rlow + rhigh

2

⌉

= c ,

CHAPTER 2. MOTIVATION 22

and

rhigh
(2.3)
=

⌈
rhigh − 1

2

⌉

=
⌈

2rhigh − 1
2

⌉

(2.4)

≥
⌈

rlow + rhigh

2

⌉

= c

> c− 1 ;

so rlow < c and rhigh > c− 1—altering rhigh to c− 1 represents a strict decrease
in rhigh, and altering rlow to c represents a strict increase in rlow; altering one of
rhigh and rlow in this way and leaving the other unchanged (as happens in each
d 6= 0 repetition of the loop) therefore strictly decreases d = rhigh − rlow.

Since d ∈ Z strictly decreases (from a finite initial value) in each of the loop’s
repetitions, but is nonetheless bounded below by 0 (by invariant (2.1)), we have
that N ′ must halt. This happens at line 10 when rlow = rhigh, at which point we
have found the least prime factor p = rlow = rhigh of n (recall invariant (2.1))
and can recursively call the method with argument n

p to find the remaining
prime factors.

Once the penultimate prime factor has been so found, the recursive call is
with prime argument, whence we have termination at line 5.

Thus, the method solves Factorization (function).

Lemma 3. The time complexity T ∗N ′ of N ′ is in O (
ν2T ∗N (ν) + ν3

)
. The space

complexity S∗N ′ of N ′ is in O (
ν2S∗N (ν) + ν3

)
.

Proof. We first analyze the time and space complexity of each line of N ′, sup-
posing that n has ν digits.

• Line 1, in which the place-notation natural number n is accepted as input,
takes time and space linear in ν; this assumes a time overhead for reading
digits, and a space overhead for storing digits, that are constant—i.e.,
these costs do not, in particular, depend upon the position of the digit
being read.

• Line 2, in which n is compared for equality with 1, takes constant time
and space (we check in constant time and space whether the first digit of
n is 1; if so, we check, again in constant time and space, whether there
are no further digits).

• Line 3, in which the empty multiset {} is returned, takes constant time
and space.

• Line 4, in which N is called with argument (n, n) of size ν (recall from
Sect. 2.1.1 The Problems, Function and Decision that we may take as
the size of argument (n, n) the value log n), takes time T ∗N (ν) and space
S∗N (ν).

• Line 5, in which multiset {n} is returned, takes time and space linear in
ν, for similar reasons to line 1.

CHAPTER 2. MOTIVATION 23

• Line 6, in which a variable is assigned the value 2, takes constant time
and space.

• Line 7, in which a variable is assigned the value n − 1, takes time and
space linear in ν, again for similar reasons to line 1.

• Lines 8 and 15, the markers for the start and end of the method’s ‘repeat’
loop, have no time/space overheads (apart from, say, a constant-space
record of line 8’s memory address or similar).

• Line 9, in which rlow and rhigh (both of O (ν) digits) are compared for
equality, takes time O (ν) and space O (1); cf. line 3 of M ′ above.

• Line 10 returns the partial answer {rlow} (in time and space linear—recall
the analysis of line 5—in log rlow ∈ O (ν)) and calls method N ′ with input

n
rlow

(in time at most T ∗N ′ (ν) and space at most S∗N ′ (ν), since it can require
no more time/space for N ′ to factorize m than to factorize qm where q is
the least prime factor of qm, because the method’s respective executions
differ only in factor q’s having to be found in the latter instance).

• Line 11, in which a variable is assigned the value
⌈

rlow+rhigh
2

⌉
where

rlow, rhigh ∈ O (n), takes time and space linear in ν (notably, digit-by-
digit addition requires linear time and space).

• Line 12, in which N is called with argument (n, c) (where c ≤ rhigh < n)
of size ν, takes time at most T ∗N (ν) and space at most S∗N (ν).

• Lines 13 and 14, in each of which a variable is assigned the value c − 1
or c (which values are bounded above by n), take time and space linear
in ν, for similar reasons to line 7.

We summarize this analysis in Table 2.2.
Having considered the line-by-line complexity of N ′, we turn now to the

method’s overall complexity. Note that, most crucially, the depth of recursion
is limited: given initial input n and having identified least prime factor p ≥ 2
of n, the method calls itself with new argument n

p ≤ n
2 . The kth recursive call,

then, is made with input n
p1p2p3...pk

≤ n
2k for some primes pi ≥ 2; further, each

input is a natural number, and the method terminates at line 5 when a recursive
call is made with prime input—this necessarily happens before the (log2 n)th
recursive call, at which point the call’s input value would be at most n

2log2 n = 1.
Therefore,

there are made O (ν) recursive calls;

we consider now the time and space complexity of each such.
Consider the variable d := rhigh − rlow. After initialization of rlow and rhigh

at lines 6 and 7, d = n− 3. In each repetition of the repeat loop (lines 8 – 15),
either d = 0 (in which case a recursive call is made) or one of rlow and rhigh

is updated, either (a) the former to c =
⌈

rlow+rhigh
2

⌉
or (b) the latter to c − 1.

Case (a) represents a decrease of d by d
2 if rlow and rhigh are of the same parity,

and by d+1
2 ≥ d

2 otherwise; and (b) represents a decrease of d by d+2
2 ≥ d

2 if

CHAPTER 2. MOTIVATION 24

Line: Time complexity: Space complexity:
1. O (ν) O (ν)
2. O (1) O (1)
3. O (1) O (1)
4. T ∗N (ν) S∗N (ν)
5. O (ν) O (ν)
6. O (1) O (1)
7. O (ν) O (ν)
8. O (1) O (1)
9. O (ν) O (1)

10. T ∗N ′ (ν) +O (ν) S∗N ′ (ν) +O (ν)
11. O (ν) O (ν)
12. T ∗N (ν) S∗N (ν)
13. O (ν) O (ν)
14. O (ν) O (ν)
15. O (1) O (1)

Table 2.2: A summary of the line-by-line time and space complexity of method
N ′.

rlow and rhigh are of the same parity, and by d+1
2 ≥ d

2 otherwise.10 In any case,
the value of d after k repetitions of the loop is at most 1

2k of its initial value,
namely, of n − 3; after log2 n repetitions, then, d ≤ n−3

2log2 n = n−3
n < 1, and,

since d (the difference of two natural numbers) is, throughout, an integer, d
becomes 0 (and, hence, N ′ has found another prime factor and will perform a
recursive call) after at most log2 n ∈ O (ν) repetitions of the repeat loop. Each
pass through the loop that does not perform a recursive call at line 10 follows
the path ‘9, 11, 12, 13’ or ‘9, 11, 12, 14’; each takes time T ∗N (ν) + O (ν) and
space S∗N (ν) +O (ν).

The requisite repetitions to find a prime factor (that is, to perform one
recursive call), then, take time O (

νT ∗N (ν) + ν2
)

and space O (
νS∗N (ν) + ν2

)
.

Consequently, since there are O (ν) factors to find, the overall time com-
plexity of N ′ is in O (

ν2T ∗N (ν) + ν3
)

and the overall space complexity of N ′ in
O (

ν2S∗N (ν) + ν3
)

(this includes also the ‘initialization path’ ‘1, 2, 4, 6, 7’ for
composite n).

What we have seen is that the two versions of the factorization problem are
equivalent in the sense that efficient (i.e., polynomial-resource) solution of either
leads to efficient solution of the other.

We discuss in Chap. 3 the concept of resource in the context of computational
complexity, arguing in particular that, especially when considering unconven-
tional computers, consideration should be made of unconventional resources

10We make this explicit. (a) If rlow and rhigh are of the same parity, then d is updated from

rhigh−rlow to rhigh−c = rhigh− rlow+rhigh
2

=
rhigh−rlow

2
; else, d is updated from rhigh−rlow

to rhigh−c = rhigh− rlow+rhigh+1

2
=

rhigh−rlow−1

2
. (b) If rlow and rhigh are of the same parity,

then d is updated from rhigh − rlow to c − 1 − rlow =
rlow+rhigh−2

2
− rlow =

rhigh−rlow−2

2
;

else, d is updated from rhigh − rlow to c− 1− rlow =
rlow+rhigh−1

2
− rlow =

rhigh−rlow−1

2
.

CHAPTER 2. MOTIVATION 25

(rather than of time and space exclusively). Of interest in relation to this is
that our method of proof of the equivalence of the two factorization problems—
whereby we exhibit an efficient method for solving one given the ability to solve
efficiently the other—is sufficiently general to guarantee preservation not only
of time- and space-efficiency, but also of general resource-efficiency; the key ob-
servation to this end is that the processes combined with method M so as to
produce M ′, and with N so as to produce N ′, are implementable by Turing
machine, which implementation incurs only time and space costs. We formalize
this in the following chapter (see Sect. 3.7.1), after our having introduced the
general notion of resource.

Complexity of Factorization.

We see above that factorization as a decision problem is in a certain sense as
hard as (and no harder than) its function-problem incarnation; how hard, in
absolute rather than relative terms, are these problems?

First, it is clear that factorization (let us consider its decision-problem form)
is in NP. Given an instance (n, l) that yields the answer ‘yes’, we have that there
exists a factor a of n such that 1 < a < l. A polynomially verifiable certificate
for this instance, then, is given by a itself: one can confirm (via Turing machine)
in polynomial time and space that a divides n.

Secondly, the problem is in co-NP. We recall from [108] that primes have
polynomially verifiable certificates for primality. Hence, a certificate for a ‘no’
instance (n, l) of Factorization (decision) is provided by the multiset of
prime factors of n together with primality certificates for these factors: it can
be confirmed using only polynomial time and space that the product of the
multiset’s members is n, that each member is prime (via its primality certificate)
and that each member is at least l.

We see, then, that

factorization is in NP ∩ co-NP.

Beyond this, disappointingly little is known.11 The problem certainly seems
difficult, however: we note from [41] that the run-time required to execute the
best, known, Turing-machine-style methods grows as an exponential function
of the number of digits of the value to be factorized;12 this exponential time
complexity renders computationally infeasible the factorization (via Turing ma-
chine) of numbers beyond a certain size. So, whilst Factorization (decision)
is not known—is, further, suspected not13—to be NP-hard, neither do we expect
an imminent, efficient algorithm.

Factorization (decision) appears not to be in P, then, as is suggested by
the myriad mathematician-millennia that have failed to furnish efficient solution.
The apparently likely situation in which factorization falls strictly between P

11As an aside, what is known (and has been only comparatively recently: the proof came in
2004 [4]) is that ascertaining primality or otherwise (though not necessarily finding factors)
requires only polynomial time, and therefore polynomial space (since a Turing machine’s space
usage is bounded above by its run-time—see Footnote 109 of Chap. 3).

12Though [41] is, at time of writing, approximately a decade old, this exponential run-time
remains state-of-the-art.

13In particular, if the problem were NP-complete (or, for that matter, co-NP-complete),
then we should have the unlikely equality NP = co-NP.

CHAPTER 2. MOTIVATION 26

and NP-completeness is, furthermore, perfectly possible in the sense that we
have the following: Theorem 14.1 of [103] gives that,

“[i]f P 6= NP, then there is a language in NP which is neither in P
nor is it NP-complete”

—NP cannot fall into a dichotomy of P on the one hand and the NP-complete
on the other.

Whilst factorization via Turing machine seems difficult at a fundamental,
theoretical level, then, the best, known, quantum-computing solutions to the
problem are technologically hampered during implementation. Notably, Shor’s
quantum algorithm [118]14, despite having run-time polynomial in the size of
the input value, has yet to factorize in practice a number greater than 15.15

Much faith has been placed in the difficulty of factorization (regardless of the
computational model employed to tackle it). As a telling example, the extremely
widely used Rivest-Shamir-Adleman (RSA) cryptographic system, introduced16

in [112], relies for its security upon this apparent difficulty. We defer details of
the system (e.g., to [132]), but note here that, crucially, the ability efficiently to
factorize implies the ability efficiently to decode RSA-encrypted data without
knowledge of the private key. The problem of factorization, then, has evaded
efficient solution despite not only its millennia as a famous and natural math-
ematical problem, but also its important and incentive role in securing a vast
number of electronic communications.

Aside. As a contextual aside, note that number theory, the mathematical field
containing as a (comparatively tiny, distinctly proper) subset the study of fac-
torization, captures much that is difficult about computation. Specifically, arbi-
trary Turing-machine computations can be encoded in diophantine equations in
such a way as to imply that the (undecidable) Halting problem (see Sect. 1.2.1
Halting Problem) is no more difficult than the problem of deciding whether a
given diophantine equation has a solution (see [48] for details). As [48] puts it,

“this [reduction from Hilbert’s Tenth problem to the Halting prob-
lem] proves that number theory is hard”.

See also Sect. 5.3.
14We note as an aside that essentially the only use made by Shor’s algorithm of non-classical

(specifically, quantum) phenomena is in identifying the period of a certain periodic function
(f , say); all else can, without impacting the system’s computational complexity, be undertaken
by a Turing-machine ‘harness’ supporting this non-classical process—cf. Remark 16. Further,
we recall from [124] that slime-mould organisms can retain the period of a regular stimulus,
such that provision of a later (possibly out-of-phase) stimulus (s, say) causes a response (r)
exactly one period later. One naturally wonders, then, whether the slime-mould experiment
can be modified such that the ‘training stage’—wherein the period is imparted to the mould—
is carried out by way of supplying not regular stimuli but rather some encoding of function
f ; this would allow the period of f to be found by later supplying stimulus s and timing the
delay until response r. Since period-finding is the only non-classical task performed during
Shor’s algorithm, this would lead to a slime-mould rather than quantum implementation of
Shor’s factorization method. We defer to future work the exact details, and the complexity
analysis, of the system.

15As an indication of the technological challenge faced here, we recall from [86] that, whilst
digital computers can factorize numbers of 200 digits, a similar feat in the quantum-computing
realm would require the successful implementation of teraqubits! (Recall that a quantum bit
(or qubit) is the quantum analogue of a classical bit; see e.g., [99] for a formal definition.)

16In fact, only publicly was the system introduced in 1978 [112]; an equivalent form was
discovered by Clifford Cocks at GCHQ in 1973.

CHAPTER 2. MOTIVATION 27

Given the apparent difficulty of factorizing, especially within Turing and
quantum models of computation, we naturally ask whether other models17 (we
here consider, specifically, analogue computers) offer a more efficient solution
to the problem.18 It is this question that motivates the analogue systems of
Sects. 2.2 and 2.3.

2.2 Original Analogue Factorization System

We present an analogue system that factorizes natural numbers. Given input
n, output from the system takes the form of all pairs of (not necessarily prime)
natural numbers with product n, given which it is time- and space-efficient to
find, via Turing machine, the prime factors of n, and, hence, solve Factor-
ization (function)19; thus, the problem solved by the system—specifically,
finding factor pairs—is exactly as difficult as the two above-described formula-
tions (function and decision) of the factorization problem.

The system is the subject of a United States patent [29], held by IBM and
with sole inventor Ed Blakey; it is defined and discussed in [19], and presented
(as in the current dissertation) as a motivating example in [18, 24]. Much of
Sect. 2.2 is based on these cited works.

(The ‘original’ of this section’s title is to distinguish the system from the
subsequent, ‘improved’ version discussed in Sect. 2.3.)

2.2.1 Description

We describe now the original analogue factorization system. A clearly de-
sirable property is that the system perform more efficiently than its digital-
computer counterparts;20 this is not possible by simply re-implementing an
existing, Turing-machine-style algorithm’s approach as an unconventional (e.g.,
analogue) computer. For example, a brute-force trial of each natural number
in turn until a factor is found is, when performed by an analogue computer,
still going to be subject to the exponential time complexity from which a corre-
sponding digital computer would suffer; neither, we suggest, can such concerns
be bypassed via relativistic computation or similar—see Sect. 3.6.1.

We note more generally that efficient use of unconventional-computing tech-
niques is more likely to be a consequence of exploitation of ‘what the computing

17We recall from [135] that, whilst quantum physics seemingly offers super-Turing computa-
tional efficiency, the availability or otherwise of such in classical physics is also an important
issue.

18To those who like to read a whodunit’s last page first, we say this: the analogue paradigm
seems not in fact to facilitate efficient factorization (more’s the pity), but the inefficiencies
encountered do at least warrant study and suggest improvements upon the way in which
complexity analyses are undertaken. We discuss this in due course.

19Explicitly, given all factors—prime or otherwise—of n, one can with only polynomial
overhead identify the least, non-trivial such (p, say), which is necessarily prime; the analogue
method can then be employed recursively with input n

p
. The resultant system solves Fac-

torization (function); it has polynomial time/space complexity if and only if the analogue
subsystem does (cf. line 10 of N ′ in the proof of Prop. 2).

20We see below that this is in some respects (specifically in terms of time complexity)
achieved, though other concerns render the system unsuitable for practical use. That these
concerns are indeed ‘other’—that they do not form part of a standard complexity analysis—is
our indicator that unconventional computers warrant unconventional complexity analysis, and
our motivation for the complexity framework presented in the current project.

CHAPTER 2. MOTIVATION 28

paradigm naturally wants to compute’ than of a contrived attempt to imple-
ment a Turing-machine-style solution in the paradigm.21 If, for instance, a ball
rolling down a constant incline naturally computes squares (in that the distance
rolled is proportional—with a discoverable constant of proportionality—to the
square of the time elapsed), then it appears counterproductive to implement a
squaring device by, say, having the ball roll along a network of channels isomor-
phic to the network of logic gates in a Turing-machine-style squarer; this latter
approach seems not only counterproductive and destined not to improve upon
the complexity of Turing-machine solutions, but also unilluminating with regard
to both the squaring problem itself and the strengths of the unconventional (in
this case, rolling-ball) paradigm.

Consequently, we should rather implement our analogue system in such a
way that the relevant, naturally occurring phenomena are exploited than im-
plement a ‘digital-computer-style’ algorithm via (incidentally and unadvanta-
geously) analogue instantiations of logic gates, etc. This is made possible by
the observation that

the factorization problem has a geometric formulation,

which we may implement comparatively directly as an analogue computer.

Geometric Formulation.

In this section, we reformulate as a geometric problem the numeric problem of
factorization. This is possible because factorization of a natural number n may
be restated as the search for integer solutions x and y to the equation y = n

x .

Proposition 3. The task of finding factors of a given natural number n is
equivalent22 to that of finding points that lie both in the integer grid Z2 and on
the curve y = n

x .

Proof. A point (a, b) ∈ R2 is on the curve y = n
x if and only if n = ab; the point

is in the grid Z2 if and only if a, b ∈ Z. Hence, (a, b) is both on the curve and in
the grid if and only if a and b offer a factorization, into two integers, of n.

See Fig. 2.1 for an example (specifically, n = 6) of a curve y = n
x and its

intersection with the integer grid.

Remark 1. The factorization of n corresponding to a point in the grid and on
the curve is not necessarily—in fact, is rarely—a full decomposition of n into
primes (it may even be no more informative than to demonstrate that n = 1.n
or that n = n.1). However, each prime factor p of n has a corresponding point(
p, n

p

)
in the grid and on the curve: all prime factors are represented by at

fewest one such point each.

Remark 2. Since, by hypothesis, n is positive (we suppose, in particular, that
n ∈ N), the curve y = n

x exists only in quadrants x, y ≥ 0 and x, y ≤ 0; further,
since only positive factors of n (notably, of interest amongst these are the prime
factors) are sought, only the former quadrant need be considered.

21We recall from [122] that Susan Stepney shares this view.
22The equivalence here is in the sense of computability rather than complexity: if one is

able to find such points, then one is able to find factors (and, less crucially for our purposes,
vice versa); we say nothing yet about these processes’ efficiency.

CHAPTER 2. MOTIVATION 29

Figure 2.1: The curve y = n
x , with natural-number points thereon highlighted.

In this example, n = 6.

Similarly, by the symmetry of the curve and of the integer grid—specifically,
because each is symmetric about the line y = x—only one octant within this
quadrant need be considered (since (a, b) is both on the curve and in the grid if
and only if (b, a) is, and both points correspond, due to commutativity of mul-
tiplication, to the same partial factorization n = ab). Accordingly, we consider
only the octant 0 ≤ x ≤ y.

Proposition 4. The curve y = n
x , z = 0 (which lies in R3) can be expressed

as the intersection of the (x, y)-plane and the cone23 that consists of those lines
that both pass through the point

(
0, 0,

√
2n

)
and make an angle of π

4 of a radian
with the line y = x, z =

√
2n.

Proof. Let C be the cone consisting of those lines that both pass through the
point P :=

(
0, 0,

√
2n

)
(the vertex of the cone) and make an angle of π

4 of a
radian with the line y = x, z =

√
2n (call this line L).

Let A := (a, b, 0) ∈ R3 be an arbitrary point both on the cone C and in
the (x, y)-plane; let B be the point

(
xA, xA,

√
2n

)
—hence, B is on L—, where

xA = (a2+b2+2n)
1
2

2 .
We show first that B is equidistant from A and P .
Note that

|AP | =
(
a2 + b2 + 2n

) 1
2 (2.5)

= 2xA

=
√

2
(
x2

A + x2
A + 0

) 1
2

=
√

2 |BP | .

23That y = n
x
, z = 0 is the intersection of the (x, y)-plane and some cone comes as no

surprise: y = n
x

is a hyperbola, and, a fortiori, a conic section, which fact motivates the
geometric formulation presented here.

CHAPTER 2. MOTIVATION 30

Note further that, since A is on C and B on L, the definition of C gives that

∠APB =
π

4
, (2.6)

where 4XY Z denotes the triangle with vertices at X, Y and Z, and ∠XY Z
denotes the angle interior to 4XY Z at vertex Y (hence, 0 ≤ ∠XY Z ≤ π).

Applying the cosine rule24 to ∠APB in 4ABP , then,

|AB|2 = |AP |2 + |BP |2 − 2 |AP | |BP | cos ∠APB

(2.6)
= |AP |2 + |BP |2 − 2 |AP | |BP | cos

π

4

= |AP |2 + |BP |2 − 2 |AP | |BP | 1√
2

(2.5)
= 2 |BP |2 + |BP |2 − 2

√
2 |BP |2 1√

2
= |BP |2 .

By non-negativity of |AB| and |BP |, then,

|AB| = |BP | , (2.7)

as claimed.
Hence,

(
a2 + b2 + 2n

) 1
2

√
2

=
|AP |√

2
(2.5)
= |BP |

(2.7)
= |AB|

=
(
(a− xA)2 + (b− xA)2 + 2n

) 1
2

=
(
a2 + b2 − 2 (a + b)xA + 2x2

A + 2n
) 1

2 .

Multiplying each side by
√

2,
(
a2 + b2 + 2n

) 1
2 =

(
2

(
a2 + b2 − 2 (a + b)xA + 2x2

A + 2n
)) 1

2 .

Squaring,

a2 + b2 + 2n = 2
(
a2 + b2 − 2 (a + b)xA + 2x2

A + 2n
)

.

Subtracting a2 + b2 + 2n and recalling that xA = (a2+b2+2n)
1
2

2 ,

0 = a2 + b2 − 4 (a + b) xA + 4x2
A + 2n

= a2 + b2 − 2 (a + b)
(
a2 + b2 + 2n

) 1
2 +

(
a2 + b2 + 2n

)
+ 2n

= 2a2 + 2b2 + 4n− 2 (a + b)
(
a2 + b2 + 2n

) 1
2 .

24Recall the cosine rule for ∠XY Z in 4XY Z:

|XZ|2 = |XY |2 + |Y Z|2 − 2 |XY | |Y Z| cos ∠XY Z .

CHAPTER 2. MOTIVATION 31

Dividing by 2 and rearranging,

a2 + b2 + 2n = (a + b)
(
a2 + b2 + 2n

) 1
2 .

Dividing by
(
a2 + b2 + 2n

) 1
2 (which is valid since a2 and b2 are non-negative

and n is positive), (
a2 + b2 + 2n

) 1
2 = a + b .

Squaring,

a2 + b2 + 2n = (a + b)2

= a2 + b2 + 2ab .

Hence, ab = n, and so

A = (a, b, 0), an arbitrary point both on the cone C and in the (x, y)-plane, is
on the curve y = n

x , z = 0.

Conversely, let D :=
(
d, n

d , 0
) ∈ R3 be an arbitrary point on the curve y = n

x ,
z = 0. Let E be the point

(
xD, xD,

√
2n

)
—E is on L, hence—, where xD = d2+n

2d
(valid since d, the denominator of the y-coordinate of D, is non-zero). Then

|DE| =

((
d− d2 + n

2d

)2

+
(

n

d
− d2 + n

2d

)2

+ 2n

) 1
2

=

((
d2 − n

2d

)2

+
(

n− d2

2d

)2

+ 2n

) 1
2

=

(
2

((
d2 − n

2d

)2

+ n

)) 1
2

=
(

2
(

d4 − 2nd2 + n2

4d2
+

4nd2

4d2

)) 1
2

=
(

2
(

d4 + 2nd2 + n2

4d2

)) 1
2

=

(
2

(
d2 + n

2d

)2
) 1

2

=
d2 + n√

2d
,

|EP | =
(
x2

D + x2
D + 0

) 1
2

=
√

2xD

=
d2 + n√

2d
,

CHAPTER 2. MOTIVATION 32

and

|DP | =
(

d2 +
(n

d

)2

+ 2n

) 1
2

=
(

d4 + n2 + 2nd2

d2

) 1
2

=
d2 + n

d
.

Hence,

|DE| = |EP | = 1√
2
|DP | , (2.8)

and so the cosine rule applied to ∠DPE in 4DEP gives that

∠DPE = cos−1

(
|DP |2 + |EP |2 − |DE|2

2 |DP | |EP |

)

(2.8)
= cos−1

(
|DP |2 + 1

2 |DP |2 − 1
2 |DP |2

2 |DP | 1√
2
|DP |

)

= cos−1 1√
2

=
π

4

(where the final equality holds since 0 ≤ ∠DPE ≤ π—recall that the ‘∠’ no-
tation denotes angles interior to triangles); ∠DPE—and, hence, the angle be-
tween DP and L, since E and P are on L—is π

4 . Thus

D, an arbitrary point on the curve y = n
x , z = 0, is both on the cone C and in

the (x, y)-plane,

as required.

The physical implementation, which we now discuss, of the factorization
method exploits the facts that factorization can be reformulated as the search
for integer points on the curve y = n

x (Prop. 3) and that this curve can be
expressed as the intersection of a cone and a plane (Prop. 4).

Physical Implementation.

The Integer Grid.

Definition 2 (in which we implement the integer grid). Let n be the natural
number to be factorized; assume that n is odd—see Remark 3. Let ε be a small,
positive, fixed real number (0 < ε ¿ 1).25

1. Let M1 be a parabolic mirror, reflective on its concave side, occupying the
curve

{ (
x,− 1

2(1+ε)x
2 + x + (1 + ε) , 0

)
∈ R3

∣∣∣ 0 ≤ x ≤ 1
}

.

25In fact, we stipulate that ε ≤
√

3−1
2

= 0.366 . . . for our convenience below.

CHAPTER 2. MOTIVATION 33

2. Let M2 be a plane mirror, reflective on its x < y side, occupying the line
segment

{
(x, x, 0) ∈ R3

∣∣ 0 ≤ x ≤ 1
}
.

3. Let M3 be a plane mirror, reflective on its x > 0 side, occupying the line
segment

{
(0, y, 0) ∈ R3

∣∣ 0 ≤ y ≤ 1
}
.

4. Let S be a source at (1 + ε, 1 + ε, 0)Footnote 26 of sinusoidal, transverse-
wave radiation with wavelength λ := 2

n ; suppose that S is shielded such
that its radiation stays close to the plane z = 0.

5. Let B be a black body that absorbs radiation arriving from S and that
occupies the region

{
(x, y, 0) ∈ R3

∣∣ 1 ≤ x ≤ y < 1 + ε
}
.

See Fig. 2.2.

Figure 2.2: The layout of the apparatus that implements the integer grid (see
Definition 2). Note that the value of ε has for clarity been exaggerated; it is
shown here (and in relevant subsequent figures) as being approximately 1

5 , much
larger than its actual value.

Remark 3. We assume that the number n to be factorized is odd.27 This is be-
cause, for convenience, we implement the reduced grid

{
(x, y)

∣∣ x, y, x+y
2 ∈ Z}

(that is, pairs (x, y) of integers where the parity of x is that of y) instead of the
full grid Z2 = { (x, y) | x, y ∈ Z } mentioned in Sect. 2.2.1 Geometric Formula-
tion. Any factorization of n (which is odd), then, into natural numbers x and y
will be such that x and y are both odd, so this reduced grid suffices.

Further, consideration need be made only of that part of the reduced grid
with 0 ≤ x ≤ y ≤ n (since no factor of n is greater than n, and by Remark 2);
only this part of the grid is implemented (see also Remark 7).

26S lies, therefore, at the focus of the parabola of which M1 is part.
27Should a factorization of an even number be required, it is Turing-computationally trivial

iteratively to divide by 2 until an odd number—which can be factorized as described here—is
obtained. Since both testing for parity and division by 2 are polynomially achievable, and
since the exponent of 2 in the prime factorization of n cannot exceed log2 n, the problems of
natural-number factorization and odd-number factorization are equally difficult in the sense
of Sect. 2.1.1 The Problems’ Equivalence.

CHAPTER 2. MOTIVATION 34

Remark 4. Since the wavelength 2
n of radiation from S depends upon n, its being

set forms part of the computation’s input process. More generally, a physical
computing system will have manipulable parameters, which the user sets to
values that encode his intended input value—recall Sect. 1.2.1 Unconventional
Computation.

Proposition 5. Radiation incident on M1 from S is reflected by M1 as a beam
of waves parallel to the y-axis, in the range 0 ≤ x ≤ 1 (which is entirely spanned
by such waves), and travelling in the direction of decreasing y.

Proof. (Readers for whom it suffices to note that S sits at the focus of the
parabola containing M1—recall Footnote 26—, that this parabola is symmetric
about a line parallel to the y-axis—namely, x = 1 + ε, z = 0—, and that the
projection of M1 onto the x-axis is the interval [0, 1] may skip this proof.)

Since the region
{

(x, y, 0) ∈ R3
∣∣∣ y < − 1

2(1+ε)x
2 + x + (1 + ε)

}
under the

parabola containing M1 is convex (this region is shown shaded in Fig. 2.3),
since S lies in this region, and since no point of B lies on a line between S and
any point on M1 (because the line y = 1 + ε, z = 0, which passes through S,
separates B and M1), there is radiation from S incident on each point of M1.

Figure 2.3: The region
{

(x, y, 0) ∈ R3
∣∣∣ y < − 1

2(1+ε)x
2 + x + (1 + ε)

}
(shaded)

under the parabola containing M1. The layout of Fig. 2.2 is reproduced for
context.

Consider the radiation incident on an arbitrary point A of M1; say A =(
a,− 1

2(1+ε)a
2 + a + (1 + ε) , 0

)
with 0 ≤ a ≤ 1. See Fig. 2.4 for the layout of A

and other constructions (tA, nA, uA, T and S′) used in this proof.
The gradient of the curve y = − 1

2(1+ε)x
2 + x + (1 + ε) is given by y′ =

− 1
1+εx + 1, which at A is 1 − a

1+ε , so the tangent tA at A to the curve has

equation y =
(
1− a

1+ε

)
x + a2

2(1+ε) + 1 + ε, z = 0 and the normal nA at A to

the curve has equation y =
(

1+ε
a−1−ε

)
x + a + 1 + ε + a(1+ε)

1+ε−a − a2

2(1+ε) , z = 0. The
radiation from S incident on A is reflected along the line passing through the
reflections in nA of S and of A; this is necessary for the radiation’s angles of
incidence on and reflection in M1 to be equal.

Let uA be the line parallel to tA and passing through S; this has equation y =(
1− a

1+ε

)
x+a, z = 0. Let T be the point on nA and uA. By construction (and,

specifically, since nA and uA are perpendicular and since uA passes through S),
T is the midpoint between S and the reflection in nA of S (call this reflection

CHAPTER 2. MOTIVATION 35

Figure 2.4: The layout of constructions used in the proof of Prop. 5.

S′). In particular, letting Px denote the x-coordinate of a point P , Tx is the
mean of Sx and S′x; therefore,

S′x = 2Tx − Sx . (2.9)

Recall from point 4 of Definition 2 that

Sx = 1 + ε . (2.10)

Tx is the value of x for which y =
(
1− a

1+ε

)
x + a, z = 0 (i.e. uA) meets

y =
(

1+ε
a−1−ε

)
x + a + 1 + ε + a(1+ε)

1+ε−a − a2

2(1+ε) , z = 0 (i.e. nA); that is, Tx is such

that
(
1− a

1+ε

)
Tx + a =

(
1+ε

a−1−ε

)
Tx + a+1+ ε+ a(1+ε)

1+ε−a − a2

2(1+ε) . Rearranging,

CHAPTER 2. MOTIVATION 36

we have that

Tx =
(

a + 1 + ε +
a (1 + ε)
1 + ε− a

− a2

2 (1 + ε)
− a

)
(2.11)

÷
(

1− a

1 + ε
− 1 + ε

a− 1− ε

)

=
(

1 + ε +
a (1 + ε)
1 + ε− a

− a2

2 (1 + ε)

)
÷

(
1− a

1 + ε
+

1 + ε

1 + ε− a

)

=
2 (1 + ε− a) (1 + ε)2 + 2a (1 + ε)2 − a2 (1 + ε− a)

2 (1 + ε− a) (1 + ε)

× (1 + ε− a) (1 + ε)
(1 + ε− a) (1 + ε)− a (1 + ε− a) + (1 + ε)2

=
2 (1 + ε− a) (1 + ε)2 + 2a (1 + ε)2 − a2 (1 + ε− a)
2 (1 + ε− a) (1 + ε)− 2a (1 + ε− a) + 2 (1 + ε)2

=
(
2 + 4ε + 2ε2 + 2ε + 4ε2 + 2ε3 − 2a− 4εa

− 2ε2a + 2a + 4εa + 2ε2a− a2 − εa2 + a3
)

÷ (
2 + 2ε + 2ε + 2ε2 − 2a− 2εa− 2a− 2εa + 2a2 + 2 + 4ε + 2ε2

)

=
2 + 6ε + 6ε2 + 2ε3 − a2 − εa2 + a3

2 (2 + 4ε + 2ε2 − 2a− 2εa + a2)
.

Hence,

S′x
(2.9)
= 2Tx − Sx

(2.11, 2.10)
=

2 + 6ε + 6ε2 + 2ε3 − a2 − εa2 + a3

2 + 4ε + 2ε2 − 2a− 2εa + a2
− 1− ε

=
(
2 + 6ε + 6ε2 + 2ε3 − a2 − εa2 + a3 − 2− 4ε− 2ε2 + 2a

+2εa− a2 − 2ε− 4ε2 − 2ε3 + 2εa + 2ε2a− εa2
)

÷ (
2 + 4ε + 2ε2 − 2a− 2εa + a2

)

=
−2a2 − 2εa2 + a3 + 2a + 4εa + 2ε2a

2 + 4ε + 2ε2 − 2a− 2εa + a2

=
a

(
2 + 4ε + 2ε2 − 2a− 2εa + a2

)

2 + 4ε + 2ε2 − 2a− 2εa + a2

= a .

So S′x = Ax = a, and the line of the reflected radiation passes through points A
and S′ (which are distinct, being separated by the same distance as are A and
S). Hence, the reflected radiation passes along the line x = a, z = 0 (parallel
to the y-axis), from A towards S′—i.e., with y decreasing—, as required.

Further, since each point on M1 has incident radiation (recall the second
paragraph of this proof), the range 0 ≤ x ≤ 1 is entirely spanned by reflected
waves.

Remark 5. Radiation from S not incident on M1 is not of interest here; it is
either absorbed by B or completely leaves the apparatus.

CHAPTER 2. MOTIVATION 37

Proposition 6. The beam described in Prop. 5 is reflected by M2 to form a
beam parallel to the x-axis, in the range 0 ≤ y ≤ 1 (which is entirely spanned
by the reflected beam), and travelling in the direction of decreasing x.

Proof. By Prop. 5, the part of the incoming beam incident on an arbitrary point
A := (a, a, 0) (with 0 ≤ a ≤ 1) of M2 travels to A along the line x = a, z = 0,
with y decreasing. This is reflected by M2, which sits at an angle of π

4 to the
x- and y-axes, along the line y = a, z = 0, with x decreasing.

Further, the reflected beam spans the range 0 ≤ y ≤ 1 since, by Prop. 5, the
incoming beam spans 0 ≤ x ≤ 1.

Proposition 7. Radiation incident on M3 from S (via M1 and M2) is reflected
by M3 back along itself, producing a standing wave.

Proof. By Prop. 6, radiation reaches a point A := (0, a, 0) (with 0 ≤ a ≤ 1) of
M3 by travelling along the line y = a, z = 0, with x decreasing. Since this line is
parallel to the x-axis and M3 to the y-axis (and since both are within the (x, y)-
plane), the incident ray is normal to the mirror and is reflected along itself. The
nature of the standing wave thus produced is described in Prop. 8.

Remark 6 (in which we summarize Props. 5, 6 and 7). A ray from S that is
of interest (that falls, that is, on mirror M1 rather than leaving the apparatus
or being absorbed by B) meets M1 at the point

(
a,− 1

2(1+ε)a
2 + a + (1 + ε) , 0

)

for some 0 ≤ a ≤ 1 (conversely, each such a has a corresponding ray). It is then
reflected by M1 vertically down to (a, a, 0), where M2 reflects it horizontally
across to (0, a, 0). M3 then reflects the ray back along itself via M2 and M1 to
S, setting up a standing wave, which is described below. See Fig. 2.5 for the
route of propagation of a sample ray.

Figure 2.5: The path of a ray propagating from S via the three mirrors Mi back
to S.

CHAPTER 2. MOTIVATION 38

Proposition 8. In the triangular region R :=
{

(x, y, 0) ∈ R3
∣∣ 0 ≤ x ≤ y ≤ 1

}
,

the interference pattern produced by the standing waves detailed above is such
that a point (a, b, 0) in R is at maximum amplitude (specifically, four times the
amplitude of the original radiation from S) if and only if na and nb are integers
of the same parity.

(By way of example, Fig. 2.6 shows these points of maximal wave activity
within the region R in the case n = 9.)

Figure 2.6: The region R, and the points—shown as dots—of maximal wave
activity therein (in this example, n = 9).

Proof. (For brevity, we define the function f : [0, 1] → R by

f : x 7→ − x2

2 (1 + ε)
+ x + 1 + ε .

Therefore, parabolic mirror M1 occupies the curve { (x, f (x) , 0) | 0 ≤ x ≤ 1 },
and the Euclidean distance between the points

(
x,− x2

2(1+ε) + x + 1 + ε, 0
)

(on
M1) and (x, 0, 0) is f (x).)

By Props. 5, 6 and 7, we have that radiation within the region R propagates
parallel to either the x- or the y-axis. Consequently, the interference pattern at
a point (a, b, 0) in R can be influenced by radiation arriving only from the four
cardinal points—the four rays of interest, then, are

1. that—shown in yellow (¥) in Fig. 2.7—from S via (a, f (a) , 0) on M1 to
(a, b, 0);

2. that—shown in blue (¥)—from S via (a, f (a) , 0) on M1, (a, a, 0) on M2,
(0, a, 0) on M3 and (a, a, 0) on M2 to (a, b, 0);

3. that—shown in green (¥)—from S via (b, f (b) , 0) on M1 and (b, b, 0) on
M2 to (a, b, 0); and

4. that—shown in red (¥)—from S via (b, f (b) , 0) on M1, (b, b, 0) on M2

and (0, b, 0) on M3 to (a, b, 0).

Since these rays are sinusoidal—recall point 4 of Definition 2—, we may
model the amplitude at the point (a, b, 0) of each of the rays by

α sin
(

2π

λ
d− t

)
,

CHAPTER 2. MOTIVATION 39

Figure 2.7: The four rays incident on point (a, b, 0).

where

• α is the amplitude of the original radiation from S,

• λ its wavelength,

• d the total distance travelled by the ray from S via points on mirrors Mi

to (a, b, 0), and

• t ≥ 0 a real-number model of time.

Writing, again for brevity, g (x) for
(
(1 + ε− x)2 + (1 + ε− f (x))2

) 1
2

+ f (x)

(for 0 ≤ x ≤ 1),28 the respective values of d for the four rays are d1 := g (a)− b,
d2 := g (a)+ b, d3 := g (b)−a and d4 := g (b)+a; this is apparent from Figs. 2.7
and 2.8.

Note that these expressions for di can be simplified since g (x) = 2 (1 + ε)
for each x ∈ [0, 1], as we demonstrate in Lemma 4 below. Explicitly, we have
that

d1 = 2 (1 + ε)− b , (2.12)
d2 = 2 (1 + ε) + b ,

d3 = 2 (1 + ε)− a and
d4 = 2 (1 + ε) + a .

Recall the sum-to-product identity for sines: for θ, φ ∈ R,

sin θ + sin φ = 2 sin
θ + φ

2
cos

θ − φ

2
; (2.13)

recall also that
cos θ = cos (−θ) , (2.14)

28Hence, g (x) is the total of the Euclidean distances between S and (x, f (x) , 0) and between
(x, f (x) , 0) and (x, 0, 0). See Fig. 2.8.

CHAPTER 2. MOTIVATION 40

Figure 2.8: Two line segments of which the combined length is g (x) = 2 (1 + ε).

and that the wavelength of radiation from S is

λ =
2
n

. (2.15)

Then the resultant amplitude
∑4

i=1 α sin
(

2π
λ di − t

)
at (a, b, 0) can be written

as
4∑

i=1

α sin
(

2π

λ
di − t

)

=
2∑

i=1

α sin
(

2π

λ
di − t

)
+

4∑

j=3

α sin
(

2π

λ
dj − t

)

(2.13)
= 2α sin

(
2π

λ
· d1 + d2

2
− t

)
cos

(
2π

λ
· d1 − d2

2

)

+2α sin
(

2π

λ
· d3 + d4

2
− t

)
cos

(
2π

λ
· d3 − d4

2

)

(2.12, 2.14)
= 2α

(
sin

(
2π

λ
2 (1 + ε)− t

)
cos

(
2π

λ
b

)

+ sin
(

2π

λ
2 (1 + ε)− t

)
cos

(
2π

λ
a

))

(2.15)
= 2α (sin (2nπ (1 + ε)− t) cos (nπb)

+ sin (2nπ (1 + ε)− t) cos (nπa)) .

Note that, since the sine and cosine functions both return values in the interval
[−1, 1], this amplitude is in the interval [−4α, 4α]. The result to be proven
is that the amplitude attains its maximum (within R) at point (a, b, 0) if and
only if na and nb are integers of the same parity; by the previous sentence, it
is sufficient for maximality at (a, b, 0) that the amplitude at (a, b, 0) attain the
value 4α (for some t ≥ 0).

CHAPTER 2. MOTIVATION 41

Let (a, b, 0) be a point in R such that na and nb are integers of the same
parity; suppose first that na and nb are even; let t0 = π

(
2n (1 + ε)− 1

2

)
. Then

nπa and nπb are even multiples of π, and so cos (nπa) = cos (nπb) = 1. Further,

sin (2nπ (1 + ε)− t0) = sin
(

2nπ (1 + ε)− π

(
2n (1 + ε)− 1

2

))

= sin
(π

2

)

= 1 ,

so

2α (sin (2nπ (1 + ε)− t0) cos (nπb)
+ sin (2nπ (1 + ε)− t0) cos (nπa)) = 2α (1× 1 + 1× 1)

= 4α ;

that is, if na and nb are both even, then the amplitude at (a, b, 0) is 4α. Suppose
instead that na and nb are both odd, and let t0 = π

(
2n (1 + ε) + 1

2

)
. Then nπa

and nπb are odd multiples of π, and so cos (nπa) = cos (nπb) = −1. Further,

sin (2nπ (1 + ε)− t0) = sin
(

2nπ (1 + ε)− π

(
2n (1 + ε) +

1
2

))

= sin
(
−π

2

)

= −1 ,

so

2α (sin (2nπ (1 + ε)− t0) cos (nπb)

+ sin (2nπ (1 + ε)− t0) cos (nπa)) = 2α
(
(−1)2 + (−1)2

)

= 4α ;

that is, if na and nb are both odd, then the amplitude at (a, b, 0) is 4α. Whether
both odd or both even, then,

if na and nb are integers of the same parity, then the amplitude at (a, b, 0) is
4α.

Conversely, suppose that point (a, b, 0) in R has amplitude 4α (say that t0
satisfies 2α (sin (2nπ (1 + ε)− t0) cos (nπb) + sin (2nπ (1 + ε)− t0) cos (nπa)) =
4α); then

sin (2nπ (1 + ε)− t0) = cos (nπb) ∈ {±1} (2.16)

and
sin (2nπ (1 + ε)− t0) = cos (nπa) ∈ {±1} . (2.17)

So, since cos (πnb) and cos (πna) are in {±1}, na and nb are integers. Required
is that na and nb have the same parity. Now

cos (nπb)
(2.16)
= sin (2nπ (1 + ε)− t0)

(2.17)
= cos (nπa)

=

{
1 if na is even
−1 if na is odd .

CHAPTER 2. MOTIVATION 42

Hence, nb has the same parity as na.

If (a, b, 0) ∈ R displays maximal amplitude, then a and b are integers of the
same parity ,

as required.

Lemma 4. If x ∈ [0, 1], then g (x) = 2 (1 + ε).

Proof. Recall that, for any x ∈ [0, 1],

f (x) = − x2

2 (1 + ε)
+ x + 1 + ε (2.18)

and

g (x) =
(
(1 + ε− x)2 + (1 + ε− f (x))2

) 1
2

+ f (x) . (2.19)

By (2.18), 1 + ε− f (x) = x2

2(1+ε) − x, whence (subtracting x and multiplying by
2 (1 + ε))

2 (1 + ε) (1 + ε− f (x)− x) = x2 − 4x (1 + ε) . (2.20)

Also, again by (2.18), f (x)2 = x4

4(1+ε)2
− x3

1+ε + 2x (1 + ε) + (1 + ε)2, whence
(adding 2x2 − 4x (1 + ε))

2x2−4x (1 + ε)+f (x)2 =
x4

4 (1 + ε)2
− x3

1 + ε
+2x2−2x (1 + ε)+(1 + ε)2 . (2.21)

Hence, for any x ∈ [0, 1],

g (x)
(2.19)
=

[
(1 + ε− x)2 + (1 + ε− f (x))2

] 1
2

+ f (x)

=
[
2 (1 + ε)2 − 2 (1 + ε) (x + f (x)) + x2 + f (x)2

] 1
2

+ f (x)

=
[
2 (1 + ε) (1 + ε− f (x)− x) + x2 + f (x)2

] 1
2

+ f (x)

(2.20)
=

[
2x2 − 4x (1 + ε) + f (x)2

] 1
2

+ f (x)

(2.21)
=

[
1
4
x4 (1 + ε)−2 − x3 (1 + ε)−1 + 2x2 − 2x (1 + ε) + (1 + ε)2

] 1
2

+ f (x)

=

[(
x2

2 (1 + ε)
− x + 1 + ε

)2
] 1

2

+ f (x)

=
x2

2 (1 + ε)
− x + 1 + ε + f (x)

(2.18)
= 2 (1 + ε) ,

as claimed.

CHAPTER 2. MOTIVATION 43

Remark 7. The set
{ (

x
n , y

n , 0
) ∈ R

∣∣ x, y, x+y
2 ∈ Z}

of high-amplitude points
of the interference pattern in R (see Prop. 8) models in the obvious way the
reduced grid

{
(x, y)

∣∣ x, y, x+y
2 ∈ Z ∧ 0 ≤ x ≤ y ≤ n

}
described in Remark 3:

a point
(

a
n , b

n , 0
)

in the former models (a, b) in the latter. (In fact, the whole
region R, of which continuum the high-amplitude points are a point-lattice
subset, corresponds under the same transformation (

(
x
n , y

n , 0
) 7→ (x, y)) to the

region
{

(x, y) ∈ R2
∣∣ 0 ≤ x ≤ y ≤ n

}
, of which the reduced grid is a subset.)

This change of scale, by a multiplicative factor of n, of the x- and y-axes is
carried out in order that the dimensions and layout of the apparatus described
be independent of the choice of n, in practice allowing use of the same apparatus
for different values of n; cf. the modification, from Definition 4 to Definition 5,
of the improved factorization system of Sect. 2.3.

The Cone.

Definition 3 (in which we implement the cone).

1. Let Pn be a source at
(
0, 0,

√
2
n

)
of radiation.

2. Let Cn be a sensor, capable of detecting radiation from Pn, along the
curve

(x, 2− x, z) ∈ R3

∣∣∣∣∣∣∣∣

2 (x− 1)2 +
(
z −

√
2
n

)2

= 2

∧ z ≤ 1−n
1+n

√
2
n

∧ 2− x ≥ 1

.

See Fig. 2.9.

Remark 8. The subscripts ‘n’ in Definition 3 reflect the fact that the spatial
positions of Pn and Cn depend upon n; the positioning of these components,
therefore, forms part of the input process for the computation, as we describe
in points 1 and 2 of Sect. 2.2.3 Using the System.

Remark 9. On a note related to Remark 8, were we proposing that the fac-
torizing system be implemented for real-life use29, then one concern regarding
Cn would be that not merely its position, but also its structure, depends upon
n: having used the system to factorize some value, subsequently to factorize
a different value would necessitate not only moving, but also modifying, Cn.
However, the curve occupied by Cn is, regardless of n, an arc of a circle30 of
radius

√
2 within the plane y = 2− x and with its centre on the line x = y = 1;

further, the presence of a sensor occupying the full circle (rather than just this
arc) is not problematic for the functioning of the system. Therefore, we may
implement Cn as a (full-) circular sensor (from which readings are considered

29We are certainly not suggesting that the system offers a practical method of factorizing
large numbers; of interest here is the reason for which it does not offer such, and, in particular,
that this reason should, but does not, constitute part of standard complexity theory.

30Specifically, the circle is y = 2− x, 2 (x− 1)2 +
(
z −

√
2
n

)2
= 2, and the arc consists of

those points on the circle such that z ≤ 1−n
1+n

√
2
n

and x ≤ 1.

CHAPTER 2. MOTIVATION 44

Figure 2.9: The layout of the apparatus that implements the cone (see Defini-
tion 3). Also shown are the apparatus of Fig. 2.2 (for context) and the curve
Gn (see Prop. 9).

if they concern points on the arc and ignored otherwise), of which the position
(specifically, the z-axis height), but not the structure, depends upon n.

In the present discussion—which, we reiterate, includes this analogue fac-
torization system as motivation for new approaches to complexity theory rather
than as a proposal for a practicably implementable system—, we define Cn as
in Definition 3 rather than treating it as occupying the whole circle.

Proposition 9. The curve of Cn is the circular arc produced by projecting the
curve Gn :=

{
(x, y, 0) ∈ R

∣∣∣ 1
xy = n

}
from Pn onto the plane y = 2−x. Hence,

radiation arriving from Pn at a point on Cn has passed through the plane z = 0
at a point (x, y, 0) such that 1

xy = n.

See Fig. 2.10 for the position within R of the curve Gn for various values of
n.

Proof. Let (a, b, 0) be an arbitrary point on Gn; then 1
ab = n, so this point is

(
a, 1

na , 0
)
.31 The line that passes through both

(
a, 1

na , 0
)

and Pn =
(
0, 0,

√
2
n

)

is given by
{ (

a, 1
na , 0

)
+ γ

(
a, 1

na ,−
√

2
n

) ∣∣∣ γ ∈ R
}

; this is equal to

{(
(γ + 1) a,

γ + 1
na

,−γ

√
2
n

) ∣∣∣∣∣ γ ∈ R
}

.

31That this is indeed the same point follows from the fact that neither a nor b is zero, which,
in turn, is because ab = 1

n
> 0.

CHAPTER 2. MOTIVATION 45

Figure 2.10: The position within R of Gn, for n = 3, 5, 7, 9 and 29.

This line meets the plane defined by y = 2 − x when γ+1
na = 2 − (γ + 1) a (i.e.,

when γ + 1 = 2na
1+na2); this happens at the point

A :=

(
2na2

1 + na2
,

2
1 + na2

,
1 + na2 − 2na

1 + na2

√
2
n

)
,

which, we claim, lies on the curve of Cn. Recall that this curve consists of those
points (x, 2− x, z) ∈ R3 such that

2 (x− 1)2 +

(
z −

√
2
n

)2

= 2 , (2.22)

z ≤ 1− n

1 + n

√
2
n

and (2.23)

2− x ≥ 1 . (2.24)

First, A satisfies (2.22), since

2
(

2na2

1 + na2
− 1

)2

+

(
1 + na2 − 2na

1 + na2

√
2
n
−

√
2
n

)2

= 2
(

2na2 − 1− na2

1 + na2

)2

+
2
n

(
1 + na2 − 2na− 1− na2

1 + na2

)2

=
2

((
na2 − 1

)2 + 1
n (−2na)2

)

(1 + na2)2

=
2

(
n2a4 − 2na2 + 1 + 4na2

)

(1 + na2)2

=
2

(
n2a4 + 2na2 + 1

)

(1 + na2)2

= 2 .

CHAPTER 2. MOTIVATION 46

Secondly, A satisfies (2.23), as we now demonstrate. The quadratic function
q (x) := nx2 − (n + 1) x + 1 has a positive leading coefficient (namely, n), and
so, in the range x ∈ [

1
n , 1

]
, attains its maximum at either x = 1

n or x = 1 (the
maximum within this range occurs either at an endpoint of the range or at a
point of inflection; the former must be the case since, as the leading coefficient
is positive, the only point of inflection is a minimum). So, since 0 < b ≤ 1
(because, as we note above, b is non-zero and (a, b, 0) ∈ R) and 1

ab = n (because
(a, b, 0) ∈ Gn), whence a ≥ 1

n , and since a ≤ 1 (because (a, b, 0) ∈ R), we have
that a is in the range

[
1
n , 1

]
, and so q (a) ≤ max

{
q
(

1
n

)
, q (1)

}
= 0. That is,

na2 − (n + 1) a + 1 ≤ 0 ;

multiplying by 2n and subtracting n + n2a2,

−2na + n + n2a2 − 2n2a ≤ −n− n2a2 . (2.25)

So
(
1 + na2 − 2na

)
(1 + n) = 1 + na2 − 2na + n + n2a2 − 2n2a

(2.25)

≤ 1 + na2 − n− n2a2

= (1− n)
(
1 + na2

)
.

Hence, (because n ∈ N, whence 1+n and 1+na2 are both positive), 1+na2−2na
1+na2 ≤

1−n
1+n , and so, as claimed, A (of which the z-coordinate is 1+na2−2na

1+na2

√
2
n) satisfies

(2.23), as
√

2
n is positive.

Thirdly, we consider (2.24). Recall that A has x-coordinate 2na2

1+na2 . Now,
since (a, b, 0) ∈ Gn, whence 1

ab = n, and since (a, b, 0) ∈ R, whence a ≤ b, we
have that

na2 ≤ nab = 1 .

Adding 1,
1 + na2 ≤ 2 = 2

(
1 + na2

)− 2na2 .

Dividing by 1 + na2 (which is positive),

1 ≤ 2− 2na2

1 + na2
.

Hence, the point A satisfies (2.24), and so is on the curve of Cn. See the blue
(¥) elements of Fig. 2.11.

The projection A of an arbitrary point (a, b, 0) on Gn from Pn onto the plane
y = 2− x is on the curve of Cn.

Conversely, let (c, 2− c, d) be an arbitrary point on Cn. By (2.22) (whence,

if (x, y, z) is on Cn, then z = ±
√

2− 2 (x− 1)2 +
√

2
n = ±

√
2x (2− x) +

√
2
n),

we have that d = ±
√

2c (2− c) +
√

2
n ; by (2.23) (namely, that, if (x, y, z) is on

Cn, then z ≤ 1−n
1+n

√
2
n , whence

z ≤ 0 (2.26)

CHAPTER 2. MOTIVATION 47

Figure 2.11: An illustration of the correspondence (via projection from Pn)
between Gn and Cn, as described in Prop. 9.

since n ≥ 1 gives that 1−n
1+n

√
2
n ≤ 0), we have that d = −

√
2c (2− c) +

√
2
n (by

(2.26), d is not positive, so we must take the negative root), so

(c, 2− c, d) =

(
c, 2− c,

√
2
n
−

√
2c (2− c)

)
.

The line that passes through both this point and Pn =
(
0, 0,

√
2
n

)
is given by

(
c, 2− c,

√
2
n −

√
2c (2− c)

)

+ γ
(
c, 2− c,−

√
2c (2− c)

)
∣∣∣∣∣∣
γ ∈ R

 ;

that is, by
{(

(γ + 1) c, (γ + 1) (2− c) ,

√
2
n
− (γ + 1)

√
2c (2− c)

) ∣∣∣∣∣ γ ∈ R
}

.

This meets the plane z = 0 when γ + 1 =
√

2
n ÷

√
2c (2− c) =

√
1

nc(2−c) , at

the point B :=
(√

c
n(2−c) ,

√
2−c
nc , 0

)
, which we wish to show to be on Gn. Note

that, by (2.23) (namely, if (x, y, z) is on the curve of Cn, then z ≤ 1−n
1+n

√
2
n),√

2
n −

√
2c (2− c) ≤ 1−n

1+n

√
2
n , whence (by multiplying by −1 and adding

√
2
n)

CHAPTER 2. MOTIVATION 48

√
2c (2− c) ≥

√
2
n

(
1− 1−n

1+n

)
=

√
2
n× 2n

1+n , so 2c (2− c) ≥ 2
n× 4n2

(1+n)2
= 8n

(1+n)2
,

whence c (2− c) ≥ 4n
(1+n)2

, and so −c2 +2c− 4n
(1+n)2

≥ 0; from this, we have that

2
n + 1

≤ c ≤ 2n

n + 1
(2.27)

(the negative leading coefficient of the quadratic r (x) := −x2 + 2x − 4n
(1+n)2

means that r is non-negative inclusively between its two zeros, x = 2
n+1 and

x = 2n
n+1 , and nowhere else). Further, by (2.24) (that is, if (x, y, z) is on the

curve of Cn, then 2− x ≥ 1), c ≤ 1, so

2
n + 1

(2.27)

≤ c ≤ 1 . (2.28)

Therefore,

1. since c, n and 2− c are positive (because, respectively, of (2.27), the fact
that n ∈ N, and (2.28)), 0 ≤

√
c

n(2−c) ;

2. since c
(2.28)

≤ 1, we have that 4c ≤ 4, whence c2 ≤ 4 − 4c + c2 = (2− c)2,

whence c
n(2−c) ≤ 2−c

nc , and so
√

c
n(2−c) ≤

√
2−c
nc ; and

3. since 2
n+1

(2.27)

≤ c, 2 ≤ c (n + 1), so 2 − c ≤ nc and 2−c
nc ≤ 1, whence√

2−c
nc ≤ 1.

Hence, 0
1.≤

√
c

n(2−c)

2.≤
√

2−c
nc

3.≤ 1, and so B =
(√

c
n(2−c) ,

√
2−c
nc , 0

)
∈ R.

Further, we have that the product of the first and second coordinates of B

is
√

c
n(2−c) · 2−c

nc =
√

1
n2 = 1

n , and so the point is, as claimed, on Gn. See the

red (¥) elements of Fig. 2.11.

The projection B of an arbitrary point (c, 2− c, d) on Cn from Pn onto the
plane z = 0 is on the curve Gn.

This completes the proof.

Remark 10. By Prop. 9, the radiation from Pn arriving at Cn passes through
the curve in R corresponding (under the transformation described in Remark 7)
to the curve y = n

x—that is, through Gn. The point on Gn through which such
a ray passes corresponds, we recall from Prop. 8, to an integer solution32 on this
curve if and only if the point displays the interference pattern of S at maximum
amplitude; that this is the case is then evident33 at Cn.

32Recall that the correspondence is, in fact, to an integer solution (x, y) where x and y are
of the same parity. Since we suppose n to be odd, however, all integer solutions on y = n

x
satisfy this condition (specifically, x and y are odd for all such solutions).

33The exact reasons for this evidence depend upon the implementations of sources S and
Pn; see Remark 11.

CHAPTER 2. MOTIVATION 49

Remark 11. We have not specified the exact nature of the type(s) of radiation
emitted by S and Pn, instead mentioning in passing only the necessary property
that radiation from S be transverse (recall point 4 of Definition 2), which has as
a consequence wave activity orthogonal to the plane z = 0, which, we contrive,
interferes with radiation from Pn in a way that is detectable at Cn. Suffice it
to remark that there exist implementations resulting in such detectability; we
need not—given the intention behind our introducing the factorization system,
which intention does not include practical realization—describe fully such an
implementation, though for illustration now outline an example.
Example 1. Suppose that S produces water waves, and Pn visible light, as fol-
lows. S regularly pounds the water’s surface, producing waves that are reflected
by barriers that model mirrors Mi, thus establishing an interference pattern with
maximal wave activity at grid points and calmer waters elsewhere. Light from
Pn shines through this unsettled surface, and a light sensor Cn (positioned so
as to compensate for still-water refraction) detects

• steady light where rays have passed through (maximally) calm points on
the water’s surface, and

• intermittent light where they have passed through undulating points, re-
sulting in periodically fluctuating refraction.

Points on Cn receiving the least light (summed over time) are those cor-
responding to grid points (and, hence, maximal choppiness and so maximal
disruption of light from Pn due to refraction).

The exact details of this implementation are incidental to our discussion,
though a rough illustration is given in Fig. 2.12.

Interpreting Results.

Remark 12. Recall from Remark 10 that the radiation arriving from Pn at
a point on Cn will display maximal-amplitude interference (because of the
standing-wave interference pattern from S) if and only if the point (x, y, 0) of R
through which the radiation passes offers a factorization of n (in that 1

x · 1
y = n,

where 1
x and 1

y are integers). Thus, the interpretation of results (i.e., the find-
ing of factors) consists chiefly of conversion of the coordinates of a point on
Cn (specifically, the point that displays diminution of radiation from Pn due to
maximal-amplitude interference in the pattern of radiation from S) into those of
a point in R (the point through which the ray passes). Proposition 10 describes
this conversion.

Proposition 10. Radiation from Pn incident on a point (c, 2− c, d) on Cn has

passed through
(√

c
n(2−c) ,

√
2−c
nc , 0

)
.

Proof. This claim is justified in the latter part of the proof of Prop. 9; recall
also the red (¥) elements of Fig. 2.11.

Corollary 1. If the radiation from Pn arriving at (c, 2− c, d) on Cn displays

maximal-amplitude interference, then
√

nc
2−c and

√
n(2−c)

c are factors of n; con-
versely, each factor of n has a maximal-amplitude point so corresponding on
Cn.

CHAPTER 2. MOTIVATION 50

Figure 2.12: An implementation of the factorization system of Sect. 2.2, using
water waves and visible light—see Example 1.

CHAPTER 2. MOTIVATION 51

Proof. If radiation from Pn arriving at (c, 2− c, d) displays maximal-amplitude
interference, then, by Remark 10, the point on Gn through which the radiation

has passed (which point is, by Prop. 10,
(√

c
n(2−c) ,

√
2−c
nc , 0

)
) corresponds as

per Remark 7 to an integer solution on y = n
x ; recalling the transformation

(
x
n , y

n , 0
) 7→ (x, y) of Remark 7, this integer solution is

(√
nc
2−c ,

√
n(2−c)

c

)
.

Hence,
√

nc
2−c and

√
n(2−c)

c are factors of n.
The “only if” of Remark 10 ensures that all factors of n give rise via the

correspondence of Remark 7 to a point of maximal-amplitude interference on
Cn.

Remark 13. Given (c, 2− c, d) ∈ R3, it is possible efficiently to calculate
√

nc
2−c

and
√

n(2−c)
c using a Turing machine: the ‘difficult part’ of finding factors of n

has already been achieved once the position of the point (c, 2− c, d) has been
measured. See Sect. 2.2.3.

Remark 14. Having set up the system as described in Definitions 2 and 3, the
factors of n are found as in Corollary 1. Since all factors are represented by
points on Cn displaying maximal-amplitude interference (and since there are no
other such points), a value of n induces

• no such points if and only if n is not an integer,34

• a single such point (corresponding to the factorization n = 1.n) if and
only if n is prime (or one), and

• two or more such points (corresponding to the factorizations n = f.n
f for

all factors f ≤ √
n) if and only if n is composite.

In particular, one can envisage a method of identifying primes whereby the
user sweeps continuously through a range of values of n (by continuously altering
the wavelength of S, for example with a variable resistor, and the z-coordinate
height of Pn and Cn (recall Remark 9)) whilst looking for the presence of exactly
one point of maximal-amplitude interference.

Remark 15. Recall from Sect. 2.1.1 Complexity of Factorization that the security
of the RSA cryptographic system relies upon the intractability of factorization.
However, the ability of the proposed system to factorize quickly (albeit with
efficiency hampered by other, non-time issues, as we discuss below) does not
compromise this security: given technology sufficient to implement the system
such that k-digit numbers may be reliably factorized (hence, we may decrypt
information encoded with RSA using a k-digit key), with k maximal in this
respect, we can, by Remark 14, efficiently find k-digit primes; by multiplying
two such, we may form a (2k − 1)- or 2k-digit RSA key, which by maximality
of k cannot be factorized by our system.

34Although the factorization problem demands that n be an integer—recall Sect. 2.1.1 The
Problems, Function and Decision—, the means by which this input value is supplied to the
system (namely, via alteration of the z-coordinate positioning of Pn and Cn, and of the
wavelength of radiation from S) do not automatically preclude non-integer values.

CHAPTER 2. MOTIVATION 52

Generalization.

Aside. We see above that the task of factorization has a geometric formulation
as the extraction of integer solutions of an equation of which the graph is part
of a conic section; this formulation is exploited by the factorization system
described here.

As an aside, we note that, by repositioning Pn and Cn so as to implement
a different cone, a method analogous to the one described here allows compu-
tation of integer solutions of different equations with conic-section (parabolic,
hyperbolic, circular or elliptical) graphs. So, while factorization is chosen for
discussion because of its wide range of applications and its notoriety as a difficult
problem, the task is merely an illustration of a larger class of problems that the
general method presented here solves (though not practicably—see Sect. 2.2.4).

2.2.2 Proof of Correctness

That the system does indeed correctly factorize its input value is the case by
construction—see the preceding description of the system (Sect. 2.2.1)—; for
clarity, we recap now the salient points.

Having set up the system as described in Definitions 2 and 3—including
having set appropriately those aspects of the apparatus that depend upon the
input value to be factorized, and, hence, having supplied this input value to the
system—, we see from Corollary 1 that the sought factors are encoded35 in the
spatial coordinates of maximally dark points on a sensor (the measurement of
which coordinates accordingly constitutes part of the system’s output process).

This statement, whilst true, should certainly not be interpreted as suggesting
that the system presented here offers an efficient or practicable method for
factorizing large numbers. In particular, the two necessities (for the factorization
to be correct) of

• the system’s being set up as defined and

• spatial coordinates’ being measured

carry with them a requirement of precision: only if these tasks are conducted
with sufficient precision will the system function correctly; we discuss this issue
further in Sect. 2.2.4.

The observation of Sect. 2.2.2, then, is merely that, under the assumption
that the system be set up exactly as described, it will behave as described, and,
in particular, produce the sought factors (albeit encoded in coordinates that
must be measured). That is, if the user is sufficiently precise in his carrying
out the input/output processes of the system, then the system will factorize
correctly. This says nothing about the meaning of “sufficiently precise”, nor
about the efficiency with which the system factorizes (in terms of run-time,
memory space, etc.): the system functions as claimed subject to these caveats
re precision, but we have not thus far analyzed the system’s complexity (nor,
relatedly, have we quantified these caveats). We do this now.

35Decoding takes the form of simple calculations involving only subtraction, multiplication,
division and the taking of radicals to bounded precision—see Sect. 2.2.3.

CHAPTER 2. MOTIVATION 53

2.2.3 Time/Space Complexity

Using the System.

The use of the system to factorize n ∈ N consists of

1. calculation of the values 2
n (to be used as the wavelength of S) and

√
2
n

(to be used as the z-coordinate of Pn and of the centre of the circle of Cn);

2. supply of n to the system, by adjusting the wavelength of S and the
z-coordinate of Pn and Cn in accordance with the values found during
step 1;

3. interference of the radiation in the system, which entails propagation of
the radiation over a fixed distance (since the same apparatus is, bar the
adjustments made in step 2, used for any value of n);

4. measurement of the positions of maximal-amplitude interference points on
the sensor Cn; and

5. conversion, via the mapping (c, 2− c, d) 7→
(√

nc
2−c ,

√
n(2−c)

c

)
, of each

position measured during step 4 into two factors of n.

We consider now the computational complexity of these five steps of the factor-
ization system’s use.

Time Complexity.

Consider first run-time; the time complexity of the system, we claim, is poly-
nomial in the size (i.e., number of digits) of the input value.

1. Though step 1 above entails calculation of a fraction and a radical (which,
in general, requires arbitrary calculation time as the desired precision of
the answer grows), we note that n is a natural number and that it is

sufficient, assuming basic error correction36, to calculate 2
n and

√
2
n pre-

cisely enough only that n may be retrieved (given that n ∈ N). Now, an
approximation v to 2

n such that v ∈
(

4
2n+1 , 4

2n−1

]
has the property that⌊

2
v + 1

2

⌋
= n (see Lemma 5); that is, n may be retrieved from such v. The

interval
(

4
2n+1 , 4

2n−1

]
has size 4

2n−1 − 4
2n+1 = 8

4n2−1 ∈ O
(
n−2

)
; finding

such v, then, requires calculation of (the order of) only twice as many dec-

imal places of 2
n as n itself has digits. Similarly,

√
2
n need be found only as

an approximation in
(√

4
2n+1 ,

√
4

2n−1

]
, which requires calculation of (the

order of) only 1 1
2 times as many decimal places of

√
2
n as n has digits.

36Though supply to the system of n (via adjustment of the wavelength of S and positions
of Pn and Cn) may be subject to noise, we may suppose that the system performs error
correction, utilizing the fact that n ∈ N. We defer exact details of this correction, commenting
only that it may be achieved via standard techniques such as that described in Footnote 44
of Chap. 3.

CHAPTER 2. MOTIVATION 54

Such computation, via standard, Turing-machine methods, requires run-
time polynomial in the size of n (e.g., a variant on the Newton-Raphson
method—see [80]—offers a quadratic-time approach).

2 – 4. Steps 2 – 4 take constant time: larger values of n take no longer to process
in accordance with these stages. Notably, step 3, during which the actual
factorization is performed, takes constant time—neither the propagation
velocity of radiation from S nor the distance over which the radiation
must propagate depends upon n—; compare this with known algorithmic
methods, where computation time increases exponentially with the size of
n (see, e.g., [41]).

5. Similarly to step 1, step 5 entails calculation of radicals though to only

modest precision; specifically,
√

nc
2−c and

√
n(2−c)

c are integers, and so, as
in step 1, calculation requires only quadratic run-time.

Thus, the time complexity of the system as a whole is, as claimed, polynomial
in the size of the input.

Lemma 5. If v ∈
(

4
2n+1 , 4

2n−1

]
and n ∈ N, then

⌊
2
v + 1

2

⌋
= n.

Proof. If 4
2n+1 < v ≤ 4

2n−1 , then 2n+1
2 > 2

v ≥ 2n−1
2 ; i.e., n − 1

2 ≤ 2
v < n + 1

2 ,
whence the nearest integer

⌊
2
v + 1

2

⌋
to 2

v (rounding up when 2
v falls equidistant

between consecutive integers) is n.

Remark 16. Note from the above description of the system’s use that steps 1
and 5 form a Turing-machine ‘harness’ that prepares input and output values
(the former in readiness for supply to the system, the latter in readiness for
comprehension by the system’s user). This preparation takes polynomial time
(as we see above) and space (see below), with the remaining three steps of
the factorization process taking only constant time (see above) and space (see
below).

Space Complexity.

Similarly, when considering the resource of space,37 we see that only the Turing-
machine calculations of steps 1 and 5 (which prepare input and interpret output
as described in Remark 16) consume an increasing volume as n increases, and
these only a polynomially increasing volume (in the size of the input)38; and for
steps 2 – 4, the same, fixed-size apparatus—occupying the same, fixed space—is
used for all values of n (though the positions of Pn and Cn depend upon n, there
exists a finite, n-independent, bounding cuboid in which the apparatus lies for
all n: each point of the apparatus lies in [0, 2] × [0, 2] × [−√2, 2

√
2
]
, which

has volume 2 × 2 × 3
√

2 = 12
√

2 (this relies upon the inequality ε ≤
√

3−1
2 —

recall Definition 2—, for else the maximal y-value taken by a point on M1 is
37Space, as traditionally encountered with Turing machines, etc., can be viewed as the

storage capacity of the memory required by a computation; we consider the analogous no-
tion of required physical volume. This is formalized in the next chapter; see, in particular,
Definition 20.

38These steps consist of Turing-machine processes, and we have, therefore, that the num-
ber of tape cells consumed is bounded above by the number of time steps elapsed—see Foot-
note 109 of Chap. 3.

CHAPTER 2. MOTIVATION 55

− 1
2(1+ε) + 2 + ε > 2)). Thus, the space complexity of the system is polynomial

in the size of the input.39

Remark 17. The resources of time and space are arguably of paramount rele-
vance when considering instances (Turing machines, random-access machines,
etc.) of standard computational models. Notions of complexity developed with
only these instances in mind, however, are understandably poor at capturing
the complexity of instances of wildly different models; the factorization system
above does indeed have polynomial time and space complexity40, and yet does
require exponentially increasing resource as n increases. Notably, larger values
of n require exponentially increasingly precise manipulation of the input param-
eters (the wavelength of S and the positions of Pn and Cn) and exponentially
increasingly precise measurement of the output parameters (the coordinates of
points on Cn), and there is no reason for which we would not view required
precision as a resource. Accordingly, we consider now (in an informal way,
with formalization deferred to Sect. 3.3) the precision complexity of the system,
which is certainly not polynomial, and hence better captures the system’s true
complexity than do the resources of time and space.
Aside. We note in passing that the system is qualitatively different from most
existing factorization processes because it exploits a direct, physical implemen-
tation of the problem in preference to an instance of a standard computational
model; this allows for much-improved calculation times, but time is not the only
relevant resource. The suggestion here is that instances of different computa-
tional models may well consume different computational resources, which must
be considered as part of a successful complexity analysis.

2.2.4 Precision Complexity

We see above that our analogue system for factorizing has both time and space
complexity polynomial in the size (i.e., number of digits) of the number being
factorized; as is remarked above, this is a pronounced improvement over the
exponential run-time required by the best known Turing-machine approaches to
factorization. One may wonder, then, what the catch is (for, of course, there is
one); as alluded to above, the drawback with the system is related to precision.

We consider now the precision issues inherent in the use of the factorization
system (we do this informally, formalizing in the next chapter—specifically, in
Sect. 3.3—the concepts introduced here). The more general message is that

traditional complexity analysis (which considers the resources of time and
space, and variations thereon, but no others) is inadequate for capturing the

true complexity of certain non-standard computers
39Note that there is a conflict between size of apparatus and wavelength. The longest

dimension of the apparatus is 3
√

2, and the wavelength of S is λ = 2
n

; hence, for n of, say, 100

digits (whence 1099 ≤ n < 10100), and λ as small as is practical (say that S produces γ-rays,

with λ = 10−10 m approximately), the longest side of the apparatus is between 3×1089√
2

m

and 3×1090√
2

m, which is of the order of 1070 visible universe widths. Conversely, limiting the

apparatus to a length of, say, 10 m, a wavelength of λ ≥ 10−10 m allows factorization of n at

most
⌊

1011√2
3

⌋
, which has eleven digits.

40This is in stark contrast with known factorization algorithms suitable for implementa-
tion via Turing machine, random-access machine or similar, of which the required time is
exponential in the size of n—see [41].

CHAPTER 2. MOTIVATION 56

(including our factorization system).

Motivation.

The intention of precision complexity is to capture the lack of robustness against
input/output imprecision of a physical (analogue, optical, chemical, etc.) com-
puter. This can be quantified by considering real-number parameters that char-
acterize the imprecision in the system. Specifically (though, for now, infor-
mally), we may consider the space of tuples of these parameters, and the region
therein of tuples for which a computation is successful (in that whatever errors
are permitted by the parameters are corrected by the computing system); we
define the precision of the computation to be one divided by the measure of this
region.

We defer to Sect. 3.3 more formal and rigorous motivation for and definition
of precision and precision complexity in the abstract case, and consider now the
concrete example of precision in the context of the factorization system.

Factorization Example.

Consider the process of setting the wavelength λ of the source S.41 Given the
value n ∈ N to be factorized, the intention is to set λ to 2

n . In practice (due,
for example, to technological limitations on our control over the wavelength—
we have in mind imprecise use of a variable resistor or similar), we may set
the wavelength to 2

n′ , which we know only to lie in
[

2
n − ε, 2

n + ε
]

for some
real-number error term ε ≥ 0.42

However, we suppose that the system corrects non-integer input values by
rounding them so as to rectify ‘small’ errors43: given wavelength 2

x (for arbitrary
x ∈ R), the value to be factorized is taken to be the nearest integer

⌊
x + 1

2

⌋
to x

(with x+ 1
2 taking precedence over x− 1

2 when x is equidistant between two con-
secutive integers). So, provided that the supplied wavelength 2

n′ ∈
[

2
n − ε, 2

n + ε
]

falls in the interval
(

2
n+ 1

2
, 2

n− 1
2

]
of values that the system successfully corrects

to 2
n—i.e., provided that

[
2
n − ε, 2

n + ε
] ⊆

(
2

n+ 1
2
, 2

n− 1
2

]
, whence ε < 1

n(n+ 1
2)

—,

then the system processes the correct input value.
So, for input value n, the set of corrigible errors ε in the input parame-

ter λ is
[
0, 1

n(n+ 1
2)

)
, which has measure (in this case, length) 1

n(n+ 1
2)

, and,

hence, contributes to the system’s precision complexity a multiplicative factor
of n

(
n + 1

2

)
; crucially, this factor increases quadratically with n, and hence ex-

ponentially with the size of n. Consideration of parameter λ alone, then, renders
the system’s precision complexity exponential, regardless of the contributions

41There are other input/output processes—the positioning of Pn and Cn and the measure-
ment of points on Cn—that one may consider in a similar way, though, for our purposes, such
consideration is unnecessary: once the setting of the wavelength has been shown (as, below,
it is) to require exponentially increasing precision, then we have that the overall precision
complexity is exponential, regardless of the (consequently redundant) contribution from other
parameters.

42We have, then, an additive error in the wavelength; depending upon the details of a
process’s implementation, other forms of error are possible—some alternatives are discussed
in Sects. 3.3.2 and 3.3.3.

43This error correction is discussed in Sect. 2.2.3 Time Complexity above.

CHAPTER 2. MOTIVATION 57

of the other parameters (namely, the position of Pn and Cn and of points of
maximal interference on Cn)—recall Footnote 41.

The analogue system’s perceived time- and space-efficiency (present largely
because of the system’s directly, physically implementing the factorization prob-
lem rather than converting it into a contrived instance of the standard compu-
tation model44) serve to highlight and are testament to not the power of the
system but rather the incompleteness of traditional complexity theory;

the situation exemplifies the inadequacy of traditional complexity theory for
capturing the true complexity of non-Turing (for example, analogue)

computers.

The system does require exponentially increasing resource (though neither
specifically time nor space) as n increases: as n becomes greater, the user is
required to position the apparatus and set a source’s wavelength (so as to effect
input) and measure the coordinates of points on the sensor (so as to obtain out-
put) with exponentially increasing precision. Intuitively, then, the system has
exponential precision complexity (this intuition is corroborated above and for-
malized in the following chapter). This suggests that the system’s (exponential)
precision complexity is of much greater significance than its (polynomial) time
and space complexity. The significant complexity measure is overlooked by tra-
ditional complexity theory, which motivates the consideration of non-standard
resources such as precision.

2.2.5 Summary

We now summarize Sect. 2.2.
In Sect. 2.2.1, we present an analogue system that factorizes natural num-

bers. The starting point for the system’s derivation is the observation that the
(numerical) search for a given number’s factors can be recast as the (geometric)
search for integer points on a certain curve. We go on to describe an imple-
mentation of both the grid of integer points and the above-mentioned curve
(utilizing the fact that this curve is a conic section); the implementation is such
that the intersection of the grid and the curve (which intersection consists of
the sought integer points) can be identified using a sensor. We describe the way
in which, given the coordinates of these sought points, factors of the input value
may be recovered; this completes the description of the system itself.

In Sect. 2.2.2, we recap from Sect. 2.2.1 the results that demonstrate that the
system does indeed correctly factorize its input value. We note, however, that
the system has been shown to function as claimed only in principle: there are
practical considerations—considerations, in particular, of the system’s compu-
tational complexity—that should be made when assessing the system’s viability
if not its correct functioning.

In Sect. 2.2.3, we consider the system’s time and space complexity, conclud-
ing that each is polynomial in the size of the input value (the factorization of n
requires neither more physical space nor more computation time as n increases,
other than as is required by the algorithmic ‘harness’ of Remark 16); this is a
pronounced improvement over the known, exponential-time, polynomial-space

44Compare this comment with the view, mentioned in Sect. 2.2.1, of Susan Stepney.

CHAPTER 2. MOTIVATION 58

algorithms45 such as are discussed in [41]. We suggest in Sect. 2.2.3, however,
that time and space alone do not capture the true complexity of the analogue
system—that precision, rather, is the relevant resource.

In Sect. 2.2.4, we informally motivate and introduce the concept of precision
complexity (which notion is formalized in the next chapter). We analyze the
precision complexity of our analogue system, and conclude that it is exponen-
tial in the size of the system’s input value. For the specific example of our
analogue system, then, we have vindicated our claim that the true complexity
is not captured by an analysis of time and space alone (is not captured, that
is, by a traditional complexity analysis); more generally, we have demonstrated
that certain types of computer warrant non-standard approaches to complex-
ity theory—these approaches are developed and investigated throughout this
dissertation.

2.3 Improved Analogue Factorization System

We discuss now an improved factorization system. The system was introduced
by the author in [26,27], on which papers much of Sect. 2.3 is based.

2.3.1 Relating the Original and Improved Systems

We see above (at least in an informal way) that the original analogue system
is not an efficient means of factorizing; this is due to its prohibitive precision
complexity. A major contributing factor to the precision of the system is its
manufacturing process: slight inaccuracies in the physical construction of the
apparatus can lead to wildly inaccurate results. In an attempt to alleviate this
problem, we seek to replace the ‘handmade’ elements of the original system
with ‘automatic’ components implemented via natural, physical phenomena, in
a sense hopefully made apparent below.

One such drawback of the original system’s design seems to be the ‘artifi-
cial’ implementation of the cone46—which implementation is little more than
manual positioning of the cone’s vertex (Pn) and a cross-sectional arc (Cn).
Direct implementation of the cone by some physical phenomenon would, one
expects, result in apparatus more precise than this ‘handmade’ system. We
seek, therefore, a naturally occurring, precisely shaped cone.

Consider an omnidirectional burst, at time 0, of radiation from a point source
in a plane P , and suppose that the radiation propagates at a constant velocity v,
regardless of its direction or distance from the source (electromagnetic radiation,

45We emphasize that, in the present context, algorithms (that is, instances of ‘algorithmic’
models of computation: Turing machines, random-access machines, etc.) form a proper subset
of computers, which latter set includes non-algorithmic, physical (e.g., analogue) devices.

46This drawback is crucial: a small imprecision in the shape/position of the cone leads to
only a small imprecision in the resultant conic section, but this, in turn, leads to the system’s
reporting wildly incorrect ‘factors’, in part because a small perturbation in n can cause a large
perturbation in the factors of n. Indeed, proper factors common to n and n + a (for some
small natural number a) are necessarily factors (greater than 1) of a itself—these factors are
few since a is small; so, if n is subject to some small imprecision and becomes corrupted as
n+a, then the resultant, incorrect output (i.e., the factors of n+a) will have little in common
with the desired, correct output (factors of n). In particular, n and n + 1 share no proper
factors, and so entering n with an additive error of 1 renders the resultant output multiset
entirely incorrect (i.e., disjoint with the sought multiset).

CHAPTER 2. MOTIVATION 59

for example, satisfies this criterion). The points reached by the radiation at time
t ≥ 0 describe a circle of radius vt (see Fig. 2.13(a)). Regarding this increasing
circle in the three-dimensional space with two spatial axes (those of P) and one
temporal axis, we have a perfectly constructed cone (see Fig. 2.13(b)).

Figure 2.13: (a) The circle of radiation in plane P at time t ≥ 0. (b) The conic
structure of the circle as plotted against t.

The original implementation of the cone (as described in Sect. 2.2.1), which
we seek to replace with this burst of radiation, exists in three spatial dimensions;
relative to this, the proposed replacement is effectively rotated so as to span
two spatial dimensions and one temporal. We now rotate the grid—in the
intersection of which with the cone we are interested—similarly. The plane, Q,
say, of the grid must lie parallel to and positively distant from the cone’s axis,
so that the resultant conic section is the required hyperbola; accordingly, in
the radiation-burst implementation, plane Q is modelled as a permanent line in
plane P , positively distant from the point source (Q thus spans one spatial and
one temporal dimension). Within Q, the grid itself consists of points equally
spaced along both axes: existing instantaneously at regular time intervals, and
at regularly spaced points along the spatial axis.

Whilst the principle is as with the original analogue system—we seek points
of intersection of a cone and a planar grid—, then, the implementation is dif-
ferent: before, the cone and grid existed in three-space; now, they exist (time-
dependently) in the plane, the cone as a steadily increasing circle, the grid as
a flashing row of points. Further, since we seek points of intersection with the
grid, we need consider only those instants when the row of grid points is ‘on’, at
which instants (together) the cone is modelled as a family of concentric circles
with arithmetically progressional radii;

we seek the intersection of a row of points and a nest of concentric circles.

The improved, analogue factorization system, of which the design is moti-
vated by the informal comments of Sect. 2.3.1, is now formally described.

2.3.2 Description

Apparatus.

We describe the apparatus as lying in a plane; a physical realization would see
the relevant features (namely, X, Y , a and b) extended so as to have thickness

CHAPTER 2. MOTIVATION 60

in the third dimension, though with readings being taken, etc. within the plane.
We begin with a provisional definition. In light of the discussion immediately

following the definition, it is modified to give Definition 5.

Definition 4 (provisional; see Definition 5).

• Let n be the natural number to be factorized.47

• Let X be an opaque screen occupying the line (R \ {0, 2
√

n})× {0}. The
breaks at (0, 0) and (2

√
n, 0) in this line model slits in the screen; call

these slits a and b respectively.

• Let S be a source at (
√

n,−√n) of radiation48 of wavelength 1.

• Let Y be a screen occupying the line {0}×R+.49 The negligible width of
slit a in X lies to the x > 0 side of Y .

Note (and this is the point that prompts us to modify our definition) that the
layout of the apparatus—specifically the distance separating a and b, and the
position of S—depends upon n. So as to be able to use the same apparatus to
factorize different values, then, we instead scale each axis in the plane by a factor
of 1

2
√

n
;50 accordingly, we replace the previous definition with the following.

Definition 5 (to replace Definition 4).

• Let n be the natural number to be factorized.

• Let X be an opaque screen occupying the line (R \ {0, 1}) × {0}. The
breaks at (0, 0) and (1, 0) in this line model slits in the screen; call these
slits a and b respectively.

• Let S be a source at
(

1
2 ,− 1

2

)
of radiation of wavelength 1

2
√

n
.

• Let Y be a screen occupying the line {0} × R+. The negligible width of
slit a in X lies to the x > 0 side of Y .

See Fig. 2.14.

In so replacing Definition 4, we may reuse the same apparatus to factorize
any natural-number value n, having to change only the wavelength of S rather
than the system’s physical layout.

The intention of this apparatus’s use—which we illustrate in Fig. 2.15 for
the example n = 15—is to observe radiation incident on Y from S via a and
b (we see in Prop. 12 the significance in terms of the factorization of n of the
positions of certain aspects of this radiation).

47With the previous system (see Sect. 2.2), we assume for convenience that n is odd; we
make no such assumption here.

48As with the previous system, we do not wish to constrain particularly stringently the
type of radiation; we require of it only that its waves, upon meeting, exhibit interference in
the normal way. So as to demonstrate existence of suitable radiation types, we note that
electromagnetic radiation is sufficient (but by no means necessary) for our purposes.

49We define R+ to be the set [0,∞) of non-negative real numbers.
50It is this flavour of scaling operation that gives rise to a trade-off that exists between

precision and space complexity; this is discussed in Sect. 3.8.1 Precision and Space.

CHAPTER 2. MOTIVATION 61

Figure 2.14: The apparatus described in Definition 5.

Figure 2.15: An example (in which n = 15) of the use of the apparatus described
in Definition 5.

CHAPTER 2. MOTIVATION 62

• The wave-fronts of radiation from S are shown in Fig. 2.15 in blue (¥)—
for our purposes, these are little more than construction lines to aid in
locating points of constructive interference.

• Red (¥) lines/points in Fig. 2.15 are those of constructive interference
in the interference pattern caused by the radiation from S having passed
through a double-slit arrangement (consisting of a and b). Such points
are, by the nature of interference, those of which the respective distances
from a and from b differ by an integer multiple of the wavelength 1

2
√

n
of

radiation from S; these points are the elements of the set
{

(x, y) ∈ (
R+

)2
∣∣∣∣ 2
√

n

[(
x2 + y2

) 1
2 −

(
(x− 1)2 + y2

) 1
2
]
∈ Z

}
.

• Solid circles of either green or red (¥/¥) along screen Y represent points
of maximal wave activity in a standing wave that we suppose to have been
instantiated along Y ; the points of maximal wave activity—of which one
coincides with the origin of our coordinate system—are at S-wavelength
spacing, and, therefore, form the set

{(
0, k−1

2
√

n

)
∈ R2

∣∣∣ k ∈ N
}

.

It is true (though certainly not a priori obvious; we prove the fact in Prop. 11)
that there exist points displaying both

• constructive interference in the double-slit interference pattern from S and

• maximal wave activity in the standing wave along Y .

Call such points M-points (because of the maximality of wave activity at these
points).

In the example of Fig. 2.15 in which n = 15, there are two M-points—shown
as red (¥) circles—at

(
0, 1√

n

)
and

(
0, 7√

n

)
.

At M-points, maximality of the constituent (standing-wave and double-slit-
pattern) addends gives maximality of the resultant, total wave activity; this fact
is exploited in order to identify M-points, and, as we see below, from M-points’
positions can be retrieved the factors of n.

Let E be an M-point. Since E exhibits maximal standing-wave activity,
its distance from a is an integer multiple of 1

2
√

n
. Further, since E exhibits

constructive slit-pattern interference, its respective distances from a and from b
differ by a multiple of 1

2
√

n
; since, by the previous sentence, the former distance

is a multiple of 1
2
√

n
, so must be the latter.

E is therefore both on one of the family of circles of which the radii are mul-
tiples of the wavelength of S and with centre b, and coincident with a standing-
wave (i.e., S-wavelength-multiple) point on the y-axis. This implementation,
then, allows identification (via their maximal brightness) of the sought points
described informally in Sect. 2.3.1 (we seek, recall, the intersection of a row of
points and a nest of concentric circles).

Input to the System.

As alluded to immediately after Definition 5, the input value n is supplied to
the system by altering to 1

2
√

n
the wavelength of the radiation from S. All other

CHAPTER 2. MOTIVATION 63

aspects of the system’s physical structure are independent of the input value.
(In the example of Fig. 2.15, then, the input value of 15 is conveyed to the
system by the user’s adjusting to 1

2
√

15
= 0.129 . . . the wavelength of radiation

from S.)
Since, by definition of the factorization problem, n is known to be a natural

number, we may suppose that the system effects error correction:51 given a
wavelength 1

2
√

n′
corresponding to a non-integer input value n′ ∈ R, the system

takes the input value with which it computes to be the nearest integer
⌊
n′ + 1

2

⌋
to n′ (rounding upwards when n′ is equidistant between two consecutive inte-
gers). Consequently, in order successfully to input the intended value n, it is
sufficient (and necessary52) to set the wavelength of S to a real-number value

in In :=
(

1

2
√

n+ 1
2

, 1

2
√

n− 1
2

]
(since members of In, and only these members, get

corrected to n).
Note that the operations (extraction of square root, multiplication and di-

vision) used in calculating the wavelength 1
2
√

n
given input value n can be per-

formed by a Turing machine in time and space polynomial in the size log n of
n: there is no ‘sleight of hand’ whereby costly calculation is swept under the
carpet of the input/output processes or otherwise tacitly assumed to come for
free. Strictly speaking, the time/space required to calculate a square root de-
pends not only upon the size of the radicand, but also upon the precision with
which the answer is to be supplied; specifically, the Newton-Raphson method
reduces the time and space complexity of finding a square root to k digits of
precision to that of multiplying two k-digit numbers (see [80]), which, by long
multiplication for example, is achievable in O (

k2
)

time and, hence, space. In
our case, bounded precision is sufficient since we need only calculate a value in
In: the wavelength need be found only with sufficient precision that n can be
recovered thence.

We ask, then, how many digits of precision are needed. Suppose that
we compute

√
n to k-digit precision (and suppose, without loss of generality,

that we work in base 10) where k is a natural number not less than log10 4 +
1
2 log10

(
n + 1

2

) ∈ O (log n);53 then our computed value—r, say—for
√

n lies in
the interval

[√
n− 1

10k ,
√

n + 1
10k

]
.54

We claim that this results in the corresponding wavelength value 1
2r (which

lies in Jn,k :=
[

1

2(√n+10−k) , 1

2(√n−10−k)

]
) lying in In, and, hence, results in the

correct factorization’s being performed. We have that k ≥ log10

(
4
√

n + 1
2

)
,

so (by isotonicity of logarithms) 10k ≥ 4
√

n + 1
2 , whence 1

10k ≤ 1

4
√

n+ 1
2

, which,

51Cf. Footnotes 36 of this chapter and 44 of Chap. 3.
52Here we see the root of the input process’s precision complexity.
53Note that we do not write ‘O (log10 n)’, including the base, here for reasons given in

Footnote 5.
54That this interval is closed rather than open (i.e., that it includes its endpoints) reflects

the fact that we permit the decimal expansions of
√

n and of r to end with infinite strings of
9s; whether we allow this is unimportant in determining (up to O-notation) which values of
k are sufficiently large that the computation proceeds correctly.

CHAPTER 2. MOTIVATION 64

along with Lemma 6 below, gives that

1
10k

<

√
n +

1
2
−√n ; (2.29)

by adding
√

n, then,
√

n + 1
10k <

√
n + 1

2 , whence, by taking reciprocals and
halving,

1
2

(√
n + 1

10k

) >
1

2
√

n + 1
2

. (2.30)

Further, by (2.29) and Lemma 7 below, 1
10k <

√
n −

√
n− 1

2 , whence, by

adding
√

n− 1
2 − 1

10k ,
√

n− 1
2 <

√
n − 1

10k , and so, by taking reciprocals and
halving,

1

2
√

n− 1
2

>
1

2
(√

n− 1
10k

) . (2.31)

Therefore, we have that 1
2r ∈ Jn,k

(2.30, 2.31)

⊆ In (recall that Jn,k is the

interval
[

1

2(√n+10−k) , 1

2(√n−10−k)

]
and In the interval

(
1

2
√

n+ 1
2

, 1

2
√

n− 1
2

]
). This

k, which is in O (log n), represents sufficient precision in calculating square roots
that factorization is performed correctly.

Note that the size |In| of In is 1

2
√

n− 1
2

− 1

2
√

n+ 1
2

=
√

n+ 1
2−
√

n− 1
2

2
√

n2− 1
4

. We claim

that
1

4n
√

n
< |In| < 1

4
(
n− 1

2

) √
n + 1

2

. (2.32)

The former inequality holds because n2 − 1
4 + 1

64n2 > n2 − 1
4 , i.e.,

(
n− 1

8n

)2
>(√

n2 − 1
4

)2

, whence (by isotonicity of non-negative squaring) we have that

n− 1
8n >

√
n2 − 1

4 , so (adding 1
8n −

√
n2 − 1

4) n−
√

n2 − 1
4 > 1

8n , whence 2n−
2
√

n2 − 1
4 > 1

4n =
(

1
2
√

n

)2

; this left-hand side is equal to
(
n + 1

2

)−2
√

n2 − 1
4 +

(
n− 1

2

)
=

(√
n + 1

2 −
√

n− 1
2

)2

, so (again by isotonicity of squaring) 1
2
√

n
<√

n + 1
2 −

√
n− 1

2 . The latter inequality holds for similar reasons.55

We return to (2.32) in Sect. 2.3.7.

Lemma 6. With n as in the above discussion, 1

4
√

n+ 1
2

<
√

n + 1
2 −

√
n.

Proof.
(
n + 1

4

)2 = n2 + 1
2n+ 1

16 > n2 + 1
2n =

(√
n

(
n + 1

2

))2

, so (by isotonicity

of squaring for non-negative arguments) n+ 1
4 >

√
n

(
n + 1

2

)
, whence (by adding

55We leave explication of the details to the reader, though note that the key observation is

that
√

n + 1
2
−

√
n− 1

2
< 1

2
√

n− 1
2

.

CHAPTER 2. MOTIVATION 65

1
4 −

√
n

(
n + 1

2

)
) we have that n + 1

2 −
√

n
(
n + 1

2

)
> 1

4 , which, by dividing by√
n + 1

2 , yields the sought result.

Lemma 7. With n as in the above discussion,
√

n + 1
2 −

√
n <

√
n−

√
n− 1

2 .

Proof. n2 > n2 − 1
4 , so n =

√
n2 >

√
n2 − 1

4 (by isotonicity of taking square

roots), and 2n > 2
√

n2 − 1
4 . Hence (adding 2n), 4n > 2n+2

√
n2 − 1

4 = n+ 1
2 +

2
√

n + 1
2

√
n− 1

2 +n− 1
2 =

(√
n + 1

2 +
√

n− 1
2

)2

, so 2
√

n >
√

n + 1
2 +

√
n− 1

2

(by isotonicity of squaring). Rearranging gives the sought result.

Output from the System.

Having set up the apparatus as described in Definition 5 (including provision
to the system of n, encoded in the wavelength of S), an interference pattern is
produced on screen Y (since, on the y > 0 side of X, a and b act as separate,
mutually coherent sources,56 of which the respective waves interfere).

Since effective sources a and b are in phase, a point E on Y exhibits full,
constructive interference (and, hence, maximal brightness) if and only if the
respective distances from E to a and from E to b are integer multiples of the
wavelength 1

2
√

n
(recall the standing wave of Sect. 2.3.2 Apparatus); that is, if

and only if E is an M-point. We show now that such points exist.

Proposition 11. This maximal brightness is attained.

Proof. Let E =
(
0, n−1

2
√

n

)
. The distances from E to a (which lies at (0, 0)) and

from E to b (at (1, 0)) are, respectively, n−1
2
√

n
and

√
12 +

(
n− 1
2
√

n

)2

=

√
1 +

n2 − 2n + 1
4n

=

√
n2 + 2n + 1

4n

=
n + 1
2
√

n
.

Each of these distances is an integer multiple of 1
2
√

n
; hence, E is an M-point,

exhibiting full, constructive interference.

The process whereby output is read from the system consists of

• identifying a maximally bright (i.e., M-) point E on Y ,

• measuring the y-coordinate h of E, and

• calculating the values p :=
√

n
(√

h2 + 1 + h
)

and n
p .

In Fig. 2.15 (where n = 15), for example,

56This coherence is because S lies on the perpendicular bisector x = 1
2

of ab.

CHAPTER 2. MOTIVATION 66

• there are M-points on Y at
(
0, 1√

15

)
and

(
0, 7√

15

)
,

• which have respective y-coordinates of 1√
15

and 7√
15

,

• corresponding to respective p-values of
√

15

(√(
1√
15

)2

+ 1 + 1√
15

)
= 5

and
√

15

(√(
7√
15

)2

+ 1 + 7√
15

)
= 15 (and n

p -values of 3 and 1).

As is proven in Prop. 12, the values p and n
p corresponding in this way to

any M-point are factors of n (and, since h ≥ 0, we have that n
p ≤ √

n ≤ p).
Further, each factor of n that is at least

√
n occurs as such p, and each factor

that is at most
√

n as n
p , for some M-point. Thus, by processing all such points

as described here, all factors of n are found.
As during input, there is no tacit presumption of a (Turing-) computationally

complex operation: the process of finding p and n
p given h and n is algorithmi-

cally efficient (e.g., via the Newton-Raphson method—see [80]).

2.3.3 Proof of Correctness

Proposition 12. A point E on Y is maximally bright (i.e., is an M-point) if
and only if the corresponding value of p (namely,

√
n

(√
h2 + 1 + h

)
, where h is

the y-coordinate of E) is a factor of n no less than
√

n (and, hence, n
p a factor

at most
√

n).

Proof. Suppose that E := (0, h) is maximally bright. Then the respective
distances—h and

√
h2 + 1—from E to a and from E to b are integer multi-

ples of 1
2
√

n
; that is, α := 2

√
nh and β := 2

√
n
√

h2 + 1 are integers (as, hence,
are α2 and β2). Now

β2 − α2 = 4n
(
h2 + 1

)− 4nh2 = 4n , (2.33)

which is even, so α2 and β2 are integers of the same parity; therefore, α and
β are integers of the same parity. Hence, both β ± α are even, and so both
β±α

2 are integers, of which the product is β+α
2 · β−α

2 = β2−α2

4

(2.33)
= n; that is,

both β±α
2 are factors of n. Now p :=

√
n

(√
h2 + 1 + h

)
is precisely β+α

2 , and is,
therefore, a factor of n. Further, where q =

√
n

(√
h2 + 1− h

)
, the product pq

is n
(√

h2 + 1 + h
) (√

h2 + 1− h
)

= n
(
h2 + 1− h2

)
= n, and p ≥ q, so p ≥ √

n,
as required.

Conversely, suppose that the point E := (0, h) on Y is such that p :=√
n

(√
h2 + 1 + h

)
is a factor of n (we have, further, that p ≥ √

n since h ≥ 0).
Again, let q =

√
n

(√
h2 + 1− h

)
; then, as in the previous paragraph, pq = n,

and so (since, by hypothesis, p | n) q ∈ Z. We have that p and q are integers;
so too, then, are their sum p + q = 2

√
n
√

h2 + 1 and difference p − q = 2
√

nh;
that is,

√
h2 + 1 and h—which are the respective distances from E to b and

from E to a—are integer multiples of 1
2
√

n
. Thus, E is maximally bright, as

required.

CHAPTER 2. MOTIVATION 67

Having set up the system as in Definition 5, including having input n (en-
coded in the wavelength of the radiation from S), the factors of n are found
by measuring the y-coordinates of M-points on Y and converting these into the
corresponding values p and n

p ; Prop. 12 guarantees that the output values so
produced from all M-points are the factors of n and only the factors of n.

2.3.4 Practical Considerations

The description given here of the system is an abstraction of any physical real-
ization thereof: aspects of the description require modification before the system
can be implemented in practice. We note at the beginning of Sect. 2.3.2 Appara-
tus that the confinement of the system’s structure to a plane is one such aspect;
thus, the screens X and Y , and slits a and b, should actually have positive,
z-axis height, while S should remain as much as is practicable a point source,
in the plane of which measurements (specifically of M-points’ positions) on Y
should be taken.

Further, we cannot physically realize the infinitely long screen X. However,
since we require of X and S only that, on the y > 0 side of X, a and b act as
mutually coherent sources, we may replace X with a finite box X ′ occupying
the set

({
(x, 0) ∈ R2

∣∣ −1 ≤ x ≤ 2
} \ {(0, 0) , (1, 0)})

∪
{

(x, x− 2) ∈ R2

∣∣∣∣
1
2
≤ x ≤ 2

}

∪
{

(x,−x− 1) ∈ R2

∣∣∣∣ −1 ≤ x ≤ 1
2

}
,

sealed but for slits a and b, and containing S (which retains its position, as do
a and b); we assume the internal surfaces of X ′ to be non-reflective, so that
radiation from S that does not directly reach a or b is absorbed. (Of course, X ′

has a positive, z-axis height in light of the preceding paragraph.) Figure 2.16
shows the apparatus after this and the following modification.

Figure 2.16: The apparatus as modified in Sect. 2.3.4. Wave-fronts of radiation
from S are shown (in blue (¥)) to illustrate the double-slit nature of interference
in the region x, y ≥ 0 above X ′ and to the right of Y .

In the same vein, we cannot realize the infinitely long screen Y . It suffices,

CHAPTER 2. MOTIVATION 68

though, for Y to occupy the section of the y-axis between y = 0 and y = n−1
2
√

n
.57

This is because of the following proposition.

Proposition 13. The y-coordinate—h, say—of any maximally bright point on
Y satisfies h ∈

[
0, n−1

2
√

n

]
.

Proof. By Prop. 12, the M-point (0, h) corresponds to a pair
(
p, n

p

)
of factors

of n (where p ≥ √
n ≥ n

p —note in particular, then, that

p ∈ [√
n, n

]
, (2.34)

since factors of n cannot exceed n); explicitly, we recall from Sect. 2.3.2 Output
from the System, the correspondence is that p =

√
n

(√
h2 + 1 + h

)
.

First, we express h in terms of p and n.
√

h2 + 1 + h =
p√
n

, (2.35)

whence (by squaring) 2h2 + 1 + 2h
√

h2 + 1 = p2

n , so (by subtracting 1) p2−n
n =

2h
(
h +

√
h2 + 1

) (2.35)
= 2hp√

n
, and so

h =
p2 − n

2
√

np
.

In particular,

if p =
√

n, then h = 0, whereas if p = n, then h =
n− 1
2
√

n
. (2.36)

For fixed n, h as a function of p (i.e., h : p 7→ p2−n
2
√

np
) is isotone (this is perhaps

more readily evident from p expressed in terms of h—p =
√

n
(√

h2 + 1 + h
)
—

than vice versa), so from values of p between
√

n and n (such values are guar-
anteed by (2.34)) we obtain values of h between the corresponding values (given
in (2.36)) 0 and n−1

2
√

n
: h ∈

[
0, n−1

2
√

n

]
, as required.

Thus, we may truncate at y = n−1
2
√

n
the screen Y (see again Fig. 2.16) without

losing any M-points, and, hence, without missing any factors of n when such
points’ positions are converted into factors.

(One practical consideration not discussed in the context of the present sec-
tion’s factorization system concerns the production of radiation of sufficiently
short wavelength. In particular, as n increases, the required wavelength of S
corresponds to an increasingly impractical amount of energy. We see below,
however, that other considerations—notably, that of precision—render the sys-
tem impracticable; whilst these concerns about wavelength are certainly not
misplaced, then, they are at least redundant. Further, we treat energy in other
contexts—see Sects. 3.6 and 3.8.1 Energy and Time, for example.)

57In making this observation, we solve the problem of having to implement the infinite screen
Y , but reintroduce the undesirable property of the system’s layout’s depending upon n. This,
we see below, renders the system unsuitable for factorizing arbitrary natural numbers, but is
not a problem when factorizing numbers satisfying certain criteria; it is common, furthermore,
for public keys used in the RSA cryptographic system to satisfy these criteria.

CHAPTER 2. MOTIVATION 69

2.3.5 Time/Space Complexity

Time Complexity.

Consider first the time complexity of the system. The operation of the system
consists of

1. the provision to the system of the value n to be factorized, by way of
adjustment of the wavelength of source S;

2. the ‘processing’ by the system of the input value, whereby an interference
pattern is produced on Y ;58

3. the measurement of the y-coordinates of M-points on Y ; and

4. the conversion of these coordinates into factors of n.

Of these, only stages 1 and 4 take longer as n increases—because, respectively, of
the Turing-machine-realm processing of n to find the corresponding wavelength

1
2
√

n
(see Sect. 2.3.2 Input to the System), and of y-coordinates to find factors

(see Sect. 2.3.2 Output from the System)—, and even these take only polynomi-
ally long in the size log n of n; thus, the processing stages (2 and 3), which lie
in the physical-computing realm, have constant time complexity, and their al-
gorithmic ‘harness’, which prepares input and interprets output, has polynomial
time complexity (as does the system as a whole, therefore).59

Space Complexity.

Consider now the system’s space complexity. The apparatus has

• negligible, constant height (along the z-axis),

• a constant width (along the x-axis) of three (due to X ′), and

• a depth (along the y-axis) of n+3
√

n−1
2
√

n
∈ O (

√
n) (due to X ′ and the

shortened screen Y);

the (minimal-bounding-cuboid) volume of the apparatus lies in O (
√

n), and is,
hence, exponential in the size of n.60

Let us put this into perspective. In order to factorize an arbitrary, 100-digit
number (which is a relatively unambitious aim in, for example, the context of
factorizing real-life RSA keys—the 1988 book [132] describes as ‘reasonably safe’
the use of a 200-digit key), we can expect the depth of the apparatus to be a

58We recall from Sect. 2.3.2 Apparatus that this interference pattern is influenced by the
presence of a standing wave along screen Y , the instantiation of which wave, we crucially note,
does not affect the time or space complexity (or, for that matter, the precision complexity,
which we discuss in Sect. 2.3.7 below) of the system.

59Note that, under certain implementations, the sensor with which we identify M-points is
required to ‘scan’ Y in time linear in the length of Y (whereas we suppose that this process—
and, hence, stage 3—takes constant time). This length is n−1

2
√

n
∈ O (√

n
)
, in actual fact

rendering the system’s time complexity exponential in the size log n of n. In Sect. 2.3.6,
however, we modify the system so that this is no longer a concern—see Footnote 61.

60We note also that the algorithmic harness mentioned in Sect. 2.3.5 Time Complexity
imposes a polynomial memory-space requirement, which, though dwarfed by the exponential
space requirement of the apparatus, is of interest in Sect. 2.3.6 below.

CHAPTER 2. MOTIVATION 70

50-digit number of units, whilst its width is three units. The apparatus must
be of the order of 1049 times as deep as it is wide; it is necessarily either far too
deep to be practicably accommodated or far too narrow for slits with sufficiently
small spacing feasibly to be manufactured (or, of course, both).

These considerations render the system unsuitable as a practical solution to
the general problem of factorization. We consider now a subproblem, restriction
to which greatly mitigates the problems discussed here.

2.3.6 RSA Factorization

We see above that, by identifying an M-point (0, h) on Y , we are able to find
factors p :=

√
n

(√
h2 + 1 + h

)
and n

p of n. The problem is that there is no a
priori, n-independent upper bound for h: factors of n are found from values of
h as large as n−1

2
√

n
, which clearly tends to ∞ as n does. We shall never have

made screen Y large enough to cater for all n.
We note, however, that, as h increases, the corresponding factors p and n

p
of n grow further apart. In the case where n is a square, there is an M-point
at (0, 0), corresponding to the factorization n =

√
n
√

n: small values of h (in
this example, zero) give close (in this example, equal) pairs of factors. At the
other extreme, for any natural number n, there is by Prop. 11 an M-point at(
0, n−1

2
√

n

)
, which corresponds to the factorization n = 1.n: large h give greatly

differing pairs of factors. So as to quantify this relation, we have the following.

Proposition 14. The factors p :=
√

n
(√

h2 + 1 + h
)

and q := n
p of n corre-

sponding to an M-point (0, h) on Y differ by 2
√

nh.

Proof. We have that q =
√

n
(√

h2 + 1− h
)
, for then, as in the proof of Prop. 12,

pq = n. So

p− q =
√

n
(√

h2 + 1 + h
)
−√n

(√
h2 + 1− h

)

=
√

n
(√

h2 + 1 + h−
√

h2 + 1 + h
)

= 2
√

nh ,

as required.

Suppose now that we modify the system so that the size of the screen Y
is bounded; specifically, suppose that Y no longer occupies the line segment
{0} ×

[
0, n−1

2
√

n

]
, but rather the line segment {0} × [0, l] for some fixed (and,

crucially, n-independent), positive real number l. Recalling the discussion of
Sect. 2.3.5 Space Complexity, then, this gives the system polynomial space
complexity—we have constant-volume apparatus (contained within a cuboid
of volume 3

(
l + 3

2

)
ε for some negligible, z-axis height ε) with a polynomial-

memory harness, as discussed in Footnote 60.61

For sufficiently large values of n (specifically, those with n−1
2
√

n
> l; i.e., n >

2l
(
l +

√
l2 + 1

)
+1), we have that Y is no longer large enough to accommodate

all M-points corresponding to factors of n: those pairs of factors corresponding
to M-points (0, h) with h > l are overlooked. However, we have the following.

61The system’s time complexity is, further, rendered polynomial under all implementations
of the sensor on Y (recall Footnote 59).

CHAPTER 2. MOTIVATION 71

Proposition 15. If a pair (p, q) of factors of n (with pq = n and p ≥ q) satisfies
p ≤ mq, where m = 2l + 1, then these factors are not overlooked.

Proof. Required is that the y-coordinate h of the M-point corresponding to the
factor pair (p, q) does not exceed l, for then this M-point falls on the modified
(that is, shortened) screen Y .

By Prop. 14, p− q = 2
√

nh, so

h =
p− q

2
√

n
. (2.37)

Since, by hypothesis, p ≤ mq, we have that p − q ≤ (m− 1) q; since, again by
hypothesis, pq = n and p ≥ q, we have that q ≤ n

q , whence q ≤ √
n. Together,

these give that
p− q ≤ (m− 1)

√
n . (2.38)

Since, by definition, m = 2l + 1, we have that

l =
m− 1

2
. (2.39)

Hence,

h
(2.37)
=

p− q

2
√

n

(2.38)

≤ (m− 1)
√

n

2
√

n
=

m− 1
2

(2.39)
= l ;

h ≤ l, as required.

Corollary 2. If l ≥ 1
2 , then each factor pair (p, q) (with pq = n and p ≥ q)

satisfying p ≤ 2q is found by the modified system.

Proof. If l ≥ 1
2 , then m := 2l + 1 ≥ 2; so p ≤ 2q implies that p ≤ mq, whence

Prop. 15 can be invoked.

In modifying the system so that Y occupies only the line segment {0} ×[
0, 1

2

]
, we lose the ability to factorize arbitrary natural numbers; by Corollary 2,

however, the system can—at least as far as sufficiency of the length of Y is
concerned62—still factorize those values n of which each factor p no less than√

n (but strictly less than nFootnote 63) satisfies p ≤ 2n
p . Further, we note that,

for a public key n = pq (with p and q prime and q ≤ p) of the RSA cryptographic
system, this situation, in which p ≤ 2qFootnote 64, is common (the intuition here
is that, if prime factors p and q are too far apart—if q is particularly small and
p particularly large—, then the key n = pq is susceptible to factorization via
brute force).

Having noted an impracticality in using the system to factorize arbitrary
natural numbers (namely, that, as the input value grows, the required ratio of
the depth of the apparatus to its breadth increases exponentially, thus preclud-
ing physical implementation), we have nonetheless identified a subproblem—
factorizing RSA keys—that this impracticality does not hinder.65

62This, we see below, offers no guarantee of a practicable system. Chief among other
potential complexity bottlenecks are issues of precision.

63We excuse the system for omitting to demonstrate that n = 1.n.
64Were we even to weaken this condition from q ≤ p ≤ 2q to q ≤ p ≤ 10q, say—a very

conservative requirement of RSA keys—, then the system would, by Prop. 15 and provided
that Y spans {0} × [

0, 9
2

]
, still be able to factorize n (again, at least as far as Y ’s length is

concerned). This proviso causes no difficulty in physical implementation.
65There is, furthermore, a sense in which this subproblem captures the ‘hardest’ instances

CHAPTER 2. MOTIVATION 72

2.3.7 Precision Complexity

Having restricted factorization to RSA keys, we have a system with polyno-
mial space and time complexity. However, the system suffers from its precision
complexity (which is formalized in the following chapter), as we now informally
explain.

We recall from Sect. 2.3.2 Input to the System the interval In, to an element
of which the wavelength of S must be set in order successfully to factorize
n; we recall from (2.32), in particular, that the size of the interval satisfies

1
4n
√

n
< |In| < 1

4(n− 1
2)
√

n+ 1
2

. Since 1

4(n− 1
2)
√

n+ 1
2

< 1

4(n− 1
2)
√

n
, then, we have

that 1
4n
√

n
< |In| < 1

4(n− 1
2)
√

n
, and these upper and lower bounds for |In| differ

by 1

4(n− 1
2)
√

n
− 1

4n
√

n
=

n−(n− 1
2)

4n(n− 1
2)
√

n
= 1

8n(n− 1
2)
√

n
, which tends to zero as n tends

to infinity. Therefore (by the algebra of limits), |In| tends to 1
4n
√

n
as n tends

to infinity; crucially, the size of In shrinks exponentially with the size of n.
Containing the error (i.e., the discrepancy between the intended and actual

wavelengths of radiation from S) to this extent therefore requires of the user a
precision (whilst setting this wavelength) exponential in the size of n.

Rather than a system that efficiently solves a problem, we have yet another
motivating example66 for extension of complexity theory beyond the essentially
Turing-machine. By introducing notions of complexity that, for certain un-
conventional computers, cater better than those of the traditional theory, the
present work represents an attempt at such extension.

(We suggest that the lack of such extension prior to the present project is
perhaps because a vast majority of practical computation conforms to a Turing-
machine-like model (specifically, real-world computers are typically digital, run-
ning programs that implement algorithms), and perhaps also because of an over-
estimation of the ambit of the Church-Turing thesis (which ambit, we suggest,
falls within the realm of computability rather than complexity); consequently,
resource is, traditionally, virtually always taken to be a property—usually run-
time, but sometimes space or another measure satisfying Blum’s axioms—of
an algorithm, or, equivalently, a Turing machine, random-access machine or
similar.)

Certain points from the preceding paragraphs are worth reiterating and elab-
orating. Although our factorization system has polynomial space and time
complexity, this is not to say that it is a ‘good’, practicable system. How-
ever, the reason for which it is not a good system—namely, its exponential
precision complexity—does not form part of a standard, Turing-machine-type
complexity analysis; performing a standard analysis, considering only standard
resources (run-time, space, etc., but not precision), evaluates overly generously
(as polynomial) the system’s (actually exponential) cost. We discuss the system

of (general) factorization: traditional, general-factorization algorithms typically require the
greatest run-time when their input is of the form pq, where p and q are primes of the same
approximate size. Also, it is conjectured in [112] that any general method whereby the RSA
system is broken—such as an efficient method for factorizing RSA keys—would yield an ef-
ficient method for factorizing arbitrary natural numbers, implying the equivalence of the
RSA- and general-factorization problems.

66We add this example to the famous soap-bubble method [97] for finding minimum-length
spanning networks (possibly with additional vertices) connecting given vertices, the DNA-
computing technique [3] for tackling the directed Hamiltonian path problem, etc.

CHAPTER 2. MOTIVATION 73

here, therefore, not because it factorizes efficiently (it certainly does not67), but
because it demonstrates the need to consider more broadly the complexity of
systems and the cost of computations;

complexity analyses—especially of non-Turing computers—should consider not
only algorithmic resources (time, space, etc.), but also non-algorithmic

resources (precision, energy, etc.).

2.3.8 Summary

We summarize now Sect. 2.3.
In Sect. 2.3.1, we suggest that a possible cause for the prohibitive precision

complexity of the system of Sect. 2.2 is its ‘handmade’ nature, and consider an
alternative implementation of the same basic idea whereby physical phenomena
(from which result naturally occurring cones) are exploited in order to lessen
the need for precise manufacturing (see also Sect. 3.2.1 Manufacturing Costs).
This motivates an improved factorization system.

In Sect. 2.3.2, we define the system, detailing its apparatus and input/output
processes. We go on, in Sect. 2.3.3, to show that these processes result in the
correct factorization of the input value.

In Sect. 2.3.4, we discuss and resolve some, though not all, of the practical
difficulties with the system’s implementation; specifically, we address and solve
the problem of the apparatus’s being infinite in spatial extent.

In Sect. 2.3.5, we note the system’s favourable (polynomial) time complexity,
but that its (exponential) space complexity impedes practical implementation.
We resolve this difficulty in Sect. 2.3.6 by restricting the system’s apparatus,
though this restricts accordingly the problem solved by the system: while a
practically implementable and efficient system for factorizing arbitrary natural
numbers seems precluded by many concerns, we present a polynomial-time,
polynomial-space system for factorizing a certain type of natural number—
which type includes RSA keys—that is not subject to some of these concerns.

In Sect. 2.3.7, however, we note that the system’s ostensibly impressive poly-
nomial time- and space-complexity functions are testament not to the system’s
efficiency, but to the inadequacy of traditional, Turing-machine-motivated com-
plexity theory for capturing/accommodating certain unconventional computers’
complexity. The true complexity of the system, which is exponential by virtue
of the precision required during its use, is overlooked by traditional complexity
analyses.

This observation motivates the present project’s attempt to introduce an ap-
proach to complexity theory that caters more broadly than for Turing-machine-
style computers alone. Specifically, the aspect of this project motivated by the
factorization systems of Sects. 2.2 and 2.3 is the consideration of non-standard
resources (precision being our illustrative example) in the context of analysis of
the complexity of non-standard computers.

67Neither do we expect any mere modification of the system to achieve polynomial-resource
factorization: the issues of precision seem intrinsic and fundamental to the system’s derivation.
The prohibitive precision complexity is not an obstacle to be overcome; it is an indicator that
non-standard computers warrant non-standard complexity analyses.

CHAPTER 2. MOTIVATION 74

2.4 Conclusion

2.4.1 Summary

The purpose of this chapter is to motivate the present project’s introduction of
a model-independent approach to complexity theory. The chief such motivation
is offered by the thesis that

the successful analysis of unconventional computers’ complexity entails
consideration of unconventional (i.e., non-time, non-space) resources.

We summarize now the observations of the present chapter that lead to this
thesis.

In Sect. 2.1, we introduce the problem of factorization, noting its exponential
time complexity when approached via traditional, Turing-machine methods.

In Sects. 2.2 and 2.3, we describe two unconventional systems that solve
the problem of factorization68. We investigate the computational complexity
of the systems, finding that the conventional (time and space) complexity of
each is polynomial, but that the informally introduced, unconventional precision
complexity (formalized below—see Sect. 3.3.3) is exponential. This prohibitive
complexity behaviour, then, is overlooked by conventional analysis.

(Additionally, the chapter serves a practical purpose by demonstrating the
way in which computers may be derived and analyzed in accordance with the
model-independent framework described in the present project.)

2.4.2 Discussion

We say no more here than to reiterate that the issue is one of resource: a
crucial factor that distinguishes conventional and unconventional computation
is that different types of resource are consumed in each case; understandably,
then, traditional complexity theory fails, due to its restricted interpretation of
resource, to cater for some non-traditional computers.

In Chap. 3, we begin (and in Chap. 4 continue) formalization of a model-
independent notion of resource.

68Properly speaking, the latter system solves a slightly different problem, though one con-
jectured to be equivalent to that of factorization—see Footnote 65.

Chapter 3

Resource

3.1 Unconventional Resources

3.1.1 The Need Therefor. . .

Computation—whether performed by a Turing machine, a real-life digital com-
puter, a quantum system, or any other system that has provision for accepting
input and providing corresponding output—must be efficient to be of prac-
tical use. The question of which parameters and attributes of a computa-
tion/computer have a bearing on its efficiency or lack thereof, and of which val-
ues of these parameters and attributes confer this efficiency, is to some extent
context-dependent1, though computational complexity theory offers a widely
accepted and highly formalized criterion for efficiency.

Specifically, complexity theory suggests, and decades of practical experience
corroborate, that a computer’s efficiency corresponds to its using only a poly-
nomial amount of computational resources (where this polynomial function is
of the size of the computation’s input value). Since complexity theory has been
developed primarily with the Turing machine and equivalent models/paradigms
of computation in mind, these resources (that we wish to scale polynomially
so as to enjoy efficiency) are traditionally run-time and memory space (see
Sect. 3.7.1). By construction, then, this limited view of resource is adequate
when analyzing the complexity of standard computers such as the Turing ma-
chine and closely related physical instantiations2 such as the digital computer.
However, as we see in Chap. 2—see constructively, moreover—, consideration
of time and space alone can lead to an unrealistically optimistic measurement
of the complexity of non-standard, unconventional computers: it is perfectly
possible for a computing system to be rendered impracticable by complexity
concerns other than those of time and space; such systems suffer due to pro-
hibitive consumption of some other, non-standard resource.3 The problem, then,
is that unconventional computers may well consume unconventional resources,

1For example, portable but non-critical devices may favour space- over time-efficiency,
whilst supercomputers striving to process in a timely fashion meteorological data may not.

2Adequacy for even these ‘closely related’ instantiations, however, is debateable—see
Sect. 3.6.1 Actual, Physical Implementations of Turing Machines.

3Explicitly, these non-standard resources may contribute significantly to the system’s com-
plexity in that they may impinge on the system’s efficiency before availability of time or space
has become pressing.

75

CHAPTER 3. RESOURCE 76

and complexity should therefore be, though often is not, analyzed in terms of
these resources.4

Concretely, Chap. 2’s systems factorize numbers using time and space grow-
ing only polynomially in the numbers’ size (this is in contrast with the ex-
ponentially scaling time required by known Turing-machine-style methods for
factorizing [41]); however, the precision with which the user must manipulate
and measure certain physical parameters (so as to effect input to and output
from the system) increases as an exponential function of the size of the num-
ber to be factorized—consideration of conventional resources alone leads to an
underestimation of the system’s complexity, since it is the overlooked, uncon-
ventional resource of precision (which we formalize in Sect. 3.3) that gives rise
to the bars on the systems’ practical efficiency, and hence gives rise to the ‘true
complexity’—see Sect. 3.2.3—of the systems.

Crucially, then,

insightful analysis of the complexity of unconventional computers entails
consideration of unconventional resources.

The situation is not beyond repair. On the one hand, traditional complex-
ity theory and the resources (namely, time and space) considered therein are
inspired by the Turing-machine model of computation, almost totally to the ex-
clusion of other models; further, these resources cater inadequately for certain
non-standard computers (the ‘by-construction’ adequacy for standard, Turing-
machine-like computers notwithstanding). Fortunately, on the other hand, we
have that it is possible (and even natural, once the problem has been acknowl-
edged) to define resources that better capture the true complexity of non-Turing
computers; this we see from the illustrative case of precision—informally and
intuitively in the context of the factorization systems above (see Sects. 2.2 and
2.3) and more formally with our rigorous treatment of precision (see Sect. 3.3)—,
and from our discussion below of other unconventional resources (see Sects. 3.5
and 3.6).

The problem, then, is that complexity analysis of unconventional computers
is often undertaken with some appropriate resources neglected. Given this for-
mulation, the solution suggests itself: when working with a non-standard com-
putational model, one should consider which resources—both standard (time
and space) and non- (precision, the resources discussed in Sects. 3.5 and 3.6,
etc.)—are consumed during a computation, and should explicitly measure the
complexity of the computation with respect to all of these resources; this gives
a more complete picture, and correspondingly more confidence in the under-
standing, of the computation’s complexity.

Aside. We demonstrate here the need for consideration of unconventional re-
sources by first tacitly assuming the need (or at least desire) successfully to ana-
lyze the complexity of unconventional computers.5 A computer-centric motiva-
tion for this latter (and, hence, indirectly, former) need is a desire to measure the

4The obvious corollary is that many physical computing systems, such as the analogue
computers of Chap. 2, do not fit meaningfully into the traditional hierarchy of complexity
classes, simply because these classes are defined in terms of measures—usually time though
sometimes space—that do not accurately reflect the systems’ complexity.

5It is, of course, only relative to this latter need that we can demonstrate the former: heed
of unconventional resources may well be far from necessary if insightful complexity analysis
is not amongst our aims.

CHAPTER 3. RESOURCE 77

efficiency of non-standard systems that solve a problem against the benchmark
of the efficiency of existing Turing-machine counterparts that solve the same
problem—see Sect. 4.1.1 Turing-Machine Benchmarks; a problem-centric moti-
vation is that with the ability successfully to analyze unconventional computers’
complexity comes an improved understanding of the complexity of mathemati-
cal problems themselves—see Sect. 4.1.1 Complexity: Problems versus Solution
Methods.

More generally, there has long been and is today an active community work-
ing with non-Turing forms of computer6, using such techniques as

• mechanical means whereby differential/integral equations are solved (e.g.,
the Differential Analyzer—see [43] and Example 3);

• the formation of soap bubbles between parallel plates, as used to find
minimal-length spanning networks (possibly with additional vertices) con-
necting given vertices—see [97];

• DNA-computing techniques that can tackle the directed Hamiltonian path
problem—see [3] and Sect. 3.6.1 Chemical/DNA Computers—, amongst
other graph-theoretic/combinatorial problems;

• quantum-computing methods, both standard (circuit-model [99]) and non-
standard (adiabatic [87,88], measurement-based [109], continuous-variable
[39], etc.)—see Sect. 3.6.2;

• optical means offering novel approaches to the Travelling Salesman and
other problems—see [72,133,134] and Sect. 3.6.1 Optical Computers;

• and so on.

Despite the dominance of digital computers, then, non-Turing systems are of
great importance (and, moreover, increasing importance, thanks largely to quan-
tum computation).

It is given the need for insightful analyses of non-standard computers (and
given Sect. 3.1.1’s dashing of the hope that the traditional tools—especially the
traditional resources—of complexity theory are adequate for analyzing uncon-
ventional computers), then, that one must consider new resources.

This need for consideration of unconventional resources corroborates in a
specific way Penrose’s claims [105] that

“the questions of practicality of algorithms are being only barely
touched by complexity theory as it stands today”

and that

“complexity theory for actual physical objects could perhaps be dif-
ferent in significant ways from that which we have just been dis-
cussing [i.e., from that for Turing machines]”.

Further, we see presented in [119] a framework in which can be made com-
plexity analyses (to an extent such that these analyses are meaningfully compa-
rable with those of discrete systems) of dissipative flows, which model continuous

6We note also the growing recognition (see, e.g., [2, 78]) of such computers’ importance.

CHAPTER 3. RESOURCE 78

physical systems of which the evolution can be viewed as computation (where the
output is—or, at least, is encoded in—the attractor of the dynamics). The au-
thors of [119] conjecture that a problem’s tractability (in the sense of its having
polynomial time complexity) via Turing machine is equivalent to its tractability
(in a sense defined in [119]) via dissipative-flow computation. Notably for our
purposes, [119] acknowledges the inadequacy of traditional complexity theory:

“Although continuous time systems are widespread in experimen-
tal realizations, no theory exists for their algorithmic analysis. The
standard theory of computation and computational complexity . . .
deals with computation in discrete time and in a discrete configura-
tion space, and is inadequate for the description of such systems.”

Despite this acknowledgement, however, the consideration in [119] of resources
consumed during computation via the above-mentioned continuous-time sys-
tems is restricted to run-time.

Aside. Whereas [119] discusses the continuity of time in the context of com-
putation via dissipative systems, an analogous treatment of space leads to the
rudiments of something like our notion of precision. There is in the present
work and [119], further, a common use of continuous-to-discrete ‘correction’ via
rounding or similar:

“The evolution of a [dissipative dynamical system] reaches an at-
tractor only in the infinite time limit. Therefore for any finite time
we can compute it only to some finite precision. This is sufficient
since for combinatorial problems with integer or rational inputs, the
set of fixed points (the possible solutions) will be distributed on a
grid of some finite precision. A computation will be halted when the
attractor is computed with enough precision to infer a solution to
the associated problem by rounding to the nearest grid point” [119].

Compare this with our notion of interpretation (see Definition 6).

Finally, we find in [81] a description of an implementation of a DNA com-
puter that solves the shortest path problem. We read that,

“[e]ven though the shortest path problem is belonging to the class P,
i.e., it is not hard to solve this problem, it is worth to be solved by
DNA computing because numerical evaluations are required during
the computation.”

The suggestion seems to be that, although the time cost of solving the problem
via Turing machine is reasonable, it may be desirable to minimize not run-
time but rather the number of numerical evaluations performed during the
computation; more abstractly,

we may be interested in resources other than time (and space),

a thesis with which we strongly agree. (The fact that these troublesome numer-
ical evaluations presumably impose only a time cost means that consideration
of both time and numerical evaluations boils down to consideration of time
alone, but this is not the point; though the role of resource seems confused in
the above quotation, one imagines that this is merely because the issue has not

CHAPTER 3. RESOURCE 79

been explicitly considered by the authors of [81]—that they challenge at all the
supposition that ‘time is enough’ is commendable, and that they lack a frame-
work in which to formalize resource issues (which formalization we attempt in
the present work) is no cause for criticism, for such is not their aim.)

We must make clear that, whilst we argue for consideration of unconventional
resources, we certainly do not argue for consideration of such resources alone.
Of course, one should still consider as part of the complexity analysis of a given,
unconventional computer the standard resources of time and space; however,
especially if these suggest unexpectedly low complexity (as, for example, do the
polynomial time- and space-complexity functions of the factorization systems of
Chap. 2), non-standard resources should also be considered.

3.1.2 . . . But the Neglect Thereof

Despite the need—which is hopefully clear given the discussion of Sect. 3.1.1—
for consideration of unconventional computational resources, there is, nonethe-
less, a widespread tendency to overlook such resources during complexity anal-
yses. We justify here this assertion7, and go on in Sect. 3.1.2 Explanation to
offer possible explanations for the neglect discussed here.

Regardless of its causes, however, this misapprehension is widely evident; we
list some manifestations.

• According to its scope [66], the International Workshop on Foundational
and Practical Aspects of Resource Analysis

“serves as a forum for presenting original research results that
are relevant to the analysis of resource (time, space) consump-
tion by computer programs” (the emphasis is ours; the restricted
view of resource is not).

The stipulation that considered systems be restricted to “computer pro-
grams” makes suitable the exclusive consideration of time and space (see
Sect. 3.7.1), but this restriction seems not to be in keeping with the work-
shop’s claimed consideration of foundational issues concerning resource.

• In [30], we read that

“[t]he cost of computing a function by a machine reflects the
number of fundamental operations performed from input to out-
put”.

This, we suggest, results in a complexity measure essentially the same
as run-time—see Sect. 3.6.2 Circuit-Model Quantum Computers for dis-
cussion of a similar resource in the context of quantum computation. A
more explicit demonstration of the neglect of non-standard resources is
the claim in [30] that

“[p]olynomial time is meant to formalize the notion of tractabil-
ity”;

7See also Sect. 3.7.1 for a related, almost converse assertion: that, in the Turing-machine
case, time and space are the only resources reasonably to be considered.

CHAPTER 3. RESOURCE 80

not even space, then, is entertained as a valid resource. This overemphasis
on time is particularly dangerous in [30] since the real-number manipula-
tions considered therein can reasonably be expected to imbue any practical
implementations of the corresponding systems with non-trivial precision
complexity.

• Reference [38] has a similar approach to [30], with accordingly similar
neglect of non-standard resources.

• Reference [42] discusses a soap-bubble method for finding minimal-length
Steiner trees connecting given vertices (see, for example, Chap. VII, §11,
Subsection 4 of [52]), though this discussion neglects to consider non-
standard (in fact, non-time) resources when such are particularly relevant.8

• In its consideration of complexity, [40] limits itself to the resource of time.
This leads to the authors’ making such claims as

“[Shor’s polynomial-time factorization system] would probably
violate the [extended Church-Turing thesis—see Sect. 1.2.1],
since factoring is believed to require superpolynomial time on a
classical computer”;

however, we have in Chap. 2 exhibited a polynomial-time, ‘classical’ (i.e.,
non-quantum) factorization system: whereas factorization seems to re-
quire super-polynomial resource, the requirement for time in particular
need not be so prohibitive.

• And so forth.

There are, of course, exceptions in which unconventional complexity re-
sources are considered. We recall, for example, [10]; whilst not treating precision
as a resource in its own right as we do here, the work effectively employs an
equivalent formulation9 by acknowledging that an increase in precision imposes
a cost in terms of other resources (specifically time).

The particular example treated in [10] is that of a method for determining
which of two objects is the more massive. By elastically and one-dimensionally
colliding one (moving) object, A, into another (stationary) object, B, on a
frictionless surface, the transfer of momentum is such that,

• if A is the more massive, then it continues (albeit more slowly) in its orig-
inal direction as if through B—this situation is identified by A’s passing
an anterior sensor;

• if A is the less massive, then it recoils from B so as to travel oppositely to
its original direction—this situation is identified by A’s passing a posterior
sensor; and

8This oversight leads the authors of [42] to conclude that P = NP; the most flawed step
of their argument is that, since the (NP-complete) problem of finding minimal Steiner trees
can be solved in polynomial time by an analogue computer, there must exist a similarly
polynomial-time Turing machine that solves the same problem. However, there is no reason
to think that the conversion to Turing machine can be executed without, for example, having
to introduce exponential time complexity so as to accommodate an exponential consumption
by the pre-conversion, analogue system of an unconventional resource such as precision.

9Equivalent, that is, once certain trade-offs are established—cf. Sect. 3.8.1 Precision and
Time.

CHAPTER 3. RESOURCE 81

• if A and B have exactly equal mass, then A remains at the point of
collision, never to reach either sensor.10

See Fig. 3.1.

Figure 3.1: The experiment of Tucker et al. [10], which determines which of A
and B is the more massive.

The claim (the justification of which we defer to [10]) of interest here is that
the time for which a user of the system need wait in order to guarantee that
A reach one or other sensor increases exponentially with the required precision
(which is related reciprocally to the smallest difference in mass that we wish to
be able to distinguish). Whilst precision is not modelled as an atomic resource,
then, it is certainly considered (via its relationship to standard resources).

Aside. We note that the energy of the system can be increased in order to
reduce the time for which the user need wait for an answer: by doubling the
initial velocity of A, for example, the waiting time is halved. This hints at
the richness of the choice of unconventional resources, and at the existence of
trade-offs between resources—see Sect. 3.8.1.

We observe another step very much in the right direction in [128]:

“The amount of tape used by a Turing machine computation can be
no larger than the number of time steps, and it uses no resources
other than time and [space]. Therefore, a problem [in P] is also
guaranteed to use no more than a polynomial amount of resources
on a Turing machine. On the other hand, an analog computer can
conceivably operate successfully in polynomial time but require an
exponential amount of some other resource, such as torque or instan-
taneous current. We will therefore want to insist that a “fast” and
well behaved analog computation use total resources polynomial in
the input description” (our emphases).

Explanation.

We offer now some potential explanations for this neglect (above exceptions
aside).

10However, B will in this case pass a sensor (namely, the anterior), having adopted after
the collision the velocity and direction of A before. This suggests a method of ascertaining
comparative mass in reasonable time even when the masses are equal or nearly so; the crucial
dependency of time is then upon the energy available to impart to A at the start of the
experiment rather than upon the mass difference between A and B. We defer full exploration
of this idea to future work.

CHAPTER 3. RESOURCE 82

• The most obvious is that a vast majority of practical computation con-
forms to a Turing-machine-like model (specifically, real-world computa-
tions are typically performed by digital computers that run programs
that implement algorithms that can be formalized as Turing machines,
random-access machines or similar), and, hence, warrants consideration
in its complexity analysis of only time and space—see Sect. 3.7.1. Per-
haps understandable, then, is the misapprehension that consideration of
time and space alone suffices even on those rare occasions when the com-
putational model is not Turing-machine-like.

• Further, there may be an overestimation of the ambit of the Church-Turing
thesis (which ambit, we suggest, falls within the realm of computability
rather than complexity—see Sect. 1.2.1). Supposing even the extended
thesis, the belief is still mistaken that all computing paradigms, conven-
tional and unconventional, are in some sense of equivalent computability
and complexity on a resource-by-resource basis, and, hence, that complex-
ity analysis à la any arbitrarily chosen model (the natural choice being
the Turing machine with its well-established techniques and tools of com-
plexity analysis) is adequate in all cases.

• Complexity theoreticians may understandably wish to decide upon and
work exclusively with concrete notions (such as ‘Turing machine’ instead
of ‘computer’, or ‘time/space’ instead of ‘arbitrary resource’), rather than
retaining model-generality at the cost of having less specific definitions
from which fewer general theorems follow (see also Footnote 13).

Because of these and other considerations, the temptation may be to analyze
the complexity of an arbitrary computer as one would a Turing machine;

the temptation may be, in particular, to neglect non-standard (i.e., non-time,
non-space) computational resources.

This oversight is seldom explicitly considered, let alone viewed as cause for
concern; indeed, the field of computational complexity theory, even restricted to
Turing-machine-style resources, is extremely successful, not only theoretically,
but also practically, offering excellent guidance, for example, on the allocation
of computational effort.11

Lack of Unification.

We discuss now a problem related to the neglect of unconventional resources,
namely, the lack of unification in the way in which such resources are de-
fined/treated (on those few occasions when they are considered at all).

It must be emphasized that, Sect. 3.1.2 notwithstanding, there exist (though
only in a minority) practitioners of unconventional computing who conduct com-
plexity analyses of their systems with consideration not only of the conventional
resources of time and space but also of certain unconventional resources. How-
ever, this consideration is not always made to a useful extent12, and is only ever

11Explicitly, we have as an illustrative example of this guidance that NP-completeness is
reason enough to call off the search for an efficient algorithm—recall Sect. 1.1.

12Often, we reiterate, the true complexity of unconventional computing systems is
overlooked—see the discussion of Sect. 3.6.2 Circuit-Model Quantum Computers for a timely
and important example.

CHAPTER 3. RESOURCE 83

ad hoc, in that the approach to unconventional complexity analysis of (e.g., the
inclusion and handling of unconventional resources in) a certain computational
model—or even a specific computer within a model—is not intended to be, nor
is it, applicable to other models/computers: there is no unification even within
individual models, let alone therebetween.

The approach to computational complexity expounded in the present disser-
tation, with its concepts defined relative to and in terms of (arbitrary) resources
in a uniform way, hopefully addresses these problems: in deriving from each re-
source in a standardized way the corresponding notions of complexity function,
complexity class, etc., we set the stage for meaningful comparison between not
only instances of a single computational model but also computers conforming
to different paradigms.

3.2 Interpreting ‘Resource’

Much of this section is based on [23].

3.2.1 Possible Interpretations

We find as a dictionary definition of ‘resource’ the following:

“A means of supplying some want or deficiency; a stock or reserve
upon which one can draw when necessary” [111].

In light of this, ‘resource’ could validly be taken, in the context of computation,
to mean not only

1. those ‘commodities’ consumed/required during computation (i.e., “when
necessary” as in the above quotation)—time, space, precision, etc.—,

but also such things, on which we may draw for computational gain or conve-
nience, as

2. the presence of non-determinism (which, supposing the widely held con-
jecture that P 6= NP, affords a strict increase in computational efficiency),

3. the consultation of oracles,

4. the costs incurred in manufacturing (rather than running) a computer
(including, for example, manufacture of any entangled/cluster states from
which respectively a general/measurement-based quantum computation
proceeds, and including the thermodynamic costs of the manufacturing
process—see [94,137]),

5. information-theoretic resources,

6. etc.

One hopes that several of these diverse interpretations of ‘resource’ can be
reformulated as instances of a single, more general interpretation (see Sect. 3.2.2
for discussion of this phenomenon), but that this interpretation is nonetheless
sufficiently specific to form the foundation of an insightful complexity framework

CHAPTER 3. RESOURCE 84

in which meaningful results can be derived.13 We adopt a view of ‘resource’ that,
prima facie, seems much more specific than is suggested by the word’s common
usage (in the form of its dictionary definition) and by the variety amongst
points 1 – 6 above; we see below, however, that our definitions are able to
accommodate many of these points.

Specifically, we are concerned primarily with the ‘commodity resources’ of
point 1 (as is implicit in the informal description of Sect. 1.2.1 Resource). These
are computational resources consumed or required by a computer during exe-
cution of a computation (as opposed14, for example, to resources used during
a computer’s manufacture, and to information-theoretic resources such as com-
munication channels). As already mentioned, commodity resources include, but
are by no means limited to, time and space; the notion therefore generalizes its
counterpart in standard complexity theory.

Before focusing on commodity resources, we briefly discuss some of the al-
ternative interpretations alluded to above.

Manufacturing Costs.

One may view as a resource the costs incurred in constructing (as opposed to
running) a computer. These costs may, for example, include those of manufac-
turing the system’s physical structure, or of producing an entangled state15 to be
used in a quantum computation (e.g., a cluster state from which measurement-
based quantum computation proceeds—see [109]).

An example of a physical-structure manufacturing cost notable for its enor-
mity comes from relativistic computing (see Sect. 3.6.1 Relativistic Computers),
some instances of which make use of wormholes, black holes, etc., which, if not
already present, may need to be constructed (such manufacturing costs are sug-
gestive less of hypercomputation and more of hypercompartmentation, so far
beyond the pale are they. . .).

In the world of practical computation, such costs are typically encountered
in a financial form (e.g., the price of a digital computer), though may instead be

13This is, of course, an instance of the age-old balancing act of mathematical definition. If
a notion is too broad, then few interesting theorems hold in generality (the larger the class
X being defined, the fewer interesting properties P satisfying (∀x ∈ X) P (x) there are); if
the notion is too narrow, then it is unlikely to be applicable in an arbitrarily chosen situation
of interest, and resultant theorems potentially lack insight in that their predictions may be
artefacts of the overly restrictive definition rather than being inherent truths.

14An attempt at a fully rigorous definition of ‘commodity resource’ that, in particular,
distinguishes the notion from the other categories of resource listed above would be artificial:
see Sect. 3.2.2.

15Reference [68] sets out several principles of which the intention is to constrain and spec-
ify what is meant by ‘computing machine’ (we begin similar axiomatization of ‘resource’ in
Sects. 3.4 and 4.5). Of particular interest is Principle IV, which stipulates that causation be
local: justified by

“the finite velocity of propagation of effects and signals [and the fact that] con-
temporary physics rejects the possibility of instantaneous action at a distance”,

the principle demands that, for each region of a machine, the current state of only a bounded
neighbourhood of the region influence the next state of the region. Notably, this princi-
ple precludes disparate, entangled states (e.g., Einstein-Podolsky-Rosen pairs; see [61] for
discussion—indeed, introduction—of the associated paradox), which may in turn preclude
otherwise-possible computations and certainly precludes otherwise-(theoretically) possible
cryptographic protocols—see [62]. So as to accommodate such, we do not adopt this principle.

CHAPTER 3. RESOURCE 85

thermodynamic, for instance. We recall the notion of thermodynamic depth16,
formulated in

• [137] as the loss of information during formation of an object (such, rele-
vantly for present purposes, as a computer), and in

• [94]17 similarly as the information content of the process of a computing
system’s creation.

The measure, therefore, falls under the heading of ‘manufacturing costs’.

Aside. We mention in passing a concept related to the change in informa-
tion/entropy during creation of a computer (i.e., related to a computer’s thermo-
dynamic depth), namely, the change during resolution of a probabilistic state or
similar. Reference [95] suggests that, intuitively, the complexity of a probabilis-
tic state can be thought of as the work required during the state’s resolution.
Whereas thermodynamic depth is a manufacturing cost, then, the thermody-
namic cost of resolution of a probabilistic state is—assuming that such resolution
is a necessary step in producing a computation’s output value, and by virtue of
its chronological position in the computational process—a commodity resource.

In addition to the costs (be they financial, thermodynamic or other) incurred
during production of a computer, one may consider also those incurred during
its design; for our purposes, such are included in the category of manufactur-
ing costs, being incurred as they are before the computation itself commences.
Apart from obvious instances of these design costs, such as the man-hours re-
quired to design a digital computer18, this type of cost also includes evolution:
viewing (e.g., human) brains as computing systems—and why should we not?—,
one may reasonably consider as an associated cost the time taken to evolve the
brain.19

Note that the evolutionary costs of a human-brain computer (not least
the evolution time) dwarf the production (gestation) and—for even vaguely
tractable problems—computing (thinking) times. Nonetheless, this evolution
imposes a one-off cost, a O (1) (albeit huge) resource expenditure—see the fol-
lowing paragraph. Our choosing to study commodity resources rather than
manufacturing costs, then, is similar to standard complexity theory’s simplifi-
cation ‘polynomial is tractable’, even when the polynomial’s coefficients/degree
are impracticably large. Ultimately, our aim is to study the complexity of (es-
pecially non-Turing) computational processes, not the complexity of the com-
puters’ coming into being; our choice of commodity resource is in keeping with
this.

Ultimately, for a computing device to have a serious, complexity-theoretic
claim to solution of a problem (and not merely solution of a proper subset of

16This is to be contrasted with the thermodynamic cost, also discussed in [137], incurred
during a computation—see Sect. 3.5.1 Thermodynamic Cost.

17Incidentally, in agreement with our thesis that unconventional computers warrant uncon-
ventional resources, we read in [94] that

“if a definition of complexity is to be a useful measure for physical systems then it
must be defined as a function of physical quantities, which in turn obey physical
laws”.

18Depending upon how we define ‘design’, we may wish also to include the man-hours
required to design the computer’s predecessors from which its design derives.

19See also Sect. 3.6.1 Chemical/DNA Computers.

CHAPTER 3. RESOURCE 86

the problem’s instances—say those of a specific size), the same device should
be capable of processing any valid input value of the problem; more difficult
(usually larger) instances may require more (‘commodity’) resource (such as
run-time or memory space) during computation, but the initial construction of
the computer is taken by the complexity theorist as read, and the details of this
construction, being independent of input value, impose only a constant cost,
which is in particular ignored by asymptotic notation.

Therefore, we, as complexity theorists, are interested more in those resources
consumed during computation than those that constitute manufacturing costs.

As a final point in our discussion of manufacturing costs, we stress that, even
when discussing, say, the computational paradigm of the physically implemented
digital computer,

memory space is not a manufacturing cost, but rather a commodity resource.

If the amount of physical memory required depends upon the specific instance
of a problem under consideration and is unbounded—i.e., given any finite al-
location of space, there exists an instance of the problem that, due to lack of
space, cannot be solved—, then we cannot a priori (and, in particular, before
knowing for which input values to cater) guarantee sufficient memory; it may
be that further memory space is required as the computation proceeds, hence
the thesis above.

Features of Computational Models.

Computation may be facilitated by taking advantage of ‘permissions’ granted
by the computational model. For example, we may augment a Turing machine
by allowing it to employ non-determinism; then, although the same problems
are computable20, we do at least enjoy an apparent (and, if P 6= NP, a gen-
uine) increase in (time) efficiency. Similarly, a computer may be augmented by
allowing consultation of oracles.

Such permissions, which are either a priori allowed by the computational
model in question or a priori forbidden (depending on the model), are non-
commodity resources on which we may draw in order to aid computation.

Though the unconventional complexity framework that we present in this
project does not include as resources such features (non-determinism, oracles,
etc.), they are nonetheless accommodated—in that we are able to investigate
their impact upon the computational complexity of problems, computational
processes, etc.—by model-independence of the framework. Though we do not
consider non-determinism, for example, to be a resource, we are able within
the framework meaningfully to compare respectively deterministic and non-
deterministic solution methods for a problem, for example.

Regarding the consultation of oracles, we recall from Sect. 14.3 of [103] that,
relative to some oracles, P = NP, and, to others, P 6= NP. That is, letting a
Turing machine that can consult oracle A be one that can ask in one time step
‘is a in A?’, ending accordingly in state qyes or qno so as to steer subsequent
computation, and letting CA be the analogy for such machines of arbitrary
time complexity class C, we have that there exist oracles A and B such that

20This is because deterministic Turing machines can simulate arbitrary non-deterministic
Turing machines (though not, as far as anyone knows or many believe, without increased time
and/or space complexity)—see Theorem 2.6 of [103].

CHAPTER 3. RESOURCE 87

PA = NPA (Theorem 14.4 of [103]) but that PB 6= NPB (Theorem 14.5 of [103]).
Further, we recall from [17] that, for a randomly chosen oracle A, PA 6= NPA

with probability 1.
These theorems render natural such questions as ‘do the abilities of non-

standard (analogue, quantum, etc.) computational paradigms correspond (in
terms of either computability or complexity) to consultation by a Turing ma-
chine of some oracle?’ (cf. the approach of [9,10], for example) and ‘do the the-
orems hold when Turing machines are replaced by other (analogue, quantum,
arbitrary, etc.) computers?’ We defer investigation of these issues to future
work.

Features of Enveloping Physical Laws.

Similarly to the features of the computational model (see Sect. 3.2.1 Features
of Computational Models), we may exploit features of the physics describing
the model. For example, a quantum computation may rely on the presence
of entanglement21, which entails our adopting non-classical physics, whereas,
when using other computation models (such as centimetre-scale or larger kine-
matic computers), it may be convenient to assume that entanglement (and other
non-classical phenomena) are not present, and that we may safely (given the
negligibility of such effects) assume Newtonian dynamics.

Again, such permissions are non-commodity resources on which we may
draw to aid computation (and to aid our describing and reasoning about com-
putation); and, again, they are accommodated (though not as resources) in our
framework by virtue of its model-independence (recall Sect. 3.2.1 Features of
Computational Models).

Information-Theoretic Resources.

Another class of non-commodity resources on which we can draw for computa-
tional gain is that of ‘information-theoretic’ resources. These include (classical
and quantum) communication channels, entangled states22, etc.

We may, for example, summarize the information-theoretic content of the
quantum teleportation protocol [16] with the inequality

2cl-bit + e-bit ≥ qubit ,

where ‘cl-bit ’ stands for the resource of being able to transfer a classical bit,
‘qubit ’ stands for the resource of being able to transfer a quantum bit, ‘e-bit ’
stands for the resource of having available an (entangled) Bell state, and ‘X ≥ Y ’
indicates that resources X are at least as powerful as (in that they can simulate)
resources Y .

Though such information-theoretic entities are not resources in our sense
(i.e., are not commodity resources), their combination here via inequalities has
much in common with trade-offs between commodity resources; see Sect. 3.8.1.

21In Sect. 3.2.1 Manufacturing Costs, we discuss entanglement in the context of manufac-
turing costs, and indeed its preparation does impose such; more fundamentally, however, the
use of entanglement has as a prerequisite its being physically possible.

22We encounter entanglement once again. That it and other resources fall into more than
one category is discussed in Sect. 3.2.2

CHAPTER 3. RESOURCE 88

Commodity Resources.

We focus, instead of on any of the above-discussed categories of resource (many
of which are, nonetheless, accommodated via model-independence or similar), on
commodity resources.23 We introduce and discuss these in Sect. 3.2.4, developing
the notion in Sects. 3.4 and 4.5.

3.2.2 Recasting as Different Resource Types

Note that the boundaries between categories of resource (commodity, model-
feature, physics-feature, information-theoretic, etc.) are not always clear: there
is not always a unique category to which a given computational resource belongs.

For example, the resource of non-determinism is discussed above in the
context of being a model-feature resource; however, its presence or otherwise
could equally be considered a physics-feature resource (where the presence or
otherwise in physics of pre-ordainment is the determining factor), or even a
commodity resource (where we may consider the number of non-deterministic
bits, say, consulted during a computation24).

However, the crucial point is not whether resources fall neatly into these
categories, but that practitioners of unconventional computing consider all re-
sources (whichever categories they may be from) relevant to their systems. It
is merely that it is convenient for our purposes to have a specific axiomatiza-
tion of ‘resource’—we use for this purpose our commodity resource—; other,
non-commodity resources may be catered for in different ways (e.g., via model-
independence).

3.2.3 Source of Complexity

Just as we consider in Sect. 3.2 the interpretation of resource, one may equally
question what is meant by, and whence arises, complexity. Though we introduce
‘complexity’ in a specific, technical sense—see Definition 18—, it is relevant to
the present work to consider some alternative, informal interpretations of the
word (though remaining within our context of computational complexity).

By ‘(computational) complexity’, one may mean

• the amount of work done by a computer;

• the amount of work done by the computer’s environment/the universe in
which the computation is performed;25

• the resource consumed/required during computation;

23Because of this focus, a more rigorous description of ‘non-commodity resource’ than is
presented in Sect. 3.2.1 is not necessary; furthermore, such description is rendered elusive by
(amongst others) issues described in Sect. 3.2.2.

24Though this does not fully divorce non-determinism from the model: the acceptance
condition still needs to be suitably chosen (e.g., ‘there exists a choice of non-deterministic bits
such that the deterministic version of the machine accepts’).

25Note that many forms of unconventional computation exploit physical laws so as to defer
processing to the universe—see Sect. 6.2.4. Whilst we may not want to class as ‘complexity’
the laborious processing done by the environment, there is at least much to commend limiting
the physical laws posited in defining our models.

CHAPTER 3. RESOURCE 89

• the user’s difficulty in using the system (one would hope that the user, as
opposed to the computer, is expected not to perform non-trivial compu-
tation, but rather to wait for (or supply other, non-time resources to) the
computer; this stipulation brings us back to the commodity-resource view
encapsulated in the previous bullet point);

• the difficulty of the problem itself;26

• etc.

Relatedly, the cause of complexity may be

• the very problem that is being solved—if a problem is inherently difficult,
then any solution method is necessarily resource-expensive, which expense
we may deem to constitute complexity;

• a mismatch between the mathematical model and physical instantiation of
a computer—consider the differences (the boundedness of memory and of
alphabet size, etc.) between Turing machines and their digital-computer
‘implementations’ (see the discussion of Sect. 3.6.1 Actual, Physical Im-
plementations of Turing Machines);27

• difficulties in operating within the limitations—imposed by the enveloping
laws of physics or otherwise—of the chosen model (e.g., the constrained
ways in which measurements must be taken in quantum computing);28

• and so on.

We discuss now these and other points in more detail.

Complexity from the Problem Itself.

It is prima facie possible that certain problems are inherently difficult—that
certain problems, no matter which computational paradigm is used for their
solution, require significant computational resource. Other problems may be
tractable within some computational paradigms but not others; certain prob-
lems may have efficient Turing-machine solution, for example, but no efficient
solution in another equally expressive model of computation. Yet further prob-
lems may be efficiently solved using any (reasonable) model of computation.29

26This is ultimately what interests the majority of complexity theorists. Unfortunately,
whilst the complexity of mathematical problems themselves is of natural interest, directly
mensurable is the complexity only of methods that solve the problems; see Sect. 4.1.1 Com-
plexity: Problems versus Solution Methods.

27Recall also the discussion in [126], which touches upon the choice of computational models
when investigating the complexity of protein folding.

28Of course, if practicable implementation of a computer is considered in seriousness, then
one presumes that the chosen paradigm, and the laws of physics that come with it, confer
some computational advantage, but this advantage may come at a price. For example, one
may for computational gain exploit certain quantum-mechanical phenomena (entanglement,
superposition, etc.), but will then necessarily be constrained by the ‘rules of the game’ when
it comes to measurement, etc.

29It is not clear, beyond an intuitive notion, what ‘reasonable’ means here. Regardless,
the identity function should, one presumes, be tractable; we may, further, stipulate that any
reasonable model deem tractable other intuitively ‘easy’ operations such as natural-number
addition, though this, of course, begs the question.

CHAPTER 3. RESOURCE 90

Prima facie possibilities aside, whether actual problems are inherently diffi-
cult (as opposed to complexity being an artefact of the choice of computer or
computational model) is discussed in Sect. 6.2.1; in the present section, though,
we acknowledge that the problem being solved may potentially be the source of
any complexity encountered.

Complexity from Choice of Model.

An alternative source of complexity to that of Sect. 3.2.3 Complexity from the
Problem Itself occurs when an inappropriate choice of computer or of computa-
tional model is made. It is clearly possible to contrive inefficient computers for
any computable problem: any computation can be made inefficient simply by
adding unnecessary resource consumption; for example, a Turing machine can
be modified so as to pause for a number of time steps after each ‘useful’ time
step.

Another example of complexity arising from the choice of computational
model is provided by [5]. The difficulty in this example (which, more than a
mere increase in complexity, is an outright preclusion of computability) arises
essentially from the contrivance that sufficient input data to tackle the problem
cannot, due to limitations imposed by the computational model, be read. More
specifically, the situation can be thought of as involving a human attempting
(and failing) to read many clocks before they change; this failure is a direct
consequence of the way in which the reading operation is implemented in the
computational model, rather than of any inherent difficulty in the problem itself.
That is, the apparent difficulty (in fact, uncomputability) here arises from a
mismatch between the choice of computational model and the problem. This is
not, we suggest, what complexity theorists30 should consider complexity: one
hopes at the very least for a ‘gentleman’s agreement’ concerning the availability
of necessary data, and more generally concerning problems’ being approachable.

These, then, are examples of complexity (or even uncomputability) intro-
duced by the solution method rather than the problem being solved.

Mathematical/Physical Mismatch.

Once a mathematically-modelled computer is physically instantiated, some of
the abstract features of the computer may be lost. For example, when one im-
plements a Turing machine as a digital computer, one no longer has unbounded
memory or an arbitrarily large alphabet of symbols. Thus may be introduced
additional complexity (since the presence of fewer symbols necessitates longer
symbol strings31 and accordingly increased memory space/run-time) or even
uncomputability (since a digital computer’s finite memory bound imposes a
definite limit on input values that can be processed, whereas an abstract Turing
machine models as a dependent variable the (unbounded but typically finite)
space required to process an arbitrary input value).

This potential source of complexity is not of problematic consequence in
the present work since we view as distinct models the Turing machine and

30We stress that the author of [5] is not primarily a complexity theorist, and that his work
should not, therefore, be judged solely in the context of that field.

31Strings taken from an alphabet of a symbols will typically be approximately loga b times
longer than those from an alphabet of size b > a. Cf. the expression of natural numbers in
place-notation systems with various bases.

CHAPTER 3. RESOURCE 91

the digital computer (for example): there can be no ambiguity as to whether,
say, an unbounded alphabet is permitted. Moreover, we can in any case make
meaningful comparisons between a Turing machine and its digital-computer
counterpart—see Footnote 7 of Chap. 4.

Aside. Note that the motivation for—and much of the flavour of—the present
project is concerned with computation as physically implemented, in particular
with its sensitivity to input/output imprecision. Not only do we treat (as men-
tioned in the previous paragraph) actual, implementable computers as distinct
from their mathematical abstractions, then, but we also have a natural bias
towards the former; whilst we wish our novel approach to computational com-
plexity to agree with the existing approach as it pertains to Turing machines,
and whilst we implement our framework of complexity in accordance with this
wish, we are primarily interested in the new insight that our approach offers in
non-Turing cases.

Physically-Imposed Difficulty.

We may view as complexity the difficulty encountered when, for example, taking
measurements from a classical, quantum or other computing system. This, we
suggest in passing, has an equivalent formulation in our ‘commodity resource’
view: we may model this difficulty as a requirement for precision, or for time,
or for some other resource.

3.2.4 Commodity Resources

We turn now to our chosen interpretation of ‘resource’: what we have alluded
to already as the commodity resource.

Justification of Choice.

Our interpreting ‘resource’ in the commodity sense (rather than in accordance
with any of the alternatives—as features of the computational model/laws of
physics, manufacturing costs, information-theoretic resources, etc.—discussed
in Sect. 3.2.1) is, we suggest, a natural choice.

As we note above, many non-commodity resources (we have in mind, in
particular, features of computational models and of enveloping physical laws)
are accommodated by the model-independence of our approach to complexity
theory, and so may still be investigated within the framework of this project,
despite their not being expressed as resources.

Additionally, this choice follows relatively closely the development of ex-
isting, Turing-machine complexity theory—wherein non-commodity resources
such as the computational use of non-determinism are accounted for in the
classes themselves (consider the difference between the respective definitions of
P and NP, for example)—, which we wish to retain as a special case of our
model-independent theory.

Recall also the fine balance between a definition’s being too general and too
specific (see Footnote 13). The notion of commodity resource (which we describe
formally below—see Sects. 3.4 and 4.5) is sufficiently general to capture many
relevant features of the computational complexity of unconventional computers
(with our framework accommodating otherwise than as resources many other

CHAPTER 3. RESOURCE 92

features of interest, moreover), whilst being sufficiently specific that much can
be inferred about these resources.

3.3 Precision
—an Illustrative Unconventional Resource

Before formalizing the generic notion of (commodity) resource, we return to our
illustrative example thereof: precision.32

We see in Chap. 2 that, much as a standard computer may require that a
user wait for a certain run-time to elapse before an output value is returned,
or that a certain memory space be available in order to run (which run-time
and memory space will typically increase with the size of the system’s input), a
non-standard computer may require of the user a certain precision with which
(error-prone) input parameters must be manipulated and (error-prone) output
parameters measured (which precision will typically increase with the size of
the input).

Intuition about the general phenomenon at play here can be gleaned by
noting that, if input/output values are encoded in the precise details of, say,
the positions of a system’s constituent parts, and if processing is via typically
parallel physical evolution of the system, then complexity measures such as
time and space may be less relevant—in that they may reflect less accurately
the amount of computation being performed or the difficulty to the user in
performing the computation (cf. Sect. 3.6.2 Circuit-Model Quantum Comput-
ers)—than resources such as precision (which are not applicable to standard
computers—see Theorem 1).

3.3.1 Motivation

In the present project, our chief motivation for considering the resource of pre-
cision in a complexity-theoretic context is given by the analogue factorization
systems of Chap. 2. We add to this the following brief comments.

Suppose that one encodes a Turing-undecidable set U (the Halting set of
Sect. 1.2.1 Halting Problem, for example) of natural numbers33 as a real num-
ber xU between 0 and 1, such that the (i + 1)st binary place of xU is 1 if i is
in the set U and 0 otherwise34; that is, xU =

∑
i∈U 2−i−1. Suppose further

that an object can be positioned—with perfect precision—so as to have spa-
tial coordinate xU . Then infinite-precision measurement results in super-Turing
computational ability (since the undecidable problem ‘∈ U?’—e.g., the Halt-
ing problem—may be solved by measuring the appropriate bit of the object’s

32It is high time, also, that we explain the subtitle, “From Patience to Precision and Be-
yond”, of this dissertation; it describes the progression, made chiefly in this chapter, from
the traditional-complexity mindset and according consideration of little more than time com-
plexity, via the unconventional-computing perspective and corresponding heed of precision
complexity, to the full model- and resource-independence of the present project’s framework
of complexity.

33Note that, in this and subsequent chapters, zero is deemed natural: N := {0, 1, 2, . . .} .
34This encoding (as a function of undecidable sets) is injective. That 0.b1b2b3 . . . bk01̇ =

0.b1b2b3 . . . bk10̇ (for bits bi) is not an issue: since U is undecidable, its encoding xU is
irrational (for else the encoding’s binary expansion would either terminate after finitely many
places or become periodic, whence U would be decidable via finite look-up table), and, in
particular, has a binary expansion ending in neither infinitely many 0s nor infinitely many 1s.

CHAPTER 3. RESOURCE 93

position).35 To be clear, we are suggesting neither that infinite-precision posi-
tioning/measurement is possible in the real world, nor, therefore, that it confers
a practicably exploitable computational advantage; we are suggesting, instead,
that precision needs to be considered and accounted for in order to achieve
correct analysis of certain computational systems.

It is for these and other reasons that it is desirable to include precision in
complexity analyses.

3.3.2 Examples

Though polynomial-time, polynomial-space factorization is particularly evoca-
tive because of the problem’s notorious difficulty, the systems of Chap. 2 are
relatively convoluted, which, in particular, clouds somewhat the issue of preci-
sion. We present now some systems that solve simple problems (which, indeed,
can be solved efficiently by Turing machine) in simple ways, thus making more
clearly evident the role of precision in these systems’ computations.

We analyze the following systems’ precision complexity before formally defin-
ing (in Sect. 3.3.3) the notion; this, we hope, offers a more concrete understand-
ing of precision once its definition is reached.

Addition.

Suppose that one wishes to find the sum of two given natural numbers n1 and n2.
This addition can be performed by (naively but illustratively) simplistic physical
means36 by cutting two pieces p1 and p2 of some material with respective lengths
n1 and n2 units, placing the pieces end-to-end, and measuring their combined
length.

We consider now the accuracy with which one needs to cut p1 and p2 and to
measure the combined length in order to guarantee arrival at the correct result
N := n1+n2. To this end, we model the various errors arising in the system and
consider a rudimentary form of error correction via interpretation of non-integer
combined lengths. We consider first an additive, and secondly a multiplicative,
model of error; which is the more appropriate is determined by the exact details
of implementation of the physical process, which details are of less interest in
the present context than is the resultant dependency on precision in either case.

Additive Error. It may be the case that the error introduced during the
cutting of p1 and p2 is best modelled additively, in that (for j ∈ {1, 2}) addend
nj is represented by pj ’s length lj , which is known only to lie in the interval
[nj − εi, nj + εi] for some real input error term εi ≥ 0. This occurs, for example,

35Of course, knowledge of the mapping U 7→ xU from undecidable sets into the interval (0, 1)
does not imply sufficient knowledge to set a position to xU (even given infinite precision): that
xU exists does not mean that its value is known (in fact, in an exclusively Turing world, its
value cannot be known). We focus, however, on the specifically precision-related issues present
in this hypothetical experiment.

36Of course, the computation can equally be performed in linear time and space via a
Turing-machine implementation of column-by-column, ‘schoolbook’ addition. Our aim in
taking a physical-computation approach is not to beat (in terms of efficiency or similar) the
Turing benchmark, but to highlight the issue of precision in a simple instance of non-standard
computation.

CHAPTER 3. RESOURCE 94

if the ruler with which one measures pj can slip by up to εi units before pj is
cut.

The combined length l1 + l2 (which addition the physical system performs
accurately37), then, lies in the interval [N − 2εi, N + 2εi] (recall that N = n1 +
n2). If one measures this combined length with additive output error εo ≥ 0
(that is, length l is measured as an arbitrary member of [l − εo, l + εo])—for
example to allow for slipping of the ruler as before, though this time during
measurement of the combined length—, then we shall obtain a result, R, say,
in the interval [N − εb, N + εb], where εb = 2εi + εo.

In order to ‘interpret’ R (i.e., in order to convert R into a valid answer to
the problem being solved), we assume—reasonably—that our physical process is
such that values of εb closer38 to zero occur with greater probability than those
further from zero; we note also that the sought total N is a natural number.
Accordingly, we interpret R as the natural number requiring the least εb, which,
in this case, is the nearest natural number

⌊
R + 1

2

⌋
to R (where, if there are

two such natural numbers, we arbitrarily choose the greater of the two).
We are guaranteed the correct answer, in that our interpretation of R is N ,

then, if and only if the interval [N − εb, N + εb] in which we know R to lie is a
subset of the interval

[
N − 1

2 , N + 1
2

)
of which elements are interpreted as N .

This is the case if and only if both N − εb ≥ N − 1
2 and N + εb < N + 1

2 , which
is the case if and only if εb < 1

2 .
Since this constraint on εb, and hence the constraint on the precision of

measurement in the system, does not depend on N (nor, in any other way, on
the input values), our intuition should be that the precision complexity of the
system is constant. Formally, the region

{
(εi, εo) ∈ R2

∣∣ εi, εo ≥ 0 ∧ εb < 1
2

}
in

the plane with axes εi and εo (see Fig. 3.2, in which this region is shaded)—that
is, the region within which the system is guaranteed to perform correctly the
addition of n1 and n2—has area 1

16 , regardless of N . The precision complexity,
then, which one would intuitively expect to depend solely and inversely on this
area—and which in Definition 13 we accordingly define to be one divided by
this area—, is 16, again regardless of N .

Note that the system has also an intuitive notion of space complexity that is
linear in N , since p1 and p2, the respective lengths of which total N units, are
physically realized (further, there is no additional requirement for storage space:
the addends nj are stored only as lengths pj , and no intermediate values are
used during the calculation). Similarly, drawing a measure along the combined
length of p1 and p2 takes an amount of time proportional to N ; the system
has time complexity linear in N . (Compare these comments with the machine-
independent definitions of time/space complexity, Definition 20.)

The overall complexity—‘overall’ in a sense that we formalize in Sect. 4.2—
of the system, to which its constant precision complexity does not contribute,
is therefore linear in N .

37This reasonable assertion is merely that the combined length of the two pieces is the
sum of their individual lengths. Assuming some innocuous and unrestrictive properties of
the materials from which the pieces are made (and that their mutual gravitational attraction
shortens p1 and p2 only negligibly, etc.), this is the case.

38In this paragraph, “closer”, “further” and “nearest” are defined in terms of the metric
giving |a− b| as the distance between real numbers a and b.

CHAPTER 3. RESOURCE 95

Figure 3.2: The region
{

(εi, εo) ∈ R2
∣∣ εi, εo ≥ 0 ∧ εb < 1

2

}
, within which addi-

tion is performed by the system of Sect. 3.3.2 Addition without error. In this
and subsequent such figures, solid boundaries are included in the region and
dotted boundaries are not.

Multiplicative Error. Suppose instead that the errors in our physical adding
process are better modelled multiplicatively, so that (for j ∈ {1, 2}) addend nj

is represented by pj ’s length lj , which is in the interval
[

nj

εi
, εinj

]
for some real

input error term εi ≥ 1. This occurs, for example, if we measure p1 and p2

with a ruler of which the actual length is subject to expansion/contraction by
a factor of εi.

The combined length l1 + l2, then, is in the interval
[

N
εi

, εiN
]

(recall once
more that N = n1 + n2). If we measure this with multiplicative output error
εo ≥ 1 (so that our measurement of a length l lies in

[
l

εo
, εol

]
), then we shall

obtain a result R in the interval
[

N
εb

, εbN
]
, where εb = εiεo.

In order to interpret R, we assume, analogously to the additive case above,
that εb is likely to be small, and we note that N is a natural number. We
accordingly interpret R as the natural number requiring the least εb (making
an arbitrary choice—here, the larger—in the event of non-uniqueness): if R <√
bRc (bRc+ 1), then we interpret R as bRc; else, we interpret R as dRe.
We are guaranteed the correct answer, in that our interpretation of R is N ,

then, if and only if the interval
[

N
εb

, εbN
]

in which we know that R lies is a subset

of the interval
[√

N (N − 1),
√

N (N + 1)
)

of which elements are interpreted

as N . This is the case if and only if N
εb
≥

√
N (N − 1) and εbN <

√
N (N + 1),

which is the case if and only if εb <
√

N+1
N .

In contrast with the additive case above, this constraint on εb depends

upon N . Specifically, the region
{

(εi, εo) ∈ R2
∣∣∣ εi, εo ≥ 1 ∧ εb <

√
N+1

N

}
(see

Fig. 3.3, in which this region is shaded)—within which the system is guaranteed
to perform correctly the addition of n1 and n2—has area

∫ r

1
r
εi
− 1 dεi = r ln r−

(r − 1) where r =
√

N+1
N . The precision complexity, then, is (r ln r − (r − 1))−1,

which is bounded below by N2, as is proven in Lemma 8; that is, the system’s
precision complexity is at least quadratic.

Further, for the same reason as the former, additive-error system, the latter,

CHAPTER 3. RESOURCE 96

Figure 3.3: The region
{

(εi, εo) ∈ R2
∣∣ εi, εo ≥ 1 ∧ εb < r

}
, within which addi-

tion is performed without error by the system of Sect. 3.3.2 Addition. Note that r

has been exaggerated for visual clarity (whereas, in fact, 1 < r ≤
√

3
2 = 1.224 . . .

since 2 ≤ N < ∞).

multiplicative-error system has space and time complexity in O (N). Hence,
precision is the most relevant resource (as formalized in Sect. 4.2) when consid-
ering this system’s overall complexity, which is seen to be at least quadratic in
N .

Lemma 8. The area of the region
{

(εi, εo) ∈ R2
∣∣∣ εi, εo ≥ 1 ∧ εiεo <

√
N+1

N

}

(for N ∈ N) is bounded above by 1
N2 . Hence, one divided by this area39 is

bounded below by N2.

Proof. Let r =
√

N+1
N . The region is a subset of [1, r]2, and so certainly a subset

of
[
1, r2

]2 (since N ∈ N, whence r > 1, whence r2 > r). Hence, the region’s
area is bounded above by the area of

[
1, r2

]2, which latter area is

(
r2 − 1

)2
=

(√
N + 1

N

2

− 1

)2

=
(

N + 1
N

− 1
)2

=
(

1
N

)2

=
1

N2
,

as required.

Aside. Of course, if the lengths of p1 and p2 are suitably marked with a log-
arithmic scale, then the combined length (measured on the same scale) offers
the input values’ product rather than their sum; this is the principle behind the

39This quotient is the precision complexity, with error modelled multiplicatively, of the
system of Sect. 3.3.2 Addition.

CHAPTER 3. RESOURCE 97

slide-rule’s approach to multiplication—see Fig. 3.4. The interested reader is
invited to analyze the precision complexity of this implementation of multipli-
cation.

Figure 3.4: Computing with a slide-rule that 3× 5
(a)
= 15

(b)
= 5× 3.

Greatest Common Divisor.

Consider now the problem of finding the greatest common divisor (hereafter
‘gcd’) of two given, positive natural numbers. Recall for comparison that the
traditional method, Euclid’s algorithm, has time and space complexity polyno-
mial in the size of the input values40 (and constant precision complexity, since
there is no notion of input/output error in the algorithmic model of which it is
an instance—see Theorem 1).

The following physical method of solution exploits the behaviour (in partic-
ular, the interference) of transverse waves.

We wish to find the gcd of given, positive natural numbers n1 and n2.
Suppose that our apparatus allows instantiation in the interval x ∈ [0, 2π) of
two transverse (sinusoidal, say41) waves wi (i ∈ {1, 2}) with respective wave-
lengths λi := 2π

ni
; we may model these waves using the graphs y = cos

(
2π
λi

x
)

=
cos (nix). Suppose further that these waves are superposed so as to interfere; the
resultant superposition—w, say—is given by the graph y = cos (n1x)+cos (n2x).

For j ∈ N, let Mj be
{

x ∈ [0, 2π)
∣∣ jx

2π ∈ Z
}

=
{

0π
j , 2π

j , 4π
j , . . . , 2(j−1)π

j

}
.

The cardinality of this set is, by inspection, j.
Now,

• the global maxima of wi are those values x ∈ [0, 2π) such that cos (nix) =

40Lemma 11.7 of [103] establishes the former; the latter follows thence and from the obser-
vation that space complexity cannot exceed time complexity, simply because moving a Turing
machine’s read/write head to a new tape cell takes time.

41Though, to begin with, we suppose the waves to be sinusoidal (as a nod towards actual
implementation with a harmonic oscillator or similar), we below remove this supposition and
consider a simplified, triangular waveform.

CHAPTER 3. RESOURCE 98

1, i.e., such that nix is a multiple of 2π, i.e., such that nix
2π is an integer,

i.e., such that x ∈ Mni
—the set of maxima of wi is Mni

;

• therefore, wi has |Mni
| = ni maxima in the interval [0, 2π); and,

• crucially, the global maxima of w (which have an amplitude twice that
of the maxima of wi) are those points at which both w1 and w2 have
maxima (that there is indeed such overlap follows from the fact that M :=
Mn1 ∩ Mn2 6= ∅; zero, for example, is in this intersection)—the set of
maxima of w is M .

So as to relate this to the gcd problem, we note the following.

Proposition 16. M = Mgcd(n1,n2).

Proof. Suppose that x ∈ Mgcd(n1,n2); then x ∈ [0, 2π), and gcd(n1,n2)x
2π ∈ Z,

whence
x =

2πm

gcd (n1, n2)
(3.1)

for some m ∈ Z. Since gcd (n1, n2) divides both n1 and n2, gcd (n1, n2) =
n1
k1

= n2
k2

for some k1, k2 ∈ Z. Therefore, x
(3.1)
= 2πmk1

n1
, which is in Mn1 since

x ∈ [0, 2π) and mk1 ∈ Z; similarly, x = 2πmk2
n2

∈ Mn2 . Hence, x ∈ M .
Conversely, suppose that x ∈ M = Mn1 ∩ Mn2 ; then x ∈ [0, 2π), and

x = 2πm1
n1

= 2πm2
n2

for some m1,m2 ∈ Z. Hence, 2π
x is a common divisor

of n1 and n2, and so divides their greatest common divisor gcd (n1, n2); say
gcd (n1, n2) = 2πm

x with m ∈ Z. Then x = 2πm
gcd(n1,n2)

∈ Mgcd(n1,n2).

Hence, the set M of maxima (in the interval [0, 2π)) of w has |M | =∣∣Mgcd(n1,n2)

∣∣ = gcd (n1, n2) elements. By measuring the frequency of the max-
ima of w—in effect, by counting |M |—, then, we find the greatest common
divisor of n1 and n2.

Aside. This process returns the gcd of n1 and n2 because the maxima of wave
wi divide the considered interval into ni equal sections (i ∈ {1, 2}), and so the
points of coincidence of these waves’ respective maxima—i.e., the maxima of
w—divide the interval into gcd (n1, n2) equal sections. Compare this situation
with the synchronization of planetary orbits or of a clock’s hands.

As a concrete example, suppose that we wish to find the gcd of 8 and 6.
Then the system instantiates in the interval x ∈ [0, 2π) the waves y = cos (8x)
(shown in Fig. 3.5 in red (¥)) and y = cos (6x) (shown in green (¥)), which are
superposed (i.e., summed) to give y = cos (8x) + cos (6x) (shown in blue (¥)).

Then the set
{

0π
8 , 2π

8 , 4π
8 , . . . , 14π

8

}
of the maxima of the former constituent

wave coincides with that
{

0π
6 , 2π

6 , 4π
6 , . . . , 10π

6

}
of the latter at the two42 points

0π
8 = 0π

6 and 8π
8 = 6π

6 (shown as solid blue (¥) circles in Fig. 3.5).

Complexity. That the system as described makes use of sinusoidal waves
reflects more the way in which the waves may be physically implemented (e.g.,
with a harmonic oscillator) than an inherently necessary feature of the system’s
approach to finding gcds. Consequently, we may when considering the system’s

42That two is the value here is, of course, because gcd (8, 6) = 2.

CHAPTER 3. RESOURCE 99

Figure 3.5: Computation, via the superposition of sinusoidal waves, of the great-
est common divisor of two given numbers (8 and 6 in this example).

complexity make the simplification of replacing the sinusoidal waves with a more
convenient form (and of considering a more convenient interval than [0, 2π)); we
do this as follows.

Suppose that, given input values n1 and n2 of which the gcd is sought, the
system instantiates in the interval x ∈ [0, 1) waves wi given by y = tni (x),
where, for n ∈ N, tn is the triangular-wave function given by

tn (x) =

{
2 (2nx− b2nxc)− 1 if b2nxc is odd
2 (1 + b2nxc − 2nx)− 1 if b2nxc is even .

See Fig. 3.6, in which t8 is shown in red (¥), t6 in green (¥) and their sum in
blue (¥).

Figure 3.6: Computation, via the superposition of triangular waves, of the great-
est common divisor of two given numbers (8 and 6 in this example).

Note that the maxima of these three piecewise-linear waves are identical
(but for the x-axis scaling that reflects the change of considered interval) to
those of their respective smooth-wave counterparts in Fig. 3.5; in particular,
the sum waveform tn1 + tn2 encodes (in its number of maxima) the sought value
gcd (n1, n2) (just as w does above).

As a further simplification, we suppose that the input values n1 and n2 of

CHAPTER 3. RESOURCE 100

the system satisfy
n1 > n2 . (3.2)

It is clear that we lose no generality in supposing that n1 ≥ n2; we may, fur-
thermore, assume that n1 6= n2, for else no computational effort (by this system
or any other) is necessary: gcd (n1, n1) = n1.

We consider now the precision complexity of the system. We claim that,
for this system, the constraints (that guarantee that the computation proceeds
correctly) on input precision are independent of those on output precision: we
may evaluate each individually. Consider first input precision.

Recall that, as input to the system, the positive-integer values nj (j ∈ {1, 2})
are encoded as wavelengths 1

nj
of the triangular waves; suppose that adjustment

to these values of the actual wavelengths in the system is error prone, and that
the physically implemented wavelengths 1

lj
suffer, in particular, an additive er-

ror:43 the implemented value 1
lj

is an arbitrary element of
[

1
nj
− εi,

1
nj

+ εi

]
(for

some non-negative, real error term εi), and so lj ∈
[

nj

1+εinj
,

nj

1−εinj

]
. Suppose fur-

ther that the system corrects non-integer values of lj by rounding to the nearest
integer l′j (which, arbitrarily, we take to be the greater of two equally near inte-
gers).44 Now, a small additive change in input values nj rarely leads to a small
additive change in gcd (n1, n2);45 consequently, it is necessary (and sufficient)—
in order that the gcd be correctly computed—that the nearest integer l′j to lj
coincide with nj . This occurs precisely when, for each j ∈ {1, 2}, the interval[

nj

1+εinj
,

nj

1−εinj

]
in which lj lies is a subset of the interval

[
nj − 1

2 , nj + 1
2

)
of

which elements are rounded (during the system’s error correction) to nj , which
is the case if and only if both nj

1+εinj
≥ nj − 1

2 and nj

1−εinj
< nj + 1

2 , which is
the case if and only if εi < 1

n1(2n1+1) (we require also that εi < 1
n2(2n2+1) , but

this follows automatically from εi < 1
n1(2n1+1) by (3.2)).

The input-precision requirement is that εi < 1
n1(2n1+1) .

We consider now output precision, which takes two forms. The ability of
the system to find gcds rests on its being able to count the global maxima (in
the range x ∈ [0, 1)) of the superposition wave modelled by y = tn1 (x)+ tn2 (x)
(recall Fig. 3.6 for an example such wave, t8 + t6); one may reasonably assume,
then, that the relevant features of the system (in particular, of the sensor that
monitors the superposition wave and detects these maxima) are

• the x-axis resolution46 εo1—i.e., the minimum, absolute, x-axis distance
between two consecutive global maxima in order that both are registered
by the sensor—and

43We have in mind an imprecision in setting variable resistors or similar to the correct
positions.

44This correction may, for example, be achieved by continuously adjusting the wavelength

in the range

[
1

lj+ 1
2

, 1
lj− 1

2

)
until the corresponding wave has a maximum at x = 1.

45This is because of the subtle interaction between the additive and multiplicative structures
of the natural numbers, and, specifically, the seeming randomness of the primes.

46If x represents time and y the wave’s time-dependent amplitude, then the x-axis resolution
is the sensor’s temporal resolution, and the y-axis resolution the sensor’s amplitude resolution.

CHAPTER 3. RESOURCE 101

• the y-axis resolution46 εo2—i.e., the minimum, absolute, y-axis distance
between a global maximum and a local but not global maximum in order
that the global maximum alone is registered by the sensor.

The x-axis distance between consecutive global maxima of the superposition
wave is 1

gcd(l′1,l′2)
, which, assuming the input-precision requirement stated above,

is equal to 1
gcd(n1,n2)

; required for the correct functioning of the system, then,
is that εo1 ≤ 1

gcd(n1,n2)
. Further, the minimal y-axis distance between a global

maximum (which has y-value 2) and a local though not global maximum is, by
Lemma 9, 2−2n1−2 gcd(n1,n2)

n1
= 2 gcd(n1,n2)

n1
; required for the correct functioning

of the system, then, is that εo2 ≤ 2 gcd(n1,n2)
n1

. The distances 1
gcd(n1,n2)

and
2 gcd(n1,n2)

n1
that must exceed the appropriate sensor resolutions in order that

the computation be successful are shown respectively in green (¥) and red (¥)
in Fig. 3.7 (cf. Fig. 3.6).

Figure 3.7: The respective distances that must exceed the sensor’s x- and y-
resolution in order that the gcd computation (in this example, of gcd (8, 6)—cf.
Fig. 3.6) be successful.

Lemma 9. The non-global, local maxima in [0, 1) of superposition wave tn1+tn2

have values bounded above by 2n1−2 gcd(n1,n2)
n1

, which bound is attained within
this interval.

Proof. Let M ′
n be the set

{
0
n , 1

n , 2
n , . . . , n−1

n

}
(for n ∈ N), and let tm,n be the

function that maps x to tm (x) + tn (x) (for m,n ∈ N).
By construction, tn has maxima over [0, 1) precisely at x ∈ M ′

n; all are
global.

We claim first that, over [0, 1), the x-values of local maxima of tn1,n2 are
precisely the x-values of the maxima of tn1 , i.e., x ∈ M ′

n1
. This is for the

following reason.
Suppose that x0 is not a maximum of tn1 (we wish to show that x0 is not a

local maximum of tn1,n2), and say that the nearest (in terms of x-axis distance)
maximum of tn1 is at xm;47 then the segment of tn1 between x0 and xm is linear,
rather than merely piecewise linear (since xm is the nearest maximum to x0),
and has gradient ±4n1 (by definition of tn1), with the sign being determined by
the fact that tn1 (x0) < tn1 (xm); hence,

tn1 (x0) = tn1 (xm)− 4n1 |x0 − xm| . (3.3)
47Certainly, then, x0 and xm are distinct.

CHAPTER 3. RESOURCE 102

Now, tn2 is continuous, and the gradient of tn2 is ±4n2 almost everywhere48,
whence, for any a and a′, |tn2 (a)− tn2 (a′)| is bounded above by 4n2 |a− a′|; in
particular, |tn2 (x0)− tn2 (xm)| ≤ 4n2 |x0 − xm|, whence tn2 (x0) − tn2 (xm) ≤
4n2 |x0 − xm| and so

tn2 (x0) ≤ tn2 (xm) + 4n2 |x0 − xm| . (3.4)

Hence,

tn1,n2 (x0) = tn1 (x0) + tn2 (x0)
(3.3)
= tn1 (xm)− 4n1 |x0 − xm|+ tn2 (x0)

(3.4)

≤ tn1 (xm)− 4n1 |x0 − xm|+ tn2 (xm) + 4n2 |x0 − xm|
= tn1,n2 (xm)− 4 (n1 − n2) |x0 − xm|
< tn1,n2 (xm) .

The last inequality holds by (3.2) and because (by Footnote 47) x0 6= xm,
whence 4 (n1 − n2) |x0 − xm| is positive.

Further, the uniform, 4n1-gradient rise in tn1 as x is altered from x0 to
xm outweighs any potential fall in tn2 , which has (negative) gradient at most
4n2 < 4n1. Hence tn1,n2 rises overall as x is altered from x0 to xm, and so x0 is
not a local maximum of tn1,n2 .

Conversely, suppose that x0 is a maximum of tn1 ; we have by a similar
gradient argument to that in the previous paragraph that x0 is a local maximum
of tn1,n2 . Hence,

the set of x-values of local maxima of tn1,n2 is precisely the set M ′
n1

of
x-values of the maxima of tn1 ,

as claimed.
We claim next that the local maxima of tn1,n2 (for which x ∈ M ′

n1
) that are

not also global maxima (so x 6∈ M ′
n2

) satisfy tn1,n2 (x) ≤ 2n1−2 gcd(n1,n2)
n1

. This
is for the following reason.

Suppose that x ∈ M ′
n1
\M ′

n2
. Consider a grid of vertical lines with x-values in

M ′
k =

{
0
k , 1

k , 2
k , . . . , k−1

k

}
where k = 2 lcm (n1, n2) (we refer below to two sub-

sets
{

0
k , 2

k , 4
k , . . . , k−2

k

}
and

{
1
k , 3

k , 5
k , . . . , k−1

k

}
of M ′

k, containing respectively
‘even-’ and ‘odd-numerator’ values). Now,

all maxima of tn1 and of tn2 are on ‘even-numerator’ lines, (3.5)

since n1 and n2 both divide k
2 , whence Lemma 10 gives that M ′

n1
∪ M ′

n2
⊆

M ′
k
2

=
{

0
k , 2

k , 4
k , . . . , k−2

k

}
. Further, all minima of tn1 and of tn2 are on (either

‘even-’ or ‘odd-numerator’) grid lines, since, by symmetry in x of the definition
of tni , minima fall midway between maxima. Each linear ‘piece’ of tn2 climbs
from −1 to 1 (or falls from 1 to −1) over k

2n2
grid regions; the values attained

by tn2 on grid lines, then, are in
{

j 4n2
k − 1

∣∣∣ j ∈
{

0, 1, 2, . . . , k
2n2

}}
. Since

x 6∈ M ′
n2

, tn2 (x) < 1 =
(

k
2n2

)
4n2
k − 1. Further, tn2 (x) =

(
k

2n2
− 1

)
4n2
k − 1

48The measure-zero exception set is M ′
n2

, in which the gradient is undefined. That tn2
remains continuous at these points is sufficient for our purposes.

CHAPTER 3. RESOURCE 103

only on grid lines one away from a maximum of tn2 ; this cannot be the case, for
then, by (3.5), x would fall on an ‘odd-numerator’ grid line, which contradicts
that x is a maximum of tn1 (again by (3.5)). So tn2 (x) ≤

(
k

2n2
− 2

)
4n2
k − 1

(and tn1 (x) = 1 since x ∈ M ′
n1

), whence

tn1,n2 (x) = 1 + tn2 (x)

≤ 1 +
(

k

2n2
− 2

)
4n2

k
− 1 (3.6)

=
(

k

2n2
− 2

)
4n2

k

=
k − 4n2

2n2

4n2

k

= 2
k − 4n2

k

= 2
lcm (n1, n2)− 2n2

lcm (n1, n2)

= 2
gcd (n1, n2) lcm (n1, n2)− 2n2 gcd (n1, n2)

gcd (n1, n2) lcm (n1, n2)
(3.7)
= 2

n1n2 − 2n2 gcd (n1, n2)
n1n2

= 2
n1 − 2 gcd (n1, n2)

n1
,

as claimed. (The equality labelled (3.7) follows from the observation—the proof
of which we leave to the reader—that, for all a, b ∈ N,

gcd (a, b) lcm (a, b) = ab .) (3.7)

Finally, this upper bound for tn1,n2 is attained for all n1, n2, as we now
show.

Let g denote gcd (n1, n2), and l lcm (n1, n2). By Lemma 1.3.1 of [76], there
exist integers i and j such that in2 + jn1 = g. Therefore, in2−g

n1
= −j ∈ Z; i.e.,

in2 − g

g

g

n1
∈ Z . (3.8)

Let x′ = in2
g ; then, by (3.8), x′−1 is an integer multiple of n1

g , whence (dividing

by l) x′
l is separated by 1

l (i.e., by two grid lines) from a multiple of n1
gl

(3.7)
= 1

n2
.

Similarly, since x′ is, by definition, an integer multiple of n2
g , x′

l is a multiple of
n2
gl

(3.7)
= 1

n1
.

Adding any integer to x′
l retains this property (namely, that of being a

multiple of 1
n1

whilst being two grid lines away from a multiple of 1
n2

); hence,
there exists x ∈ [0, 1) with this property. From the above discussion of grid
lines (and recalling that k = 2l), then, we see that tn2 (x) =

(
k

2n2
− 2

)
4n2
k − 1,

whence inequality (3.6) becomes an equality, and tn1,n2 attains (at x) the value
2n1−2 gcd(n1,n2)

n1
, as required.

CHAPTER 3. RESOURCE 104

Lemma 10. If a divides b (a, b ∈ N), then M ′
a ⊆ M ′

b.

Proof. Recall that M ′
n =

{
0
n , 1

n , 2
n , . . . , n−1

n

}
.

Suppose that a divides b (say b = al with l ∈ N), and consider x ∈ M ′
a. Then

x = k
a for some k ∈ {0, 1, 2, . . . , a− 1}; i.e., x = kl

b . Since k < a, kl < al = b,
and so x = kl

b ∈ M ′
b. Hence, M ′

a ⊆ M ′
b.

These lemmata and the preceding discussion give of the gcd system that

the output-precision requirements are that εo1 ≤ 1
gcd(n1,n2)

and that

εo2 ≤ 2 gcd(n1,n2)
n1

.

Hence, we have that the region (in the space spanned by axes εi, εo1 and
εo2) in which the system correctly evaluates the greatest common divisor of n1

and n2 is

(εi, εo1 , εo2) ∈ R3

∣∣∣∣∣∣∣

0 ≤ εi < 1
n1(2n1+1)

∧ 0 ≤ εo1 ≤ 1
gcd(n1,n2)

∧ 0 ≤ εo2 ≤ 2 gcd(n1,n2)
n1

(see Fig. 3.8). One divided by the volume of this region is

n1 (2n1 + 1) gcd (n1, n2)n1

2 gcd (n1, n2)
=

1
2
n2

1 (2n1 + 1) ∈ O (
n3

1

)
.

Figure 3.8: The region within which greatest common divisors are found without
error.

Aside. We mention in passing the time and space complexity of the system.
The process of wave superposition is (depending upon implementation) virtually
instantaneous, and, crucially, takes no longer as n1 and n2 acquire more digits49;
further, larger n1 and n2 do not require larger apparatus; the system’s wave-
superposition stage (wherein the ‘processing’ occurs), then, has constant time
and space complexity. To this we must add the polynomial time/space overheads
incurred in converting the addends ni into the wavelengths of wi; cf. the harness
of Remark 16.

We return to the gcd example in Chap. 4 when motivating the notion of
dominance.

49Supposing that the waves wi are implemented as electromagnetic radiation, for example,
we have that, whilst the wavelength and frequency of w1 and w2 depend upon n1 and n2,
their propagation velocity does not.

CHAPTER 3. RESOURCE 105

3.3.3 Definitions

The definitions in this section are based upon those presented by the author in
[18,28].

Physical Solution Methods.

We introduce in the definitions of Sect. 3.3.3 the notion of precision, a resource
consumed by certain (in particular, input-/output-error-prone) unconventional
computers; we discuss first these computers.

Perhaps surprisingly, our notion of a (physical, error-prone) computation
system per se does not, for the purposes of the present project, require formal
definition, since there are no set conditions that an object need satisfy in order to
constitute such a system. Instead, it is how we view the system50 as a computing
device that is important here. Of interest is the computational system (or
process) together with our choice from its physical attributes of what we consider
to be the inputs and outputs of the computation. Objects under consideration,
then, are physical processes, augmented with two sets—inputs and outputs—of
distinguished physical parameters and a rule for interpreting outputs.

Definition 6. A physical solution method (or PSM) is a tuple Φ := (I, π,O, ι),
where

• I is a tuple (of positive, finite dimension) of pairs (i, Vi), where i is an
input of Φ and Vi a set of values;

• π is the process of Φ;

• O is a tuple (of positive, finite dimension) of pairs (o, Vo), where o is an
output of Φ and Vo a set of values; and

• ι is the interpretation function of Φ, which maps each output value of Φ
(see Definition 7) to an output value.51

Remark 18. The intuition behind Definition 6 is as follows.
A physical computation system has parameters that admit alteration so as

to supply input to the system—the parameters’ values encode the desired input
value. For coordinate (i, Vi) of I, i acts as an input parameter (the angle of a
mechanical shaft or the concentration of a chemical solution, for instance), and
Vi as the set ([0, 2π) or [0, 1], for instance) of values to which i can be set.

After setting the input parameters, a process—typically presented as a de-
scription of the physical apparatus52 along with an algorithm/program consist-
ing of physical instructions—is carried out;53 π models this process.

50We pay particular regard to the system’s input and output processes, since this is where
the error, and, hence, non-trivial precision complexity, arise.

51In practice, ι is used to map measured output values to interpreted output values—see
Definition 10.

52We do not assume that the same apparatus can universally accommodate all input values;
larger inputs may require larger apparatus with more physical storage, for example.

53The system may execute the process automatically, or user intervention, uniquely defined
by the description of the process, may be required. Further, what we present here as a com-
putation using a physical solution method may provide only an intermediate result, which is
used as (possibly partial) input to subsequent computations; in this way, we can accommodate
interactive computation.

CHAPTER 3. RESOURCE 106

Output is then taken from the system in the form of a measurement of certain
parameters; each such is modelled by a coordinate (o, Vo) of O: o models the
mensurable parameter, and Vo the set of values that o may take.

Finally, the output value tuple measured by the user is converted by ι into
an ‘interpreted’ output value tuple. This conversion can be thought of as a
form of error correction: the interpretation function takes arbitrary output and
interprets it as corrected output, typically based upon a priori knowledge about
the form of the expected output.54

Note that “physical instruction”, “parameter” and other terms used in this
remark are neither formally defined nor used in Definition 6. This renders the
class of PSMs sufficiently wide to include instances of many models of computa-
tion. We wish, in particular, to consider abstract properties of input and output
(notably their susceptibility to error) without restricting the way in which ‘pro-
cessing’ by the system—whatever form that may take—converts the former into
the latter.

Definition 7. Given a PSM Φ = (I, π,O, ι) with I =
(
(i1, Vi1) , . . . ,

(
ip, Vip

))
,

an input value of Φ is an assignment of ‘allowed’ values to the inputs of Φ; that
is, a tuple

(
vi1 , . . . , vip

) ∈ Vi1 × . . .× Vip of values, where to ij is considered to
be assigned the value vij .

Similarly, supposing that O =
(
(o1, Vo1) , . . . ,

(
oq, Voq

))
, an output value of

Φ is an assignment of ‘allowed values’ to the outputs of Φ; that is, a tuple(
vo1 , . . . , voq

) ∈ Vo1× . . .×Voq of values, where to oj is considered to be assigned
voj .

Definition 8. For a PSM Φ = (I, π, O, ι), define the computation relation ^Φ

to be the set of pairs (x, y) such that, on assigning to Φ the input value x
and executing process π of Φ, (uninterpreted) output value y can result. As is
normal with relations, write ‘x ^Φ y’ for ‘(x, y) ∈ ^Φ’.

Definition 9. A PSM Φ is said to be deterministic (a DPSM) if, for every input
value x of Φ, there exists a unique output value y such that x ^Φ y; then ^Φ

may be treated as a function. ‘Non-deterministic PSM’ (or ‘NPSM’) is another
term for PSM, whether deterministic or not; we use ‘NPSM’ rather than ‘PSM’
when we wish to emphasize that a machine is not necessarily deterministic.

Aside. Note that an arguably more natural definition would have labelled as
DPSMs the deterministic PSMs, and as NPSMs the strictly non-deterministic
PSMs (rather than the not-necessarily-deterministic PSMs, as in Definition 9).
However, we favour Definition 9 because of its respecting the analogy with
the standard definition (see for example [37]) of non-deterministic Turing ma-
chines—which should properly be called not-necessarily-deterministic Turing
machines!—, which notion includes as a subset deterministic Turing machines.
Further, there is a sense in which the choice makes no difference: by Lemma 11
and Remark 19, for every DPSM, there exists a strictly non-deterministic PSM
that performs the same computation and, further, consumes the same resources;
therefore, the class of problems solved/computations performed by NPSMs is
independent of whether ‘NPSM’ denotes ‘strictly non-deterministic PSM’ or
‘not-necessarily-deterministic PSM’.

54For example, if the computation is such that the expected answer is an integer, then the
measured output value, a real number, say, may by way of interpretation be rounded off to
the nearest integer.

CHAPTER 3. RESOURCE 107

Lemma 11. For each DPSM, there exists a (strictly) non-deterministic PSM
that performs the same computation.

Proof. We construct a non-deterministic PSM Ψ that acts as the given, deter-
ministic PSM Φ, but for its exhibiting non-determinism (which is ignored) in
an additional output parameter.

Consider DPSM Φ =
(
I, π,

(
(o1, Vo1) , . . . ,

(
oq, Voq

))
, ι

)
. Let Ψ be the PSM(

I, π′,
(
(o1, Vo1) , . . . ,

(
oq, Voq

)
, (o, {0, 1})) , ι′

)
, where

• π′ performs the process π, followed by a non-deterministic assignation of
either 0 or 1 to the additional output parameter o; and

• ι′ maps
(
vo1 , . . . , voq

, b
) ∈ Vo1 × . . . × Voq

× {0, 1} to (w1, . . . , wq, 0) (re-
gardless of the value of b), where (w1, . . . , wq) = ι

(
vo1 , . . . , voq

)
.

Fix x, an input value for Ψ, and suppose that (uninterpreted) output value y
is such that x ^Ψ y. By construction, then, y without its final coordinate (call
this y′) satisfies x ^Φ y′, and is hence unique given x, since Φ is deterministic.
Further, because of the non-deterministic assignation of o, y′ with either 0 or
1 appended as a final coordinate can serve as an output value from Ψ given
x: for each input value x, there exist exactly two output values y such that
x ^Ψ y; Ψ is, therefore, a strictly non-deterministic PSM. Non-determinism
notwithstanding, all information present in any y′ such that x ^Φ y′ is also
present in any y such that x ^Ψ y (we merely ignore the final parameter of y in
order to retrieve y′). So, we have exhibited an NPSM with the same behaviour
as our given DPSM, as required.

Remark 19. Note also that Φ and Ψ in the above proof consume asymptoti-
cally equal resources. The only differences in resource consumption are that
Ψ must spend a constant amount of run-time to assign non-deterministically
a bit, and must use a constant amount of storage space to store this bit (the
system may also consume, for example, a constant amount of energy during
this time). These constant additional overheads leave the complexity functions’
O-behaviour unchanged.

Error; Precision Complexity.

Recall from Remark 18 the process whereby a PSM performs a computation.
We now elaborate on this process, and model the fact that, in practice, errors
can be introduced into the system during both the application of input values
and the measurement of output values. We use non-determinism to model
these errors: for example, a value x, as perturbed by some additive error with
parameter ε ≥ 0, may be rendered as a non-deterministic, arbitrary element
of [x− ε, x + ε] (if the error were instead multiplicative, with parameter ε ≥ 1,
say, then the perturbed value would be a non-deterministic choice from

[
x
ε , εx

]
—

recall and contrast Sects. 3.3.2 Addition—Additive Error and 3.3.2 Addition—
Multiplicative Error).

Definition 10. Computation via PSM Φ consists of four stages (say that Φ =
(I, π,O, ι) with I =

(
(i1, Vi1) , . . . ,

(
ip, Vip

))
and O =

(
(o1, Vo1) , . . . ,

(
oq, Voq

))
):

CHAPTER 3. RESOURCE 108

• Input. The user attempts to apply to Φ his intended input value—the
input value x :=

(
vi1 , . . . , vip

)
at which he wishes to evaluate function

^Φ (or, if Φ is non-deterministic, for which he wishes to find some y such
that x ^Φ y)—by adjusting the inputs of Φ. Due to lack of precision in
this adjustment, however, the intended input value x may not coincide
with the implemented input value x′ :=

(
v′i1 , . . . , v

′
ip

)
—the actual input

value received by the PSM. There is (assuming that the PSM is of practical
use), however, a relationship between each vij and v′ij

in terms of some real
error term εij

—the specific input error for ij .55 Define the generic input
error (or, simply, input error) of Φ to be the tuple εI :=

(
εi1 , . . . , εip

) ∈
Rp. Given an intended input value, then, the corresponding implemented
input value is not necessarily uniquely determined, but is at least bounded
in some sense by the input error (recall the above comments concerning
the non-deterministic modelling of noise). The error introduced whilst
inputting a value may, therefore, be modelled by the input error relation
RεI

, a relation, parameterized by εI , between intended and implemented
input values.

• Execution. The process π of Φ is then executed.

• Measurement. Next, the user attempts to measure the output value
from Φ. Again due to lack of precision, this time during measurement,
the true output value56 y′ :=

(
v′o1

, . . . , v′oq

)
—that supplied by Φ—and

the measured output value y′′ :=
(
v′′o1

, . . . , v′′oq

)
—that measured by the

user—may not coincide. Again, however, there is a relationship between
each v′oj

and v′′oj
in terms of some real error term εoj —the specific output

error for oj . Let the generic output error (or, simply, output error) of Φ
be the tuple εO :=

(
εo1 , . . . , εoq

) ∈ Rq, and let the error57 of Φ be the
pair ε := (εI , εO) ∈ Rp×Rq.58 Given a true output value, then, the corre-
sponding measured output value is not necessarily uniquely determined,
but is at least bounded in some sense by the output error (recall once
more the modelling of noise as non-determinism). The error introduced
during measurement of an output value may, much as during input, be
modelled by the output error relation RεO , a relation, parameterized by
εO, between true and measured output values.

• Interpretation. Finally, the user applies the interpretation function of
Φ to the measured output value y′′ to find the interpreted output value

55For example, it may be the case that vij and v′ij
differ by no more than specific input

error εij ≥ 0; cf. nj and lj in Sect. 3.3.2 Addition—Additive Error.
56Note that this value y′ satisfies x′ ^Φ y′. Tautologically, the physical system computes

with perfect accuracy whatever relation it computes, even if the user’s ability to input and
measure values is imperfect.

57For our purposes, the error of a PSM is an independent variable—we are free to alter the
error, and wish to consider those values of the error for which the system performs the correct
computation (at least given input of a certain size). In this footnote, we detect the germ of a
complexity measure. . .

58We sometimes view error ε as an element of the space Rp+q , using the obvious function
((a1, . . . , ap) , (b1, . . . , bq)) 7→ (a1, . . . , ap, b1, . . . , bq) from Rp × Rq to Rp+q . In such contexts,
then, ε is the tuple concatenation, rather than the pair, of εI and εO.

CHAPTER 3. RESOURCE 109

y := ι (y′′).59

The ‘flow of computation’ in Definition 10, then, is as follows: intended
input value

imprecision7→ implemented input value π7→ true output value
imprecision7→

measured output value ι7→ interpreted output value.

Definition 11. Say that intended input value x (Φ, ε)-yields interpreted output
value y if and only if there exist x′, y′ and y′′ such that x RεI x′, x′ ^Φ y′,
y′RεO

y′′ and ι (y′′) = y (where ε = (εI , εO)).60 Define the yield relation _Φ,ε

to be { (x, y) | x (Φ, ε)-yields y }, and write ‘x _Φ,ε y’ for ‘(x, y) ∈ _Φ,ε’.

Remark 20. Note that the ‘smile’ notation ^ denotes the happy situation in
which computation proceeds in a perfect, error-free way: it relates unperturbed,
abstract input/output values as may be specified in a mathematical problem’s
description. The ‘frown’ notation _, on the other hand, denotes the unhappy
(but more interesting!) situation in which input/output error may be present:
it relates possibly noisy input and output values that may not give the correct
answer to a mathematical problem.

Intuitively, if the specific input and output errors of a PSM Φ constrain suffi-
ciently tightly that intended and implemented input, and also true and measured
output, values be close together,61 then the error in the system is sufficiently
small that some intended input and corresponding yielded interpreted output
values will be related by ^Φ—these small errors introduced during input and
measurement are successfully corrected during interpretation. We are, in par-
ticular, interested in the set of errors ε that guarantee that a given input value
will be related by ^Φ to any corresponding (Φ, ε)-yielded interpreted output
value; the behaviour (usually, the dwindling) of this set of corrigible errors as
the input size increases is the basis of our notion of precision complexity. These
ideas are now formalized.

Definition 12. A size function for PSM Φ is a map from the set of input values
of Φ to the set R+ of non-negative real numbers.62

Definition 13. Let Φ be PSM (I, π, O, ι) with I =
(
(i1, Vi1) , . . . ,

(
ip, Vip

))
and

O =
(
(o1, Vo1) , . . . ,

(
oq, Voq

))
, let σ be a size function for Φ, and let x be an

input value for Φ.

• An error ε ∈ Rp+q is said to be precise for x if, for all y such that x _Φ,ε y,
it is the case that x ^Φ y.63

• Let EΦ (x) denote the set { ε ∈ Rp+q | ε is precise for x } of errors precise
for x.

59This interpretation computation may well be achieved in practice via Turing machine—cf.
Remark 16.

60Intuitively, an attempt by the user to input x, execute the process, and measure and
interpret the output can result in the output y if and only if x (Φ, ε)-yields y.

61This can happen by the specific errors being close to zero if the errors modelled are addi-
tive, one if multiplicative, and so on. The existence of an identity element (0, 1, etc.) for the
operation in question (+, ×, etc.) allows for singleton, measure-zero intervals ([n− ε, n + ε],[

n
ε
, εn

]
, etc.); other ‘non-operation’ types of error may have similarly trivial non-determinism

during input and measurement.
62For a discussion of general size functions, as opposed to those specifically for PSMs, see

Sect. 3.4.3 Size Functions.
63Intuitively, then, an error is precise for x if and only if it is sufficiently ‘small’ that, at

least on input x, it is corrected during interpretation.

CHAPTER 3. RESOURCE 110

• Let VΦ (x) denote the Euclidean, (p + q)-dimensional volume64 of EΦ (x).
Thus, VΦ (x) ∈ [0,∞].

• Let the precision required by Φ given x be PΦ (x) :=
⌊

1
VΦ(x)

⌋
∈ N∪{∞}.65

• Define Φ’s precision complexity relative to σ to be the function P ∗Φ,σ : N→
N ∪ {∞} given by

P ∗Φ,σ (n) = sup {PΦ (x) | σ (x) = n } .

When the choice of size function and/or PSM is understood, references thereto
(e.g., subscripts ‘σ’ and ‘Φ’) may be omitted.

Remark 21. PΦ is our illustrative example of a (non-standard) resource. See
the formalization of this concept below (Sects. 3.4 and 4.5.4).

Remark 22. There is nothing particular to the resource P of precision that
prompts us to define the corresponding measure P ∗ of complexity as in Defi-
nition 13; we may generalize this construction so as automatically to obtain a
complexity function given an arbitrary computational resource. See Sect. 3.4.3.

Remark 23. In many practical cases, we have the following. If input values x1

and x2 are such that σ (x1) ≤ σ (x2), then, for a ‘practically useful’ PSM Φ =
(I, π,O, ι) and ‘sensible’ size function, we have that Rdim I+dim O ⊇ EΦ (x1) ⊇
EΦ (x2) ⊇ ∅, whence (taking volumes) ∞ ≥ VΦ (x1) ≥ VΦ (x2) ≥ 0 and (taking
floored reciprocals) 0 ≤ PΦ (x1) ≤ PΦ (x2) ≤ ∞. P ∗Φ is, in these ‘common’ cases,
a non-decreasing function of the size of an input value.

(We make no attempt to formalize “practically useful”, “sensible” or “com-
mon”, but instead include this remark so as to give an intuitive feel of the
‘direction’ in which precision increases. Cf. the typical situation (though by
no means necessity) of a Turing machine’s requiring more time as larger input
values are supplied.)

Remark 24. Note that our definition of the precision required by Φ given x—
namely, the floor of one divided by the volume of EΦ (x)—is by no means the
uniquely most obvious choice. Another promising candidate is the floor of one
divided by the most quickly shrinking side66 of the minimal hypercuboid that
bounds EΦ (x); indeed, this latter definition seems more consistent with Defini-
tion 23, and seems better to reflect precision’s not superficially being inherently
multiplicative in the dimensions of EΦ (x). However, our adoption in Defini-
tion 13 of the former choice reflects the intention that precision capture ‘lack of
robustness’ of a computation, and hence be reciprocal to the ‘size’ (i.e., volume
rather than maximal length) of the set EΦ (x) of corrigible errors. An extreme
(though unlikely) motivating case for this view sees EΦ (x) take the form of a
space-filling curve.

64For our purposes, the choice of measure in terms of which multidimensional volume is
defined is unimportant; we arbitrarily choose Lebesgue measure. Regardless of dimension, we
occasionally use ‘volume’ to denote whichever is appropriate of length, area, volume, hyper-
volume, etc.

65For this purpose, we use the standard extensions 1
0

= ∞ and 1
∞ = 0 of real-number

division.
66That is, the side one divided by which (viewed as a function of the size of x) O-exceeds

one divided by each other side (viewed similarly), assuming that such exists or else adopting
some reasonable tie-breaking convention.

CHAPTER 3. RESOURCE 111

It can be seen that the conclusions of Sect. 3.3.2—most notably that the
additive- and multiplicative-error systems of addition have precision-complexity
functions respectively constant and at-least-quadratic in n1 + n2, and that the
gcd system has precision complexity cubic in n1—remain valid under the for-
malization (Definition 13) of precision complexity67 (apart from the fact that,
in the examples of Sect. 3.3.2, we avoid the obfuscating detail of taking floors;
but this, of course, does not affect the asymptotic behaviour of the systems’
precision complexity).
Aside. In fact, there is a second way in which the precision-complexity analy-
sis of the systems of Sect. 3.3.2 differs from the prescription of Definition 13.
Specifically, where each of two input parameters is prone to the same error (as
is the case with the addition and greatest common divisor systems, of each of
which each input value is corrupted in the same way and by the same error
term as the other), we model the corresponding error term as a single axis εi—
rather than a separate axis εij

for each corrupt parameter, as is suggested by
Definitions 10 and 13—in the space of errors.

The modification necessary for the definitions to be unambiguous in this
respect, then, is the inclusion of a criterion that makes precise in which situations
one of a pair of error terms can and should be neglected. We suggest that such
a criterion can be formulated using the notion of the error terms’ joint entropy,
though defer further detail to future work.

Theorem 1. An instance (e.g., a Turing machine) of a standard model of
computation can be expressed as a PSM Φ, in that the relation between inputs
and outputs of the instance is _Φ,ε (where the choice of ε is unimportant).
Further, P ∗Φ,σ (n) = 0 for all n and for all σ.

Proof. Note that, in a standard model of computation, there is assumed to be
no error during input and measurement (and hence no need for interpretation):
the intended input value is faithfully passed to the algorithm, which supplies an
output that can be accurately read.68

This situation can be expressed in the more general, error-accommodating
framework of PSMs defined above by letting the input/output error relations
and the interpretation function be identity maps (and by letting the process of
the PSM, Φ = (I, π, O, ι), say, be a physical implementation—a digital com-
puter with sufficient physical storage and running an appropriate program, for
example—of the standard-computer instance itself).

Since, in particular, the input/output error relations RεI and RεO are chosen
to be identity maps for any generic errors εI and εO, every error is precise for all
input values. Hence, for all x, EΦ (x) = Rdim I+dim O, which has infinite volume,
and so the precision complexity of a Turing machine (or similarly standard
computer) is constantly sup

{⌊
1
∞

⌋}
= 0.

67Note that these specific precision-complexity functions are essentially viewed as functions
of input values rather than sizes of input values; we have, therefore, implicitly used an identity
size function.

68We recall the same sentiment expressed in [128].

“What is fundamental about the idea of a Turing Machine and digital computa-
tion in general, is that there is a perfect correspondence between the mathemat-
ical model and what happens in a reasonable working machine. Being definitely
in one of two states is easily arranged in practice, and the operation of real
digital computers can be (and usually is) made very reliable.”

CHAPTER 3. RESOURCE 112

Where convenient in what follows, we assume that instances of standard
models of computation are presented as Turing machines; this is in light of the
original and extended Church-Turing theses and, as a specific example of the
latter thesis, Remark 25.

Definition 14. In light of Theorem 1, we define a standard solution method (or
SSM) to be a PSM with identity input/output error relations and interpretation
function.

Time Complexity; Space Complexity.

To exploit fully the fact (proven in Theorem 1) that Turing machines and similar
(viewed as SSMs) are a special case of PSMs, we define for PSMs measures of
time and space complexity; naturally, when the computer in question is an SSM,
we wish these measures to agree with the existing, standard-complexity-theory
definitions. This extension69 of the class of computers of which we can ascertain
such complexity measures aids fair comparison of SSMs with other PSMs, as
well as meaningful comparison of different measures (time, space, precision, etc.)
of complexity.70

Definition 15. Let Φ be a PSM, σ a size function, and x an input value.

• Define the run-time TΦ (x) ∈ N ∪ {∞} of Φ given x to be the integer
part of the (possibly infinite) time taken from (a) supply to Φ of x until
(b) receipt from Φ of an (interpreted) output value.71

• Define Φ’s time complexity relative to σ to be the function T ∗Φ,σ : N →
N ∪ {∞} with

T ∗Φ,σ (n) = sup {TΦ (x) | σ (x) = n } .72

Remark 25. Recall, for example from Definition 2.5 of [103], the traditional
notion of time complexity: run-time of a Turing machine given some input is
the (possibly infinite) number of time steps in the computation of the machine
on the input until a halting state is reached, and the machine’s time complexity
evaluated at n is, as here, the supremum over inputs of size n of run-time (see
also Sect. 3.4.3).

Other standard models—the random-access machines of Sect. 2.6 of [103],
for example—have similar notions of time complexity; further, for each random-
access machine, there is an equivalent73 Turing machine with time complexity
only polynomially different from that of the random-access machine, and vice
versa.

69Since they are applicable to virtually all computational models, we extend these notions
to yet further generality in Sect. 3.5.1 Time and Space.

70Such comparisons are the focus of Chap. 4.
71The units in which this time is measured are of no importance, since we primarily consider

the asymptotic behaviour of resource T and its complexity function T ∗. For the sake of run-
time’s being well-defined, however, let us take seconds as our unit.

72As with Definition 13, ‘relative to σ’ and the subscripts ‘Φ’ and ‘σ ’ are sometimes omitted
when understood.

73Two computers, algorithms or similar are equivalent if they compute the same func-
tion/relation.

CHAPTER 3. RESOURCE 113

Theorem 2. For all functions f , O (f) contains the time complexity (according
to Definition 15) of an SSM if and only if it contains the traditionally defined
time complexity (according to Definition 2.5 of [103], say) of the corresponding74

Turing machine.

Proof. Fix a function f .
Suppose that SSM Φ is such that T ∗Φ ∈ O (f). Since the process of Φ is a di-

rect implementation of the corresponding Turing machine M , every operation—
of which there are only finitely many—achievable by Φ in one second can be
performed by M in a finite number of steps. Let s be the (constant) maximum
of these finitely many finite numbers of steps. Then the run-time of M given
some input is no more than s times the run-time (in seconds) of Φ given the
same input; hence, M has time complexity in O (sf) = O (f).

Similarly but conversely, suppose that a Turing machine M has time com-
plexity in O (f). Let Φ be the corresponding SSM, which is an implementation
(on a digital computer, for example) of M ; each ‘atomic operation’—of which
there are only finitely many—that M can perform in one time step is imple-
mentable by the process of Φ in finite time. Let t be the (necessarily finite,
constant) maximum of these finitely many finite times. Then the run-time of
Φ given some input is no more than t times the run-time of M given the same
input; hence, T ∗Φ ∈ O (tf) = O (f).

Definition 16. Let Φ be a PSM, σ a size function, and x an input value.

• Define the space SΦ (x) needed by Φ given x to be the physical, three-
dimensional volume required by Φ to perform its computation with input
x.75

• Define Φ’s space complexity relative to σ to be the function S∗Φ,σ : N →
N ∪ {∞} with

S∗Φ,σ (n) = sup {SΦ (x) | σ (x) = n } .76

Remark 26. Compare with Definition 16 the traditional notion of space com-
plexity (given, for example, in Definition 2.6 of [103]): the space required by a
Turing machine on an input is the number of (distinct) tape cells used by the
machine in processing the input. Space complexity evaluated at n is, as here,
the supremum over inputs of size n of required space.

Theorem 3. For all functions f , O (f) contains the space complexity (according
to Definition 16) of an SSM if and only if it contains the traditionally defined
space complexity (according to Definition 2.6 of [103], say) of the corresponding
Turing machine.

Proof. Note that there exists a multiplicative constant that bounds the size of
each of a Turing machine cell and a unit of physical data storage in terms of
the other77; then the proof is as that of Theorem 2.

74The correspondence here is in the sense of Theorem 1
75Similarly to Definition 15, the units in which this volume is measured are not important,

since we primarily consider asymptotic behaviour. So that space is well-defined, however, let
us measure in cubic metres.

76‘Relative to σ’ and the subscripts ‘Φ’ and ‘σ’ are sometimes omitted when understood.
77This follows from the fact that there is not only a practical, but also theoretical, limit on

the density of data storage (that is, the number of bits that can be stored per cubic meter,
say)—see [13].

CHAPTER 3. RESOURCE 114

We see, then, that the (traditionally defined) time- and space-complexity
functions of a Turing machine or similar are, up to O-notation, the same as the
time- and space-complexity functions (according to Definitions 15 and 16) of
the machine’s PSM formulation: the class of SSMs is embedded in the class of
PSMs, and the time- and space-complexity functions of the latter extend those
of the former.

3.3.4 Precision in the Literature

We list now some considerations of precision, in the context of computational
complexity, made in the literature (some are discussed in greater detail elsewhere
in the present work). The differences (of which some are mentioned in the
following list) between these items and the present work hint at the novelty of
the framework of computation and complexity that we introduce.

• An exploration ([8,9,12]) of the additional computing power78 gained from
augmenting the Turing machine with position-measuring oracles (based
upon particle-scattering to find a wedge’s vertex: each face meeting at
the vertex reflects the particles in a different direction, and to a different
sensor, betraying information about the vertex’s position). It is assumed
that the particles do not alter the position of the wedge; indeed they do
not a great amount, but one wishes to distinguish arbitrarily close posi-
tions, which entails their not altering the wedge position at all. Given
either error-free or arbitrarily precise (that is, correct to within any given
ε > 0) particle-cannon positioning, machines so augmented compute all
of P/poly, which contains the Halting set; with fixed-error positioning
(correct to within some fixed ε > 0), they compute BPP//log∗, which in-
cludes non-recursive sets; both classes, then, indicate super-Turing power.
Consideration of precision in [9, 12] has as its focus the particle cannon’s
position; wedge-vertex position (in the exactitude of which lies the increase
in computational power) warrants similar analysis, and is accordingly ad-
dressed in [8]. (We recall also an extension in [11] of these ideas from the
mechanical to the electrical.)

• Presentation ([30]) of a Turing-machine-like framework to accommodate
real-number computations, rather than traditional, discrete (say, without
loss of generality, {0, 1}-based) computations, though without focus on
precision.79

• Discussion ([110]) of the undecidability of the ray-tracing problem, which
benefits from formalization (particularly of precision issues) in the context
of this project—see Sect. 5.2.

• Contrasting views ([44, 96]) of the significance for the Kochen-Specker
theorem of precision’s being necessarily finite in practice, which, again,
may benefit from consideration in the present context—see Sect. 5.4.

78This is expressed in terms of ‘advice classes’ B/F , which allow non-uniformity in the sense
that computational processes are allowed to be dependent on input size (or, equivalently, can
make use of ‘advice strings’ depending only upon the input size).

79In fact, [30] largely overlooks not only the precision costs incurred during computations
involving real numbers, but also the space costs associated with real numbers’ storage, deeming
these latter costs to be constant. Storage of real numbers is more thoroughly treated in [101],
wherein ideas based upon Dedekind cuts are used.

CHAPTER 3. RESOURCE 115

• Presentation ([87, 88]) of a quantum process that purports to decide a
Turing-undecidable problem; this is yet another test case discussed via
formalization (especially of precision issues) according to the notions of
this project—see Sect. 5.3.

• An investigation ([133,134]) into an optical model of computation (and the
complexity of instances thereof), though avoiding some issues of precision
by implicitly using a trade-off with space (in this case, number of pixels)—
see Sect. 3.6.1 Optical Computers.

• A comprehensive study ([39]) of continuous-variable quantum systems—
see Sect. 3.6.2 Continuous-Variable Quantum Computers.

• A study ([128]) of analogue complexity, in which precision of measurement
is seen as a factor constraining the set of problems that can be solved,
rather than—as here—a dependent-variable property of problem instances
and hence a resource type.

• An exploration ([65]) of computers’ ability to simulate physics—including
quantum phenomena—, with some consideration of precision issues such
as the discrete representation of space-time.

• A strengthening ([71]) of the foundations of a specific model of analogue
computer, in particular to accommodate real-number manipulations.

• Acknowledgement ([102]) that much of the literature as of 1997

“ignore[s] the effects on the [analogue] computing process of im-
precision and noise, two of the most pervasive practical prob-
lems in analog computation”.

Eleven years on, [35] notes that

“this evaluation remains largely accurate”.

• A demonstration ([116]) that random-access machines, when augmented
with infinite-precision, real-number manipulations, can solve in polyno-
mial time and space any problem in NP. This indicates, additionally to
Sect. 3.1.1, that unconventional resources such as precision should without
doubt be considered.

• Introduction ([69]) of ‘measurability ’ as an analogue-computer counter-
part to the Turing machine’s computability, and exploration of the con-
sequences of computability or otherwise of physical theories’ mensurable
values.

• An observation ([35]) that,

“[a]lthough it has been shown that some continuous time models
exhibit super Turing power, these results rely on the use of an
infinite amount of resources such as time, space, precision, or
energy. In general, it is believed that ‘reasonable’ continuous
time models cannot compute beyond Turing machines”.

CHAPTER 3. RESOURCE 116

Aside. We make a final comment in this section. One may question whether
chaotic mappings can be exploited so as to increase available precision, and
hence to reduce precision complexity. Two close values (that we wish to distin-
guish, though may not have available sufficient precision) may, under a chaotic
mapping, have distant and easily distinguishable images; the difficulty is then
transferred from precise distinction of values to reversal of typically unpre-
dictable chaotic functions. Full investigation of this idea is deferred to future
work.

3.4 Formalizing Resource

In this section, we formalize the notion of ‘commodity resource’ (recall the
discussion of Sects. 3.2.1 and 3.2.4). Where convenient in the remainder of this
dissertation, we use the briefer term ‘resource’.

3.4.1 First Steps

We model a resource (usually denoted by an upper-case letter A, B, etc.) as
a function that depends upon the choice of computational system (shown as
a subscript to the function, which subscript may, when understood, be sup-
pressed) and that maps each input value to the corresponding amount80 of the
resource consumed by the system in processing the input value (up to the point
of providing a corresponding output value).

In fact, we stipulate that resources map to natural-number81 values (or to
∞)82, which can, therefore, be thought of as the corresponding numbers of
units of resource consumed. Should our resource instead lend itself to a real-
number, continuous codomain (as does energy, for example, at least at super-
quantum scales), then we may apply a rounding function (say, x 7→ dxe) to
restore a natural-number codomain. This loses no relevant information: we,
as complexity theorists, are interested in the asymptotic scaling behaviour of
resources as encapsulated by O-notation, which notation ‘smooths over’ fine
details such as the effects of our rounding function.

Hence, where Φ is a computer and x an input value for Φ, AΦ (x) (or simply
A (x) if the choice of Φ is understood) is the amount—in fact, number of units
since we stipulate that resource A have codomain N ∪ {∞}—of resource A
consumed by Φ in processing x.

Specific and notable examples are

• TΦ (x), which denotes the number of units of time (e.g., the number of
time steps if Φ is a Turing machine) taken by Φ to process x;

• SΦ (x), the number of units of space occupied (e.g., the number of tape
cells used if Φ is a Turing machine);

80This amount may, when no finite amount of a resource is sufficient for a computation to
complete satisfactorily, be infinite (e.g., no finite amount of the resource of time suffices when
a Turing machine has entered an infinite loop).

81Recall that, in the present context and unlike in the previous chapter, zero is a natural
number: N := {0, 1, 2, . . .} .

82We use this fact in the proof of Theorem 22, for example.

CHAPTER 3. RESOURCE 117

• PΦ (x), the number of units of precision, as defined in Sect. 3.3.3, used by
the system; and

• 0Φ (x), which is equal to 0 for every computer Φ and input value x—this
null resource is introduced (in Definition 17) for technical reasons.

Remark 27. Clearly, we have not fully defined resource, but have instead men-
tioned some necessary (but by no means sufficient) properties. We desire for
our purposes further properties, some of which we now describe.

Blum’s Axioms.

In standard complexity theory, i.e., complexity theory as it applies to Turing
machines, Blum’s axioms (introduced in [31]) may be—and typically are (al-
though exceptions occur during consideration of non-deterministic resources,
for example)—used to constrain what is allowed to be a resource. (More gener-
ally than Turing machines, the axioms’ original scope—see [31]—is algorithmic
computers, of which our area of interest is nonetheless a strict superset.) The
axioms ensure

1. that a measure of resource is defined at precisely those inputs at which the
computation being measured (and during which the resource is consumed)
is itself defined, and

2. that it is a (Turing-) decidable problem to determine whether a given
(purported) value is indeed the measure of resource corresponding to a
given input.

Both axioms hold, for example, for the Turing-machine resource of time:
(1) the number of time steps elapsed during a computation is a well-defined,
finite natural number if and only if the computation halts; and (2) given a
Turing machine, an input value and a purported number n of time steps, we
can decide—simply by running the computation for n steps and checking for
termination at that point and not before—whether the computation really does
use n steps).

The axioms are a good starting point for our restricting suitably the notion
of resource in the context of unconventional computation. Axiom 1 is auto-
matically satisfied (this is implicit in the phrase “corresponding amount” in
the description of resource in Sect. 3.4.1, wherein the implication is that an
undefined computation, and only an undefined computation, gives rise to an
undefined/infinite amount of resource), and—for our measures of resource to be
of any practical value—the desirability of axiom 2 is clear.83 Further, our adop-
tion of the axioms gives us many standard results from [31]; e.g., (Theorem 3
of [31]) for resources A and B, and for dummy variable x standing for an input
value, there exists a computable function g such that g (x,A (x)) ≥ B (x) and
g (x,B (x)) ≥ A (x) with only finitely many exceptions x.

Further Restriction.

We stipulate that resources satisfy Blum’s axioms. However, necessary as we
deem them to be, the axioms are not sufficient ; we see in Sect. 4.5.1 that a

83In particular, we do not consider here non-deterministic resources (even though computers
themselves may be non-deterministic), which would require that axiom 2 not hold.

CHAPTER 3. RESOURCE 118

notion of resource constrained by Blum’s axioms alone leads to undesirable and
deceptive complexity behaviour—whereas we describe below (see Sect. 4.2) tools
to determine which of several resources are ‘relevant’ to a given computation,
these tools fail when our concept of resource is not restricted further than by
the axioms.

Accordingly, we further restrict84 the notion of resource in Sect. 4.5.2, after
which (in Sect. 4.5.4) we summarize for convenience of reference our modified
notion.

3.4.2 Null Resource

It is convenient to define a null resource that is consumed (in positive quantity)
by no computer.

Definition 17. Let the null resource, denoted by 0, be the resource that is
consumed by no computer in that 0Φ (x) = 0 for all computers Φ and input
values x.

The corresponding complexity function 0∗Φ (see Definition 18) is, therefore,
constantly equal to zero for all computers Φ.

3.4.3 From Resource Comes Complexity

Even without fully defining resource, it is possible to define complexity functions
in terms of resources. We do this now.

With each resource is associated a complexity function. Given a computing
system, one may ask how a specific resource scales: we (as complexity theorists)
may be interested not in the resource required by the computer in processing one
specific input value (i.e., in some ‘A (x)’), but in the resource required as a func-
tion of the input value’s size85—this is the complexity function corresponding
to the resource. Specifically, we make the following definition.

Definition 18. Let Φ be a computer with set XΦ of possible input values, let
σ be a size function (see Sect. 3.4.3 Size Functions), and let A be a resource.
The complexity function A∗Φ,σ : N → N ∪ {∞}, corresponding to resource A, is
given by

A∗Φ,σ (n) := sup {AΦ (x) | x ∈ XΦ ∧ σ (x) = n }
(‘Φ’s and/or ‘σ’s may be suppressed when understood).

Whilst ‘A’, ‘B’, etc. denote types of resource, then, ‘A∗’, ‘B∗’, etc. denote
types of complexity.

Note that our previous, ad hoc use of ‘T ∗’ and ‘S∗’ (in Chaps. 2 and 3), and
of ‘P ∗’ (in Chap. 3) is in accordance with Definition 18.

84Specifically the restriction stipulates that resources be normal (which term is defined in
Definition 27). Roughly speaking, a normal resource is one that attains all natural-number
values: a resource is normal if and only if, for any natural number n, there exist a computer Φ
and an input value x such that Φ, in processing x, consumes exactly n units of the resource.
This prevents the exaggeration of the (complexity-theoretic) importance of resources by, for
example, applying a quickly-growing monotone function; see Sect. 4.5.1.

85For a discussion of the way in which a value’s size may be defined, see Sect. 3.4.3 Size
Functions.

CHAPTER 3. RESOURCE 119

We reiterate that we have not defined resource. The description given above
of resource is necessary for our purposes, but not sufficient; further restriction,
we see below, is required. We have, however, defined complexity in terms of
resource.

Remark 28. Much as we should like to ascertain the complexity of problems—
typically mathematical tasks such as factorization or the Travelling Salesperson
Problem that are of natural interest—, it is usually possible to measure the
complexity only of methods that solve the problems—computers, programs, al-
gorithms and so forth—; this method-complexity bounds from above the sought
problem-complexity (see also Sect. 4.1.1 Complexity: Problems versus Solution
Methods). Accordingly, complexity functions as we define them here are prop-
erties of computing systems.

Remark 29. Note that, regardless of the choice of resource, the corresponding
measure of complexity (and, indeed, complexity classes—see Sect. 4.3) are de-
fined in terms of the resource in the same way. The motivation is that this allows
fair comparison of different measures of complexity (for more about which see
Chap. 4); a byproduct is that our complexity framework is easily extensible:
the introduction of a new resource leads automatically to a new measure of
complexity and corresponding complexity classes.

Size Functions.

Since complexity functions are defined (in Definition 18) so as to take as their
argument an input value’s size, this term needs to be understood.

Definition 19. A size function (which we often denote by ‘σ’) maps each input
value to a member of R+, which member we call the input value’s size.

Example 2. For example, if our input value is a natural number n expressed in
base b (typically, b will be 2 or 10), then we can take as its size

• the number blogb nc + 1 of digits, excluding leading zeros (or, as is suffi-
cient for virtually all complexity-theoretic purposes, the often-convenient
approximation logb n to this number; we can further simplify this to log n,
since the choice of base equates merely to multiplication by a constant,
which detail is ignored by O-notation—see Footnote 5 of Chap. 2).

If, instead, our input value is a real number x, then, depending upon context
(how x is encoded/stored86, how it is to be used, etc.), we can take as its size

• the natural-number size (e.g., in accordance with the list immediately
above) of bxc;

• the combined number of digits and decimal places of x (supposing presen-
tation to be in base notation with terminating decimal expansion);

• the Kolmogorov (algorithmic) complexity of x (see also Sect. 6.1.2); or

86We recall for its innovation the suggestion in [101] that real numbers may be represented
(e.g., in abstract descriptions of computations) using ideas based upon Dedekind cuts.

CHAPTER 3. RESOURCE 120

• the combined number of digits of the numerator and denominator of x
(supposing presentation to be as a fully cancelled rational expression87).

As the size of, say, a conjunctive-normal-form formula of Boolean logic, we may
take

• the number of free variables in the formula; or

• the number of clauses (i.e., conjuncts) of the formula.

Where the particular choice of size function σ is unimportant, we sometimes
write ‘|x|’ for ‘σ (x)’.

We defer further detail on size functions to the standard complexity-theory
literature, and, in the particular case of real-number input values, to [30]. Here
as in traditional complexity theory, these size functions are not our focus; we
tacitly assume that such functions are chosen ‘sensibly’ (were ‘sense’ here de-
pends upon context), and focus instead upon the higher-level notions (complex-
ity function, complexity class, etc.) that we define in terms of size functions.

Resource as a Lower Bound.

We comment in passing that specific values AΦ (x) of resources and A∗Φ,σ (n) of
complexity functions are viewed as lower bounds on what is needed for a compu-
tation to succeed: we tacitly make the prima facie reasonable assumption that
computation can proceed when more resource than is necessary is available.88

A situation where this assumption fails is when some resource A has an upper
bound for computation to succeed, when there is such a thing as ‘too much of
A’. In this case, one may introduce a new resource, ‘−A’, bounded from below
as we assume here; this situation is accommodated, then, even though we take
values of resources and complexity functions to be lower bounds.

Our default use of resource (i.e., as a lower bound), then, is to make state-
ments of the form ‘a computation can proceed if at the fewest X units of the
resource are available’. In the previous paragraph, we see that we may also ap-
ply upper bounds: ‘a computation can proceed if at most X units are available’
(to bound A above by X, we simply bound −A below by −X). This allows spec-
ification of a (two-ended) range of values required of resource availability; as we
discuss now, however, there may be more subtle constraints on computational
resources.

Note that, in a quantum (and, hence, quantum-computing) context, addi-
tional ‘possibilities’ (for example, potential routes taken by photons in Young’s
double-slit experiment [136]) may interfere with and cancel out existing ones (see
[105] and Fig. 3.9); the existence of such phenomena should be heeded, then,
when selecting resources for consideration, so that provision of extra resource
cannot, all else being equal, preclude a computation—we wish to be able to

87Alternatively, x may be given as a rational approximation, not necessarily fully cancelled,
where the denominator d indicates the resolution to which x is given, in that x is the true
value rounded to the nearest 1

d
; e.g., rather than cancelling 50

100
to 1

2
, it is left so as to indicate

that the true value is in the interval
[
49.5
100

, 50.5
100

)
.

88A desirable byproduct of this assumption is that our unconventional-complexity definitions
are in some respects analogous to their traditional counterparts: certainly no Turing machine
M is hindered by an abundance of time or space, in that the class of computations possible
given t time steps and s tape cells is ⊆-monotonic in t and (separately) in s.

CHAPTER 3. RESOURCE 121

take suprema, and otherwise to consider our lower-bound resources/complexity
functions, with impunity. Note, reassuringly, that the problematic ‘resource’
described here is not really in keeping with out notion of commodity resource:
the availability or otherwise to a photon of a certain route is a feature of the
(problem-instance-independent) structure of the system; our stipulation that
resources (and complexity functions) be lower bounds is not in conflict with the
photon-path situation described.

Figure 3.9: Less is more: if both slit a and slit b are open, then light is cancelled
out at (dark) point D; with only one slit open, D becomes lit.

Remark 30. For clarity, we stress the sense in which values of resources and
complexity functions are lower bounds. A computation with fixed input value
may proceed with at least these (resource/complexity-function) bounds’ allo-
cation of computational resource: extra resource beyond that prescribed by a
resource/complexity function is not problematic. This is in contrast with, and
should not be confused with, the observation that a complexity function is the
maximum (over input values of a certain size) amount of resource sufficient for a
computation to proceed, in which sense complexity functions are upper bounds.

In particular, the definition of A∗Φ,σ in terms of the supremum of a set of
amounts of resource reflects the fact that, whilst there may be several different
amounts AΦ (x) of resource corresponding to various input values x of the same
size n, we are interested in finding an amount A∗Φ,σ (n) of resource sufficient for
any input value of size n.

3.5 Model-Independent Resources

An important question here is

(?) what methods can be used to identify the suitable/relevant resources for a
given computational model?

This question may be posed either in generality—‘given an arbitrary computa-
tional model, which resources should be considered/what can be said about the
sought resources?’—or for specific models; we consider both levels of generality
(see Sects. 3.5 and 3.6 respectively).

Aside. The temptation is to say that ‘everything’—properly, every function
mapping the value of some feature of a computational system into the set N ∪
{∞}—is (or at least can be) a resource, in the hope that most such things can

CHAPTER 3. RESOURCE 122

be disregarded as having no dependency on the input value (which is the case,
for example, when such a ‘resource’ is consumed in zero quantity). However,
we wish, at the very least, for statements along the lines of ‘the total amount
of resource consumed by computer Φ given input value x is k’ to be decidable,
which entails our being more decerning in our choice of resources. We do not
focus on this issue in the present project, but do make restrictions of the notion
of resource (see Sect. 4.5.4) that are sufficient for our purposes.

Some clarification is needed on what it means for a resource to be ‘suit-
able/relevant’. An intuitive understanding of this concept can be gleaned from
the analogue factorization examples of Chap. 2, which we have demonstrated to
have time and space complexity (each polynomial) that fails to capture the sys-
tems’ actual, exponential complexity; the unconventional resource of precision
harbours the true complexity here, and, hence, is seen to be relevant (unlike
time and space). We formalize this ‘relevance’ with the notion of dominance;
see Chap. 4.

Remark 31. Note that, whereas the phrasing of our question (?) suggests that
resources’ suitability/relevance is a function of the computational model under
consideration, it may in fact vary between instances of the model: one computer
of a certain model may have, say, time but not precision as a relevant resource,
whilst, to another of the same model, precision but not time may be relevant (we
show the ‘difficult half’ of this claim, for the specific case of analogue computers,
in Chap. 2). Nonetheless, when identifying candidate relevant resources, the
choice of model seems more influential than the choice of specific computer. The
complexity functions for these candidates (corresponding to the model(s) under
consideration) can then be evaluated for the specific computer(s) of interest to
see which are relevant (using the notion of dominance, which is defined and
described below).

3.5.1 Specific Examples

We discuss first some resources that apply to all (or virtually all) computational
models.

Precision.

We discuss the resource of precision, which above furnishes us with examples
and deserves detailed treatment, in Sect. 3.3. This resource is not relevant to
all computational models (as is witnessed by the notable example of the Turing
machine—recall Theorem 1), but, as suggested by the discussion of Sect. 3.3,
its consideration is certainly beneficial when working with paradigms prone
to input/output noise; the prevalence of such paradigms, especially when one
restricts consideration to computers as physically implemented, earns precision
its place in Sect. 3.5 rather than Sect. 3.6.

Time and Space.

Run-time and memory space are the standard resources considered in complex-
ity analyses of Turing machines; indeed, up to variations (such as ink, head
reversals, etc.), they are the only ones—see the discussion of Sect. 3.7.1. The

CHAPTER 3. RESOURCE 123

problem, as we intimate above, is that it is sometimes assumed that this limited
interpretation of resource is adequate, even in the unconventional case.

Whilst we see above (particularly in Chap. 2) that consideration of uncon-
ventional computation necessitates consideration of unconventional resources,
this is not to say that time and space are not still relevant in unconventional
contexts; in fact, they are universally applicable. Furthermore, it is clear89 for
virtually all computing paradigms how to generalize these two resources from
the Turing-machine case to the wider class of physical computers.90

Definition 20.

• Time can be taken to be the number of units of physical time (measured
in seconds, say) elapsed during a computation (i.e., between input and
output) performed by a physical system;91

• space can be taken to be the physical volume (in cubic metres, say) oc-
cupied by the system (including any required storage space, electrical or
not).

Remark 32. Our choice of specific units (s and m3) is arbitrary and is included
only so that the resources of time and space are well defined. The complexity-
theoretic (and in particular asymptotic-notation) use of this definition is such
that this choice is equivalent to any other.

Remark 33. Note that our generalizations of time and space encompass all
relevant parts of a computational process, including measurement of output
values. This is in accordance with the view—expressed in [8], for example—that
complexity measures should account for measurement processes: for example,
if an output value is taken from a balance scale that tips arbitrarily slowly
as the compared masses approach equality, then the duration of the tipping
process should form part of the computation’s time, which is indeed so with our
definition.

Material Cost.

In addition to the material cost of constructing a computer (which may, from a
commodity-resource point of view, be supposed to be a constant, one-off cost;
or which can be treated as a non-commodity resource—see Sect. 3.2.1 Manufac-
turing Costs), there may be a cost in running it (over and above energy costs,
which we discuss in Sect. 3.6 below). For example, if memory is implemented
in such a way that each write operation (either to a fresh or used memory cell)
costs a constant amount, then we may wish to consider the resource of ‘ink’;
this existing notion can be generalized (in particular for physically implemented
computational paradigms) to the resource of material cost.

89Clear, at least, given suitable notions of normalization, etc.; see Sect. 4.5.
90Recall that we take above the first step of the generalization: in Sect. 3.3.3 Time Com-

plexity; Space Complexity, we extend the conventional-computer notions of time and space
complexity (as presented, for example, in Definitions 2.5 and 2.6 of [103]) to PSMs. We now
take this extension to its natural conclusion, by generalizing time and space complexity to all
physical computational models.

91Here we implicitly assume that computations are not affected by relativistic effects, which
assumption is clearly unsafe in the context of relativistic computation; for this model, then,
our definition of time needs modification—see Sect. 3.6.1 Relativistic Computers.

CHAPTER 3. RESOURCE 124

Thermodynamic Cost.

Strictly speaking, this resource is not applicable to computers from all models
(failing, in particular, for those from abstract, mathematical paradigms), but is
at least applicable to those that are physically implemented ; Turing machines,
then, are excluded, but digital computers that implement Turing machines are
not.

The idea behind this resource is that computation typically erases informa-
tion: evaluating a function (which will not in general be injective) in such a
way that the input is destroyed and only the output is available after computa-
tion represents an erasure of information, an increase in entropy and, hence, a
thermodynamic cost; this concept was introduced by Landauer in [92] and de-
veloped by Bennett and Vitányi (who survey the notion in [15,129] respectively)
amongst others. Reference [137]—in which the corresponding complexity mea-
sure is explicitly introduced—notes that limits on the thermodynamic cost (a
form of computational complexity) of a computation can be inferred by consid-
ering its algorithmic (that is, Kolmogorov) complexity92 (see Sect. 6.1.2). Note
that, at least from the perspective of [137], this resource arises from information-
theoretic (and, specifically, entropy-related) concerns; accordingly, (reversible)
computation of an injective function is deemed to have negligible thermody-
namic cost, regardless of (for example) the energy inefficiency of a physical in-
stantiation of the computation—what we have is a very much theoretical lower
bound on the consumption of ‘thermodynamic resource’.

Aside. We recall from [53] an approach to computational resource that leads to
other information-theoretic resources. In practice, randomness (roughly speak-
ing this is non-determinism viewed as a commodity resource) comes for free—one
needs only to toss a coin (whilst true for virtually all computational, function-
evaluation purposes, this is not, however, the case in the context of cryptogra-
phy, where the slightest deviation from true randomness is open to exploitation);
significant cost is incurred not by use of this randomness, then, but rather by
use of correlations and structure. These features roughly equate to informa-
tion storage and processing, from which observation it is understandable that
information-theoretic resources such as entropy are involved.

Aside. We recall (from [94]) in passing also the notion of thermodynamic depth,
which provides a measure of the amount of information lost in formation of an
object (a computer being the example of interest in the present context), rather
than in a computational process. This is not, then, a commodity resource,
but rather a manufacturing cost closely related to the commodity resource of
thermodynamic cost; see Sect. 3.2.1 Manufacturing Costs.

3.5.2 Generic Criteria

Apart from consideration of resources (time, space, material/thermodynamic
costs, etc.) that are applicable in the context of arbitrary computational models,
we may consider features that (unspecified) such resources should possess; in
fact, we discuss two such elsewhere: Blum’s axioms in Sect. 3.4.1 Blum’s Axioms
and normalization in Sect. 4.5. We defer details to these sections.

92Note that, in the general case, algorithmic complexity is uncomputable: we fail not only
to find a smallest program that generates a given string, but also to find even this program’s
size.

CHAPTER 3. RESOURCE 125

3.5.3 Two Approaches

“In theory, there is no difference between theory and practice.
But, in practice, there is.”

—Jan van de Snepscheut.

We comment in passing that many of the approaches to identification of
suitable/relevant resources fall into the broad categories of ‘practical’ and ‘the-
oretical’, as we now describe (these approaches are akin to the discussion of
Sects. 3.5.1, 3.6.1 and 3.6.2 in the former case and Sect. 3.5.2 in the latter).

• Practical approach. With a specific computing device or paradigm in
mind, we may consider in an ad hoc way its implementation, looking for
bottlenecks and impracticalities and restating such as resource constraints.
For example, since the result of a computation by an analogue system
may be encoded in a real-number position coordinate of some part of the
system—the computation tacitly relies, then, on our being able to achieve
infinitely precise measurement in order to retrieve this real number—,
whereas in practice our measured value may be known only to be within
some ε > 0 of the true value, we are prompted to consider the resource
of precision, and we may for example find that, as the input value grows,
the precision required during measurement increases exponentially.93

• Theoretical approach. We may question, regardless of computing
system/paradigm, what can and should be admitted as a resource. As
we comment above, Blum’s axioms—see Sect. 3.4.1 Blum’s Axioms—offer
an effective starting point, and normalization—see Sect. 4.5—a suitable
continuation; see also Sect. 4.5.4 for a summary of our restrictions to the
abstract notion of resource.

3.6 Model-Dependent Resources

3.6.1 Resources for Non-Quantum Computers

We consider now specific (illustrative rather than exhaustive) models of compu-
tation, and ask which resources are likely to be relevant for instances thereof.
Due to the importance and timeliness of quantum computers, and to the sheer
number of distinct quantum-computing paradigms, we treat quantum comput-
ers (in Sect. 3.6.2) separately from non-quantum computers (in this section).

In light of Remark 31, we here seek to identify for a given computational
paradigm candidate resources that may be of interest for some instances of
the paradigm; in particular, we do not (and in most cases cannot, due to the
falsehood of the proposition) provide rigorous proof that a resource is of interest
for all instances of a model of computation.

Actual, Physical Implementations of Turing Machines.

We comment in Sect. 3.7.1 that, for the abstract, unimplemented, Turing-
machine model itself, the resources of time and space (and variants thereof) are

93This, recall, is notably the case with the analogue factorization systems of Chap. 2, for
which precision transpires to be paramount.

CHAPTER 3. RESOURCE 126

sufficient for complexity-theoretic purposes. The resource of precision, then, is
not a direct concern for Turing machines:

“What is fundamental about the idea of a Turing Machine and digi-
tal computation in general, is that there is a perfect correspondence
between the mathematical model and what happens in a reasonable
working machine. Being definitely in one of two states is easily ar-
ranged in practice, and the operation of real digital computers can
be (and usually is) made very reliable” [128].

What, though, of implementations of Turing machines? Both the alphabet size
and number of states of a physical realization of a Turing machine relate to
precision in that distinguishing a greater number of distinct symbols entails
smaller differences therebetween,94 resulting in smaller differences (in voltage
or similar) between their respective real-world implementations.95

Nonetheless, the alphabet-size issue is not problematic: ‘meta-symbols’ con-
sisting of several symbols can be used instead of (distinct) individual symbols;
similarly, the states may be encoded via such ‘place notation’ (for example,
states’ indices may be recorded in a multi-column, place-notation register rather
than as a single symbol). Further, the Turing machine’s unbounded tape seems
unproblematic, as long as by ‘computer’ we mean not a fixed-memory machine,
but the machine plus arbitrary additional memory (that may or may not have
been manufactured at the time of the computation’s commencing); we therefore
consider space as a commodity, rather than a manufacturing/material, cost.

This place-notation approach suggests that consideration of time and space
alone may for many purposes suffice, and (unsurprisingly) Turing [127] argues
similarly (noting in particular the issue of alphabet size/symbol differentiation).
However, from a complexity point of view, though real-world computers may of-
fer a good, finite approximation of Turing machines, we are interested in asymp-
totic behaviour of resources, and so for precision we should certainly account.

So, we consider for this model the resources of time and space (of which the
latter accounts for the unboundedness of a Turing machine’s tape: the resource
quantifies how much space is needed given a certain input size, and may then
determine adherence or otherwise to financially/technologically/geographically
imposed bounds on the space available to a physically implemented computer)
as normal, and add to these precision so as to account for symbol and state
numbers (and, hence, indirectly, for the size of the Turing machine’s transition
table). These are the only significant differences between a Turing machine and
a real-world implementation as far as complexity resources are concerned.

(One resource not considered thus far is the energy consumption of the
computer—the electrical cost, say, of its operation. This, however, is a constant
multiple of time—to power a computer has a unit energy cost per second,96 and,

94We tacitly assume, perfectly reasonably, that there exists some bounded space from which
symbols are drawn.

95Strictly speaking, symbol and state numbers for a given Turing machine are a priori
fixed, whereas we as complexity theorists should like to think in terms of functions of input
size; accordingly, we may consider measures such as ‘number of distinct symbols/states used
so far ’ as a function of input size. This contrivance does not ‘cheat a new resource into
being’, but rather ensures that (not-necessarily-commodity) resources—namely, numbers of
symbols/states—that we should like to discuss can be expressed as commodity resources; this,
by the discussion of Sect. 3.2.2, is harmless.

96Clearly, periods of more intensive computation may require more energy in order to power
the processor, but we may (and do) assume ‘ballistic computation’, whereby the computer is

CHAPTER 3. RESOURCE 127

hence, energy becomes redundant as long as we consider time: they measure,
in effect, the same quantity.)

Aside. Though the treatment in [42] of the main theme (and specifically the
‘proof’ of the paper’s title, P = NP) leaves a lot to be desired, the paper does
at least prompt an interesting aside: one may ask which of the (countably)
infinitely many abstract Turing machines can be physically implemented. We
suggest (given the above comments concerning the differences between an ab-
stract Turing machine and a physical instantiation thereof, and given the typical
unboundedness of required space/time as input values become larger) that the
question is more naturally posed and more readily answered in the form ‘which
Turing-machine/input-value pairs can be physically realized?’ This, we suggest,
is ultimately a question about consumption of commodity resources.

In summary, the resources relevant to actual, physical implementations
of Turing machines are time, space and precision .

Aside. We argue here that consideration of this resource set (i.e., {T, S, P}) is
sufficient, and that consideration of any proper subset thereof is insufficient, for
insightful analysis of the complexity of real-world implementations of Turing
machines. We comment as an aside that there may exist different choices of
resource set with this property (though conjecture at least that all such sets
have the same cardinality), not least in light of the trade-offs that exist between
resources (see Sect. 3.8.1). It is hoped, however, that our treatment of resource,
and in particular the restrictions—normality, etc.—to the notion, render the
complexity behaviour of a computer ‘essentially’ (i.e., ‘O-’) identical, regardless
of the choice of exhaustive resource set.

Analogue/Kinematic Computers.

Time and space need, as always, to be considered when working with this
model. However, they alone are not sufficient: recall the factorization sys-
tems of Chap. 2, the true (exponential) complexity of which these two standard
resources fail to capture. One additional relevant resource, as we see above, is
precision (this is evident from consideration not only of the factorization systems
but also of the greatest common divisor system described in Sect. 3.3.2 Greatest
Common Divisor, the wedge-detection cannon system of [8, 9, 12] mentioned in
Sect. 3.3.4, the Differential Analyzer of [43] discussed in Example 3, etc.); and,
as we see below, there are yet other resources germane to this computational
model.

It seems intuitively clear (or, at the very least, plausible97) that one should
consider also the energy required to drive the computer; this is evoked partic-
ularly strongly by the example of a kinematic computer with its (eponymous)
moving machinery. Energy was considered only parenthetically in the case above

given an input value, is set in operation, and computes continually (and at maximal processor
capacity) until an output value is found. Note that this assumption does not restrict the
expressivity of our notion of computation: the alternative to ballistic computation—namely,
interactive computation—can be modelled as a series of ballistic sub-computations separated
by user interactions. (The term ‘ballistic computation’ was brought to the author’s attention
by—and is, we believe, due to—Susan Stepney.)

97Recall that plausibility is sufficient: we are identifying candidate resources that may be
relevant to some instances of the model, rather than proving relevance for all instances.

CHAPTER 3. RESOURCE 128

(namely, physical implementations of Turing machines) since, assuming ‘ballis-
tic’ computation where the processor is used at capacity without, in particular,
pauses for user interaction, energy consumption is linear in run-time (and vice
versa) and therefore redundant from a complexity-theoretic perspective (pro-
vided that we have not neglected to consider time); this is in contrast with
the present model—the analogue/kinematic computer—, however, since energy
consumption may vary from time step to time step (much like the space con-
sumption of a Turing machine).

Example 3. We discuss now an important example of analogue computers: the
Differential Analyzer of [43].

This system solves, via analogue means, differential and integral equations.
In practice, the manufacture of the system’s components a priori determines the
system’s precision, which in turn constrains the inputs that can successfully be
processed98; precision, then, is seen as a manufacturing resource, the availability
of which limits the allowable inputs (compare this with the approach to precision
in [128]—see Example 4), though clearly has an equivalent commodity-resource
formulation (recall Sect. 3.2.2). Formulation aside, the key observation is that
precision is a resource that warrants consideration, for the Differential Analyzer
specifically and the analogue-computing paradigm generally.

Regarding the resource of time, preparation of the system takes a matter
of hours (though not tens of hours), and solutions are presented after about
ten minutes’ processing; one expects that, were input intricacy unimpeded by
the precision concerns of the previous paragraph, the required processing—and
possibly also preparation—time would increase along with the input size. Fur-
ther, there are many engineering technicalities that contribute to the system’s
run-time—for example, the system features flywheels that (at a slight time cost)
damp unwanted oscillations in the integrator gadgets, and uses additional gear
revolutions proportionally to lessen backlash effects (again, at a time cost)—;
though this contribution is unproblematic with the ‘small’ input instances de-
scribed above, it is not clear how it would scale asymptotically.

Regarding space, the intricacy of the input equations is limited not only
by the components’ precision, but also by their number; this is akin to the
commodity resource of space, but also has closely associated non-commodity
(material, manufacturing, etc.) costs.

This example bears out that the relevant resources for this model include
time, space and precision. Reference [36] discusses the computational power
of Shannon’s General Purpose Analog Computer—which is a mathematical
abstraction, introduced in [117], of the Differential Analyzer’s computational
model—, and identifies no further resources than those discussed in this exam-
ple.

Example 4. In [128], the resource of precision in the context of analogue com-
putation is dealt with by acknowledging that such a computer has some ‘ε’ of
imprecision, which value is fixed a priori and determines the maximum size of
input that can be processed successfully, therefore rendering precision a non-
commodity resource. Various commodity resources are also considered; these

98Specifically, these inputs are ordinary differential equations of order up to six with “any
amount of complexity within reason” [43]; these limitations stem from an imprecision of
approximately one part per thousand for each component, and a greater resultant overall
imprecision.

CHAPTER 3. RESOURCE 129

include time, space, energy and mass (which last, due to the bounded density
of the system’s constituent parts, is subsumed by the resource of space—cf.
Sect. 3.6.1 Chemical/DNA Computers).

The paper offers further indication that a complexity-theoretic formalization
of the notion of precision is both natural and necessary:

“if “infinitely accurate” analog devices could be built, then they
could be used to solve 3-SAT arbitrarily fast”.

Example 5. In [67], we see logic gates implemented using elastic, billiard-ball
collisions. Reference [123] builds upon the work by instantiating gates using
repelling blocks (of which some are fixed) so as to implement logical operations;
these systems are modelled as two-dimensional cellular automata, with a tacit
assumption therefore being that the blocks are precisely aligned with a grid—in
practice, of course, such a system would be susceptible to a slight imprecision
in the blocks’ positions, potentially to the extent of the system’s functioning
incorrectly, confirming once more that precision warrants consideration when
dealing with analogue/kinematic computers.

In summary, the resources relevant to analogue/kinematic computers are
time, space, precision and energy .

Relativistic Computers.

The broad idea of relativistic computation (of which the detailed physics is
beyond the scope of the present project) is to exploit relativistic effects that
allow a computer to experience time at a greater rate than its user; for then
the user need wait less time (than if the user’s and computer’s clocks agreed)
for an output value: more (computer) time steps are accommodated in each
(user) second. Suggestions of how to achieve this effect include sending com-
puters through wormholes, etc.; the situation is sometimes contrived such that
an infinite amount of computer time elapses in a finite amount of user time,
whence hypercomputation becomes available.

When considering resources for this model, there are two points to consider.
First, the resource of time is now ambiguous: we may consider seconds (say)

counted by the computer or by the user. The tacit assumption is that the
latter reference frame is more important, for else no computational speed-up
is achieved. This assumption is perfectly reasonable: we view the computer,
wormhole, etc. (but not the user) together as the computing system, and mea-
sure the time for which the user has to wait—this seems the most natural choice
to resolve the ambiguity of the resource of time, and the most natural general-
ization of the resource as it exists in the context of other models.

Secondly, note that, for present purposes, we adopt a fairly practical stance
when considering models of computation: when identifying resources, we are
careful to distinguish between (abstract) Turing machines and their (physical)
implementations, for instance; further, we consider practical, ‘physical’ issues
such as achievable input/output precision. In this context, then, it seems rea-
sonable to exclude relativistic computers (at least as a form of hypercomputer)
on the grounds of their energy consumption, for example: although the user
experiences only a finite amount of time, the computer needs to be powered for
what the computer itself deems an eternity—we use relativity in an attempt

CHAPTER 3. RESOURCE 130

to bypass time restrictions, but other resources’ constraints (energy, durability
of the physical machine, etc.) are still present.99 We see in another guise our
fundamental contention: time (and space) are not the only complexity-theoretic
resources, and should not be treated as such. (There may, prima facie, still be an
advantage offered by relativistic computers, in particular where computations
are time-heavy; however, maintaining a computer’s running appears to require
other resources (energy or similar) in proportion to time, which suggests that a
computation is never truly (uniquely) time-heavy.)

The power of this paradigm, then, comes primarily from neglect of the com-
puter’s time-frame in favour of the user’s, though the availability (to the com-
puter) of other resources such as energy or space is still an issue.

Remark 34. What we describe here as the paradigm of relativistic computation
is, in fact, a family of paradigms. The relativistic aspect is a harness that
contrives to buy time for an auxiliary computer (that which is sent through the
wormhole or similar) of unspecified paradigm; for each physically implemented
model of computation, then, one can envisage its relativistic-computational use.
When we write above of “energy, durability of the physical machine, etc.”, we
mean the commodity running costs incurred and defined by the model of the
auxiliary computer (whatever these costs may be).

(The commodity resources of user- and computer-time, energy, etc. aside,
there is clearly a significant non-commodity—specifically manufacturing—cost
incurred during production of the wormholes, black holes, etc. used by this
computational paradigm; see Sect. 3.2.1 Manufacturing Costs.)

In summary, the resources relevant to relativistic computers are
user-time, space and the auxiliary computer’s running costs.

Optical Computers.

Reference [133] introduces an optical system that computes via image manipu-
lation; the seven (commodity) resources considered in that paper are

• time,

• number of images,

• spatial resolution (i.e., the number of pixels actually needed for the com-
putation to succeed),

• amplitude resolution,

• phase resolution,

• dynamic range (i.e., the maximal amplitude encountered during a compu-
tation), and

• frequency of illumination (i.e., the minimal optical frequency for the com-
putation to succeed).

99As a less ‘physics-dependent’ illustration of this point, we recall from discussion with Cris-
tian Calude the accelerated Turing machine, of which space consumption may be prohibitive—
infinite, even—, the bypassing of time concerns notwithstanding; see [45].

CHAPTER 3. RESOURCE 131

Note that the number of images is a measure (albeit taken in different units) of
what we have previously defined as the resource of space; that spatial, amplitude
and phase resolutions, and frequency of illumination are closely akin to our
precision; and that dynamic range is akin to space (which can be seen upon
consideration of a simulation of such an optical system whereby amplitude is
stored as an integer in a register—the greater the dynamic range, the more digits
are required). These seven resources, then, are akin to forms of time, space and
precision, of which each is relevant for the optical computers of [133].

(The relevance of precision to optical computers is evident, also, in our
discussion of the ray-tracing problem—see Sect. 5.2.)

We suggest further that energy is a relevant resource to the wider paradigm
of optical computers, since some instances rely, for example, on the availability
of electromagnetic waves of a prescribed wavelength, which may depend on the
input size—consider, for example, an electromagnetic-wave implementation of
the gcd system of Sect. 3.3.2 Greatest Common Divisor.

In summary, the resources relevant to optical computers are time, space,
precision and energy .

Chemical/DNA Computers.

One commodity resource that is particularly relevant to chemical computers
is mass. We recall from [3] that DNA computers offer an approach to the
(NP-complete) Travelling Salesperson Problem, and that the time (and, for
that matter, energy) complexity of this method is acceptable. However, as is
pointed out in [74], the mass of DNA required by the method in processing
non-trivial problem instances is greater than the mass of earth!100 We recall
the long-held, de facto rule of thumb that tractability corresponds to polynomial
resource consumption, and note that, in this case, the resource of mass imposes
an exponential cost, and, therefore, intractability.101

As [74] concludes,

“[t]his leaves us with the difficult task of understanding what com-
putations can be performed below the exponential computational
resource bounds imposed by nature.”

Aside. Note that, due to the bounded density of chemical-computing apparatus
—including DNA strands themselves—, mass is bounded by a constant multiple
of space, and so the resource of mass seemingly tells us little new, provided that
we consider space. However, the distinction is illustrative of the unexpected
ways in which complexity (in this example, space complexity) can be affected
by strictly unconventional-computing concerns.
100Hartmanis [74] writes of weight, but strictly means mass; the distinction is important since

we are dealing with masses of the order of that of earth, whence we may no longer assume
negligible changes in gravitational strength from one part of the computational apparatus to
another (nor, hence, a simple, linear relation between weight and mass).
101An alternative view of mass in this instance is as a measure of the number of parallel

‘processors’ at work during a chemical computation: the exponential speed-up observed with
the Travelling Salesperson Problem system and similar stems essentially from the presence
of exponentially many DNA strands simultaneously testing one potential solution each. See,
however, the discussion of parallelism in Sect. 3.7.1.

CHAPTER 3. RESOURCE 132

Remark 35. We remark that arbitrary instances of this paradigm are essentially
probabilistic: there is always a positive probability—albeit typically small and,
furthermore, diminishable via repetition—that the output value returned by
a non-trivial chemical computation is incorrect.102 A problem is not generally
placed, then, into a standard complexity class (other than those defined in terms
of probabilistic solutions) by virtue of its being solved by a chemical system.
For instance, a chemical system that solves the problem of protein-folding (and,
by definition of the problem, there are natural such systems103), even with
polynomially scaling resources (not only time and space, but also mass, energy,
etc.), does not contradict the NP-hardness of the problem.

Example 6. As an example of other resources that arise in the context of chemi-
cal/DNA computation, we recall from [46] that DNA gates can be implemented
such that computation is performed via chemical reaction; DNA strands encod-
ing input values react to produce strands encoding output values, along with
waste.

The process can be contrived such that the waste from a gate does not inter-
fere with that gate’s reaction, though a problem that remains unsolved (at time
of [46]) is that waste from one gate may interfere with the functioning of other
gates. This suggests various potential complexity measures: the number of con-
current invocations of gates, the spatial/temporal proximity of invocations of
gates, etc. Spatial proximity in particular seems reminiscent of our resource pre-
cision (and, for the purposes of summarizing this paradigm’s relevant resources,
we class this example’s resources as such).

In summary, the resources relevant to chemical/DNA computers are time,
space, precision, energy and mass.

3.6.2 Resources for Quantum Computers

We turn now to consideration of the resources present in quantum computation,
beginning with circuit-model quantum computation. We hardly need comment
that insightful study of the complexity of quantum computers is crucially im-
portant and timely: the benefits of formalization, in computational-complexity
terms, of the technological difficulties (which stem ultimately from the presence
of unconventional resources) faced when implementing working quantum com-
puters are clear. By introducing and considering new resources, specifically ones
similar to precision, one may, we suggest, better encapsulate the true complex-
ity of quantum computers; this complexity, after all, is fundamentally connected
to our limited ability to take precise measurements from the system (see also
Sect. 5.4).

As in Sect. 3.6.1, Remark 31 prompts us to seek to identify for a given
computational paradigm candidate resources that may be of interest for some
instances of the paradigm; we need rigorously show neither that such resources
102This claim is corroborated in [104].
103Though natural systems seem to fold proteins relatively efficiently from a commodity-

resource point of view, consider the (non-commodity) manufacturing costs—see Sect. 3.2.1
Manufacturing Costs—incurred in evolving such systems! This suggests a ‘meta-trade-off’ not
between resources, but between interpretations of resource (in this case, commodity and man-
ufacturing); the intuition here is clear—time can be invested in designing better computers—,
though formal investigation is beyond the scope of the present project.

CHAPTER 3. RESOURCE 133

are of interest for all instances of a model, nor that there exist no other such
resources.

Aside. We mention in passing that a desirable feature of computational models
(quantum or otherwise) is their possession of high-level ‘gadgets’ that can be
combined in a fairly intuitive way to achieve chosen computational aims. This is
the case, for example, with the random-access model (as implemented by suit-
able programming languages), since there exist high-level languages featuring
commands that can be used in well-understood ways to produce arbitrary (com-
putable) effects without the programmer’s having to resort to bit-level manipu-
lations; it is also true, to an extent, of reaction-diffusion systems: [70] introduces
relatively high-level gadgets (read-write memory cells, switchable channels, etc.)
for computing with pulses of excitation in such systems.

However, the same cannot be said for quantum-computing systems. Quan-
tum algorithms are derived in an ad hoc fashion via low-level quantum-bit/gate
manipulations, direct exploitation of physical phenomena, etc., rather than be-
ing ‘written’ using a high-level library of ‘commands’. We recall Bob Coecke’s
recognition (expressed in, e.g., [50]) that high-level tools for producing quantum
algorithms are sadly lacking.

Circuit-Model Quantum Computers.

An arbitrary Turing-machine (or similar, standard-model) computation can, by
definition of ‘complete’, be expressed as a conversion of input to output via
operations taken exclusively from a complete set of what are deemed to be
‘atomic’ operations (whereby tape cell, machine state and head position are
updated, for instance). For a given input value, the number of such operations
performed during this conversion is an accurate measure (or, depending on
viewpoint, a definition) of run-time.104

Similarly, an arbitrary circuit-model quantum computation can be expressed
as

• the preparation of several quantum bits (which encode the input value),
followed by

• a sequence of applications (which constitutes the computation’s processing
stage) to subsets of these quantum bits of ‘atomic’ unitary operations
taken from a complete set, followed by

• measurement of the system (from which is obtained the output value)

(see [99]). As in the classical, Turing-machine case, an enumeration of the invo-
cations of these atomic operations gives a measure of the system’s complexity;
indeed, this is the basis of an existing definition of complexity of circuit-model
quantum computing devices (see Sect. 4.5 of [99]). Also as in the classical
case, however, this measure essentially captures the system’s run-time, which
is not, we suggest, a particularly insightful measure for quantum computers:105

104The more accurately the complete set reflects the environment (e.g., the chip-set, and,
specifically, the atomic instructions thereof) in which the system is implemented, the more
accurate the measure.
105That a quantum system may be significantly more time-efficient than a Turing-machine

counterpart is certainly of great interest, though if this is at the cost of efficiency in terms of
another (possibly unconventional) resource, then this latter fact is also relevant and telling.

CHAPTER 3. RESOURCE 134

the benefit enjoyed by quantum computers over their classical counterparts is
gleaned primarily from the use of entangled states, and the effective parallelism
that this allows; a drawback is the strictly constrained way in which measure-
ments can be taken of the system; run-time, then, is a reflection of neither the
‘amount of computation’ performed (with run-time being an underestimate due
to parallelism’s not being taken into account) nor the ‘difficulty’ in using the
system (which arises chiefly during measurement rather than as a result of the
user’s having to wait for lengthy computations to finish)—a reflection, that is,
not of the complexity of the system (see Sect. 3.2.3).

The broadened notions of resource and complexity proposed in this project,
and particularly the resource of precision, seem to encapsulate better the nature
of the true complexity of circuit-model quantum systems; this complexity arises,
after all, because of our limited ability to take precise measurements from the
system. More concretely, we note from [83] that the SAT problem does not
succumb in an obvious way to a circuit-model approach since uniquely satisfiable
input formulae would be encoded as states exponentially close to those encoding
unsatisfiable formulae. Accordingly, we suggest that a resource important and
relevant to this paradigm (along with the ubiquitous time and space) is precision
(not least because of consideration of proximity of quantum states, as in the SAT
instance above).

In summary, the resources relevant to circuit-model quantum computers
are time, space and precision .

Adiabatic Quantum Computers.

We consider now the adiabatic quantum model (wherein output values are en-
coded in the final ground state of an evolving system, with the evolution pro-
ceeding from an easily achievable initial ground state sufficiently slowly that no
higher energy state is reached, so that the ‘output-value’ final ground state is
indeed encountered). Standard expositions of the paradigm (such as [64]) con-
sider time as the only resource, as, indeed, is tacit in our “sufficiently slowly”
above; however, determining this sufficient time makes use of trade-offs with
other resources; for example, the time sufficient for an evolution to remain in
the ground state is a function of the minimum gap between the 0th (ground)
and 1st energy states; energy, then, is an important (though popularly ‘behind-
the-scenes’) resource for this computational model.

We defer more detailed discussion of this paradigm to Sect. 5.3 (wherein
we focus on controversial claims of the paradigm’s being able to solve an unde-
cidable problem), but suggest here that the relevant resources are time, space,
precision and energy.

In summary, the resources relevant to adiabatic quantum computers are
time, space, precision and energy .

Measurement-Based Quantum Computers.

The measurement-based quantum-computing paradigm, described in [109], sees
a computation take the form of several measurements (which can, in princi-
ple, be performed simultaneously), each of an individual quantum bit, start-
ing from an initial, large, entangled (cluster) state. As this description sug-

CHAPTER 3. RESOURCE 135

gests, the complexity resources relevant to such a computation are, potentially,
markedly different from those used in the circuit and other quantum models
(and even more so from non-quantum paradigms). In fact, however, a chief
difference between this and other models—specifically, this difference is the re-
liance of measurement-based quantum computers upon availability of the initial
cluster state—is an issue of manufacturing (i.e., non-commodity) resource; see
Sect. 3.2.1 Manufacturing Costs. Commodity resources, we claim, are as circuit-
model quantum computers.

In summary, the resources relevant to measurement-based quantum
computers are time, space and precision .

Continuous-Variable Quantum Computers.

We suggest that the resource of precision is (along with the ever-present time
and space) of relevance to the continuous-variable quantum paradigm, which is
described in [39] (we do not claim that there are not other relevant resources,
but focus on precision here because of its especial importance to the model).

Apart from the model’s inheriting from the more general class of quantum
computers the property of being affected by precision issues106, such issues have
also specific relevance to the model by virtue of its continua (rather than dis-
crete sets) of values. The author has, in conjunction with Rob Wagner at
Leeds, undertaken preliminary work on the propagation of imprecision through
continuous-variable operations such as ‘displacement’ and ‘squeezing’ (we com-
ment that these operations represent low-level manipulations of coherent states,
rather than relating in any direct way to high-level, desirable computations).
The displacement operation, for example, suffers precision complexity of the
order of (log p)−2, where, roughly speaking, p is a fixed, acceptable probability
of wrongly measuring the displaced value (implementation—via the Micromaser
system at Leeds—of values themselves is subject to a multiplicative error, due
to technological limitations).

In summary, the resources relevant to continuous-variable quantum
computers are time, space and precision .

Quantum Walks.

Aside. As well as specific models of quantum computation as discussed above,
one may consider the computational use of quantum walks. There have been
made suggestions (see, for example, [59, 60]) that there may be an increase in
computational efficiency to be derived from quantum walks, though there have
also been made suggestions ([85]) that precision costs are being overlooked in
achieving this increase. The approach to complexity described in the present
project would seem, then, to be a suitable formalization of these issues; we defer
this to future work.
106Issues of precision affect the foundations of quantum theory itself, moreover. We have in

mind here the controversy concerning the significance of precision’s being necessarily finite in
real-life computations—see Sect. 5.4.

CHAPTER 3. RESOURCE 136

3.6.3 Summary

We summarize in Table 3.1 the resources identified for each computational
paradigm discussed in Sects. 3.5.1, 3.6.1 and 3.6.2.

Computational Model: Resources:

Non-quantum computers (Sect. 3.6.1)

Actual, physical implementations
Time, space, precision

of Turing machines

Analogue/kinematic computers Time, space, precision, energy

Relativistic computers
Time (as measured by the user),

space, auxiliary computer’s costs

Optical computers Time, space, precision, energy

Chemical/DNA computers Time, space, precision, energy, mass

Quantum computers (Sect. 3.6.2)

Circuit-model Time, space, precision

Adiabatic Time, space, precision, energy

Measurement-based Time, space, precision

Continuous-variable Time, space, precision

Arbitrary computers (Sect. 3.5.1)

Arbitrary
Time, space (also for virtually all models:

precision, material cost, thermodynamic cost)

Table 3.1: A summary of the resources identified for consideration for each
computational paradigm discussed in Sects. 3.5.1, 3.6.1 and 3.6.2.

We reiterate that, in light of Remark 31, we seek to identify candidate re-
sources of interest for the computational models discussed above. Though this is
not a rigorous process, neither does it need to be: in Chap. 4, we discuss notions
that allow identification from among several candidate resources of those that
are truly relevant to a computation; it is rather during this latter identification
that rigour is desirable (and, indeed, present).

3.7 The Old versus the New

For the most part107, the distinction between traditional resources—time and
space108—and unconventional resources—such as those discussed above in this
chapter—is seemingly fairly artificial: only in the extents to which they have
been studied do the old/new resources seem to differ (since a Turing-machine-
centric complexity theory warrants study of traditional, and only traditional,
resources).

Contrastingly, we attempt to implement the present project’s approach—
including defining complexity functions, classes, etc. in a way homogeneous with
respect to the resource under consideration—such that there is no distinction
between the old and new resources. We retain the old as special cases, but use
‘special’ in the sense of ‘more specific’ rather than ‘privileged’.
107For a notable potential exception, see Sect. 3.7.2.
108We suggest in Sect. 3.7.1 below that there exist no other conventional resources.

CHAPTER 3. RESOURCE 137

3.7.1 Two Conventional Resources

We argue now that, in order to capture the entirety of a conventional computer’s
complexity behaviour, one need consider only the resources of time and space
(and variations thereon109)—i.e., resources tailored specifically to and catering
for Turing machines and similar.

Aside. We note in passing that, the present project’s formalization of ‘resource’
notwithstanding, the above seems not to be a claim that succumbs to rig-
orous proof. Compare the situation with that of the Church-Turing thesis:
once one formulates a workable, rigorous definition to capture the intuitive no-
tion of ‘effective computability’, then one may prove equivalence with Turing-
computability, adding weight to but not offering proof of the Church-Turing the-
sis; similarly, once one formulates a workable, rigorous definition of ‘resource’,
then one has already built in the truth or otherwise of the above claim—the
claim concerns an intuitive idea of resource, which may or may not be captured
by the formal definition (for which definition, for what it is worth, one may be
able to prove or disprove the claim).

The claim is corroborated by the practice of standard complexity theory,
informed as it is by decades of experience of abstract theoreticians as well as
of those considering complexity theory as it relates to real-world computation.
We recall, for example, Păun’s belief (see [104]) that

“[t]he standard dimensions of computations are time and space”110;

neither do we need to take Păun’s word for it: we note that many standard
complexity classes are defined in terms of what is achievable by various com-
puters

• within a certain time (loosely, these are P, NP (including the subclass of
NP-complete problems), coNP, PH, EXP, NC, P/poly, BPP, BQP and PP)
or

• using a certain amount of space (loosely, PSPACE, AC0, NC and L).111

Aside. Of course, should one deem parallel computation to be conventional, then
to the conventional resources of time and space must we add number of pro-
cessors. However, one may—and we do—view parallelism as an issue separate
from our notions of (unconventional) complexity theory: susceptibility to a par-
allel approach is a property of a problem; of more interest here is how efficiently
109Two notable variations on space and time respectively are ink—the number of writes to

tape cells, regardless of whether the cells have been used previously—and head reversals—the
number of occurrences of the tape head’s moving to the right when its previous movement was
to the left, or vice versa. Considering the amounts of these resources consumed during a halting
Turing-machine computation, we have the following bounds: space ≤ ink ≤ time ≤ 2space;
head reversals ≤ time. We defer further detail to the standard complexity literature, e.g.,
[37,103].
110Păun adds that “[t]his is true for computer science, not necessarily for the brain”; not

wishing to deny the brain recognition as a computer, we must, and in the present work do,
question what resources are involved in unconventional computation.
111The 14 classes mentioned here are those in the ‘Petting Zoo’ section of Scott Aaronson’s

Complexity Zoo [1] (ignoring classes of function problems)—purportedly the most important
(i.e., most referenced/fundamental/etc.) classes; those in the Petting Zoo but not amongst
the 14 are MA, AM and SZK, which nonetheless are not defined in terms of resources other
than time and space).

CHAPTER 3. RESOURCE 138

each parallel sub-computation can be performed (whether by Turing machine
or unconventional computer); then account of parallelism is taken simply by
summing respective sub-complexities. Similarly to parallelism, probabilism may
be—but here is not—viewed as a conventional computational practice, whence
the resource number of random bits (cf. Sect. 3.2.2) must be mentioned in a list
of conventional resources.

Time versus Space.

We summarize (and thereby do inadequate justice to) a long-standing contem-
plation of the fundamental difference between the resources of time and space
by noting that space is reusable—tape cells may, once their contents are no
longer needed, be overwritten—but time is not. We recall from [131] a way in
which space can be contrived (with a view to shedding light on this fundamental
difference) so as to better resemble time: suppose that each tape cell initially
contains a zero that can during computation be changed to a one but never back
again (we may imagine this as a punch-card system where the intact, zero state
can be ‘punched’ to form a one-state hole, which cannot be refilled); then space,
like time, is not reusable. Such devices are able to decide arithmetic predicates
and nothing more—a strict subset of the standard Turing machine’s repertoire.

3.7.2 Moore’s Law

Though we comment above that, by and large, the distinction between conven-
tional and unconventional resources arises only artificially (in that the former
have been studied to a greater extent than have the latter), there is a potential
notable exception: adherence to Moore’s law.

Advances in the development of processors and memory suggest an expo-
nential improvement (per unit cost) in conventional resources as implemented
for use by digital computers. Famously, we have Moore’s law:

“The complexity for minimum component costs has increased at a
rate of roughly a factor of two per year . . . Certainly over the short
term this rate can be expected to continue, if not to increase. Over
the longer term, the rate of increase is a bit more uncertain, although
there is no reason to believe it will not remain nearly constant for
at least ten years. That means by 1975, the number of components
per integrated circuit for minimum cost will be 65 000” [98].

This claim refers to transistors per integrated circuit (and specifically their
number’s doubling every two years), but has as a consequence that comput-
ing performance per unit cost—with respect to the resources of both time and
space112—also doubles every two years.

Similarly, we recall from [75] Hendy’s law, that the number of pixels per
dollar offered by commercially available digital cameras—a rough indication of
the increase in optical sensors’ resolution and, hence, in the availability of the
resource of precision—doubles every 18 to 19 months.
112In particular, the law relates directly to space as implemented as random-access memory;

the analogous result concerning hard-disc space is provided by Kryder’s law—see [130].

CHAPTER 3. RESOURCE 139

With the exception of precision, unconventional resources seem not to obey
laws (akin to Moore’s, Hendy’s or Kryder’s) of exponentially increasing avail-
ability. This may well be due to lack of financial investment: since digital
computers process the vast majority of real-world computations, the efficient
supply of conventional resources alone appears to be of economically (instead of
academically) motivated interest. Rather than a significant, natural distinction
between the conventional and unconventional, then, adherence or otherwise to
such laws may be a mere manifestation of the artificial distinction discussed
above.

3.8 Underlying Resource

In light of the existence of trade-offs between resources113 (see Sects. 3.8.1 and
4.3.4), one may question whether there exists a single, all-encompassing, funda-
mental resource of which other specific resources are ‘facets’. It is the view of
Terry Rudolph [113] that this resource (should one exist) may be low entropy ;
further, this view seems to be in agreement with that of Karoline Wiesner—
recall [53] and the first aside of Sect. 3.5.1 Thermodynamic Cost—insomuch as
both views acknowledge the (computational) value of ordered structure.

Whilst we note that it is beyond the scope of the present project fully to
discuss the existence or otherwise of a fundamental resource, we nonetheless
suggest that the approach to complexity expounded here (and, in particular,
the formalization of the notion of resource) may shed some light on the matter.

Figure 3.10: Blind Monks Examining an Elephant [73] by Hanabusa Itchō (1652
– 1724). Colour woodcut depicting several monks, each aware of—and basing
his understanding of the whole elephant on—only a limited part of the elephant.

113Such trade-offs exist between resources not only during computational processes but also
during storage and retrieval of values. Consideration of a value’s Kolmogorov complexity (see
Sect. 6.1.2) suggests an example of this latter form of trade-off: space consumption can be
minimized by storing a value as its smallest generating program, at the cost of its retrieval
from this program potentially taking a long time, and its storage—which entails discovery of
the program—even longer (recall that such discovery is not in general a decidable problem. . .).

CHAPTER 3. RESOURCE 140

3.8.1 Trade-Offs

Space and Time.

In standard, Turing-machine complexity theory, the resources of time and space
are related by the inequalities s ≤ t ≤ 2s, where s is the number of tape
cells written to, and t the number of time steps that elapse, during a (halting)
Turing-machine computation (recall Footnote 109 for additional such inequali-
ties). Beyond this, however, there seems to be little scope in general to trade off
time for space or vice versa: whilst there may be specific problems admitting
alternative Turing-machine solutions that, respectively, are time-efficient but
space-intensive and space-efficient but time-intensive, it is not generally true
that, for an arbitrary problem, one is able to engineer at will which of time and
space is consumed in acceptably small quantity (neither would one expect this
ability given the fundamental differences between time and space alluded to in
Sect. 3.7.1 Time versus Space).

Precision and Space.

Between unconventional resources, on the other hand, there is more scope for
trade-offs. Perhaps most obviously, there is for many computational models a
trade-off between space and precision: by scaling up a computer’s apparatus,
more space but less precision is required; by scaling down, the onus is transferred
in the opposite direction. See Sect. 4.3.4, and in particular Theorem 17, for
further detail concerning this trade-off.

One may envisage other trade-offs between these two resources: consider
an implementation of a Turing machine such that the ith tape cell (i ∈ N) is
allocated 2−i units of physical storage space. Then the physical space occupied
by the tape is at most two units, though the precision with which the tape must
be written to/read from increases exponentially in the number of cells used.

Precision and Time.

Recall from Example 3 the Differential Analyzer; [43] alludes to two trade-offs
between time and precision:

• “Usually [a certain gear ratio] will be picked to be as small as
possible, to cut down the solution time, noting, however, that
there should be a substantial number of revolutions of every bus
shaft of the machine in order to preserve precision.”

• Further, a method is discussed whereby successive approximations give
greater precision than is made directly available by the system: an ini-
tial, approximate plot of the desired function is made, from which can be
identified an approximately equal and easily implementable function; the
difference between this and the desired function is then plotted, and so on.
Several such iterations incur a time cost in exchange for greater precision.

Further, we recall from Remark 33 José Félix Costa’s observation that a
balance scale tips increasingly slowly as the compared masses approach equality
(i.e., as the precision required of the scale increases).

CHAPTER 3. RESOURCE 141

We note also (from [30]) that, in the context of real-number calculations
performed by Turing machine and where exact solution (as opposed to approx-
imation within some additive ε) is impossible, tractability may be modelled as
run-time’s being polynomial not in input size, but in |log ε| plus input size. We
have, then, a tacitly assumed trade-off between time and precision.

Energy and Time.

We remark in Sect. 3.6.2 Adiabatic Quantum Computers that the usual expo-
sition (e.g., [64]) of adiabatic quantum computation presents time as the only
relevant resource, though determining the time sufficient for a computation to
succeed makes use of trade-offs with other resources such as energy.

As a particular example, we recall from [54] that there exists a quantum-
adiabatic method for performing N -item database searches that can be con-
trived so as to run in constant time (cf. Grover’s algorithm, which takes time
in O

(√
N

)
), but at the cost of requiring O

(√
N

)
energy, thus hinting, in this

instance, at a 1 : 1 trade-off between time and energy.
Relatedly, we recall that the example on page 205 of [94] relates the time

taken for a quantum system to evolve into a highly correlated state and the
energy spacings in an initial perturbation.

3.8.2 Combining Resources

A standard approach to complexity theory is to consider the class of problems
that can be solved given a single resource bound: one may consider possible
computations given, say, only polynomial time or logarithmic space, but rarely
does one consider the intersection of these classes, where both time and space
are bounded. In the present project’s context of unconventional computation,
however, there are under consideration many resources; whereas intersections of
time- and space-based classes may not be of particular interest114, it is prima
facie feasible that study of intersections of classes based on other resources may
be worthwhile115. However, we suggest now that this is not the case.

We conjecture in particular that, if there is apparent value in considering
the combination of two resources, then this is only because there exists a trade-
off between the resources being combined; in this case, there may be a more
fundamental resource of which those combined are facets (i.e., functions), as
discussed at the beginning of Sect. 3.8. Whereas considering several resources
together may yield more information than considering them separately, this is
only—according to the above conjecture—insomuch as this extra information is
subsumed by knowledge of the trade-offs between the resources.116

114In fact, such intersections are treated, e.g., in [100, 121], though there is seemingly a
dearth of such treatment elsewhere. This may be due to the facts that, in the Turing-machine
case, there are interesting results concerning each resource individually and, hence, no need to
lose information by combining the resources; and that, in the unconventional-computer case,
there are many resources other than time and space and, hence, no reason to single out for
combination the particular pair ‘time and space’.
115We thank András Salamon for making this observation [115] and for bringing to our

attention [121].
116Of course, even if this is true, then it does not mean that considering resources together

is redundant—it may be a way of deriving information about trade-offs, for example.

CHAPTER 3. RESOURCE 142

We continue, then, to treat resources in isolation, other than when consid-
ering trade-offs, etc.; and we introduce in Chap. 4 a notion—dominance—that
supersedes potential use of resource combination as a means of quantifying com-
puters’ overall complexity.

3.9 Summary

We comment above that analyses of unconventional computers often fail to cap-
ture the true complexity behaviour of the systems because the relevant resources
are not considered. With the problem stated in this form, the solution becomes
obvious: we need merely to consider the relevant resources. We see in this
chapter, via our discussion of various interpretations of ‘resource’ and of various
example resources117 (that are relevant to various computational paradigms),
how this may be done.

However, having solved one problem, we introduce another. With many re-
sources under consideration, there are correspondingly many complexity func-
tions, and, hence, it is no longer clear how to compare the complexity of comput-
ers. One may assess the overall complexity of a Turing machine by considering
its time complexity (since the only relevant resources are time and space, and
since time is always consumed in the greater quantity); and one may compare
the overall complexity of two such machines using the pre-ordering ‘∈ O’ of
time-complexity functions. However, it is not clear how to quantify (whence to
compare) the overall complexity of unconventional computers, with their many
complexity functions. We address this difficulty in the following chapter.

117As a notable and detailed example, we discuss in Sect. 3.3 the resource of precision.

Chapter 4

Dominance

4.1 Comparison of Computers

In the realm of traditional, Turing-machine-style computation, the task of as-
sessing computers’ relative efficiency is well understood and correctly practised,
specifically by comparing (using the . pre-ordering—see Definition 21) time
complexity functions: if T ∗Φ . T ∗Ψ, then we may say that Φ is at least as efficient
as Ψ—see Sect. 4.1.3.

In contrast with this, however, we have seen that the context of unconven-
tional computation necessitates consideration of many different resources (both
traditional—time, space, etc.—and non-traditional—precision, energy, etc.) in
order to facilitate insightful complexity analyses. This renders more difficult the
problem of comparison of computers’ complexity (in which problem we seek to
determine which of two given computers is the more efficient), simply because
there are more candidate complexity functions potentially to compare; it is no
longer a case, in particular, merely of .-comparing a certain, a priori chosen
complexity function (e.g., that corresponding to the resource of time), since we
no longer know which of the many complexity functions to .-compare. One can
compare time complexity (of one computer) with time complexity (of another),
precision with precision, and so on, but it is unclear which, if any, of these
comparisons are meaningful.

We define and discuss below the notion of dominance as a means of for-
malizing resources’ ‘relevance’; this determines between which resources’ com-
plexity functions meaningful comparisons may be made: we can determine rel-
ative efficiency by .-comparing computers’ respective consumptions of domi-
nant/relevant resources. (We introduce dominance in [25] and discuss the notion
further in [21–24,28]; much of this chapter is based upon these papers.)

4.1.1 The Need to Compare Computers

We motivate now the comparison of computers’ respective efficiency.

143

CHAPTER 4. DOMINANCE 144

Efficient Solution.

An obvious motivation for being able to compare the respective efficiency of two
or more computing systems (that solve the same problem1) is that such ability
allows one to ascertain which computer offers the more/most efficient solution
to the problem. Especially if solution of the problem is to be implemented in
real life, it is clearly desirable that implementation be at minimal (or at worst
acceptably low) cost.

Complexity: Problems versus Solution Methods.

Computational complexity theory has as one of its chief aims the quantifica-
tion of mathematical problems’ difficulty: complexity theorists wish to make
statements of the form

‘solving problem X requires O (f) time, O (g) space, etc.2’.

However, it is typically possible directly to measure the complexity not of prob-
lems but only of methods that solve these problems: whereas one would like to
demonstrate that

‘problem X requires O (f) resource’

(a seemingly inherently elusive statement), it is usually forthcoming only that

‘problem X can be solved by algorithm/Turing machine/etc. Y ,
which requires O (f) resource’

(a relatively easily verifiable statement, at least once appropriate resources are
considered).

Speaking more complexity-theoretically and problem-centrically than in the
previous motivation (Sect. 4.1.1 Efficient Solution), then, one may wish to be
able to ascertain which of several computers that solve the same problem3 is
the most efficient for the following reason.

The complexity of a problem is bounded above by the complexity of the best
known solution method that solves the problem.

The truth of this statement becomes clear upon consideration of the constituent
terms’ definitions: a problem’s complexity is the minimal resource (as a func-
tion of input size) required to solve the problem, whereas a solution method’s
complexity is the (exact) resource required by the method to solve the problem;
therefore, an arbitrary solution method for a problem witnesses that the prob-
lem’s complexity is no greater than the arbitrary method’s complexity, and the
most informative such bound is given by the most efficient solution method.

In order to identify this method and, hence, this bound, it is therefore desired
to be able to compare the efficiency of computers.

(Moreover, little more is typically known about a problem’s complexity than
that it is bounded above by that of the most efficient known solution method.)

1See Sect. 4.1.2.
2The ‘etc.’ here refers, of course, to computational resources other than run-time and

memory space—see Chap. 3.
3See Sect. 4.1.2.

CHAPTER 4. DOMINANCE 145

Note that increasing to a superset the set of considered solution methods
can improve or leave unchanged (but never diminish) the efficiency of the most
efficient member of the set; hence, the corresponding upper bound to the prob-
lem’s complexity is, by consideration of a superset, either tightened (i.e., less-
ened) or left unchanged. The more comprehensive a set of considered solution
methods for a problem, then, the more accurate the bound on the problem’s
complexity.4 One desires, then, to consider model-heterogeneous sets of solution
methods: if we are to attempt to include in our set as many methods as is
possible, we wish not to restrict ourselves to methods conforming to a single
computational paradigm (thereby imposing an unnecessary constraint on the
size of sets of methods that can be considered, and a corresponding constraint
on the quality of bounds on the complexity of problems). If the set of methods
can contain computers from different models—if we are able not only to compare
computers, but further to compare computers of different types—, then we may
reasonably expect better bounds on the complexity of problems. Only when we
can meaningfully compare, for example, the respective complexity functions of
a Turing machine and a DNA computer can we begin to consider larger, model-
heterogeneous sets of solution methods, and hence to obtain improved bounds
on the complexity of problems; as we see below, our means of comparison is
implemented such that such comparison is possible.

It is clear from this that the ability to compare computers’ efficiency—
and thereby to ascertain which computer offers the most efficient solution to
a problem—is of the utmost importance. It is unsurprising, then, that, when
the computers in question are ‘standard’ (e.g., when they are modelled as Turing
machines), the method by which they may be compared is well understood—see
Sect. 4.1.3; unfortunately, the same cannot be said for non-standard computers
—see Sect. 4.1.4.

Turing-Machine Benchmarks.

Further motivation for the ability to compare computers—in particular comput-
ers from different computational models—comes from unconventional comput-
ing: practitioners of unconventional computation—those who either produce
real-life instantiations of non-standard computers or investigate theoretically
the properties of such devices—may very well wish to compare the efficiency
of their non-standard devices with that of existing Turing machines (or digital-
computer implementations thereof) that solve the same problem5, since there is
little worth (little practical worth, at least) in deviating from the well-studied,
well-understood standard-computation realm in cases where the non-standard
confers no computational/efficiency advantage.

One specific and eminently useful comparison that may be made, then, is
between a novel unconventional computer and the benchmark of an existing,
conventional computer that solves the same problem.

4Of course, a large set of inefficient methods offers a worse bound than a singleton set
containing an efficient method, hence our discussing super-, rather than merely larger, sets.

5See Sect. 4.1.2.

CHAPTER 4. DOMINANCE 146

4.1.2 Problem-Homogeneity

We comment that the computers compared in the way described (so as to de-
termine which is the most efficient) will typically all solve the same problem;
notably, the three motivations for comparison outlined in Sect. 4.1.1 all feature
the phrase “that solve the same problem” (at Footnotes 1, 3 and 5).

Whilst it is possible to compare the respective efficiency of computers that
solve different problems—specifically, our method of comparison neither knows
nor cares which, or how many, are the problems that the computers solve—, the
relevance of such comparison is unclear and its meaningfulness questionable.

One may, prima facie, assume that such comparison would be meaningful,
that it would say something, for example, about which problem is harder to
solve, but a problem’s complexity is defined in terms of an optimal—not arbi-
trary—solution method’s complexity: such comparison is a poor way, therefore,
of assessing the relative difficulty of problems—unless we are sure that the com-
pared systems solve their respective problems optimally, such assessments are
better made via the standard complexity-theoretic notion of reduction (see, e.g.,
[103]). Similarly, one may wonder what can be said about comparisons between
computational models6 rather than between individual computers, though the
presently discussed method of comparison is not the means whereby such as-
sessment can be made.

4.1.3 Comparing Turing Machines

We recap now the well-studied way in which the respective efficiency of standard
computers may be compared. We begin by defining a pre-ordering of functions,
which we employ, specifically, as a pre-ordering of complexity functions.

Definition 21.

• Write ‘f . g’ for ‘f ∈ O (g)’;

• write ‘f 6. g’ for ‘f 6∈ O (g)’.

(Recall from Sect. 1.2.1 Asymptotic Notation the definition of O-notation:
f ∈ O (g) if and only if there exist a threshold n0 and constant c such that, for
all natural n > n0, |f (n)| ≤ c |g (n)|. Say that such a pair (n0, c) witnesses that
f ∈ O (g).)

Lemma 12. If functions f and g are non-negative and such that f ≤ g (i.e., if
0 ≤ f (n) ≤ g (n) for all n ∈ N), then f . g.

Proof. If f (n) ≤ g (n) for all n ∈ N, then certainly for all natural n > 0
f (n) ≤ g (n) (whence, by non-negativity of f and g, |f (n)| ≤ |g (n)|). Hence,
(0, 1) witnesses that f . g.

Lemma 13. . is a pre-ordering of functions; i.e., . is both reflexive and
transitive.

6We comment as an aside that, whereas the intention of dominance is to allow compar-
ison between computers—i.e., between instances of (possibly different) computational mod-
els, rather than between the models themselves—, there exists in the literature a model-
comparison approach, taken notably by Udi Boker and Nachum Dershowitz [33], for example.

CHAPTER 4. DOMINANCE 147

Proof. For any f , (0, 1) witnesses that f . f , since |f (n)| ≤ |f (n)| for all
natural n > 0; hence, . is reflexive.

If (n0, c) witnesses that f . g and (n′0, c
′) that g . h, then, for any

natural n > max {n0, n
′
0}, |f (n)| ≤ c |g (n)| and |g (n)| ≤ c′ |h (n)|, whence

|f (n)| ≤ cc′ |h (n)|; that is, (max {n0, n
′
0} , cc′) witnesses that f . h. Hence, .

is transitive.

Of specific interest here is that ., a pre-ordering of functions, may be used
as a pre-ordering of complexity functions (one may perform a ‘like-with-like’
comparison of the ‘A-efficiency’ of computers Φ and Ψ by observing which of
A∗Φ . A∗Ψ and A∗Ψ . A∗Φ are true; comparisons of the form A∗Φ . B∗

Ψ for distinct
resources A and B are of more questionable significance, though we develop
this idea below to advantage). We can now describe the method by which the
efficiency of standard computers is compared.

Consider (conventional, Turing-machine-style) computers Φ and Ψ with re-
spective time-complexity functions T ∗Φ and T ∗Ψ (see Definition 18). One may
utilize the pre-ordering . to determine which (if either) of Φ and Ψ is the more
efficient, in the obvious way:

• if T ∗Φ . T ∗Ψ 6. T ∗Φ, then Φ is deemed the (strictly) more efficient computer;

• if T ∗Φ 6. T ∗Ψ . T ∗Φ, then Ψ is deemed the (strictly) more efficient;

• if T ∗Φ . T ∗Ψ . T ∗Φ, then Φ and Ψ are deemed equally efficient; and

• if T ∗Φ 6. T ∗Ψ 6. T ∗Φ, then Φ and Ψ are deemed incomparably efficient.

Note that we tacitly identify (overall) efficiency with time efficiency in par-
ticular. This is because, in the case of conventional, Turing-style computers, the
only computational resources that need be considered are time and space (re-
call Sect. 3.7.1), and, of these, time is always consumed in greater quantity (the
space complexity S∗Φ of a conventional computer Φ is always a smaller function
than the time complexity T ∗Φ—in that S∗Φ (n) ≤ T ∗Φ (n) for all n—, since writing
to a tape cell takes one time step—recall Footnote 109 of Chap. 3).

4.1.4 Comparing Unconventional Computers

Whereas, in the Turing-machine case, time complexity encapsulates overall com-
plexity, this is not necessarily true of unconventional computers consuming un-
conventional resources; it is certainly untrue, for example, of the factorization
systems of Chap. 2, of which the polynomial time complexity indicates nothing
of the systems’ exponential overall complexity.

Note that, once overall complexity can be reliably measured and encapsu-
lated in a single complexity function, then computers—whether standard or
unconventional—can be compared by applying the . pre-ordering to their re-
spective overall-complexity functions; so as to solve the problem of computers’
comparison, then, we focus below on the task of defining overall complexity.
This is done by way of a criterion—dominance—that determines whether a
resource is ‘relevant’ to a computer; an overall-complexity function may then
be defined simply as the sum of those complexity functions that correspond to
dominant resources.

CHAPTER 4. DOMINANCE 148

In summary, then, the difficulty is that unconventional computers may con-
sume unconventional resources (in addition to the standard resources of time
and space), which leads to each computer’s having many complexity functions.
The comparison of the efficiency of two such computers, then, is not merely a
case of applying the pre-ordering . to their respective time-complexity func-
tions. We describe in Sect. 4.2 a more suitable method, based on dominance,
whereby such computers’7 efficiency can be meaningfully compared.

Greatest Common Divisor.

We motivate more concretely, now, the notion of dominance. Supposing that we
wish to find the greatest common divisor of two given, positive natural numbers
(with a combined length of n digits, say), we have available (amongst others)
two solution methods:

• Euclid’s Algorithm (which we denote by ‘E’), which has time and space
complexity polynomial in n (the former by Lemma 11.7 of [103], the lat-
ter since S∗E (n) ≤ T ∗E (n) for all n), and precision complexity constant
(by Theorem 1, evocable since E is a traditional algorithm suitable for
implementation by Turing machine) in n; and

• the analogue system (which we denote by ‘B’8) of Sect. 3.3.2 Greatest
Common Divisor, which has time and space complexity polynomial, and
precision complexity exponential, in n (recall Sect. 3.3.2 Greatest Common
Divisor—Complexity).

(The computational-complexity onus, it seems, can be transferred from one
resource to another by selecting different solution methods.)

One may accurately describe the methods E and B as polynomial-time (and
infer by ‘like-with-like’ comparison of time complexity that the methods are
of comparable time-efficiency); however, it is intuitively more insightful to de-
scribe B as an exponential-precision (and, hence, less efficient overall), rather
than polynomial-time, method, since the former description focuses on the more
‘relevant’ (i.e., more hungrily consumed) resource. B’s comparable time ef-
ficiency notwithstanding, then, E seems more efficient overall: a polynomial
consumption of ‘relevant resource’ is preferable to an exponential one.

We now define dominance so as to formalize this notion of ‘relevance’, and to
allow meaningful comparison between computers regardless of how many differ-
ent resources they consume, of whether they conform to different computational
paradigms, etc.

7Of course the computers so compared may instead be Turing machines, in which case
their overall- and time-complexity functions coincide (since the only non-trivially consumed
resources are time and space—recall Sect. 3.7.1—, of which only time is dominant—see Foot-
note 109 of Chap. 3). Further, the computers may be from the same computational model or
from different ones—recall Sect. 4.1.1 Complexity: Problems versus Solution Methods.

8Much as our notation ‘E’ stands for ‘Euclid’, ‘B’ here stands for ‘Blakey’; we hope that
this vanity is mitigated by the fewness of the readers of this dissertation (and by the imprac-
ticability of the system). See also Footnote 11.

CHAPTER 4. DOMINANCE 149

4.2 Dominance Defined

Here, we propose the notion of dominance as a way of augmenting O-notation
(and, specifically, the . pre-ordering) so as to be able to compare comput-
ing systems’ complexity. In particular, our augmentation allows meaningful
comparison of the respective complexity functions, with respect to different re-
sources (what matters is not that the resources be the same, but that they be
relevant), of computing systems that conform to different computational mod-
els, thus allowing consideration of larger, model-heterogeneous sets of solution
methods and, hence, improved bounds on problems’ complexity (see Sect. 4.1.1
Complexity: Problems versus Solution Methods).

The intent of dominance is that the complexity functions corresponding to
resources deemed to be dominant should be .-greater than those corresponding
to other resources; non-dominant resources, then, are negligible in the sense that
their asymptotic contribution to a computer’s overall resource consumption is
dwarfed by that of dominant resources. Accordingly, we make the following
tentative definition.

Definition 22 (provisional; see Definition 23). A dominant resource for a com-
puter Φ is a resource A such that, for any resource B, B∗

Φ . A∗Φ.

This definition requires modification for the following two reasons.

• First, A’s dominance is over every other resource B (“. . . for any resource
B. . . ”). It is not sufficient (in order that precision, for example, is shown to
be dominant according to Definition 22) to show that precision complexity
.-exceeds time and space complexity; rather, precision complexity must
be shown to .-exceed time, space, and all other conceivable resources’
complexity functions, of which resources there are indeterminately many—
this is clearly a futile task and a correspondingly worthless definition.
Accordingly, we redefine dominance below relative to an explicit set of
resources.

• Secondly, Definition 22 does not for every computer guarantee the exis-
tence of a dominant resource (much as we should like one), since there
exist pairs of functions f and g such that f 6. g 6. f .9 We weaken accord-
ingly the definition of dominance (essentially from ‘A∗ .-exceeds all other
complexity functions’ to ‘A∗ .-exceeds all other complexity functions with
which it is .-comparable’).

Definition 23 (to replace Definition 22). Let Φ be a computer, and let R
be a finite, non-empty set of resources, each consumed by Φ. An R-dominant
resource for Φ is a resource A ∈ R such that, for any resource B ∈ R satisfying
A∗Φ . B∗

Φ, we have that B∗
Φ . A∗Φ.

Note that, whereas we stipulate that each element of R be consumed by Φ,
this consumption may be null: important is that it is meaningful to ask how
much of a resource is consumed, even though the answer may be ‘none’.

From this definition, then, we have that A is R-dominant if and only if each
B ∈ R is either

9However, it would be an immense surprise to the author were the old definition not to
suffice in this respect for actual, practical computing systems—f and g satisfying f 6. g 6. f
seem necessarily to be contrived and unnatural.

CHAPTER 4. DOMINANCE 150

• incomparable with A (in that A∗ 6. B∗ 6. A∗),

• strictly less than A (in that A∗ 6. B∗ . A∗), or

• equivalent to A (in that A∗ . B∗ . A∗);

that is, no B ∈ R is strictly greater than A (whence we should have that
A∗ . B∗ 6. A∗).

By considering for a given computer only the dominant resources, we focus
on the relevant measures for the computer—dominance formalizes a resource’s
relevance in that resources that are dominant impose the asymptotically greatest
cost, to the extent that non-dominant resources may be disregarded as irrele-
vant. Further, we can compare computers according to their relevant (i.e., dom-
inant) resources (using the ‘.’ pre-ordering), as described below. We therefore
have a framework in which can be made meaningful and consistent comparisons
of computation-model-heterogeneous sets of computers (recall Sect. 4.1.1 Com-
plexity: Problems versus Solution Methods); the framework can accommodate
instances of various models of computation, and provide structure according to
cost in terms of various resources.

Example 7. Recall that, in the complexity analysis of the factorization systems
of Chap. 2, we suggest that precision, upon which the systems have an expo-
nential dependency, is ‘more relevant’ than either time or space, upon each of
which they have only a polynomial dependency. This can be formalized by not-
ing that (for both systems) T ∗, S∗ . P ∗, but neither P ∗ . T ∗ nor P ∗ . S∗

(where, recall, P , T and S stand respectively for the resources of precision, time
and space). Letting R denote the set {P, T, S}, then, precision—and precision
alone—is R-dominant for these systems.

We note in passing thatR-dominance has the following ‘all-or-nothing’ prop-
erty.

Proposition 17. Let Φ and R be as in Definition 23, and let X and Y be
elements of R. Suppose that X∗

Φ . Y ∗
Φ . X∗

Φ. Then X is R-dominant for Φ if
and only if Y is.

Proof. Suppose that X, Y ∈ R are such that X∗
Φ . Y ∗

Φ . X∗
Φ.

(We prove only the ‘X R-dominant ⇒ Y R-dominant’ direction. The con-
verse argument differs only in that the roles of X and Y are interchanged, which
is valid since the hypotheses of the proposition are symmetrical in X and Y .)
Suppose that X is R-dominant; then, by Definition 23, X∗

Φ . B∗
Φ ⇒ B∗

Φ . X∗
Φ

for all B ∈ R. If, for some B ∈ R, Y ∗
Φ . B∗

Φ, then X∗
Φ . B∗

Φ (by the fact that
X∗

Φ . Y ∗
Φ and by transitivity of ‘.’), whence B∗

Φ . X∗
Φ (by R-dominance of X),

whence B∗
Φ . Y ∗

Φ (again by the fact that X∗
Φ . Y ∗

Φ and by transitivity of ‘.’).
Since this holds for arbitrary B ∈ R, we have that Y is R-dominant.

4.2.1 Overall Complexity

We define also R-complexity, which, by summing those resources—and only
those resources—that matter (in the eyes of Definition 23), offers in a single
complexity function a measure of a computer’s overall complexity.

CHAPTER 4. DOMINANCE 151

Definition 24. Let Φ be a computer, and let R be a finite, non-empty set of
resources for Φ. The R-complexity of Φ (for size function10 σ), denoted B∗R,Φ,σ

(from which we may omit any combination of subscripts when understood), is
the complexity function given by

B∗R,Φ,σ (n) :=
∑

A is R-dominant

A∗Φ,σ (n) .

Note that the superscript ‘∗’ in ‘B∗’ is included for uniformity with the
general complexity-function notation ‘A∗’ (Definition 18), and should not be
interpreted as suggesting that there exists a corresponding resource B.11

The intent of this definition is that comparisons can be made between com-
puters’ respective relevant resources, as encompassed by R-complexity. Accord-
ingly, we make the following definition.

Definition 25. Relative to R and σ, we say of computers Φ and Ψ that

• Φ is more efficient (has lower complexity) than Ψ, denoted ‘Φ �R,σ Ψ’
(or ‘Φ � Ψ’ if R and σ are understood), if B∗R,Φ,σ . B∗R,Ψ,σ 6. B∗R,Φ,σ;

• Φ and Ψ are equally efficient (have equal complexity), denoted ‘Φ 'R,σ Ψ’
(or ‘Φ ' Ψ’ if subscripts R and σ are understood), if B∗R,Φ,σ . B∗R,Ψ,σ .
B∗R,Φ,σ; and

• the respective efficiency/complexity of Φ and Ψ is incomparable, denoted
‘Φ oR,σ Ψ’ (or ‘Φ o Ψ’ if R and σ are understood), if B∗R,Φ,σ 6. B∗R,Ψ,σ 6.
B∗R,Φ,σ.

We write ‘Φ . Ψ’ (or ‘Φ .R,σ Ψ’) for ‘either Φ � Ψ or Φ ' Ψ’.

The relation ‘.’ pre-orders computers: both reflexivity and transitivity are
inherited from the corresponding relation between functions. More explicitly,
Φ . Φ (in fact, Φ ' Φ) for all Φ since B∗Φ . B∗Φ; and, if Φ . Ψ . Ξ, then
B∗Φ . B∗Ψ . B∗Ξ, whence B∗Φ . B∗Ξ, whence Φ . Ξ.

Remark 36. One may question why we do not define our notion of ‘overall
complexity’—which we encapsulate in Definition 24 via summation of dominant
resources—by summing all resources consumed by a computer. The chief rea-
son is our not restricting very stringently what a resource actually is; whilst
this allows consideration and accommodation of diverse models of computation
and the diverse resources consumed thereby, it also necessitates some selec-
tiveness with resources (see Sect. 4.5 for details of an additional restriction of
the notion of resource) in order successfully to utilize the notion of dominance.
This problem of having to manage potentially overwhelming resultant resource
sets is alleviated by our defining overall (that is, R-) complexity as the sum of
R-dominant, rather than arbitrary, resources.

Remark 37. As a final note in Sect. 4.2.1, we comment that it is in some con-
texts beneficial to retain the distinction between—and consider individually
all complexity functions associated with—the various resources consumed by

10Recall from Sect. 3.4.3 Size Functions that we do not focus here on the choice of size
function, instead taking such choice as read and building upon it.

11Whilst on the theme of notation, we make an apology similar to that of Footnote 8 for
B’s standing for ‘Blakey’.

CHAPTER 4. DOMINANCE 152

a computer, rather than to consider only its overall complexity. For example,
though time (T) is for Turing machines always {T, S}-dominant (where S is
space), there is still much to be gained in classical complexity theory by consid-
ering Turing machines’ space complexity—hence the continued study of classes
such as PSPACE, AC0, NC and L, mentioned in Sect. 3.7.1.

4.3 Dominance Classes

4.3.1 Definitions

Given the above definitions of R-dominance (Definition 23) and R-complexity
(Definition 24), it is possible—natural, even—to define corresponding complex-
ity classes. We do this now, and investigate their interrelations.

Definition 26. Let R be a finite, non-empty set of resources (as in Defini-
tion 23).

• For A ∈ R and function f , let CR (f,A) denote the complexity class of
problems of which each is solved by some deterministic12 computer Φ with
R-dominant resource A such that A∗Φ . f ;

• let NCR (f, A) denote the analogous non-deterministic class.

• Let CR (f) =
⋃

A∈R CR (f, A).

• Let NCR (f) =
⋃

A∈R NCR (f, A).

• Let BR (f) denote the complexity class of problems of which each is solved
by some deterministic computer Φ with B∗R,Φ (n) ≤ f (n) for all n;

• let NBR (f) denote the analogous non-deterministic class.

We investigate in Sects. 4.3.2, 4.3.3 and 4.3.4 the relationships (inclusions,
etc.) between the above-defined classes (namely, CR (f, A), CR (f), BR (f), and
their non-deterministic counterparts). Further, we establish in Sect. 4.3.5 results
detailing the correspondence between this and the traditional hierarchy. Ex-
ploring this correspondence (which exploration we largely defer to future work)
allows the restatement of known results and open problems concerning tradi-
tional complexity theory’s classes in terms of the new classes of Definition 26,
and vice versa (with insight hopefully being offered by such restatement); see
Sect. 4.3.6.

4.3.2 Expected Results

Non-Determinism.

There are certain results that one could reasonably expect of any ‘sensibly con-
structed’ theory of complexity. Notably, we have the following connection be-
tween determinism and non-determinism.

12Note, then, that we model non-determinism as a feature of computational paradigms,
rather than as a (commodity) resource function—recall Sect. 3.2.1.

CHAPTER 4. DOMINANCE 153

Theorem 4. Let R be a set of resources, containing as an element A. Let f
be a function. Then

• CR (f,A) ⊆ NCR (f, A),

• CR (f) ⊆ NCR (f), and

• BR (f) ⊆ NBR (f).

Proof. This follows directly from the fact that deterministic computers are
deemed to be a special case of non-deterministic computers. For example, each
DPSM is, by Definition 9, an NPSM.

Note that, by Lemma 11, this theorem would remain true even had we
defined NPSMs to be strictly non-deterministic, rather than not-necessarily-
deterministic, PSMs.

4.3.3 Other Internal Results

Those results that may reasonably be expected of a theory of complexity aside,
there are many other inclusion theorems, etc. concerning the classes introduced
in Definition 26; we state and prove some now. We term such results ‘inter-
nal’ (to the hierarchy of new classes) so as to distinguish them from results
concerning classes in the traditional hierarchy.

Complexity Classes’ Parameters.

We investigate the effects of altering complexity classes’ defining parameters,
by considering such questions as ‘is there a relation of inclusion between CR (f)
and CS (f) when R ⊆ S?’.

We consider the classes

1. CR (f,A),

2. NCR (f, A),

3. CR (f),

4. NCR (f),

5. BR (f), and

6. NBR (f)

of Definition 26. For each, we investigate the effects (in terms of the inclusion
relation ⊆) of altering

A. the resource-set parameter R
i. to a superset S ⊇ R,

ii. to a disjoint set S (R∩ S = ∅), and

iii. to a set S such that R * S * R and R∩ S 6= ∅;
B. the bounding-function parameter f

CHAPTER 4. DOMINANCE 154

i. to a function g such that f . g, and

ii. to a function g such that f ≤ g;13 and

C. the (R-dominant) bounded-resource parameter A

i. to an R-dominant resource B such that A∗Φ . B∗
Φ for all Φ, and

ii. to an R-dominant resource B such that A∗Φ ≤ B∗
Φ for all Φ.

(Of course, C is applicable only to classes 1 and 2, since classes 3 – 6 take no
bounded-resource parameter.)

For convenience of reference, we label the theorems of Sect. 4.3.3 according to
the list enumerations above. For example, the theorem that answers the question
‘is there a relation of inclusion between CR (f) and CS (f) when R ⊆ S?’ is
labelled ‘3Ai’ (further, we use set notation to refer to plural such questions:
‘{3, 4}Ai’ stands for ‘3Ai and 4Ai’, ‘3{A, B}i’ for ‘3Ai and 3Bi’, etc.). We
summarize these theorems in Table 4.1 below.

Resource-Set Parameter. We consider now the dependency of our classes
CR (f,A), etc. upon their resource-set parameter R,

• first (in Theorems 5 – 9) by contrasting a subset R against a superset S,

• secondly (in Theorem 10) by contrasting disjoint sets R and S, and

• thirdly (in Theorem 11) by contrasting non-disjoint, non-enveloping sets
R and S.

Theorem 5 (1Ai). If S is a resource set, and if A ∈ R ⊆ S, then CS (f, A) ⊆
CR (f,A).

Proof. Suppose that problem π is in class CS (f, A). By Definition 26, π is solved
by a deterministic computer Φ for which resource A is S-dominant and such that
A∗ . f . Since A ∈ R ⊆ S, A is also R-dominant : that A is S-dominant gives
that no B ∈ S has the property that A∗ . B∗ 6. A∗, so certainly no B ∈ R ⊆ S
has this property, whence A is R-dominant for Φ. Hence, π ∈ CR (f, A), as
required.

(The converse inclusion does not necessarily hold, of course: it may be that
A ∈ R ⊆ S, but that CS (f, A) 6⊇ CR (f, A). For example, a problem π that
requires of a deterministic computer constant space (S) and quadratic time (T)
complexity satisfies π ∈ C{S} (n, S) \ C{S,T} (n, S), and S ∈ {S} ⊆ {S, T}. As
a byproduct, this example gives the fundamentally reassuring result that some
classes of the form CR (f, A) are indeed non-empty.)

Theorem 6 (2Ai). If S is a resource set, and if A ∈ R ⊆ S, then NCS (f, A) ⊆
NCR (f, A).

Proof. The proof is identical to that of Theorem 5 (1Ai), though with classes
CR and CS replaced by NCR and NCS respectively, and with computer Φ non-
deterministic.

13Here and in subsequent theorems, ‘≤’ as a relation between functions is to be interpreted
pointwise.

CHAPTER 4. DOMINANCE 155

As a consequence of the previous two theorems, we have the following two.

Theorem 7 (3Ai). If S is a resource set, and if R ⊆ S, then CS (f) ⊆ CR (f).

Proof. If π ∈ CS (f) Defn. 26=
⋃

R∈S CS (f,R), then π ∈ CS (f, A) for some A ∈ S.

Hence, by Theorem 5 (1Ai), π ∈ CR (f, A), and so π ∈ ⋃
R∈R CR (f, R) Defn. 26=

CR (f).

Theorem 8 (4Ai). If S is a resource set, and ifR ⊆ S, then NCS (f) ⊆ NCR (f).

Proof. The proof is identical to that of Theorem 7 (3Ai), though with classes
CR and CS replaced by NCR and NCS respectively, and with Theorem 6 (2Ai)
evoked in place of Theorem 5 (1Ai).

Theorem 9 ({5, 6}Ai). If S is a finite resource set, and if R ⊆ S, then B∗R,Φ .
B∗S,Φ for all computers Φ. It does not necessarily hold, however, that BS (f) ⊆
BR (f) for bounding function f , and neither do we have the converse class
inclusion; similarly, it does not necessarily hold either that NBS (f) ⊆ NBR (f),
or conversely.

Proof. We consider a fixed computer, the corresponding subscripts of which we
omit. Let R̄ = {A ∈ R | A is R-dominant }, and define S̄ analogously; suppose
that R̄ =

{
A1, A2, A3, . . . , A|R̄|

}
. Now, for each Ai ∈ R̄, there exists Bi ∈ S̄

such that A∗i . B∗
i (if Ai ∈ S̄, then this Bi may be taken to be Ai itself; else, if

Ai 6∈ S̄, then Ai is, by definition of S̄, .-dominated by some element of S̄—which
element we may take as Bi); hence, there exists a mapping d : R̄ → S̄ : Ai 7→ Bi

(where non-uniqueness of Bi given Ai is resolved via arbitrary choice, which does
not require the axiom of choice since S̄ is finite) such that A∗i . d (Ai)

∗. Now,
for each B ∈ S̄, B∗ is an addend of B∗S (by definition, B∗S =

∑
B∈S̄ B∗), and so

B∗ ≤ B∗S (by non-negativity of the resources in S̄ \{B}); in particular, d (Ai)
∗ ≤

B∗S for all Ai ∈ R̄. Hence,
∑|R̄|

i=1 d (Ai)
∗ ≤

∣∣R̄
∣∣B∗S , whence O

(∑|R̄|
i=1 d (Ai)

∗
)
⊆

O (∣∣R̄
∣∣B∗S

)
= O (B∗S); so B∗R =

∑|R̄|
i=1 A∗i

Lemma 1∈ O
(∑|R̄|

i=1 d (Ai)
∗
)
⊆ O (B∗S).

B∗R ∈ O (B∗S), as required.
Now, despite this relation between B∗R and B∗S , it may not be the case that

BS (f) ⊆ BR (f) (or that BR (f) ⊆ BS (f)). Consider a deterministic computer
and resource sets R and S such that B∗R : n 7→ 10 and B∗S : n 7→ n2. Note that
B∗R . B∗S , but that B∗R � B∗S (specifically when n < 4). Let f : n 7→ 20 and
f ′ : n 7→ 2n2. Then we have that B∗R ≤ f , B∗R � f ′, B∗S ≤ f ′, and B∗S � f ;
so BS (f ′) * BR (f ′) and BR (f) * BS (f) (in each case, our deterministic
computer places the corresponding problem in the former but not the latter
class).

By considering instead a non-deterministic computer, we obtain the analo-
gous results for NB rather than B.

We consider now the alteration of resource set R to a disjoint set S.

Theorem 10 ({1, 2, 3, 4, 5, 6}Aii). Let R and S be disjoint resource sets. Then
no relation of class inclusion (neither ‘⊆’ nor ‘⊇’) holds in generality between

• CR (f,A) and CS (f, A);

CHAPTER 4. DOMINANCE 156

similarly between

• NCR (f, A) and NCS (f, A),

• CR (f) and CS (f),

• NCR (f) and NCS (f),

• BR (f) and BS (f), and

• NBR (f) and NBS (f).

Neither is it generally the case that B∗R . B∗S or vice versa, nor that B∗R ≤ B∗S
or vice versa.

Proof. Suppose, for a contradiction, that such an inclusion were to hold for all
disjoint pairs (R,S) of resource sets. So either XR ⊆ XS or XR ⊇ XS (where
XU stands for some element of the set

XU := {CU (f, A) , NCU (f, A) , CU (f) , NCU (f) , BU (f) , NBU (f)}

of complexity classes); and, whichever is the case, we see by reversing the roles14

of R and S that the other must also hold. Hence, XR = XS for all disjoint R
and S.

Consider a computer that has constant R-complexity and exponential S-
complexity (for resources R and S, which latter is not necessarily space here).15

Let R = {R} and S = {S}; these are clearly disjoint. Then the equality
XR = XS cannot hold when XR stands for any of the classes belonging to XU ,
as a consideration of resource-constructible functions (including positive-degree
polynomials) shows. This is the sought contradiction.

Resource-constructibility aside, the claims concerning B∗R are clear from con-
sideration of the computer of the previous paragraph.

We consider now the alteration of resource set R to a set S such that R *
S * R and R ∩ S 6= ∅. As we see below, this reduces to the previous case in
which R and S are disjoint.

Theorem 11 ({1, 2, 3, 4, 5, 6}Aiii). Let R and S be such that R * S * R and
R ∩ S 6= ∅. Then no relation of class inclusion (neither ‘⊆’ nor ‘⊇’) holds in
generality between

• CR (f,A) and CS (f, A);

similarly between

• NCR (f, A) and NCS (f, A),

• CR (f) and CS (f),

• NCR (f) and NCS (f),

• BR (f) and BS (f), and

14Clearly R and S are disjoint if and only if S and R are.
15Such computers exist: letting R be precision and S time, any exponential-time Turing

machine satisfies these criteria by Theorem 1.

CHAPTER 4. DOMINANCE 157

• NBR (f) and NBS (f).

Neither is it generally the case that B∗R . B∗S or vice versa, nor that B∗R ≤ B∗S
or vice versa.

Proof. Given any pair of disjoint, non-empty resource sets R′ and S ′, we may
define R = R′ ∪ {0} and S = S ′ ∪ {0} where 0 is the null resource of Def-
inition 17. Since the classes (CR (f, A), NCR (f, A), CR (f), NCR (f), BR (f)
and NBR (f)) and function (B∗R) under consideration are defined in terms of
dominant resources, and since all resources dominate 0 (whence R and R′ have
the same dominant resources, as do S and S ′), we have that the results of the
previous case (in which R ∩ S = ∅) hold also for R and S as constructed here,
which satisfy R * S * R (assuming that neither R′ nor S ′ is equal to {0},
which assumption is not problematic) and R ∩ S 6= ∅. That no inclusion or
ordering holds in generality for R′ and S ′ (by the previous theorem) gives that
none holds for R and S as constructed here.

Bounding-Function Parameter. We consider now the dependency of our
classes CR (f, A), etc. upon their bounding-function parameter f ,

• first (in Theorems 12 – 14) by contrasting functions related by ., and

• secondly (in Theorem 15) by contrasting functions related by ≤.

Theorem 12 ({1, 2}B{i, ii}). If f . g, then

• CR (f,A) ⊆ CR (g, A) and

• NCR (f, A) ⊆ NCR (g, A).

In particular, if f ≤ g, then, a fortiori, f . g (recall Lemma 12), and so the
conclusions still hold.

Proof. (1B{i, ii}.) The proof requires only the transitivity of ‘.’: if a problem
is in CR (f, A) by virtue of its being solved by deterministic computer Φ with
A R-dominant and A∗Φ . f , then certainly A∗Φ . g, and so the problem is in
CR (g,A).

(2B{i, ii}.) Similarly, if a problem is in NCR (f, A) by virtue of its being
solved by non-deterministic computer Φ with A R-dominant and A∗Φ . f , then
certainly A∗Φ . g, and so the problem is in NCR (g, A), as required.

Consequently, we have the following.

Theorem 13 ({3, 4}B{i, ii}). If f . g (and so, in particular, if f ≤ g), then

• CR (f) ⊆ CR (g) and

• NCR (f) ⊆ NCR (g).

Proof. By Definition 26, CR (f) =
⋃

R∈R CR (f, R). By |R| evocations of The-
orem 12 (1Bi), this is a subset of

⋃
R∈R CR (g, R), which, by Definition 26, is

CR (g), as required.
That NCR (f) ⊆ NCR (g) follows in an analogous way from evocations of

Theorem 12 (2Bi).

CHAPTER 4. DOMINANCE 158

Theorem 14 ({5, 6}Bi). Let f and g satisfy f . g. Then no relation of class
inclusion (neither ‘⊆’ nor ‘⊇’) holds in generality between

• BR (f) and BR (g);

similarly between

• NBR (f) and NBR (g).

Proof. There exist f and g satisfying f . g, but with g ≤ f everywhere;
e.g., f : n 7→ 2n, g : n 7→ ⌊

n
2

⌋
. The claim of the theorem is witnessed, then,

by any computer, optimal for the problem that it solves, with an identity
time-complexity function T ∗ (n) = n, which necessarily exists16 by the time-
constructibility of polynomials.

However, the following restriction yields a more definite result than Theo-
rem 14 ({5, 6}Bi).

Theorem 15 ({5, 6}Bii). If f ≤ g, then

• BR (f) ⊆ BR (g) and

• NBR (f) ⊆ NBR (g).

Proof. A problem in BR (f) [respectively NBR (f)] is solved by a deterministic
[respectively non-deterministic] computer Φ with B∗R,Φ ≤ f . By transitivity of
‘≤’, B∗R,Φ ≤ g, and so the problem is (by virtue of Φ) in BR (g) [respectively
NBR (g)].

Resource Parameter. Finally, we consider (in Theorem 16) the dependency
of our classes CR (f,A) and NCR (f, A) upon their resource parameter A, by
contrasting two resources of which one is always (pairwise) dominant.

Theorem 16 ({1, 2}C{i, ii}). Suppose that (R-dominant) resources A and B
are such that A∗Φ . B∗

Φ for all computers Φ (notably, this inclusion is certainly
true when A∗Φ ≤ B∗

Φ for all Φ). Then

• CR (f,B) ⊆ CR (f, A) and

• NCR (f, B) ⊆ NCR (f, A).

Proof. A problem in CR (f,B) [respectively NCR (f, B)] is solved by a deter-
ministic [respectively non-deterministic] computer Φ with B∗

Φ . f and with B
R-dominant for Φ. By transitivity of ‘.’, then, A∗Φ . f , and so (since A is
R-dominant) the problem is in CR (f, A) [respectively NCR (f,A)] by virtue of
Φ.

For a brief summary of the above theorems, see Table 4.1.
16Take for example a Turing machine that returns the parity of the length of its input

string—fewer than n time steps are insufficient to distinguish the parities of the lengths of
strings ‘x1x2x3 . . . xn’ and ‘x1x2x3 . . . xn1’, and so a Turing machine with T ∗ (n) = n is
optimal for this task.

CHAPTER 4. DOMINANCE 159

Ai: Aii: Bi: Bii: Ci:

R ⊆ S R ∩ S = ∅ f . g f ≤ g A∗ . B∗

Aiii: Cii:

R * S * R, A∗ ≤ B∗

R∩ S 6= ∅
1: CS ⊆ CR CR t CS C (f, A) C (f, A) C (f, B)

CR (f, A) ⊆ C (g, A) ⊆ C (g, A) ⊆ C (f, A)

5 10/11 12 12 16

2: NCS ⊆ NCR NCR t NCS NC (f, A) NC (f, A) NC (f, B)

NCR (f, A) ⊆ NC (g, A) ⊆ NC (g, A) ⊆ NC (f, A)

6 10/11 12 12 16

3: CS ⊆ CR CR t CS C (f) ⊆ C (g) C (f) ⊆ C (g)

CR (f) 7 10/11 13 13

4: NCS ⊆ NCR NCR t NCS NC (f) NC (f)

NCR (f) ⊆ NC (g) ⊆ NC (g)

8 10/11 13 13

5: B∗R . B∗S , B∗R t B∗S , B (f) t B (g) B (f) ⊆ B (g) (N/A)

BR (f) BR t BS BR t BS

9 10/11 14 15

6: B∗R . B∗S , B∗R t B∗S , NB (f) NB (f)

NBR (f) NBR t NBS NBR t NBS t NB (g) ⊆ NB (g)

9 10/11 14 15

Table 4.1: A brief summary of the class-inclusion theorems of Sect. 4.3.3. Where
no class inclusion (neither ‘⊆’ nor ‘⊇’) holds in generality between classes A and
B, we write ‘A t B’; similarly, where no order (neither ‘.’ nor ‘≤’, in either
direction) holds in generality between functions f and g, we write ‘f t g’.
Numbers at the bottom-right of cells indicate the corresponding theorems.

CHAPTER 4. DOMINANCE 160

4.3.4 Trade-Off Results

One intuitively feels that there should be scope to trade off resources against
each other (and, hence, that dominant resource can to a certain extent be engi-
neered by careful selection of the computer used to solve a particular problem).
An obvious such trade-off is between the resources of space and precision: sim-
ply by scaling down [respectively, up] a system’s apparatus, required space is
reduced but required precision increased [or vice versa] (recall Sect. 3.8.1 Pre-
cision and Space); this is now formalized.

Theorem 17. For any DPSM, there exists an equivalent17 DPSM with constant
space complexity (though possibly with precision complexity greater than that
of the former DPSM). For any DPSM, there exists an equivalent DPSM with
constant precision complexity (though possibly with space complexity greater
than that of the former DPSM).

Similarly, for any NPSM, there exist an equivalent NPSM with constant
space complexity and an equivalent NPSM with constant precision complexity.

Though the resource of precision has been formally defined (in Sect. 3.3.3)
only for PSMs, similar definitions may be made for other computational models,
whence theorems analogous to Theorem 17 may be proven (at least for those
paradigms satisfying suitable assumptions regarding the continuity of space—
see Remark 38).

Proof. Let Φ be a PSM that computes problem π. Let S denote the resource
of space and P precision. Suppose that S∗Φ,σ . f for some function f . Let Ψ
be the PSM derived by scaling each of the three spatial axes of Φ by a factor
of α := (f ◦ σ (x))−

1
3 , for input value x; Ψ computes the same problem π as Φ

since the miniaturization process by which the former system is derived does
not alter the computation relation. The space SΨ (x) required by Ψ on input x,
then, is α3SΦ (x) = SΦ(x)

f◦σ(x) , and, consequently, the space complexity S∗Ψ,σ (n) of

Ψ evaluated at input size n is S∗Φ,σ(n)

f(n) ; since S∗Φ,σ . f , S∗Ψ,σ is bounded above
by a constant.18

In scaling the apparatus of Φ to produce Ψ, we have similarly scaled the
input and output parameters of Φ. Each such parameter either relies on spa-
tial precision (in which case it contributes a scaling of required precision by a
factor of 1

α) or it does not (in which case it contributes no change to required
precision).19 Letting k be the number of input/output parameters of Φ reliant
on spatial precision, P ∗Ψ,σ (n) = f (n)k

P ∗Φ,σ (n); in reducing the size of the sys-
tem’s apparatus, we have made constant the space complexity but increased by
a factor of fk the precision complexity.

17Equivalence here is of the computers’ respective computation relations ^Φ.
18The exponent −

1
3 in the definition of α, and our cubing α in the expression for SΨ (x),

reflect our assumption that Φ and Ψ inhabit a three-(spatial-)dimensional universe; if, more
generally, our computational model renders these systems in n dimensions, then the exponent

becomes −
1
n , and cubing is replaced by raising to the power of n.

19In fact, each parameter relying additively on precision contributes a scaling of 1
α

, whereas
each relying multiplicatively contributes no change (the reader is invited to confirm this); we
describe, then, the worst-case increase in precision complexity (assuming that all errors are
either additive or multiplicative—investigation of more exotic errors’ contributions is beyond
the present project’s scope).

CHAPTER 4. DOMINANCE 161

This argument, though with the roles of S and P reversed, shows that, by
expanding apparatus, precision complexity can be made constant at the expense
of increased space complexity.

Note that the system Φ before making this trade-off (in either direction)
is deterministic if and only if the system Ψ after making it is deterministic—
scaling the apparatus does not alter the number of possible responses of the
system to any given configuration. Hence, letting Φ be deterministic, we obtain
the first part of the theorem’s claim; letting it be non-deterministic, we obtain
the second.

Remark 38. Note that assumptions such as those concerning the divisibility of
space (essentially that space is continuous, allowing arbitrary miniaturization
Φ 7→ Ψ of computers) are accounted for by considering precision complexity
(and, of less interest here, precision-related manufacturing costs). The measure
of complexity tells us how precise one needs to be for the computer to function
as expected, and technology, the enveloping physics, etc. determine whether this
precision is feasible.

Corollary 3. Let f , g and k be such that there exists a deterministic [respec-
tively, non-deterministic] computer with space complexity f , precision com-
plexity g and k input/output parameters reliant (in an additive way—see Foot-
note 19) on spatial precision. Write P for precision, S for space and R for
{P, S}. Then

CR (f, S) ∪ CR (g, P) ⊆ CR
(
fkg, P

)

[respectively, NCR (f, S) ∪ NCR (g, P) ⊆ NCR
(
fkg, P

)
].

(Of particular interest here are the inclusions CR (f, S) ⊆ CR
(
fkg, P

)
and

NCR (f, S) ⊆ NCR
(
fkg, P

)
.)

Proof. Letting Φ, Ψ and π be as in the proof of Theorem 17, and writing g
for P ∗Φ, we have that Φ is as the deterministic [respectively, non-deterministic]
computer in the hypotheses of this corollary; as in the proof of Theorem 17, we
have precision and space complexity as summarized in the following table.

Φ Ψ
S∗ O (f) O (1)
P ∗ g fkg

Since one (at the fewest) of P and S is R-dominant for Φ, we have that π
is, by virtue of Φ, a member of CR (f, S)∪CR (g, P) [respectively, NCR (f, S)∪
NCR (g, P)]; since, from the above table, P is R-dominant for Ψ, we have that
π is, by virtue of Ψ, a member of CR

(
fkg, P

)
[respectively, NCR

(
fkg, P

)
].

The structure of the proof of Theorem 17 (in particular, the quantification
structure ‘∀Φ∃Ψ’) gives the class inclusions in the direction stated in the claim
of this corollary.

Aside. Recall from Sect. 3.8 that resource trade-offs exist by virtue not only of
computational processes but also of values’ storage and retrieval. We mention a
specific example, concerning Kolmogorov complexity, in Sect. 6.1.2.

CHAPTER 4. DOMINANCE 162

4.3.5 Relationship to Traditional Hierarchy

Theorem 18.

• DTIME (f) ⊆ C{T} (f, T).

• NTIME (f) ⊆ NC{T} (f, T).

• DSPACE (f) ⊆ C{S} (f, S).

• NSPACE (f) ⊆ NC{S} (f, S).

Proof. These class inclusions follow directly from Definition 26. We make this
more explicit for the illustrative example of the first bullet point.

Suppose that a problem π is in DTIME (f); then it is so by virtue of a
(deterministic) Turing machine M with time complexity T ∗M . f . Also by virtue
of M , then, and since T is {T}-dominant for all computers (and in particular
for M), π ∈ C{T} (f, T) by Definition 26.

Note that the converse inclusions would imply the unlikely situation in which
Turing machines can simulate any computer, conforming to any paradigm, with-
out an increase in time complexity and (separately) without an increase in space
complexity.

Stronger (by Theorems 5 and 6 ({1, 2}Ai)) than the first and second bullet
points of Theorem 18 is the following.

Theorem 19.

• DTIME (f) ⊆ C{T,S} (f, T).

• NTIME (f) ⊆ NC{T,S} (f, T).

Proof. Given the observation that T is {T, S}-dominant for all Turing machines,
the proof is as that of Theorem 18.

4.3.6 Transfer between Hierarchies of Results/Questions

We defer to future work a full investigation of the correspondence between the
traditional and new hierarchies of complexity classes, but conclude this section
by noting that, with such correspondence established, it becomes possible to
restate

• theorems already proven in either hierarchy in terms of the classes of the
other, thereby giving new, analogous theorems in the latter context; and

• open problems concerning either hierarchy in terms of the classes of the
other, thereby potentially offering new approaches to these questions.

4.4 An Analogue of the Gap Theorem

As we comment above, one may attempt to establish the correspondence be-
tween traditional and new complexity classes, and thereby to translate known
results from the old context to the new. Another approach to such transla-
tion, however, is directly to prove results concerning the new context, without
necessarily having established the correspondence between the hierarchies.

CHAPTER 4. DOMINANCE 163

We exemplify this latter approach now by proving, in the context of the
complexity classes of Definition 26, an analogue of the Gap Theorem. We thank
András Salamon for originally posing, in [114], the question that inspired [20],
upon which much of this section is based.

4.4.1 Introduction

Thanks to Trachtenbrot [125] and Borodin [34], complexity theorists have the
Gap Theorem, which guarantees the existence of arbitrarily large gaps in the
(traditional) complexity hierarchy. That is, there can be made arbitrarily large
increases in resource availability that, for all their vastness, yield no additional
computational power, in that every computation that can be performed given
the extra resource could have been performed in its absence.

As we see above, needs arising during the complexity analysis of unconven-
tional computers can be addressed via the notion of dominance, with which
comes a corresponding hierarchy of complexity classes—recall Definition 26—,
and it is natural to ask whether a gap theorem, analogous to that of Trachten-
brot and Borodin, holds in this context.

We show below that a gap theorem does indeed hold for certain dominance-
based classes. We consider also related statements concerning other dominance-
based classes, and formulate corresponding conjectures.

Traditional Gap Theorem.

We introduce now the Gap Theorem, the existing result to which our Theo-
rem 21 is analogous.

Computational tasks can be organized into a hierarchy according to the
amount of some resource (A, say) required to perform the computations. The
Gap Theorem, proven by Trachtenbrot [125] and, independently, Borodin [34],
guarantees arbitrarily large gaps in this hierarchy; that is, the theorem guaran-
tees arbitrarily large increases in the availability of resource A that nonetheless
offer no new computable functions. (Note that this says nothing about consump-
tion of resources other than A; we return to this point in Sect. 4.4.2 Relationship
to the Traditional Gap Theorem—Resource Compensation.)

The theorem is independent of choice of computational model (though does
assume at most a countable infinity of computers; see Sect. 4.4.4 Comments—
Countability of Computers), and relies only upon A’s satisfying certain (natural
and lenient) conditions, namely Blum’s axioms (see Sect. 3.4.1 Blum’s Axioms).

Theorem 20 (Gap Theorem). If A is a resource that satisfies Blum’s axioms,
and if g : N → N is a computable function such that, for all x ∈ N, g (x) ≥ x,
then there exists a computable function t : N→ N such that every computer Φ
satisfying A∗Φ ≤ g ◦ t also satisfies A∗Φ ≤ t.

Remark 39. The non-decreasing function g represents an increase (from t to
g ◦ t) in the availability of resource A.20 The theorem guarantees that, for some
t, such increase offers no additional computational power: if a computation can
be performed using no more than g ◦ t (n) units of A when processing any input

20That this is indeed an increase follows from the fact that g (x) ≥ x for all x ∈ N, whence
g ◦ t represents a greater supply of—and a more lenient bound on—A than does t.

CHAPTER 4. DOMINANCE 164

of size n, then it can in fact be performed using no more than t (n) units. This
fruitless increase is our eponymous gap.

Remark 40. As can be seen, the theorem is slightly stronger than is suggested by
its preceding, informal statement (“every computation that can be performed
given the extra resource could have been performed in its absence”): for com-
puter Φ with resource bound g ◦ t, not only is there some equivalent computer
with bound t, but Φ itself has this property: A∗Φ ≤ t.

We give a proof based on that offered by Borodin [34]; a similar approach is
used in Sect. 4.4.2 Proof of the Theorem in the proof of our analogous statement
concerning dominance classes (see Definition 26).

Proof. We assume some enumeration Φ0, Φ1, Φ2, . . . of computers (this is
discussed further in Sect. 4.4.4 Comments—Countability of Computers).

For brevity, we write ‘Pn (i, j)’ for the property ‘A∗Φi
(n) ≤ j’ (i, j ∈ N)

throughout this proof.
The proof is constructive; we define t : N→ N inductively, as follows.

t (0) := 1 ;

t (n) := min
{

k ∈ N
∣∣∣∣

k > t (n− 1)
∧ (∀i ≤ n) [Pn (i, g (k)) ⇒ Pn (i, k)]

}

(for n > 0).
Note that the condition

Pn (i, g (k)) ⇒ Pn (i, k) (4.1)

(that is, A∗Φi
(n) ≤ g (k) ⇒ A∗Φi

(n) ≤ k) is logically equivalent to A∗Φi
(n) >

g (k) ∨ A∗Φi
(n) ≤ k, which hopefully gives some insight into why this choice of

t might satisfy the theorem.
We show now, inductively, that this t is well defined. As the base case, it is

clear that t (0) := 1 is well defined. As an inductive hypothesis, suppose that
t (n− 1) is well defined, and consider t (n). For any i ≤ n, either

(a) the computation of Φi is defined at all inputs of size n, whence A∗Φi
(n) ∈ N,

and so there exists (minimal) k ≥ A∗Φi
(n) (whence the consequent of

(4.1)—and, hence, (4.1) as a whole—is rendered true); or

(b) the computation of Φi is undefined at some input of size n, whence the
condition A∗Φi

(n) ≤ g (k) fails for all k ∈ N, A∗Φi
(n) being undefined

(whence the antecedent of (4.1) fails, rendering (4.1) as a whole true).

The maximum of all k as in case (a)—of which there are finitely many, whence
this maximum’s existence—(and of t (n− 1) + 1, which is, by the inductive
hypothesis, well defined), then, is a member of

{
k ∈ N

∣∣∣∣
k > t (n− 1)

∧ (∀i ≤ n) [Pn (i, g (k)) ⇒ Pn (i, k)]

}
; (4.2)

this set is a non-empty subset of N, and, hence, has a well-defined minimum, as
which we define t (n).

t is well defined .

CHAPTER 4. DOMINANCE 165

We claim now that t is computable. This follows since g is computable and
since A satisfies the second of Blum’s axioms, whence, for each n, (4.1) is a
decidable predicate.

So,

t is well defined and computable;

what of the main property described in the theorem (i.e., that every Φ such that
A∗Φ ≤ g ◦ t in fact satisfies A∗Φ ≤ t)?

Let Φ (which we suppose to be Φj in our enumeration of computers) be such
that A∗Φ ≤ g ◦ t; that is,

Pn (j, g ◦ t (n)) (4.3)

for all n. Fix n ≥ j. By construction, t (n) is a member (in fact, the minimum)
of the set (4.2), and, hence, satisfies the set’s defining property: t (n) is such
that (∀i ≤ n) [Pn (i, g ◦ t (n)) ⇒ Pn (i, t (n))]; in particular, since j ≤ n, we have
that Pn (j, g ◦ t (n)) ⇒ Pn (j, t (n)), which, recalling (4.3) and applying modus
ponens, gives that Pn (j, t (n)), i.e., that A∗Φj

(n) ≤ t (n). We have that our
computer Φ = Φj , which we suppose only to have consumption of A bounded
by g ◦ t, in fact has consumption of A bounded by t, as required.

(We reiterate that this proof is based on that given in [34].)
Note for comparison that, implicitly, the Gap Theorem (Theorem 20) con-

cerns complexity classes of the form

S (f) := {problem solved by Φ | A∗Φ ≤ f } ; (4.4)

specifically, the theorem says that, for each suitable g, there exists some t such
that S (g ◦ t) = S (t).

Of the classes of Definition 26, we suggest that BR (f) has more in com-
mon (than does either CR (f,A) or CR (f)) with these Gap-Theorem classes
S (f). Notably, S (f) and BR (f) both bound their members’ complexity with a
standard inequality, ‘≤ f ’, whereas CR (f, A) and CR (f) bound theirs with an
asymptotic-notation constraint, ‘. f ’. Because of this similarity (and others)
between S and B, one may expect the proof method of Theorem 20 to be most
easily adapted to demonstrate the validity of the analogous gap theorem for
B (more easily, that is, than to demonstrate the validity of the respective gap
theorems for CR (f,A) and CR (f)); indeed, this appears to be the case: we
prove Sect. 4.4’s main result—the gap theorem for class BR (f)—in this way.

4.4.2 Dominance Gap Theorem

Given the Gap Theorem (Theorem 20) of Trachtenbrot [125] and Borodin [34],
and given the complexity classes defined in terms of dominance (Definition 26),
it is natural to ask whether an analogous theorem holds for these classes.

We are led to consider several statements, one for each of BR (f), CR (f, A)
and CR (f); Sect. 4.4’s main result, which we give in Sect. 4.4.2 Statement of
the Theorem and prove in Sect. 4.4.2 Proof of the Theorem, is the statement
concerning BR (f) (the other two statements, along with potential approaches
to their proof/refutation, are discussed in Sect. 4.4.3 Related Statements).

CHAPTER 4. DOMINANCE 166

Statement of the Theorem.

Theorem 21 (Dominance Gap Theorem). If R is a set of resources that satisfy
Blum’s axioms, and if g : N → N is a computable function such that, for all
x ∈ N, g (x) ≥ x, then there exists a computable function t : N → N such that
BR (g ◦ t) = BR (t).

Relationship to the Traditional Gap Theorem.

Before proving Theorem 21, we make some comments relating it to Theorem 20,
etc.

Differences. Theorem 20 considers a single Blum resource, predicting arbi-
trarily large gaps in the hierarchy corresponding to this resource. Theorem 21
makes the same prediction, though about the hierarchy corresponding (via dom-
inance) to a set of Blum resources.

‘|R| = 1’ Case. If R is a singleton set (say R = {A}, where A may or may
not satisfy Blum’s axioms), then A is vacuously R-dominant for all computers;
hence, B∗R = A∗ and the statement of Theorem 21 becomes that of Theorem 20.
In this sense, Theorem 21 generalizes Theorem 20.

If, in addition, A satisfies Blum’s axioms, then Theorem 20, and, hence,
Theorem 21, hold: there exist arbitrarily large gaps in the corresponding hier-
archies.

(We consider this special case in order to illustrate the relationship between
the traditional and new gap theorems, not as a step towards the general proof
of the latter, for which see Sect. 4.4.2 Proof of the Theorem.)

Summation. If we were to consider the complexity hierarchy corresponding
to a fixed, finite sum of (Blum) resources A1, A2, A3, . . . , Al, then the analogous
gap theorem holds:

for any computable, non-decreasing g, there exists a computable t

such that a problem’s computability with
(∑l

i=1 Ai

)∗
≤ g◦t implies

its computability with
(∑l

i=1 Ai

)∗
≤ t.

This follows from the fact that, if each Ai satisfies Blum’s axioms, then
∑

i Ai

can be viewed as a (single) resource that itself satisfies Blum’s axioms, whence
we may evoke Theorem 20.

A notable instance of this is the situation of Theorem 21, where we consider
the sum B∗R :=

∑
A is R-dominant A∗; we may apply Theorem 20 to this sum

and obtain the desired result. However, note that the addends of this sum
(specifically, their presence in or absence from the sum) are dependent on the
computer considered: for Φ 6= Ψ, it may well be the case that

{A | A is R-dominant for Φ } 6= {A | A is R-dominant for Ψ } ;

for this reason, it is more instructive and advantageous, when considering state-
ments of the (slightly more general) form ‘for each computer within resource
bound g ◦ t, there exists an equivalent computer within bound t’, to pursue the
proof method of Sect. 4.4.2 Proof of the Theorem.

CHAPTER 4. DOMINANCE 167

Resource Compensation. Note that the (traditional) Gap Theorem says
nothing about resources other than the one (A, say) considered; it is reasonable
to entertain the possibility that the arbitrarily large increase in A yields no addi-
tional computing power because of a corresponding decrease in other resources’
availability.

However, Theorem 21 seems to say more, in this respect, than Theorem 20:
we sum all dominant resources; a dearth of some resources, seemingly, cannot
be compensated for in the same way. Prima facie, then, Theorem 20 may seem
more plausible than Theorem 21 (since the latter seems to say more than the
former); nonetheless, both hold, and indeed their proofs are similar.

Generalization. We note above, in Sect. 4.4.2 Relationship to the Tradi-
tional Gap Theorem—‘|R| = 1’ Case, that Theorem 21 generalizes Theorem 20;
there is a similar implication in Sect. 4.4.2 Relationship to the Traditional Gap
Theorem—Resource Compensation. We note in passing that the proof method
of Theorem 20 allows further generalization: t (n) can be defined to be

min { k ∈ N | k > t (n− 1) ∧ (∀i ≤ n) [Pn (i, g (k)) ⇒ Pn (i, k)] }
for an arbitrary property Pn of pairs of natural numbers, leading, where this t
is well defined, to results analogous to Theorem 20 (in which instance Pn (i, j)
is A∗Φi

(n) ≤ j). We adopt this method, taking Pn (i, j) to be B∗R,Φi
(n) ≤ j, to

prove Theorem 21.

Proof of the Theorem.

We recall from Sect. 4.4.2 Statement of the Theorem the statement of the Dom-
inance Gap Theorem:

If R is a set of resources that satisfy Blum’s axioms, and if g : N→ N
is a computable function such that, for all x ∈ N, g (x) ≥ x, then
there exists a computable function t : N→ N such that BR (g ◦ t) =
BR (t).

Proof. We closely follow the proof of Theorem 20. Once again, enumerate com-
puters as Φ0, Φ1, Φ2, Let R and g be as in the statement of the theorem.
Let ‘Pn (i, j)’ denote the property ‘B∗R,Φi

(n) ≤ j’ (i, j ∈ N).
Define t : N→ N, as follows.

t (0) := 1 ;

t (n) := min
{

k ∈ N
∣∣∣∣

k > t (n− 1)
∧ (∀i ≤ n) [Pn (i, g (k)) ⇒ Pn (i, k)]

}

(for n > 0).
(We have that the condition Pn (i, g (k)) ⇒ Pn (i, k) (that is, B∗R,Φi

(n) ≤
g (k) ⇒ B∗R,Φi

(n) ≤ k) is equivalent to B∗R,Φi
(n) > g (k) ∨ B∗R,Φi

(n) ≤ k.)
We show by induction that t is well defined. As the base case, it is clear

that t (0) := 1 is well defined. Suppose as an inductive hypothesis that t (n− 1)
is well defined, and consider t (n). For any i ≤ n, either

(a) the computation of Φi is defined for all inputs of size n, whence B∗R,Φi
(n) ∈

N, and so there exists (minimal) k ≥ B∗R,Φi
(n); or

CHAPTER 4. DOMINANCE 168

(b) the computation of Φi is undefined for some input of size n, whence the
condition B∗R,Φi

(n) ≤ g (k) fails for all k ∈ N (since B∗R,Φi
(n) is unde-

fined).

The maximum of all k as in case (a) (and of t (n− 1) + 1, which is, by the
inductive hypothesis, well defined), then, is a member of

{
k ∈ N

∣∣∣∣
k > t (n− 1)

∧ (∀i ≤ n) [Pn (i, g (k)) ⇒ Pn (i, k)]

}
;

this subset of N is non-empty, and, hence, has a well-defined minimum—t (n)—,
as required.

t is well defined .

Further, t is computable. This is because g is computable and the members
of R satisfy the second of Blum’s axioms, whence ‘Pn (i, g (k)) ⇒ Pn (i, k)’ is a
decidable predicate.

We have that

t is well defined and computable;

we turn now to the main property described in the theorem: that every Φ such
that B∗R,Φ ≤ g ◦ t satisfies B∗R,Φ ≤ t (whence BR (g ◦ t) = BR (t), as required).

Let Φ (Φj , say, in our enumeration) be such that B∗R,Φ ≤ g ◦ t, so

Pn (j, g ◦ t (n)) (4.5)

for all n. Fix n ≥ j.
By definition, t (n) satisfies (∀i ≤ n) [Pn (i, g ◦ t (n)) ⇒ Pn (i, t (n))]; in par-

ticular, since j ≤ n, we have that Pn (j, g ◦ t (n)) ⇒ Pn (j, t (n)), which, from
(4.5) by modus ponens, gives that Pn (j, t (n)), i.e., B∗R,Φj

(n) ≤ t (n). We have
that B∗R,Φ (n) ≤ t (n): Φ, which we suppose only to have R-complexity bounded
by g ◦ t, in fact has R-complexity bounded by t, as required.

As described in Sect. 4.4.2 Relationship to the Traditional Gap Theorem—
Generalization, we have adapted the proof of Theorem 20 to show that our
Dominance Gap Theorem for class BR holds.

4.4.3 Future Work

Related Statements.

Just as we have considered (and demonstrated the truth of) the gap theorem
corresponding to the complexity class BR (f), we may consider those corre-
sponding to CR (f, A) and CR (f). Specifically, we may ask which (if either) of
the following statements hold.

Statement 1 (Dominance Gap Theorem, CR (f, A) variation). If R is a set of
resources that satisfy Blum’s axioms, if A ∈ R, and if g : N→ N is a computable
function such that, for all x ∈ N, g (x) ≥ x, then there exists a computable
function t : N→ N such that CR (g ◦ t, A) = CR (t, A).

CHAPTER 4. DOMINANCE 169

Statement 2 (Dominance Gap Theorem, CR (f) variation). If R is a set of
resources that satisfy Blum’s axioms, and if g : N→ N is a computable function
such that, for all x ∈ N, g (x) ≥ x, then there exists a computable function
t : N→ N such that CR (g ◦ t) = CR (t).

Though we defer the formal proof/refutation of these statements to future
work, we nonetheless formulate and discuss here some preliminary conjectures
towards such proof/refutation.

Conjecture 1. We suspect that neither Statement 1 nor Statement 2 holds in
generality.

In attempting to prove Statement 1 or 2 starting from Theorem 21 and its
proof method, there are two notable potential obstacles precluding the direct
transfer from the BR result to the CR cases. These are

1. that CR (f, A) and CR (f) are defined in terms of the ‘.’ pre-ordering,
whereas BR (f) is defined in terms of ‘≤’; and

2. that CR (f, A) and CR (f) are defined in terms of existence of some R-
dominant resource, whereas BR (f) is defined in terms of the sum of R-
dominant resources.

Note that obstacle 1 may be surmountable: it may be possible to intro-
duce constants and thresholds (as in Definition 1), so as to convert between
statements concerning CR and those concerning BR-like classes. This especially
seems feasible since it is not necessary that one constant/threshold pair work for
all computers under consideration; when constructing t, we may instead find a
pair for each computer and take a suitable maximum. (The implicit suggestion,
then, is that t be defined so as to guarantee a gap sufficiently large to subsume
the leeway conferred by O-notation.)

Obstacle 2, however, seems harder to overcome. It is difficult, in particular,
to demonstrate that an arbitrary Φ that solves a problem in CR (f) satisfies
B∗R,Φ ≤ g◦f for non-trivial g, sinceRmay contain .-incomparable, R-dominant
resources, rendering bounds on B∗R much more restrictive than those on single
R-dominant resources. A proof of Statement 1 or 2, then, would almost certainly
bear little resemblance to those of Theorems 20 and 21.

We suspect that Statement 2, in particular, fails because of the following.
Unlike S (f)—recall (4.4)—, and assuming that |R| > 1, CR (f) concerns more
than one resource, and so we cannot directly use Theorem 20 to prove State-
ment 2. Fixing some computable, non-decreasing g : N→ N, Theorem 20 gives
that there exists t such that A∗Φ ≤ g ◦ t implies that A∗Φ ≤ t. Supposing that
Φ solves a problem in CR (g ◦ t), we have that there exists an A ∈ R that is
R-dominant for Φ and that satisfies A∗Φ . g ◦ t. Assuming that the solution
proposed above to obstacle 1 allows us to state ‘A∗Ψ ≤ g ◦ t’ or similar for some
Ψ equivalent to Φ (possibly subject to introduction and suitable handling of
constants/thresholds), then, Theorem 20 gives that A∗Ψ ≤ t, whence A∗Ψ . t.
However, A, whilst R-dominant for Φ, may not be R-dominant for Ψ; we can-
not conclude that Ψ (nor, hence, Φ) solves a problem in CR (t) (cf. Sect. 4.4.2
Relationship to the Traditional Gap Theorem—Summation).

Conjecture 2. If Statement 1 holds for all A in some R (even if not in gener-
ality), then Statement 2 holds for this R.

CHAPTER 4. DOMINANCE 170

Conjecture 2 certainly does not follow trivially from the relevant definitions
(notably that of CR (f)), since Statement 1’s holding for all A ∈ R guarantees
only that, for each A, there exists (an A-dependent) t as described, and not
necessarily that there exists a single t that behaves as described for every A
(whence Statement 2 would hold for R). However, one approach to a potential
proof of this conjecture is to define t (n) to be the minimum of a set (as in
the proof of Theorems 20 and 21), though where the set is bounded below not
only by t (n− 1) but also by suitable values corresponding to each A ∈ R; by
construction, then, we ensure that t is large enough simultaneously to work for
all A.

As a nod towards a converse of Conjecture 2, if Statement 2 holds for R,
then one would expect Statement 1 to fail for some A ∈ R only when R is very
contrived and unnatural (if at all). We defer formalization of this sentiment,
along with further treatment of the above conjectures, to future work.

Conjecture 3. Statements 1 and 2 hold for all singleton sets R.

Recall that, if R is a singleton set (say R = {A}), then A is vacuously R-
dominant for any computer. In the case of BR, this means that Theorems 20
and 21 coincide (see Sect. 4.4.2 Relationship to the Traditional Gap Theorem—
‘|R| = 1’ Case). The implication is not as direct in the cases of CR (f, A)
and CR (f), because of obstacle 1 above (though only this obstacle: obstacle 2
is, of course, not an issue when |R| = 1); nonetheless, the constant/threshold
suggestion following Conjecture 1 may again be applied, hence Conjecture 3.

Proposition 18. If Statement 1 fails for some computable, non-decreasing
function g, then it fails for any computable, non-decreasing function g′ such
that g′ ≥ g.

Similarly, if Statement 2 fails for some computable, non-decreasing function
g, then it fails for any computable, non-decreasing function g′ such that g′ ≥ g.

Proof. (We prove the Statement-1 case; the proof of the Statement-2 case differs
only in the omission of the ten occurrences of ‘, A’ and in the evocation of
Theorem 13 instead of Theorem 12.)

g′ ≥ g gives that CR (g′ ◦ f,A) ⊇ CR (g ◦ f,A) (recall Theorem 12), and so
CR (g′ ◦ f,A) \ CR (f, A) ⊇ CR (g ◦ f,A) \ CR (f,A). Hence, if CR (g ◦ f, A) \
CR (f,A) 6= ∅, then CR (g′ ◦ f,A) \ CR (f, A) 6= ∅.

Consequently, if looking for a counterexample to show that Statement 1
or 2 fails, then we may profitably consider large g; and, if trying to show by
contradiction that Statement 1 or 2 holds, then we may profitably consider a
minimal g for which the statement fails.

Other Future Work.

Aside from Statements 1 and 2 and related conjectures, a further question for
future investigation is suggested when one recalls (e.g., from [82]) that the tra-
ditional Gap Theorem remains true when generalized to computations on sets
of ordinals: does this generalized theorem hold in the context of dominance
classes?

Yet another direction for future work is to ascertain conditions—on choice
of resource and, more relevantly to the present context, on details of the way in

CHAPTER 4. DOMINANCE 171

which dominance is implemented—that lead to hierarchy theorems (analogous
to the time/space hierarchy theorems, which guarantee for every time/space-
bounded complexity class a strictly larger time/space-bounded class) and to a
suitable notion of ‘resource-constructibility’.

4.4.4 Conclusion

Summary.

In Sect. 4.4.1, we recall the Gap Theorem of Trachtenbrot [125] and Borodin
[34], which guarantees arbitrarily large gaps in the hierarchy of standard com-
plexity classes S (f). We recall from Definition 26 dominance complexity classes
CR (f,A), CR (f) and BR (f), with a view to investigating whether analogous
gap theorems hold for these classes.

In Sect. 4.4.2, we demonstrate that the Dominance Gap Theorem (that is,
the gap theorem corresponding to the hierarchy of classes of the form BR (f))
holds.

In Sect. 4.4.3, we consider (amongst other directions for future work) the
gap theorems for CR (f, A) and CR (f), conjecturing that, in generality, they
fail.

Comments.

Countability of Computers. Recall that the proofs of Theorems 20 and 21
rely on there being an enumeration Φi (i ∈ N) of computers, and, hence, on their
countability. This is clearly the case with Turing machines: each such machine
can, due essentially to the finite nature of its description, be uniquely encoded as
a natural number. In a sense, however, this seems not to be the case for certain
other computers. Consider, for example, a family {Φx | x ∈ R } (or even just
{Φx | x ∈ [0, 1] }) of analogue computers where Φx adds x to its (real-number)
input by mechanical means; there is clearly, in theory at least, a continuum of
such computers. However, the storage and retrieval of real numbers to infinite
precision is an abstraction of the analogue computational model that cannot be
realized in practice; whatever our achievable precision when dealing with real
numbers, we are left with a sub-family of ‘realizable’ Φx, which are enumerable.

General Comments. From a practical viewpoint, the chief result of Sect. 4.4
is Theorem 21; from a theoretical viewpoint, one significant result concerns the
scope of the theorem’s proof, on which we now comment.

The proof method of the Gap Theorem has a broader applicability than
is commonly acknowledged; this we have seen abstractly in Sect. 4.4.2 Rela-
tionship to the Traditional Gap Theorem—Generalization, and concretely in
the proof of Theorem 21. This unrealized potential is understandable, since
the method’s typical use—namely, proving the Gap Theorem—suffices for stan-
dard, Turing-machine-type complexity theory. When analyzing the complexity
of non-standard computers, however, and, in particular, when considering such
computers’ R-complexity, we may nonetheless adapt the proof method in order
to demonstrate the validity of the analogous gap theorem.

What we note is that the spirit of the Gap Theorem holds in contexts other
than that in which it was originally formulated. The statement of the theorem

CHAPTER 4. DOMINANCE 172

is limited artificially so as to reflect common usage of the tools of complexity
theory, not of necessity by the proof’s scope. In particular, this observation
yields Theorem 21.

More generally and fundamentally, however, note that the Gap Theorem
offers an example that supports an underlying thesis, namely that:

when analyzing the complexity of unconventional computers, we should use
unconventional complexity-theoretic techniques (or at the very least check that

the standard, Turing-machine-type techniques still work in the same way).

What we note from Theorem 21 is that the existing tool of the Gap Theorem
can still be evoked in the context of dominance (specifically, in the context of
the hierarchy of classes BR).

Aside. We comment above that our consideration of the Gap Theorem exem-
plifies the practice of verifying that traditional complexity-theoretic techniques
work also in an unconventional-computing setting. The theorem is a suitable
choice for such verification due to its fame within complexity theory and its con-
tinued relevance to researchers (e.g., [114]) more than 40 years after its proof;
on the other hand, we could (and, arguably, would) have chosen to verify a
complexity-theoretic tool that is routinely and directly used more than the Gap
Theorem. Whereas the Gap Theorem is an important part of the edifice of
complexity theory and has other results built thereupon, a technique such as
reduction, for example, is used directly—rather than merely being built upon—
on a daily basis by complexity theorists.

In any case, the notions of unconventional-computer complexity theory ex-
pounded, and related approaches advocated, in the present work allow verifi-
cation of whichever tools and techniques are required by the practitioners of
non-standard computation who chose to adopt aspects of the present work.

4.5 Normalization—Resources Revisited

We see above that dominance offers a means of defining a computer’s over-
all complexity (Definition 24), and thence a means of comparing computers’
efficiency (Definition 25). We show below, however, that, for the notion of
dominance to function in an expected and desirable way, we need to be more
stringently restrictive than above—notably, more restrictive than are Blum’s
axioms—in our notion of resource (Sect. 3.4).

The content of this section owes much to [23].

4.5.1 The Problem:
Dominance versus Unrestricted Resource

Let S (x) ∈ N be the number of cells of space used, and T (x) ∈ N the number
of time steps elapsed, during a computation (by, say, some Turing machine Φ)
with input value x.21 As far as Sect. 3.4 (which, in particular, stipulates that

21Note that our consideration of the resources of space and time is intended to be illustrative
of general, non-resource-specific concepts as explored in the present work. The choice of these
particular resources is arbitrary, and we do not, in particular, rely here or in the related
discussion in Sect. 4.5.2 on results—S ≤ T ≤ 2S , etc.—that depend upon properties of the
specific nature of these resources.

CHAPTER 4. DOMINANCE 173

Blum’s axioms be satisfied) is concerned, S is a legitimate resource, as is S′

given by S′ (x) := 2S(x); each is an internally consistent measure of space usage,
and the mapping ι : S (x) 7→ S′ (x) from N to N is isotone (so that ordering input
values according to their respective values of S has the same result as ordering
by values of S′)—we have two seemingly viable, isomorphic (via ι) resources
with which to quantify space usage.

Now, if we make inter-resource comparisons according to dominance (recall
Sect. 4.2), then we may find that S′ dominates T (more precisely, that S′ is
{S′, T}-dominant and T is not), but that T dominates S (i.e., T , but not S,
is {S, T}-dominant)—this is the case, for example, when, for input x of size n,
S (x) ∈ O (n) (whence S′ (x) ∈ 2O(n)) and T (x) ∈ O (

n2
)
; certain multiplication

algorithms, for example, have such linear space and quadratic time complexity.
What we note is that space measured using S′ appears to make a greater

contribution than run-time to the system’s complexity, whereas space measured
using S does not. That is,

one can engineer which resource (in our example, space or run-time) appears
more important ,

and, hence, which contributes (as an addend) to B∗Φ: by applying to the more
slowly growing, non-dominant resource a sufficiently fast-growing, monotonic
function—in our example, n 7→ 2n (more properly, the effective application of
this mapping is by way of our choice of {S′, T}, rather than {S, T}, as resource
set)—, this resource becomes dominant.

We stress that each of S and S′ is, in isolation, unproblematic; it is these
measures’ relative significance that behaves questionably.

(Of course, if our notion of resource is sufficiently permissive that dominance
singles out arbitrary, rather than relevant, resources—as is the case above—,
then R-complexity and .-ordering (both defined in terms of dominance) suffer
a corresponding, knock-on unreliability.)

We introduce now normalization as a way of restricting the notion of resource
so as to avoid the undesirable property discussed above.

Remark 41. Note that the problem described here—that the impact of the sys-
tem’s space consumption may be exaggerated by considering 2S rather than S—
is one side of a coin; the other side, which we may just as well have considered,
is that the space consumption may be understated by considering, say, dlog Se
instead of S. Our answer to the former problem (namely, normalization—see
Sect. 4.5.2) is essentially to stipulate that resources attain all natural-number
values (hence, we permit S but not 2S); the answer to the latter, the inves-
tigation of which we defer to future work, may be to consider the number of
ways of attaining each natural-number value—for example, a value of k ≥ 1 for
dlog Se follows from any one of 9 × 10k−1 values for S, whereas we should like
this number to be independent of k.

4.5.2 The Solution: Normalization

To resolve inconsistencies such as that above, in which space can, depending
upon how it is measured (or even upon how measured values are labelled), seem
either more or less important than time, we introduce a notion of normality of re-
source, advocating consideration only of normal resources during non-standard

CHAPTER 4. DOMINANCE 174

computers’ complexity analyses. We do this in such a way that S and T above
are deemed normal (and hence their mutual comparison is deemed valid), but
that S′ is not (and hence the comparison between S′ and T is deemed mean-
ingless). After some thought, it seems natural—hopefully uniquely so—that S′

should normalize22 to S; our definition satisfies this.
Roughly speaking, a normal resource is one that attains all natural-number

values: a resource is normal if and only if, for any natural number n, there exist
a computer Φ and an input value x such that Φ, in processing x, consumes
exactly n units of the resource. The choice of this particular property as our
notion of normality is motivated as follows. Note that S and S′ in the above
example differ in their respective ranges: assuming that there exist for Turing
machine Φ from our example inputs x of all natural-number sizes, and supposing
for simplicity that S (x) = σ (x), we have that S maps surjectively to N and
S′ surjectively to

{
20, 21, 22, . . .

}
; the former property seems the more natural

(quite literally!), and we use it as the model of our notion of normalization.
We now formalize these ideas.

Definition of Normalization.

Definition 27. Let C be a class of computers.23 For each Φ ∈ C, let XΦ be the
set of input values for Φ.

• Let A be a resource that can take as its subscript any computing system
Φ in C (so AΦ maps XΦ into N). Define the C-normalized form of A to be
the resource AC given by ACΦ : XΦ → N,

ACΦ (x) := |{AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < AΦ (x) }| .24 (4.6)

• Resource A is C-normal if A = AC (by which we mean AΦ (x) = ACΦ (x)
for all Φ ∈ C and x ∈ XΦ).

Example of Normalization.

We give now an example, which relates to previous discussion, of this definition’s
use. Recall from our example (in Sect. 4.5.1) the resources S, S′ and T , and
let T be the class of Turing machines. We demonstrate that the T -normalized
form of S′ (and of S) is S.

Proposition 19. S′T = ST = S .

Proof. Note that, for each n ∈ N, there exists a Turing machine that, regardless
of input, writes to exactly n distinct cells and then halts (for example, the
machine may, by way of countdown, take n distinct states—once each—, in
each state writing to a new cell; and then halt). Hence,

{SΨ (y) | Ψ ∈ T ∧ y ∈ XΨ } = N , (4.7)
22Normalization is a process whereby non-normal resources can be converted into normal

resources that are order-isomorphic with the originals.
23C may, for example, be the class of Turing machines, or a class of analogue computers

(such as are introduced in [107, 117]). This is not to say that C necessarily corresponds to a
computational model, though it may well.

24In words, ACΦ (x) is the number of distinct values less than AΦ (x) taken by A, ranging
over all computers in C and all input values. This is a measure of ‘how much use A makes’ of
the natural numbers less than AΦ (x).

CHAPTER 4. DOMINANCE 175

and so, by definition of S′,

{S′Ψ (y) | Ψ ∈ T ∧ y ∈ XΨ } = { 2n | n ∈ N } . (4.8)

Hence, for any Φ ∈ T and any x ∈ XΦ,

S′TΦ (x)
(4.6)
= |{S′Ψ (y) | Ψ ∈ T ∧ y ∈ XΨ ∧ S′Ψ (y) < S′Φ (x) }|

(4.8)
= |{ 2n | n ∈ N ∧ 2n < S′Φ (x) }|

defn. of S′=
∣∣{ 2n

∣∣ n ∈ N ∧ 2n < 2SΦ(x)
}∣∣

=
∣∣{20, 21, 22, . . . , 2SΦ(x)−1

}∣∣
= SΦ (x)

and

STΦ (x)
(4.6)
= |{SΨ (y) | Ψ ∈ T ∧ y ∈ XΨ ∧ SΨ (y) < SΦ (x) }|

(4.7)
= |{n ∈ N | n < SΦ (x) }|
= |{0, 1, 2, . . . , SΦ (x)− 1}|
= SΦ (x) ;

S′T = ST = S, as claimed.

By a similar argument, {TΨ (y) | Ψ ∈ T ∧ y ∈ XΨ } = N, whence T T = T .
Note that the inconsistency discussed in Sect. 4.5.1 would not have arisen had

we stipulated that resources be T -normal, in which case we may have considered
resources S and T—of which T dominates—, but not S′. The criterion of T -
normality restricts our choice of resource such that the ‘dominance engineering’
of Sect. 4.5.1 is not possible.

Properties of Normalization.

Theorem 22 (isotonicity). C-normalization (by which we mean the taking of
C-normalized forms) is strictly isotone: if AΦ1 (x1) < AΦ2 (x2), then ACΦ1

(x1) <

ACΦ2
(x2).

Proof. Suppose that AΦ1 (x1) < AΦ2 (x2). For i ∈ {1, 2}, let

Ii = {AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < AΦi (xi) }
(so that ACΦi

(xi) = |Ii|). Since AΦ1 (x1) < AΦ2 (x2), I1 ⊆ I2. Further,
AΦ1 (x1) ∈ I2 \ I1, so I1 (I2. Hence, ACΦ1

(x1) = |I1| < |I2| = ACΦ2
(x2),

as required.25

Corollary 4. Consider the following statements.
(i) AΦ1 (x1) < AΦ2 (x2). (i′) ACΦ1

(x1) < ACΦ2
(x2).

(ii) AΦ1 (x1) = AΦ2 (x2). (ii′) ACΦ1
(x1) = ACΦ2

(x2).
(iii) AΦ1 (x1) > AΦ2 (x2). (iii′) ACΦ1

(x1) > ACΦ2
(x2).

As a corollary to Theorem 22, we have that (i) ⇔ (i′), (ii) ⇔ (ii′) and
(iii) ⇔ (iii′).

25It should be noted that |I1| < |I2| follows from I1 (I2 because I1 and I2 are finite. This
is the case since each Ii is a set of natural numbers bounded above by AΦi

(xi) ∈ N. (Of
course, there exist infinite sets P and Q that satisfy P (Q, |P | ≥ |Q|; let P be the set of
primes and Q the set of rational numbers, for example.)

CHAPTER 4. DOMINANCE 176

Proof. Theorem 22 establishes (i) ⇒ (i′) and, simply by exchanging the roles of
subscripts ‘1’ and ‘2’, (iii) ⇒ (iii′). (ii) ⇒ (ii′) is clear: if (ii), then

ACΦ1
(x1)

(4.6)
= |{AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < AΦ1 (x1) }|
(ii)
= |{AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < AΦ2 (x2) }|

(4.6)
= ACΦ2

(x2) ;

that is, if (ii), then (ii′).
From (i) ⇒ (i′), (ii) ⇒ (ii′) and (iii) ⇒ (iii′), we obtain the respective

contrapositives: ¬(i′) ⇒ ¬(i), ¬(ii′) ⇒ ¬(ii) and ¬(iii′) ⇒ ¬(iii); and, by
trichotomy of the natural numbers, we have that exactly one of (i) – (iii) and
exactly one of (i′) – (iii′) hold. Hence, where (α), (β) and (γ) stand for any
permutation of (i), (ii) and (iii), and (α′), (β′) and (γ′) for the same permutation
of (i′), (ii′) and (iii′), we have that

(α′)
trichotomy⇒ ¬(β′) ∧ ¬(γ′)

contrapositives⇒ ¬(β) ∧ ¬(γ)
trichotomy⇒ (α) .

So (i′) ⇒ (i), (ii′) ⇒ (ii) and (iii′) ⇒ (iii).

Theorem 23 (idempotence).

1. C-normalization is idempotent: for all A and C, ACC = AC (explicitly,
ACCΦ (x) = ACΦ (x) for all Φ ∈ C and x ∈ XΦ).

2. Hence, each C-normalized form is C-normal.

Proof.

1. Fix arbitrary elements Φ of C and x of XΦ. Note that the sets

{AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < AΦ (x) }

and {
ACΨ (y)

∣∣ Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < AΦ (x)
}

have the same cardinality (this is by the Schröder-Bernstein theorem (The-
orem 5.1.2 of [106]), which is evocable since Corollary 4 gives that the
mappings AΨ (y) 7→ ACΨ (y) and ACΨ (y) 7→ AΨ (y) are injective); we use
this equipollence below, at equality ‘eq.’.

ACCΦ (x)
(4.6)
=

∣∣{ ACΨ (y)
∣∣ ACΨ (y) < ACΦ (x)

}∣∣
Cor. 4=

∣∣{ ACΨ (y)
∣∣ AΨ (y) < AΦ (x)

}∣∣
eq.
= |{AΨ (y) | AΨ (y) < AΦ (x) }|

(4.6)
= ACΦ (x) .

(For clarity, we suppress in this equation the fact that dummy variables
Ψ and y are taken from C and XΨ respectively.) Hence, ACC = AC , as
required.

CHAPTER 4. DOMINANCE 177

2. Consider an arbitrary C-normalized form AC . By point 1, AC = ACC , and
so AC is, by the second point of Definition 27, C-normal.

Definition 28. For n ∈ N, let [[n]] = { i ∈ N | i < n }. Extend this notation
by letting [[∞]] = N. Hence, [[0]] = ∅, [[1]] = {0}, [[2]] = {0, 1}, . . . , [[n]] =
{0, 1, 2, . . . , n− 1}, . . . , [[∞]] = {0, 1, 2, . . .}.

(The set-theoretically minded reader may wonder why we introduce [[0]],
[[1]], [[2]], . . . , [[∞]] when there already exist ordinals 0, 1, 2, . . . , ω; we use the
‘[[·]]’ notation in order to retain the distinction between ordinals and cardinals.)

Lemma 14. Let X be any subset of N. If, for every i ∈ X, [[i]] ⊆ X, then X
is of the form [[n]] for some n ∈ N∞ := N ∪ {∞}.
Proof.

• If X = ∅, then the result is clear: X = ∅ = [[0]].

• If X is infinite, then, for every j ∈ N, there exists i ∈ X such that i > j;

then j ∈ [[i]]
hypothesis

⊆ X, and so X = N = [[∞]].

• If X is finite and non-empty, then it has a maximal element, m, say.
By hypothesis, [[m]] ⊆ X (and so [[m + 1]] ⊆ X since m ∈ X), and,
by maximality of m, X ∩ {m + 1, m + 2,m + 3, . . .} = ∅. Hence, X =
[[m + 1]].

These cases are exhaustive, and, in each, X = [[n]] for some n ∈ N∞.

Theorem 24 (normal ⇔ onto [[n]]). A is C-normal if and only if the image set
(over all computers and input values) A := {AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ } is [[n]]
for some n ∈ N∞.

Proof. (‘Only if’ direction: ‘A is C-normal ⇒ A = [[n]]’.) Suppose that A is
C-normal. We wish to show that, for any i ∈ A, [[i]] ⊆ A, for then Lemma 14
gives that A is of the form [[n]] for some n ∈ N∞.

Suppose that i ∈ A; say AΦ (x) = i, with Φ ∈ C and x ∈ XΦ. Now,

i = AΦ (x)
hypothesis

= ACΦ (x)
(4.6)
= |{AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < AΦ (x) }|
= |{AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < i }| .

So the set {AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < i }
• has cardinality i,

• is a set of natural numbers, and

• is strictly bounded above by i,

and, hence, this set is [[i]]; but, by definition of A, this set can also be expressed
as { j ∈ A | j < i }, which is a subset of A, and so [[i]] ⊆ A, as required.

(‘If’ direction: ‘A = [[n]] ⇒ A is C-normal’.) Conversely, suppose that
A = [[n]], where n ∈ N∞. We wish to show that A is C-normal.

CHAPTER 4. DOMINANCE 178

Fix arbitrary Φ ∈ C and x ∈ XΦ.

ACΦ (x)
(4.6)
= |{AΨ (y) | Ψ ∈ C ∧ y ∈ XΨ ∧AΨ (y) < AΦ (x) }|

defn. of A= |{ j ∈ A | j < AΦ (x) }|
hypothesis

= |{ j ∈ [[n]] | j < AΦ (x) }|
AΦ(x)∈A

= |[[AΦ (x)]]|
= AΦ (x) .

A is C-normal, as required.

4.5.3 Why Normalization?

As we see in Sect. 4.5.1, leaving unchecked (other than the restrictions described
prior to the present section) our choice of resources diminishes the usefulness of
dominance and related notions. This motivates our consideration of C-normal
resources, restriction to which restores certain of those desirable properties for
which such notions were introduced. This is further bolstered by the following
intuition.

If we were to allow as a resource an arbitrary function with codomain N∪{∞}
and that satisfies Blum’s axioms, then the resource effectively returns ‘cardinals’:
the resource counts time steps, tape cells or similar, and we have an intrinsic
unit of measurement. This seems resource-dependent and not conducive to com-
parison (for example, how many time steps should we deem of equivalent cost to
one tape cell?). If, on the other hand, we admit only normal resources,26 then
we have ‘ordinals’, with 0 representing the least possible resource consumption,
1 the second-least, 2 the third-least, etc.; this is independent of the specific
choice of resource, and of any unit of measurement suggested thereby, and so,
we suggest, fairer, resource-heterogeneous comparison becomes available, and
much of the deceptive complexity behaviour alluded to in Sect. 4.5.1 is avoided.

4.5.4 Summary of Resource

When measuring the cost of performing a computation by Turing machine or
similar, our choice of resources is guided by decades of collective experience
and intuition, and by Blum’s axioms (of which the necessity, for our purposes,
is common sense, even if the sufficiency is dubious). In the context of non-
Turing computation, however, exactly what one should admit as a resource is a
much less studied, much more poorly understood problem; starting with Blum’s
axioms seems reasonable (moreover, not starting with them arguably seems
unreasonable), but we see above that they alone are not enough. Accordingly,
we apply further restriction, namely, that considered resources be normal.

For convenience of reference, we summarize now our restrictions on the no-
tion of resource. In the present work, and when analyzing the complexity of
unconventional computers, we advocate that a valid (commodity) resource

• be a function, dependent upon the choice of computer, that maps input
values to natural numbers (or to ∞) (see Sect. 3.4.1);

26We certainly advocate this restriction, and summarize the accordingly modified notion of
resource below—see Sect. 4.5.4.

CHAPTER 4. DOMINANCE 179

• satisfy Blum’s axioms27 (see Sect. 3.4.1 Blum’s Axioms); and

• be C-normal (see Sect. 4.5.2 Definition of Normalization), where C is the
appropriate encompassing class of computers.

These are necessary conditions for a resource to be ‘valid’, though are not be-
tween them sufficient28; a full definition of resource remains an open problem,
which, we believe, will be solved29 only by continual and ad hoc addition of
restrictions prompted by inconsistencies encountered (much like that described
in Sect. 4.5.1), and absent properties desired (such as the restrictions’ not alone
guaranteeing any desirable results concerning resource constructibility, by which
we mean the obvious generalization of time/space constructibility; compare with
the approach to constructibility of Kojiro Kobayashi [90], whereby resources can
be ‘counted down’ by the computers using them), by practitioners of unconven-
tional computation/complexity theory.

This insufficiency notwithstanding, we reiterate that such restriction pre-
cludes some deceptive complexity behaviour, such as ‘dominance engineering’
via application of quickly growing, isotone functions, and renders resource mea-
sures ‘ordinal’ rather than ‘cardinal’, allowing seemingly fairer comparison. For
these reasons, we take the above restrictions as the basis of our notion of resource
in the present work.

Aside. As a final, contextual note on normalization, we comment that, although
the original motivation for the concept lies in unconventional computing, with
its many associated resources, the ‘{S, T} versus

{
2S , T

}
’ inconsistency applies

in the conventional case also—key is not that the resources be many, but that
they be compared. Normalization is therefore of wider interest than the context
of the present work may suggest. We intend to present in future work the
chief ideas of normalization in a form of interest to the wider (conventional)
computational-complexity community.

4.6 Discussion

4.6.1 Summary

We motivate in Sect. 4.1 the practice of comparing the overall efficiency of
computers (both standard and non-). So as to allow such comparison, notably
when the computers are unconventional, we define in Sect. 4.2 this chapter’s
focal concept, dominance, as a criterion for determining a resource’s ‘relevance’
to a computation, whence we may define computations’ overall complexity ; in
Sect. 4.3, we define and investigate the corresponding complexity classes.

27From here, recall, we get many standard results from [31]: resources as advocated here
are a subset of those for which Blum’s theorems hold.

28An illustration of this insufficiency arises from the fact that, though normalization pre-
cludes exaggeration of a resource’s importance via application of functions such as n 7→ 2n, it
does nothing to preclude understatement of a resource’s importance via application of func-
tions such as n 7→ dlog ne—recall Remark 41. Another illustration is that transformations
of resources may result in C-normality (and may adhere to our other restrictions) whilst not
being order-preserving.

29If, that is, the problem is solved at all. It may, in particular, be the case that there is a
form of incompleteness, along the lines of ‘all finite lists of restrictions upon resource admit
undesirable dominance engineering’; cf. Arrow’s theorem. We thank Cristian Calude for this
suggestion, which is to be investigated in future work.

CHAPTER 4. DOMINANCE 180

We note in Sect. 4.4 that with our novel approach to complexity theory comes
a need to test whether standard complexity-theoretic techniques and tools can
be used unmodified; the Gap Theorem [34,125] provides us with an illustrative
example.

Finally, in Sect. 4.5, we observe that, in order to avoid certain undesirable
complexity behaviour, dominance demands a more specific notion of resource
than is described in Chap. 3; we restrict the notion accordingly by defining
normality and stipulating that resources be normal.

4.6.2 Comments

Our notion of dominance formalizes resources’ relevance to computational pro-
cesses: resources that are dominant impose the greatest asymptotic cost, so
much so that non-dominant resources can be disregarded as irrelevant.30 Thus,
much as the pre-ordering . can be used to compare the respective time complex-
ity of Turing machines (or similar) and thereby compare their overall efficiency,
. can be used also to compare the respectiveR-complexity of arbitrary-paradigm
computers and thereby compare their overall efficiency.

Furthermore, we have specified (in Definition 26) complexity classes in which
are categorized problems according to their cost in terms of relevant (i.e., dom-
inant) resources. Consequently, we have a framework in which meaningful,
consistent comparison of model-heterogeneous sets of computers is possible; the
framework’s complexity classes can accommodate computers conforming to var-
ious computational paradigms, and can provide structure reflecting the cost of
computation in terms of various resources.

Recall from Sect. 4.1.1 Complexity: Problems versus Solution Methods that
the model-heterogeneity of our framework offers an immediate and important
advantage: a problem’s complexity, which is arguably the most commonly
sought object in computational complexity theory, is bounded above by the
complexity of the most efficient, known solution method for the problem; the
ability to compare model-heterogeneous—and, hence, larger—sets of solution
methods results in a lower minimal complexity of methods, and, hence, tighter
upper bounds on the complexity of problems themselves. A further advantage
(especially for the unconventional-computation community) of the definitions
proposed in the present project is that a newly-designed, non-standard com-
puter that solves a problem can be meaningfully compared with the benchmark
of an existing, standard computer that solves the same problem—see Sect. 4.1.1
Turing-Machine Benchmarks.

Having developed the theoretical basis for our complexity framework, we
turn our attention in Chap. 5 to some concrete case studies.

30We must warn against the overuse (or, rather, inappropriate use) of dominance: the notion
is suitable for comparing computers’ complexity, but not for eliminating resources from our
initial consideration (as when considering which resources are of interest for given computa-
tional paradigms—see Sect. 3.6). For example, we recall that a Turing-machine computation’s
space usage is always bounded above by its run-time, and so T is {S, T}-dominant for such
computers (more generally, if the consumption of a resource during any unit time period
is bounded above by a constant, then time will dominate the resource); this is not to say,
however, that there is not useful information to be gleaned by considering space complexity—
during computers’ comparison, the use of dominance, and, hence, the neglect of space and
similar, is appropriate, but, during individual computers’ analysis, non-dominant resources
may well be of interest.

Chapter 5

Case Studies

5.1 Introduction

We introduce above the constituent concepts—resource, dominance, overall
complexity, normalization, etc.—of our model-independent framework of com-
plexity theory. In this chapter, we apply the notions to specific contentious
and controversial case studies, on the formalization/resolution of which the ap-
proach to complexity expounded in the present work (and especially the role of
precision and other non-standard resources in these disputes) may shed light.
Speaking of shedding light, we begin with a consideration of the ray-tracing
problem.

5.2 Ray-Tracing
—Computing the Uncomputable?

5.2.1 Background

One paradigm of optical computation, discussed in [110], sees the values with
which it computes (including intermediate values analogous to a Turing ma-
chine’s mid-computation tape contents) encoded as spatial coordinates of rays
of light, and sees the operations applied to these values implemented using, for
example, reflection/refraction by a surface.

The paper considers the ray-tracing problem, which asks, given the set-up
of an optical system and the initial position and direction of a ray of light,
whether the ray reaches a given point; in particular, the problem (which is, in
a sense, naturally and efficiently solved by such an optical system) is shown
to be undecidable1 by Turing machine, which suggests of the abstract model
super-Turing power.

We note in defence of [110] that the authors are clear from the outset that
they deal with a theoretical model that is based on the assumption that optics
works in an idealized, geometric way (with no wave phenomena, etc.),2 which

1Even, [110] shows, if the objects forming the optical system are finitely expressible (e.g.,
via rational quadratic/linear equations) may this undecidability still be present.

2For example, we read (in the description of the ray-tracing problem) that

“[r]ays are assumed to have infinitesimal wavelength and are treated as lines

181

CHAPTER 5. CASE STUDIES 182

context justifies their not having considered the precision issues inherent in their
systems. When such issues are considered—when the distinction is drawn be-
tween mathematical model and implemented computer (recall Sect. 3.2.3 Math-
ematical/Physical Mismatch)—, however, one may expect that the problem ac-
tually being solved by the system, as impaired by its physically imposed limita-
tions, is no longer undecidable; formalization within our complexity framework
of the situation allows us to demonstrate in Sect. 5.2.2 that this is the case.

5.2.2 Resolution

(We apologize for the ambiguous wording here. ‘Resolution’ in this section is in
the sense of being ‘of controversies’, rather than in the optical-computing sense
of being ‘of light sensors or similar’.)

The ray-tracing methods described in [110] make use of encodings whereby
the entire tape contents3 are encoded as the angle of a single ray of light, with
one bit of precision in this angle being used for every tape cell to which is
written.

We consider the precision complexity of this process in the simple case where
we merely store as an angle an n-bit value (which one may identify with n cells’
contents) only to retrieve it. Suppose that the system is two-dimensional, and,
in particular, that the angle θ that encodes our value is a plane angle in the
range [0, 2π) (where the unit is the radian, and where we deem the interval to
be ‘circular’ in that 0 and 2π are coincident, and, more generally, arithmetic is
performed modulo 2π).

The intention is that the input (i.e., stored) value x =
∑n−1

i=0 2−i−1bi (for
bits bi) in the range [0, 1) be encoded as θx := 2π

(
x + 2−n−1

)
—this is central

in the range of angles 2πy such that x and y agree in the n most significant
bits.4

Suppose now that we have an additive input error of εi: an input value
x ∈ [0, 1) is encoded as an (implemented) angle θ′x ∈ [θx − εi, θx + εi). Suppose,

with zero width. This implies that there is no diffraction caused by the wave
nature of light. All surfaces are perfectly smooth and do not cause the scattering
of rays upon reflection or refraction”.

Later, we read of the paradigm that,

“[t]heoretically, these optical systems can be viewed as general optical computing
machines, if our constructions could be carried out with infinite precision, or
perfect accuracy. However, these systems are not practical, since the above
assumptions do not hold in the physical world. Specifically, since the wavelength
of light is finite, the wave property of light, namely diffraction, makes the theory
of geometrical optics fail at the wavelength level of distances”.

3We implicitly suppose, then, that computations via ray-tracing methods are instantiations
of intermediate Turing-machine implementations; this imbues the model with universality (in
the Turing sense), but may increase complexity of some problems—recall from Sect. 2.2.1
Susan Stepney’s thesis that it is more desirable to let computers function ‘naturally’ than to
coerce them into instantiating logic gates or similar.

4We wish to be able to store and retrieve an n-bit value, which entails sufficient precision
to set and measure θx correct to at fewest n bits. Given that we wish (in order to encode n
bits) to be able to distinguish, given measurements of θx, 2n different states, the pigeon-hole
principle dictates that at fewest one such state is represented under the encoding by a set of
angles of measure at most 2π2−n = 21−nπ; further, this bound is attained by, for example,
the scheme whereby each n-bit value x ∈ [0, 1) is encoded by θx ∈

[
2πx, 2π

(
x + 2−n

))
, an

interval of measure 21−nπ. This is implementable with our encoding.

CHAPTER 5. CASE STUDIES 183

similarly, that we have an additive output error of εo: angle θ′x is measured
as an angle in [θ′x − εo, θ

′
x + εo). A measurement of an encoding of x, then,

will be a value m ∈ [θx − ε, θx + ε), where ε = εi + εo; this is decoded (via
m 7→ m

2π − 2−n−1) as x′ ∈ [
x− ε

2π , x + ε
2π

)
.

For x and x′ to agree to n bits (and given that x is encoded centrally in its
range, as above), we need that x′ ∈ [

x− 2−n−1, x + 2−n−1
)
, which entails that

ε
2π ≤ 2−n−1—i.e., that ε ≤ 2−nπ. So (recalling the notation of Sect. 3.3.3)

E (x) =
{

(εi, εo) ∈ R2
∣∣ εi, εo ≥ 0 ∧ εi + εo ≤ 2−nπ

}

(see Fig. 5.1), V (x) = 2−2n−1π2 and P (x) = 22n+1π−2.

Figure 5.1: The set E (x) of errors corrigible for the process of storage and
retrieval of an n-bit value.

Thus, the precision complexity of the process of merely storing and retrieving
a value is exponential in n (i.e., exponential in the number of tape cells written
to by an intermediate Turing-machine implementation).

Of course, this increasing (let alone exponentially increasing) precision com-
plexity has the following consequence: if the precision available to a user of such
a system as described in [110] is a priori bounded (e.g., by technological factors),
which, in practice, it necessarily will be, then the size, too, of problem instance
that can be processed by the system is bounded. The system, then, solves not
some undecidable problem in its entirety, but rather a proper subproblem (ad-
mitting only bounded input instances, and concerning only physically realizable
optical configurations rather than those with coordinates drawn arbitrarily from
the continuum of real numbers or even from the countable infinity of rational
numbers); this subproblem may well be computable—efficiently computable,
even—by Turing machine. This is our resolution of the controversy surrounding
the findings of [110].
Aside. A more striking and sadly lacking resolution would see required preci-
sion being shown to be infinite, not merely in the limit, but also for some finite
input size; this is simply not the case, however (at least, not for the commodity
resource of precision; the manufacturing resource is a different matter—see the
following aside). Whereas an exponentially increasing precision is required to
implement the methods described in [110], it is at least a finite precision—the
method is precluded not in principle, but only technologically, by issues concern-
ing precision. We recall in particular that [110] discusses the computation of the
uncomputable via such methods; one might, given the extended Church-Turing
thesis, therefore expect preclusion in principle, which, as explained, is not the
case.

CHAPTER 5. CASE STUDIES 184

The above aside notwithstanding, however, we reiterate that, concretely and
technologically, precision bounds the system’s processable input sizes; addition-
ally, we note that, abstractly and fundamentally, precision (and, in particular,
its increasing) renders problematic, when input values are sufficiently large, cer-
tain seemingly innocuous assumptions (that diffraction is not present, etc.). The
idealized model of optical computation does indeed seem capable of computing
the uncomputable, but real-life implementations necessarily suffer because of the
‘subtle’ differences (that become less subtle for large input) between the theo-
retical and practical models,5 differences that arise due to apparently harmless
assumptions that quickly become problematic in the presence of exponential
precision complexity. The extended Church-Turing thesis is not, we suggest,
violated, simply because the proposed optical system is not a valid, real-world
computer (by virtue of unrealistic assumptions regarding precision).

Aside. In line with the discussion of Sect. 3.2.4 Justification of Choice, we con-
sider above the role of precision as a commodity resource; the systems of [110]
also incur a significant manufacturing precision cost, however. Theorem 5.7 of
[110] relies on the introduction to an optical system of irrational numbers, which
introduction is achieved via precise construction of lenses/mirrors with specific,
irrational focal lengths (a rational approximation of which, however accurate,
not having the desired effect). The precision required of such systems is, there-
fore, prohibitive as not only a commodity, but also a manufacturing resource
(recall Sect. 3.2.1 Manufacturing Costs).

We emphasize that it is not the aim of the authors of [110] to assess prac-
tically implemented instances of their systems; by their own admission, the
authors are working relative to explicitly stated assumptions, and their findings
are, in that context, perfectly correct. What we formalize here is that these
assumptions, by virtue of their precision implications, render the considered
systems unsuitable as real-world computers, and consequently render the find-
ings of [110] irrelevant to the question of whether hypercomputation is possible
in any real sense.

5.3 An Adiabatic Solution to
Hilbert’s Tenth Problem

5.3.1 Background

The quantum adiabatic theorem (of which an elementary proof is supplied in [6])
says, essentially, that if a quantum system of a certain type evolves sufficiently
slowly, then the final energy state will correspond to the initial energy state. In
particular, if the system begins in the ground state and evolves over sufficient
time, then it will end in the ground state. Though the proof of the theorem given
in [6] is not, by some decades, the first, its presentation is worthwhile due to its
being elementary and aimed at computer scientists rather than physicists6; that
computer scientists are conversant with the theorem is, in turn, desirable—and

5Recall also Sect. 3.2.3 Mathematical/Physical Mismatch.
6The approach, further, offers geometric intuition as to why sufficiently slow evolution

maintains the ground state.

CHAPTER 5. CASE STUDIES 185

that the theorem is to the present context relevant—because the phenomenon
that the theorem guarantees can be used as the basis for computation.

Reference [64] describes production of an initial ground state that encodes
a given instance of a problem (the example considered is 3-SAT) and a system
that evolves such that the final ground state encodes the answer to the problem
(i.e., ‘yes’ if and only if the instance is satisfiable). After verifying the hypotheses
of the theorem (notably that there is, throughout the evolution, a non-zero gap
between the ‘zeroth’—i.e., ground—and first energy states), the theorem gives
that, if evolution is sufficiently slow, then our final state encodes the sought
answer. The system certainly seems to tackle the 3-SAT problem, then; what
of its time complexity—how does the theorem’s “sufficiently slow” scale?

Unfortunately, by the admission of the authors of [64], the subset of instances
for which this time complexity can be readily analyzed (and for which it is found,
for what it is worth, to be polynomial) succumb to efficient—i.e., polynomial-
time—processing by Turing machine; the system, then, is an important proof of
concept of quantum-adiabatic computation, rather than a necessarily efficient
means of solving 3-SAT for general instances.7

In [87,88], Tien Kieu offers a quantum-adiabatic algorithm that purports to
solve Hilbert’s Tenth problem. The problem, posed in [77], asks whether there
exists an integer solution to a given Diophantine equation (i.e., a multivariate
polynomial with integer coefficients); the problem is known (via reductions in
each direction—see [55]) to be equivalent to the Halting problem, which is, in
the Turing-machine realm,8 undecidable (see [127]). The (Turing-) undecidabil-
ity of the problem understandably renders controversial the claims of [87, 88]:
claimed is not merely an improvement in complexity—that quantum-adiabatic
computers are, say, faster than Turing machines—, but an improvement in com-
putability—that, regardless of efficiency, Turing machines can compute strictly
fewer9 functions than can quantum-adiabatic computers.10

Despite Kieu’s claims’ not having been widely accepted by the scientific com-
munity, neither has a formal and precise refutation been given; we suggest that
this is because the resources (especially precision) appropriate to a complexity
analysis of this particular adiabatic quantum system have not been considered,
and, hence, that the notions of the present project can be used to formalize the
reason for which the system does not in fact violate the extended Church-Turing
thesis (which violation is, after all, the essence of the controversy).

7The wider quantum-adiabatic computation technique of [64] (as opposed to the specific
3-SAT case) is generalized in [63]. Whereas the former reference assumes linear interpolation
between initial and final Hamiltonians (i.e., the form taken is (1− s) Hi +sHf , where s ∈ [0, 1]
and where Hi stands for the initial, and Hf the final, Hamiltonian), the latter concerns different
paths between Hi and Hf ; in some cases, this variation of paths results in polynomial time
complexity where the linear path would have entailed exponential run-time.

8The standard proof of the problem’s undecidability relies on Turing machines’ being only
countably many, and does not preclude probabilistic/quantum/etc. solution.

9Fewer, that is, in the sense of being a strict subset, rather than of having a smaller
cardinality; recall Footnote 25 of Chap. 4.

10Note that quantum-adiabatic systems are essentially probabilistic, guaranteeing the correct
answer to a computation only in the limit, where computation time becomes infinite; the
method of [87, 88] in particular entails the less-than-ideal practice of executing for longer
and longer durations until a state (which we infer to be the sought ground state) emerges
with probability at least 1

2
. A facile ‘resolution’ of the controversy surrounding the system

of [87, 88], then, is that Hilbert’s undecidable problem is not, in fact, being solved at all; we
wish, however, for more insight than this.

CHAPTER 5. CASE STUDIES 186

5.3.2 Resolution

We seek to apply our framework of complexity to resolve the controversial issues
surrounding the system of [87, 88]. We claim that the issue is one of precision;
this is argued informally in [79], where we read that

• “[Kieu] is charging a simple and finite physical system (a har-
monic oscillator) with an infinite amount of data. But this is a
fundamental point: the basis of Kieu’s claim is that an infinite
amount of information can be compressed into a finite physical
system”;

and

• “Kieu’s infinite data storage needs zero error to work, and really
does depend on setting up and maintaining an infinitely precise
system”.

Most tellingly, we read in [79], of a certain process used in Kieu’s system,
that

“[t]he first step is to encode . . . the 2 as 2.00000 . . . and the 1 by
1.00000 The slightest error in this transcription will (for suffi-
ciently large values of M and N) completely wreck the calculation
of the polynomial and invalidate the search for its minimum value”.

That this is indeed so, and that this corresponds to monotonically—and, we
suspect, exponentially—increasing precision complexity (in our formal sense—
recall Sect. 3.3.3) is confirmed by an examination of the description, in Sect. II
of [88], of the process. The intuition of [79], then, is captured by our resource
of precision.

Just as with the precision complexity of the systems of Sect. 5.2, the in-
creasing precision complexity suffered by Kieu’s system has the following con-
sequence: if user precision is a priori bounded, which, in practice, it necessarily
will be, then the workable problem-instance size is also bounded. The problem
solved by the system is, analogously to the situation of Sect. 5.2, a proper sub-
problem of Hilbert’s Tenth, and may well be efficiently computable by Turing
machine. Thus we dispel this, as the above, controversy.

5.4 Cabello versus Meyer—the Impact of Finite
Precision on the Kochen-Specker Theorem

5.4.1 Background

In Sect. 5.4, we consider the impact upon the Kochen-Specker theorem (see
Sect. 5.4.1 Kochen-Specker Theorem and [89]) of finite precision. Specifically, it
is not clear whether ‘finite-precision measurement nullifies the Kochen-Specker
theorem’—Meyer, in the title of [96], claims exactly that, whereas Cabello, in
the title of [44], negates the statement. In Sect. 5.4.2, we take the first steps
toward formalization and resolution (relative, at least, to the assumptions of
our framework) of the dispute.

We outline now some preliminary notions.

CHAPTER 5. CASE STUDIES 187

Hidden-Variable Theories.

These theories11 were put forward (and held by only a minority) to account for
the probabilistic nature of certain quantum phenomena; the suggestion is es-
sentially that quantum mechanics is, behind the scenes, deterministic, and that
we simply have yet to derive its full laws. This view is in part motivated by the
belief, expressed in [61], that a complete physical theory must be deterministic.
Such theories say, then, that behind the probabilistic effects of quantum physics
lie definite, actual states, with the probabilism merely being a manifestation of
our ignorance of these states.

Bell’s Theorem.

This theorem, derived in [14], suggests that local hidden variables alone are in-
sufficient to account for quantum-mechanical phenomena. As a notable exam-
ple, EPR pairs (see [61]) feature disparate correlations that, if reliant on hidden
variables, necessitate non-local ones. This illustrates the derivation of neces-
sary conditions on hidden-variable theories that describe quantum mechanics,
of which derivation the Kochen-Specker theorem provides another example.

Kochen-Specker Theorem.

This theorem, given in [89], constrains the hidden-variable theories that may
describe quantum mechanics. The theorem demonstrates an inconsistency be-
tween two assumptions about hidden variables:

1. that they have definite values at any given time, and

2. that these values are intrinsic and independent of the choice of measuring
device/method (or, equivalently, of what other measurements are per-
formed simultaneously).

The method of proof, roughly speaking, is to formalize systems of hidden
variables as functions that embed quantum theory into a (deterministic) classical
theory, whence the derivation of necessary conditions for these functions leads
to their non-existence, provided that two desirable conditions12 hold.

Meyer [96] and Cabello [44].

The suggestion of [96] is that the feature of finite-precision measurement relevant
here is its insufficiency to distinguish a dense subset from its closure; it is on
this feature, rather than on the reasons13 for which it is indeed the relevant
one, that we focus here. Ultimately, [96] concludes that the availability of only

11Examples are the pilot-wave theory of [56] and its updated form, the Bohm interpretation,
of [32].

12These conditions are, essentially, that statistical predictions concerning a system reflect
the hidden variables’ values (condition (1) of [89]), and that the algebraic structure induced
by virtue of quantum observables’ commensurability be respected by the embedding (condi-
tion (4)).

13The reasons, which concern colourings of certain triples of points, are beyond the scope of
the present work. We hint only that colourings with specific properties witness the existence
of certain hidden-variable theories (hence the link with the Kochen-Specker theorem), and
that each triple is arbitrarily close to a colourable one (hence the link with sets’ density).

CHAPTER 5. CASE STUDIES 188

finite-precision measurement renders the Kochen-Specker theorem unsuitable as
a means with which to demonstrate that there cannot exist the hidden-variable
theories (consistent with the statistical predictions of quantum mechanics) of
the type purportedly precluded by the theorem.14

However, [44] claims that the argument of [96] relies on exhibiting rogue
triples, which, colourable though they may be, are not themselves consistent (in
a certain desirable way) with quantum mechanics.15 The implication is that,
even given only finite precision, the Kochen-Specker theorem is valid.

Aside. As additional motivation for our attempt to formalize the precision issues
involved in this dispute—in particular, as a suggestion that the approach is
promising—, we recall from [44] that

“Ax and Kochen [in unpublished work] have argued that the study
of the effect of finite precision measurements on the KS theorem
requires a different formalization which is still missing”.

We take now the first steps in applying such a formalization.

5.4.2 Resolution—First Steps

As a partial resolution of this controversy, we turn to the above-mentioned
feature of finite-precision measurement, with a view to its formalization; the
indirect implications of this formalization are beyond the scope of the present
project. We recall the above suggestion of [96]: that relevant to the present
work is that finite-precision measurement is insufficient to distinguish a dense
subset from its closure. We verify now that this feature is indeed true under our
notion of precision.

Let A (S2 ∩Q3 is the specific set considered in [96]) be a dense subset of S2

(i.e., the unit sphere in R3). By density of A, we have that the closure of A is
S2; i.e., that

A, in union with its limit points16, is S2.

Now, given a point a ∈ S2 and granted only finite precision, we claim that
one cannot determine whether a ∈ A. Since a is in the closure S2 of A, either
a ∈ A or a is a limit point of A; if the latter, then (∀ε > 0) [B (a, ε) \ {a}]∩A 6= ∅.
If, therefore, a 6∈ A but a is a limit point of A, then (∀ε > 0) (∃a′ ∈ A) d (a, a′) <
ε. Thus, finite precision (with respect to metric d, of which choice does not
matter—see Prop. 20) implies that ‘a ∈ A?’ is unanswerable.

Definition 29. We say that a measuring process has 1
ε -precision (and write

‘infinite precision’ for ‘∞-precision’) with respect to a metric d if a point x is
necessarily measured as some point y such that d (x, y) ≤ ε.

14Of course, it is the proof method, rather than the conclusion that [96] doubts; the sug-
gestion is not that these hidden-variable theories do exist, but that Kochen-Specker does not
show that they do not.

15R. Clifton claims in a private communication with Cabello that this claim, in turn, is
based upon an incorrect assumption. . .

16Limit points are those points, l, such that, for all positive ε, [B (l, ε) \ {l}] ∩ A 6= ∅,
where B (l, ε) is the open ε-ball around l (with respect to some metric, of which choice is not
important—see Prop. 20).

CHAPTER 5. CASE STUDIES 189

(As motivation for this definition, note that precision complexity is propor-
tional to 1

ε , which is infinite if and only if ε = 0.)

Proposition 20. Let d1 and d2 be arbitrary metrics. A process has infinite
precision with respect to d1 if and only if it has infinite precision with respect
to d2.

Proof. Since di are metrics, we have that, for all x and y,

di (x, y) ≥ 0 (5.1)

and
di (x, y) = 0 ⇔ x = y . (5.2)

Suppose infinite precision with respect to d1. Then x is measured as some
y such that d1 (x, y) ≤ 0. By (5.1)i=1, d1 (x, y) = 0; so, by (5.2)i=1, x = y. But
then, by (5.2)i=2, d2 (x, y) = 0, so, a fortiori, d2 (x, y) ≤ 0. That is, we have
infinite precision with respect to d2.

By swapping the roles of d1 and d2, we obtain the converse.

We have shown that, according to our definition of precision, the hypothesis
(concerning subsets’ density within sets) of Meyer’s argument [96] is satisfied,
whence its evocation and conclusion are as valid (which, [44] suggests, is invalid)
in our framework as they were in the context of [96]. Of course, the bulk of the
controversy remains, but we have at least set the stage for its formalization and
resolution.

5.5 Future Work

The previous lack of a rigorous means of treating the role of precision in compu-
tation, especially unconventional computation, has as a result many instances in
the literature of incompletely understood situations that may well benefit from
formalization in our framework. We defer such formalization to future work,
but mention in passing as candidates the following.

• Consideration is made in [84] of the way in which undecidability leads to
uncertainty about physical systems. However, we note that undecidabil-
ity is defined in terms of Turing machines, and so ask (1) whether this
restricted view affects the conclusions, and (2) whether the uncertainty
is not captured by the notion of ‘impossibilities’ (such as measuring with
infinite precision). The apparent answer of [84] to (1) is negative:

“[i]n general, as we will explain, the undecidability principle
applies to any physical system [including continuous-time/space
systems]”;

however, the extension to the continuous case proceeds essentially by em-
bedding and appealing to discrete undecidability, whereas certain non-
Turing systems in some sense (which, we suggest, is the specific candi-
date for formalization within our framework) decide their ‘undecidable’
behaviour. For (2), we conjecture that there is such a link; a particular
direction for future study here is to investigate the boundary, in terms of
implications concerning uncertainty, between finite and infinite precision.

CHAPTER 5. CASE STUDIES 190

• Reference [91] demonstrates that physical theories, including the striking
example of Newtonian mechanics, may give rise to uncomputable func-
tions. A topic for future study, then, is whether physically realistic re-
striction of non-standard complexity measures such as precision resolves
this situation, in that uncomputable functions become unavailable under
such restriction.

• We read in [35] that,

“[a]lthough it has been shown that some continuous time models
exhibit super Turing power, these results rely on the use of an
infinite amount of resources such as time, space, precision, or
energy. In general, it is believed that “reasonable” continuous
time models cannot compute beyond Turing machines”.

This sentiment is a clear candidate for formalization within our framework
(though we conjecture that, once so formalized, the claim may be too
general to be proven in one swoop, relying instead upon properties of
individual computational models or similar).

• Though regarded by the scientific community with less seriousness than
the controversial publications mentioned in Sects. 5.2, 5.3 and 5.4, [42]
nonetheless contains an argument (very roughly, ‘efficient’ soap-bubble
methods exist for NP-complete problems, therefore P = NP) that may
succumb to formalization (and, thence, refutation) within our framework,
as is suggested by Footnote 8 of Chap. 3.17

• The resolution begun in Sect. 5.4 has, as we comment above, yet to be
completed.

5.6 Discussion

5.6.1 General Features of Resolution

We see above, common to Sects. 5.2 and 5.3, a theme: that these controver-
sial systems are plagued by increasing precision complexity, which has as a
consequence an upper bound on the size of input value that the system can
successfully process. Whereas a snappier resolution along the lines of ‘the sys-
tem requires infinite precision and is therefore unviable’ is not forthcoming,
the fact that precision is at least increasing (finiteness notwithstanding) gives
us as much resolution as we need. Given a practical limit18 on precision, the
problem solved by the system ceases to be undecidable, and the controversy,
for practically implemented systems, is dispelled; only from a theoretical and
abstract point of view may the systems well demonstrate (for what it is worth)

17Unfortunately, just as Meyer’s argument (that the Kochen-Specker theorem does not
establish non-existence of certain hidden-variable theories) does not itself establish existence
of these hidden-variable theories, so our suggestion (that [42] does not establish P = NP) does
not itself establish P 6= NP. . .

18This may, for example, be imposed by technological constraints, or by required precision’s
becoming sufficiently great that effects (wave phenomena, for example) ‘abstracted out’ of a
mathematical model cease to be negligible.

CHAPTER 5. CASE STUDIES 191

that their respective models—optical and quantum-adiabatic—, including unre-
alizable and often tacit assumptions about available precision, are strictly more
powerful than the Turing machine.

5.6.2 Extent of Resolution

We consider now the extent to which the above controversies/disputes are re-
solved by the discussion of Chap. 5.

We introduce above a framework in which certain of the relevant issues may
be (and above are) formalized; this enables pertinent questions—ultimately,
we hope, ‘is the disputed claim true or not?’—to be formulated precisely and
answered definitively. However, it must be noted that the question actually
answered is, ‘is the disputed claim true or not according to the framework and
the assumptions implicit in its definition?’; it is trivial, moreover, to suggest
some framework that merely deems a disputed claim to be valid, or to be invalid.

The important factor, then, is the success with which our formal framework
of resources, complexity, dominance, etc. captures our intuitive understanding
of computational resource and related notions. The question of the extent of
this success is not susceptible to rigorous proof, being (much like the Church-
Turing thesis) a question of equivalence between a formal and an intuitive no-
tion; rather, the equivalence must be borne out by evidently sensible choice,
and sustained successful use, of the framework’s definition—or else the equiv-
alence fails. The former test has hopefully been shown, in the discussion and
justification of our definitions, to have been passed (for now. . .); the latter is
necessarily ongoing.

Chapter 6

Discussion

6.1 Other Applications

By design and construction, our framework of unconventional-computer com-
plexity theory allows analysis of arbitrary-model systems’ complexity with re-
spect to arbitrary resources. For instance, we see in Chap. 5 the application
of the framework to various disputes concerning systems’ complexity (typically
precision complexity); such application, then, is an example of the framework’s
‘intended use’.

Additionally, our defining as part of the framework such notions as resource
and complexity has the (not undesirable) byproduct of suggesting analogues of
existing concepts defined in terms of these notions. For example, much of cryp-
tography is based upon the notion of functions’ computation’s being ‘difficult’
(prohibitively so for an eavesdropper, say); each formulation of ‘difficulty’, then,
induces a corresponding concept of cryptography.

By their ‘side-issue’ nature, these analogues induced by our definitions are
not the focus of the present dissertation, but we mention them now in passing
and defer further detail to future work.

6.1.1 Cryptography

A investigation of particular interest for future work is into the cryptographic
applications of the notions of this project. We mention above that with our
formulation of complexity (and, hence, of difficulty) comes a corresponding for-
mulation of many cryptographic concepts. We outline now two illustrative such
concepts.

Confidence in a Problem’s Hardness.

Public-key cryptography relies heavily upon our finding difficult certain tasks,
such as factorization (see Sect. 2.1.1) or the computation of discrete logarithms
(see, e.g., [58]). Use of the framework here described, which considers complexity
in a more general sense than is typically the case, may increase our confidence
that such tasks are indeed difficult, in that not only efficient Turing, but also
efficient non-Turing, solution is unlikely—we see, for example, in Chap. 2 that

192

CHAPTER 6. DISCUSSION 193

even ‘apparently efficient’1 (non-Turing) factorization systems may in fact be
impeded by complexity behaviour relating to precision or similar.

Non-Turing Analogues of Trapdoor/One-Way Functions.

Another question for future work asks whether unconventional-computer ana-
logues of trapdoor functions (which are easy to compute given some ‘trapdoor’
information, but computationally infeasible without—see [58]), one-way func-
tions (which are easy to compute, but infeasible to invert, at least for a high pro-
portion of image points—see [132]), etc. exist.2 Of course, given that one does
not generally know to which paradigm an adversary’s computer conforms, the
relevant question as far as cryptographic applications are concerned is whether
there exist functions that are trapdoor, one way, or similar not just for one
specific computational paradigm, but for all.

As a final cryptographic application for suggested future work, we note that,
given a model-independent formulation of one-way functions, it is a small and
natural step to investigate the corresponding notion of pseudo-random number
generation (see, for example, [132]).

6.1.2 Kolmogorov Complexity

Another non-Turing analogue of a Turing-machine-based concept that presents
itself as a candidate for future study within our framework is Kolmogorov com-
plexity (see [48,93]).

A string’s Kolmogorov complexity can be defined, roughly, as the minimal
size of a description of a Turing machine that produces the string.3 We suggest
for future study the analogues in which “a Turing machine” in this descrip-
tion is replaced with, for example, “an analogue computer”, or even “a general
computing system”.

We recall from Sect. 3.8 the space/time trade-off (during values’ storage and
retrieval) suggested by the ideas behind Kolmogorov complexity: in essence, a
compressed form of a string requires less storage space, but more read/write
time (in which to perform decompression/compression), than the string in full.
From different notions of compression, Kolmogorov complexity, etc. (such as the
analogues described above) arise different ‘balances’ between the resources—
time and space—involved in this trade-off; this offers another topic for future
study.

1That this efficiency is apparent stems from the commonplace but, we argue above, coun-
terproductive belief that standard complexity analysis suffices for non-standard computers.

2Such notions as trapdoor and one-way function that are defined in terms of computations’
‘easiness’ or ‘infeasibility’ are technology-dependent: as computers become more powerful, for
example via either quantitative changes to numbers of transistors, etc. or qualitative changes to
choice of computational paradigm, then more functions are rendered easy, and fewer infeasible,
to compute. This suggests that model-independence, such as is exhibited in our framework,
is a desirable property when investigating these cryptographic notions.

3As an aside, we note that [7] presents the interesting view that the large part of science that
seeks to derive underlying laws and patterns from observed data can be viewed as algorithmic
compression—which notion is very closely related to Kolmogorov complexity—of the data.

CHAPTER 6. DISCUSSION 194

6.1.3 Cardinality and Set Theory

There is a fundamental connection between precision and the dimension of
certain mathematical spaces. This is evident in proofs that the cardinality of
Rn (for n ∈ N \ {0}) is independent of the dimension n—there is a continuum
of elements regardless; the obvious proof is essentially by interleaving decimal
expansions: an n-tuple of real numbers with expansions4

aki,iaki−1,iaki−2,i . . . a1,i.b1,ib2,ib3,i . . .

(i ∈ {1, 2, 3, . . . , n}) can be interleaved so as to map in an injective way to a
single real number with expansion

(ak,n . . . ak,1) (ak−1,n . . . ak−1,1) (ak−2,n . . . ak−2,1) . . . (a1,n . . . a1,1)
. (b1,1 . . . b1,n) (b2,1 . . . b2,n) (b3,1 . . . b3,n) . . . ,

where k = max {k1, k2, k3, . . . , kn} and aj,i = 0 if j > ki (we do not account in
this description for the signs of the real numbers, though these can be encoded
merely as an additional digit inserted next to the decimal point, for example).
(Of course, there exist injective maps—e.g., x 7→ (x, 0, 0, 0, . . . , 0)—in the other
direction, from R to Rn, whence these sets’ equipollence by Schröder-Bernstein
(Theorem 5.1.2 of [106])).

However, this and similar proofs rely on unbounded precision, in that the
injectivity of interleaving follows from the distinctness of arbitrarily close real
numbers. One may question, then, whether the theory (of cardinality, sets,
etc.) that arises from a restriction to bounded precision is worthy of study (and
whether, indeed, it differs at all from the existing theory of a discrete set such
as the integers—note that the dimension/precision link described above, recast
in the context of bounded precision, becomes essentially the issue of whether
|Zn| is independent of n, which it is).

We propose for future study, then, the fragment of set theory where con-
structions in proofs are permitted to use only ‘achievable’, bounded-precision
operations.

6.2 Fundamental Questions

We briefly mention now some fundamental questions concerning the nature of
computation itself; we suggest that these questions may succumb (at least in
part) to analysis in the framework of the present project, though, as with much
of Sect. 6.1, we defer the details pertaining to some of the questions to future
work.

6.2.1 Inherence of Complexity in Problems

The question here is

is complexity inherent in problems, or is it an artefact of our choice of
computer/paradigm?

4In these expansions, the a’s are digits in the integer part of a real number, and the b’s
digits in its decimal part; sequential composition denotes concatenation of digits, and grouping
via bracketing is for clarity rather than multiplication or similar. For example, expansions
a2a1.b1 and (a2a1).b1 both have value 101 × a2 + 100 × a1 + 10−1 × b1.

CHAPTER 6. DISCUSSION 195

That is, are problems inherently easy/difficult, regardless of the computer or
model employed in their solution, or does at least some of the complexity arise
from our approaching the problems in certain ways? (Cf. Sect. 3.2.3.)

We conjecture that the spirit of the answer is that complexity is indeed
inherent in problems: we find above repeatedly that, when a problem thought to
be difficult for Turing machines is approached via other models, then it remains
difficult, not necessarily by virtue of prohibitive time or space complexity, but
often because of concerns of precision or similar. (That this is only the spirit
of the answer reflects that, to a certain extent, choice of computer/model can
affect complexity in that, even for easy problems, it is possible deliberately to
choose a poor computer; we feel that the spirit of the answer should discount
such contrary choice.)

As further evidence for this conjecture, note (e.g., from Sect. 4.2 of [37])
that the class P is robust, in that the class may be equivalently formulated in
terms of Turing machines (of which exact details, such as number of tapes,
are unimportant), calculable statements of logics, etc. That each formulation
gives rise to the same class suggests a fundamental nature—more fundamental,
we suggest, than choice of computational device/model—of the property of a
problem’s being efficiently soluble.

Aside. We note in passing that a potentially relevant factor in determining
whether a given problem is inherently difficult is whether the problem is chiefly
combinatorial or numerical. Often our observation above of exponential preci-
sion complexity arises because of the numerical nature of the problems consid-
ered, whereas one may expect discrete, combinatorial (e.g., search) problems to
be better suited to the imprecise though highly parallel architectures offered by
some unconventional paradigms; nonetheless the above conjecture seems to hold:
even promising unconventional systems for combinatorial tasks often transpire
to have prohibitive precision complexity, for example.

6.2.2 Model- and Resource-Heterogeneous Comparison

We answer affirmatively above the important question,

can meaningful comparisons be made between computers conforming to
different paradigms and/or with respect to different resources?

Specifically, much of Chap. 4 deals with exactly this issue.

6.2.3 Source of Systems’ True Complexity

We may pose the question,

where does the true complexity of ? computers lie?

where we may take ‘?’ to be one of ‘quantum’, ‘chemical’, ‘analogue’, etc., or
even ‘arbitrary-model’.

We discuss this question for specific models in Sect. 3.6 and for the arbitrary-
model case in Sect. 3.5; more fundamentally, we discuss in Sect. 3.2.3 various
interpretations of the term ‘complexity’ as it appears in this question.

CHAPTER 6. DISCUSSION 196

6.2.4 Computer/Environment Boundary

The question,

what delimits a computer from its environment?

is particularly relevant (and difficult) in the context of unconventional computa-
tion, since certain such computers defer processing tasks to their environment,
as we now describe.

Turing machines present an abstraction of self-contained computers, within
which the entirety of a calculation is performed: apart from the provision of
input/output means, a Turing machine has no contact with anything external
to itself. In contrast, analogue computation, for example, often exploits the fact
that systems sit in a universe that itself calculates (according to physical laws)—
one may defer some processing, then, to the environment. Whereas a Turing
machine neither knows nor cares about the presence of gravity, for instance,
an unconventional computer may exploit such, for example to square numbers
by measuring the (output) distance that a mass falls in a manipulable (input)
amount of time.

Of course, during complexity analysis, we wish to prevent our computers
‘cheating’ by unrealistically deferring computation to their environment (for
else our impression of their complexity, and that of the problem being solved,
is an underestimation); this renders the question an important one.

6.2.5 Underlying, Fundamental Resource

As a final question in this section, we ask

does there exist an underlying, fundamental resource ,

of which other resources are facets? This is the topic of study in Sect. 3.8, to
which section (and to future work) we defer further detail.

6.3 Conclusion

6.3.1 Summary

We summarize now the above content of this dissertation.

Chapter 1—Introduction.

We begin the dissertation with some introductory comments in Sect. 1.1, and by
briefly recapping some preliminary notions—namely, complexity theory, com-
putation, Turing machines, the Halting problem, the original and extended
Church-Turing theses, unconventional computation, resource, Blum’s axioms,
complexity functions, asymptotic notation and natural numbers—in Sect. 1.2;
in Sect .1.3, we outline the dissertation.

CHAPTER 6. DISCUSSION 197

Chapter 2—Motivation.

In Sect. 2.1, we recall the problem of factorization, and note the lack of an effi-
cient (polynomial-time) solution conforming to a standard, Turing-machine-like
computational model. We introduce in Sects. 2.2 and 2.3 two analogue systems
that solve the problem of factorization in polynomial time and space, but show
that the systems’ precision complexity (which concept we informally outline in
Sect. 2.2) is exponential. As we note in Sect. 2.4, this suggests that, in order
successfully to analyze the complexity of unconventional systems, one may well
need to consider unconventional resources; this is the chief motivation for our
implementation and investigation of the present project’s model-independent
approach to complexity theory, which we describe in Chaps. 3 and 4.

Chapter 3—Resource.

We begin, in Chap. 3, to describe our framework of model-independent com-
plexity theory. In Sect. 3.1, we reiterate the need to consider unconventional
resources, but note that they are very often overlooked. In Sect. 3.2, we make
clearer what we mean by ‘resource’, outlining our chosen notion of commodity
resource. Before formalizing the notion, we discuss in Sect. 3.3 an illustrative
example: precision. In Sect. 3.4, we return to, and begin to formalize, the con-
cept of commodity resource, going on to consider specific examples, some that
pertain to all computational paradigms (Sect. 3.5), some of less general appli-
cability (Sect. 3.6). In Sect. 3.7, we contrast traditional resources—time and
space—with their unconventional counterparts. Finally, in Sect. 3.8, we con-
sider issues surrounding the existence of an underlying, fundamental resource,
of which all others are facets.

Chapter 4—Dominance.

In Sect. 4.1, we motivate the comparison of computers’ efficiency, noting that the
Turing-machine case is well understood, but suggesting that the unconventional-
computer case is lacking. We address this by introducing dominance and R-
complexity (in Sect, 4.2), and the corresponding complexity classes (in Sect. 4.3,
where we also prove theorems concerning the classes). In Sect. 4.4, we verify
that the traditional Gap Theorem still holds in our framework, as an illustrative
instance of confirmation that complexity-theoretic tools are still available. We
note in Sect. 4.5 that resources as described in Chap. 3 are sufficiently permissive
to allow, when using dominance and related notions, undesirable complexity
behaviour; we introduce a further restriction—normality—to our concept of
resource as a step towards addressing this. The ideas introduced in Chaps. 3
and 4 form our model-independent framework of complexity.

Chapter 5—Case Studies.

In Chap. 5, we apply the notions—especially precision complexity—of our frame-
work to several case studies in order to shed light upon controversial aspects
thereof. Specifically, we consider a ray-tracing model of computation (Sect. 5.2)
and a quantum-adiabatic system (Sect. 5.3) that both purport to compute un-
decidable functions, and the disagreement (Sect. 5.4) over whether restriction to
finite precision nullifies the Kochen-Specker theorem; in Sect. 5.5, we list other

CHAPTER 6. DISCUSSION 198

such disputes as candidates for future work. Finally, in Sect. 5.6, we abstract
some general features from our specific case studies, as well as discussing the
extent to which the disputes have in fact been settled.

Chapter 6—Discussion.

In Sect. 6.1, we consider not the direct use of our framework (as a means of
quantifying and comparing systems’ complexity), but rather its indirect use
in definitions of analogues of concepts—cryptography, Kolmogorov complexity
and set theory—connected with complexity theory. In Sect. 6.2, we view from
the perspective of our framework various fundamental questions regarding the
nature of computation—whether complexity is inherent in problems, where the
computer/environment boundary lies, whether there exists a single underlying
computational resource, etc. We summarize below (in the remainder of Sect. 6.3)
some possible directions for future work and add some concluding comments.

6.3.2 Future Work

We list here the topics suggested throughout this dissertation for extension of
the present project; given in brackets are references to the topics’ discussion
above.

• A slime-mould implementation of Shor’s factorization algorithm (Foot-
note 14 of Chap. 2);

• modification of the mass-comparison system of Sect. 3.1.2 to facilitate
recognition of equality (Footnote 10 of Chap. 3);

• formulation of unconventional paradigms’ power as oracular consultation
(Sect. 3.2.1 Features of Computational Models);

• use of joint entropy or similar to determine which parameters contribute
to precision (Sect. 3.3.3 Error; Precision Complexity);

• exploitation of chaos to improve precision (final aside of Sect. 3.3);

• the precision costs incurred in the computational use of quantum walks
(Sect. 3.6.2 Quantum Walks);

• the existence or otherwise of a fundamental resource of which all others
are facets (Sect. 3.8);

• the correspondence between the new and traditional hierarchies of com-
plexity classes, and the ‘transfer theorems’ that this correspondence im-
plies (Sects. 4.3.5 and 4.3.6);

• Gap-Theorem-like conjectures, the generalization of these conjectures to
ordinals, resource-constructibility, and related issues (Sect. 4.4.3);

• a ‘dual’ of normalization that corrects understatement, rather than exag-
geration, of resources’ impact (Remark 41), and the conjectured incom-
pleteness of finite sets of such corrections (Footnote 29 of Chap. 4);

CHAPTER 6. DISCUSSION 199

• normalization as a topic in traditional complexity theory (final aside of
Sect. 4.5);

• continuation of the resolution of the Cabello/Meyer dispute (Sect. 5.4.2);

• formalization (especially of precision aspects) of controversies and other
issues concerning [35,42,84,91], etc. (Sect. 5.5);

• further detail concerning ‘side-issues’ such as cryptography, Kolmogorov
complexity and set theory (Sect. 6.1); and

• fundamental questions about the nature of computers and computation:
inherence of complexity, computer/environment boundaries, underlying
resource, etc. (Sect. 6.2).

Of course, there are many other directions in which this work may be devel-
oped that we do not mention above; these include

• polynomially restricting the precision of analogue devices similar to those
of Chap. 2 so as to ascertain which conic sections can be implemented;5

• investigating the complexity of a single problem (e.g., factorization) as
approached using several computational paradigms, with a view to under-
standing resource trade-offs; and

• exploring the probabilistic aspects of our framework, which necessarily
arise since non-determinism is permitted of our computers.

6.3.3 Final Comments

We hope to convey to the reader by what is written above that the profound
differences between conventional and unconventional computers warrant for the
latter an approach to computational complexity theory distinct from that which
is practised for the former. We hope, furthermore, that the above satisfies
the reader that our notions—resource (especially precision), dominance, R-
complexity, normality, etc.—offer a framework of complexity theory suitable
for unconventional computers, though maintaining the conventional as a special
case. We hope, also, to demonstrate via the consideration above of case stud-
ies that the framework is not only of theoretical interest, but also of practical
applicability.

We hope, above all, that the work described in this dissertation is of interest
and use to complexity theorists, to practitioners of unconventional computing
and to the general reader.

5The motivation for this suggestion, for which latter we thank Damien Woods, is that this
may shed light on the internal structure of P.

Bibliography

[1] S. Aaronson: Complexity Zoo website, available at
http://qwiki.stanford.edu/wiki/Complexity_Zoo

[2] A. Adamatzky (editor): Int. J. of Unconventional Computing. Old City
Publishing (2005 onwards)

[3] L. Adleman: Molecular Computation of Solutions to Combinatorial Prob-
lems. Science 266 (1994)

[4] M. Agrawal, N. Kayal, N. Saxena: PRIMES is in P. The Annals of Math-
ematics, second series 160, no. 2 (2004)

[5] S. Akl: The Myth of Universal Computation. Queen’s University Kingston,
School of Computing Technical Report series 2005-492 (2005)

[6] A. Ambainis, O. Regev: An Elementary Proof of the Quantum Adiabatic
Theorem. arXiv:quant-ph/0411152v2 (2004)

[7] J. Barrow: New Theories of Everything. Oxford University Press (2007)

[8] E. Beggs, J. Costa, B. Loff, J. Tucker: Computational Complexity with
Experiments as Oracles, and Computational . . . II. Upper Bounds. Proc.
of the Royal Soc. A 464 – 465 (2008 – 9)

[9] E. Beggs, J. Costa, B. Loff, J. Tucker: On the Complexity of Measurement
in Classical Physics. LNCS 4978 (2008)

[10] E. Beggs, J. Costa, J. Tucker: Limits to Measurement in Experiments
Governed by Algorithms. Math. Struct. in Comp. Sci. 20 (2010)

[11] E. Beggs, J. Costa, J. Tucker: Physical Oracles: the Turing Machine and
the Wheatstone Bridge. Studia Logica 95 (2010)

[12] E. Beggs, J. Tucker: Experimental Computation of Real Numbers by New-
tonian Machines. Proc. of the Royal Soc. A 463 (2007)

[13] J. Bekenstein: Energy Cost of Information Transfer. Phys. Rev. Lett. 46
(1981)

[14] J. Bell: On the Einstein Podolsky Rosen Paradox. Physics 1, no. 3 (1964)

[15] C. Bennett: The Thermodynamics of Computation—a Review. Int. J. of
Theor. Phys. 21, no. 12 (1982)

200

BIBLIOGRAPHY 201

[16] C. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, W. Wootters:
Teleporting an Unknown Quantum State via Dual Classical and Einstein-
Podolsky-Rosen Channels. Phys. Rev. Lett. 70 (1993)

[17] C. Bennett, J. Gill: Relative to a Random Oracle A, PA 6= NPA 6= co-NPA

with Probability 1. SIAM J. Computing 10, no. 1 (1981)

Many of E. Blakey’s publications listed below (specifically, [19,21–29])

are available at http://users.ox.ac.uk/∼quee1871/pubs.html.

[18] E. Blakey: A Model-Independent Theory of Computational Complexity;
Price: from Patience to Precision (and Beyond). Unpublished dissertation
for Transfer of Status (2008)

[19] E. Blakey: An Analogue Solution to the Problem of Factorization. Ox-
ford University Computing Laboratory Research Reports series, RR-07-04
(2007)

[20] E. Blakey: A New Gap Theorem: the Gap Theorem’s Robustness against
Dominance. Journal paper based on conference presentation given at
Science and Philosophy of Unconventional Computing (in preparation)
(2010)

[21] E. Blakey: Apples & Oranges? Comparing Unconventional Computers.
Int. J. of Computers 4, no. 4, W. Mikhael, I. Sandberg, L. Zadeh, A. Kuri-
Morales, et al. (editors) (invited paper) (2010)

[22] E. Blakey: Apples and Oranges? Comparing Unconventional Computers.
New Aspects of Systems Theory & Scientific Computation, N. Mastorakis,
V. Mladenov, Z. Bojkovic (editors) (invited paper) (2010)

[23] E. Blakey: Beyond Blum: What is a Resource? Int. J. of Unconven-
tional Computing 6, nos. 3 – 4, A. Adamatzky (editor-in-chief), Old City
Publishing (2010)

[24] E. Blakey: Computational Complexity in Non-Turing Models of Compu-
tation; The What, the Why and the How. Proc. of Quantum Physics
and Logic/Development of Computational Models 2008, ENTCS series,
M. Mislove (managing editor), B. Coecke, P. Panangaden (guest editors),
Elsevier (to appear) (2008)

[25] E. Blakey: Dominance: Consistently Comparing Computational Complex-
ity. Oxford University Computing Laboratory Research Reports series,
RR-08-09 (2008)

[26] E. Blakey: Factorizing RSA Keys (an Improved Analogue Solution).
Proc. in Information and Communications Technology 1, Yasuhiro S.,
Masami H., Hiroshi U., A. Adamatzky (editors), Springer (2008)

[27] E. Blakey: Factorizing RSA Keys, an Improved Analogue Solution. New
Generation Computing 27, no. 2, Yasuhiro S., Masami H., Hiroshi U.,
A. Adamatzky (guest editors), Ohmsha/Springer (2008)

BIBLIOGRAPHY 202

[28] E. Blakey: On the Computational Complexity of Physical Computing Sys-
tems. Unconventional Computing 2007, A. Adamatzky, L. Bull, B. De
Lacy Costello, S. Stepney, C. Teuscher (editors), Luniver Press (2007)

[29] E. Blakey (and co-prepared by patent attorneys): System and Method
for Finding Integer Solutions. United States patent 7453574 (2008)

Many of E. Blakey’s publications listed above (specifically, [19,21–29])

are available at http://users.ox.ac.uk/∼quee1871/pubs.html.

[30] L. Blum, F. Cucker, M. Shub, S. Smale: Complexity and Real Computa-
tion. Springer (1997)

[31] M. Blum: A Machine-Independent Theory of the Complexity of Recursive
Functions. J. of the Assoc. for Computing Machinery 14, no. 2 (1967)

[32] D. Bohm, B. Hiley: The Undivided Universe. Routledge (1993)

[33] U. Boker, N. Dershowitz: Comparing Computational Power. Logic J. of
the IGPL 14, no. 5 (2006)

[34] A. Borodin: Computational Complexity and the Existence of Complexity
Gaps. J. of the Assoc. for Computing Machinery 19, no. 1 (1972)

[35] O. Bournez, M. Campagnolo: A Survey on Continuous Time Computa-
tions. New Computational Paradigms, Springer (2008)

[36] O. Bournez, M. Campagnolo, D. Graça, E. Hainry: The General Pur-
pose Analog Computer and Computable Analysis are Two Equivalent
Paradigms of Analog Computation. Proc. of TAMC, Springer (2006)

[37] D. Bovet, P. Crescenzi: Introduction to the Theory of Complexity. Prentice
Hall (1993)

[38] V. Brattka, P. Hertling, K. Weihrauch: A Tutorial on Computable Anal-
ysis. New Computational Paradigms, Springer (2008)

[39] S. Braunstein, A. Pati: Quantum Information with Continuous Variables.
Springer-Verlag (2003)

[40] M. Braverman, S. Cook: Computing over the Reals: Foundations for Sci-
entific Computing. arXiv:cs/0509042v1 [cs.CC] (2005)

[41] R. Brent: Recent Progress and Prospects for Integer Factorisation Algo-
rithms. LNCS 1858 (2000)

[42] S. Bringsjord, J. Taylor: P = NP. arXiv:cs/0406056v1 [cs.CC] (2004)

[43] V. Bush: The Differential Analyzer: a New Machine for Solving Differ-
ential Equations. J. of the Franklin Inst. 212 (1931)

[44] A. Cabello: Finite-Precision Measurement Does Not Nullify the Kochen-
Specker Theorem. Phys. Rev. A 65 (2002)

[45] C. Calude, L. Staiger: A Note on Accelerated Turing Machines. Math.
Struct. in Comp. Sci. 21 (2010)

BIBLIOGRAPHY 203

[46] L. Cardelli: Algebras and Languages for Molecular Programming.
LNCS 6079 (2010)

[47] J. Carlson, A. Jaffe, A. Wiles (editors): The Millennium Prize Problems.
Amer. Math. Soc. and Clay Math. Inst. (2006)

[48] G. Chaitin: Meta Maths: The Quest for Omega. Atlantic Books (2006)

[49] A. Church: An Unsolvable Problem of Elementary Number Theory. Amer.
J. of Math. 58 (1936)

[50] B. Coecke: Quantum Computer Science course, Oxford University Com-
puting Laboratory (2006)

[51] The website for the workshop Complexity Resources in Physical Compu-
tation is available at http://www.comlab.ox.ac.uk/CRPC09/

[52] R. Courant, H. Robbins: What is Mathematics? An Elementary Approach
to Ideas and Methods. I. Stewart (editor), Oxford University Press (1996)

[53] J. Crutchfield, K. Wiesner: Intrinsic Quantum Computation. Phys. Lett.
A 374, no. 4 (2008)

[54] S. Das, R. Kobes, G. Kunstatter: Energy and Efficiency of Adiabatic
Quantum Search Algorithms. J. of Phys. A: Math. Gen. 36 (2003)

[55] M. Davis: Hilbert’s Tenth Problem is Unsolvable. Amer. Math. Monthly 80
(1973)

[56] L. de Broglie: Rapport au 5e Conseil de Physique Solvay, Brussels. Proc.
thereof (1927)

[57] D. Deutsch: Quantum Theory, the Church-Turing Principle and the Uni-
versal Quantum Computer. Proc. of the Royal Soc. A 400 (1985)

[58] W. Diffie, M. Hellman: New Directions in Cryptology. IEEE Trans. on
Information Theory IT-22, no. 6 (1976)

[59] B. Douglas, J. Wang: Can Quantum Walks Provide Exponential Speedups?
arXiv:0706.0304v1 [quant-ph] (2007)

[60] B. Douglas, J. Wang: Classically Efficient Graph Isomorphism Algorithm
using Quantum Walks. arXiv:0705.2531v1 [quant-ph] (2007)

[61] A. Einstein, B. Podolsky, N. Rosen: Can Quantum-Mechanical Descrip-
tion of Physical Reality Be Considered Complete? Phys. Rev. 47 (1935)

[62] A. Ekert: Quantum Cryptography Based on Bells Theorem. Phys. Rev.
Lett. 67 (1991)

[63] E. Farhi, J. Goldstone, S. Gutmann: Quantum Adiabatic Evolution Algo-
rithms with Different Paths. arXiv:quant-ph/0208135v1 (2002)

[64] E. Farhi, J. Goldstone, S. Gutmann, M. Sipser: Quantum Computation
by Adiabatic Evolution. arXiv:quant-ph/0001106v1 (2000)

BIBLIOGRAPHY 204

[65] R. Feynman: Simulating Physics with Computers. Int. J. of Theor.
Phys. 21 (1982)

[66] The website for FOPARA ’09, the workshop Foundational
and Practical Aspects of Resource Analysis, is available at
http://www.aha.cs.ru.nl/fopara/

[67] E. Fredkin, T. Toffoli: Conservative Logic. Int. J. of Theor. Phys. 21
(1982)

[68] R. Gandy: Church’s Thesis and Principles for Mechanisms. The Kleene
Symposium, J. Barwise, H. Keisler, K. Kunen (editors), North-Holland
Publishing Company (1980)

[69] R. Geroch, J. Hartle: Computability and Physical Theories. Foundations
of Physics 16, no. 6 (1986)

[70] J. Gorecki, J. Gorecka: Chemical Programming in Reaction-Diffusion Sys-
tems. Proc. of Unconventional Computing: From Cellular Automata to
Wetware (2005)

[71] D. Graça: Computability Via Analog Circuits. Proc. of Int. Conf. on Com-
putability and Complexity in Analysis (2003)

[72] T. Haist, W. Osten: An Optical Solution for the Traveling Salesman Prob-
lem. Optics Express 15, no. 16 (2007)

[73] Hanabusa I.: Blind Monks Examining an Elephant. Library of Congress
catalogue, control no. 2004666374. Illustration in Itchō Kyōgashū, Niigata-
Ken Koshi-Gun Nagaoka: Meguro Jūrō; Tōkyō: Dō Shiten, Meiji 21
(1888)

[74] J. Hartmanis: On the Weight of Computation. Bulletin of the EATCS 55
(1995)

[75] B. Hendy: Presentation at the Photo Marketing Assoc./Digital Imaging
Marketing Assoc. conf. (1998)

[76] I. Herstein: Topics in Algebra. Wiley (1975)

[77] D. Hilbert: Mathematical Problems. Bull. Amer. Math. Soc. 8 (1902)

[78] C. Hoare, R. Milner (editors): Grand Challenges in Computing. British
Computer Soc. (2004)

[79] A. Hodges: Can Quantum Computing Solve Classically Unsolvable Prob-
lems? arXiv:quant-ph/0512248v1 (2005)

[80] R. Hornbeck: Numerical Methods. Prentice-Hall (1982)

[81] Z. Ibrahim, Yusei T., Osamu O., M. Khalid: Experimental Implementa-
tion of Direct-Proportional Length-Based DNA Computing for the Shortest
Path Problem. Unconventional Computing 2005: From Cellular Automata
to Wetware, C. Teuscher, A. Adamatzky (editors), Luniver Press (2005)

BIBLIOGRAPHY 205

[82] B. Jacobs: On Generalized Computational Complexity. J. of Symbolic
Logic 42, no. 1 (1977)

[83] R. Jozsa: discussion with Richard Jozsa, 3.iv.2007 (2007)

[84] I. Kanter: Undecidability Principle and the Uncertainty Principle Even
for Classical Systems. Phys. Rev. Lett. 64, no. 4 (1990)

[85] V. Kendon: personal correspondence with Viv Kendon, Leeds University,
14.i.2008 (2008)

[86] V. Kendon, K. Nemoto, W. Munro: Quantum Analogue Computing. Philo-
sophical Trans. of the Royal Soc. A 368 (2010)

[87] T. Kieu: Hypercomputation with Quantum Adiabatic Processes. TCS 317
(2004)

[88] T. Kieu: Quantum Adiabatic Algorithm for Hilbert’s Tenth Problem.
arXiv:quant-ph/0310052v2 (2003)

[89] S. Kochen, E. Specker: The Problem of Hidden Variables in Quantum
Mechanics. J. of Mathematics and Mechanics 17, no. 1 (1967)

[90] Kojiro K.: On Proving Time Constructibility of Functions. Theoretical
Computer Science 35 (1985)

[91] G. Kreisel: A Notion of Mechanistic Theory. Synthese 29 (1974)

[92] R. Landauer: Irreversibility and Heat Generation in the Computing Pro-
cess. IBM J. of Res. and Dev. 5, no. 3 (1961)

[93] M. Li, P. Vitányi: Introduction to Kolmogorov Complexity and its Appli-
cations. Springer (1997)

[94] S. Lloyd, H. Pagels: Complexity as Thermodynamic Depth. Ann. Phys. 188
(1988)

[95] K. Martin: Entropy as a Fixed Point. Theor. Comp. Sci. 350 (2006)

[96] D. Meyer: Finite-Precision Measurement Nullifies the Kochen-Specker
Theorem. Phys. Rev. Lett. 83 (1999)

[97] W. Miehle: Link-Length Minimization in Networks. Operations Re-
search 6, no. 2 (1958)

[98] G. Moore: Cramming More Components onto Integrated Circuits. Elec-
tronics (1965)

[99] M. Nielsen, I. Chuang: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

[100] N. Nisan: RL ⊆ SC. Proc. of ACM Symposium on Theory of Computing
(1992)

[101] D. Normann: Applications of the Kleene-Kreisel Density Theorem to
Theoretical Computer Science. New Computational Paradigms, Springer
(2008)

BIBLIOGRAPHY 206

[102] P. Orponen: A Survey of Continuous-Time Computation Theory. Ad-
vances in Algorithms, Languages, and Complexity, Springer (1997)

[103] C. Papadimitriou: Computational Complexity. Addison-Wesley (1995)

[104] G. Păun: From Cells to (Silicon) Computers, and Back. New Computa-
tional Paradigms, Springer (2008)

[105] R. Penrose: The Emperor’s New Mind. Oxford Paperbacks (1999)

[106] M. Potter: Sets: an Introduction. Oxford University Press (1990)

[107] M. Pour-El: Abstract Computability and Its Relation to the General Pur-
pose Analog Computer (Some Connections Between Logic, Differential
Equations and Analog Computers). Trans. of Amer. Math. Soc. 199 (1974)

[108] V. Pratt: Every Prime has a Succinct Certificate. SIAM J. on Comput-
ing 4 (1975)

[109] R. Raussendorf, D. Browne, H. Briegel: Measurement-Based Quantum
Computation on Cluster States. Phys. Rev. A 68, no. 2 (2003)

[110] J. Reif, J. Tygar, Akitoshi Y.: Computability and Complexity of Ray Trac-
ing. Discrete and Computational Geometry 11, no. 1 (1994)

[111] ‘Resource’ dictionary entry. Oxford English Dictionary, second edition.
Oxford University Press (1989)

[112] R. Rivest, A. Shamir, L. Adleman: A Method for Obtaining Digital Sig-
natures and Public-Key Cryptosystems. Communications of the ACM 21,
no. 2 (1978)

[113] T. Rudolph: personal correspondence with Terry Rudolph, Imperial Col-
lege London, 3.iv.2009 (2009)

[114] A. Salamon: personal correspondence with András Salamon, Oxford Uni-
versity Computing Laboratory, 31.x.2008 (2008)

[115] A. Salamon: personal correspondence with András Salamon, Oxford Uni-
versity Computing Laboratory, 1 – 11.ii.2010 (2010)

[116] A. Schönage: On the Power of Random Access Machines. LNCS 71 (1979)

[117] C. Shannon: Mathematical Theory of the Differential Analyzer. J. Math.
Phys. MIT 20 (1941)

[118] P. Shor: Polynomial Time Algorithms for Prime Factorization and Dis-
crete Logarithms on a Quantum Computer. SIAM J. on Computing 26
(1997)

[119] H. Siegelmann, A. Ben-Hur, S. Fishman: Computational Complexity for
Continuous Time Dynamics. Phys. Rev. Lett. 83, no. 7 (1999)

[120] M. Sipser: Introduction to the Theory of Computation. PWS (1997)

[121] R. Stearns, H. Hunt: Resource Bounds and Subproblem Independence.
Theory of Comput. Syst. 6, no. 38 (2005)

BIBLIOGRAPHY 207

[122] S. Stepney: The Neglected Pillar of Material Computation. Physica D:
Nonlinear Phenomena 237 (2008)

[123] W. Stevens: Logic Circuits in a System of Repelling Particles.
From Utopian to Genuine Unconventional Computers, A. Adamatzky,
C. Teuscher (editors), Luniver Press (2006)

[124] Tetsu S., Atsushi T., Toshiyuki N., Yoshiki K.: Amoebae Anticipate Pe-
riodic Events. Phys. Rev. Lett. 100, no. 1 (2008)

[125] B. Trachtenbrot: Complexity of Algorithms and Computation. Novosibirsk
(1967)

[126] J. Traub: On Reality and Models. Boundaries and Barriers: on the Limits
to Scientific Knowledge, J. Casti, A. Karlqvist (editors), Addison-Wesley
(1996)

[127] A. Turing: On Computable Numbers, with an Application to the Entschei-
dungsproblem, and On Computable . . . A Correction. Proc. London Math.
Soc. 2, nos. 42 – 43 (1936 – 7)

[128] A. Vergis, K. Steiglitz, B. Dickinson: The Complexity of Analog Compu-
tation. Mathematics and Computers in Simulation 28, no. 2 (1986)

[129] P. Vitányi: Time, Space, and Energy in Reversible Computing. Proc. 2nd
Conf. on Computing Frontiers, (2005)

[130] C. Walter: Kryder’s Law. Scientific Amer. 293, no. 2 (2005)

[131] P. Welch: Discrete Transfinite Computation Models. Computability in
Context, Imperial College Press (2011)

[132] D. Welsh: Codes and Cryptography. Oxford University Press (1988)

[133] D. Woods: Computational Complexity of an Optical Model of Computa-
tion. PhD thesis, National University of Ireland, Maynooth (2005)

[134] D. Woods: Optical Computing and Computational Complexity. Proc. of
the Fifth Int. Conf. on Unconventional Computation, LNCS 4135 (2006)

[135] Yao Q.: Classical Physics and the Church-Turing Thesis. J. of ACM 50
(2003)

[136] T. Young: Experiments and Calculations Relative to Physical Optics.
Philosophical Trans. of the Royal Soc. of London 94 (1804)

[137] W. Zurek: Thermodynamic Cost of Computation, Algorithmic Complexity
and the Information Metric. Nature 341 (1989)

